Logical Analysis of Biological Data

Dissertation
zur Erlangung des Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

am Fachbereich Mathematik und Informatik
der Freien Universitat Berlin

vorgelegt von

Katinka Becker

Berlin, Januar 2020

1. Gutachter:

Prof. Dr. Alexander Bockmayr
Freie Universitit Berlin

2. Gutachter:

Prof. Dr. Torsten Schaub
Universitat Potsdam

Datum der Disputation: 15.07.21

Abstract

Methods and models of machine learning have become indispensable for the analysis
and interpretation of big data sets in the biomedical field. This work focuses on the
machine learning method Logical Analysis of Data (LAD), which combines concepts from
combinatorics, Boolean functions and optimization. LAD is based on the generation of
patterns. These patterns are used to communicate relevant information and form theories,
which are the classifiers for the prediction of new data points. This thesis makes contributions
to practice, theory and applications of LAD.

With regards to LAD practice, we present the design and development of our freely available
software package AnswerSetLAD. In the implementation we make use of the declarative
programming paradigm Answer Set Programming (ASP), which is oriented towards difficult
combinatorial search and optimization problems. For that reason, it provides a perfectly
suited framework for the LAD functionalities. In this thesis, we substantiate this statement
with an empirical study on the running time of our ASP approach and a state-of-the-art
Mixed-Integer Linear Programming (MILP) approach for the generation of maximal patterns,
which are a specific type of LAD patterns.

We present two theoretical advancements of LAD concerning prime patterns. This pattern
type plays a key role in the LAD method. Firstly, we propose an algorithm for the enumeration
of all prime patterns of a data set. The algorithm is preferable to classical methods in the
case that the data set has a small maximal Hamming distance between the two classes of
data points. Secondly, we investigate theories formed of prime patterns. Since the number
of such prime theories for a data set is large in general, we define a statistical measure that
can be used to rank prime patterns and, based on this, select those prime patterns that are
more significant than others to form a theory.

Finally, we illustrate two biological applications of LAD. In the first application, we use prime
patterns to successfully identify protein interactions in a cell signaling network based on
perturbation measurement data. The second application is located in the field of synthetic
biology. Here we outline our approach of Boolean classifier generation out of miRNA data.
These classifiers can be used for the assembly of in-vitro synthetic cell circuits to distinguish

healthy from cancerous tissue.

Zusammenfassung

Maschinelle Lernverfahren und Modelle sind fiir die Analyse und Interpretation grol3er
Datensétze im biomedizinischen Bereich unverzichtbar geworden. In dieser Arbeit befassen
wir uns mit der Logischen Analyse von Daten (LAD), einer Methode fiir maschinelles Lernen.
LAD vereint Konzepte aus Kombinatorik, Booleschen Funktionen und Optimierung und
basiert auf der Erzeugung von Mustern. Diese Muster werden dazu verwendet relevante
Informationen zu kommunizieren und Theorien zu bilden, welche dazu genutzt werden
konnen Vorhersagen fiir neue Datenpunkte zu treffen. Diese Arbeit liefert Beitrdge zu Praxis,
Theorie und Anwendungen von LAD.

Im praktischen Teil der Arbeit stellen wir das Design und die Entwicklung unseres frei
zugénglichen Software-Pakets AnswerSetLAD vor. Fiir die Implementierung nutzen wir das
deklarative Programmierparadigma Answer Set Programming (ASP), welches auf schwierige
kombinatorische Such- und Optimierungsprobleme ausgerichtet ist. Aus diesem Grund bietet
es einen perfekt geeigneten Rahmen fiir die Implementierung der LAD Funktionalitdten. Wir
untermauern diese Aussage innerhalb dieser Arbeit mit einem empirischen Vergleich zur
Laufzeit unseres ASP und eines aktuell gebrduchlichen Mixed-Integer Linear Programming
(MILP) Ansatzes zur Erzeugung maximaler Muster, einem speziellen Typ von LAD Mustern.
Wir prisentieren zwei theoretische Weiterentwicklungen beziiglich Primmustern in LAD.
Dieser Mustertyp spielt eine zentrale Rolle in der LAD Methode. Zunichst schlagen wir einen
Algorithmus zur Aufzéhlung aller Primmuster eines Datensatzes vor, welcher besonders in
dem Fall eine geringere Laufzeit als klassische Methoden aufweist, in dem der Datensatz
einen kleinen maximalen Hamming-Abstand zwischen den beiden Klassen von Datenpunkten
hat. Aullerdem untersuchen wir Theorien, die aus Primmustern aufgebaut sind. Die Anzahl
solcher Primtheorien fiir einen Datensatz ist im Allgemeinen gro3. Wir definieren ein
statistisches Maf3, das es ermoglicht, bestimmte sinnvolle Theorien aus der Menge der
Primtheorien auszuwahlen.

Abschlieffend zeigen wir zwei biologische Anwendungen von LAD. In der ersten Anwendung
nutzen wir erfolgreich Primmuster um die Proteininteraktionen in einem Zellsignalnetzwerk
basierend auf einem Perturbationsexperiment zu bestimmen. Die zweite Anwendung ist in
der synthetischen Biologie angesiedelt. Hier erldutern wir unseren Ansatz zur Bestimmung
Boolescher Klassifikatoren aus miRNA Daten. Diese Klassifikatoren konnen anschlie@end
dazu genutzt werden um in-vitro synthetische Zellschaltkreise zu erzeugen, die gesundes
von krebsbefallenem Gewebe unterscheiden konnen.

Contents

I Background 1
1 Introduction 3
1.1 Aims and structure of thisthesis 4
1.2 Data classification and analysis 5
1.3 Preliminaries e 7
1.3.1 Boolean functions 8

1.3.2 Partially defined Boolean functions 12

2 Logical Analysis of Data 15
2.1 Introduction o i i e e 15
2.1.1 Anintroductoryexample 15

2.1.2 The main steps of the LAD procedure 17

2.2 Basicconceptsandnotations. 17
2.3 Patternso e e e e e e e e e 19
2.3.1 Typesofpatterns 20

2.3.2 Pattern parameters - Homogeneity and prevalence 27

2.3.3 Algorithms for pattern generation 28

2.4 Theories o i e e 33
2.4.1 Classesof extensions 34

2.4.2 A discriminant to make predictions 37

2.4.3 Algorithm for theory formation 38

2.5 Data binarization and preprocessing 39
2.5.1 Introduction of Boolean variables 39

2.5.2 Selection of a supportset 41

2.5.3 Dealing with errors in datasets 46

2.6 Summary and discussion 48

vii

viii

Practice 49

3 AnswerSetLAD - A software package for LAD using Answer Set Pro-

gramming 51
3.1 Goals and requirements 52
3.2 DeSign e e e e e e e e e e e e e e e e e 53
3.2.1 Answer Set Programming (ASP) 53
3.2.2 The software structurettt ... 55
3.3 Implementationo e e 56
3.3.1 Data binarization and preprocessing 56
3.3.2 Pattern generation 60
3.3.3 Theory formation and prediction 75
3.4 Performancetesting 77
3.4.1 Comparison to a Mixed-Integer Linear Programming approach 77
3.5 Discussion and perspectiveso e e .. 83
Il Theory 85
4 Theoretical extensions of LAD 87
4.1 PrimePatternForest - An algorithm for the generation of prime
PALteITISt i e e e e e e e e e e e e e e e e 87
4.1.1 Basicidea e 87
4.1.2 Example 91
4.1.3 COrrectness ¢ v v v v v vt e e e e e e e 92
4.1.4 Performance.o 97
4.1.5 DiscussSion i e e 99
4.2 Prime theories and core theories 100
4.2.1 Coretheories 100
4.2.2 Implementation. 103
4.2.3 Discussion 107
IV Application 109
5 Biological applications 111
5.1 Perturbation data of signaling networks 111
5.1.1 Biological background 111
5.1.2 Identifying protein interactions from phosphorylation mea-
surements via pattern generation 112
5.1.3 Discussionol e e e e e 115

5.2 Synthetic biology - cell classifier circuits
5.2.1 Biological background
5.2.2 The framework - miRNA expression profiles and Boolean clas-

sifiers
5.2.3 TheASPencoding
524 Results. e
5.2.5 Performance analysis and testing
526 DiscussSion

V Conclusion
6 Discussion
Bibliography
Danksagung

Ehrenwortliche Erkldrung

137

139

143

153

155

Part |

Background

Introduction

Many problems in biomedical research can be represented by the same question,
namely “Which of the given attributes or combinations of attributes are responsible
for a certain property of the observations in the data set?”. Here the attributes could
be anything from measurements of protein activations or metabolic concentrations to
miRNA profiles. The observation properties could be the activation or non-activation
of a downstream protein or a disease, which is present or not. Such tasks belong to
the area of classification problems.

