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Abstract
Gas stirring is an important process used in secondary metallurgy. It allows to
homogenize the temperature and the chemical composition of the liquid steel and to
remove inclusions which can be detrimental for the end-product quality. In this
process, argon gas is injected from two nozzles at the bottom of the vessel and rises
by buoyancy through the liquid steel thereby causing stirring, i.e., a mixing of the
bath. The gas flow rates and the positions of the nozzles are two important control
parameters in practice. A continuous optimization approach is pursued to find
optimal values for these control variables. The effect of the gas appears as a volume
force in the single-phase incompressible Navier–Stokes equations. Turbulence is
modeled with the Smagorinsky Large Eddy Simulation (LES) model. An objective
functional based on the vorticity is used to describe the mixing in the liquid bath.
Optimized configurations are compared with a default one whose design is based on
a setup from industrial practice.

Keywords: Ladle stirring; Single-phase Navier–Stokes equations; Turbulent
incompressible flows; Optimal control of PDEs; Gradient-free optimization; Finite
element method

1 Introduction
To produce steels with a high level of purity, companies employ a process called ladle gas
stirring. It consists of mixing the liquid steel by injecting a noble gas from one or sev-
eral nozzles located at the bottom of the vessel. The resulting buoyancy-driven stirring
enhances the removal of inclusions (e.g., gaseous particles), the homogenization of the al-
loying materials in the steel, and the homogenization of the bath temperature [1]. A proper
control of the stirring allows higher levels of cleanness of the steel grades, an increased
production capacity through the reduction of the treatment time, and a decrease of the
energy cost through the reduction of gas consumption.

In order to optimize the process parameters, experimental and numerical models of
ladle stirring have been extensively used in the metallurgy literature. Usual parameters
influencing the flow pattern are, e.g., the ladle geometry, the number and position of the
nozzles, and the gas flow rates. The efficiency of the stirring is often described by the mix-
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ing time or the liquid circulation rate [1]. In [2], the authors use a two-phase model to
study the effect of the height/diameter ratio on the mixing time and the liquid circula-
tion rate. They showed that these two criteria are inversely proportional to each other and
suggested that both quantities can be used equivalently as a criterion for the mixing effi-
ciency. Furthermore, an aspect ratio of around 1.5 was found to lead to the most efficient
mixing in axisymmetrical ladles, e.g., with one central nozzle. In [3], a simplified single-
phase numerical model is applied to investigate the effect of different ladle geometries,
nozzle positions, and gas flow rates on the mixing time. It was found that an off-center
position of the nozzle and inclined ladle walls reduce the mixing time, thus improving the
stirring efficiency. Another single-phase model is used in [4] to study the effect of two dif-
ferent nozzle configurations. An angle of 120◦ between the two nozzles, instead of 150◦,
increases the circulation rate and decreases the volume of dead zones, i.e., areas of very
small velocity. Multi-phase models with experimental measurements have been employed
in [5] and [6]. The first paper investigated the optimum nozzle positions among a discrete
number of configurations, while the second one studied the effect of the inflow location
on the wear of the ladle wall in four cases.

More recent works focused on the profile of the injected gas flow rates rather than on the
ladle geometry and the nozzles’ location. A pulsed stirring has been investigated numer-
ically, experimentally, and industrially in [7]. Contrary to standard processes, they con-
sidered one bottom injection and one high-velocity lance injection from the side of the
ladle. In practice, both use a constant gas flow rate. However, the authors showed that a
pulsed lance stirring with a constant bottom gas injection can lead to a reduction of gas
consumption while achieving the same steel quality with the same mixing time. This new
injection profile has been successfully implemented in a plant. In [8], a bottom stirring
with constant, but different, flow rates for each nozzle has been studied. Numerical and
experimental results showed that the mixing time can then be significantly decreased.

In a major part of the literature, optimization studies consist in varying a small number
of parameters (ladle geometry, gas nozzle position, gas flow rates, etc.) over a small, dis-
crete set of values, and comparing the stirring performance, e.g., the mixing time. How-
ever, optimal control problems in the sense of continuous optimization have still to be
explored in this area. Such problems require a computationally efficient state model, i.e.,
ladle stirring model, as well as relevant objective functionals.

As described in [9], optimization problems solve repeatedly the considered process with
slightly changing coefficients. The needed time and memory usage for solving one state
problem should be thus kept comparatively small in order to allow a reasonable computa-
tional cost for the whole optimization process. From this point of view, the use of multi-
phase models for ladle stirring is not advisable. In addition to the Navier–Stokes equa-
tions, they require one additional convection equation for mixture models or a second
set of Navier–Stokes equations for Euler–Euler models, [10]. On the contrary, the single-
phase approach seems to be more appropriate because it is restricted to the incompressible
Navier–Stokes equations [9]. The effect of gas stirring is modeled as a buoyancy force in
the right-hand side of the momentum partial differential equation (PDE). Furthermore, [9]
and [11] compared their numerical results with experimental measurements and showed
that it can describe the bulk liquid flow satisfactorily in both quantitative and qualitative
aspects.
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On the other hand, the objective functional should describe the stirring efficiency, where
also the cost for achieving the stirring are contained in this notion. The usual criterion
for the stirring, i.e., the mixing time, introduces further difficulties such as a convection-
dominated transport equation and the coupling with the flow equations. Alternatively,
[12] and [13] use the vorticity to describe the mixing of the flow.

The objective of this paper is to study an optimal flow control problem in the context of
buoyancy-driven ladle stirring, using a single-phase approach and the vorticity as a quan-
tity to measure the efficiency of the mixing. In particular, it focuses on optimizing the
gas flow rates as a function of time for fixed nozzle positions and of the two nozzle po-
sitions for fixed gas flow rates. Because of the unavailability of data for real steel ladles,
the setup used in this paper is based on a laboratory-scale model of a real ladle, for which
experimental studies were performed in [14, 15]. To perform the numerical simulations,
an in-house research code for computational fluid dynamics (CFD) simulations [16, 17]
is coupled with a freely available library for optimization [18]. The popular Smagorinsky
large eddy simulation (LES) model is used for turbulence modeling. To numerically solve
the optimization problems, a gradient-free routine is used. This approach avoids the solu-
tion of the adjoint problem, which is a convection-dominated problem backward in time,
to compute the gradient, see [11, Sect. 4.3.3] for the derivation of this problem. To the best
of our knowledge, the present paper is the first one that utilizes approaches from contin-
uous optimization to find improved configurations for liquid steel stirring in a ladle.

