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CHAPTER  1  
 

Setting the Stage: 
Elements of Decision Heuristics 

 
 
 
 

Introduction 
 
When people are asked which city has more inhabitants, and they recognize one city but not 
the other, they usually choose the one they recognize. This simple strategy is called the 
recognition heuristic. German students given the alternatives San Diego and San Antonio, 
for instance, almost exclusively picked the correct alternative, San Diego; this was a city 
most of them recognized, whereas many had never heard of San Antonio (Goldstein & 
Gigerenzer, 2002). Explaining this behavior by focusing entirely on internal processes by, 
for example, postulating that San Diego was the more available option in participants’ 
memories, does not add much beyond the fact, already known, that one city is recognized 
while the other is not. But why should one trust one’s recognition memory? Goldstein and 
Gigerenzer analyzed the environment to look for an explanation. They showed that 
recognition correlates with higher values on criteria such as size, amount, or performance in 
many domains. The mediator they suggested are the mass media: Large cities are more often 
mentioned in the news, for example. Thus, recognition can be a valid cue for city size. But 
what will people do in situations in which recognition is not a valid cue for a certain 
criterion? When asked to select the larger city of a pair composed of a small neighboring city 
and a fictional city name, people do not preferentially select the recognized city, and often 
even do the opposite (Oppenheimer, 2003). Thus, people use recognition adaptively – as 
they seem to know under which circumstances recognition is valid, and under which 
circumstances it is not (such as when a city is known due to close geographical proximity). 
This example shows that analysis of the decision environment can produce powerful 
predictions about when a behavior will be observed and when not, under the general 
assumption that human cognition is adaptive.  

Although ecological approaches have a long tradition in psychology (e.g., Brunswik, 
1955), studying the environment in which certain cognitive tasks have to be performed is far 
from being found in the standard repertoire of cognitive psychologists. Maybe the spread of 
evolutionary thinking in psychology will increase the attention paid to the environment, but 
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so far, cognitive theories that take the environment explicitly into account are more an 
exception than the rule. The existing approaches differ in their assumptions of how the 
environment is reflected in the human mind. 

Anderson (1990), for example, views human memory as adapted to the information-
retrieval requirements posed by the environment. In an impressive analysis of databases 
(New York Times headlines, word usage in speech to children, authors of e-mails), Anderson 
and Schooler (1991) found, for instance, that when one plots the probability that a particular 
item (say, a word) will occur as a function of how long it has been since it last occurred, the 
curve shows a strong probability increase for the most recent items, suggesting that the 
recency “bias” found in learning might be an adaptive response to the statistical structure of 
the environment. Recency of last occurrence is simply a very good predictor that an item will 
be encountered again at a given point in time. However, Anderson’s (1990) view of how 
search in memory proceeds imposes the burden of optimization on the individual – search is 
assumed to occur in an optimal order and to stop at the optimal point. Simple heuristics that 
might be able to exploit the identified environmental regularities are not considered. 

Shepard (2001), mainly in the domain of perception, tried to find imprints of universal 
principles, such as physical laws, on our brains. For example, he suggests that the three-
dimensional color representation of human vision might be an adaptation to the three degrees 
of freedom of natural lightning on our planet: light-versus-dark variation, red-versus-green 
variation, and blue-versus-yellow variation. Yet areas in psychology in which deterministic 
laws can be applied might be rather limited, or at least they might only apply to certain 
processing levels. Probably not by chance, Shepard focused on color constancy and motion 
of objects.  

Often, inferences have to be made in domains whose laws, if existent, are unknown to 
decision makers and which thus contain, at least subjectively, a high degree of uncertainty. 
Brunswik (1955) appreciated this uncertainty in how the world reveals itself to us. 
According to him, “the universal lawfulness of the world is of limited comfort to the 
perceiver or behaver not in a position to apply these laws, and he therefore must rely largely 
on whatever snitches of particular or semigeneralized information he may be able to 
assemble” (p. 209). Decision makers therefore have to rely on uncertain cues to infer a 
criterion. But, in contrast to the view that will be put forth in this dissertation, research in the 
Brunswikian tradition, exemplarily represented by multiple cue probability learning 
(Smedslund, 1955; for a short review, see Holzworth, 2001), has still honored the ideal of 
complete information representation. In these studies, people usually had to estimate the 
criterion value of an item based on several cues. Ideally, all available cues should be utilized, 
and subjective validities should accurately match ecological validities. There is no guidance 
on how the decision maker should search for information nor on when to stop. Not 
surprisingly, the prevailing benchmark model in this research area is multiple regression. 
From using multiple regression to also depict participants’ decision behavior, it necessarily 
follows that simpler but potentially smart heuristics will be obscured and might be expressed 
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in the form of inadequate beta-weights in the regression equation. Thus, whereas the 
uncertain relationship between cues and criterion was accepted as given, divergence on the 
side of the decision maker from the objectively computed ecological validities ideally should 
be diminished. Even Hammond (1996), one of the initiators of the field, more recently 
admitted that the role of multiple regression as a model for organizing information from 
multiple cues has been overemphasized.  

A complete representation might not only be beyond the grasp of the decision maker, it 
might also be unnecessary. Despite bounded computational capabilities, humans possess 
mechanisms to cope with the complexities of life (Simon, 1990). This view allows for a 
more optimistic conception of our computationally bounded brains. Although the cognitive 
capabilities of the decision maker represent a limiting factor, there can be benefits to gain 
from reduction, such as speed and robustness (Hertwig & Todd, 2003). Certain regularities 
in the environment can be relied on without the necessity of complete representation. 
Cognitive heuristics are tools that exploit such environmental regularities. This chapter will 
present a collection of examples of this interplay between heuristics and the environment in 
decision making. Specifically, this chapter deals with situations in which one has to decide 
between two alternatives, such as which of two company shares will achieve higher returns, 
based on a number of cues (reasons), such as number of employees or sales figures. 

 
 

Heuristics 
Heuristics are conscious or unconscious cognitive strategies people rely on to solve a 
problem. Heuristics should be distinguished from optimization. Optimization means that one 
can find the best strategy for a problem, and that one can prove that there is no better one. 
Otherwise one cannot be sure that the strategy is the optimal one. However, most important 
problems are out of reach of optimization methods, because optimization is too slow, too 
expensive, or computationally intractable. The latter means that no mind or machine can 
compute the optimal strategy. Games with well-defined rules such as chess and Go are 
computationally intractable, and less-well structured real-world problems such as what 
shares to buy are out of reach of optimization, a fortiori. Thus, heuristics are a useful means 
to cut short an otherwise cumbersome and often interminable process. 

In this dissertation, the definition of what constitutes a heuristic is based on Simon’s 
(1955, 1956) work on models of bounded rationality and on more recent empirical studies, 
computer simulations, and mathematical analyses of models of heuristics (e.g., Dawes, 1979; 
Gigerenzer & Selten, 2001; Gigerenzer et al., 1999; Payne, Bettman, & Johnson, 1988, 
1993). Following this view, a heuristic is a sequence of steps involved in a cognitive process 
like decision making, such as what and how much information to look for, and what to do 
with the pieces of information found. These steps are described in the form of explicit rules, 
each of which can be empirically tested. The description of the underlying cognitive 
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processes distinguishes heuristics from as-if optimization and the so-called heuristics and 
biases program (e.g., Tversky & Kahneman, 1974).  

As-if optimization: Unlike models of heuristics, which are process models, as-if 
models are not intended to describe the cognitive processes. They are outcome models, that 
is, their task is to predict the result of a behavior, not the behavioral process that brought 
about the result. Outcome and process models differ in what counts as counter-evidence for 
the model. A process model makes predictions about both the process of problem solving 
and its outcome and can be proven wrong by both kinds of data. A concrete example is 
provided in the next section. An as-if model, in contrast, can only be proven wrong by 
outcome, not by process data. As-if models often assume that outcomes can be predicted by 
optimization. Today, most economic theories are deliberate as-if models, assuming that 
people act as if they were fully rational. It is not assumed that people actually go through the 
mathematical process of optimization, only that their decision outcomes can be modeled as if 
they had done this. Similarly, psychological theories based on optimization such as 
Anderson’s (1990, 1991) rational analysis of memory and reasoning and Nosofsky’s (1991) 
exemplar models of classification are deliberate as-if models. Milton Friedman’s (1953) 
defense of as-if optimization models is exemplary: Economic models are not intended to 
portray the process of decision making and cannot be criticized by empirically demonstrating 
that their assumptions are descriptively invalid. According to Friedman, even, to be 
important, “a hypothesis must be descriptively false in its assumptions” (p. 14). In contrast to 
this view, models of heuristics can be proven wrong even if they predict the actual inferences 
and choices of people correctly, but not their process of solving these decision problems. 

Heuristics and biases: Models of heuristics also need to be distinguished from the 
collection of heuristics and biases that have been gathered by Daniel Kahneman, Amos 
Tversky, and collaborators since the early 1970s (e.g., Kahneman, Slovic, & Tversky, 1982; 
Tversky & Kahneman, 1973, 1974). Unlike what is often stated (e.g., Bendor, 2003; 
Gilovich & Griffin, 2002), it is not just the optimistic view of human rationality that 
distinguishes ecologically rational heuristics from the heuristics and biases program. 
Researchers in this program contented themselves with labeling certain phenomena 
discovered in judgment and decision-making experiments without specifying the underlying 
process. Deviations from a norm the experimenter pre-defined as rational, such as Bayes’ 
theorem, are considered as biases. The process that supposedly brought them about is, post 
hoc, merely labeled as a certain heuristic and not described. For example, the tendency of 
people to overestimate the degree to which others agree with them has been referred to as 
false consensus effect (Ross, Greene, & House, 1977), at least partially brought about 
through use of the availability heuristic (Ross & Anderson, 1982). The underlying, almost 
circular assumption is that one’s own opinion is more available to oneself (for an alternative 
explanation of the so-called false consensus effect that does not consider it a bias but rather 
as consistent with application of Bayes’ theorem, at least under certain circumstances, see 
Dawes & Mulford, 1996). The problem with vague labels such as availability or 



Elements of Decision Heuristics 

 
 

8 

representativeness is that they can post hoc be used to explain almost everything because the 
underlying process is not explicitly specified, leading to vague predictions as well (e.g., 
Gigerenzer, 1996; Shanteau, 1989; Wallsten, 1983). The following example illustrates the 
negative consequences of this vagueness. The label “representativeness” has been invoked to 
account for both the gambler’s fallacy (Tversky & Kahneman, 1974, p. 1125) and the hot-
hand fallacy (Gilovich, Vallone, & Tversky, 1985, p. 295). Note that these two phenomena 
are exactly opposite. In the hot-hand fallacy, the intuition is that after a series of n equal 
outcomes the same outcome will occur again; in the gambler’s fallacy the intuition is that 
after a series of n equal outcomes the opposite outcome will occur. Nevertheless, the notion 
of the representativeness heuristic is flexible enough to account for both logical possibilities 
(Ayton & Fischer, in press).  
 Demonstrating a phenomenon can inspire and guide future research, but it must not be 
the point where research is stopped. The goal should be rather to explain the phenomenon, to 
uncover the fundamental processes that bring about the outcome. Again following Simon 
(2001), much of scientific activity can be summarized by the paradigm: “Given the 
description of some natural phenomena, to find the differential equations for processes that 
will produce the phenomena” (p. 211, emphasis added). This chapter will follow a similar 
guideline and, given the description of the decision environment, will find decision processes 
that will achieve good performance without asking too much of the decision maker. 
 
 

Aim 
The overall goal of this chapter is to provide a framework for how we can think about the 
relationship between the environment and human cognitive strategies that exploit it, and for 
how we can study this relationship empirically. 
 There exists today an impressive number of models of heuristics, including satisficing 
(Simon, 1955), Tit for Tat (Axelrod & Hamilton, 1981), Dawes’ rule (Dawes, 1979), Take 
The Best (Gigerenzer & Goldstein, 1996, 1999), good features (Alba & Marmorstein, 1987), 
Weighted Pros (Huber, 1979), the recognition heuristic (Goldstein & Gigerenzer, 1999, 
2002), elimination by aspects (Tversky, 1972), categorization by elimination (Berretty, 
Todd, & Martignon, 1999), and QuickEst (Hertwig, Hoffrage, & Martignon, 1999). Yet 
there is a small body of work that analyzes the match between heuristics and the structure of 
environments (including experimental tasks), that is, that specifies which environmental 
structures can be exploited by a given heuristic. For instance, Tit for Tat is an excellent 
heuristic in an environment with indefinitely repeated interaction, and even more so when 
the possibility of preferential interaction with other Tit for Tat players exists (Axelrod & 
Hamilton, 1981). It is not a good heuristic for one-shot games, however. In the right 
environment, heuristics can be highly successful. The match between heuristic and 
environment is analyzed in Payne et al. (1993), Gigerenzer & Selten (2001), and Gigerenzer 
et al. (1999), but the analyses have not been conducted at the level of the heuristics’ 
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elements, or building blocks, but rather of complete heuristics. In line with Huber’s (2000) 
claim for investigating partial instead of global heuristics, which are small enough to be 
combined in a flexible manner, this chapter narrows the focus to concentrate on the building 
blocks that make up the heuristics, rather than on the complete heuristics themselves. The 
advantage of doing so is that there are a large number of heuristics, but they are composed of 
relatively few building blocks. The first aim of this chapter is therefore to address the 
question: Which building blocks are ecologically rational in which environmental structures?  