Machine learning methods for data classification are a large and well investigated
field of research. Support vector machines [32, 95], neural networks [19, 92, 39] and
decision trees [85] are some of the most prominent approaches. While theoretical
machine learning methods are a research topic on their own, their application in life
sciences becomes increasingly important. Nowadays the technological progress and
with it the availability of large data sets poses a major challenge to the research field
of biology and medicine. This increase of data volume gives us, on the one hand,
the chance to comprehend more about the underlying systems, while, on the other
hand, it makes it more difficult to filter out reliably the relevant information. Data
analysis, therefore, became a central part of life science over the last decades and
systems biology formed a new growing field of research [63, 10]. Next to developing
the methods for automated data analysis in the scope of systems biology, one of the
major goals is that the insights that are derived from the data are communicated in
a way that makes them understandable and valuable for the whole interdisciplinary
field.

A machine learning method that combines both the capability of handling large data
sets and the benefit of providing understandable information, is the Logical Analysis
of Data (LAD) [35]. LAD builds on the generation of patterns and uses them to
extract short pieces of information from the data.

In this thesis, we consider the Logical Analysis of Data and its application to biologi-
cal data sets. We present our software package AnswerSetLAD, which provides the
user with all functionalities of the LAD method and is available on GitHub [14]. It is
designed making use of the declarative programming paradigm Answer Set Program-
ming (ASP), which suits the problem of pattern enumeration perfectly. Besides the

1.1

development of our software we present new theoretical ideas based on the LAD
method. Furthermore, we show how patterns and classifiers according to LAD can
be used to answer questions in certain biological fields like signaling networks and
synthetic biology. We thereby make a contribution to analysis techniques in systems
biology.

Aims and structure of this thesis

This thesis makes contributions to the methodology of Logical Analysis of Data (LAD)
with respect to the practice, theory and application. The following paragraphs illus-
trate the contents of my thesis. It is organized in five parts being Background, Practice,
Theory, Application and Conclusion, which represent the fields of contributions.

In this first chapter of the thesis, we give an introduction to the theoretical back-
ground of data analysis and its historical development. We talk briefly about
commonly used methods for machine learning and classification. To prepare for
the following work, we introduce Boolean functions and partially defined Boolean
functions (pdBf), which form the basis for the method we apply.

The second chapter is an introduction to the methodology of Logical Analysis of
Data (LAD) [35]. LAD is a machine learning technique, which combines ideas
from combinatorics, Boolean functions and optimization. We introduce the basic
workflow, namely data binarization, pattern generation and theory formation. In
addition, we outline the development of the methodology from the original proposal
in the 1980s until today.

In the third chapter, we present the design, implementation and performance of
our software package AnswerSetLAD, which enables the user to apply the LAD
functionalities to a (biological) data set. As programming framework we use Answer
Set Programming (ASP) [73], a declarative programming paradigm oriented towards
difficult search and combinatorial optimization problems. It suits the given tasks
of pattern generation perfectly and is hence able to outperform the state-of-the-art
Mixed-Integer Linear Programming (MILP) approaches as we show on the example
of a specific pattern type. Besides the explanation of our software an introduction to
the use of ASP is given.

The fourth chapter is based on theoretical ideas on the extension of the LAD
methodology and focuses on prime patterns. We introduce a new algorithm, called
PrimePatternForest, for the efficient calculation of prime patterns for data sets

Chapter 1 Introduction

1.2

with the property of having small Hamming distance between the set of positive
and negative observations. Secondly, we describe an approach to select a subset of
theories from the large set of prime theories.

Chapter five focuses on biological applications and it is organized in two main
sections, which both include work that has been published previously [15, 17]. In
the first section, we show how AnswerSetLAD can be used on perturbation data
sets of regulatory signaling networks to help understanding the underlying network
structure. The second section displays our work in synthetic biology. Here Boolean
functions are used to classify tissue data as healthy or cancerous depending on
its miRNA profile. These so-called cell classifier circuits are of particular interest
regarding personalized medicine.

The last chapter, Chapter six, gives a conclusion and future directions on the work
described in this thesis.

Data classification and analysis

Current technological development helps to capture an increasing amount of infor-
mation, but leads to a new challenge in data analysis. While the ongoing progress
in experimental technologies helps us to treasure up more and more information,
which might lead to a deeper understanding of the systems we are looking at, the
work of analyzing the resulting data becomes more challenging. In this thesis, we
focus on the analysis of data sets that can be partitioned into two classes, which we
call positive and negative observations. Given a set of observations €2 consisting of
positive observations Q" and negative observations Q~, with QT N Q~ = (), the goal
of a binary classification problem is to decide for a new observation X ¢ 2 whether
it belongs to the positive or the negative class. This decision is called prediction.

At this point, it is worth noting that in the described scenario, where we have
knowledge about a system based on some observations we made and want to
make decisions for “unseen observations”, we will never actually know whether the
classifier we build or the prediction we make is really true or false before we have
seen the outcome of all missing observations. We can certainly define measures
on how well a classifier works, which are usually based on the accuracy of a test
classifier, which is generated by splitting the observed data into a training set and a
test set. The classifier is then calculated using only the training set and its accuracy
is measured on the test set in terms of how many predictions of the classifier were
correct. For the application though, the classifier is built out of all data available and

1.2 Data classification and analysis

N
?

X

Fig. 1.1.: The support vector machine (SVM) is a large margin classifier, which aims to calcu-
late a hyperplane that separates the two classes with a large margin. Hyperplane
A would be chosen over hyperplane B in this visual example because its margin
to the two classes is larger.

the outcome of a prediction is unclear until we have seen the actual result of the
system.

While there exist some widely used measures for classifiers like the already men-
tioned accuracy, it is reasonable to ask whether these measures are an indication for
a good classifier or if there are other properties that might be of even higher use.

In this thesis, we describe a machine learning and classification approach based on
Boolean functions and combinatorics that is called Logical Analysis of Data (LAD) and
was introduced by Peter L. Hammer [35]. The field of classification problems has
been extensively studied and a lot of well known methods exist. LAD shows equal
or even superior performance on classical data sets and carries benefit regarding

applications in particular.

One of the main advantages of the analysis with LAD over other well-known machine
learning methods, such as Support Vector Machines [103, 32, 95], Decision Trees
[23, 85] or Nearest Neighbor Search [11], is the generation of patterns. Patterns
are the main concept of LAD and extract the important information from the given
data. They are easier to interpret and, therefore, easier to communicate than, e.g.,
hyperplanes, which result from a classification via a support vector machine (see
Figure 1.1 for an intuition).

Chapter 1 Introduction

1.3

8
—_
8
)
8
w

R O, ORFR OO O M
.
~

R R R FR,OOOO
R =R OOKRMEROO
O, O, OO

oo IR R O RS

Fig. 1.2.: An example of a Boolean function and its representation as a Decision Tree.

