3. Ergebnisse

3.1. Reaktion von Endothelzellkulturen auf Wandschubspannung

Nach Stimulierung durch Wandschubspannung liessen die HUVECs aus venösen Nabelschnurendothelien bei lichtmikroskopischer Untersuchung eine der Strömung folgende, konzentrische Ausrichtung erkennen. Die Zellen der Kontrollgruppen zeigten dagegen trotz Adhärenz keine bevorzugte Orientierung sondern eine typische diffuse Anordnung (vergleiche Abbildung 9), die in der Literatur als Kopfsteinpflaster-Muster ("cubble stone pattern") bezeichnet wird. Die beobachtete Morphologie der Zellen stimmt mit zahlreichen publizierten Untersuchungen überein (Malek und Izumo, 1996; Skalak und Price, 1996).

Der HUVEC-Monolayer einer bewachsenen Petrischale enthält ungefähr $1x10^{6}$ Zellen. Die zu erwartende RNA-Ausbeute dieses Substrates beträgt zwischen 3 und 30 µg (Rneasy[®]-Handbuch). Tatsächlich erbrachte die Zellernte und die folgende RNA-Isolierung eine Ausbeute zwischen 20 und 90 µg RNA pro Petrischale.

Abbildung 9: Änderung der Zellmorphologie unter Wandschubspannung

Endothelzellen wurden in Petrischalen kultiviert und in einem Kegel-Platte-System durch Wandschubspannung stimuliert (24 h, 5,4 dyn/cm²). Vor der Exposition und in den Kontrollgruppen lag eine diffuse Anordnung der Zellen vor. Nach der Einwirkung von Strömung war eine Ausrichtung der Zellen in Strömungsrichtung (weißer Pfeil) erkennbar.

3.2. Nach Strömungsexposition differentiell exprimierte mRNA in Endothelzellen

Für jede Kombination aus Hin- und Rück-Primer in der Differential Display RT-PCR wurde in der Regel die Amplifikation von 30 bis 40 Fragmenten beobachtet. Die cDNA-Sequenzen hatten typischerweise eine Größe zwischen 100 und 1000 Basenpaaren. Wurden als Ausgangsmaterial unstimulierte Kontrollzellen und durch Wandschubspannung stimulierte Zellen verwendet und deren mittels Differential Display RT-PCR amplifizierte cDNA direkt nebeneinander auf dem Acrylamid-Gel aufgetragen, so ergab sich ein weitgehend übereinstimmendes Muster (vergleiche Abbildungen 4 und 10). Durch Kombination von vier Primern in der reversen Transkription mit 24 Zufallsprimern in der PCR wurden in 36 Fällen reproduzierbar deutlich unterscheidbare Banden erzeugt (vergleiche Tabelle 4). Hiervon wurden 22 cDNA-Banden nach Exposition von Wandschubspannung verstärkt exprimiert, 14 cDNA-Banden wurden vermindert exprimiert. Sieben Primerkombinationen führten nicht zur Amplifikation differentiell exprimierter cDNA.

Abbildung 10: Differential-Display-Gel mit mRNA-Fingerprints

cDNA aus unstimulierten ("K") und stimulierten ("S") HUVEC wurde einer reversen Transkription mit dem Hin-Primer (HP) und anschließend einer PCR mit dem Hin-Primer und dem angegebenen Rück-Primer (RP) unterzogen. Die Auftrennung der Amplifikationsprodukte erfolgte in nichtdenaturierendem Acrylamidgel (4,5%) mit anschliessender Silberfärbung. Die waagrecht liegenden Pfeile markieren zwei unterschiedlich stark ausgeprägte Banden, die komplementär zu differentiell exprimierter mRNA sind.

Different.	Länge	Stärker	Hin-Primer					
Bande	(bp)	exprimiert in		Rück-Primer				
٨	350	Kontrollzellen	HP-2	(5`-TGC CGA AGC TTT TTT TTT TTC-3`)				
Λ	550	Kontronzenen	RP-8	(5`-GTC TTG GGT TCT CTT CCA-3`)				
В	270	Kontrollzellen	HP-1	(5`-TGC CGA AGC TTT TTT TTT TTA-3`)				
D	270	Kontronzenen	RP-2	(5`-CAG GTG AAA AGC AGA ATC AGG-3`)				
С	620	Kontrollzellen	HP-1	(5`-TGC CGA AGC TTT TTT TTT TTA-3`)				
	020	Itolitionzenen	RP-20	(5)-CGA AGC TAC CAC CTT $(CT)T$ A-3)				
D	140	Kontrollzellen	HP-2	(5)-TGC CGA AGC TTT TTT TTT TTC-3)				
			RP-3	(5'-TTG AGC ACT TAC CAT GTG CC-3')				
Е	370	Kontrollzellen	HP-1	(5 - TGC CGA AGC TTT TTT TTT TTA-3)				
			RP-2	(5- CAG GTG AAA AGC AGA ATC AGG-3)				
F	250	stim. Zellen	HP-Z	(5 - TGC CGA AGC TTT TTT TTT TTT TTC-3)				
			RP-3	(5 - 11G AGC ACI IAC CAI GIG CC-5)				
G	550	stim. Zellen	RP-2	(5) IGC CGA AGE III III III IIC 5) (5)-CAG GTG ANA AGC AGA ATC AGG-3)				
		F	HP-2	(5) -TGC CGA AGC TTT TTT TTT TTC-3)				
Н	250	stim. Zellen	RP-14	(5) -CTT CTA GGA CCT GGC AAT-3)				
			HP-2	(5°-TGC CGA AGC TTT TTT TTT TTC-3`)				
J	180	stim. Zellen	RP-2	(5`-CAG GTG AAA AGC AGA ATC AGG-3`)				
	250		HP-2	(5`-TGC CGA AGC TTT TTT TTT TTC-3`)				
K	250	stim. Zellen	RP-1	(5`-TTC ATA GAC ATT GAG GTT GC-3`)				
T	400	-time 7-11-m	HP-1	(5`-TGC CGA AGC TTT TTT TTT TTA-3`)				
L	400	stim. Zellen	RP-14	(5`-CTT CTA GGA CCT GGC AAT-3`)				
М	400	stim Zellen	HP-2	(5`-TGC CGA AGC TTT TTT TTT TTC-3`)				
1 v1	400	stiin. Zenen	RP-1	(5`-TTC ATA GAC ATT GAG GTT GC-3`)				
N	200	stim Zellen	HP-2	(5`-TGC CGA AGC TTT TTT TTT TTC-3`)				
11	200	Still. Zellen	RP-8	(5`-GTC TTG GGT TCT CTT CCA-3`)				
0	180	stim Zellen	HP-2	(5°-TGC CGA AGC TTT TTT TTT TTC-3°)				
	100		RP-19	(5°-CGA AGC TGT AGA A5GG (ACT) GG-3°)				
Р	400	stim. Zellen	HP-1	(5°-TGC CGA AGC TTT TTT TTT TTA-3°)				
r 40		Jo sum. Zenen	RP-3	(5 -TTG AGC ACT TAC CAT GTG CC-3)				

 Tabelle 4: Primersequenzen, deren Verwendung zur Amplifikation differentiell exprimierter Banden führte