This question is addressed through theoretical analysis of which building blocks fit 
which structures of the decision environment.1 From this analysis, empirically testable 
predictions are derived, which will be phrased in the form of concrete hypotheses. In this 
way, the ecological analysis will also stand against the criticism that simple heuristics are 
unfalsifiable because it is possible to post hoc formulate alternative building blocks (Newell, 
Weston & Shanks, 2003). It will be shown that concrete hypotheses can be derived a priori 
from such an ecological analysis and can then be tested in a very stringent way. 
Interestingly, such a careful ecological analysis of the fit between strategies and the 
experimental environment is missing in many experimental studies, among them those of 
Newell et al. (2003) themselves. 

The second aim of this chapter is to connect the available experimental evidence with 
the first question: Do people exchange building blocks within a heuristic as a reaction to 
different or changing environmental structures? A few experimental studies have analyzed 
how people adapt their heuristics to the structure of environments (e.g, Bröder, 2000; Newell 
& Shanks, 2003; Rieskamp & Hoffrage, 1999; Rieskamp & Otto, 2004). Again, most of the 
work has focused on the heuristic as the unit, and not on the building blocks. This evidence 
is nevertheless reviewed, together with arguments for why a certain finding might support a 
particular hypothesis about the fit between environments and building blocks. In this way, 
evidence is provided only for some of the hypotheses put forward in this chapter, while 
others remain to be tested in future experiments.  

The scope is restricted to problems that involve paired comparison, such as which of 
two companies’ shares to buy. The focus is on inferences for which an outside criterion 

                                                
1 Under the term environment, I subsume what other authors have called task variables and context variables 
(Payne et al., 1993), or characteristics of the decision problem and characteristics of the decision environment 
(Beach & Mitchell, 1978). One reason for this is simply that I find the distinctions between these terms blurry 
and in some cases arbitrary. For example, according to Payne et al. (1993), correlations between cues belong to 
the class of context variables while number and format of cues are examples for task variables. Even though a 
more plausible distinction might be found, such as between characteristics of the options to choose from 
together with the cues to rely on on the one hand (e.g., correlation between cues), and on the other hand 
characteristics of the situation in which a decision is made (e.g., time pressure), certain variables cannot be 
unambiguously classified. For instance, is mode of presentation of cues a characteristic of the cues or of the 
situation? It clearly can be seen as a cue characteristic, but at the same time it can vary from situation to 
situation: The same information can be presented visually in form of a written list, or aurally by reading it 
aloud to a person. In short, environmental characteristics vary on various dimensions; dichotomy cannot always 
be imposed. I therefore treat the term decision environment broadly, and include characteristics of the options, 
the cues, as well as the decision situation. 
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exists to evaluate the correctness of the decision, as opposed to preferential choices. 
Nevertheless, whenever the ecological analysis put forward here can be connected to 
research in the preferential choice literature, the respective findings will be discussed as 
well. The analysis will be restricted to three classes of building blocks, rules for search, 
stopping, and making a decision – stopping and decision rules will be treated in one chapter 
due to their strong interrelation. The general paired comparison task is to predict which 
alternative, A or B, has the higher value on a criterion. The alternatives A and B are elements 
of a set of N alternatives (which can be actions, objects, events), and the prediction can be 
based on a set of M cues. In the case of binary cues, cue values “1” and “0” always stand for 
higher and lower criterion values, respectively (even though other labels might have been 
used in a particular study, such as “yes” and “no”, or “+” and “–”).  
 
 

Building blocks of heuristics: An illustration 
To illustrate the building blocks of heuristics and the way one can test process models, a 
study by Newell et al. (2003) serves as a paradigmatic case. The participants were presented 
with a series of choices between the shares of two fictional companies. In each trial, two 
companies were presented on a computer screen, and the participants were asked to infer 
which company’s share would turn out to be more profitable (like in Figure 1.1). 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1: Participants in Newell et al.’s (2003) study could choose to buy up to 
six pieces of information in any order, as depicted above. The task was to infer 
which company’s share is more profitable. The illustration shows a person who 
searched first for information concerning financial reserves but found no 
difference between the two companies, then continued the search and looked up 
whether the companies are established companies, found a difference, stopped 
search, and made the inference that Company B’s share is more profitable.  
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To help find the more profitable shares, participants could acquire information concerning 
six cues, such as: “Does the company invest in new projects?” and “Does the company have 
financial reserves?” The information was given in terms of yes/no answers. In each trial, a 
participant could buy information about as many cues as she wanted before picking a share. 
The information was retrievable on a computer screen by the click of a mouse, similar to the 
information acquisition in the experimental program “mouse-lab” (Payne et al., 1993). The 
cost of information about each cue was 1p (pence). After the participant had bought as many 
cues as she wanted to buy, she made her choice, and feedback was given whether the answer 
was correct. When the answer was correct, the participant got 7 p minus the amount she had 
spent searching for information.  

Newell et al. (2003) tested to what degree the Take The Best heuristic (Gigerenzer & 
Goldstein, 1996, 1999) can predict the problem solving process. Take The Best (TTB) is a 
process model with the following three building blocks for searching, stopping, and 
deciding: 

(1)  Search rule: Chose the cue with the highest validity.2 Look up the cue 
values of the two objects.  

(2)  Stopping rule: If one object has a positive cue value (“1”) and the other does 
not (“0” or unknown), then stop search and go on to Step 3. Otherwise 
exclude this cue and go back to Step 1. If no cues are left, guess.  

(3)  Decision rule: Predict that the object with the positive cue value (“1”) has 
the higher criterion value.  

Each of the three building blocks describes a process step, and each of them can be tested 
independently.  

Search rule: In theory, participants can search through cues in many different ways. If 
they look up all six cues, there are 6! = 720 different orders. The search rule in Take The 
Best postulates that people will search by one of these orders, the one defined by validity vi. 
To learn the validities, each participant was presented with 120 tasks like that in Figure 1.1, 
and outcome feedback (correct/incorrect) was given after each response. Feedback was given 
so that the six cues had validities vi of .90, .85, .80, .75, .70, and .65. Which cue had which 
validity was counterbalanced between participants. Additionally, after 60 and 120 trials, a 
hint was provided about the order of cues by validity. The learning phase was followed by a 
test phase with 60 tasks. Figure 1.2 shows that 75% of the participants followed the search 
rule of Take The Best in the test phase. When in a second experiment there were only two 
cues, this number was 92%.  

Stopping rule: The stopping rule of TTB postulates that search is stopped immediately 
after the first discriminating cue is found, not before and not later. Note that the stopping rule 
can be valid even when the search rule is violated, for instance, when people search in one of 

                                                
2 The validity vi of a cue i is defined as vi = Ri / Di, where Ri is the number of correct predictions by cue i, and 
Di is the number of pairs where the cue values of cue i differ between objects.  
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the 719 orders not consistent with vi but stop after the first discriminating cue is found. 
Similarly, the stopping rule can be violated although the search rule is followed, for instance, 
when a person searches in the order of vi but continues search after the first discriminating 
cue is found. Thus, the empirical result on the search rule does not constrain the stopping 
behavior; in principle, all of the 75% cases consistent with the search model can violate the 
stopping rule. Newell et al. (2003) reported that in 80% of all cases (where participants 
bought any information at all), participants did not buy unnecessary information. This means 
that in 80% of cases search did not continue beyond a single discriminating cue, and the 
corresponding number for the same task with two cues was 89%.  

Decision rule: In theory, participants can use infinite ways to combine the information 
concerning six cues. This includes linear models, weighted or unweighted. If a person 
follows the stopping rule of Take The Best, this constrains the ways to arrive at a decision 
(whereas the search rules impose no constraints on the stopping and decision rules). If only 
one piece of discriminating information is obtained, it seems that the only reasonable 
decision rules left are forms of one-reason decision making, such as to decide for the 
alternative to which the cue points with a probability that matches the cue validity (see, e.g., 
Luce’s choice rule, 1959). The decision rule of Take The Best is simpler, as it does not rely 
on probability matching: it simply goes with the alternative to which the cue points. Newell 
et al. (2003) report that the decision rule was followed by their participants in 89% of trials, 
for both six and two cues. 
 
 

 
 
 
 
 
 
 

 
 

 
 
 

Figure 1.2: Percentage of cases in which participants’ behavior was 
consistent with the three building blocks of TTB. The search rule column 
depicts percentage of participants classified as using TTB’s search rule, 
the stopping and decision rule columns depict percentage of trials 
consistent with the particular building block. One experiment used six 
cues (as in Figure 1.1); a second one used two cues (Newell et al., 2003).  
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The building blocks tested in the experiment reported above may well be good models of 
people’s behavior in the share task, but it would be inconsistent with an ecological approach 
to cognition to assume that people would always search by validity, always stop after having 
found exactly one discriminating cue, and always rely on just this one piece of information 
when making a decision. The remainder of this chapter will therefore be devoted to 
specifying the conditions under which certain building blocks are expected to be used, and, if 
available, reviewing empirical studies that have investigated decision making under those 
conditions. As the share task example has shown, there exists a strong connection between 
stopping and decision rules. I will therefore discuss stopping and decision rules together in 
one section, and work out their connection in more detail there. 
 
 
 

Search rules 
 
There are two visions of how the mind searches sequentially for cues: optimal search rules 
and heuristic search rules. Several psychological theories postulate versions of optimal 
search rules (e. g., Anderson, 1990, for memory retrieval; Nosofsky & Palmeri, 1997, for 
search for exemplars in classifications), primarily for sequential search through alternatives. 
For instance, Anderson (1990) assumes that memory contents are searched in an order 
determined by their probability of being relevant at the current moment. Like this example, 
most of the optimal search models make predictions about internal search only, which cannot 
be observed directly, so the assumption of optimized search becomes difficult to falsify.  

However, the problem of finding an optimal order of cues becomes computationally 
intractable for large numbers of cues. For instance, for the M = 6 cues in the share task 
example, there are M! = 720 orderings to evaluate; if the number of cues is doubled, the 
number of orderings increases to 479,001,600, and if doubled once more the number of 
orderings is already larger than 1023. The problem of finding the optimal order of cues 
fulfills the criterion for NP-completeness because M! � 2M-1. NP-completeness denotes the 
complexity of an algorithm for which this condition holds, meaning that the algorithm is not 
to be completed in polynomial time and therefore, in practice, becomes intractable for large 
M (Martignon & Hoffrage, 1999). Thus, optimizing is not a likely model for how humans 
order cues, except for situations with a very small number of cues.  

The second vision employs heuristic rules for search. Ordering cues by validities is 
such a method. It does not generally result in the optimal order, which can be defined as the 
one that gives the highest accuracy for a set of N alternatives. One reason is that vi ignores 
dependencies between cues. Computer simulations with nine cues (for inferring which of 
two cities has a larger population) showed that despite its simplicity, vi led to an order that 
was better than 98% of all possible orders (Martignon & Hoffrage, 1999). Furthermore, 
heuristic search rules tend to be more robust than the optimal order when information is 
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scarce and uncertain. This result can be obtained when one tries to predict new data, rather 
than fit data already obtained. Martignon and Hoffrage (1999, p. 134) split the set of cities 
into two halves and calculated for one half the optimal order as well as the order by vi. As 
mentioned above, search by validity resulted in inferences that were better than most orders, 
but the optimal order did better, by definition, in data fitting. These two orders were then 
tested in the second half of the cities, which is known as cross-validation. The result was that 
search by validity now led to higher accuracy than the optimal order: it was more robust. The 
point is that the optimal order in one sample is not necessarily the optimal order in a new 
sample, and in this precise sense, a robust heuristic search rule can be said to do “better than 
optimal” in prediction, although never in fitting. 