In [23] the authors placed the LAD methodology in context with Decision Trees.
Decision Trees [85] are binary trees. Starting at the root one walks along the
graph choosing the left or right branch at the current node depending on whether
the associated attribute is 1 or 0. When reaching a leaf the classification of the
vector is given by the labeling of the leaf. An example of a Boolean function and a
representation of it as a Decision Tree is shown in Figure 1.2. Every Boolean function
can be represented by a Decision Tree. The authors in [23] show that a special class
that they call reasonable Decision Trees is a sub class of so-called bi-theories, which
are part of the LAD methodology and about which we will learn more in the next
chapters.

LAD provides the possibility to justify the result on the given data [23]. This is
different for most standard classification techniques. Not only can performance
be measured in cross-validation tests or a posteriori clinical trial but the patterns
themselves yield the justification of the generated result. These patterns form a
theory to make predictions and are indicators of how well the theory suits the
problem. Chapter 2 gives an overview of the LAD methodology and describes the
mentioned concepts in more detail. Before starting with the introduction of the
LAD notations and definitions, we present some preliminaries that are useful for the
further understanding.

Preliminaries

We focus our work on binary data. Therefore, the basis for the following discussion
will be the binary set B = {0, 1}.

1.3 Preliminaries

1.3.1

(x1,22,23) | g(z1, 22, 23)

SN’ N e N N N N
RO R MR PR OR

Fig. 1.3.: A truth table of a Boolean function.

Boolean functions

The following definitions and notations are taken from [34], which is a standard
reference in the field.

Definition 1.1 (Boolean function). A Boolean function f of n € N\ {0} variables is
a function on B" into B, where B is the set {0, 1} and B™ denotes the n-fold Cartesian
product of B with itself. A point X = (z1,...,x,) € B" is a true point (false point) of
fif f(X)=1C(f(X)=0). Wedenote with T(f) the set of true points of f and with
F(f) the set of false points of f.

There are different ways of defining a Boolean function. The most elementary way
is the definition by a truth table.

Definition 1.2 (Truth table). The truth table of a Boolean function on B"™ is a complete
list of all points in B™ together with the value of the function at each point.

An example is given in Figure 1.3.

Boolean functions find various applications, e.g. in logic, combinatorics or game
theory. An interpretation from electrical engineering are switching circuits. Those
circuits can be modeled as directed acyclic graphs D = (V, E) where the vertices
V are different gates, which can be AND, OR or NOT gates. There are input gates
v, ...,U, having in-degree 0 and a single output gate g having out-degree 0. In
Figure 1.4 the switching circuit belonging to the Boolean function of the truth table
in Figure 1.3 is shown.

The same Boolean function is visualized via a geometric interpretation in Figure 1.5.
Here the true points and false points of the Boolean function are represented by
points in the n-dimensional hypercube.

Chapter 1 Introduction

() AND

Fig. 1.4.: Switching circuit of the Boolean function defined by the truth table in Figure 1.3.

. (0,1,1) (1,1,1) ® o
® O
(0,1,0) (1,1,0)
x3
(0,0,1) (1,0,1)
(0,0,0) (1,0,0) e

Fig. 1.5.: A geometric representation of the Boolean function in Figure 1.3.

1.3 Preliminaries

10

Besides truth tables, directed graphs and cubes in B™ every Boolean function can be
formulated using Boolean expressions. Before introducing the concept of Boolean
expressions we define the three binary operations in the following.

Definition 1.3 (Binary operations). The Boolean OR V (disjunction), the Boolean
AND A (conjunction) and the Boolean NOT ~ are defined on B by the following rules:
0 0, OA1=0, 1A0=0, 1A1l=1,
0 0, Ovli=1 1v0=1, 1v1=1,

ANO =
V0=
—0, 0=1.

—|

Definition 1.4 (Boolean expression). Let 1, ..., z, be a finite set of Boolean variables.
A Boolean expression on x1, ..., x, is defined recursively by the following:

1. The constants 0,1 and the variables x1,...,x, are Boolean expressions in the
variables x1, . .., Zn.

2. If ® and V are Boolean expressions in x1, ..., x, then ® V¥, ® A ¥ and ® are

Boolean expressions in x1,. .., Ty.

3. Every Boolean expression is formed by finitely many applications of the first two
rules.

We say that a Boolean expression in x1,. .., x, is a Boolean expression on B™.

From this definition, we define in the next step how a Boolean function is represented
by a Boolean expression.

Definition 1.5 (Boolean function). The Boolean function f¢ represented by the
Boolean expression ® is the unique Boolean function on B™ defined as follows. For
every point (z7,...,x;) € B" the value of f(z73,...,x}) is obtained by substituting x
for x; (i =1,...,n) in ® and applying recursively the rules of the binary operations
to compute the value of the resulting expression. When f = fg on B™ we say that f

admits the expression ® and write f = ®.

The Boolean function shown in the truth table given in Figure 1.3 can be represented
by the following Boolean expression:

g(z1,22,23) = (T3 A x3) V (x1).

It is important to notice that every Boolean function can be represented by various
Boolean expressions, but a Boolean expression represents a unique Boolean function.

Chapter 1 Introduction

In fact, there exist 22" Boolean functions of n variables while there are infinitely
many Boolean expressions in n variables.

Normal forms

In order to make it more easy to compare Boolean functions represented by Boolean
expressions, we introduce the concept of normal forms.

For a family of Boolean expressions {®; | k¥ € A} indexed over the set A =
{k1,k2,..., kn} we denote by \/;ca P, the expression (®y, V $p, V.- -V &,) and
we denote by A\, @i the expression (®y, A Pp, A--- APy,). By convention, when
A is empty, \/,ca @i is equivalent to the constant O and A, ® is equivalent to
the constant 1.

Definition 1.6 (Disjunctive and conjunctive normal form). Let 2 be a Boolean vari-
able. A literal is an expression of the form x or T = 1 — x. An elementary conjunction
or term is an expression of the form

C= N\zin \T;, whereANB=.
icA jeB

An elementary disjunction or clause is an expression of the form

D=\/aVv\ 7, whereAnB=J.
i€A jeB

A disjunctive normal form (DNF) is an expression of the form

m m
VGi=VIAwn N\),
k=1 k=1 i€ Ay jEBy,
where each Cy, k = 1,...,m is an elementary conjunction. We say that each conjunc-

tion CY is a term of the DNF.

A conjunctive normal form (CNF) is an expression of the form

where each Dy, k = 1,...,mis an elementary disjunction. We say that each disjunction
Dy, is a clause of the CNF.

1.3 Preliminaries

11

1.3.2

12

A fundamental property of Boolean functions is captured in the following theorem
[34].

Theorem 1.1. Every Boolean function can be represented by a disjunctive normal form
and a conjunctive normal form.

Prime implicants

A field of Boolean functions, which has been intensively studied, is the field of
prime implicants. Willard V. O. Quine [86] introduced prime implicants as minimal
implicants of a Boolean function. Since we will introduce prime patterns as an
extension of prime implicants in the context of partially defined Boolean functions
in the later chapters, we here give a short introduction to prime implicants.

Definition 1.7. Given two Boolean functions f and g on B", we say that f implies g if
f(X)=1=g¢9(X)=1VX € B".

Definition 1.8 (Implicant). Let f be a Boolean function and C' an elementary con-
junction. We say that C'is an implicant of f if C implies f.

Definition 1.9 (Prime implicant). Let f be a Boolean function and C be an implicant
of f. We say that C'is a prime implicant of f if each elementary conjunction obtained
by eliminating an arbitrary literal from it is not an implicant.