The basic approach pursued in this paper has the advantage that it does not require very
specialized software, such that it can be utilized by a wide community. In principle, any
code that can simulate turbulent flows and any code for gradient-free optimization can
be coupled. Just an interface has to be developed that transfers the necessary information
between the codes. In fact, it is even not necessary to possess a deeper knowledge on the
numerical methods implemented in these codes. However, one should be aware that the
computational results will depend on the concrete turbulence model and probably on the
used optimization routine. The first aspect will be already demonstrated in this paper by
presenting results for different constants in the Smagorinsky LES model.

The modeling assumptions and the definition of the optimal control problem are pre-
sented in Sect. 2. Implementation aspects are described in Sect. 3 and the numerical stud-
ies and results in Sects. 4 and 5. Finally, a summary and an outlook are given.

2 The model for the optimization problem
2.1 The state model
The state model describes the flow in the ladle. The geometry corresponds to a laboratory-
scale physical model of real ladles [14, 15]. Such experimental vessels employ water instead
of steel and they are designed to describe the actual stirring using the Froude number as a
similarity criterion, see [8, 19]. They provide velocity measurements which are important
to validate the numerical results. The geometry as well as relevant entities in the definition
of the buoyancy force are illustrated in Fig. 1 and the parameters of the model are listed
in Table 1.

Let � denote the domain of the ladle with boundary ∂�, outward pointing unit normal
n and orthonormal tangential vectors ti, i = 1, 2 at ∂�, and let T be the final time. The
upper part �top of the boundary ∂� is the surface of the modeled fluid. Given an initial
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Figure 1 Relevant entities in the definition of the buoyancy force. Top left: Sketch of the 3d ladle with two
eccentric nozzles; top right: The function rc ; bottom: The functions γi(·, z) (left) and αi(·, x, y, z) (right) for a
constant gas flow rate Qi = 17 l.min–1 (as in Table 1), where rxy is the horizontal distance to the nozzle, i.e.,
r2xy = (x – xni)2 + (y – yni)2

Table 1 Default parameters of the 3d ladle stirring model from [9]. The value for Q is used as
maximal value in the numerical studies presented here

notation H Rtop Rbot Q a US

unit m m m l.min–1 (m3.s–1) m m.s–1
value 0.65 0.29 0.27 17 (2.83 · 10–4) 0.08 0.4

notation χ xn1 yn1 θ1 xn2 yn2 θ2
unit ° m m ° m m °
value 10 –0.105 –0.105 135 –0.105 0.105 225

velocity field u0(x), the behavior of the flow is described by the incompressible single-
phase Navier–Stokes equations where the effect of the rising gas is modeled by a buoyancy
force on the right-hand side of the momentum equation, [9]:

∂tu + (u · ∇)u + ∇p – 2∇ · (Re–1
D(u)

)
=

(
1 – (α1 + α2)

)
g in (0, T] × �,

∇ · u = 0 in (0, T] × �,

u = 0 in (0, T] × (∂� \ �top),

u · n = 0 in (0, T] × �top, (1)
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nT
Sti = 0, i = 1, 2, in (0, T] × �top,

u(0, x) = u0(x) in �,
∫

�

p dx = 0 in [0, T],

with

αi(t, x, y, z) = γi(t, z) exp

(
–2

(
(x – xni)2 + (y – yni)2

rc(z)2

)2)
,

γi(t, z) =
1
2

⎧
⎪⎨

⎪⎩

UPi (t)
US

+ 1 if z ≤ zCi ,
UPi (t)

US
+ 1 –

√
( UPi (t)

US
+ 1)2 – 4Qi(t)

πr2
c (z)US

if z ≥ zCi ,

UPi (t) =
4.4H1/4

R1/4
bot

Q1/3
i (t), i = 1, 2.

Unknown quantities in (1) are the velocity u, [m/s], and the pressure p, [Nm/kg], which
is actually the physical pressure divided by the density of the fluid. The coefficient on the
right-hand side g = –(0, 0, 9.81)T m/s2 is the gravity. Further, the velocity deformation ten-
sorD(u) = (∇u+∇uT )/2 is the symmetric part of the velocity gradient and the stress tensor
is given by S = Re–1

D(u) – pI, where I is the identity operator. For details of the modeling
of the buoyancy force, it is referred to [9] and the references therein. The parameters of
the coefficients that describe the buoyancy force are provided in Table 1. The quantities
Qi(t) and UPi (t), i = 1, 2, are the gas flow rates and the corresponding plume velocities at
both nozzles, whose default values are given in Table 1. The critical heights

zCi (t) =
1

tan(χ )

(√√√√
4Qi(t)

πUS( UPi (t)
US

+ 1)2

)
– a, i = 1, 2,

are defined by the modeling procedure. For z ≥ zCi , a closed-form formula can be derived
from the so-called drift-flux model [20], which is then extended to small heights as given
above. The positions of the nozzles are given by xni and yni. Finally, the expansion of the
gas plume radius with the height is given by rc(z) = tan(χ )(z + a).

It should be noted that the consideration of a fixed surface at �top is a modeling assump-
tion of single-phase models that simplifies the numerical setup. It has been observed in [9]
that the fixed surface assumption works fine for ladles where the mixing is not too strong
such that the top surface is relatively stable. The flow velocity obtained by this single-
phase model was in good agreement with experimental measurements, although close
to the surface there is more discrepancy. Since the zone of interest for the mixing is the
whole domain, especially the bottom part with the dead zones, the single-phase model
with fixed top surface is, in our opinion, an appropriate model for the studied optimal
control problem.