Different.	Länge	Stärker			-	Hin-P	rimer		
Bande	(bp)	exprimiert in		Rück-Primer					
0	500	stim Zellen	HP-4	(5`-TCA	ACA	CTC	CCG	AGC	ACG TT-3`)
Q	500	Sum. Zenen	RP-8	(5`-GTC	TTG	GGT	TCT	CTT	CCA-3`)
P	180	stim Zellen	HP-2	(5`-TGC	CGA	AGC	TTT	TTT	TTT TTC-3`)
K	100	Still. Zelleli	RP-14	(5`-CTT	CTA	GGA	CCT	GGC	AAT-3`)
S	450	stim. Zellen	HP-1	(5) - TGC	CGA	AGC	TTT	TTT	TTT TTA -3)
			RP-2	(5 - CAG)	GTG	AAA	AGC	AGA	ATC AGG-3)
Т	320	stim. Zellen	RP-8	(5) IGC (5) – GTC	TTG	GGT	тст	СТТ	CCA-3)
	020	TZ (11 11	HP-4	(5 ⁻ TCA	ACA	CTC	CCG	AGC	ACG TT-3`)
0	920	Kontrollzellen	RP-8	(5`-GTC	TTG	GGT	TCT	CTT	CCA-3`)
V	880	stim Zellen	HP-4	(5`-TCA	ACA	CTC	CCG	AGC	ACG TT-3`)
•	000	still. Zelleli	RP-8	(5`-GTC	TTG	GGT	TCT	CTT	CCA-3`)
W/	900	Kontrollzellen	HP-1	(5`-TGC	CGA	AGC	TTT	TTT	TTT TTA-3`)
••	700		RP-3	(5`-TTG	AGC	ACT	TAC	CAT	GTG CC-3`)
x	530	stim Zellen	HP-1	(5`-TGC	CGA	AGC	TTT	TTT	TTT TTA-3`)
A	550	still. Zelleli	RP-8	(5`-GTC	TTG	GGT	TCT	CTT	CCA-3`)
v	530	Kontrollzellen	HP-1	(5`-TGC	CGA	AGC	TTT	TTT	TTT TTA-3`)
	550	Kontronzenen	RP-14	(5`-CTT	CTA	GGA	CCT	GGC	AAT-3`)
7	650	Kontrollzellen	HP-1	(5`-TGC	CGA	AGC	TTT	TTT	TTT TTA-3`)
	050	Kontronzenen	RP-17	(5`-CGA	AGT	TT (C	GCT) <i>I</i>	AG (C	r)TCGTCTT-3)
ΔΔ	700	stim Zellen	HP-2	(5`-TGC	CGA	AGC	TTT	TTT	TTT TTC-3`)
<i>1</i> 1 1	700	Still. Zelleli	RP-2	(5`-CAG	GTG	AAA	AGC	AGA	ATC AGG-3`)
ΔB	850	Kontrollzellen	HP-2	(5`-TGC	CGA	AGC	TTT	TTT	TTT TTC-3`)
	050	Kontronzenen	RP-3	(5`-TTG	AGC	ACT	TAC	CAT	GTG CC-3`)
ΔC	500	Kontrollzellen	HP-2	(5`-TGC	CGA	AGC	TTT	TTT	TTT TTC-3`)
ne	500	Kontronzenen	RP-3	(5`-TTG	AGC	ACT	TAC	CAT	GTG CC-3`)
AD	680	Kontrollzellen	HP-2	(5`-TGC	CGA	AGC	TTT	TTT	TTT TTC-3`)
	000	Kontronzenen	RP-8	(5`-GTC	TTG	GGT	TCT	CTT	CCA-3`)
ΔF	200	stim Zellen	HP-2	(5`-TGC	CGA	AGC	TTT	TTT	TTT TTC-3`)
	200	Sum. Zenen	RP-14	(5`-CTT	CTA	GGA	CCT	GGC	AAT-3`)
ΑF	170	stim Zellen	HP-2	(5`-TGC	CGA	AGC	TTT	TTT	TTT TTC-3`)
111	170	stim. Zellen	RP-13	(5`-ACT	CCA	CCA	GCA	ATG	ACA-3`)

Tabelle 4:Primersequenzen, deren Verwendung zur Amplifikation(Fortsetzung)differentiell exprimierter Banden führte

Different.	Länge	Stärker		Hin-Primer							
Bande	(bp)	(bp) exprimiert in Rück-Primer									
AG 370	370	stim Zellen	HP-2	(5`-TGC	CGA	AGC	TTT	TTT	TTT TTC-3`)		
	570		RP-3	(5` - TTG	AGC	ACT	TAC	CAT	GTG CC-3`)		
A T T	320	220 Kontrollzellen	HP-2	(5`-TGC	CGA	AGC	TTT	TTT	TTT TTC-3`)		
Ап		520 Kontrolizeiten	RP-2	(5`-CAG	GTG	AAA	AGC	AGA	ATC AGG-3`)		
A T	1100	stim Zallan	HP-2	(5`-TGC	CGA	AGC	TTT	TTT	TTT TTC-3`)		
AJ	AJ 1100 stim.	stim. Zenen	RP-8	(5`-GTC	TTG	GGT	TCT	CTT	CCA-3`)		
A IZ	1000	-time 7-11-	HP-2	(5`-TGC	CGA	AGC	TTT	TTT	TTT TTC-3`)		
AK	1000	stim. Zellen	RP-8	(5`-GTC	TTG	GGT	TCT	CTT	CCA-3`)		
A T	180	AL 180 Kontrollzellen	Vontrollzollon	HP-2	(5`-TGC	CGA	AGC	TTT	TTT	TTT TTC-3`)	
AL			Konuolizellen	RP-22	(5`-GTG	TCC	TCT	TCC	CGA	TAA TC-3`)	

Tabelle 4:Primersequenzen, deren Verwendung zur Amplifikation(Fortsetzung)differentiell exprimierter Banden führte

Nach reverser Transkription mit einem Hinprimer (HP) und PCR mit dem identischen Hin-Primer sowie einem weiteren Rück-Primer (RP) traten die differentiell exprimierten Banden A bis AL auf. Die Bezeichnung "stim. Zellen" bedeutet, daß nach 24 stündiger Stimulation mit 5,4 dyn/cm² verstärkte Expression vorlag. In "Kontrollzellen" lag hingegen verminderte Expression vor.

3.3. Reamplifikation differentiell exprimierter mRNA-Fragmente

Die Bereitstellung von cDNA für die Sequenzierung und für die Sonden für northern blots erfolgte durch Elution und Reamplifikation (vergleiche Abschnitt 2.2.5.). Ein repräsentatives Polyacrylamidgel mit reamplifizierten Banden ist in Abbildung 11 wiedergegeben.

Die Elution und die Reamplifikation sind störungsanfällig. Vermutlich ist dies in der geringen Menge an DNA sowie in der schwierigen exakten Lokalisierbarkeit der differentiell exprimierten Banden begründet. Insbesondere die für die Elution der Reamplifikationsprodukte notwendige Verwendung von Polyacrylamidgelen in Glaskammersystemen ist zeitaufwendig und mühsam. Um diesen Vorgang zu vereinfachen, wurde alternativ der Versuch unternommen, reamplifizierte PCR-Produkte mit Agarosegelen aufzutrennen und anschliessend zu eluieren. Dieses Verfahren erwies sich als ungeeignet, um ausreichende Mengen an DNA zu isolieren. Mit der herkömmlichen Technik gelang die Reamplifikation von 16 der 36 (≅44%) differentiell exprimierten Banden. Es handelte sich um die Banden A, B, C, D, E, F, H, J, K ,L, N, O, P, T, AF und AG der Tabelle 4.

