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Abstract 

 

Abstract (English) 

Objectives: To compare the diagnostic performance of the newly developed convolutional 
neural network (CNN) in classification of the significance of prostate cancer using multi-
parametric magnetic resonance imaging (mp-MRI) against other similar approaches and the 
standard clinical assessment reported in the literature. 

Methods: This is a retrospective study with a total of 200 patients (318 suspicious lesions) who 
received an MRI scan with three different pulse sequences (anatomic T2 weighted (T2w), 
diffusion-weighted imaging (DWI) with derivation of apparent diffusion coefficients (ADCs), 
and K-trans from dynamic contrast-enhanced MRI (DCE-MRI)), which served as an input for 
the CNN that is presented in this study. On the other hand, each patient in the dataset has 
one or more prostate lesions with their corresponding biopsy results which were used as the 
training and test labels. This study presents a novel neural network architecture that processes 
3D images directly with the least manual interaction possible. This network was trained and 
evaluated on different individual and combinations of mp-MRI sequences which, in turn, 
outlines the diagnostic role, the benefits and the effects of each individual MRI sequence on 
the overall performance of the network. The obtained results were evaluated using widely 
used statistical values such as accuracy, area under the curve (AUC) sensitivity and specificity.  

Results: When using the receiver operating characteristic (ROC) curve analysis, our 3D 
developed network had the highest average AUC value of 89.7% for input combination of ADC, 
DWI and K-trans while the rest of the mp-MRI combinations resulted in a significantly inferior 
performance in terms of AUC, sensitivity and specificity where p-value of 0.00025 was 
obtained when using T2w, ADC, and DWI; and 0.02 when using T2w and K-trans. Individual 
mp-MRI sequences had an AUC between 89.0% (88.6% sensitivity and 90.0% specificity) to 
91.0% (81.2% sensitivity and 90.5% specificity). The effect of lesion size and volume was tested 
and showed no significant effect on the network’s performance.  

Conclusion: Our presented study shows that the 3D developed network which, requires 
minimal manual interactions, can process an input of mp-MRI and achieves very comparable 
results to the performance values of the reported experienced radiologist. Furthermore, this 
study shows that the size and the volume of the suspicious lesion have no significant effect on 
the performance of the network.  
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Abstract 

 

Abstrakt (Deutsch) 

Zielsetzung: Vergleich der diagnostischen Leistung des neu entwickelten convolutional neural 
network (CNN) bei der Klassifizierung der Bedeutung von Prostatakrebs mithilfe der 
multiparametrischen Magnetresonanztomographie (mp-MRT) mit anderen ähnlichen 
Ansätzen und der in der Literatur angegebenen klinischen Standardbewertung. 

Methoden: Dies ist eine retrospektive Studie mit insgesamt 200 Patienten (318 verdächtige 
Läsionen), die einen MRT-Scan mit drei verschiedenen Pulssequenzen (anatomische T2-
gewichtete (T2w), diffusionsgewichtete Bildgebung (DWI) mit Ableitung scheinbarer 
Diffusionskoeffizienten (ADCs) erhielten. und K-trans aus der dynamischen 
kontrastmittelverstärkten MRT (DCE-MRT), die als Eingabe für das in dieser Studie vorgestellte 
CNN diente. Andererseits weist jeder Patient im Datensatz eine oder mehrere Prostata-
Läsionen mit den entsprechenden Biopsieergebnissen auf, die als Trainings- und Testetiketten 
verwendet wurden. Diese Studie präsentiert eine neuartige neuronale Netzwerkarchitektur, 
die 3D-Bilder direkt mit der geringstmöglichen manuellen Interaktion verarbeitet. Dieses 
Netzwerk wurde an verschiedenen Individuen und Kombinationen von mp-MRI-Sequenzen 
trainiert und bewertet, was wiederum die diagnostische Rolle, die Vorteile und die 
Auswirkungen jeder einzelnen MRI-Sequenz auf die Gesamtleistung des Netzwerks umreißt. 
Die erhaltenen Ergebnisse wurden unter Verwendung weit verbreiteter statistischer Werte 
wie Genauigkeit, Empfindlichkeit und Spezifität der Fläche unter der Kurve (englisch: area 
under the curve, kurz: AUC) bewertet. 

Ergebnisse: Bei Verwendung der ROC-Kurvenanalyse (englisch: Receiver Operating 
Characteristic) hatte unser 3D-entwickeltes Netzwerk den höchsten durchschnittlichen AUC-
Wert von 89,7% für die Eingangskombination von ADC, DWI und K-trans, während der Rest 
der mp-MRI-Kombinationen zu einem signifikant schlechteren Ergebnis führte Leistung in 
Bezug auf AUC, Empfindlichkeit und Spezifität, wobei ein p-Wert von 0,00025 erhalten wurde, 
wenn T2w, ADC und DWI verwendet wurden; und 0,02 bei Verwendung von T2w und K-trans. 
Einzelne mp-MRI-Sequenzen hatten eine AUC zwischen 89,0% (88,6% Sensitivität und 90,0% 
Spezifität) bis 91,0% (81,2% Sensitivität und 90,5% Spezifität). Der Effekt von Läsionsgröße und 
-volumen wurde getestet und zeigte keinen signifikanten Effekt auf die Netzwerkleistung. 

Schlussfolgerung: Unsere vorgestellte Studie zeigt, dass das in 3D entwickelte Netzwerk, das 
nur minimale manuelle Interaktionen erfordert, eine Eingabe von mp-MRI verarbeiten kann 
und sehr vergleichbare Ergebnisse mit den Leistungswerten des berichteten erfahrenen 
Radiologen erzielt. Darüber hinaus zeigt diese Studie, dass die Größe und das Volumen der 
verdächtigen Läsion keinen signifikanten Einfluss auf die Leistung des Netzwerks haben. 
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Synopsis 

 