Three general forms of search rules will be distinguished: random search, search in a 
fixed order (as in TTB) – whereby different ordering criteria, to be introduced below, might 
be used – and recency search – whereby the search order is continuously updated based on 
which cue most recently led to a (correct) decision.3 

The general postulate put forward is that heuristic rules for search depend on the 
structure of the environment, more precisely the structure as it is known to a person. The 
term “environment” is used as shorthand for the structure of both natural environments, such 
as the actual situation of a person faced with the problem of where to invest spare money, 
and experimental tasks, such as the situation of a participant in Newell et al.’s (2003) study 
given paired comparisons between hypothetical company shares that vary on six cues. 

In the following, different types of environments are examined: Unfamiliar 
environments, stable versus changing environments, and environments with outcome 
feedback versus without outcome feedback. Another environmental variable to be explored in 
the context of stable environments with feedback is costs for acquiring information. An 
environment is stable from the point of view of a problem solver when its characteristics (the 
properties of the cues and the alternatives, such as the cue validities) do not change during 
the time of problem solving. The experimental share task is an example of a stable 
environment. Outcome feedback refers to whether the problem solver receives information 
concerning the correctness of her decisions. The share task provides both stability and 
feedback. Many real environments are located in between these two pairs of poles, and 
graded distinctions can be made. For the purpose of exposition, however, the two 
dimensions are treated as binary. The summary of the theory about how search rules depend 

                                                
3 I will not talk about a basic distinction between two kinds of search principles often made in the preferential 
choice literature, that is, the distinction between attribute-based and alternative-based search (e.g., Bettman, 
Johnson, Luce, and Payne, 1993; Payne et al., 1988; Russo & Dosher, 1983). In the inference tasks reported 
here, search usually proceeds from cue to cue, that is, participants can choose one cue after the other and are 
informed about the values both alternatives have on that cue. But one could also imagine that cue values are 
requested separately for alternatives. This would leave open the possibility that first all the cue values of one 
alternative are checked before examining the second alternative. Attribute-based, or cue-based search, 
proceeding within one cue dimension across alternatives, is often called dimensional, whereas alternative-based 
search is often called holistic. Attribute-based search is the equivalent to the cue-to-cue search pattern I 
exclusively look at here when talking about search rules for inferences. 
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on environmental structure is shown in Table 1.1 and will be explained in the following 
sections. First, search for information in an environment about which a person is ignorant 
will be considered.  

 
 

Table 1.1: Search rules dependent on environmental structures. 

Random search Ordered search Recency search 
Unfamiliar environments 
 
 
 
 

Stable environments; 
ordering criterion will 
depend on: 
- availability of outcome 

feedback 
- information costs 

Changing environments; 
criterion whose recency will 
be tracked depends on: 
- availability of outcome 

feedback 

 
 

Unfamiliar environments 
If a person is faced with a problem and does not know which cues are more relevant than 
others, she has to deal with an “unfamiliar environment.” What the person still might know 
are the cue directions. For instance, in the first trials of the share experiment (Figure 1.1), 
participants only knew that “share trend positive” is good and “financial reserves” are good 
but not which of the two is more important. In this state of ignorance, the search rule is: 
 

Random search: Choose a cue randomly and look up the cue values of the two 
objects. 

 
The term “random” is used in a broad sense, including quasi-random, unsystematic choices 
of cues, not necessarily the use of a random device. When knowledge about cues is 
subsequently acquired, random search is likely to be replaced by one of the search rules in 
the following sections. 

The Minimalist heuristic employs random search (otherwise the heuristic proceeds like 
Take The Best). Studies using 20 different prediction tasks, such as predicting which of two 
female celebrities people find more attractive, showed that despite its simplicity, accuracy 
was substantially above chance, approaching that of a multiple regression model by 8 
percentage points in data fitting and 3 percentage points in prediction (Czerlinski et al., 
1999).  

Random search is also part of heuristics to solve problems beyond paired comparisons. 
For instance, satisficing searches through alternatives in a quasi-random fashion; that is, the 
alternatives are somehow encountered, but the satisficer is not assumed to impose an order 
on the sequence in which she encounters the alternatives (Simon, 1955). Sequential mate 
search models often implicitly assume the same quasi-random order in which potential 
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spouses are encountered (Miller & Todd, 1998). In these tasks, what is unknown are not the 
cues but the alternatives, whereas in paired comparison tasks the alternatives are given.  
 
 

Stable environments without outcome feedback 
An environment in which characteristics of cues (such as validity and discrimination rate, 
see below) and alternatives do not change much is a stable environment. For instance, the 
experimental environment in the share experiment is an artificially stable environment, 
because the experimenters did not vary the characteristics during the 180 trials. In the share 
task, however, participants received feedback after each decision; this section is about 
situations without outcome feedback. These include environments in which feedback comes 
late, is too expensive to obtain, or is ambiguous. For instance, physicians often are not sure 
whether they have looked at the right cues to decide which of two treatments would be best 
for a patient, because patients may not return when the treatment is effective, or it may take 
years to determine that the treatment was effective (Gigerenzer, 2002). How would search 
proceed in the absence of learning through feedback?  

In the absence of feedback, cues can be ordered according to how often they 
discriminate between the alternatives. For instance, if almost all companies have a positive 
share trend, this cue does not discriminate often and is in this sense not very informative. For 
binary cues, cue values of [1;0] and [0;1] discriminate between alternatives, whereas cue 
values of [0;0] and [1;1] do not. The discrimination rate di of a cue i is  
 

P
D

d i
i =  

 
where Di is the number of pairs where the cue values of cue i differ between objects, and P is 
the total number of pairs. Search by di amounts to the following search rule: 

 
Search by discrimination: Choose the cue with the highest discrimination rate. 
Look up the cue values of the two objects. 

 
For a paired comparison task with binary cues and a class of N alternatives (such as 
companies), the discrimination rate can also be computed from the set of alternatives without 
performing all possible paired comparisons: 
 

 

N

yx
d ii

i 1
1

2

−
=  

 
where xi and yi are the relative frequencies of the cue values.  
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From this formula it is easy to see that for large N, the discrimination rate is 
approximately 2xiyi, and that the discrimination rate of a cue is highest when its cue values 
(0 and 1) occur equally often. Thus, search by discrimination can be executed without 
actually calculating di. A simpler method for learning and estimating the order of 
discrimination rates is to observe whether the cue values match, that is, are equally frequent. 
Let Xi and Yi denote the absolute frequencies of the two cue values (0 and 1) of cue i in a 
given environment, with N = Xi + Yi. Then, the values of cue i match if |Xi - Yi| = 0, or 
match best if |Xi - Yi| = min. This allows for a simpler implementation: 

 
Search by discrimination': Choose the cue with the best matched cue values. 
Look up the cue values of the two objects. 

 
Search by best matched cue values, that is, by |Xi - Yi| = min, leads to the same order as di.4 
Thus, simple tallies of the frequency of occurrence of the two cue values can replace the 
computation of di. Now, the first hypothesis can be formulated: 

 
Hypothesis A (no outcome feedback): In stable environments without outcome 
feedback, random search in the initial trials will turn into search by 
discrimination in subsequent trials.  

 
So far, no experimental tests of Hypothesis A are available, as all studies on the use of 
simple heuristics for paired comparisons provided outcome feedback or informed 
participants directly about cue validities. A broad class of environments without feedback 
about the correctness of one’s decision is studied in the literature on preferences, as opposed 
to inferences, where, by definition, an objectively correct answer does not exist. This 
literature, however, has only rarely studied how attributes of the choice alternatives are 
searched for. Mainly it has taken the order a participant used and attributed it to some 
unspecified subjective preference, boiling down to the finding that search order follows 
subjective attribute weights (e.g., Aschenbrenner, Albert, & Schmalhofer, 1984; Saad, 1999). 
There are some studies demonstrating a positive effect of the range of cue values, which 
increases discriminability when dealing with continuous cue values, on the subjective weight 
attached to that cue (Beattie & Baron, 1991, Experiment 6; Fischer, 1995; Meyer & Eagle, 
1982). This, however, can at best be seen as indirect evidence for the influence of cue range 
and variance on search order, as search was not directly measured in these studies but other 
weight-elicitation methods were used. 

                                                
4 The proof is as follows. The order of di is the same as that of xiyi, because they relate to one another by a 
linear function 2/(1-1/N). The order of xiyi is the same as that of XiYi , because they are identical except for a 
constant N2. Finally, the order of XiYi is identical to that of min|Xi - Yi|, because both functions peak at Xi = Yi 
and fall monotonically and symmetrically at both sides. 
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To summarize, in environments with no or insufficient feedback, search can 
nevertheless do better than chance by going through cues sequentially according to their 
potential to discriminate. The benefit of search by discrimination is that it is more likely to 
encounter an informative cue early, and that, as a consequence, search can be stopped, which 
in turn allows one to make faster and more frugal decisions.  

 
 

Stable environments with outcome feedback 
In situations with feedback, search can be guided by the predictive power of a cue, not only 
by its discriminating power. In a stable environment, the predictive power of a cue is 
constant and can be defined by its validity vi:  
 

i

i
i D

R
v =  

 

where Ri is the number of correct predictions by cue i, and Di is the number of pairs where 
the cue values of cue i differ between objects.  

Cue validity tells us, for all cases where the cue discriminates, the probability that the 
decision will be correct. If vi = .50, the predictive power of cue i is at chance level; values 
greater than .50 measure the proportion of correct predictions a cue produces above chance. 

 
Learning to order cues  
Stable environments with feedback allow for three types of learning: evolutionary, social, 
and individual. Evolutionary learning is slowest. For instance, a female guppy comes already 
equipped with a search rule for mates (Dugatkin, 2000). When she has to decide between 
two potential mates, the most important cue seems to be the extent of orange color. If one 
male has considerable more than the other, this cue is sufficient to stop search and decide in 
favor of him. Otherwise, the second cue seems to be mate copying, that is, if she has seen 
one of the two potential candidates mating earlier with another female, she favors him. A 
female guppy does not have to learn individually what cues to look for, and in which order. 
In the case of evolutionary learning, the assumption is that a cue (such as orange coloring) 
predicts the fitness of the potential mate, and thereby that of the offspring, at least in past 
environments. In humans, social learning is generally the fastest way to learn cue orders. For 
instance, medical students are instructed about diagnostic cues for certain diseases by their 
teachers; they do not generally learn this through individual experience. Both evolutionary 
and social learning can provide orderings of cues, and the two examples from animal biology 
and medical diagnosis illustrate that it is not always easy in the real world to determine the 
degree to which an individual’s search order corresponds to the actual validities, or other 
criteria.  
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Individual learning is generally slower than social learning, but faster than 
evolutionary learning. In environments where an individual has to learn the predictive power 
of cues from feedback, she does not know the vi values but has to estimate these from 
samples. Gigerenzer and Goldstein (1999) proposed that people estimate validities by the 
proportion 

 

i

i
i cuebymadedecisionsofnumber

cuebymadedecisionscorrectofnumber
v =ˆ  

 
in the sample of paired comparisons encountered so far. 

Although this approach is adequate when sample sizes are large and of similar 
magnitude for all cues, Lee and Cummins (2004) pointed out correctly that it is problematic 
in environments where sample sizes for some of the cues are very small. For instance, when 
one cue has received 100 correct decisions out of 100 cases, and a second cue has 1 correct 
out of 1 case, both cues would have an estimated validity of 1. To correct for this problem, 
Lee, Chandrasena, and Navarro (2002) suggested a Bayesian approach to estimating 
validities, assuming uniform priors, which results in the following estimate:5 
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+=

i

i
i cuebymadedecisionsofnumber

cuebymadedecisionscorrectofnumber
v  

 
This estimate is based on the same reasoning and has the same structure as Laplace’s rule of 
succession (see Gigerenzer & Murray, 1987). It helps to avoid the consequences of unequal 
sample sizes. In the example just mentioned, the estimated validities would no longer be the 
same, but .99 and .67, respectively. As cues make more and more decisions, the two 
estimates converge.   

Paying attention to validity only and ignoring discrimination rate leads to the following 
search rule: 

 
Search by validity: Choose the cue with the highest validity vi. Look up the cue 
values of the two objects. 