Theorem 1.2. [34] Every Boolean function can be represented by the disjunction of all
its prime implicants.

Partially defined Boolean functions

In this thesis, we put a special emphasis on partially defined Boolean functions (pdBf).
These are Boolean functions that are defined on a subset of the points in {0,1}"
only.

Let Q C {0,1}™ be a set of binary points that we call observations. Let 2 be
partitioned into two disjoint classes such that the set Q = QT w Q™ is the disjoint
union of Q" and 9, called positive and negative observations, respectively.

Definition 1.10 (Partially defined Boolean function (pdBf)). Given a set = QT W~
of positive and negative observations we call the pair (QT,Q7) a partially defined
Boolean function (pdBf) on B™ = {0, 1}".

Chapter 1 Introduction

A pdBf (21, Q7) in n variables is defined on a subset Q C {0, 1}". By assigning 0 or
1 to each of the n-dimensional vectors of {0,1}" \ 2, we can define an extension for
(QT, Q7).

Definition 1.11 (Extension). For a pdBf (2, ~) on B"™ a Boolean function e : B" —
B satisfying

Ot C QT (e)and Q™ C Q (e)
is called an extension of (Q1,Q7), where

O (e) = {P € B" | e(P) = 1},
O (e) = {N € B" | e(N) = 0}.

1.3 Preliminaries

13

2.1

211

Logical Analysis of Data

In this chapter, we introduce the concepts and definitions of Logical Analysis of
Data (LAD) [2, 35]. LAD is a methodology for data analysis that combines ideas
from combinatorics and Boolean functions as well as from machine learning and
optimization. It was introduced by Peter L. Hammer in a lecture given in 1986 and
extended and published afterwards together with Yves Crama and Toshihide Ibaraki
in [35].

Introduction

This thesis is located at the intersection of mathematics and computer science with
biology and medicine. As described in the last chapter we aim to analyze biomedical
data sets making use of a machine learning approach. Logical Analysis of Data (LAD)
[2, 35] is a method combining ideas from various fields like Boolean functions,
optimization and machine learning. It provides elaborated tools for data analysis.

LAD is based on the classical concepts of switching circuits and partially defined
Boolean functions (pdBf). Since Boolean functions are a well-investigated research
field and were already at the time when LAD was founded, a broad basis for LAD
existed from the beginning. Over the last decades LAD has been further developed.
For recent insights see [69, 31]. The overall research interest shifted from the
methodology and implementation to the applications in various research fields,
where the biomedical field attracted particular interest [1, 6, 67].

In the following sections we want to introduce the reader to the definitions and
existing concepts of the LAD methodology.

An introductory example

We start the exploration of the LAD methodology with an introductory example
adapted from [35].

15

16

| Day || Apple | Bread | Chocolate | Cheese | Pasta | Broccoli || Stomach ache |

1 0 0 1 0 1 1 Yes
2 0 0 0 1 1 0 No
3 1 1 1 1 0 1 Yes
4 0 1 1 0 0 1 Yes
5 1 1 0 0 0 1 No
6 0 1 0 1 1 0 Yes
7 1 0 1 0 1 1 No

Tab. 2.1.: List of food items the patient consumed over a day for one week.

A patient is complaining to his doctor about a stomach ache, which appears on some
days and does not appear on others. After a physical examination the doctor comes
to the assumption that the stomach ache could be caused by the food that his patient
consumes over the day. Therefore, the doctor requests the patient to make a list of
the different food items he eats over a day for one week.

One week later the patient comes back to see the doctor. The list he wrote down
can be seen in Table 2.1. From the list of food items consumed over the days the
physician concludes that on some days on which the patient had a stomach ache, he
ate chocolate without eating an apple. He never did this on the days without stomach
ache. Furthermore the doctor reveals that on some of the days with stomach ache
the patient had bread and cheese, which he never had in this combination on the
days without stomach ache. The clever doctor additionally realizes that those two
combinations of food items or patterns explain all days with stomach ache in the
list in Table 2.1. His theory, therefore, is that, to prevent the aching stomach, the
patient should not eat these food item combinations.

In the following we want to generalize the approach of the doctor and for this reason

we take a look at the questions that he had to ask himself in order to come up with
his theory:

* How can we compute a short list of food items that explains the stomach
ache? In our example apple, chocolate, bread and cheese were sufficient for this
purpose.

* How can we detect patterns (i.e. combinations of food items) in the data set?

* What is a reasonable way to build theories (i.e. collections of patterns)
explaining the observed stomach ache?

Chapter 2 Logical Analysis of Data

2.1.2

2.2

Fig. 2.1.: The three main steps of the LAD method.

In the following sections we introduce the formal concept and notations of LAD that
are in line with these three questions.

The main steps of the LAD procedure

The LAD procedure can be divided into three main steps. These are data binarization,
pattern generation and theory formation.

Within the following pages we introduce each of the three parts of the LAD method.
Based on the original foundations of LAD, which was designed for binary data, we
will, however, consider the binarization step of non-binary data last and proceed with
the pattern generation and theory formation step first assuming that the underlying
data is in binary form.

Basic concepts and notations

LAD was originally designed for binary data sets. In this section, we introduce
notations on the basis of binary data. Since data in general is not binary the
discretization step plays a key role in LAD and is, therefore, firmly established in the
LAD workflow. We will talk about the binarization of numerical data according to
LAD in Section 2.5.

Let 2 C {0, 1}™ be a set of observations that is divided into two subsets by a decision
variable zg, such that Q = QT W Q~ is the disjoint union of O and Q~, called
positive and negative observations, respectively (see Table 2.2). Note that the decision
variable could be any of the given variables, each leading to a corresponding division
in positive and negative observations.

2.2 Basic concepts and notations

17

18

HEYENENENENEIEN

1] 1 0|01]0]1]|1
2111 1|1 ,1}1]0]1 O+
3] 1 O|1|1]0]0]|1
41 1 010|110
510 000|110
6| 0 1717010 0]1 O
71 0 170110 1]1

Tab. 2.2.: Binary data set {2 partitioned into positive observations Q1 and negative obser-
vations {2~ by decision variable z.

We recall the definition of a Boolean function of n € N variables (Chapter 1 Defini-
tion 1.1). A Boolean function of n € N variables is a mapping f: {0,1}" — {0,1}.
There exist 22" Boolean functions of n variables. A data set 2 as described above is
a partially defined Boolean function (pdBf), meaning that the function f is only given
for Q@ = QT W Q. Every function e: {0,1}" — {0,1} with e(z) = f(z) for all z € Q
is called extension of f.

The two extreme extensions of a pdBf f = (QF,Q7), which we denote by (I)}r and
@ are defined by

1, if O;
()= E
0, ifze;
and
1, ifxeQt;
Py (z) =
0, ifzé¢Qf.

For any extension e of f = (QF,Q7) we get Py (z) < efz) < (I)}r(x) for all x €
{0,1}™. A major goal of LAD is to find a reasonable extension e for a given pdBf.

The main assumption standing behind the LAD methodology is that any real life
data set does not consist of randomly distributed observations, but that there is a
rational explanation for the data observed. We shall, therefore, use LAD to find
some reasonable extension out of the 22" % ways to extend a pdBf that is defined on
k points of the Boolean hypercube {0, 1}". LAD provides concepts and methods to
decide whether an extension is a good extension for a given pdBf. We will get an
in-depth look at these concepts in the following sections.

Chapter 2 Logical Analysis of Data

2.3

" (0,1,1) 1y @
/ o
T T2 I3
(07170) (J (17170) 1]_ O
1101 }Q+
1111
x3 0|11 } _
(0,0,1) (1,0,1) olololf®
e
N
(0,0,0) (1,0,0) 1

Fig. 2.2.: A geometric intuition for patterns as subcubes of the n-dimensional hypercube.
Patterns

The key concept of LAD are patterns. This section is dedicated to the concept of
patterns, their generation and application in LAD.