Abbildung 11: Polyacrylamid-Gel mit Produkten der Reamplifikations-PCR

Das Gel zeigt die Produkte einer Reamplifikations-PCR nach Ethidiumbromidfärbung unter UV-Licht. Differentiell exprimierte Banden waren aus dem Differential-Diplay-Gel ausgeschnitten worden. Nach der Elution wurde eine erneute PCR mit den Primern des Differential Display durchgeführt. Typischerweise treten neben der Hauptbande kleinere Nebenbanden auf. Nach der Reamplifikation erfolgte eine erneute Elution mit anschliessender Sequenzierung.

3.4. Sequenzanalysen differentiell exprimierter mRNA-Fragmente

Die Ergebnisse der Sequenzanalyse sind in den Tabellen 5 bis 20 aufgeführt. Hierbei ist zu berücksichtigen, daß es sich in der Regel um mehrere Sequenzierversuche pro Sequenz handelt. Die auf diese Weise gewonnenen Fragmente wurden an sich überlappenden Abschnitten zusammengefügt. Durch diese Maßnahme konnte die Länge des jeweils sequenzierten Teilabschnittes erhöht werden. Regionen mit unplausiblen Nukleotidwiederholungen aufgrund unzureichender Sequenzierungsergebnisse wurden entfernt.

Tabelle 5: Sequenzierergebnis der Bande A

1	CGNGGGAGGG	NGTGTGCTCG	GNGCTGNCGG	GACCCACATG	40
41	CTCCAGATTA	GAGCCTGTAG	ACTTTATCNC	TTAAACTTGC	80
81	NTCACGTAAC	GGACCANAGC	AAGACCCTAA	ACTTCCNTAA	120
121	NTGTGATTAG	ACAGAACACC	TATGCAAAGA	TGAACCCGAG	160
161	GCTGAGAATC	AGACTGACAG	TTTACAGACG	CTGCTGTCAC	200
201	AACCAAGAAT	GTTATGTGCA	AGTTTATCAG	TAAATAACTG	240
241	GAAAACAGAA	CACTTATGTT	ATACAATACA	GATCATCTTG	280
281	GAACTGCAAA	AAAAAAAAGC	TTGCANAANN	GG	320

Tabelle 6: Sequenzierergebnis der Bande B

1	TCGGGGATGA	TCAGAGGTGA	AGGGACAGAA	AGAGGAAAGG	40
41	AGGAAGATTG	AGCTGGGGGC	AACAGCCAAG	CTCACCTGGG	80
81	CAGGTCTCTG	CCACCTCCTT	GCTCTGTGAG	CTGTCAGTCT	120
121	AGGTTATTCT	CTTTTTTTGT	GGCTATTTTT	AATTGCTTTG	160
161	GATTTGTTAA	ATGTTTTCTG	TCTTCTGTTA	AGTGTGTTTT	200
201	CTCTGGAGAT	ANAATGTAAA	ССАТАТТААА	AAAAAAAGC	240
241	TTCGCAAAAA	NGNCTCTNCC	TNCTNCTCTN	TCCGTNAAAC	280
281	TGTCACTCAC	AGTNANNNCT	CTATATNTGT	NNNNANCACA	320
321	AANCNNTANC	GATCACTNNN	NNNTNANCNT	NNCNTACACC	360
361	AATATNTCCN	ATNNNAANAA	CATANNNCNA	ANTCNCCNAN	400
401	CANAACANTN	NACCAACNAT	CNAAAANNNN	ANCTACNNNA	440
441	CANNTNNAAN	ANANTNNNNN	ACCATATANN	CNTTNNACAA	480
481	NNNATACTAA	NCCANAAANA	ACNACCACAA	CANTANATTC	520
521	TAANTACTAA	AANAACANCC	NCA		560

1		CTNNATANNG	ATNNNCAATA	CTTTTGNGTC	NNTCACGTGT
4	1	AGTGGAAANN	TGNGACTNTN	CATANNTGNG	AGCCNGGATC
8	1	NGGCCNCGTN	NGCANCCATG	TANTGCGACG	TTCCTACGCG
1	21	TCCCANCTTG	TGGNCACTAN	TTCCTNCTGT	TTANACNNNG

Tabelle 7: Sequenzierergebnis der Bande C

41	AGTGGAAANN	TGNGACTNTN	CATANNTGNG	AGCCNGGATC	80
81	NGGCCNCGTN	NGCANCCATG	TANTGCGACG	TTCCTACGCG	120
121	TCCCANCTTG	TGGNCACTAN	TTCCTNCTGT	TTANACNNNG	160
161	CCNCATATNC	CTNTGTCCTG	NTNNCCACCN	NTNGTNNTNC	200
201	TNANCTTCNN	TANAACACCT	ACGTTCCNCC	CCNTCCTTCN	240
241	NNNTCTTNAN	CCTCCNCTTC	CCNCTTNTTC	CTCNCTTNCT	280
281	CCTNCTCACN	CCCTCACCCC	CCTTTCCCCC	CCACATNCCC	320
321	TTTCAACTNC	TTCCCCCCCC	TTNTTCCNCT	TNNTCCCCCT	360
361	CNCNATCACC	TCCCCTNNTC	NCTCCACTCN	CCCTCTTTCN	400
401	CNCCCCCTAT	NCACNCTCNA	CNNCNTANCA	TCNTCCCNCC	440
441	NCCCNNCCCN	NCTNTTTTNN	NCTATACACN	ACTCACAATN	480
481	ACTTTNCCCT	CTCTCGTCCN	CCCCNTCTCC	CNACTANCAN	520
521	CCCCCCTNTC	CTCNACTTAC	NCNTCNCNCT	CCCTTCNTCC	560
561	TNTNNNNTTN	CTCCNCTTTC	CCNCCCCCCC	TCTCNCTNTC	600
601	CCCAN				640

Tabelle 8: Sequenzierergebnis der Bande D

1	NTGGGGANGT	GNACANNNNN	NAAGTNGTGC	TNANCNTNAA	40
41	TGGTCTGNGA	GGTTACNNGT	TATGACAAAT	TTTCCCGTGT	80
81	AGTGAANNAA	NCCTTTAGAA	AAAAAAAANN	CNCCGGNAAA	120
121	ANTTCTNTCC	NCCCCCCNCC	NNTCNANNCC	NNTTCCTCCA	160
161	ANCNNCCTCC	NCTTCCCTTC	CNNTNANCCC	ANTNTCCANC	200
201	CTTNCNNANN	AATATCCCNN	NTACNCCAAN	ANTTANATTA	240
241	TCNNCCAATA	NATCNTCCCT	CACCNATTNN	NANATCNNAA	280
281	ACATTATTNN	TCNNNATTCN	NNCCCCCCNN	CCTCACNNTN	320
321	ACACNNACTA	CCCTACTNNN	TNCCACCCCT	CCCTNNNCTC	360
361	ACNCCNNNTN	NAAACATNTN	CCTNTCNCCN	ANCANTTTCC	400
401	CNNCTANNNC	TNCATNNCNN	TCCAATCAAN	NATCNNANNN	440
441	NCCCTCCNCA	CCCCCCCNTT	TTTCCNTCTT	ATTNACCTCC	480
481	CNTCTCNACC	NANTCATNTA	NACTNCACCC	ACCCCANNTN	520
521	ATTNCCCTCC	NCCAACTCNT	CNNANCNNCC	NNCANTCANC	560
561	NCAACNNTCC	NTCNCNCNTC	TCTCTCCCNT	NACNTNTCCC	600
601	NTCNTCCCAN				640
1					