 
This search rule is a heuristic rule; it does not try to find the optimal order for a given set of 
cues and alternatives. For instance, it does not try to compute conditional validities or partial 
correlations to account for dependencies between cues. As noted before, when the number of 

                                                
5 Lee and Cummins (2004) also present the Bayesian estimate as a solution to the problem that validity does not 
reflect discrimination rates, arguing that the uncorrected estimate “does not take into account how often the cue 
discriminates when its validity is calculated” (p. 345). However, validity is defined so that it does not take 
account of discrimination rates, thus interpreting the Bayesian estimate this way makes it no longer an estimate 
of validity. In the next section, search rules that attend to both validity and discrimination will be introduced.  
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cues is large, such an attempt would be fruitless, because the optimal order cannot be 
computed by any mind or machine. Furthermore, even when the number of cues is small 
enough so that an optimal order can be determined in a given sample, in noisy environments 
the optimal order may not generalize well to new samples because of overfitting (Martignon 
& Hoffrage, 1999). 
 

Hypothesis B (outcome feedback): In stable environments that provide outcome 
feedback, random search in the initial trials will turn into search by validity in 
subsequent trials.  
 

It will be shown below that empirical evidence from several studies supports search by 
validity in stable environments that provide outcome feedback. Before going into the details, 
alternatives to search by validity that also depend on outcome feedback will be considered. 
The key feature of search by validity is that it ignores the discriminating power of cues. 
Other search rules track discrimination rate in addition to validity. 

 
Combining validity and discrimination 
How can a heuristic for search pay attention to both validity and discrimination? One could 
postulate that cues are ordered by vidi, but that would involve estimating the validities and 
the discrimination rates and multiplying them, which poses a problem for a process model 
(although not for an as-if model). Let us call the balanced feeling between validity and 
discrimination the “usefulness” ui = vidi of cue i. In what follows, it will become clear that a 
mind can order cues according to usefulness without computing either vi or di. 

Note that the denominator (Di) of vi changes from cue to cue if the discrimination rate 
changes, because Di is the number of discriminating pairs. Through multiplication of 
discrimination rate and validity, one gets rid of Di, and now the denominator is Pi, the 
number of all pairs in which a cue has been looked up: 

 

i

i
i P

R
u =  

 
The “cognitive” trick is that usefulness, unlike validity, does not need to normalize the 
number of correct inferences against the number of discriminating pairs and thus keeps 
information about the discriminating power of a cue, and at the same time simplifies the 
computation. Even more, if all cues are looked up or presented equally often and thus do not 
differ in their presentation base rates, as in the learning phase of the share task, the 
denominator Pi is the same for all cues, P. Then, the order of ui can be computed in an even 
simpler way, namely, by ordering cues by the number of correct discriminations Ri:  
 

order (ui) = order (Ri) 
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Usefulness thus measures the product of validity times discrimination rate, but without 
having to mentally multiply the two rates. It does so by a simple count of the number of 
correct answers due to cue i among all answers. Paying attention to both validity and 
discrimination is described in the following search rule: 

  
Search by usefulness: Choose the cue with the highest usefulness. Look up the 
cue values of the two objects. 

 
Earlier work has discussed a related rule that was called search by success (Martignon & 
Hoffrage, 1999). In a simulation, the accuracy of search by success was only about 2 
percentage points lower than that of search by validity. Like usefulness, success traces both 
the validity and the discriminating power of cues, but unlike usefulness, it complicates the 
computation by including correct guesses. The success si of a cue i amounts to its usefulness 
plus the proportion of correct decisions expected from guessing: 
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where Pi – Di is the number of pairs in which a cue i does not discriminate.  

Despite their similarity, usefulness and success do not always lead to the same rank 
order of cues. Figure 1.3 shows how usefulness and success combine validity and 
discrimination rate. The darker curves show cues with equal usefulness; the lighter curves 
show cues with equal success. Curves for success are steeper, that is, a constant loss in 
validity has to be compensated by a higher increase in discrimination. For instance, a cue 
with a validity of 1.00 and a discrimination rate of .45 has the same usefulness as one with a 
validity of .90 and a discrimination rate of .50, but the first has a higher success than the 
second.  

Also the order of si can be computed in a simpler way than indicated by the formula 
above. If the learning phase consists of presenting only one cue at a time, and one has to 
make inferences only with this cue, then the learner can easily observe the total number of 
correct inferences (including correct guesses). In this case, again the following holds: 
  

order (si) = order (R) 
 
with R denoting the total number of correct decisions resulting from cases in which the cue 
discriminates plus cases of guessing. 
 

Search by success: Choose the cue with the highest success. Look up the cue values of 
the two objects. 
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Figure 1.3: Isoquants for different values of usefulness (black lines) and success 
(grey lines) are shown as function of validity and discrimination rate. All points on 
an isoquant have the same usefulness, or success, respectively. The success isoquants 
are steeper than the usefulness isoquants, which implies that a fixed decrease in 
validity (if one moves from right to left) needs to be compensated for by a higher 
increase in discrimination rate for success compared to usefulness.  

 
 
The ease of computation of the two measures that combine validity and discrimination rate 
thus depends on the learning phase: 
 

Hypothesis C (learning phase): In stable environments that provide outcome 
feedback, the search rule is cued by the structure of the learning phase. If in the 
learning phase all cues are displayed simultaneously, then one can observe the 
number of correct inferences by each cue relative to P, that is, the reference 
class is equal for all cues. This simultaneous learning favors search by 
usefulness in a subsequent test phase in which cues are searched sequentially. If 
the learning phase consists of presenting only one cue at each time, and one has 
to make an inference only with this cue, then the learner can observe the total 
number of correct inferences including guessing relative to P. This single-cue 
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learning should elicit search by success in a subsequent multiple-cue inference 
task.6  

 
Newell, Rakow, Weston, and Shanks (2004) used simultaneous presentation of cues in the 
learning phase and report that search by success predicts the data better than search by 
validity. But this empirical data has not tested success against usefulness as a competing 
hypothesis, and a closer look at the data they provide reveals that there is just as much 
evidence for search by usefulness as there is for success. This experiment is reported in more 
detail below. 
 
Information costs 
The payoff function in an experiment can be of different kinds. In most experiments, 
participants’ payoff depends on one of three kinds of information, or some combination: 
whether the decision was correct, how fast it was, and how frugal it was (how many cues 
were looked up). These three dimensions are accuracy, speed, and frugality. For instance, the 
payoff function in the share experiment was a combination of accuracy and frugality, 
whereas time did not play a role. In this section, the argument is put forward that in stable 
environments, the search rule in a heuristic adapts to the payoff function. The concept of 
relative information costs is defined as follows: 

 
Definition: Relative information cost I is the cost of a piece of information (i.e., the values of 
the two objects on a cue) relative to the gain of a correct answer:  
  

 
gain

tcos
I =  

 
Note that cost and gain are defined in explicit monetary costs. They need to be distinguished 
from implicit “cognitive costs,” which are difficult to measure and are not considered here 
(for approaches to measuring cognitive effort by counting elementary information-
processing units, EIPs, see, e.g., Johnson & Payne, 1985; Newell & Simon, 1972). To invoke 
any motivation for search (as opposed to mere guessing) in the first place, an environment 
must have the feature 0 � I � 0.50 in the case of a paired comparison. Otherwise, guessing 
would achieve higher net payoff. 

If I = 0, that is, when information costs nothing, then there is little incentive (besides 
time spent) to search for highly discriminating cues. In memory-based search, I = 0, and 
thus, there is little incentive to sacrifice validity for discrimination. This leads to the 
following hypothesis: 

                                                
6 Note that there is no shortcut for the computation of validities that circumvents the required division by the 
number of discrimianting cases per cue. This might make validity difficult to learn. This issue will be dealt with 
in more detail in Chapter 3. 



Elements of Decision Heuristics 

 
 

24 

 
Hypothesis D (internal memory): In stable environments that provide outcome 
feedback, search by validity is more frequent when search occurs in memory 
rather than in external storages. The difference will increase with the search 
costs in external storages.  

 
There seems to be only indirect evidence so far. Bröder and Schiffer (2003) compared 
memory-based inferences with “inferences from givens,” that is, with information that is 
fully displayed on a computer screen. Participants learned attribute patterns – consisting of 
four cues – of suspects in a murder case, and their task was to infer which of the two 
suspects was more likely to have committed the murder. To solve the task, they had to search 
for information in their memories. In two conditions that differed in memory load, the 
authors classified 72% of their participants in the memory load condition and 56% in the no 
load condition as Take The Best users (and recall that search by validity is one of its building 
blocks). A second experiment was devised to rule out the possibility that the effect might be 
due to the particular material that had been used. One group of participants received all the 
necessary information on a computer screen while solving the task; that is, they did not 
search for the information in memory. In this screen condition, only 20% of participants 
could be classified as Take The Best users, compared to 44% in a memory condition, 
consistent with Hypothesis D. Therefore, the effect cannot be attributed to the specific 
material the authors used. Unfortunately, the authors tested on the level of heuristics, not on 
the level of search rules, which makes the evidence indirect. 

Search in external storages such as libraries and the Internet often has direct or indirect 
costs, such as money, time, and opportunity costs. For instance, in the share experiment, 
each cue costs money, and cues that rarely discriminate tend to lead to losses. This leads to 
the following more general hypothesis in environments where knowledge about validity and 
discrimination is available: 
 

Hypothesis E (external search costs): The higher I (0 � I � 0.50), the more 
search rules are guided by discrimination rate relative to validity.  For low I, the 
observed frequency of the three search rules v, s, and u, should be v > s > u, that 
is, validity should be observed most often. For high I, the order is u > s > v, and 
for intermediate values, s should be most frequent.  

 
Several experimental studies have used information costs in stable environments with 
feedback. The proportion of cases in which people followed the rule “search by validity” 
varied between studies. As mentioned before, Newell et al. (2003) reported that 75% and 
92% of participants followed search by validity in two experiments, with six cues and I = 
1/7, and two cues and I = 1/5, respectively. Newell and Shanks (2003) tested search by 
validity in three experiments with a similar mouse lab task and four cues. In the first 
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experiment, 5 out of 16 participants (31%) followed the search rule (2 participants followed 
the search rule when costs were relatively low with I = 1/10, and 3 followed it when I = 1/5), 
but the learning phase was too short to provide sufficient information to learn the cue 
validities. When this problem was solved in the second and third experiment, which both 
used relatively high information costs of I =1/5, the percentage of participants who were 
reported to follow search by validity increased to 83% (10 out of 12), and 92% (22 out of 
24).7 When Bröder (2000) introduced information costs, 40% of participants in the low cost 
condition (I = 1/100) and 65% in the high cost condition (I = 1/10) were classified as TTB 
users, but he did not test the search rule independently; classifications were solely based on 
decision outcomes.  

Taken together, there seems to be evidence supporting the use of search by validity as 
a process model. This evidence seems to fly in the face of Hypothesis E, as it was obtained 
despite varying information costs, and search by validity seems rather to increase with 
increasing information costs than decrease. Although none of these experiments tested other 
search rules besides search by validity, one should see search by validity decrease with 
higher information costs if Hypothesis E is correct. A closer look into the experimental 
design solves this apparent contradiction. All experiments used systematically constructed 
(rather than natural) environments, and all seem to have used constant discrimination rates.8 
When the discrimination rates of cues are constant, search by validity is the same as search 
by usefulness or success. Thus, the experiments could not distinguish between the three 
search rules, nor were they designed to do so. The fact that these experiments report a 
tendency, by direct or indirect evidence, that search by validity increases when I increases is 
fully consistent with concluding that search by, say, usefulness increases because the order 
by validity and usefulness coincided. The general finding that ordered search increases can 
easily be explained: The more expensive information is, the more selective should a decision 
maker be in what information to look up first. 