1. Introduction 
1.1. background 

The integral role of mp-MRI (which combines anatomic T2w with functional sequences) using 
the Prostate Imaging Reporting and Data System (PI-RADS) in prostate cancer (PCa) diagnosis 
continues to be developed and catches more attention over the past few years [1], [2] as PCa 
is the second leading cause of cancer death and the most common type of cancer in men [3]. 
Prostate MRI interpretation is a very challenging task due to heterogeneity in the signal 
received from the benign prostatic hyperplasia (BPH), physiological changes, inflammation, 
and the after-biopsy scars which, in turn, have a similar appearance to PCa and can be 
misclassified as such [4]. Screening of PCa is usually done with Digital rectal examination (DRE) 
and the level of prostate specific antigen (PSA) in the blood. Unfortunately, PSA is highly 
sensitive but not specific to PCa as it can result in a high value for BPH and low value for PCa 
in some cases [5]. Such methods (DRE and PSA) are still commonly used in clinical practice. 
However they often contribute to overdiagnosis and overtreatment due to their false positive 
rate and poor specificity [6] [7].  
Alternatively Transrectal ultrasound (TRUS)-guided biopsy is currently the standard test for 
assessment of the tumour aggressiveness. These biopsies are assessed histologically with 
Gleason scores [8]. In general, however, this examination is blind to the position of the lesion 
and there is also a risk of missing the lesion. This test in conjunction with mp-MRI is therefore 
recommended, which encourages the localization of suspected lesions and thus improves the 
diagnostic accuracy of TRUS [9].  
Mp-MRI, which includes anatomical sequence such as T2w, and functional ones such as 
diffusion-weighted imaging, apparent diffusion coefficient mapping, and dynamic contrast-
enhanced imaging, became recently the method of choice and gained more importance as a 
more accurate and non-invasive imaging modality for detection, localization and 
characterization of PCa [10] [11] [12]. Nonetheless, mp-MRI interpretation involves well-
trained radiologists (with many years of experience) and does not always attain the necessary 
sensitivity of 0.91 and precision of 0.81 recorded by for a 10 years experienced radiologist [9] 
[13]. Computer-aided diagnosis (CAD) and assessment can correct these limitations, and can 
greatly improve and increase human efficiency in PCa identification and characterization. CAD 
and machine learning methods have previously been shown to allow PCa to be identified and 
characterized automatically in several studies. [14] [15]. These methods relied on the manual 
extraction of features of suspicious areas such as texture properties, tissue heterogeneity, 
measurements of sizes and volumes, or border’s properties and then training a machine 
learning classifier such as support vector machine (SVM), gradient boost (G-boost) or logistic 
regression, etc to determine whether or not the lesion under investigation is malignant, and 
to characterize lesion severity and tumour grade. The aforementioned methods rely usually 
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on hand engineered features which, in turn, require considerable amount of engineering skills 
and expertise in features extraction and selection in order for the classifier to benefit from the 
extracted information. However, the machine may not benefit much form those extracted 
features. In contrast, deep learning (DL)-based approaches extract and learn their own 
features during the training process which could yield the best performance possible, and 
result in better optimization and generalization [16]. Thus, recently, DL in general and 
convolutional neural networks (CNNs) in particular showed a substantial success over many 
difficult tasks,  surpassing the performance of state-of-the-art methods that were among the 
best in many applications for years. CNNs became the method choice in many computer vision 
applications and showed an impressive generalizability when trained on large datasets [17] 
[18]. Despite the fact of minimal data, which typically poses a massive challenge that affects 
the generalizability of the algorithm, CNNs even had decent success in many medical 
applications and imaging tasks, not to mention that images obtained by diagnostic imaging 
modalities show broad variety due to the use of multiple types of scanners, procedures and 
standards of acquisition, making their generalization a very challenging task [19] [20].  
Additionally, this poses a problem known as domain-shift which makes the trained model such 
as CNN fails at processing similar images obtained from a different scanner or different 
imaging sequence even if the imaging parameters are identical [21].  

1.2. Related studies 

Several apporaches have demonstrated the usefullness of CNNs in both the detection and 
characterization of PCa. Le et al [22] used multimodal input data (T2w and ADC images) on 
three well-known neural networks VGGNet [17], Inception [23], ResNet [24] and fused the 
resulted features with additional hand-engineered features. It demonstrated that in contrast 
to previously published findings, they could boost network efficiency by integrating the 
extracted features with hand-crafted features. Pre-training a network on imaging data and 
fine tune it on specific data has caught special attention in the last few year due to the 
improved accuracy and performance values that might be gained, Yang et al [25] investigated 
a co-trained fine-tuned version of an inception-like network [23], that was previously trained 
on real-life images, showing that fine-tuned version performed better than the one trained 
from scratch with random initializations of the learned parameters. Chen et al [26]used 
transfer learning on InceptionV3 and VGG-16 models that were originally trained on the 
ImageNet dataset, while Song et al  [27] investigated a patch-based approach with 131 layers 
based on VGGNet. The AUCs achieved were 0.81, 0.83 and 0.944 for inceptionV3, respectively, 
and VGGNet from Chen et al and Song et al. On the other hand, Kiraly et al [28] suggested 
using a convolutional encoder-decoder that achieve both identification and  severity 
classification of lesions and an average AUC of 0.834 was achieved. However, all studies listed 
so far All studies listed so far, however, have either used pre-delineated regions (manually 
segmented regions) and evaluated these areas, or rendered a collection of slices, which in turn 
involves careful selection of a representative slice to ensure optimum algorithm efficiency.  
Thus, 3D-based approach that can process 3D images directly with minimal or no interaction 
(such as lesion segmentation or slice selection) is of a great importance and can make the use 
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of the developed network more realistic and less prone to human error. Recently, Mehrtash 
et al [29] showed the viability of 3D CNNs to specifically interact with 3D images. They used a 
3D cropped region of the images centred around the lesion under investigation as 3D input 
for the CNN and reached a comparable value of area under the curve (AUC) to that of a human 
radiologist using PI-RADS version 1 (v1) and version 2 (v2). 

1.3. Our contribution  

In our research, we intended to investigate the possibility of using deep learning-based PCa 
classification and characterization techniques as a step towards facilitating clinical workflow 
with the least amount of human interaction possible. We developed a 3D semi-automatic 
approach, which was based on the state-of-art convolutional neural networks, to predict the 
probability of a given prostate lesion to be clinically significant. This developed CNN can 
process multimodal 3D images directly without any need of lesion delineation or slice 
selection. The estimated center of the target lesion is the only necessary and manually 
determined parameter in our method, while all other processing steps are fully automated. 
We used a 3D multimodal cropped area around the alleged lesion as an input and transferred 
it into our CNN as an input, and the output of the CNN is the probability of a given lesion to 
be clinically significant.  
Furthermore, the importance of different pulse sequences was studied to highlight the role of 
each of these sequences on the network’s performance. Thus, we compared all possible 
variations of pulse sequences acquired as an input to our algorithm by mp-MRI to test how 
each of these influenced the network output. The four major classes are: group 1 where all 
MR sequences (T2w, ADC, DWI, and K-trans) have been used; group 2 where the T2w 
sequence has been eliminated. Just T2w and K-trans were in group 3, while group 4 consisted 
of T2w, ADC and DWI. However, additional groups and individual pulse sequences were tested 
and reported so that the impact of each of the sequences could be studied alone and together 
with each combination possible. 
To assess the classification performance of our network and compare it to other reported 
studies, we performed receiver operating characteristics (ROC) curve analysis to calculate the 
area under the curve (AUC) [30], sensitivity and specificity for comparison with published 
results on the performance of experienced radiologists [13]. 
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2. Methods 
2.1. Problem formulation 

The problem that we address in this study is a binary classification problem in its essence since 
the purpose of this research is to differentiate between PCa lesions that are clinically 
significant or nonsignificant. In detail, we use a 3D volume of individual or combined pulse 
sequences cropped around the centre of the suspicious lesion, and the output is a binary label 
of 0 or 1. Let us denote the input as  and the output as . The developed network, 
represented by equation (1), is characterised by weights and biases that are also known as 
learned parameters and can be denoted as  and  respectively.  
 