Tabelle 9: Sequenzierergebnis der Bande E

1	TTCCATGGAT	CCGGGCAGAA	TATTTACAGA	TCCAAGATAG	40
41	TTGATAAATG	ATCAGAACTT	АААААААТА	CAGCTGCTAN	80
81	AATATTTGGT	GTTTGTTCAT	TATTAGTANA	CCTGACCATA	120
121	TTATGATGAT	CCCNAGTGAG	CTAAACATGC	ACTTTCAGTA	160
161	AAATGACAAA	CAAAAGGGAG	CCCTGGCAAT	AAATGTTAAA	200
201	ATATATCTCC	CNATTCATCA	NTGTTCACTG	CANAATCGGG	240
241	TCNTTTAAGG	TAAANTATTA	TTAAAAGTGT	TNNATACTTA	280
281	ANTTCANGTN	NNNNGCCNCN	NCCGCCNCCN	ACCTCGTCCC	320

Tabelle 1	0: Seque	nziererge	ebnis	der	Bande	F
-----------	----------	-----------	-------	-----	-------	---

1	TNTCGTNCNC	GANATNTGAG	NCATTGNNGG	TTGGGNTGGC	40
41	AGANAAGATG	GTAGAATGCC	GAGACTTAAT	GGACAGCCTG	80
81	CTTCCGAGTG	TGCAAAGGAA	GTGAAGCCAG	CCAGCACCAG	120
121	ACCTTGTGCA	GACCATCCCT	GCCCCCAGTG	GCAGCTGGGG	160
161	GAGTGGTCAT	CATGTTCTAA	GACCTGTGGG	AAGGGTTACA	200
201	NAAAANAAAN	TCTTCCCCC			240

Tabelle 11: Sequenzierergebnis der Bande G

1	GGGACCAGGA	ACAATGGCAG	CTTTCTTGCC	ATCAAAGCTG	40
41	CTGATGGCAC	ATATATTCTT	AATGGTGACT	ACACTTTGTC	80
81	CACCTTANAG	CAAGACATTA	TGTACAAAGG	TGTTGTCTTG	120
121	AGGTACAGCG	GCTCCTCTGC	GGCATTGGAA	AGAATTCGCA	160
161	GCTTTAGCCC	TCTCAAAGAG	CCCTTGACCA	TCCAGGTTCT	200
201	TACTGTGGGC	AATGCCCTTC	GACCTAAAAT	TAAATACACC	240
241	TACTTCGTAA	AGAAGAANAA	GGAATCTTTC	AATGCTATCC	280
281	CCACTTTTTC	AGCATGGGTC	ATTGAAGAGT	GGGGCNAATG	320
321	TTCTAAGTCA	TGTNAATTGG	GTTGGCANAA	AAAACTGGTA	360
361	NAATGCCGAA	ACNTTAATGG	ACANCCCTGC	TTCCNATTGT	400
401	GCAAAGGAAN	TTAANCCNNC	CCCNNCCANA	CCTTGTNCNN	440
441	ACCATTCCCC	CTNCCCCCNT	TTNGNATCNN	NGNGGGANCT	480
481	GGNNNCCTCN	CNTTTACCNC	CNACCCCNTN	С	520
1					

Tabelle 12: Sequenzierergebnis der Bande H

1	GATTGTGTAT	NGNCAAGGTC	GNGAANGNGN	TGGGGTGGTG	40
41	GCNGATNCTG	TGACTCCAGA	CCTTTGGTAT	GNGCNTGNCA	80
81	TATGCTGATT	TTATNCCAAC	TGTGTGGACT	AAGATGCGT T	120
121	ААААТААСАТ	CCCAGTCTTC	ТСААААААА	AANGNNTCGG	160
161	GCA				200

Tabelle 13: Sequenzierergebnis der Bande J

1	AAAAAANGCT	TCGGCACNNT	CTCTNCTTTN	CCCCCCCCNN	40
41	TCCNCCTCTA	TACCNTCCCC	NTTCTTTACT	TTNNCCCTTT	80
81	TCNNTCCCCC	CCTTTNANTT	TTNTTTTCAT	CCCCCTNTTT	120
121	CCCNTNCATC	NTNCCTTTTN	CCNCCACNCT	NCCCNCCTCN	160
161	CTCTTATCTC	TTCNTCTTCC	CCTCACATTC	TCTCCCCCCC	200
201	CTCCTCCTCC	CCTTTNCCCC	CNCCTCCCCT	TTANTTCNCC	240
241	TCNCTCNTTC	CTTCCCCACT	CCTNCCCCCC	CCTTTCCTCC	280
281	TCNTACACCC	TCCCCNTCCC	NTNTTNCCNT	NNCTNACNCT	320
321	CCTCTTCACC	NTCCCNCCNC	CCNCCCTTCC	CTCCTNCTNC	360
361	ACNCNTCNCC	TTCTNTCCTC	CCCCACCTCC	CTCTCCCTCC	400
401	TCACCTTCNT	TCCCTTTTCT	CCCCCCNCNC		440

Tabelle 14: Sequenzierergebnis der Bande K

1	CACATGCTGG	TGAGGAGTTC	AAATCCTAGT	GGAGAGAAGC	40
41	GGAGAGAAGC	TTGGTACAAT	CGTAACACAT	GAAGGACAAG	800
81	GAAGGACAAG	GAAGGACAAG	AGTAAAGGTA	СТААТААСАТ	120
121	GTTCCTTGGA	ACAGAGGAAG	AAAANCCACG	ATACCATGGA	160
161	AATNAGGGAA	GCCTTTACAG	AGGGTGTGAC	AAACTCANTT	200
201	TGTCATTTTC	TAGCTATGTA	CAGTGATGTG	CACCTTGCAG	240
241	ATGCTCAACC	AAGTCATGGA	TTAGTGCCAC	CCCTTNTGCC	280
281	AAGATGGCTT	CTAAATNAAC	AGTCAATNNA	CTGA	320
1					

Tabelle 15: Sequenzierergebnis der Bande L

1	AATATACTAT	TNTCCTTCCC	CCAACCNNGG	NAANGGGCNA	40
41	NGGTACCANA	GGATCNATCC	CCTCCCGNAN	AGCCNNGGGC	800
81	CCNANNACNT	CCCNNCNTCA	AGTTNCNNGG	CNTCCNANCN	120
121	ANTTCNTCAC	CCCAATTGCN	NGNACCCGNA	GGTAAAAACA	160
161	GGAAGCCNTN	CACNNCCGNT	CNTTAAGCTT	AATTGTTTCT	200
201	AGGACCACAT	CGGGGCCCTA	AGCCGGGGGT	AAGGGTCACC	240
241	TGTTGTCGGA	AGGGGAGCCA			280