For the numerical simulations, the Navier–Stokes equations (1) were converted to a non-
dimensional form using the characteristic length scale L = 1 m and the characteristic ve-
locity scale U = 1 m/s. The Reynolds number of the flow, based on these scales, the density
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of steel ρ ≈ 6980 kg/m3 and its dynamic viscosity μ ≈ 2.7 · 10–3 Pa s, is given by

Re =
ULρ

μ
≈ 2.6 · 106. (2)

This number, which is used in the dimensionless equations (1), indicates that the flow is
turbulent. It is well known that its numerical simulation requires the usage of a turbulence
model. We used the popular Smagorinsky large eddy simulation model [21], which adds
to the momentum balance of the Navier–Stokes equations (1) the term

–2∇ · (νTD(u)
)

with νT = CSδ
2∥∥D(u)

∥
∥

F , (3)

where νT is called turbulent viscosity or eddy viscosity, δ is the filter width that is con-
nected to the local mesh width, ‖D(u)‖F is the Frobenius norm of D(u), and CS is the
user-chosen Smagorinsky constant. In our simulations, the local filter width was set to
be 2hK , where hK is the diameter of the mesh cell K . Typical values for the Smagorinsky
constant are CS ∈ [0.0005, 0.02], e.g., see [22]. Values from this range were utilized in our
simulations.

2.2 The objective functional
The objective of the optimization study is to maximize the stirring efficiency, where the
cost for performing the mixing is contained in this notion. As already discussed in the
Introduction, there are several approaches for modeling the stirring efficiency. Here, a
functional based on the vorticity curl(u) = ∇ × u of the flow will be used, inspired by
[12, 13]. This functional, in combination with the singe-phase model for the flow, leads to
optimization problems with reasonable complexity.

In the industrial practice, several aspects are often considered in terms of stirring effi-
ciency. First, the stirring should be intense enough to remove the inclusions and homog-
enize the liquid bath. Furthermore, areas with a low circulation or no circulation at all,
so-called dead zones, should be avoided. Finally, the gas consumption should be mini-
mized during the process. Thus, we define the following objective functional to take into
account these different aspects:

J(u, Q1, Q2) = –
β1

2

∫ T

0

∥∥curl(u)
∥∥2

L2(�0)d dt

+
β2

4

∫ T

0

∥
∥max

{
curlthr –

∥
∥curl(u)

∥
∥2, 0

}∥∥2
L2(�) dt

+
λ

2

∫ T

0
Q2

1(t) + Q2
2(t) dt, (4)

where β1 ≥ 0, β2 ≥ 0, λ ≥ 0 are weights, curlthr > 0 is a user-defined threshold parameter
for the square of the Euclidean norm of the vorticity ‖curl(u)‖2, and �0 ⊆ �.

The first integral represents a pure maximization of the curl of the velocity in �0. The
cases �0 = � and �0 � � are designated as the global and local maximization of vorticity,
respectively. Since the first case measures an average quantity in the whole domain, it can
allow locally for low vorticity. This is the reason why we introduced a subdomain �0: it can
restrict the objective functional to areas which are known to be dead zones, for example
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near the bottom edge of the ladle. Thus, the second case (�0 � �) is more likely to improve
the vorticity in dead areas for appropriately chosen �0.

While the first integral is negative, the second term is positive. One finds by using
Young’s inequality that ‖curl(u)‖2

L2(�0)d ≤ 2‖∇u‖2
L2(�0)d . For the continuous problem, the

energy dissipation Re–1 ∫ T
0 ‖∇u‖2

L2(�)d is bounded by the data of the problem due to the en-
ergy inequality. And also for the Smagorinsky model, it is known that Re–1 ∫ T

0 ‖∇uh‖2
L2(�)d

can be bounded by the data of the problem and the parameters of the model, e.g., see [22,
Thm. 8.110]. Altogether, the first two terms are bounded for the continuous problem as
well as for the discrete one. The integrand in the second term acts like a penalization: it
has a positive contribution only where the vorticity is not high enough (namely, smaller
than curlthr), and the higher the gap between the vorticity and the required ‘threshold’
curlthr, the higher the penalty. Physically, these areas correspond to dead zones. Where
the vorticity is high enough (larger than or equal to curlthr), it is 0. In other words, this
functional takes into account the aspects ‘maximization of the vorticity’ and ‘reduction
of dead zones’. Unlike the first integral, the whole domain � is considered in this term.
Indeed, its integrand is zero where the vorticity is high. Thus, a local variant of the inte-
gral is not needed. One drawback is the Introduction of the additional variable curlthr. It
is not straightforward to fix physically relevant values for curlthr, because there is no prac-
tical measurement or knowledge of how much the vorticity should be. In the numerical
simulations presented below, several values for curlthr are tested and their impact on the
optimal solution is studied.

Finally, the third integral describes the cost of the control, i.e., the gas consumption.
Note that there is no cost related to the nozzles’ position xn1, yn1, xn2, and yn2. Indeed,
the gas consumption is independent of the injection locations at the bottom of the vessel.
When optimizing the nozzles’ position at constant gas flow rates, Sect. 5, the cost term is
just a constant and consequently any value of λ leads to the same optimal configuration.
We can thus assume λ = 0 in this case.

Altogether, the following cases are considered in the numerical studies:
• global maximization of vorticity J1: β1 = 1, β2 = 0, and �0 = �,
• local maximization of vorticity J2: β1 = 1, β2 = 0, and �0 � �,
• regulation of vorticity J3(curlthr): β1 = 0, β2 = 1, and several values for curlthr ∈ [1, 100].

2.3 Control variables
This paper presents two numerical studies which are of interest for the industrial practice.
In the first one, the gas flow rates are optimized for fixed positions of the nozzles and the
second one optimizes the nozzles’ positions for fixed gas flow rates. Thus, the physical
control parameters are the two frequencies ωi which are used for the parametrizations of
the time-dependent gas flow rates Qi(t), and the nozzle positions (xni, yni), for each noz-
zle i ∈ {1, 2}.