 
 
We can use equation (2) to measure the loss function for each input (individual or combination 
of sequences) in the dataset. 
 

 
 
where  denotes the probability of a certain output of the network. 
The goal during the algorithm training is to minimize this loss function, in other words, 
minimize the error between the desired output and the actual ground truth label, so that the 
prediction of the algorithm is as close as possible to the actual ground truth. 
 
 

2.2. Patient data 

A well-organized dataset of mp-MRI for prostate cancer was published on the internet by SPIE-
AAPM-NCI PROSTATEx challenge [31] [32] [33] to enable groups from across the globe to build 
methods for PCa diagnosis and classification. Initially, this dataset consists of 204 patients with 
their respective histological tests serving as the training labels, and 140 patients for testing 
where their labels are hidden from the participating groups.   
As the purpose of our study here was not to participate in the challenge since the challenge 
was over when starting the project, an mp-MRI dataset of 200 patients with a total of 318 
suspicious prostate lesions (patient can have one or multiple lesions) was used. Four patients 
were excluded due to their own relatively poor image quality. This dataset contains 243 
clinically nonsignificant and 75 significant lesions and was divided into 175 patients for training 
and 25 patients for testing. We could not use the original test set (140 patients) released by 
the challenge organization because the ground truth labels were not publically provided.  
The number of lesions is different for patients in the dataset; some patients have just one 
lesion, while others have two or more, see Figure 1 left side. The maximum number of lesions 
per patient in our dataset was 4 lesions which was present only in two patients. The right side 
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of Figure 1 shows the distribution of lesion according to their significance which indicates that 
the dataset is not balanced with respect to lesions classes.  

 
Figure 1: Analysis of lesions counts: Figure on the right side shows the number of significant vs. non-significant lesions. Figure on 
the left side shows number of patients with respect to lesions counts per patients.   

The dataset contains information about the Gleason grade group (GGG), which is not used in 
this study since this study focuses on binary classification of lesions into significant vs. 
nonsignificant lesions. However, Figure 2 shows the number of lesions with respect to their 
GGG which, in turn, indicates that most of the suspicious lesions are of a grade 0 which are in 
fact normal prostatic tissues that are miss-classified as suspicious tissue due to their intrinsic 
heterogeneity.       

 
Figure 2: Distribution of lesions counts with respect to their Gleason grade group (GGG)  

As neural networks are sensitive to class distribution and can be heavily biased towards the 
dominant class, we needed to ensure a similar distribution of lesions in the training set and 
the test set to avoid any performance bias. Thus, we performed zonal analysis to determine 
the zonal distribution of lesions within the prostate zones, see Figure 3. Most prostate lesions 
were located in the peripheral zone, followed by the transitional zone, the anterior stroma, 
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and the seminal vesicles. We split the images so that both training and test set have a similar 
distribution of lesions and the performance bias is reduced. 
 

 
 
Figure 3: Distribution of prostate lesions by prostate zone in the test set and the training set. The bar graphs confirm a similar zonal 
distribution of lesions in both sets. This figure is from Aldoj et al. [34]. 

As we have mentioned earlier, this dataset is publically available and it comprises MR images 
obtained by mp-MRI, which consists of T2-weighted images, apparent diffusion coefficient 
maps, diffusion-weighted images, and K-trans images, which are obtained using dynamic 
contrast-enhanced MRI (DCE-MRI). The dataset contains biopsy-based histological findings for 
each lesion (clinically significant vs. nonsignificant lesion), which constituted the ground truth 
for training and testing. Moreover, the coordinates of each lesion in the image are provided 
so that the lesion centre can be easily located for any type of processing, delineation or 
analysis needed. The significance of the lesion was determined using Gleason scores where 
lesions with a Gleason score of 7 or above were classified as clinically significant lesions, those 
with lower Gleason scores as nonsignificant.  
 

2.3. MR imaging protocol  

The MR imaging protocol has been described before [34]. Briefly, all images in the dataset 
were acquired on 3T MAGNETOM Trio and Skyra MR Siemens scanners. T2-weighted images 
were acquired with a turbo spin echo sequence with 0.5 mm in-plane resolution and 3.6 mm 
of slice thickness. A single-shot planar imaging sequence was used for DWI with 2 mm in-plane 
resolution and the same slice thickness as for T2w. Diffusion-encoding gradients were used in 
three directions and b-values of 50, 400, and 800 were used to calculate ADC maps [31] [32] 
[33].  
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2.4. Image preprocessing 

Before the mp-MR images could be used as input for the network, a preprocessing and 
preparation phase was needed. This was necessary because the images acquired with the 
different pulse sequences differ in voxel size and in-plane resolution. Thus to ensure the same 
resolution of all images in all sequences, resampling was required. This step was done using 
the image processing library (SimpleITK) to resample all images using bilinear interpolation to 
a voxel scale of 0.5, 0.5, and 3.0 mm in the x, y, and z directions respectively. Afterwards, all 
misaligned sequences were registered, using MITK workbench, with each other using manual 
rigid registration which was driven by six parameters (translation and rotation around x, y, and 
z axis), and then the images were cropped around the centre of the lesion which was provided 
as 3D coordinates in the original dataset. This copping process was done using a spherical 
cropping window with a radius of 20 mm. Since the cropping was not done in the voxel space, 
but rather relative to the scanner coordinate’s system, the resulted volume differed slightly in 
dimensions from image to image. Thus, the resulted cropped volume was then contained in 
an empty predefined cube of a volume of 74, 74, and 14 voxels in x, y, and z direction, 
respectively, see Figure 4. 
 

 
Figure 4: Spherical cropping volume: a and b show the original t2w image before cropping in 2D and 3D, respectively; c and d 
illustrate the cropped spherical region that is contained in the aforementioned predefined volume. This figure is from Aldoj et al. [34]. 

 
2.5. Network architecture 

The PCa lesions in the dataset just outlined were classified using a very popular type of 
network known as convolutional neural network (CNN). We developed a 3D semiautomatic 
CNN-based approach to predict the probability of a given prostate lesion to be clinically 
significant. As an input, we used a 3D multimodal (e.g. ADC, K-trans, DWI, and T2w) cropped 
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regions around the suspected lesion and passed them as an input into our CNN where a final 
classification layer was represented by a softmax function, see Figure 5. 

 
Figure 5: Illustration of the proposed approach: the figure shows the network architecture on the left and the four main input groups 

on the right. Part of this figure is from Aldoj et al. [34]. 

 
This network consists of different stages of convolutional layers, followed by two densely 
connected layers and a final softmax layer with two outputs that encode the actual probability 
of the predictions. Each of the convolutional stages in the graph has at least one combination 
of convolutional layers followed by a batch normalization, rectified linear unit (RelU) 
activation and a max-pooling layer. All convolutional kernels were 3D and had a shape of 
3x3x3. To maximize the flow of information and avoid the vanishing gradient problem [24], 
previously extracted feature maps are concatenated together with the current output along 
the feature axis. The convolutional stages are followed by two densely connected layers of 
sizes 2048 and 512 nodes respectively to try to learn non-linear combinations of the previously 
extracted features, and a final softmax layer to encode the probability of the two classes of 
outputs by scaling the activations at the last layer as a summed probability that could be 
compared to a one-hot encoded vector of the ground truth.  
The network was implemented using the the Tensorflow library (version 1.4.0, Google) and 
was trained and tested on a TitanXp GPU. 
 