Tabelle 16: Sequenzierergebnis der Bande N

1	TACCATGTTC	CAAAATNNAN	NTNTNAAGTA	NAACACTATA	40
41	ACTCGNATCT	GGNTGACTAN	NATAAATTGT	GTCTNAAANA	80
81	GATAAACCTT	TTNNAAAGGA	NATTCNCTNT	NCNGGATANT	120
121	TNGCAACNTC	TGTTAGGCTN	CACCTAAAAN	TNATNATTCT	160
161	GCCTNCTCTT	TACNACATNC	TCACCNNNCT	CCCCCNAACT	200
201	NNTACACCCN	NCTTTTTCTC	TTATCNTTCN	NCNTNTATTC	240
241	CACCCATTTN	CCCNANCNTT	ATTTCCNCNT	TNCNCNTCCA	280
281	TCCCCNCCTC	NNTTNTCTTT	TCCTNTNCNT	ACNNNCCCTT	320
321	NATCTCACCC	TTCTATNTAC	NNTTNTCCCC	CTCNCCCCTC	360
361	CTCTCCNCTT	CTTNTTTCTN	NTACNCAAAC	TCCCCCNTCA	400
401	ATNNCNTTNC	ACTNATCTTT	CNNNTNNCNA	TTTNCNTANC	440
441	CTACANTAAA	CTNCATCNCT	TCCNNCNTNT	NTCCTTCTNC	480
481	TTAACCCCCT	NCCCANTNTN	CNCNNNTTNC	TCCCTNNCTC	520
521	ACNANCNCCC	CTCCTCCNAT	CTCCGCCCCC	NNTTCCTACN	560
561	NAATCCNTNC	CCNCCTTACT	ANNNCACTCT	TTTTCTCCCT	600
601	NTCTTTATNN	TTNC			640

Tabelle 17: Sequenzierergebnis der Bande O

1	TNTTGGGTGC	TGATTATNGG	GGTCACACCT	ACCTCAGCTT	40
41	CTGTATATCC	TTNTANGANC	ATGACNCTCG	CAANTGCNAG	80
81	TCNCAANAAT	AGNCCCAGTC	AAGTTCTAGG	NTCCCTGGNC	120
121	TCTAGGAGAA	ACGGAACATC	ТССААААААА	NCTTCGNTTC	160
161	GGCAANNNNN				200

Tabelle 18: Sequenzierergebnis der Bande P

1	AATTCAGCCA	TGACGCAATG	AAATACTGAT	АААСАТАСТА	40
41	CACTGGTAGG	NGAACCTGAA	CACATGCCAG	GTGAAAGCAG	80
81	CCAGACACAA	AAGGTCAAAT	ATTATATGGC	TTATGTATAT	120
121	GAAAGTGCCA	TAATAGGCAA	ATCCATAGAG	ACGGAAAATA	160
161	GGTTAGTGGT	TGCTAGGGAT	NGGGGGAGGG	GGGATGGGGA	200
201	GTGACTGTNA	TCGGTNNANG	TCCCTCT		240

Tabelle 19: Sequenzierergebnis der Bande AF

1	AGAGGAATTN	CNCNCCCTAT	NCGCTNNCTA	GCCTGCTCTG	40
41	TAAATTCATC	CTCTTCTTCN	TCAATGCTTC	GATAGGGATG	80
81	GATGTCCGGG	GGTCGGGAAA	ААААААААСС	TCCNGCA	120

Tabelle 20: Sequenzierergebnis der Bande T/AG

1	GNCGNTTGCT	NTGCCTTCTT	TCTAGCTGCT	GGNGGANAGC	40
41	AAACNTNAAT	ACCTTTTCTG	ACCAAAGAGA	AGCAAAATCT	80
81	ACCAGGNCAA	AATAGTGCCC	TAACGGTTGA	GTTTTGACTG	120
121	CTTGGAACTG	GAATCCTTTC	AGCAAGACTT	CTCTTTGCCT	160
161	CAGATAAAAA	GTGCTTTTGT	GAAAAAAAA	GNNCTCCGGC	200
201	AGG				240

3.5. Homologien der mRNA-Fragmente zu publizierten Sequenzen

Die Sequenzen wurden in der Genbank des National Center for Biotechnology (NCBI) mit dem BLAST Programm (http://www.ncbi.nlm.nih.gov/blast/blast.cgi) auf Homologien zu bereits publizierten mRNA-Sequenzen untersucht (Altschul et al., 1997). Für die Sequenzen A, B, F, G, H, J, P und T konnten derartige Homologien dokumentiert werden (vergleiche Tabellen 21 bis 28). Diese mRNAs kodieren für Angiopoietin-2, Decidual protein induced by progesterone (DEPP), Matrix metalloprotease (METH-1), Human peripheral myelin protein 22 (gas-3), Cellular ligand of annexin II (p11), Homo sapiens glypican 3 (GPC3) und Aldose reductase.

Tabelle 21: Homologie der Sequenz A

	65 <u> </u>
	2000
66	125
ATCNCTTAAACTTGCNTCACGTAACGGACCANAGCAAGACC	CTAAACTTCCNTAANTGTG
ATCACTTAAACTTGCATCACTTAACGGACCAAAGCAAGACC	CTAAACATCCATAATTGTG
2001	2060
126	185
ATTAGACAGAACACCTATGCAAAGATGAACCCGAGGCTGAG	AATCAGACTGACAGTTTAC
ATTAGACAGAACACCTATGCAAAGATGAACCCGAGGCTGAG	AATCAGACTGACAGTTTAC
2061	2120
186	245
AGACGCTGCTGTCACAACCAAGAATGTTATGTGCAAGTTTA	TCAGTAAATAACTGGAAAA
AGACGCTGCTGTCACAACCAAGAATGTTATGTGCAAGTTTA	TCAGTAAATAACTGGAAAA
245	2180
246 28	7
CAGAACACTTATGTTATACAATACAGATCATCTTGGAACTG	С
CAGAACACTTATGTTATACAATACAGATCATCTTGGAACTG	С
287 222	2
271 von 386 Basenpaaren (96,0%) stimmen überein mit der n	nRNA "Homo sapiens angiopoietin-
2 mRNA", Länge 1459 bp (Maisonpierre et al., 1997)	
Registriernummer in der Genbank: gb AF004327 AF004327	

Tabelle 22: Homologie der Sequenz B

8 67				
TGATCAGAGGTGAAGGGACAGAAAGAGGAAGGAGGAAGATTGAGCTGGGGGCAACAGCC				
TGATCAGAGGTGAAGGGACAGAGAGAGAGGAGGAGGAGGAGGAGGAGGTGGGGGGGCAACAGCC				
1743 1802				
68 127				
AAGCTCACCTGGGCAGGTCTCTGCCACCTCCTTGCTCTGTGAGCTGTCAGTCTAGGTTAT				
AAGCTCACCTGGGCAGGTCTCTGCCACCTCCTTGCTCTGTGAGCTGTCAGTCTAGGTTAT				
1803 1862				
128 187				
${\tt TCTCNNNNNNGTGGCTATTTTTAATTGCTTTGGATTTGTTAAATGTTTTCTGTCTTCTG$				
TCTCTTTTTTGTGGCTATTTTTAATTGCTTTGGATTTGTTAAATGTTTCTGTCTTCTG				
1863 1922				
188 227				
TTAAGTGTGTTTTCTCTGGAGATANAATGTAAACCATATT				
TTAAGTGTGTTTTCTCTGGAGATAGAATGTAAACCATATT				
1923 1962				
210 von 220 Basenpaaren (95%) stimmen überein mit der mRNA für "Homo sapiens decidual				
protein induced by progesterone (DEPP) ", Länge 2110 bp (Duesterhoeft et al., 2000)				
Registriernummer in der Genbank: ref XM_005817.1				