Concerning the flow rates Q1(t) and Q2(t), lower and upper bounds are introduced to
model limitations present in the application:

Qi(t) ∈ [Qmin, Qmax] = [1, 17] l/min in [0, T] for i = 1, 2. (5)

In practice, the gas control system imposes restrictions on how often the valve can open
and close within a second. In order to describe this situation realistically, we express
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Qi(t), i = 1, 2, as

Qi(t) =
Qmax + Qmin

2
+

Qmax – Qmin

2
sgn

(
sin(2πωit)

)
, (6)

which essentially switches between the minimum and maximum flow rate at a fre-
quency ωi ∈ [ωmin,ωmax]. In our numerical studies, we used ωmax = 0.5 and the lower
bound ωmin is chosen such that Qi(t) = Qmax for t ∈ [0, T] is possible, which is the de-
fault case. In particular we set ωmin = ωmax/T = 1/40, since T = 20 s is the final time in the
optimization of the gas flow rates. The main reasons and goals why we chose to model the
gas flow rates as in equation (6) are: (i) There is a small control space, concretely, there are
only two variables with box-constraints, one for each nozzle. (ii) The gas flow should be
maximal at the beginning, Q(0) = Qmax, because the liquid steel is not at rest at t = 0. (iii)
This ansatz respects the practical boundaries, in particular the minimum and maximum
flow rate and frequencies. (iv) It allows for Q(t) = Qmin at the end of the simulation, to save
gas. (v) The flow rates should be either minimal or maximal, because intermediate values
as well as smooth transitions are hard to realize in practice and would enlarge the control
space. (vi) Equation (6) is a general description of pulsed flow rates, such as the one used
in [7]. It can thus be used to verify whether a pulsed flow can generate a better stirring
than a constant one.

The position of each nozzle i is determined, due to the cylindrical shape of the ladle, by
a radius ri and an angle θi:

xni = ri cos(θi), yni = ri sin(θi),

ri ∈ [0, Rbot], θi ∈ [0, 2π ], i = 1, 2.

Note that Rbot is the bottom radius of the ladle, see Table 1. The rotational symmetry of
the domain allows for some simplifications: Without loss of generality, we fix the angular
position of one nozzle, θ1 = 0.75π = 135◦ as in the default case, and restrict the second
angle to be in one half of the circular bottom of the ladle, θ2 ∈ [θ1, θ1 + π ]. Therefore,
the space of admissible controls for the nozzles has three dimensions instead of four. To
further reduce the number of equivalent configurations, we also assume r1 ≥ r2. In order
to avoid non-constant constraints1 on the control space, we parameterize as follows:

ξ ,η ∈ [0, 1] and θ2 ∈ [0.75π , 1.75π ],

with

r1 = Rbot

⎧
⎨

⎩
ξ + η/2 if ξ + η ≤ 1,

ξ /2 + 1/2 else,
r2 = Rbot

⎧
⎨

⎩
η/2 if ξ + η ≤ 1,

ξ /2 + η – 1/2 else.

In summary, the nozzles’ positions are described by the tuple (ξ ,η, θ2) in the admissible
set [0, 1]2 × [0.75π , 1.75π ].

1Here we mean that the constraint for r2 depends on the control value r1 , i.e., is not constant.
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Table 2 Mesh parameters. The abbreviation “Dof” refers to the number of degrees of freedom

Mesh refinement level 2 3 4

Number of cells 4608 36,864 294,912
Min/max cell size 0.086/0.149 0.0427/0.076 0.02134/0.0389
Dof u 21,675 160,083 1,229,475
Dof p 1053 7225 53,361
Dof total 22,728 167,308 1,282,836

Remark 1 In [11, Sect. 4.5.3], results for modeling the controls Qi, i = 1, 2, as functions
of time that might change in every time step are presented. For those simulations, a flow
field with Re = 96,000 was used, which is much less turbulent than the flow field considered
here. It was observed that most optimization processes stopped with the maximal number
of iterations (500) and thus did not converge. The remaining simulations often proposed
an oscillatory behavior of the controls, which cannot be realized in practice. And finally,
the reductions of the cost functionals were often small compared with even a constant
control. For these reasons, we were by far not satisfied with the numerical results from [11]
and decided to reduce the complexity of the optimization problem such that it becomes
considerably simpler, but not as simple as using a constant control for the gas flow rates.

3 Setup of the numerical studies
All flow simulations were performed with the in-house research code ParMooN, [16, 17],
which is a finite element code. To perform the optimization, the freely available library
NLopt [18] was coupled to ParMooN.

NLopt offers a number of gradient-free optimization routines. In preliminary stud-
ies, we tested several of them and decided to apply the constrained optimization by
linear approximation (COBYLA) [23] for the simulations presented in this paper. Note
that gradient-based optimization routines, which are likely to need less iterations than
gradient-free routines, require the efficient evaluation of the gradient of the objective func-
tional with respect to the control variables. In principle, this task can be done by solving
an adjoint problem. However, the simulation of the adjoint of the considered problem is
computationally highly challenging, in particular due to the time dependency of the pro-
cess in combination with the nonlinearity of the model as well as the turbulent character of
the flow field. The study of this approach requires a considerable extension of the available
CFD solver and it will be a topic of future research.

As temporal discretization, the Crank–Nicolson scheme with equidistant time steps was
used. In each discrete time instant, a nonlinear system of equations has to be solved. This
system was linearized with a standard fixed point iteration, a so-called Picard iteration.
Each step of the Picard iteration leads to a linear saddle point problem. The linear saddle
point problems were discretized with the Taylor–Hood pair of finite element spaces P2/P1,
i.e., the velocity was approximated with continuous and piecewise quadratic functions and
the pressure with continuous and piecewise linear functions. This pair of finite element
spaces belongs to the most popular inf-sup stable pairs [22]. Based on our experience
from [24], the flexible generalized minimal residual (GMRES) method [25] was used as
iterative solver for the linear saddle point problems and a least squares commutator (LSC)
preconditioner [26, 27] was applied. The Picard iterations were stopped if the Euclidean
norm of the residual vector was below 10–5.
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Figure 2 Triangulations of the ladle, meshes for levels 2, 3, and 4

The domain was triangulated by tetrahedral meshes of different refinement, see Table 2
for details and Fig. 2 for a graphical representation. The meshes were generated by provid-
ing the mesh at the bottom of the ladle and extending it by a sandwich technique into the
third coordinate direction. All simulations were performed on HP compute servers HPE
Synergy with Intel(R) Xeon(R) Gold 6154 CPU, 3.00 GHz.

Numerical results will be presented for different resolutions of the temporal and spatial
discretizations and for several Smagorinsky constants CS from (3) in order to study the
impact of these numerical parameters on the result of the optimization problem.

4 Optimization of the gas flow rates
This section presents numerical results for the optimization of the gas flow rates using
the default nozzles’ positions. From the practical point of view, optimized gas flow rates
can be realized with an automated valve control system. The default configuration of the
nozzle positions is given in Table 1.