2.6. Network training 

Neural network training is usually done by passing an input signal (e.g. an image) to the 
network input layer, which in turn, extracts feature maps by convolving kernels with defined 
shape (e.g. 3x3). These kernels are parametrized by numbers that are called weights. The 
network output is the result of all operations that happen along the different network’s layers. 
When the output is compared to the ground truth using a loss function, the error is back-
propagated so that the network’s parameters are updated. AdamOptimizer is used in our 
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approach to minimize the loss between the predicted output and the ground truth. A learning 
rate of 10e-5, a mini-batch of size 50 images, and a dropout of rate 0.5 on the densely 
connected layers were used. All weights were randomly initialized, and L2 norm regularization 
of -value of 10-4 on neuron weights was applied.  
The whole dataset was used during training and testing phases in an eightfold cross-validation 
so that all possible combinations of dataset images were studied. The training time of the 
network was around 3.2h while the computation time for a single image was 0.26s during the 
inference phase.  
Network performance was tested by plotting the receiver operating characteristic (ROC) curve 
and calculating the corresponding AUC and sensitivity and specificity.  
 

2.7. Overfitting 

Overfitting occurs when the model becomes good at classifying the data that is part of the 
training set yet not as good on the unseen data.  

Deeper layers can learn higher level of features and therefore, deeper networks are much 
easier to train and   they are more likely to produce better output performance and higher 
accuracy [24] [35]. On the other hand, deep networks with the use of a large number of 
parameters are subject to the problem of information loss and vanishing gradients. Moreover, 
they are more prone to overfitting, which in turn causes the network to fail in generalizing to 
an unseen data [36]. To avoid overfitting, we can use one or all of the following methods: first, 
we can add more data which helps the network to learn more variations of the input and thus 
generalize better to unseen data. However, this not possible in many applications due to the 
limitations and difficulty in obtaining more data especially in medical applications. Second, we 
can use dropout, as one type of a regularization, meaning that random choices of activation 
are set to zero, which forces the network to find new paths instead of following 
predetermined patterns. Third, there is another option of regularization, where certain 
suspiciously large weights are penalized by a regularization function such as the L1 or L2 norm.  

 

where  is the regularized loss, is the weight matrix, and  is the penalization coefficient. 
Lastly, we can use image augmentation, which involves the use of different kinds of image 
transformation (rigid or elastic) to produce more training images that hold the same 
information as the original ones, yet are slightly modified so that the network can deal with 
those images as additional input.  
In our study, we used various types of image augmentation, see few examples in Figure 6. 
First, we shifted the cropping centre around the lesion with values between -7 and +7 mm in 
x and y direction. After this step, 6 types of additional images augmentation were applied such 
as flipping around x and y axes, rotation of images in both negative and positive direction 
around x axis, image brightening, darkening, sharpening and adding noise. This augmentation 
step resulted in a total number of 12,000 images, which were later split into training and test 
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sets. It is worth noting that during splitting some of the augmentations for the images with 
non-significant lesions were not used to ensure the class balance in both training and test sets. 

 
Figure 6: Image augmentation: it shows different examples of image augmentation methods that were used to increase the number of 
training images and avoid overfitting. Red line encircles the suspicious lesion. 
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3. Results 

On one eighth of the entire dataset, we tested our developed network while the rest was used 
for training in an eight-fold cross-validation fashion. Furthermore, we compared our results to 
other similar studies that were published on the same dataset. Individual pulse sequences or 
combinations were used as input while biopsy results were used as the ground truth. 
Compared to the remaining combinations, input combination of ADC, DWI and K-trans (group 
2) had the best performance in comparison to the rest of the combinations with 0.897, 81.9% 
and 86.1% for AUC, sensitivity and specificity respectively, which is comparable to the 
performance reported for radiologists using PI-RADS V2 [13] and higher than the reported 
value in [29] and most other similar studies [28] [26] [27] that were based on the same dataset 
which we used in our study. However, when T2w was added to the previous combination 
(group 2), the average AUC value for this new combination (group 1) was 0.893, 75.4%, and 
92.6% for specificity and sensitivity respectively. The other two combinations (T2w and K-trans 
(group 3), and T2w, DWI, and ADC (group 4)) had average AUC values of 0.885 and 0.839, 
respectively. The discrepancies between input groups have been checked for relevance using 
the t-test. The difference between group 1 and group 2 was not statistically significance with 
a p-value of 0.25. However, the difference between group 2 and group 3 and between group 
2 and group 4 was significant with a p-value of 0.02 and 0.0025, respectively (for details see 
Figure 7 and table 1). 
We chose to compare our results to the ones obtained in the aforementioned studies [29] [28] 
[26] [27]  due to the fact that they used the same dataset which made the comparison more 
realistic. See Table 4 and discussion section for more details. 
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Figure 7: ROC curves for assessing network performance for the four main input groups: they show the performance of eight different 
models resulting from the eightfold cross-validation (colours) of the four combination groups. Each letter denotes the network 
performance of each combination group: a T2w, ADC, DWI, and K-trans; b ADC, DWI, and K-trans; c T2 and K-trans; d T2, ADC, 
and DWI. AUC values are provided in the legends. This figure is from Aldoj et al. [34]. 
 
Tables 1 presents network performance results for the main four sequence combination 
groups that were addressed in this study.  
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Table 1: Network performance for each of the eightfold cross-validation on the four main groups of input combinations with 95 % 
confidence intervals (CI). This Table is from Aldoj et al. [34]. 
 

Group 1: T2w+ADC+DWI+Ktrans 
Model number AUC CI (95)  Sensitivity  CI 95% Specificity  CI 95% 
1 0.91 0.898 - 0.93 82.0%  2.5 % 90.0 %  2.1% 
2 0.91 0.897 - 0.926 76.7 %  3.7 % 96.0 %  2.0 % 
3 0.90 0.889 - 0.914 71.1 %  2.3 % 97.7 %  2.2 % 
4 0.89 0.873 - 0.909 77.2 %  2.8 % 92.4 %  2.2 % 
5 0.895 0.872 - 0.918 87.2 %  2.7 % 81.6 %  3.3 % 
6 0.852 0.826 - 0.878 82.5 %  2.6 % 89.5 %  2.8 % 
7 0.887 0.873 - 0.903 61.5 %  3.2 % 97.2 %  1.9% 
8 0.9 0.891 - 0.92 65.5 %  3.5 % 97.0 %  1.8 % 
Average AUC 0.893  75.4 %  92.6 %  
Standard deviation 0.018  0.08  0.05  