Tabelle 23: Homologie der Sequenz F

31 88				
TTGGGNTGGCAGANAAGA-TGGTAGAATGCCGAGAC-TTAATGGACAGCCTGCTTCCGAG				
TTGGGTTGGCAGAGAAGACTGGTAGAATGCCGAGACATTAATGGACAGCCTGCTTCCGAG				
3056 3115				
89 148				
TGTGCAAAGGAAGTGAAGCCAGCCAGCACCAGACCTTGTGCAGACCATCCCTGCCCCAG				
TGTGCAAAGGAAGTGAAGCCAGCCAGCACCAGACCTTGTGCAGACCATCCCTGCCCCAG				
3116 3175				
149 205				
TGGCAGCTGGGGGGGGTGGTCATCATGTTCTAAGACCTGTGGGAAGGGTTACANAAAA				
TGGCAGCTGGGGGGGGTGGTCATCATGTTCTAAGACCTGTGGGAAGGGTTACAAAAAA				
3176 3232				
172 von 175 Basenpaaren (97%) stimmen überein mit der mRNA für "Homo sapiens matrix				
metalloprotease (METH-1)", Länge 4659 bp (Glienke et al., 2000)				
Registriernummer in der Genbank: gb AF207664.1 AF207664				

Tabelle 24: Homologie der Sequenz G

5 6
CCAGGAACAATGGCAGCTTTCTTGCCATCAAAGCTGCTGATGGCACATATATTCTTAATG
CCAGGAACAATGGCAGCTTTCTTGCCATCAAAGCTGCTGATGGCACATATATTCTTAATG
2724 2783
65 124
GTGACTACACTTTGTCCACCTTANAGCAAGACATTATGTACAAAGGTGTTGTCTTGAGGT
GTGACTACACTTTGTCCACCTTAGAGCAAGACATTATGTACAAAGGTGTTGTCTTGAGGT
2784 2843
125 184
ACAGCGGCTCCTCTGCGGCATTGGAAAGAATTCGCAGCTTTAGCCCTCTCAAAGAGCCCT
ACAGCGGCTCCTCTGCGGCATTGGAAAGAATTCGCAGCTTTAGCCCTCTCAAAGAGCCCT
2844 2903
185 244
TGACCATCCAGGTTCTTACTGTGGGCAATGCCCTTCGACCTAAAATTAAATACACCTACT
TGACCATCCAGGTTCTTACTGTGGGCAATGCCCTTCGACCTAAAATTAAATACACCTACT
2904 2963
245 304
TCGTAAAGAAGAANAAGGAATCTTTCAATGCTATCCCCACTTTTTCAGCATGGGTCATTG
TCGTAAAGAAGAAGAAGGAATCTTTCAATGCTATCCCCACTTTTTCAGCATGGGTCATTG
3023
305 364
AAGAGTGGGGCNAATGTTCTAAGTCATGTNAATTGGGTTGGCANAAAAAACTGGTANAAT
AAGAGTGGGGCGAATGTTCTAAGTCATGTGAATTGGGTTGGCAGAGAAGACTGGTAGAAT
3024 3083

Tabelle 24 (Fortsetzung): Homologie der Sequenz G

365	409
GCCGAAACNTTAATGGACANCCCTC	GCTTCCNATTGTGCAAAGGAA
GCCGAGACATTAATGGACAG-CCTC	GCTTCCGAGTGTGCAAAGGAA
3084	3127
172 von 175 Basenpaaren (97%) st	timmen überein mit der mrRNA für "Homo sapiens matrix
metalloprotease (METH-1), Länge 4	659 bp (Glienke et al., 2000)
Registriernummer in der Genbank: g	b AF207664.1 AF207664

Tabelle 25: Homologie der Sequenz H

42		101
CNGATNCTGTGACTCCAGACC	TTTGGTATGNGCNTGNCATATGCTGAT	ITTATNCCAACT
CTGATGCTAAGACTCCAGACC	TTTTGTTTTTGCTTTGCATTTTCTGAT	ITTATACCAACT
1567		1626
102	127	
GTGTGGACTAAGATGCGTTAA	ААТАА	
	1111	
GTGTGGACTAAGATGCATTAA	ААТАА	
1627	1652	
71 Basenpaare von 86 (82,4%)) stimmen überein mit der mRNA für "	Human peripheral myelin
protein 22 (gas-3)", Länge 1661	lbp (Hayasaka et al., 1992)	
Registriernummer in der Genba	nk: gb M94048 HUMPMP22 mRNA	

6	65	
GCAANTGTAAAAATAAAATCTAACTCTCATTTGACAAGCAGAGAAAGAA	AAGTTGATTTC	
GCAAATGTAAAAATAAAATCTAACTCTCATTTGACAAGCAGAGAAAGAA	AAGTTAAATAC	
519	578	
66	125	
CAGATAAGCTTTTGATTTTTGTATTGTTTGCATCCCCTTGCCCTCANTA	AATAAAGTTCT	
111111111111111111111111111111111111111		
CAGATAAGCTTTTGATTTTTGTATTGTTTGCATCCCCTTGCCCTCAATA	AATAAAGTTCT	
579	638	
125 Basenpaare von 131 (95%) stimmen überein mit der Sequenz von	"Homo sapiens	cellular
ligand of annexin II (p11)", Länge 649bp (Dooley et al., 1992)		
Registriernummer in der Genbank: gb M38591 HUMCLANNII		

Tabelle 27: Homologie der Sequenz P

64	123
ATGCCAGGTGAAAGCAGCCAGACACAAAAGGTCAAATATTATA	TGGCTTCATGTATATGA
ATGCCAAGTGAAGGAAGTCAGACACAAAAGACCACATATTGTA	TGATTCCATGTATATGA
50258	50199
124	174
AAGTGCCATAATAGGCAAATCCATAGAGACGGAAAATAGGTTA	GTGGTTGC
AAAGTCCAGAATAGGCAAATCCTTGGAGACAGAAAGTAGATTA	GTGGTTGC
50198	50148
91 Basenpaare von 111 (81%) stimmen überein mit der Sequer	nz von "Homo sapiens glypican 3
(GPC3) gene, partial cds and flanking repeat ", Länge 16565bp	(Huber et al., 1997)
Registriernummer in der Genbank: gb AF003529 AF003529	

Tabelle 28: Homologie der Sequenz T

40	99
CAAACNTNAATACCTTTTCTGACCAAAGAGAAGCAAAATCTACCAGGNCAAAATAGTG	CC
CAACCTGAATACCCTTTTCTGACCAAAGAGAAGCAAAATCTACCAGGTCAAAATAGTG	CC
1189 12-	48
98 1.	57
CCCTAACGGTTGAGTTTTGACTGCTTGGAACTGGAATCCTTTCAGCAAGACTTCTCTT	ΓG
1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	
CACTAACGGTTGAGTTTTGACTGCTTGGAACTGGAATCCTTTCAGCAAGACTTCTCTT	ΓG
1248 13	07
158 181	
CCTCAGATAAAAAGTGCTTTTGTG	
CCTCAAATAAAAAGTGCTTTTGTG	
1308 1331	
133 Basenpaare von 144 (93,1%) stimmen überein mit der mRNA für "Human aldose n	eductase",
Länge 1331 bp (Graham et al., 1989)	
Registriernummer in der Genbank: gb/J04795/HUMALRM	

Die Banden F und G wurden bei Verwendung unterschiedlicher Primer reamplifiziert (vergleiche Tabelle 4). Dennoch sind sie homolog zu zwei sich überlappenden Abschnitten ein und derselben mRNA (vergleiche Tabelle 23 und 24). Diese mRNA ist das Transkriptionsprodukt des Gens METH-1 (Glienke et al., 2000). Beide Sequenzen stellen Abschnittte des kodierenden Bereiches dar, d.h. sie werden transkribiert. Ein Sequenzvergleich auf Aminosäureebene in der Genbank mit Hilfe des BEAUTY-Programmes des Human Genome Center des Baylor College of Medicine, Houston, Texas, USA (Worley et al., 1995) zeigte ebenfalls Homologien von 89% (vergleiche Tabelle 29).