As described in Sect. 2.3, the gas flow rate Qi(t) ∈ {1, 17} l/min for each nozzle, i ∈ {1, 2},
is determined by the frequency ωi ∈ [ωmin,ωmax] = [1/40, 1/2], see (6) for the precise for-
mula. Thus, ω1 and ω2 are the control variables for this optimization. A non-zero initial
condition was applied, which describes a fully developed flow field. The objective was in-
deed to optimize Qi(t) during stirring, and not from the state where the liquid is at rest.
This situation corresponds to real applications: the stirring is often strong at the begin-
ning, before the operator adjusts the gas flow to optimize it. In terms of numerical simu-
lations, this approach avoids computing repeatedly the first phase of the flow, leading to
shorter time ranges for the simulations and substantial savings in computational cost. The
choice of the time range T and the initial condition u0 was as follows:

• pre-computations with u0 = 0 and Qi(t) = Qmax, i ∈ {1, 2}, were performed until
T = 100 s, for each configuration, i.e., each combination of �t and CS ,

• the time average ū of the velocity field in the last 20 s (80 – 100 s) was computed to
smooth the flow fluctuations in time due to turbulence, see Fig. 3 for an example of an
averaged velocity field,

• the optimization was performed with u0 = ū and T = 20 s, for each configuration.
Note that the optimal solutions obtained with this procedure might not be completely in-
dependent of u0, even if we considered a time-averaged initial flow field. The influence of
the initial conditions on the optimal solution may be considered in future studies. Simu-
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Figure 3 Optimization of gas flow rates. Averaged velocity field ū obtained with �t = 0.05 and CS = 0.005.
This solution is used as the initial condition u0 for the optimization studies which use the same �t and CS

Figure 4 Optimization of gas flow rates. Subdomain
�0 in the objective functional J2 for the optimization
of Qi , i ∈ {1, 2}. It covers the region where the dead
zones are more likely to appear, i.e., the lower half of
the domain z ≤ H

2 , excluding the area of the plume
cones defined as a box (–0.175 ≤ x ≤ –0.05 and
–0.175 ≤ y ≤ 0.175). This choice is suitable to avoid
the high vorticity located close to the plume cones

lations within this study were performed on levels 2 and 3 of the spatial refinement, the
time steps �t ∈ {0.05, 0.025}, and the Smagorinsky constants CS ∈ {0.005, 0.01, 0.02}.

Concerning the local maximization objective functional J2, the subdomain �0 should
contain regions where dead zones are expected, compare Sect. 2.2. Such regions are lo-
cated in the lower part of the ladle away from the plume cones formed above of the nozzles.
Therefore, �0 was defined to be the lower half of the domain excluding a box above the
nozzles, as depicted in Fig. 4.

Regarding the parameters in the objective functionals, the cost weight λ plays an impor-
tant role for the optimization of the gas flow rates. Five values were studied: λ = 10–i for
i ∈ {1, 2, 3, 4, 5}. For the sake of brevity, only results for two parameters curlthr ∈ {1, 100} in
the objective functional J3(curlthr) will be presented below.
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Table 3 Optimization of gas flow rates. Reductions of the objective functionals, level 2 vs. level 3

�t CS λ Level J1 J2 J3(1) J3(100)

0.025 0.01 0.00001 2 1.000 0.999 0.987 1.000
0.025 0.01 0.00001 3 1.000 0.997 0.968 1.000
0.025 0.01 0.0001 2 1.000 0.935 0.708 1.000
0.025 0.01 0.0001 3 1.000 0.941 0.594 1.000
0.025 0.01 0.001 2 0.970 0.275 0.126 0.998
0.025 0.01 0.001 3 0.995 0.336 0.110 0.999
0.025 0.01 0.01 2 0.258 0.032 0.014 0.859
0.025 0.01 0.01 3 0.497 0.042 0.012 0.874
0.025 0.01 0.1 2 0.030 0.003 0.004 0.351
0.025 0.01 0.1 3 0.069 0.004 0.002 0.362

To assess the effect of the optimization process for different combinations of spatial and
temporal refinement and Smagorinsky constant, we defined a reduction R ∈ [0, 1] of the
objective functionals for each simulation. Let cmin and cmax be the minimal and maximal
values of the last part of the objective functional in equation (4), for which one finds with
a straightforward but somewhat lengthy calculation

cmin = min
ω∈[ωmin,ωmax]

1
2

∫ T

0
Q2

1(t) + Q2
2(t)dt = 2900,

cmax = max
ω∈[ωmin,ωmax]

1
2

∫ T

0
Q2

1(t) + Q2
2(t)dt = 5780,

with the flow rates Q1 and Q2 of the two nozzles, see equation (6). Then the reductions
for the objective functionals J1, J2 and J3(curlthr) are defined by2

R1 =
J0
1 – λcmax

Jmin
1 – λcmax

, R2 =
J0
2 – λcmax

Jmin
2 – λcmax

,

R3(curlthr) =
Jmin
3 (curlthr) – λcmin

J0
3 (curlthr) – λcmin

,

where J0
1 , J0

2 , J0
3 (curlthr) are the initial values of the objective functionals and Jmin

1 , Jmin
2 ,

Jmin
3 (curlthr) the respective results of the simulations.

Regarding the optimization solver, several stopping criteria were employed. Two criteria
are related to the objective functional: its value (“stopval” = –1010 for J1 and J2, 10–10 for
J3(curlthr)) and its reduction rate between the iterations (“ftol” = 10–10). The difference of
successive control variables was also used as a stopping criterion (“xtol” = 10–5). Finally,
the maximum number of iterations was fixed to be 200. All optimizations of gas flow rates
terminated due to a sufficiently small difference of successive control variables.

A comparison of some results on mesh levels 2 and 3 for the same values of �t and
CS is presented in Table 3. It can be observed that usually the reductions of the objective
functionals are rather similar. Since the simulations on the finer grid are likely to be more
accurate, only results obtained on level 3 will be presented and discussed below.