Group 2: ADC+DWI+Ktrans 
Model number AUC CI (95)  Sensitivity  CI 95% Specificity  CI 95% 
1 0.91 0.890 - 0.923 81.2 %  2.9 % 90.5 %  3.2 % 
2 0.90 0.898 - 0.920 75.8 %  2.5% 9.1 %  1.7 % 
3 0.91 0.899 - 0.923 71.2 %  3.2 % 97.1 %  2.3 % 
4 0.89 0.873 - 0.908 77.2 %  3.6 % 92.00%  2.8 % 
5 0.89 0.874 - 0.916 87.60%  2.2 % 80.00%  2.1 % 
6 0.89 0.874 - 0.916 87.4 %  2.5 % 79.3 %  2.9 % 
7 0.898 0.878 - 0.918 87.6 %  2.4 % 79.7 %  4.2 % 
8 0.895 0.874 - 0.916 87.6 %  2.3 % 79.1 %  2.5 % 
Average AUC 0.897  81.9%  86.1 %  
Standard deviation 0.008  0.06  0.07  

Group 3: T2w +Ktrans 
Model number AUC CI (95)  Sensitivity  CI 95% Specificity  CI 95% 
1 0.90 0.886 - 0.92 80.5 %  2.5 % 89.5 %  2.2 % 
2 0.893 0.877 - 0.91 74.4 %  3.3% 89.3 %  2.5 % 
3 0.90 0.886 - 0.92 80.4 %  3.3 % 89.9 %  1.2 % 
4 0.88 0.866 - 0.902 76.0 %  3.7 % 95.0 %  2.3 % 
5 0.877 0.851 - 0.902 87.7 %  2.2 % 84.4 %  2.5 % 
6 0.86 0.833 - 0.885 82.9 %  3.0 % 93.7 %  2.4 % 
7 0.879 0.865 - 0.895 60.7 %  3.6 % 95.9 %  2.2 % 
8 0.893 0.877 - 0.909 63.0 %  2.9% 97.5 %  1.7 % 
Average AUC 0.885  75.7%  91.9 %  
Standard deviation 0.013  0.09  0.04  

Group 4: T2w+ADC+DWI 
Model number AUC CI (95)  Sensitivity  CI 95% Specificity  CI 95% 
1 0.842 0.823 - 0.863 72.7 %  2.8 % 79.5 %  2.9 % 
2 0.899 0.884 - 0.916 71.9 %  2.8 % 91.5 %  2.5 % 
3 0.838 0.818 - 0.859 73.0 % 3.2 % 80.4 % 2.5% 
4 0.837 0.817 - 0.859 72.9 %  3.0 % 80.8 %  2.2 % 
5 0.85 0.827 - 0.872 86.0 %  3.1 % 66.7 %  3.9 % 
6 0.767 0.739 - 0.797 73.7 %  3.5 % 72.1 %  3.5 % 
7 0.83 0.815 - 0.852 52.1 %  4.3 % 92.5 %  2.5 % 
8 0.85 0.832 - 0.872 55.8 %  3.9 % 90.2 %  2.3 % 
Average AUC 0.839  69.7%  81.7%  
Standard deviation 0.036  0.10  0.09  

 
 
 
 
Tables 2 and 3 present network performance results for the use of pairs of MR sequence 
combinations and for the use of single MR sequence.  
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Table 2: Network performance for all eightfold cross-validations on pairwise combinations of MR sequences as input with 95 % 
confidence intervals (CI). This Table is from Aldoj et al. [34]. 
 

Group 5: DWI+Ktrans 
Model number AUC CI (95)  Sensitivity  CI 95% Specificity  CI 95% 
1 0.90 0.885 - 0.915 81.8 %  2.8 % 90.2%  3 % 
2 0.90 0.888 - 0.915 84 .3%  2.9 % 97.0 %  2 % 
3 0.87 0.866 - 0.891 67.6 %  2.9 % 96.7 %  1.9 % 
4 0.86 0.848 - 0.883 77.0 %  3 % 94.2 %  2.2 % 
5 0.86 0.84 - 0.883 87.8 %  2.5 % 75.7 %  5 % 
6 0.84 0.818 - 0.864 84.5 %  3 % 86.8 %  4.2 % 
7 0.867 0.853 - 0.882 61.1 %  3.5 % 93.0 %  1.8% 
8 0.877 0.863 - 0.892 63.8 %  3.6 % 96.6 %  1.5 % 
Average AUC 0.87  76 %  91.2 %  
Standard deviation 0.02  0.10  0.07  

Group 6: ADC+Ktrans 
Model number AUC CI (95)  Sensitivity  CI 95% Specificity  CI 95% 
1 0.90 0.885 - 0.915 85.0 %  3 % 82.0 %  2% 
2 0.88 0.861 - 0.889 74 %  2.5 % 93.4 %  1.8 % 
3 0.87 0.866 - 0.891 67.1 %  3.8 % 93.8 %  2.4 % 
4 0.853 0.841 - 0.863 75.6 %  3 % 90.0 %  2.2 % 
5 0.85 0.838 - 0.878 87.5 %  2.2 % 75.3 %  2 % 
6 0.83 0.82 - 0.852 56.3 %  3.8 % 90.7 %  2.3 % 
7 0.833 0.812 - 0.854 56.8 %  3.4 % 91.2 %  2.4 % 
8 0.87 0.860 - 0.891 59.8 %  3.9 % 95.4 %  2 % 
Average AUC 0.86  70.2 %  88.9 %  
Standard deviation 0.02  0.12  0.07  

Group 7: ADC+DWI 
Model number AUC CI (95)  Sensitivity  CI 95% Specificity  CI 95% 
1 0.816 0.795 - 0.839 78.9 %  2.7 % 73.7 %  3.5 % 
2 0.822 0.81 - 0.833 74.2 %  3.1% 88.6 %  2.3 % 
3 0.80 0.789 - 0.813 59.9 %  3 % 85.6 %  1.3 % 
4 0.77 0.758 - 0.79 67.7 %  4.1 % 74.3 %  2.6 % 
5 0.754 0.74 - 0.769 82.9 %  2.6 % 52.5 %  3.9 % 
6 0.83 0.806 - 0.855 83.4 %  3.1 % 79.7 %  3.5 % 
7 0.73 0.718 - 0.74 77.1 %  3.5 % 57.0 %  3.2 % 
8 0.75 0.739 - 0.762 81.8 %  2.7 % 52.0 %  4.4 % 
Average AUC 0.784  74.8%  70.4 %  
Standard deviation 0.03  0.07  0.14  
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Table 3: Network performance results for all eightfold cross-validation on individual MR sequences s input with 95 % confidence 
intervals (CI). This Table is from Aldoj et al. [34]. 
 