A pattern consists of literals. For a Boolean variable z, we denote its negation by
T = 1 — x. Both 2 and 7 are literals. A term is a conjunction of distinct literals. Every
term ¢ can be seen as a Boolean function. For a vector v € {0, 1}", we denote by ¢(v)
the binary value that results from applying the Boolean function ¢ to v, where ¢(v)
is defined even if the degree of ¢ is less than n. We say that a term ¢ covers a point
ve{0,1}"ift(v) = 1.

Definition 2.1 (Positive (negative) pattern). Let (Q%, Q™) be a pdBf defined on a
set Q = QT w Q™ of observations. A term t is called a positive (negative) pattern
of (Q1,Q7) if it covers at least one positive (negative) observation and no negative
(positive) observation. The degree of a pattern is the number of its literals.

In Figure 2.2 we see an example of a pdBf in three variables together with its

geometric interpretation in the three-dimensional Boolean hypercube. Two positive

patterns are marked in the data set and their geometric representation is shown.

We note that a pattern of degree d of a pdBf in n variables is a (n — d)-dimensional

subcube of the Boolean hypercube.

2.3 Patterns

19

2.3.1

20

Positive and negative patterns are defined symmetrically. For reasons of clarity
we will often restrict our statements to positive patterns. The same then holds
analogously for negative patterns. The intuition of a positive pattern is that it
shows a combination of variable values that has never appeared in a negative
observation, but did appear for some of the positive observations. The fact that a
new observation is covered by a positive pattern can be seen as an indication of its
positive characteristic [24].

Note that every positive observation corresponds to a positive pattern, and every
negative observation to a negative pattern. Those patterns are called minterms
or characteristic terms. Given the data set in Table 2.2 (partitioned by x(), the
positive observation 1 provides the positive pattern T1Z2x3ZT4252¢ and the negative

observation 5 provides the negative pattern T172232425%6.

Other (arbitrary) examples of positive patterns include T1x4, £375 and x1z3x4. For
instance, the positive pattern Zixg covers the positive observations 1 and 3 while it
evaluates to 0 for the remaining observations, particularly considering the three that
are negative.

To put the definition of patterns in relation to the concept of Boolean functions note
the following Lemma [34].

Lemma 2.1. Let f = (Q1,Q7) be a pdBf. A term t is a positive pattern of f if and
only if t is an implicant of its extension (I)j? that covers some point in Q.

In the last paragraphs, we familiarized ourselves with the definition of a pattern in
LAD. Besides this general definition of patterns, several types of patterns have been
introduced in the LAD literature. We will follow these definitions in the next sections.
When we talk about patterns as defined above we will often refer to general patterns
to distinguish them from the pattern types, which we investigate in Section 2.3.1.

Types of patterns

When we think about the whole set of patterns, we note that in general the number
of patterns is huge compared to the size of the data set. To gain more clarity
within this large amount of patterns it is not only convenient but necessary to define
properties of patterns that allow us to rank them according to certain criteria.

Various properties and types of patterns have been studied and their relative ef-
ficiency has been analyzed [57]. For further definitions we introduce the basic
terminology of the theory of partially ordered sets [2].

Chapter 2 Logical Analysis of Data

Given a set A we denote by A x A the set of all ordered pairs (z,y) such that z € A
and y € A.

Definition 2.2 (Binary relation and partial (pre-)order). A binary relation on A is a
subset of A x A. We say that two elements x,y € A are comparable with respect to a
binary relation p if either (z,y) € p or (y,x) € p, and incomparable otherwise.

A binary relation p on A is called partial pre-order (or quasi-order) if it is

* reflexive, ie. (z,2) € p Vo € A;

* transitive, i.e. (z,y) € pand (y, z) € p implies (z,2) € p Vz,y,z € A.
A partial pre-order is called partial order if it is

* antisymmetric, i.e. (x,y) € pand (y,x) € pimplies x =y Vz,y € A.

We consider partial (pre-)orders on the set of patterns. Let (2T, Q7) be a partially
defined Boolean function of n variables and P a pattern of (2*,Q~). We denote

by
* Lit(P) the set of literals in P;
* S(P) the subcube of P, i.e. the set of points of {0, 1}" covered by P;

* Couv(P) the set of true points of (21, Q) covered by P, called the coverage of
P.

These elaborations allow us to state the following preferences:

Definition 2.3 (Simplicity preference). A pattern P, is simplicity-wise preferred to
a pattern P, if and only if the set of literals in P; is contained in the set of literals in
Py, ie. Lit(Py) C Lit(P,). We write P, <, P;.

Definition 2.4 (Selectivity preference). A pattern P; is selectivity-wise preferred
to a pattern P, if and only if the subcube of pattern P; is included in the subcube of
pattern Py, i.e. S(P1) C S(P2). We write P, <y, P;.

Definition 2.5 (Evidential preference). A pattern P; is evidentially preferred to a
pattern P» if and only if the set of observations covered by P; includes the observations
covered by Py, i.e. Cov(Py) C Cov(Py). We write Py <. P.

We denote by P, <, P that pattern P, is preferred to P; according to preference p.
The simultaneous satisfaction of P, <, P» and P» <, P is denoted by P, =, P, for
any preference p.

2.3 Patterns

21

22

Definition 2.6 (Pareto-optimal). Given a preference p on the set of patterns, a pattern
Py is called Pareto-optimal with respect to p if there is no pattern P, with P, # P and
P <, P,

Note that the relations P, =, P, and P =y, P, imply that P; = P,. Therefore, the
simplicity preference and the selectivity preference are partial orders. The relation
P, =, P, does usually not imply P, = P,. The evidential preference is a partial
pre-order. We further note that obviously P; <, P if and only if P| >y, P.

The defined preferences lead to consequential definitions of pattern types.

Definition 2.7 (Prime pattern). A pattern that is Pareto-optimal with respect to the
simplicity preference o, i.e. a pattern with an inclusion-wise minimal set of literals, is
called prime.

In other words, a pattern is prime if the removal of any of its literals results in a
term that is not a pattern.

For the data set in Table 2.2, the positive pattern Tjz¢ is a prime pattern given that
neither 77 nor z is a positive pattern itself, because each of these terms cover one
of the negative observations. On the other hand, x;x3x,4 is not prime because x; can
be removed to obtain the smaller positive pattern x3x,4, which is prime because the
literals 23 and x4 each cover one of the negative observations.

Definition 2.8 (Strong pattern). A pattern that is Pareto-optimal with respect to the
evidential preference ¢ is called strong.

A pattern P, is strong if there is no pattern P, such that Cov(Py) C Couv(F2). An
example for a strong pattern in Table 2.2 is Z1x¢. This pattern covers observation
1 and observation 3 and we can not find a pattern that covers a larger set of
observations that includes observation 1 and 3.

The simplicity preference and the evidential preference have let us to the definitions
of prime and strong patterns, respectively. We note that a definition of a pattern
type depending on the selectivity preference does not provide us with a greater
insight as the selectivity-wise preferred positive (negative) patterns are exactly the
minterms of the positive (negative) observations. In the following we will see that
the selectivity preference is, nevertheless, very useful when we combine it with one
of the other preferences. In order to do so we define the following:

Definition 2.9 (Intersection and lexicographic refinement). Given two preferences m
and p on the set of patterns:

Chapter 2 Logical Analysis of Data

* A pattern P is preferred to a pattern P, with respect to the intersection ¢ A p if
and only if P, <4 Py and P, <, Pi.

* A pattern P is preferred to a pattern P, with respect to the lexicographic refine-
ment ¢|p if and only if either P, <y Py or Py =4 Py and P> <, P\.