Figure 5 provides some insight in the convergence history of the numerical optimization
process. One can see that often a big reduction of the respective objective functional was

2While R1 and R2 correspond to a negative objective functional, R3 describes the reduction of a positive functional to be
minimized. Hence the different forms of the reductions.
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Figure 5 Optimization of gas flow rates. Reduction of the objective functionals during the optimization
iteration, level 3, CS = 0.01, different time steps

achieved in the first one or two iterations. Usually, the optimization process converged
after 25-40 iterations, compare also Tables 4 and 5, and took, on level 3 using the smaller
time step �t = 0.025, on average 1.4 days, which corresponds to roughly 1.1 hours per
iteration step. A general observation is that the higher the cost of injecting the noble gas,
the higher is the reduction of the objective functional. Figure 5 gives also some information
on the impact of the length of the time step. In most cases, the reductions of the objective
functional were similar for both time steps. But there are some exceptions, in particular
for J2, where sometimes a considerably larger reduction is observed in case that the larger
time step was used.

The main goal of the optimization consists in determining the gas flow rates Qi, i ∈ {1, 2},
for the nozzles. On mesh level 3 and with a given time step �t, there are five values of
the cost parameter λ, three values of the Smagorinsky constant CS , and four objective
functions, i.e., altogether 60 simulations. In contrast to the parameters for the tempo-
ral and spatial refinement, we have no guideline on how to define a Smagorinsky pa-
rameter that is in some sense the best choice. Thus, for each optimization parameter,
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Table 4 Optimization of gas flow rates. Minimum objectives MJ,λ and corresponding frequencies ωi ,
i ∈ {1, 2}. The last column is the number of required optimization iterations. �t = 0.05, mesh 3

Objective J λ MJ,λ ReductionMJ,λ ω1 ω2 No. it

J1 0.00001 –53.84143 0.90192 0.13656 0.025 41
J2 0.00001 –1.43724 0.32240 0.15859 0.02785 33
J3(1) 0.00001 0.40925 0.97046 0.03342 0.03312 28
J3(100) 0.00001 129.15223 0.96660 0.15117 0.025 29
J1 0.0001 –53.98697 0.89091 0.11986 0.025 38
J2 0.0001 –1.10799 0.28574 0.18136 0.03019 41
J3(1) 0.0001 0.71228 0.50805 0.29053 0.04984 31
J3(100) 0.0001 129.54287 0.96569 0.15123 0.02522 43
J1 0.001 –49.8165 0.87434 0.12039 0.02576 36
J2 0.001 2.05743 0.12980 0.25298 0.23902 30
J3(1) 0.001 3.3579 0.13667 0.14809 0.14976 31
J3(100) 0.001 133.52497 0.95737 0.15854 0.0272 35
J1 0.01 –15.51777 0.66315 0.14386 0.13765 28
J2 0.01 28.32234 0.01441 0.14907 0.15026 33
J3(1) 0.01 29.38429 0.01813 0.15032 0.15016 32
J3(100) 0.01 162.50446 0.82260 0.14795 0.15085 26
J1 0.1 247.01347 0.14722 0.15016 0.14946 26
J2 0.1 288.20955 0.00147 0.14975 0.15028 28
J3(1) 0.1 289.08829 0.00261 0.15028 0.15024 34
J3(100) 0.1 422.61609 0.31780 0.15033 0.1497 28

Table 5 Optimization of gas flow rates. Minimum objectives MJ,λ and corresponding frequencies ωi ,
i ∈ {1, 2}. The last column is the number of required optimization iterations. �t = 0.025, mesh 3

Objective J λ MJ,λ ReductionMJ,λ ω1 ω2 No. it

J1 0.00001 –69.27474 1.00000 0.025 0.025 17
J2 0.00001 –3.68885 0.99965 0.02558 0.02594 29
J3(1) 0.00001 0.23004 0.95145 0.03488 0.04074 34
J3(100) 0.00001 119.14479 1.00000 0.02502 0.02502 25
J1 0.0001 –68.75462 0.99999 0.02502 0.02504 23
J2 0.0001 –3.2035 0.99036 0.02773 0.02765 33
J3(1) 0.0001 0.52423 0.49829 0.09994 0.1932 28
J3(100) 0.0001 119.663 0.99998 0.02514 0.02518 22
J1 0.001 –63.58787 0.99949 0.02533 0.02533 29
J2 0.001 0.79576 0.75120 0.14665 0.14607 30
J3(1) 0.001 3.13743 0.07774 0.15003 0.15008 31
J3(100) 0.001 124.6972 0.99858 0.0264 0.02651 34
J1 0.01 –18.27467 0.91106 0.1452 0.03189 37
J2 0.01 26.98974 0.12163 0.15092 0.15044 34
J3(1) 0.01 29.30945 0.01045 0.15051 0.15031 29
J3(100) 0.01 160.6485 0.89003 0.15002 0.14975 34
J1 0.1 248.25463 0.21043 0.15047 0.14971 30
J2 0.1 288.65835 0.01293 0.15072 0.15001 38
J3(1) 0.1 290.05752 0.00157 0.15007 0.14973 39
J3(100) 0.1 421.9993 0.32359 0.15 0.15014 35

i.e., J ∈ {J1, J2, J3(1), J3(100)}, and λ we considered the computed minimum objective value
across all Smagorinsky constants CS ∈ {0.005, 0.01, 0.02}:

MJ ,λ = min
CS

J
(

u(J ,λ,�t, CS)
)
, (7)

giving only 20 results.
Detailed results for both time steps are presented in Tables 4 and 5. First, one can observe

that the predicted frequencies are sometimes different, most often ω1. In these cases, the
frequency is often larger for the larger time step. As already mentioned, the reduction of
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the objective functionals was sometimes notably stronger for the larger time step. But most
important, one can observe that the values of the objective functionals are usually smaller
for the smaller time step, apart of the case of highly dominant costs λ = 0.1. Thus, the
results for �t = 0.025 are better and for this reason, we will restrict the further discussion
to this time step.