This discussion shows that it is important to distinguish between experiments that 
embody the structure of a natural environment and those that use an artificially created 
structure. In natural environments, discrimination rates vary. There seem to be only two 
experiments in which the structure of a natural environment was embedded in the 
experimental task (Läge, Hausmann, Christen, & Daub, 2004; Lee & Cummins, 2004). 
Unfortunately, in the experiment by Lee and Cummins (2004) no search was involved as 
inferences had to be made from givens, that is, information about all cues was automatically 
and simultaneously provided to participants. In Läge et al.’s (2004) study, participants had to 

                                                
7 The validities in of the four cues were tightly spaced, .80, .75,.70, and .69. There was no way to reliably learn 
the difference between that last two validities. Consequently, inversions of the last two cues are ignored here.  
8 Bröder’s (2000) environment consisted of all 120 paired comparisons of the 16 different cue patterns that can 
be formed by 4 cues. To be able to construct 16 different cue patterns from 4 cues, all cues have to have 
maximum discrimination rates, otherwise the number of different cue patterns would be < 16. Similarly, 
Newell and Shanks’ (2003) environment consisted of all 120 pairs of 16 distinct cue patterns formed by 4 cues. 
Newell et al. (2003, Experiment 1) used 6 cues resulting in 64 distinct cue patterns – again only possible when 
every cue had the same and maximum discrimination rate. 
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search for cues. The authors used the German cities data set from Gigerenzer and Goldstein 
(1996) but replaced the names of the cities with fictitious names of Chinese cities, and 
relabeled cues accordingly. The task was still to select the larger of two cities. Participants 
were informed about the cues’ validities and discrimination rates prior to each decision 
through display of the respective numerical values. These measures thus did not have to be 
learned in a separate phase of the experiment. Relative costs for cues were 1/10. The authors 
looked at many different search rules. On the majority of trials (66%), search followed 
criteria that combine validity and discrimination rate (e.g., usefulness, success, the additive 
combination of validity and discrimination rate, etc.).  

In the Newell et al. (2004) study, briefly mentioned above in connection with 
Hypothesis C, discrimination rates of all four cues also vary, and all four ordering criteria 
discussed here (discrimination rate, validity, success, and usefulness) lead to different orders. 
Although the authors did not look at the usefulness search order in particular, it can easily be 
computed from the validities and discrimination rates they provide. Unfortunately – probably 
because the authors were not interested in looking at usefulness – success order and 
usefulness order differ only in the two lowest-ranking cues. In two experiments that were 
identical in the learning and decision phases, the order of cues according to the number of 
trials in which they were purchased follows success in Experiment 1, and usefulness in 
Experiment 2. The same holds for the ratings of the subjects. Relative information costs were 
1/6. A theoretical reason favors usefulness over success, as the design of the learning phase 
speaks against counting correct guesses. As mentioned, all cues were presented 
simultaneously in the learning phase. Thus, the computation of the success of each cue 
would have required considering for all non-discriminating instances the expected accuracy 
from guessing, even though participants mostly did not have to guess, as at least one of the 
four cues was likely to discriminate.9  

In sum, the support for search by validity comes from studies in which discrimination 
rates did not vary, and therefore v, s, and u all predict the same search order. The few studies 
that used data for which the predictions of the different criteria vary support the hypothesis 
that both discrimination rate and validity of a cue influence its position in the search order. 
This evidence was obtained when search proceeded in the external environment and 
information had direct costs. Search by usefulness and success might, depending on the 
learning phase, have the additional advantage of being relatively easy to learn. For search in 
memory, search by validity is predicted – whether the so-far supporting evidence for this 
hypothesis also holds when different search criteria are tested directly and against each other 
remains to be seen. 
 
 

                                                
9 Note that also sequential cue search and application of the stopping rule of Take The Best would not provide 
the data necessary for s, as no guess is made if a cue does not discriminate; search continues for another cue, 
unless the entire set of cues is exhausted. 



Elements of Decision Heuristics 

 
 

27 

Changing environments 
Search rules have generally been modeled assuming a stable environment. That is, the 
validities, or discrimination rates, of the cues are assumed to be stable across time and 
alternatives, which can be seen from the fact that the model parameters are estimated from 
the total set of alternatives, such as the total number of correct discriminations by a cue, Ri. 
Also experimental tests of search rules have usually been performed by putting participants 
in stable environments, as in, for instance, Newell et al. (2003).  

The term “changing environment” describes environments where the characteristics of 
cues (such as validities and discrimination rates) change systematically over time or across 
sets of alternatives. This change can occur to different degrees and on different time scales. 
For instance, in human history preference for high sugar- and high fat-content food provided 
an adaptive advantage because food was scarce, and thus high-energy food should be 
preferred. However, in modern societies with abundant around-the-clock supply of food of 
all kinds and at the same time a lack of physical demands, high sugar and fat content no 
longer represent healthy nutrition – the cues’ direction might even have reversed (Eaton, 
Konner & Shostak, 1988). Similarly, discrimination rates of cues can change over time or 
between situations, such as when one predicts first the profitability of shares for insurance 
companies that vary much in their employee turnover rates, and then for a group of 
consulting companies that all have high turnover.  

The cognitive challenge is how to guide search when a person does not know in what 
direction an environment will change, or how much, or whether it will change at all. There is 
empirical evidence in the problem-solving literature – going back to Duncker’s (1935) 
experiments – that people tend to try the solution that worked the last time they were faced 
with a new problem. This habit has been referred to as “Einstellung” (mental “set”; Luchins, 
1942). Similar evidence comes from decision-making experiments and game theory, where a 
“win-stay, lose-shift” heuristic has been demonstrated to work very well in the Prisoner’s 
Dilemma game (Nowak & Sigmund, 1993). In the context of information search in paired 
comparisons, relying on what worked the last time has two meanings: in environments 
without feedback, it means using the cue that allowed stopping search the last time, through 
discrimination; in environments with feedback, it means using the cue that stopped search 
the last time and made a correct decision.  

In environments without outcome feedback, the following search rule can track 
changing structures:  
 

Einstellung search (by discrimination): Choose the cue that stopped search on 
the most recent problem. Look up the cue values of the two objects. 
 

To explain that logic of this search rule, consider the task in Figure 1.1 but assume that there is 
no feedback. In the first trial, a participant may have tried “financial reserves?” but both 
companies had financial reserves. Then she looked up which company was an established 
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company, and the answer was Company A but not B. Because the companies differ, this cue is 
informative. Einstellung search assumes that she enters “established company?” into a 
memory, at this point a string with length one: 
 
<established company?> 
 
 The search rule predicts that, in the next task, she will try “established company?” first. If 
this cue discriminates again, the memory will not be changed. If it does not discriminate, but 
“share trend positive?” does, the memory will be enlarged to two items, with the most recent 
one first, resulting in 
 
 <share trend positive?; established company?> 
 
In the next task, she will try “share trend positive?” first, and if it discriminates, the memory 
does not change. Otherwise, she tries “established company?”, and if it discriminates, the 
order of the two will be reversed. If neither of the two makes a difference, a third cue will be 
looked up, and if it discriminates, it will be ranked first in a memory that is now of length 3, 
and so on.  The maximum memory span this search rule needs is M–1 (because if M–1 cues 
failed to discriminate, there is only one cue left to look up and its position does not need to 
be remembered). In the example in Figure 1.1, M = 6, so the maximum memory span needed 
is 5. The rule does not need to compute frequencies or probabilities, nor pay attention to 
reference classes.  

Different from search by discrimination, Einstellung search has a recency bias. The 
focus on most recent information is the factor that enables the rule to adapt quickly to 
changing environments. The important difference between Einstellung search and all other 
search rules discussed so far is that it needs no learning phase to get reliable estimates for 
ordering cues. Still, if cues are ranked according to di, the top cue has by definition the 
highest probability for being the one that stopped search in the most recent problem, the 
second cue has the second-highest probability, and so on. When it is uncertain whether the 
environment is stable, Einstellung search has substantive advantages over di because it has a 
short memory and quickly can adapt to a changing environment.  

Einstellung search can be generalized to situations in which outcome feedback is 
provided: 

 
Einstellung search (by correctness): Choose the cue that allowed for a correct 
inference on the most recent problem. Look up the cue values of the two objects.  

 
The logic is identical to Einstellung search by discrimination, except that Einstellung search 
by discrimination is guided by whether a cue allowed for a correct answer and not by 
whether a cue merely discriminated. Consider for example the task in Figure 1.1 with 
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feedback, as in the original experiment. If the feedback says that Company B is the correct 
answer, the cue “established company?” is entered into a task-specific memory and placed at 
the top of a string of maximum length M–1. In the next trial, it will be tried first, and the 
quick updating of the order in the string is the same as for Einstellung search.  

Just as Einstellung search by discrimination is related to discrimination rate, 
Einstellung search by correctness is related to usefulness. Usefulness can also be expressed 
as the unconditional probability that a particular cue will lead to a correct decision. 
Therefore, if cues are ranked according to ui, the top cue has by definition the highest 
probability for being the one that led to a correct decision in the most recent problem, the 
second cue has the second-highest probability, and so on. The important difference is again 
that Einstellung search by correctness does not need a learning phase and can pick up 
changes in the environment quickly, from one case to the next. This leads to the following 
hypothesis for changing environments: 
 

Hypothesis F (changing environments): The more a decision environment 
changes over time in statistical properties such as discrimination rates and 
validities of cues, the more frequently search rules with small memory are used 
relative to others.  
 

If the discrimination rates or validities change over time in the share experiment, Einstellung 
search could quickly react to change because it has a short memory. Search by 
discrimination or usefulness would adapt slowly to change because the updating of 
discrimination rates and usefulness keeps earlier experience in memory. Unfortunately, such 
an experimental test using changing environments has not yet been conducted.  

It is clear that search by discrimination or usefulness (or any other criterion computed 
across the whole set of alternatives) would not do well in changing environments, but how 
would Einstellung search do in stable environments? Would it, conversely, always do badly 
in stable environments? Not necessarily.  

Note first that every stable environment looks to a novice like a changing environment 
in the first steps of learning. Thus Einstellung search should have an advantage when 
information about an environment, stable or unstable, is scarce. A comparison between 
Einstellung search by discrimination (which only looks at discrimination and ignores 
outcome feedback) and search by validity in an environment with feedback, assuming 
different levels of knowledge, provides evidence for this prediction. Recall that whether an 
inference is correct only matters for search by validity. This seems to be a quite unequal 
competition. In predicting which of two cities has more inhabitants, search by validity (as 
embedded in Take The Best) outperformed Einstellung search by a wide margin when the 
learning set included 100% of the cities (data fitting), and by a similar, only slightly smaller 
margin when the learning set included 50% of the cities and the strategies were then applied 
to the other 50% (cross-validation). A multiple regression model outperformed Einstellung 
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search by a similar margin. However, when the learning phase had only limited information, 
that is, up to 20% of the cities, with half of their cue values missing, then Einstellung search 
outperformed regression, and with even more limited knowledge of only 10% of the cities 
also search by validity (Gigerenzer & Goldstein, 1999). This is a quite striking 
demonstration of the power of simplicity when uncertainty is high. The power disappears the 
more information becomes available.  

But the instability of early learning is not the only factor that can make Einstellung 
search successful also in stable environments. The recency bias contained in Einstellung 
search makes the rule highly sensitive to the order of presentation of paired comparisons, 
enabling it to track information contained in that order, such as when the paired comparisons 
are presented in a systematic rather than random order. By ordering the alternatives in a 
systematic way, a stable environment is transformed into a changing one. Even Einstellung 
search by discrimination can lead to astonishing performance under these circumstances, 
without paying attention to correctness, as the following surprising result demonstrates. 

In early simulations with the German city size data for the book “Simple heuristics that 
make us smart” (Gigerenzer et al., 1999), an at first inexplicable result was obtained: The 
one-reason decision making heuristic Take The Last, differing from Take The Best in its 
search rule, which is Einstellung search by discrimination, outperformed other strategies by 
some 10 percentage points (Gigerenzer, 2000, pp. 189-190). How could this happen? A 
closer look at the simulations revealed that the secret behind Take The Last’s success lay in 
systematic testing. Instead of randomly creating pairs of cities, as done in later simulations, 
the simulations started with the largest city and compared it with the remaining smaller cities 
in descending order. Then the second largest city was compared to all smaller ones, and so 
forth. Larger cities tend to have positive values on many cues but are more likely to differ 
from smaller cities on the more valid cues. Whereas less valid cues have a relatively 
scattered distribution of positive and negative values across the ordered list of objects, highly 
valid cues by definition are very likely to have positive values for large, and negative values 
for small cities. Thus, assuming equal discrimination rates, highly valid cues more often 
discriminate the large cities in the set from the small cities than do less valid cues. If now the 
order of paired comparisons is constructed such that cities are always compared to 
increasingly smaller ones, Einstellung search helps to find cues on which larger cities have 
positive values whereas smaller cities have negative values, and these happen to be at the 
same time very valid in this kind of testing scenario. 