Note that for any preference ¢ that is a partial order and for any preference p the
lexicographic refinement ¢|p is equal to ¢.

Outgoing from the previous definitions we can define types of patterns according to
combinations of preferences. Before doing so we take a look at the possible pref-
erence combinations and we will observe that out of the six possible combinations
only three define new types of patterns [57].

We remind ourselves that the selectivity preference and the simplicity preference are
contrary. Therefore, any combination between these two does not make any sense.
Furthermore it can easily be seen that the following holds:

P>, Po= P > Ps.

Therefore, the evidential preference is in fact a refinement of the simplicity pref-
erence and the intersection o A € equals 0. Having in mind that simplicity and
selectivity are partial orders and that the lexicographic refinement ¢|p is equal to
¢ for any partial order ¢, we get that ole = 0 and X|e = ¥. Concluding from the
previous paragraphs we get that only €|o, €[> and X A € lead to new preferences. We
introduce the according pattern types in the following definitions

Definition 2.10 (Spanned pattern). A pattern that is Pareto-optimal with respect to
3 A e is called spanned.

Examples for spanned patterns in Table 2.2 are T1xoT31425T¢ and xox3T5x6.

For the pattern types that are Pareto-optimal with respect to €|o and €[> we do not
need to introduce new names, because the following theorems hold [57]:

Theorem 2.1 (Strong prime). A pattern is Pareto-optimal with respect to €|o if and
only if it is both strong and prime.

Theorem 2.2 (Strong spanned). A pattern is Pareto-optimal with respect to €| if and
only if it is both strong and spanned.

2.3 Patterns

23

24

Preference | Pareto-optimal pattern
o Prime
by Minterm
€ Strong
YNe Spanned
€lo Strong prime
€| Strong spanned

Tab. 2.3.: Pareto-optimal pattern types in LAD.

An overview of the pattern types is given in Table 2.3.

The LAD methodology underlies a theoretical development and, therefore, the
definition of some of the pattern types changed throughout the years. When LAD
was first introduced in [35] general patterns were what we call prime patterns now.
The basic definition of a pattern (nowadays prime pattern) is strongly related to
the definition of prime implicants studied by W. Quine [86] in the 1950s, which are
inclusion-wise minimal implicants of Boolean functions. We note that in the special
case of Boolean functions, i.e. Q7 U Q™ = {0,1}" the definition of prime patterns
and the definition of strong patterns actually coincide in that of prime implicants.

Theorem 2.3. [35] Every prime pattern of a pdBf (Q%, Q™) is a prime implicant of its
extension tI)ZrQJr’Q,).
Besides the pattern types introduced, which are based on the preferences discussed,
other pattern types have been developed in the LAD literature. We focus on one
more pattern type, the maximal patterns, in the following paragraphs as we will
make use of it throughout the thesis.

Maximal patterns

Over the last decades various pattern types alongside the types defined by the
preferences introduced by Hammer et al. [57] were studied. Most of them are based
on the coverage of a pattern. In the next paragraphs and the following chapters we
make further use of the definition of maximal patterns.

Definition 2.11 (Maximal pattern). A pattern is called maximal if it is maximal with
respect to the number of observations covered.

A pattern P; is maximal if there is no pattern P, such that |Cov(Py)| < |Cov(P)|.
Examples for maximal patterns in Table 2.2 are Tix3T3x¢ and zox4. All positive

Chapter 2 Logical Analysis of Data

maximal patterns of the data set cover exactly two positive observations. We do not
find a pattern covering more positive observations than that.

We want to put emphasis on the following rather easy remark to avoid confusions,
as in literature maximal patterns are sometimes misleadingly referred to as strong
patterns.

Remark 2.1. A maximal pattern is a strong pattern, but a strong pattern need not be
a maximal pattern.

Proof. Let P; be a maximal pattern. Then |Cov(Ps)| < |Couv(P})| for all patterns Ps.
It follows directly that there exists no P, such that Cov(P;) C Cov(P,). Therefore,
P, is a strong pattern.

On the other hand let P, be a strong pattern. It holds that no pattern P, exists with
Cov(Py) C Cov(Ps). This does not imply that there does not exist a pattern P’ with
a higher number of covered observations |Cov(P;)| < |Cov(P’)|, because we do not
demand set inclusion here. For the construction of a counterexample we consider the
data set given in Table 2.2. An example for a negative strong pattern P is ZT3x3 that
covers only observation 5. We notice that no pattern exists that covers observation 5
and any other of the two negative observations, which confirms that P; is a strong
pattern as it covers an inclusion-wise maximal set of observations. However, negative
patterns exist, which cover observation 6 and 7 simultaneously. An example for such
a pattern is z174. Therefore, P; is not a negative maximal pattern, because negative
patterns having a coverage with higher cardinality exist. O

The definition of evidentially preferred patterns evolved over the last decades.
We want to stick with the original definition, which we illustrated here. When
evidentially preferred patterns were first introduced in [57], they were defined
as patterns that have a maximal coverage with respect to set inclusion. In the
article the authors argue that it is more useful to define strong patterns according
to the property of having an inclusion-wise maximal coverage rather than having a
maximal number of covered observations, because the coverage C'ov(P) of a pattern
P can be seen as its "body of evidence“. According to the authors it is, for that
reason, a better relation as it takes the individual coverage into account and not
just a number. In newer publications such as [93] maximal patterns are sometimes
referred to as strong patterns. Here we do not follow this unfortunate choice of
name.

In [7] the definition of maximal patterns, as given in Definition 2.11, was first
presented. The authors of [22] refined the definition to the special case of maximum

2.3 Patterns

25

26

a-patterns, which are patterns covering observation o while having a maximum
coverage, i.e. a maximum number of covered observations of the correct sign. In
[54] the authors defined C-maximum patterns for a subset C C QT as patterns
covering a maximum number of observations of the correct sign while also covering
a set of reference observations. We see that the C-maximum patterns in fact are
what we call strong patterns according to [57].

Is one pattern type better than another?

After the introduction of various types of preferences and patterns we want to
facilitate the question of which pattern types are more useful than others. This
question was addressed in various studies [57, 4, 7, 5]. We do not want to go into
all the details here, but point out some of the results for a deeper understanding of
patterns in LAD.

In [57] several arguments to build on patterns that are simplicity-wise preferred,
namely prime patterns, are given. The first and most obvious one is that simple, or
better, short patterns are easier to comprehend by humans. As a second argument
the authors state that some studies showed [20] that simplicity of patterns leads to
higher accuracy, although they point out that this result is not universally accepted
[60]. In terms of LAD the use of the simplicity preference reduces the number of
false negatives. However, it does not guarantee not to produce a lot of false positives
as new observations are likely to be classified as positive when using short patterns
only. To reduce false negatives, a natural way is to favor longer, i.e. more selective
patterns.

In [5] the authors studied the problem of the use of comprehensive, i.e., long
and selective, vs. comprehensible, i.e., short, patterns in LAD. Their study shows
that selectivity-wise preferred patterns do provide a higher accuracy when used
for classification with LAD but that the loss of accuracy using simple patterns is
relatively small. The aspect of computational effort, therefore, is a reasonable point
to think about when deciding for one of the two types for a certain application.

Summarizing, the question of which pattern type should be preferred can not be
answered in general but should rather be discussed and weighed according to the
data at hand.

Chapter 2 Logical Analysis of Data

2.3.2 Pattern parameters - Homogeneity and prevalence

The development of patterns in LAD can be seen as the development of a sim-
ple language for characterizing observations, which can easily be understood and
communicated across application fields.

When we talk about applications apart from purely mathematical problems, one
is always confronted with data sets that are not perfect in the sense of having one
unique explanation. There might be errors coming from experiments or discretiza-
tion. To balance these inaccuracies, parameters have been introduced in LAD [7],
which allow some latitude in the definition of patterns. Two of them, which are most
prominent and which we use in the sequel, are called homogeneity and prevalence.