Group 8: T2 
Model number AUC CI (95)  Sensitivity  CI 95% Specificity  CI 95% 
1 0.70 0.684 - 0.731 67.7 %  3.2 % 60.8 %  3.7 % 
2 0.82 0.811 - 0.847 72.7 %  2.8 % 80.0 %  3.7 % 
3 0.72 0.704 - 0.743 55.7 % 3.4 % 77.3 % 2.9 %  
4 0.726 0.701 - 0.749 66.7 %  3.2 % 68.8 %  2.6 % 
5 0.716 0.688 - 0.744 81.3 %  3.4 % 47.1 %  4.4 % 
6 0.71 0.684 - 0.736 74.7 %  3.4 % 56.6 %  3.8 % 
7 0.715 0.690 - 0.736 45.9 %  4.2 % 80.1 %  2.6 % 
8 0.77 0.750 - 0.791 52.0 %  3.3 % 82.9 %  2.1 % 
Average AUC 0.734  64.58%  69.2%  
Standard deviation 0.04  0.12  0.13  

Group 9: ADC 
Model number AUC CI (95)  Sensitivity  CI 95% Specificity  CI 95% 
1 0.77 0.757 - 0.8 76.5 %  3 % 65.2 %  3.2 % 
2 0.786 0.773 - 0.812 69.6 %  2.5 % 74.4 %  1.8 % 
3 0.727 0.706 - 0.744 53.1 %  3.8 % 77.8 %  3.1 % 
4 0.703 0.679 - 0.728 62.4 %  3 % 67.3 %  3.2 % 
5 0.75 0.722 - 0.774 83.0 %  2.2 % 53.4 %  3.4 % 
6 0.70 0.675 - 0.728 75.4 %  3.2 % 54.8 %  4.0 % 
7 0.683 0.661 - 0.708 44.5 %  4.4 % 77.6 %  2.9 % 
8 0.77 0.749 - 0.793 53.4 %  3.9 % 84.6 %  2 % 
Average AUC 0.736  64.7 %  69.4 %  
Standard deviation 0.03  0.13  0.11  

Group 10: DWI 
Model number AUC CI (95)  Sensitivity  CI 95% Specificity  CI 95% 
1 0.808 0.789 - 0.828 76.5 %  2.7 % 72.2 %  3.2 % 
2 0.817 0.800 - 0.836 71.1 %  3.1% 81.8 %  2.3 % 
3 0.815 0.799 - 0.831 60.4 %  3 % 87.3 %  1.3 % 
4 0.80 0.787 - 0.827 72.3 %  3.1 % 76.0 %  2.6 % 
5 0.795 0.769 - 0.818 87.8 %  2.6 % 56.4 %  4.3 % 
6 0.742 0.717 - 0.767 76.9 %  3.1 % 60.7 %  3.5 % 
7 0.807 0.789 - 0.825 57.5 %  3.5 % 85.9 %  2 % 
8 0.81 0.797 - 0.830 60.1 %  2.7 % 87.0 %  1.4 % 
Average AUC 0.79  70.3 %  75.9 %  
Standard deviation 0.02  0.10  0.12  

Group 11: Ktrans 
Model number AUC CI (95)  Sensitivity  CI 95% Specificity  CI 95% 
1 0.82 0.799 - 0.838 76.6 %  2.7 % 74.4 %  3.1 % 
2 0.80 0.782 - 0.821 63.8 %  3.1% 82.7 %  2.2 % 
3 0.80 0.780 - 0.814 51.8 %  4 % 87.6 %  1.5 % 
4 0.80 0.778 - 0.818 70.3 %  3.1 % 79.6 %  2.6 % 
5 0.81 0.779 - 0.83 84.1 %  2.1 % 66.4 %  3.3 % 
6 0.793 0.768 - 0.82 80.2 %  3.1 % 73.1 %  3.5 % 
7 0.79 0.765 - 0.808 49.5 %  4.1 % 87.7 %  1.4 % 
8 0.77 0.75 - 0.79 52.1 %  3.7 % 72.0 %  2.4 % 
Average AUC 0.798  66.0 %  77.9 %  
Standard deviation 0.02  0.13  0.07  

 
 
 
Tables 4 presents the comparison of our network’s performance against other studies that 
were published using the same dataset, and highlights the similarities and the differences in 
data handling, input dimensions, size of training set and the type of used algorithm. 
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Table 4: Comparison between our approach and previously reported studies. 

 
Author Study 

Objective 
Dataset 
Size 

Architecture Input’s 
dimension 

Preprocessing AUC Data 
Source   

Kiraly et 
al [28] 

Detection/ 
classification 

202 Modified 
SegNet 

2D 
3D 

3D elastic 
registration 
3D Gaussian kernel 

0.834 ProstateX  

Chen et 
al [26] 

Classification 344 InceptionV3 
VGG-16 

2D Data augmentation 
Normalization 
Compressing images 
into a three-channel 
RGB 

0.81  
0.83 

ProstateX  

Liu et al 
[37] 

Classification 336 XmasNet 3D Linear interpolation 
Co-registration 
Refining lesion 
center 
Creating four inputs 
as RGB channels 
Data augmentation 

0.84 ProstateX  

Mehrtash 
et al [29] 

Classification 341 Three parallel 
pipeline 
Network 

3D Image resampling 
Image cropping 
Data augmentation 
Normalization 

0.80 ProstateX  

Aldoj et 
al [34] 

Classification 200 Single 
pipeline 
network 
 

3D Image resampling 
Spherical cropping 
Data augmentation 
Normalization 

0. 897 ProstateX  

Song et 
al [27] 

Classification 195 Modified 
VGG-Net 

2D Registration 
ROI labeling 
Data augmentation 
Patch extraction 
Normalization 

0.944 ProstateX  

 
The best model from group 2 has been used in any study and test discussed below, and unless 
otherwise specified, the images and results described are from this model. This model had an 
AUC of 0.91 with 81.2% sensitivity and 90.5% specificity. Figure 8 presents four different test 
cases as examples of true positive (TP), true negative (TN), false positive (FP), and false 
negative (FN) predictions of the network.  
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Figure 8: Image examples to illustrate network performance:  a. true positive; b. false positive; c. false negative, and d. true negative. 
The suspicious lesion is encircled by red line. This figure is from Aldoj et al. [34]. 

The comparative overview of lesion volumes and largest lesion diameters is shown in Figure 9 
as box plots of the mean and median volumes and diameters with their respective statistical 
groups. This figure helps to investigate whether or not the size of the lesion has an impact on 
the performance of the network. It is obviously shown that the lesion size has neither a 
negative nor a positive impact on the network performance. 

 

 
Figure 9: Boxplot of the sizes and largest diameter of the lesions. It shows lesion sizes on the left figure and largest diameter of the 
right for all four statistical categories. Numbers with orange represent the mean value while the number with blue represent the median. 
This figure is from Aldoj et al. [34]. 

Figure 10 demonstrates and helps to track the network performance during the training and 
test process, and illustrates the training and test accuracy performance throughout the 
training period. The network was able to learn and increase accuracy over time, as seen in the 
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figure on the left side. The network reached a point about the 4000 iteration step where the 
accuracy no longer increased, so the training was halted. The figure on the right side shows 
the individual accuracy with respect to lesions locations, which reflects, in general, similar 
distribution as the original test set that was shown in figure 3. 