Einstellung search by correctness has not been tested yet in simulations. However, due 
to its focus on correctness, it will probably achieve slightly higher accuracy and slightly 
lower frugality than Einstellung search by discrimination and is thus to be preferred in most 
situations in which outcome feedback is available. 
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To summarize, in stable environments without feedback, the hypothesis was put forward that 
search follows discrimination. In stable environments with feedback, search will in contrast 
follow validity, usefulness, or success. Three hypotheses emerge: (1) Search in memory will 
favor validity; (2) the format of learning – simultaneous or single cue – will favor usefulness 
and success, respectively; and (3) low relative information costs will elicit search by validity, 
intermediate costs search by success, and high costs search by usefulness. Although there is 
some evidence in support of the first two hypotheses, the evidence is flawed by the fact that 
different search orders were confounded in the design of the respective experiments, both in 
Börder and Schiffer (2003) with regard to the first hypothesis, and, to some extent, also in 
Newell et al. (2004) with regard to the second hypothesis. Future research has to test 
different criteria against each other, also taking into account compatibility with the kind of 
learning phase that is used. This requirement also holds for testing the third hypothesis – so 
far, again due to confounding of different search orders (e.g., Bröder, 2000; Newell & 
Shanks, 2003; Newell et al., 2003), the evidence for increased use of search by validity 
under high information costs conditions has to be treated as preliminary and needs to be 
tested more rigorously. Unstable environments require that instead of using cue orders that 
are fixed by a criterion computed across a data sample, such as validity, more weight is 
given to recent information. Search by recency of either the last discrimination (if no 
feedback is available) or the most recent correct decision made by a cue fulfills this 
condition and is thus hypothesized to be observed when people have to make decisions in 
environments whose properties change over time. 

 
 
 

Stopping and decision rules 
 
A search rule gives search a direction, in memory or in external storages.  It does not contain 
a criterion when to stop search. Search could continue in principle infinitely – in memory, 
libraries, the Internet, or other storages. Search without a stopping rule is called exhaustive 
search. It is possible in certain situations where the number of cues is constrained, such as in 
experiments with abstract stimuli that limit the number of cues to those presented, such as in 
the share task (Newell et al. 2003). In this paradigmatic example (see Figure 1.1), one can at 
most search for six stimuli. Intentionally, this makes search in long-term memory 
inapplicable. If the problem involves real rather than hypothetical companies, such as 
predicting whether Intel or IBM shares will be more profitable, exhaustive search – if it ends 
at all – could consume considerable time.  

The question of when to stop has generated two kinds of answers, just like the question 
of what search order to use. One answer is to model stopping within an optimizing 
framework, and classical work comes from statistics, namely Wald’s (1947) sequential 
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analysis. Models for sequential search with optimal stopping rules have been proposed in 
economics (e.g., Stigler, 1961) and psychology (e.g., Anderson, 1990; Busemeyer & 
Rapoport, 1988). These models are often called optimization under constraints. The key idea 
is that search is stopped when the costs of further search exceed its benefits. For instance, in 
one of Anderson’s (1990) models, search in memory stops when costs of retrieving the next 
record in terms of retrieval time exceed the benefit of retrieving it.  

Heuristic search, in contrast to exhaustive search, needs stopping rules, and, in contrast 
to optimized stopping, does not compute the optimal stopping point. Stopping search at a 
reasonable point is an ability that every intelligent system needs, otherwise it may be slow, 
caught in irrelevant details, or incapable of making a decision. Thus, it is surprising that 
there are only a few theories that formulate the conditions of stopping, and few experiments 
that test when people stop looking for further information. Stopping rules can be 
distinguished according to how many cues they let pass before they stop. Unlike in the 
section on search rules, this part will not deal primarily with environmental characteristics 
that a priori exclude certain rules, or at least unambiguously favor certain rules over others. 
Rather, environmental features that vary in degree are discussed, and it is this degree on 
which it depends to what extent certain stopping rules are favored over others. Therefore, the 
different stopping rules will be introduced before addressing the question of under which 
circumstances they are ecologically rational. 
 
Stopping by number of discriminating (informative) cues 
One stopping rule that has already been introduced is Take The Best’s. It stops when the first 
cue is found that discriminates between options, that is, shows a positive value for one 
option, and a negative value for the other. It thus stops when the minimum requirement for 
making an informed decision is fulfilled.  
 

One-reason stopping: Stop search after the first informative cue is found.  
 
One-reason stopping is a special case of taking a tally of md discriminating cues (1 � md � 
M).  
 

Stop by tallying: Stop search after md informative cues are found. 
 
Consider search by validity and stopping after the second cue that discriminates, that is, md = 
2. Looking up a second cue is less frugal, but can one expect more accurate inferences in 
return? At first glance, it seems unreasonable to stop after the second discriminating cue. 
There are two possible results. If the second cue points to the same alternative as the first, 
the decision will be the same and accuracy will not improve. If the second cue points to the 
opposite alternative, then again any reasonable decision rule will decide with the first cue, 
because it has the higher validity. Thus, in either case, one cue is as good as two. If there are 
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costs, then one cue is better than two. Without further considerations, this result could lead to 
the hypothesis that in paired comparisons, search stops after the first or third (or md > 3) 
discriminating cue, but not after the second discriminating one.  

But there is a problem. Imagine a person who uses a tally rule with three 
discriminating cues. The first two cues point into the same direction, thus she decides to stop 
because of the same logic that was just used to prove that two cues are not better than one 
cue. If two discriminating cues point into the same direction, it does not make sense to look 
for a third – one should do so only if the second cue points in a different direction from the 
first. Thus, the general assumption of stopping rules by discrimination seems to have a deep 
problem. The idea of tallying by discrimination is therefore given up, and instead I turn to 
stop by tallying what can be called positive evidence for one alternative.  

 
Stop by tallying': Stop search after md informative cues are found that point to 
one alternative.  

 
In the case of stopping after the first discriminating cue (md = 1), the two rules do not differ. 
One discriminating cue also means that there is one piece of positive evidence for one of the 
alternatives. The simplest version that makes a difference would be  
 

Take Two: Stop as soon as there are two cues that point to one alternative.  
 
Stopping by a fixed number of cues 
All the stopping rules considered so far stop depending on whether a cue discriminates (i.e., 
is informative). They can violate guidelines of the kind: always check the following three (or 
four, five) cues before you make a decision. Social guidelines often are in the form of a fixed 
number of cues, rather than a fixed number of discriminating cues. For instance, when 
interviewing two applicants for a job in a bank, the interviewer may go through the protocol 
of getting information about college grades, IQ, the field in which the applicant majored, 
professional experience, and foreign language abilities, as prescribed by the bank’s 
guidelines, and record all of this information. For her decision about to whom to offer the 
job, however, the interviewer may use only two pieces of information. The social protocol of 
the bank prescribes not stopping until the list of cues is gone through, and the interviewer 
decides not to violate it. Similarly, doctors often feel compelled to take a fixed number of 
measurements from their patients when there is the suspicion of a disease, but this amounts 
to defensive information search. If the patient dies, the doctor can defend herself by proving 
that she did all the tests, although she may not use many of the test results for making a 
treatment recommendation. Stopping after a fixed number of cues amounts to (1 � mf � M): 
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Fixed-number stopping rule: Stop search after the values of mf cues have been 
looked up (whether the cues discriminate or not).10  

 
The simplest case is:  
 

Mf=1 rule: Stop search after the values of one cue have been looked up (whether 
this cue discriminates or not).  

 
This frugal stopping rule seems to be ecologically rational in environments with real-valued 
cues rather than with binary cues, because real values avoid a high rate of decisions by 
guessing.  
 
Dependencies between stopping and decision rules 
Many psychological experiments study cognition in tasks that, explicitly or implicitly, 
exclude search for cues. Often, tasks are used in which all cues are already displayed in front 
of the participant in a questionnaire-like form. In addition, to eliminate search for additional 
cues in memory, alternatives are chosen about which the participant has no specific 
knowledge, or which are hypothetical (such as “Company A” and “B” in the share task), so 
that the person cannot retrieve further cues and cue values from memory. The reason for 
elimination of search is often to avoid the possibility that cues other than those displayed 
could influence the final judgment. For instance, many theories of judgment focus on the 
question of how a person integrates given information. Consistent with this type of question, 
many models of human judgment do not model search, and as a consequence also do not 
include theories about stopping search, but are instead models of the decision outcome, such 
as multiple regression models of vicarious functioning predominant in the field of multiple 
cue probability learning (see Cooksey, 1996; Holzworth, 2001), and other weighted additive 
models, such as the large array of expected utility theories (see Fishburn, 2001). By 
modeling and testing these various decision rules, the implicit (but rarely explicit) 
assumption is that the process of information acquisition does not constrain decision rules. 
However, this independence does not always hold. 

As laid out above, any stopping or decision rule can be applied regardless of which 
search rule has been used. Both general types of stopping rules can be combined with each 
of the seven search rules defined earlier. In other words, search does not constrain stopping. 
However, one-reason stopping constrains the range of possible decision rules, and in that 

                                                
10 There is also the possibility of hybrid stopping rules that combine stopping by number of discriminating cues 
and stopping by a fixed number of cues. For example, a decision maker might, when information is costly, 
aspire to use one-reason decision making, but at the same time set herself a limit as to how much information 
she will maximally purchase, such as “Stop when a discriminating cue is found, but only look for a maximum 
of mf cues. If no discriminating cue is found until that point, guess.” For simplicity, such rules are ignored in 
the analysis put forward in this chapter.  
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regard poses a theoretical challenge to many cognitive models. One-reason stopping 
excludes all decision rules that weigh and add the cue values of several cues. When search is 
stopped after just one discriminating cue, any reasonable decision maker will also rely on 
that cue. Whenever the hypothesis is put forward that one-reason stopping will be used, I 
therefore also predict that people will decide in favor of the alternative to which the one 
discriminating cue points.11 Because of the strong dependency between one-reason stopping 
and decision making, both building blocks are treated together in this section.  
 
In the remainder of this chapter, I will lay out how the performance of different stopping 
rules depends on the structure of the decision environment and thus derive testable 
predictions about people’s behavior. The statistical structures of decision environments to be 
analyzed in more detail are the “compensatoriness” of cues weights, and correlations 
between cues (i.e., the degree of information redundancy in an environment). Then, the 
impact of information costs will again be explored. Finally, the influence of the format of 
presentation of cue information is considered. How stopping rules depend on environmental 
structures is summarized in Table 1.2. 
 
 

Table 1.2: Stopping rules dependent on environmental structures 

Stopping by tallying          
(md > 1)  

One-reason stopping           
(md = 1) 

Fixed stopping                    
(mf < M) 

- compensatory   
environments 

- low-redundancy 
environments 

- low information costs 
 

- non-compensatory 
environments 

- high-redundancy 
environments 

- high information cost 
(direct or indirect) 

- search in memory 
- propositional cue format  

- (very) high information 
costs  

 

 
 

Compensatory versus non-compensatory environments  
Consider an environment with M binary cues c1, …, cM, and a linear strategy, such as 
multiple regression, that orders the cues by their beta-weights w1, …, wM. An environment is 
called non-compensatory if every weight wi is larger than the sum of the weights wi+1 + wi+2 
+ …+ wM (Martignon & Hoffrage, 1999). An example is the set of weights 1, 1/2, 1/4, 1/8, 
1/16. Figure 1.4 shows an example of a compensatory and a non-compensatory environment.   
 
 
                                                
11 Chapter 2 of this dissertation will substantiate this claim and provide empirical evidence for the effect of 
stopping on the decision rule that is used. 
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Figure 1.4: A problem structure with non-compensatory weights (left), and one with 
compensatory weights (right). 

 
 

In a non-compensatory environment, no weighted linear rule can outperform the faster and 
more frugal Take The Best when both use the same order of cues (Martignon & Hoffrage, 
1999). Thus, in a non-compensatory environment, a one-reason stopping rule (part of Take 
The Best) is ecologically rational. In contrast, in a compensatory environment, a tallying 
stopping rule allows for a tallying decision rule, that is, a unit-weight linear rule, which can 
also perform at the level of multiple or logistic regression (e.g., Dawes & Corrigan, 1974; for 
application of tallying rules to classification, see Forster, Martignon, Vitouch, & Gigerenzer, 
2002).  