Definition 2.12 (Homogeneity). The homogeneity Hom™ (P) of a positive pattern P
is given by

Hom*(P) = C0®)

Sl (2.1)
|CO'Utotal(P)‘

where Cov(P) is the set of positive observations covered by P and Covyyq(P) is the
set of observations covered by P in total. The homogeneity Hom™ (P) of a negative
pattern P is defined analogously.

The homogeneity of a pattern puts the number of covered observations of positive
sign in relation the the number of observations covered in total, in particular
including the negative observations. A high homogeneity of a pattern means that it
covers a lot more positive observations (or observations of the correct sign) than
negative observations (or observations of the opposite sign).

Definition 2.13 (Prevalence). The prevalence Prev' (P) of a positive pattern P is
given by

_ [Cou(P)]

Prevt(P) = o] (2.2)

The prevalence Prev™ (P) of a negative pattern P is defined analogously.

The prevalence of a pattern is a measure of how many positive observations are
covered in relation to the number of positive observations in total. A positive
pattern has a high positive prevalence if it covers a large amount of the positive
observations.

2.3 Patterns

27

2.3.3

28

In the recent literature on LAD, the parameters homogeneity and prevalence became
more popular and with that standard measures when dealing with patterns. In [4]
the authors name five basic parameters that are associated to each pattern, namely
sign, degree, type, homogeneity and prevalence.

Algorithms for pattern generation

The generation of patterns is a central problem of LAD. Several algorithms for
the calculation of patterns of different types have been developed. In this section,
we introduce two of them. The first one is a term enumeration approach for the
generation of prime patterns. The second one is a Mixed-Integer Linear Programming
(MILP) approach for the calculation of maximal patterns.

Term enumeration approach for prime pattern generation

In the beginnings of LAD, a main focus lay on prime patterns. In [24] the authors
introduced two opposing methods for the generation of prime patterns. A top-down
and a bottom-up approach. The top-down method starts with the minterms of
each positive (negative) observation and then systematically removes literals until
arriving at a positive (negative) prime pattern. The bottom-up approach is shown
in Algorithm 1. The algorithm generates prime patterns up to a given degree D.
For that purpose it begins adding systematically one literal after the other checking
at each stage whether the resulting term covers a positive observation and hence
is a candidate term. In a second step it checks whether the candidate term does
not cover any negative observations, which makes it a prime pattern. The term
enumeration method is a costly process. For a binary data set with n variables
S 2 (') candidates have to be searched to enumerate all patterns up to degree
D =n.

In the further development of LAD, Pareto-optimal patterns were introduced [57]
and algorithms to transform patterns into Pareto-optimal ones. In [7] the authors
introduced a consensus-type algorithm for the generation of spanned patterns
called SPIC - spanned patterns via input consensus, which runs in polynomial time.
Procedures for the calculation of all strong spanned and all strong prime patterns
were proposed in [5] and a set covering algorithm for the generation of maximum
patterns in [56]. An efficient algorithm for enumerating all prime patterns [9] and
a branch-and-bound algorithm for patterns having maximum coverage [40] have
been developed.

Chapter 2 Logical Analysis of Data

Algorithm 1 Term enumeration algorithm for the generation of prime patterns up
to a given degree [24].

1: input:
B, B~ c{0,1}" > Sets of positive and negative Boolean points
D > Maximal degree of patterns to be generated
2: output:
P > Set of prime patterns of degree up to D
3: initialize:
P =
Co := {0}
4: for d:=1to D do
5 if d < D then
6: Cy:=0;
7: end if
8 for T through C;_; do
9: p :=maximal index of literal in T’;
10: for s :=p+1tondo
11: for l,,¢,, through {/,,1;} do
12: T =T Alpew;
13: fori:=1tod—1do > All subterms in Cy_1?
14: T" := T with ith literal dropped;
15: if 7" ¢ Cy_1 then
16: go to <;
17: end if
18: end for
19: if 1 € T'(B*) then > Positive observation covered
20: if 1 ¢ T'(B™) then > No negative observation covered
21: P:=PU{T'}; > T is prime pattern
22: else if d < D then > Negative observation covered
23: Cyq:=CyU{T'}; > T is candidate
24: end if
25: end if
26: s
27: end for
28: end for
29: end for
30: end for

2.3 Patterns

29

30

min Yy (2.3)

2,y,d

1€Q®
2n

S.t. Zaijzj +ny; >d, i€ Q° 2.4)
j=1
2n ~
Y ayzi<d—1, i€Q (2.5)
j=1
Zj+ g <1, JEN (2.6)
2n
» zj=d (2.7)
7j=1
Sy <0t -1 (2.8)
€Q®
1<d<n (2.9)
z€{0,1}*" (2.10)
y e {0,1}™* (2.11)

Fig. 2.3.: MILP adapted from [93] for the generation of maximal patterns.

A major development in pattern generation are Mixed-Integer Linear Programs
(MILP). In the following paragraphs we give an insight in how MILP can be utilized
for pattern generation using the basic example of maximal patterns.

MILP approach for maximal pattern generation

A Mixed-Integer Linear Programming (MILP) approach for the generation of different
types of patterns was proposed in [93] and further studied in [106, 107, 105].

In their first publication on the topic [93], the authors formulated a MILP generating
maximal patterns and adjusted the program for the calculation of maximal prime
and maximal spanned patterns. We follow this construction and explain here in
more detail the MILP adapted from [93] for maximal pattern generation. It is shown
in Figure 2.3.

The main idea of the program is to minimize the number of observations in the
data set that are not covered by the generated pattern. This guarantees that the
pattern we calculate is a maximal pattern by definition. We introduce a few notations
according to [93], which are needed for understanding the MILP.

Chapter 2 Logical Analysis of Data

In the following let @ € {+, —} be a variable such that Q°* stands for either Q7, the
class of positive observations, or 2™, the class of negative observations, depending
on whether positive or negative patterns are calculated. We notate with e the
opposite of . Suppose there are m® observations of type e. Each of the observations
is described by n attributes x;, j € N = {1,...,n}. For each observation O;, i € Q°,
e ¢ {+,—}, let a;; denote the binary value of the j-th attribute in observation O;.
For the negation of the variables x;, j € N we introduce n additional attributes
Tn4;. We denote with [; the j-th literal, which is either I; = z; or [; = x,,4;. A term
t = Ajen' lj, N € N is a conjunction of literals and d is the degree of the term. We
call aterm ¢ a e pattern, e € {+, —}, if it is a positive or negative pattern, respectively.
For a term ¢ of degree d we use binary decision variables z;, j = 1,...,2n to notate
whether literal /; is included in ¢ or not. This means that /; is included in the term if
and only if z; = 1, for each j = 1,...,2n. For all j € N we have that z; + x4 ; = 1.
This implies that

zj+zn+j§1, Vj € N.

For a term of degree d, we get that

2n
>z =d
j=1
We define a function D(O;, z) = Z?Zl a;jz;. We consider a e pattern z = (21, ..., 22p).

This implies that the vector z differentiates at least one e observation from all ®
observations. Therefore, D(O;, z) = Z?il aijz; < d for all O;, i € Q° and at least
one observation Oy, ¢ € Q° exists for which D(0Oy, z) = Z?Zl aq;zj > d. We note

that we might also have D(Oy, z) = 3.2

ey gz < d for some k € Q° as the pattern

might not cover all the e observations.