 

 
Figure 10: The curves on the left represent the accuracy of the network during training and testing along with iteration time. The bar 
graph on the right displays network accuracy for different lesion locations. This figure is from Aldoj et al. [34]. 

 
Finally, examples of lesions wrongly classified by the network for all types of examined MRI 
sequences are shown in Figure 11. In all the MR sequences used it demonstrates multiple 
forms of lesions with the predictions of their corresponding network. This figure helps to 
investigate why the network predicted some cases incorrectly. 
 

 

Figure 11: Illustration of incorrectly predicted lesions: a. Network classifies a nonsignificant lesion as significant. b. Patient with two 
lesions – a significant lesion on the right and a nonsignificant lesion on the left – and the network misclassifies both lesions Arrows in 
the figure indicate the rough position of the lesion, and numbers stand for: 1 = T2w, 2 = ADC, 3 = DWI, and 4 = K-trans. This figure 
is from Aldoj et al. [34]. 
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4. Discussion 

Men who are suspected to have a significantly prostatic lesions are scanned with mp-MRI. 
Radiologists study their radiographs and decide for further clinical actions. Deep learning can 
have a great potential in assisting the diagnostic and evaluation procedures that radiologists 
usually handle manually.     
In this work, we developed a 3D CNN-based approach to predict the probability of a given 
prostate lesion to be clinically significant using mp-MRI datasets. As an input, we used a 3D 
multimodal cropped regions around the suspected lesion and passed them as an input into 
our CNN where a final classification layer was represented by two output neurons of a Softmax 
function. Our network was tested using the images included in this dataset in different 
combinations or alone to assess how this affected network performance in classifying prostate 
lesions into significant and nonsignificant cancers. Biopsy-based histological diagnosis acted 
as our ground truth during our network's training and testing. 
In order to investigate the impact of each MR sequence on the output of the network, 
specifically, multiple input combinations were evaluated and analyzed using the same model 
architecture. In terms of average AUC, sensitivity and accuracy, the input used in group, which 
includes ADC, DWI and K-trans images, resulted in the best network output. In addition, the 
findings given in Table 1 clearly demonstrate that adding T2w images to the network input has 
the least effect on enhancing the performance of the network. This inference is based on a p-
value of 0.25 that is greater than 0.05 between groups 1 and 2, and thus the difference is not 
important. The fact that the T2w sequence contains only anatomical details that could suggest 
the location of a suspicious tissue, yet no functional information about the nature and 
characteristics of the tissue, may support this finding. 
The heterogeneity in the tissue which led to suspected appearance could be just a normal 
variety in the tissue structure or BPH and does not indicate any cancerous characteristics. In 
contrast to group 1, the p-value is significant at 0.02 when comparing groups 2 and 3, which 
suggests that the influence of DWI (b-value and ADC) is relevant to network performance. 
Similarly, by comparing groups 2 and 4, the inclusion of K-trans results in significant 
performance enhancement and results in a p-value of 0.0025. This suggests that k-trans has 
the greatest influence on the efficiency of the network and turns out to be the MR sequence 
that better represents the characteristics of prostate lesions. These conclusions are supported 
by the results of more detailed investigation of other combinations of inputs (presented in 
Table 2) or standalone sequences (Table 3) where it shows that T2 was the worst performing 
input among the other sequences while the rest of the sequences, since they carry functional 
information, were better in terms of tumour characterisation and hence better diagnostic 
performance. K-trans is the highest in terms of its importance for lesion characterization 
(significant or non-significant) and is preceded by DWI and ADC. T2w, on the other hand, has 
the least diagnostic impact and is thus the least significant when it comes to classifying tumors. 
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4.1. Comparison with previous studies 

Earlier studies focused mostly on tackling the classification problem using 2D networks with 
either a proper slice selection or segmented region of the suspected lesion as input [22] [25]. 
When it comes to PROSTATEx dataset, few studies tested their 2D/3D network on it 
(comparison can be seen in Table 4), where our approach was based on 3D image without any 
segmentation or slice selection. Kiraly et al. [28] proposed an approach that investigated both 
detecting the lesions and classifying their aggressiveness by using a convolutional encoder-
decoder. The task of detection was applied through semantic segmentation. Their obtained 
average AUC was 0.834 for the classification. On the other hand, Chen et al [26] investigated 
the possibility of using transfer learning of InceptionV3 and VGG-16 model that were originally 
trained on ImageNet dataset, while Song et al [27] used a patch-based approach based on 
VGGNet with 131 layers. The achieved AUCs were 0.81, 0.83 and 0.944 for inceptionV3, and 
VGGNet from Chen et al and Song et al respectively. However, In contrast to our approach the 
aforementioned methods were 2D and required lengthy image preparation and careful slice 
selection, which precludes their use in daily practice. Thus, designing a 3D tool that requires 
minimal manual preparation is highly desirable. Liu et al [37] developed a CNN termed 
XmasNet which was trained and tested on PROSTATEx challenge and achieved an AUC of 0.84, 
yet it also required a pre-segmentation of lesion as the network only trained on suspected 
tissues. Another study by Mehrtash et al [29] addressed the classification problem in a similar 
way as we did. They designed a network with 3 parallel pipelines and achieved an AUC of 0.80. 
In contrast to their method, our approach consisted of a single pipeline (which made it more 
compact, parameters efficient and easier to train) that processed all input sequences at the 
same time and required the least amount of preparation, which involved only image 
resampling and lesion localization. Furthermore, Our approach achieved a performance in 
terms of AUC, sensitivity and specificity very similar to the results reported in to [29] [37] and 
to the performance reported for an experienced reader [13]. 

4.2. Clinical implications  

In clinical practice, a model should have high values of AUC, sensitivity, and specificity, yet, 
sensitivity is more important than specificity since the more important aim is to lower the false 
negative rate, where the significant lesion is miss-diagnosed as non-significant and hence, the 
tumour is missed and left untreated which causes the tumour to keep growing and spreading.  
It might be not a realistic vision in the near future to have a reliable and robust approach that 
can fully replace the radiologist in specific or general diagnostic tasks. However, the designed 
model (s) can augment and assist the radiologists in their daily clinical practice and carries 
some parts of the heavy loads when dealing with large amount of imaging volumes.   
An experienced reader using PI-RADS v2 in interpreting mp-MRI datasets is reported to have 
an AUC of 0.83, sensitivity of 77%, and specificity of 81% [13]. While Lui et al achieved an 
average AUC of 0.84 and Mehrtash et al an AUC of 0.8, our model had a higher AUC (model 1 
from group 2) than these studies and [37], yet it was less sensitive and more specific than [37]. 
While the outcomes of this model seem to be promising, it is not advanced enough to 
substitute the radiologists by any means. By corroborating their decision, though, radiologists 
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will benefit from the superiority of the model in terms of specificity and increase its specificity 
for improved diagnostic results in patients. 