Leaving the area of inferences under uncertainty for a moment, one can find non-
compensatory structure in human-made rule systems that are supposed to be easy to apply 
and should allow fast decisions. Traffic rules provide a good example: In Germany, the 
right-of-way is regulated in a non-compensatory way. When the traffic lights are red, you 
have to stop even if there is a right-of-way sign at your side of the crossing and the other 
driver comes from the left-hand side. A red light cannot be compensated for by the presence 
of two contradicting cues of minor “impact.” And even three pieces of contradicting 
evidence (green light, right-of-way sign, you come from the right) cannot overrule the 
stopping gesture of a police officer regulating the traffic at a crossing. These rules allow us 
to make fast and predictable decisions when driving, which is crucial for maneuvering safely 
among many other road users. The error-prone careful weighing and summing of pieces of 
evidence for or against alternative courses of action would have disastrous consequences 
here. This example also shows that individuals are not only able to adjust their decision 
behavior to certain situational demands but can also change their environments so that they 
fulfill conditions that allow people to make fast decisions through one-reason stopping and 
deciding. But let us now turn back to the former case and see for inferences under 
uncertainty whether people adapt their stopping and decision behavior to the (non-) 
compensatoriness of the environment. 
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Knowledge about an environment’s structure, for example, from learning through 
feedback, should lead to the use of stopping rules that are adapted to the structure of the 
environment: 
 

Hypothesis G (non-compensatory information): One-reason stopping rules are 
used more frequently in a non-compensatory environment than in a 
compensatory environment.  

 
There are two experiments that provide a test of Hypothesis G. In an experiment by 
Rieskamp and Otto (2004, Study 1), participants took the role of bank consultants who had 
to evaluate which of two companies applying for a loan was more creditworthy. For each 
company, six cue values, such as qualification of employees and profitability, were provided. 
One group of participants encountered a non-compensatory decision environment, meaning 
that in about 90% of the cases, the outcome feedback they received was determined by 
dominance of the first discriminating cue rather than integration of several cues. For the 
second group, feedback was determined in a compensatory way, meaning that in about 90% 
of the cases, the more creditworthy company was determined by a weighted additive rule, 
which for each alternative calculates the sum of cue values multiplied by the corresponding 
cue validities and selects the alternative with the highest score. Did people adapt their 
heuristics to the structure of the environments? This was indeed the case: In the non-
compensatory environment, the choices consistent with Take The Best increased from 28% 
to 71%, whereas in the compensatory environment they decreased to 12%. People learned—
without instruction—that in different environments different heuristics are successful.  

In an experiment by Bröder (2003, Experiment 2), a share task was used. Half of the 
participants were assigned to an environment whose cue weights were almost non-
compensatory (i.e., the cue weights of the payoff function were 47, 25, 17, and 10), and the 
other half to a compensatory environment (the corresponding weights were 32, 26, 22, and 
20). In the non-compensatory environment, 77% of the participants were classified as using 
Take The Best, but only 15% in the compensatory environment, consistent with Hypothesis 
G. The corresponding numbers for the use of a compensatory strategy were 15% and 60%, 
which is also consistent with Hypothesis G, because stopping by tallying (or by a fixed 
number of cues > 1) is a necessary condition for any compensatory strategy.  

Non-compensatory environments are characterized by a dispersion of cue weights 
across a wide range, that is, a high variability of cue weights. While it is presumably difficult 
for a decision maker to evaluate whether a certain environment mathematically fulfills the 
condition of being non-compensatory, she might very well have had the experience that in 
some decision environments, certain cues are much better than others and much more often 
lead to correct decisions than others, whereas in other environments, cues differ less in their 
predictive power. Also Bröder’s (2003) “non-compensatory” environment was not strictly 
speaking non-compensatory, but only close to it. Nevertheless, a high proportion of 
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participants predominantly used Take The Best. Therefore, a weaker variant of Hypothesis G 
can be formulated: 

 
Hypothesis H (variability of cue validities): The larger the variability of cue 
validities, the more frequently one-reason stopping rules are used.  
 

Bröder (2000, experiment 2) compared a high dispersion environment (with cue validities 
ranging from .54 to .96) and a low dispersion environment (from .66 to .90) in terms of 
prevalence of different decision strategies. He found only a small (non-significant) 
difference in the number of participants who could be classified as one-reason decision 
makers: Under the low dispersion condition, 20% of the participants were classified as TTB 
users; under the high dispersion condition, this percentage rose to 35%. But there might be 
an obvious reason for these low percentages. Search and stopping was prevented by the 
experimental setup: All were cues presented simultaneously, which might make ignoring 
information difficult. I will talk about the effect of preventing search in more detail below. 
 The issue of variability of cue structure is not necessarily restricted to inferences. The 
concept of a non-compensatory attribute structure can also help to explain decisions in the 
domain of preferential choice, or, more broadly speaking, decisions where an objective 
outside criterion on which to evaluate accuracy is missing. Because of the missing outside 
criterion, validities cannot be computed, but people assign different importance weights to 
attributes of options to choose among, and search through attributes accordingly (e.g., 
Aschenbrenner et al., 1984; Saad, 1999). Strong preferences for certain attributes could 
create a situation comparable to a non-compensatory cue structure. This would mean, for 
example, that positive values on important attributes cannot be compensated for by negative 
values on other attributes about which one cares less. Related to this, it has, for example, 
been shown that strong preferences immunize people to preference reversals due to framing 
outcomes in terms of losses or gains (Wang, 1996).  

Similarly, in the domain of moral preferences, which often involve difficult decisions 
or even dilemmas, holding moral values, or protected values, can facilitate decision making 
(e.g., Baron & Spranca, 1997). These values are so named to indicate that they are protected 
from otherwise difficult trade-offs (Fiske & Tetlock, 1997). In the domain of moral decisions 
the problem of incommensurability becomes especially immanent. How would one translate, 
say,  the value of hundreds of animal and plant species becoming extinct through slashing 
and burning in the Amazon rain forest, and the benefits expected from breeding cows on the 
destroyed area, into a common currency (let alone dilemmas that might require assigning 
monetary value to human life)? Many people refrain from trading human life, love of one’s 
family, and so forth for money or material goods, characterized to the point by the slogan 
“no blood for oil.” Some values are regarded as priceless and not to be compensated by 
money, and attempts to do so are viewed as immoral. Again, immunity to framing 
manipulations has been demonstrated for people holding protected values in the area of 
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environmental protection (Tanner & Medin, in press). Let us now have a closer look at the 
issue of trade-offs. 
  
 

Correlations between cues 
Inter-attribute correlations have received attention especially in the area of preferential 
choice (e.g., Bettman et al., 1993; Fasolo, McClelland & Lange, 2004; Gilliland & Schmitt, 
1993; Johnson, Meyer & Ghose, 1989), where negative correlations are a frequently 
occurring characteristic. One example is the negative correlation between price and quality 
of a product inherent in many consumer choices. In experiments on preferential choice, 
people have often had to choose between gambles that differ, for example, in the amount to 
be won and the probability of winning, both very often negatively correlated. When 
correlations between attributes are negative, this creates conflict for the decision maker: One 
will rarely find a pair of alternatives to choose from where all attributes point to one 
alternative. Rather, in negatively correlated environments, different attributes tend to point to 
different alternatives. Therefore, there are trade-offs, and environments can be considered as 
“unfriendly” in that regard.  

In contrast, negative inter-cue correlations are rare in inference problems. Mostly, cues 
correlate positively with each other due to the constraint that they all have to correlate 
positively with the criterion. (Chapter 2 of this dissertation will explore this connection in 
more detail.) These on average positive correlations often create high information 
redundancy. High information redundancy in an environment means that looking up more 
information often does not reveal new information. Thus in terms of accuracy, stopping after 
one discriminating cue is found should not fall far behind looking up more information and 
integrating it. One does not need to trade accuracy for frugality in an environment with 
positively correlated cues. Again, although a decision maker might be unable to estimate 
correctly the numerical value of the correlation between cues, she might very well note that 
certain cues quite often make the same prediction under conditions of high redundancy. 
Similarly, she can note that certain cues often contradict each other and make opposite 
predictions under conditions of low redundancy. This leads to the following hypothesis:  
 

Hypothesis I (information redundancy): The higher the average correlation 
between cues, the more frequently one-reason stopping rules are used. 

 
The second chapter of this dissertation is dedicated to the question of how well different 
heuristics perform in high- versus low-redundancy environments, and whether people 
respond adaptively to this environmental structure. Support for Hypothesis I has indeed been 
found and is reported there (Figure 2.2 on p. 65 can be consulted to gain an impression).  
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But can Hypothesis I be turned around, predicting that in low-redundancy 
environments, people should search for information more extensively and apply, for 
example, stopping by tallying? Although one-reason stopping and deciding has been shown 
to be less accurate in unfriendly environments with no or negative inter-cue correlations 
(Shanteau & Thomas, 2000)12, there is a psychological benefit to be gained from limiting 
information search. In low-redundancy environments, even more so when cues are 
negatively correlated, there often exists conflict between cues. Here, one-reason stopping can 
serve as a strategy that avoids conflict. For the preference domain, it has been suggested that 
considering many pieces of information makes explicit trade-offs that can be uncomfortable 
to face (Hogarth, 1980). Individual differences might exist in whether one prefers facing the 
conflict to achieve higher performance although it makes a decision harder, or avoiding the 
conflict through one-reason stopping and settling for a slightly lower performance. This is 
another question that will be addressed empirically in the second chapter of this dissertation. 
 
 
Information costs 
If search is in external sources, the question of costs has a clear meaning and can affect the 
stopping rule. As defined above, relative information costs are the costs of a piece of 
information relative to the gain from a correct decision. When information is costly, stopping 
early is a very straightforward way to save money.  
 

Hypothesis J (external search costs): The higher the relative information cost I 
(0 � I � 0.50), the more frequently one-reason stopping rules are used.  

 
In Experiment 1 of Newell et al. (2003), relative information costs were 1/7, with six cues, 
and in Experiment 2, I was 1/5, with two cues. As mentioned above, in all cases where 
participants searched for information (rather than guessing), the proportion of cases in which 
subjects did not search beyond a first discriminating cue was .80 and .89, respectively. This 
result is consistent with Hypothesis J.  

For I = 1/10, Läge et al. (2004) report similarly high proportions for the use of a one-
reason stopping rule. In 76% of decisions, search was stopped after the first discriminating 
cue was found. Like the Newell et al. (2003) study, this study provides indirect evidence 
only as I is compared across experiments, which differ in several respects. To test the 
hypothesis directly, relative costs must be varied within one experiment.  

 

                                                
12 However, even setting aside the fact that negative inter-cue correlations are rare in inference problems, I will 
show in simulations (reported in detail in Chapter 2) that when cue validities are widely dispersed, TTB hardly 
suffers from low redundancy. Only when there is both low redundancy and little variability of cue validities 
does TTB’s accuracy drop. Again, a comparison with the preference domain seems to suggest itself, where, as 
reported above, strong preferences or moral convictions help to solve otherwise difficult trade-offs. 
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There are three studies that varied information costs in such a way. Bröder (2000, 
Experiment 3) showed that when the relative information costs I increased from 1/100 to 
1/10, the proportion of people classified as using Take The Best increased from 40% to 65%. 
However, classifications were based on decisions only. Bröder did not look at process 
measures and thus does not report how many people precisely followed Take The Best’s 
stopping rule, that is, one-reason stopping.  

Newell and Shanks (2003, Experiment 1) did look at stopping separately. Their 
analysis of stopping rules shows very clear results: In the low-cost condition (I = 1/10), only 
in 36% of the non-guessing trials was adherence to a one-reason stopping rule observed. 
When I was increased to 1/5, this proportion rose to 85%. This result strongly supports 
Hypothesis J. 

The experiment that will be reported in more detail in the third chapter of this 
dissertation also revealed a higher proportion of one-reason stopping under high (I = 3/20) 
compared to low (I = 1/20) relative costs. Five cues were available. When costs were low, 
participants stopped buying information after one discriminating cue was found in 51% of all 
cases. When costs were high, this percentage was 70% (see also Figure 3.6 on p. 108). In 
turn, however, this result implies that in the low-cost condition, the proportion of search that 
continued after one or more discriminating cues had already been found was relatively high. 
Those cases might be examples of stopping by tallying, a stopping rule that is easier to 
afford when costs are low. In the introduction to this section, arguments were put forward for 
stopping by tallying positive evidence for one alternative rather than stopping by tallying 
discriminations per se. The simplest case that allows for compensatory decision making, 
while still ensuring moderate frugality, is Take Two, that is, stopping when two 
discriminating cues are found that point in the same direction (but not after two cues that 
point in different directions). To test the alternative tallying rule, I only looked at the subset 
of responses in which search continued until at least a second discriminating cue was found. 
In half of these cases, the second discriminating cue pointed in the same direction as the first 
and only 14% of participants continued searching. In the other half of these cases, the second 
discriminating cue pointed in the other direction. Now, participants continued to search in 
83% of the cases. Figure 1.5 illustrates this finding. This represents strong evidence for the 
tallying rule with md = 2, which is adaptive in a compensatory environment when costs are 
relatively low. Also the experiments reported in Chapter 2 will provide evidence for this 
sensitivity to positive evidence. 
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Figure 1.5: After two discriminating cues that point in 
the same direction have been found, search was 
continued in only a few cases (left). When, in contrast, 
the second discriminating cue pointed in a different 
direction from the first, search was continued in most 
cases (see Chapter 3 for the details of the experiment). 