Tabelle 29: Vergleich der Sequenzen F und G auf Aminosäurebene

Sequenz F:	
65 214	
LNGQPASECAKEVKPASTRPCADHPCPQWQLGEWSSCSKTCGKGYXKXXL	
+NGQPASECAKEVKPASTRPCADHPCPQWQLGEWSSCSKTCGKGY K L	
INGQPASECAKEVKPASTRPCADHPCPQWQLGEWSSCSKTCGKGYKKRSL	
884 933	
46 von 50 (89%) Aminosäuren stimmen überein mit der Aminosäuresequenz	
des Proteins "Homo sapiens matrix metalloprotease (METH-1)" (Glienke et al., 2000)	
Registriernummer in der Genbank: gb AAF23772.1 AF207664_1 (AF207664)	
Sequenz G:	
1 180	
GTRNNGSFLAIKAADGTYILNGDYTLSTLXQDIMYKGVVLRYSGSSAALERIRSFSPLKE	
G+RNNGSFLAIKAADGTYILNGDYTLSTL QDIMYKGVVLRYSGSSAALERIRSFSPLKE	
GSRNNGSFLAIKAADGTYILNGDYTLSTLEQDIMYKGVVLRYSGSSAALERIRSFSPLKE	
760 819	
181 360	
PLTIQVLTVGNALRPKIKYTYFVKKXKESFNAIPTFSAWVIEEWGXCSKSCXLGWXKKLV	
PLTIQVLTVGNALRPKIKYTYFVKK KESFNAIPTFSAWVIEEWG CSKSC LGW ++LV	
PLTIQVLTVGNALRPKIKYTYFVKKKKESFNAIPTFSAWVIEEWGECSKSCELGWQRRLV	
820 879	
361 405	
XCRNXNGXPCFXLCK	
CR+ NG P K	
ECRDINGQPASECAK	
880 894	
122 von 135 (89%) Aminosäuren stimmen überein mit der Aminosäuresequenz	
des Proteins "Homo sapiens matrix metalloprotease (METH-1)" (Glienke et al., 2000)	
Registriernummer in der Genbank: gb AAF23772.1 AF207664_1 (AF207664)	

Die Sequenz H zeigte Homologie zur cDNA von PMP-22/gas-3 (vergleiche Tabelle 25). Bei Untersuchung des zugehörigen Gens (Suter et al., 1994) konnte in der Promotorregion an der Position –251 die Basenkombination GAGACC identifiziert werden, die dem shear stress response element (SSRE) entspricht (vergleiche Abschnitt 1.2.2.2.).

3.6. Verifizierung der Ergebnisse durch semiquantitative RT-PCR

Zunächst wurden die experimentellen Bedingungen anhand von Genen überprüft, deren differentielle Expression in Endothelzellen bei Strömung bereits publiziert ist. Hierfür bieten sich Endothelin-1 (ET-1) und C-type natriuretic peptide (CNP) an. Während die Expression von Endothelin-1 durch Wandschubspannung langfristig reduziert wird, erfolgt eine verstärkte Expression von CNP (Chun et al., 1997; Sharefkin et al., 1991). Die verminderte Expression der zu ET-1 komplementären Bande und die erhöhte Expression der zu CNP komplementären Bande nach 24 stündiger Stimulation durch 5,4 dyn/cm² Wandschubspannung ist in Abbildung 12 dargestellt und steht mit den publizierten Untersuchungen in Einklang.

Abbildung 12: Differentielle Expression von CNP und ET-1 durch Wandschubspannung

Die Agarosegele (2% Agarose, Ethidiumbromidfärbung) stellen die Überprüfung der Methode durch semiquantiative RT-PCR dar. Die Expression von C-type natriuretic peptide (CNP) wird bekanntermaßen durch Strömung induziert (Chun, T. H. et al., 1997), die von Endothelin-1 (ET-1) inhibiert (Sharefkin, J. B. et al., 1991).

Die mRNAs einer Kontrollgruppe und einer stimulierten Zellkultur wurden einer RT-PCR mit für die RNAs von CNP und ET-1 spezifischen Bedingungen unterzogen. Um Fehler durch ungleiche Konzentrationen des cDNA-Materials zu vermeiden, wurde zusätzlich die Expression des konstant exprimierten Gens von Glyceraldehyphosphat-Dehydrogenase(GAP-DH) überprüft. Die Amplifikation erfolgte bei 60°C Bindungstemperatur mit der jeweils angegebenen Zyklenzahl. Das Ergebnis zeigt eine durch Strömung modulierte Expression der mRNAs dieser beiden Gene, die mit den publizierten Beobachtungen übereinstimmt. Zur Verifizierung der Ergebnisse des Differential-Display wurden nun auch für die differentiell exprimierten Sequenzen spezifische Primer gesucht und stringente PCR-Bedingungen gewählt (vergleiche Tabellen 30 bis 37).

```
Tabelle 30: Semiquantitative RT-PCR für Bande A (homolog zu Angiopietin-2)
```

Forwardprimer A-f:	5`-CAT GCT CCA GAT TAG AGC CTG TAG A-3`			
Rewardprimer A-r:	5`-GTG ACA GCA GCG TCT GTA AAC TGT C-3`			
PCR-Bedingungen:	1 Zyklus mit 94°C für 1 min			
	25 Zyklen mit 94°C für 30 sec, 58°C für 45 sec, 72°C für 1 min 30 sec			
	1 Zyklus mit 72°C für 5 min			
Länge des PCR-Produktes: 178 bp				

Tabelle 31: Semiquantitative RT-PCR für Bande B

Forwardprimer B-f:	5`-TGA TCA GAG GTG AAG GGA CAG AAA G-3`							
Rewardprimer B-r:	5`-TAG ACT GAC AGC TCA CAG AGC AAG G-3`							
PCR-Bedingungen:	1 Zyklus mit 94°C für 1 min							
	24 Zyklen mit 94°C für 30 sec, 63°C für 45 sec, 72°C für 1 min 30 sec							
	1 Zyklus mit 72°C für 5 min,							
Länge des PCR-Produktes: 114 bp								

```
Tabelle 32: Semiquantitative RT-PCR für Bande F/G (homolog zu METH-1)
```

Forwardprimer F/G:	5`-AGA	ACG	GAG	GGA	AGT	ACT	GTG	AAG	G-3`
Rewardprimer F/G:	5`-GGA	CTA	CAG	GGA	GTG	CCA	TCT	ACA	A-3`
PCR-Bedingungen:	1 Zyklus i	1 Zyklus mit 94°C für 1 min							
	25 Zyklen mit 94°C für 30 sec, 62°C für 45 sec, 72°C für 1 min 30 sec								
	1 Zyklus mit 72°C für 5 min,								
Länge des PCR-Produktes: 280 bp									