Table 5 presents the obtained values MJ ,λ for �t = 0.025. In this table, also the corre-
sponding frequencies ω1 and ω2 of the gas flow rates are given, compare formula (5). The
number of iterations for solving the optimization problem is for the simulation for which
the given value MJ ,λ was obtained. A graphical representation of the optimal gas flow rates
for the different combinations of objective functionals and parameters λ is provided in
Fig. 6. It can be seen that in most cases the frequencies for the gas flow control of both
nozzles are almost the same. Some notable exceptions are J1 with λ = 0.01 and J3(1) with
λ = 0.0001. In Fig. 6, it can be observed that for large cost parameters λ roughly half of
the time the maximal gas flow rates are used and for the other half the minimal gas flow
rates. For small parameters λ, often the whole time interval is operated with the maximal
gas flow rates, sometimes with an exception of a short period at the end. It is remarkable
that the switching between these two forms of controlling the gas flow rates occurs at
smaller values of λ for the two functionals J2 and J3(1) that were designed to pay particu-
lar attention to dead zones, i.e., to zones with low vorticity. One can also observe that the
combination of a mostly constant and a pulsed flow rate can be found among the optimal
solutions (J1, λ = 10–2). This approach was suggested in [7] for another type of stirring
configuration, see Sect. 1.

In our opinion, the obtained results meet the expectations from the qualitative point of
view and they are in agreement with the default industrial practice (Qi(t) = Qmax, i = 1, 2,
t ∈ [0, T]). In this respect, the studied objective functionals turned out to be reasonable
choices.

5 Optimization of the nozzles’ positions
After having found that the used objective functionals and optimization approach lead
to plausible results for the control of the gas flow rates, this section presents a numerical
study where this strategy is applied to optimize the positions of the nozzles for fixed gas
flow rates. This study can be regarded as a more conceptual study with respect to the
industrial practice, since the change of the nozzles’ positions requires a re-design, and,
consequently, a heavy investment, for new ladles. It is then particularly important that
such a new design implies an improvement also for the conventional case of maximal
constant inflow.

The optimization of the nozzles’ position considers the problem

min
ξ ,η,θ2

J(u, Qmax, Qmax),

where the objective functional is defined in (4). As discussed in Sect. 2.2, the factor λ in
the objective functional can be set to 0. Contrary to the previous study, the optimization
of the nozzles’ position requires to start from a fluid at rest and to study the optimization
over a period of time sufficiently long, until the flow is considered to be fully developed.
Thus, at t = 0, u0 = 0, and the end time is fixed to T = 60s. Concerning the local maximiza-
tion objective functional J2, �0 cannot be chosen in such a special way as in the previous
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Figure 6 Optimization of gas flow rates. Optimal gas flow rates for level 3, �t = 0.025, different objective
functionals, and different parameters λ. The frequencies correspond to the values given in Table 5: blue:
nozzle 1; red: nozzle 2

section, since the positions of the nozzles change. For the simulations presented below,
�0 was set to be the lower half (with respect to its height) of the ladle. It corresponds to
the region where dead zones are more likely to appear, for any position of the nozzles. The
gas flow rate at both nozzles was the maximal rate Qmax, given in Table 1.

Results obtained with the time steps �t ∈ {0.05, 0.025} in the Crank–Nicolson scheme
will be presented. The constants used in the Smagorinsky LES model were CS ∈ {0.005,
0.01, 0.02}. As initial positions of the nozzles, the default positions given in Table 1 were
utilized, which corresponds to the parameters r1 = r2 = 0.1485 m, θ1 = 0.75π = 135◦,
θ2 = 1.25π = 225◦. These positions are close to the positions of an industrially used la-
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dle, which was investigated in [11]. The iteration for the optimization algorithm was con-
trolled in the same way as for the optimization of the gas flow rates. Many simulations
terminated again due to a sufficiently small difference in the successive control vectors.
However, there were also two exceptions, which terminated only due to having reached
the maximal number of iterations. In these cases, we could observe that the criterion of
the difference of successive control vectors being small was almost satisfied. For this rea-
son, we decided to include also these results below. Apart of these two cases, the opti-
mization stopped usually after around 85 iterations. Altogether, the optimization of the
position of the nozzles turned out to be considerably more difficult for the optimization
routine than the optimization of the gas flow rates. On mesh 3 using the smaller time step
size �t = 0.025, one computation took on average roughly 11 days (maximum about 24
days), which corresponds to approximately 3.1 hours per iteration step.

Our strategy was to perform the optimization procedures on levels 2 and 3 of the spa-
tial refinement. These simulations were performed on a sequential computer. Then, after
having identified good proposals for the control variables, these are compared on level 4
with pure flow simulations and evaluation of the objective functionals performed within
a parallel framework.

As noted above, the objective functionals J1 and J2 are negative (λ = 0) while J3(curlthr)
is non-negative. In order to meaningfully compare their reductions with respect to the
default configuration, we define the reductions Ri as follows:

R1 =
J0
1

Jmin
1

, R2 =
J0
2

Jmin
2

, R3(curlthr) =
Jmin
3 (curlthr)
J0
3 (curlthr)

, (8)

where for each objective functional Ji, i ∈ {1, 2, 3}, its minimal computed value is Jmin
i and

its initial value (corresponding to the default configuration) is J0
i . Therefore, the reductions

are in the range of [0, 1], where 1 means no reduction. Then, given a number of simulation
results (xk

n1, yk
n1) and (xk

n2, yk
n2) for the nozzle positions, we compute a weighted center as

(xni,c, yni,c) =
∑

k(xk
ni, yk

ni)(1 – Rk)
∑

k(1 – Rk)
. (9)

This quantity reduces the number of optimal solutions to investigate, similarly to MJ ,λ,
defined in equation (7).

Figure 7 presents the results for the functionals that maximize the vorticity, J1 for the
whole ladle and J2 for the lower half of the ladle. On the top, results from level 2 are pre-
sented and on the bottom, results obtained on level 3. On the one hand, it can be observed
that there are stronger reductions of the functionals on level 3. But on the other hand, it
turns out that the predictions of the best positions for the nozzles (red cross and the given
angle θ2) are qualitatively almost the same for J1 and quite similar for J2. We could observe
a similar behavior also with respect to the other functionals: better reductions on level 3
and qualitatively quite close predictions of the optimal positions on both levels. For the
sake of brevity, only the results computed on level 3 will be shown in the following pictures
and discussed below.