 
 
What Environments Support Fixed-Stopping Rules? 
In environments where the relative search costs are high, stopping by discrimination may be 
counterproductive. Consider the following example. The payoff for a correct inference is 
$10, the cost of getting information about one cue, $4. The first cue did not discriminate. 
According to any stopping rule based on discrimination, one should now look up the second 
cue. But after the second cue is bought, the maximal win would be $2, whereas stopping 
search and guessing promises an expected value of $3. This leads to the following 
hypothesis:  
 

Hypothesis K (one cue only): The higher the relative information cost I, the 
more frequently the mf = 1 rule is used. 
 

Recall that in the second experiment reported by Newell et al. (2003), I was increased from 
1/7 per cue in the first experiment (with six cues) to 1/5 per cue (two cues). Given these 
relatively high costs, 29% of their participants relied on the M = 1 rule and simply guessed 
whenever the first cue was not informative, and these participants did so consistently on all 
trials. The authors did not report the percentage of trials—computed across all participants—
that was consistent with this one-trial stopping rule, but as 29% of participants used it on all 
trials, this percentage must be higher or at least equally high. Unfortunately the proportion of 
fixed-trial stopping in the first experiment is unknown due to incomplete response recording 
by the experimental program, so it is unclear whether the proportion increased from the first 
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to the second experiment, as predicted by Hypothesis K. The data therefore only provide the 
indirect evidence that there indeed is a considerable proportion of participants who adopt 
one-trial stopping when information costs are high. 

In the study by Läge et al. (2004), with a relatively low I = 1/10 (four-cue 
environment), in 5% of the decisions search was stopped after one or more cues without 
having found a discriminating cue. Unlike in Newell et al.’s Experiment 2, none of the 
participants used the M = 1 rule in all trials, or as the predominant stopping rule, which is 
consistent with Hypothesis K. Again, however, the comparison is across experiments. In the 
high-cost condition of the experiment reported later in Chapter 3, the tendency to stop search 
before a discriminating cue has been found does not substantially differ between high- and 
low-cost conditions (10% when I = 3/20, compared to 7% when I = 1/20).  
 
Time pressure 
Information search does not necessarily need to involve direct monetary costs to favor 
frugality. Time pressure, too, favors fast and frugal decision making. It limits the search time 
for information and should therefore increase the use of a stopping rule that ends search 
quickly.  

 
Hypothesis L (indirect search costs): The shorter the time available for making a 
decision, the more frequently one-reason stopping rules are used. 
 

What does experimental data have to say about the effects of time pressure on human 
decision behavior? Rieskamp and Hoffrage (1999) presented participants with a choice 
between different companies from which they could buy shares. Participants either worked 
under low time pressure (50 sec for each choice), or high time pressure (20 sec). The authors 
tested many different strategies. Classification of participants according to their decisions 
revealed that under high time pressure, participants who used a generalized form of TTB 
represented the largest group (46%). Under low time pressure, participants who used a 
weighted additive strategy constituted the largest group (42%).  

 
Sequential search without direct information costs 
Is it possible to go even further, and postulate that just having to make the effort to search 
actively for cues will increase the use of one-reason deciding making? According to 
Gigerenzer and Todd (1999, p. 23), having to search for information, in either the external or 
internal environment, is a minimum requirement for being able to test models of ecological 
rationality, as they rely on search as a central component. 
 

Hypothesis M (search excluded): One-reason decision making is more frequent 
when cues have to be searched for than when search and stopping is prevented 
by the design of the experiment.  
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This seems to be true at least for internal environments. In the study by Bröder and Schiffer 
(2003) quoted above in the section on search rules, a large percentage of participants (on 
average 64%) could be classified as using TTB when cue values had to be retrieved from 
memory. As second experiment with the same stimulus material directly compared search in 
memory versus inferences from givens. Indeed, a higher percentage of participants 
predominately used TTB in the condition where information had to be searched for in 
memory (44% vs. 20%). Of course, when search proceeds in memory, process measures that 
indicate search order and stopping point cannot be recorded directly, which is why these 
numbers are based on decision outcomes. 

However, more direct evidence for the use of different stopping rules could be 
gathered through reaction time differences. If people stop searching after having found one 
discriminating cue, one would expect reaction time differences between different kinds of 
decision pairs, for example, between one item [cue profile of alternative A: 10000; 
alternative B: 00000] and another [alternative A: 00001; alternative B: 00000].   

With search in external environments, the situation looks different. Experiments by 
Bröder (2000) show that when information search was excluded and inferences had to be 
made from givens, only 28% of participants were classified as using TTB (Experiment 2), 
but when they had to search for information at some cost (I = 1/10 and 1/100), as in the share 
task, this number increased to 53% of participants (averaged across both cost conditions; 
Experiment 3). This result emerged from a comparison between experiments, and sequential 
search and information costs were confounded. When Bröder (2000, Experiment 4) directly 
tested the effect of successive versus simultaneous presentation of cues, he found that 
successive presentation alone (without direct information costs) did not increase the 
proportion of TTB users in his sample – it was 15% in both conditions. Only when cues had 
to be revealed successively and some monetary investment had to be made to get the 
information (I = 1/10) did the percentage of TTB users rise, to 65%. 

An explanation for the divergent findings for search in memory versus search in the 
external environment without direct information costs might be that search in memory bears 
the additional load that the information of a discriminating cue has to be stored in working 
memory if search continues. This poses an additional cognitive challenge beyond the mere 
integration of information, which, in a sense, might also be considered as costs that have to 
be paid for information search. Yet there might be factors that can mitigate the demands of 
compensatory decision making even when information has to be retrieved from memory, as 
the effects of different presentation formats suggest. 
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Presentation format 
Bröder and Schiffer (2003) have found a high proportion decisions consistent with TTB 
when information had to be retrieved from memory. In their first experiments, cited above, 
the information that had to be memorized before the decision-making task was in the form of 
verbal lists. This format might have favored the use of one-reason decision making. The 
combination of sequential search and one-reason stopping might be more likely when the 
information is coded in propositional rather than pictorial form. Propositional forms include 
verbal information transmitted aurally, or written text transmitted visually. Pictorial 
representations, such as photos and figures, may lead to more holistic encoding that makes it 
difficult to retrieve separate pieces of information sequentially, and thus also difficult to 
ignore some information.  
 

Hypothesis N (information format): One-reason decision making is more 
frequent when information is presented in propositional form than when 
information is pictorially presented.  

 
Experimental evidence for Hypothesis N comes again from the studies by Bröder and 
Schiffer (2003). As reported earlier, participants had to make memory-based inferences 
about which of two suspects in a murder case was more likely to have committed the 
murder. In an additional study (Experiment 4), the authors tested whether the format of 
presentation of cue information influences the decision strategy that is used.  

Participants either had to learn verbally presented cue profiles in the form of written 
lists or cue profiles presented in the form of pictures, that is, pictures of the suspects with 
their respective attributes. In the group that had memorized verbal cue profiles, participants 
whose decisions were predominately in line with TTB represented the largest proportion 
(64%, excluding participants who predominantly guessed). In contrast, the decisions of 
participants who had memorized pictorial information were best predicted by a 
compensatory strategy (weighted additive or equal weight rule): 69% of participants could 
be classified accordingly (again excluding guessers, and averaged across two pictorial 
conditions whose details do not matter for the current purpose). 

These results are in line with the hypothesis that verbal information is more likely to be 
retrieved sequentially, thus suggesting one-reason stopping. Pictorial information might give 
rise to a more holistic representation that, when retrieved, provides information about several 
attributes simultaneously, thus suggesting information integration in a very similar way to 
simultaneously available cues in the external environment. 

 
 
 
 
 



Elements of Decision Heuristics 

 
 

46 

Discussion 
 

Newell et al. (2003) questioned the falsifiability of the idea of an adaptive toolbox. From 
their finding that not all people obey Take The Best on all decisions, the authors conclude 
that “if the only way to explain these violations within the fast-and-frugal framework is 
through the post hoc invention of new heuristics or building blocks, then the framework 
begins to appear dangerously unfalsifiable” (p. 94). What the authors forgot to take into 
account, however, is that careful analysis of the environment allows very precise predictions 
both about decision outcomes and processes, making fast and frugal heuristics, in contrast to 
continuous parameterization, falsifiable with regard to both. It is worth noting that Newell et 
al. (2003) indeed did not undertake such a thorough environmental analysis to derive their 
hypotheses, although the idea of ecologically rational building blocks rests on the careful 
analysis of the environment at its very core.  

Careful analysis of the environment does not imply an exhaustive cost–benefit analysis 
as in optimization under constraints. Ecologically rational building blocks are not based on a 
complete representation of the environment, nor derived from it. There is reduction to 
salient, relatively easy to perceive, and at the same time valid and robust features. The 
environmental features examined here are chosen to be very salient to the decision maker. 
Moreover, environmental features themselves often limit which building blocks could 
possibly be applied, thus simplifying the selection on the part of the decision maker. 
Additionally, stopping seems to drive deciding, thus constraining the range of decision rules 
available for selection. 
 With regard to search rules, for example, the absence of outcome feedback a priori 
rules out several search orders, thus limiting the focus of the decision maker on cases in 
which a cue discriminates. Also, it was suggested that the design of the learning phase 
strongly favors certain search rules over others. These predictions, along with the predictions 
about search in changing environments, remain to be tested thoroughly. Other environmental 
features might leave room for more building blocks to select from. But at least for 
information costs, taking discriminative power of cues into account seems an obvious way of 
responding to this feature. Indeed, there is accumulating evidence for adaptivity of search in 
response to (direct and indirect) information cost. People seem to be more selective in which 
cues they look up first when information is expensive, although the question of the exact 
ordering criterion – validity, or rather a criterion that combines both validity and 
discrimination rate, such as usefulness – remains open due to confounds in the respective 
experiments (Bröder, 2000; Bröder & Schiffer, 2003; Newell & Shanks, 2003; Newell et al., 
2003; and even, to a lesser extent, Newell et al., 2004). 

Similarly, on stopping and decision rules, there by now exists a range of studies 
confirming high proportions of one-reason stopping and deciding when one has to pay for 
information (Bröder, 2000, Experiments 3 & 4; Newell & Shanks, 2003; Newell et al., 
2003), or when there are indirect costs of information search, resulting from time pressure 
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(Rieskamp & Hoffrage, 1999) or from the necessity to retrieve information from memory 
(Bröder & Schiffer, 2003). For other statistical properties of the decision environment, 
adaptive stopping has yet to be demonstrated. For example, adaptivity to the variability of 
cue validities would need to be addressed in a study that refrains from presenting all 
information simultaneously (as in Bröder, 2000, Experiment 2). The second chapter of this 
dissertation will be devoted to the property of information redundancy, an environmental 
feature thus far ignored in experimental studies on simple inference heuristics.  

Whereas all these questions are about when a certain predefined building block will be 
applied, one might also ask how easily the rules can be constructed in the first place. Also 
here, the selection of rules that were considered in this chapter was motivated by simplicity.  

For the suggested stopping rules, computational complexity seems to be less of an 
issue. Searching until one informative cue is found, and if you can afford it or you have 
experienced that it improves accuracy, looking for a second piece of evidence, does not 
require complex calculations.  

Computationally complex rule-construction processes are more of an open question for 
the proposed search rules. But as especially the examples of search by usefulness and 
success show, there exist shortcuts that avoid complex computation and thus make these 
processes more plausible. The criteria of usefulness and success can be derived from simple 
tallies, and there are findings that people are very good at keeping track of the frequency of 
occurrence, or even do so automatically (Hasher & Zacks, 1984). Yet still, of course, how 
simple the construction of some of the rules really is remains a question for further 
experimental investigation. Especially search by validity, which normalizes the number of 
correct decisions against the number of discriminations and thus requires two tallies as well 
as computation of a division, might run into problems in terms of psychological plausibility. 
The third chapter of this dissertation will therefore take one step back and, for the building 
block of search, propose simple rules for deriving orders, to be tested in simulations and 
experiments. 