Tabelle 33: Semiquantitative RT-PCR für Bande H (homolog zu gas-3)

Forwardprimer H-f:	5`-GAT	NCT	TGT	GAC	TCC	AGA	CCT	TTG	-3`
Rewardprimer H-r:	5`-AGA	AGA	CTG	GGA	TGT	TAT	TTT	AAC	G-3`
PCR-Bedingungen:	1 Zyklus	mit 94	°C fü	r 1 mii	1				
	24 Zyklen mit 94°C für 30 sec, 63°C für 45 sec, 72°C für 1 min 30 sec								
	1 Zyklus mit 72°C für 5 min,								
Länge des PCR-Produktes: 127 bp									

Tabelle 34: Semiquantitative RT-PCR für Bande J

Forwardprimer J-f:	5`-ACT CTC ATT TGA CAA GCA GAG AAA G-3`						
Rewardprimer J-r:	5`-AGA ACT TTA TTT ANT GAG GGC AAG GG-3`						
PCR-Bedinungen:	1 Zyklus mit 94°C für 1 min						
	25 Zyklen mit 94°C für 30 sec, 61°C für 45 sec, 72°C für 1 min 30 sec						
	1 Zyklus mit 72°C für 5 min,						
Länge des PCR-Produktes: 98 bp							

Tabelle 35: Semiquantitative RT-PCR für Bande K

Forwardprimer K-f:	5`-CAC	ATG	AAG	GAC	AAG	TAA	GTG	CTG	С	-3`
Rewardprimer K-r:	5`-TTG	TCA	CAC	CCT	CTG	TAA	AGG	CTT	С	-3`
PCR-Bedinungen:	1 Zyklus mit 94°C für 1min									
	17 Zyklen mit 94°C für 30 sec, 58°C für 45 sec, 72°C für 1 min 30 sec									
	1 Zyklus mit 72°C für 5 min,									
Länge des PCR-Produktes: 118 bp										

Tabelle 36: Semiquantitative RT-PCR für Bande O

Forwardprimer O-f:	5`-GGG	TCA	CAC	CTA	CCT	CAG	CTT-3`	
Rewardprimer O-r:	5`-TGG	AGA	TGT	TTC	CGT	TTT	CTC CT -3`	
PCR-Bedingungen:	1 Zyklus mit 94°C für 1 min							
	25 Zyklen mit 94°C für 30 sec, 60°C für 45 sec, 72°C für 1 min 30 sec							
	1 Zyklus mit 72°C für 5 min,							
Länge des PCR-Produktes: 91 bp								

Tabelle 37: Semiquantitative RT-PCR für Bande T (homolog zu human aldose reductase)

Forwardprimer T-f:	5`-CCT TTT CTG ACC AAA GAG AAG AAA -3`						
Rewardprimer T-r:	5`-CTG AGG CAA AGA GAA GTC TTG CTG A -3`						
PCR-Bedingungen:	1 Zyklus mit 94°C für 1min						
	25 Zyklen mit 94°C für 30sec, 61°C für 45sec, 72°C für 1min30sec						
	1 Zyklus mit 72°C für 5min,						
Länge des PCR-Produktes: 91 bp							

Für die Sequenzen A, B, F/G, H und J konnte die differentielle Expression bestätigt werden (vergleiche Abbildungen 13 und 14).

Die Sequenzen C, G, D, E, L, N, P und AF konnten nicht amplifiziert werden. Dies könnte durch eine zu kurze Sequenz oder zu viele fehlende Einzelnukleotide in der Sequenz begründet sein. Zwar konnten für die Sequenzen K, O und T geeignete Primer gefunden werden. Jedoch zeigte sich keine signifikant unterschiedliche Expression in der semiquantitativen RT-PCR.

Abbildung 13:

Überprüfung differentieller Expression von cDNA durch semiquantitative RT-PCR

Zellkulturen wurden aus vier verschiedenen Nabelschnüren angezüchtet. Jede Kultur wurde in Kontrollgruppe (K) und stimulierte Gruppe (S) aufgeteilt, die stimulierten Gruppen wurden Strömung ausgesetzt. Anschließend wurden die acht Gruppen jeweils für die Sequenzen A, B, F/G, H, J und GAP-DH spezifischen RT-PCRs unterzogen (Anzahl der Amplifikationsszyklen und Bindungstemperatur: Bande A: 25, 58°C; Bande B:24, 62°C; Bande F/G 25, 62°C; Bande H: 24,63°C; Bande J: 17, 58°C; GAP-DH: 26, 60°C (Primer: vergleiche Tabellen 30 bis 34)). In den durch Strömung stimulierten Zellen zeigte sich verminderte Expression der zu den Sequenzen A und B komplementären Banden. Die zu den Sequenzen F/G, H und J komplementären Banden wurden nach Strömung verstärkt exprimiert.

Abbildung 14: Differentielle Genexpression von cDNA in HUVEC nach Strömungsexposition, RT-PCR Analyse

Die differentielle Expression der Sequenzen A, B, F/G, H und J wurden durch semiquantitative RT-PCR verifiziert. Die sequenzspezifischen PCR-Produkte wurden durch Messung ihrer optischen Dichte (OD) nach Färbung mit Ethidiumbromid quantifiziert. Um Konzentrationsschwankungen des cDNA-Ausgangsmaterials zu vermeiden, wurde die OD der zur betreffenden Sequenz korrespondierenden Bande in Relation zur OD der konstant exprimierten GAP-DH gesetzt.

3.7. Verifizierung der Ergebnisse durch northern blot

Die differentielle Expression derjenigen Banden, die mit bekannten Genen korrespondieren, wurde über die semiquantitative RT-PCR hinaus durch northern blot überprüft.

Zu diesem Zweck wurde zunächst DNA-Material für die Herstellung von Sonden durch PCR bereitgestellt. Diese Prozedur erfolgte mit den bereits für die Reamplifaktion gewählten Primern und Bedingungen. Die Herstellung von northern blots erfolgte jeweils mit 35 µg RNA aus Zellkulturen, die nicht für die vorausgegangenen Untersuchungen durch semiquantitative RT-PCR verwendet worden waren. Nach Hybridisierung und Nachweis der Sonden durch Chemilumineszenz konnte die differentielle Expression von mRNAs der Gene Angiopoietin-2, METH-1, gas-3 und p11 bestätigt werden (vergleiche Abbildung 15). Die Länge der nachgewiesenen mRNAs stimmte mit der jeweils publizierten Länge überein.

Abbildung 15: Northern blots

Zellkulturen aus vier verschieden Nabelschnüren wurden angezüchtet. Jede Kultur wurde in Kontrollgruppe (K) und Versuchsgruppe (S) aufgeteilt, die Versuchsgruppen wurden Wandschubspannung ausgesetzt. Nach Isolierung der mRNA erfolgte der northern blot. Die blots wurden mit RNA-Sonden hybridisiert, die zu Ang2, METH-1, gas3 und p11 komplementär waren. Die Standardisierung erfolgte durch Überprüfung der für GAP-DH kodierenden mRNA. Die für Ang2 kodierende mRNA ist nach Stimulation vermindert nachweisbar, die mRNAs vonMETH-1, gas3 und p11 werden verstärkt exprimiert.