For the functional J1, it is predicted that the nozzles should be nearly diametrically op-
posite to each other. The distance from the center of the ladle of the optimal positions is a
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Figure 7 Optimization of nozzles’ positions. Results obtained for levels 2 (top) and 3 (bottom), J1 (left), and J2
(right). The reduction of the functionals is depicted in accordance with the legend, i.e., the size of the circles
represents 1 – Ri with the corresponding reduction Ri from equation (8). The red crosses are the computed
weighted centers, see equation (9). The black plus signs indicate the default positions of the nozzles as given
in Table 1

little bit larger than the distance of the default positions. The optimal position of the sec-
ond nozzle is somewhat different for J2. First, it is closer to the center than in the default
configuration. And second, it is not opposite to the first nozzle, however also not close to
the default configuration.

The results for the regulation of the vorticity J3(curlthr), with different parameters curlthr,
are shown in Fig. 8. It can be seen that the higher curlthr the less the functionals are reduced.
For all values of the parameter, the position of the first nozzle is proposed to be further
away from the center of the ladle than in the default setting. For the other nozzle, J3(1),
J1(25), and J3(50) predict a similar distance to the center, J3(10) a larger one, all compared
with the default configuration. In all cases, a considerably larger angle between the nozzles
is obtained than in the default setting.

In summary, the optimization of all functionals proposes configurations that are clearly
different to the default one and more or less close to diametrically opposite positions of
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Figure 8 Optimization of nozzles’ positions. Results obtained on level 3 for J3(curlthr) with
curlthr ∈ {1, 10, 25, 50}, top left to bottom right. The reduction of the functionals is depicted in accordance
with the legend, i.e., the size of the circles represents 1 – Ri with the corresponding reduction Ri from
equation (8). The red crosses are the computed weighted centers, see equation (9). The black plus signs
indicate the default positions of the nozzles as given in Table 1

the nozzle. The distances of the nozzles to the center of the ladle are similar to those in
the default setting.

As already mentioned, simulations of the flow on refinement level 4 were performed for
five of the optimal positions depicted in Figs. 7 and 8 with the red crosses. The data for
these five positions are provided in Table 6. In addition, the default configuration, compare
Table 1, was included in this study. The simulations were performed on 30 processors uti-
lizing the Message Passing Interface (MPI) parallelization of the used CFD code. A small
time step was chosen, �t = 0.01, and also a small Smagorinsky constant CS = 0.0005. We
found that for larger constants, the Smagorinsky LES model was such diffusive that an
almost steady-state solution was computed. For all five configurations, which were found
to be optimal on mesh level 3 with respect to the different objective functionals, all ob-
jectives were evaluated for the simulations on level 4, thus allowing a comparison of the
alternative configurations to the default one in terms of these objectives.
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Table 6 Optimization of nozzles’ positions. Computed weighted centers (equation (9)) for the used
objective functionals on level 3. The labels correspond to the configurations in Fig. 9

Objective xn1,c yn1,c xn2,c yn2,c Label

Jopt,3
1 –0.11144 0.11144 0.08788 –0.12436
Jopt,3
2 –0.11515 0.11515 0.0167 –0.10072
Jopt,3
3 (1) –0.11694 0.11694 0.07203 –0.12565
Jopt,3
3 (10) –0.12457 0.12457 0.09542 –0.13819
Jopt,3
3 (25) –0.12246 0.12246 0.03319 –0.14931

Figure 9 Optimization of nozzles’ positions. Relative differences of the objectives computed on mesh 4, i.e.,
the graph shows (J∗ – Jdefault∗ )/|Jdefault∗ |. The numbers on top of the bars are the respective objective values for
the default configuration

Figure 9 presents the results of this study, where the relative differences to the functional
values obtained with the default configuration are used for assessment. It can be seen
that for each alternative configuration there is a reduction of the corresponding objective
functional on level 4, for which the configuration was optimized on level 3. All objective
functionals, except J1, are even reduced on all alternative configurations, i.e., all alternative
configurations are better than the default one with respect to the objectives J2, J3(1), J3(10),
J3(25), and J3(50). The highest reductions, for all configurations, can be observed for J2. For
the industrial practice, it is also interesting to look at the solutions which give the highest
reductions for all objective functionals. Computing the mean reductions, one finds that
these are the solutions computed with the nozzles’ configurations proposed by Jopt,3

2 and
Jopt,3
3 (1).

In summary, the optimization of the nozzles’ positions proposed for all objective func-
tionals much different positions than the default one. The optimal positions are often
rather close to an opposite arrangement of the nozzles. It was more difficult for the used
optimization solver to converge than for the optimization of the gas flow rates. Flow simu-
lations on a fine grid showed that in fact all objective functionals are reduced notably, com-
pared with the default configuration, for the corresponding optimized positions found on
the coarser grid.
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6 Summary and outlook
This paper contains the first step of a continuous approach for optimizing buoyancy-
driven liquid steel stirring. To the best of our knowledge, this is the first time that methods
from continuous optimization have been used for this purpose. Two numerical studies
were presented: the optimization of the gas flow rates for fixed nozzle positions (two con-
trol variables) and the optimization of the nozzles’ positions for fixed gas flow rates (three
control variables). To perform the numerical simulations, two open source packages, a
CFD code and an optimization library, were coupled. Turbulence modeling was necessary
and a gradient-free optimization method was applied.

To describe the mixing of the flow field, an objective functional was defined that is based
on the vorticity. Several special cases of this functional were considered. The optimal con-
trol of the gas flow rates turned out to depend on the cost for injecting the noble gas.
Plausible results were obtained for all considered objectives. As a result of the optimiza-
tions of the nozzles’ positions, configurations were obtained that are close to an opposite
arrangement of the nozzles, which is much different than the default configuration. Sim-
ulations on a fine grid showed that indeed all objective functionals gave better values for
the corresponding alternative positions.

In fact, the current study can only be considered as a first step. For the near future, the
investigation of alternative objective functionals and the use of more sophisticated tur-
bulence models are realistic goals. A different control of the gas flow rates3 is possible as
well as the combination of controlling the gas flow rates and the nozzles’ positions. Such
studies increase the number of control variables and it remains to be seen how efficient
a gradient-free optimization method behaves in these situations. Long term goals, which
however increase the complexity of the numerical simulations enormously, are the use of
a two-phase model for simulating the flow and the utilization of a gradient-based opti-
mization method with the help of solving an appropriate adjoint problem.
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