4.3. Explainability  

In relation to the efficacy of an AI-based diagnostic tool, one of the main things discussed is 
explainability, which implies the ability of the tool to interpret how and on the basis of what 
a certain diagnostic judgment was taken, and why this diagnosis in the classification case was 
accomplished. Deep convolutional neural networks have shown an impressive performance 
in many image classification tasks. However, because of their nature of multi-layer 
architecture, they are considered as black box and it is hard to explain how they arrive at a 
specific prediction. Many studies showed some examples of correct object classification 
outputs that were caused by some activations that were resulted from wrong part of the input 
image such as image captions [38]. 
Explainability may be superimposed on the original picture in the form of heat maps, which in 
turn show the location of the suspicious lesion and how confident the model is in predicting 
outcomes based on the examination of lesions. In other words, the heat map highlights the 
impact of individual pixel (voxel) in the image with respect to the prediction output of the 
network and help to understand how the network arrive at that particular outcome. In case 
of 2D models, such explainability maps can be  provided by various methods and algorithms 
(e.g. layer-wise relevance propagation [38], activation maps [39] etc.) that provide 
information on which part of the image contributed positively or negatively to the outcome 
and by how much. All these and similar methods are optimized to be used on 2D images. In 
the case of 3D, however, there is currently no accurate algorithm that can extract and visualize 
similar information in 3D heat maps. In addition, the development of a 3D algorithm to create 
maps of explainability is not an easy problem to solve and is actually beyond the scope of this 
study and should be addressed in a separate project.  

4.4. CNN performance and design considerations 

Network performance is usually affected by many factors such as intrinsic network features 
(number of layers, parameters etc.) and the quality of input images. However, it is highly 
unlikely that a network surpasses the values obtained with the experienced reader according 
to PI-RADS v2 in similar realistic clinical setting where the images are presented in their plain 
3D format without prior segmentation or lesion detection [13]. To monitor the network’s 
performance, several values such as AUC, sensitivity and specificity were reported, see Figure 
7. Additionally, we plotted the accuracy curve, see Figure 10, of correctly predicted cases over 
time to show how the network is performing across the training and test phases.  
As mentioned earlier, several aspects and hyperparameters can influence the predicted 
results of a certain network, such as depth of the network, skip connections, choice of the loss 
function, learning rate value, the choice of regularization method etc.  
The deeper the network, the larger the receptive field and hence, the greater its capability to 
extract more information from the images. However, deeper networks suffer the problem of 
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large number of parameters where the problem of overfitting becomes more apparent. 
Therefore, the balance between the model with sufficient abstract information and the model 
with suitable depth and number of parameters should be considered [27].  
Pre-trained networks proved to be performing better and achieving higher accuracy values 
than the networks trained from scratch [22]. However, all available pre-trained networks had 
2D-based architectures and could not be used in our study since the input images were 3D 
and therefore, training from scratch was the only choice.  
Figure 11 presents two examples from our dataset that were incorrectly classified by our 
network, each row shows a different case and each column represents a different MR 
sequence. Case A shows a patient with a nonsignificant lesion, yet it was classified incorrectly 
as a significant lesion. This could be due to the fact that this lesion was present in all sequences 
and had a higher contrast in comparison to its surrounding tissue, which in turn highlighted 
the lesion and strengthened the activation signal inside the network toward false classification 
and hence a false positive prediction. In patient B, two lesions were present, a significant one 
in the left and a nonsignificant lesion in the right prostate. The network classified both lesion 
incorrectly. This is attributed to the relatively same level of contrast between the lesion and 
the adjacent tissues and its presence in all MR sequences. Furthermore, our network is not 
perfect and it has a margin of errors, which needs to be addressed in future work.  

4.5. Effect of lesion size 

When looking at Figure 8, one might think that classification of prostate lesions is influenced 
by its size or diameter and that larger lesions might help the network to achieve better 
performance and accuracy since they are harder to miss and the their pixels (voxels) signal is 
much stronger because it is resulted from a larger part of the image. However, Figure 9 
illustrates that in our approach and used dataset there is no relationship between lesion size 
or diameter, and network performance. Hence, there is no positive or negative correlation 
between lesion size and network accuracy. Therefore, larger or smaller lesions sizes have no 
significant effect on the overall results.  
 

5. Study limitations 

As a training and test dataset, only 200 patients (318 lesion volumes) were used, which is 
considered small for training a neural network, which is considered a data-hungry method and 
thousands or hundreds of thousands of images are required to be used in many 
implementations. Although the 318 volumes were augmented many times using different 
types of methods of image transformation to expand the training examples and address 
overfitting, this amount is still not adequate and further images are required to obtain 
improved output. Let alone that the resulted augmented images are just different variations 
of the original ones and they do not replace the importance of new images which contain 
important clinical data.  
Furthermore, we did not use complete images. Rather, our network classified prostate lesions 
as significant or not based on a small input volume. This, in turn, does not reflect the realistic 
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clinical routine where images are handled and investigated by the radiologist as they are 
resulted from the scanner without prior segmentation, delineation or slice selection. Finally, 
the network only made diagnostic predictions but yielded no localization or explainability 
maps, which is highly desirable for robustness and reliability. Therefore further research is 
required to address current constraints and enhance the efficiency of our network along these 
lines and allow its clinical routine use. 
 

6. Future work 

Several aspects are needed to be addressed in future work to increase the applicability of such 
approaches. For instance, a bigger (and preferably multi-centre) dataset is of a high 
importance and would add important values to our existing work toward robustness and 
generalizability. Explainability maps are much needed in any diagnostic AI-based tool, thus 
providing such maps is essential in such approaches. Additionally, different state-of-the-art 
classification networks should be extended to adapt 3D input, tested in such diagnostic 
problems and compared to the developed approach. Furthermore, an ensemble of different 
network architectures could also be considered so that the overall performance is more robust 
and reliable.  
  

7. Conclusion 

The preliminary results we achieved with our algorithm suggest that automated classification 
of prostate cancer using the deep convolutional neural network developed here is feasible 
and promising. Our developed model requires the least amount of manual work where only 
the lesion location is required. Our network takes a combination or individual MR sequences 
(T2w, ADC, DWI, and K-trans) as input and classifies the lesion as significant or nonsignificant. 
The diagnostic performance of our network, which is quantified by AUC, sensitivity and 
specificity, is comparable to that reported for human readers and other similar published 
studies, which makes this tool very promising and demonstrates its great potential for 
improving the capabilities of deep learning-based diagnosis in prostate cancer classification 
and making it suitable for routine clinical use. 
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Supplementary Material (SM) 

K-trans coefficients: 
According to the dataset providers, K-trans images were generated using the parameters of the 
dynamic contrast enhanced sequence. This is done by a software developed in Radboud University, 
which fits the MR signal of the enhancement-time curve to an exponential signal intensity model that 
is described with five parameters: base line signal enhancement, start of the signal enhancement, 
time to peak (TTP), peak enhancement and wash out. 

 

 

 

 denotes the plateau of the gadolinium concentration,   is the extracellular volume’s estimate,  
is the rate between the extracellular extravascular space and the plasma space, and finally  is 
the transfer volume constant [1].   
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