We introduce m?® binary variables y; for O;, i € Q°. We set y; = 0 if D(O;,2) > d,
meaning that the observation O; is covered by the pattern associated with the vector

z=(z1,...,29m), and y; = 1 if D(O;, z) < d, meaning that the observation O; is not
covered by the pattern associated with the vector z = (z1, ..., z2,). Then it follows
that

2n
D(0;,2) = Zaz‘ij <d-1, VieQ®,
j=1

2.3 Patterns

31

32

and

2n
D(Oy,2) =Y ajz+ny; >d, Vie Q.
7j=1

The sum },.. y; equals the number of e observations that are not covered by a
pattern

t= N Lb=Nz N\ 7 jeN

Zj+zny;=1 zj=1 Zp45=1

Theorem 2.4. Let (z,y,d) be a feasible solution of the MILP in Figure 2.3. Then P

defined as
P = /\ xj /\ T

zj=1,jEN znt+j=LJeN

forms a e pattern whose degree is d.

Proof. We begin by showing that the MILP in Figure 2.3 has at least one feasible
solution. For this purpose we select any observation O,, ¢ € Q° and set z; = 1 for
aqj = 1 and z; = 0 otherwise. Further we set y; = 1 for i € °, i # ¢. Then we get

?Zl zj =n =dand z; + z,4; = 1 for all j € N. The constructed solution (z,y, d),
therefore, satisfies all constraints of the MILP and is a feasible solution.

Next we consider a feasible solution (z,y,d) of the MILP and define N; := {j =
1,...,2n | z; = 1}. Based on (2.8) we can assume a e observation O;, [€ Q°* for
which y; = 0 in the solution. Then from (2.4) and (2.7) follows that a;; = 1 for all
j € N for O; and from (2.5) and (2.7) follows that a;; = 0 for at least one j € N,
for each Oy, k € Q°. This yields for the term associated with the solution (z, y, d)
applied on the observation O;:

H ayj = H ag; H a;; = 1.

JEN; zj=1,j€EN zn4+j=1,JEN

For all observations Oy, k € Q° we get
H a5 = 0.
JEN

Therefore, the term associated with the solution covers at least one e observation,
namely O; by construction and none of the ® observations. Hence the term is a
pattern. The constraints given in (2.6) and (2.7) imply the degree Z?Zl zj=d=
| N¢| of the pattern, where |NVy| is the cardinality of the set /V;. O

Chapter 2 Logical Analysis of Data

2.4

Theorem 2.5. Let (z,y, d) be an optimal feasible solution of the MILP in Figure 2.3.
Then P is a maximal e pattern whose degree is d.

Proof. Theorem 2.4 implies the existence of a feasible solution. The optimum of the
MILP is bounded from below by 0. These two observations guarantee the existence
of an optimal solution for the MILP.

Further, we recall that y;, i € Q® having value 1 in a solution of the MILP indicates
that the corresponding observation O; is not covered by the pattern that is formed
as described in Theorem 2.4 in association to the solution. The objective function
of the MILP minimizes the sum over the y; and, therefore, minimizes the number
of observations that are not covered by the resulting pattern. As a result a pattern
constructed from an optimal solution of the MILP given in Figure 2.3 has maximum
coverage among all e patterns and is by definition a maximal pattern. O

In [93] the authors show how the MILP presented in Figure 2.3 can be modified to
generate different types of patterns, namely maximal prime and maximal spanned,
by only changing the objective function. They further introduce homogeneity and
prevalence to the Mixed-Integer Linear Program.

Within this last section we studied the concept of patterns in LAD. We learned about
various pattern types, their characteristics and advantages. In the next section we
focus on how patterns can be combined to form different types of theories.

Theories

The theory formation is the final step in the data analysis with LAD (see Figure 2.1).
As mentioned before, a major goal of LAD is to find a reasonable extension e
for a given pdBf f = (Q1,Q7). In this section, we introduce different classes of
extensions, explain how predictions of new observations can be made in practice
by the construction of a discriminant and give an insight in existing algorithms for
theory formation.

For a pdBf f = (21, Q) the disjointness of the sets of positive and negative obser-
vations is a necessary and sufficient condition for the existence of an extension of f.
The actual calculation might, however, be a hard problem, which has extensively
been studied (see, for example, [26]).

2.4 Theories

33

2.41

34

Definition 2.14 (Theory). Let f = (Q7,Q7) bea pdBfon Q = QT UQ~ C {0,1}".
An extension e: {0,1}" — {0,1} with e(x) = f(x) for all x € Q of f which can be
represented as a Boolean expression by the disjunction of a set of patterns of f is a
theory.

Theories in LAD are constructed to understand certain phenomena and to make
predictions for new observations. While an important part of the methodology
regarding theories is of course how to build them (see Section 2.4.2), we first have
a look at different classes of extensions and how they can model different behavior
of the data and the underlying systems.

Classes of extensions

Given a pdBf f = (Q1,Q7) with Q = QT U Q™ C {0,1}" the number of all feasible
extensions of f = (27,0 7) is in general very large depending on n and the number
of not observed vectors. In this subsection, we talk about some of the different
classes of Boolean functions that were studied in the context of LAD and help to
narrow the search space down when more details are known about the underlying
process. Although the search space becomes smaller the problem EXTENSION(C') is
shown to be NP-hard [26] for most of the classes C.

Problem: EXTENSION(C)
Input: ApdBf f=(QF,Q) withQ=QTuQ" C{0,1}"
Output: An extension e € C of f

We want to describe some of the classes of Boolean functions in more detail. For a
more comprehensive overview and an introduction to more classes of extensions we
refer the reader to [2, 26].

Definition 2.15 (Positive extension). An extension e is called positive or monotone if
X <Y =eX)<el),where X = (x1,...,2,) <Y = (y1,...,yn) means z; < y;
fori=1,....,n.

A positive extension carries the information that each attribute either has a con-
tributing effect to the outcome or it has no effect at all. Regarding the introductory
example given in Section 2.1 this means that a positive extension describing the
phenomenon of getting a stomach ache from the consumption of food items implies
that food items can not have an inhibiting effect on the stomach ache, i.e. either a
food item contributes to the disease or it has no effect at all.

Chapter 2 Logical Analysis of Data

An elementary conjunction is called positive if it does not contain any complemented
variables. The following theorem is well known:

Theorem 2.6. [35] A Boolean function is positive if and only if its prime implicants
are positive.

A result regarding the LAD method following from Theorem 2.6 is:

Theorem 2.7. [35] A pdBf has a positive extension if and only if its prime patterns
cover all the positive observations.

An extension, which is not positive, but can be tranformed into a positive function
by a change of variables is called unate:

Definition 2.16 (Unate extension). An extension e is called unate if for some subset
V of variables, the change of variables

, T, ifeeV;
Tr =

x, otherwise,

transforms e into a positive function.

Such a change of variables can for example be made for an extension e = Ty with
x' = T but no such change is possible for an extension of the form ¢’ = Zy V zz.

For the introductory example such a unate extension carries the information that
each attribute has a constant effect on the stomach ache, meaning that the effect is
either contributing or inhibiting but not both in different combinations.

Classes of theories

Besides such extensions which carry additional information about the characteristic
of the data by their type, theories of small order are of special interest, because
interpretation and further calculations are more easy the simpler the theory (or
extension) is.

The order O(t) of a conjunction ¢ is the number of literals in ¢. The order of a DNF
t1 Vta V.- Vit for conjunctions ¢1, ..., ¢ is the maximum of O(¢;) fori =1,... k.
Every Boolean function can be expressed as a DNF. We define the order of a Boolean
function as the order of its expression(s) of lowest order.

2.4 Theories

35

36

According to [35], we call a pattern redundant with respect to a theory if the Boolean
function obtained by omitting it from the set of patterns is still a theory. Similarly
we call a literal redundant with respect to a pattern if the term obtained by omitting
it is still a pattern.

Definition 2.17 (Thrifty theory). A theory is called thrifty if it does not contain any
redundancies in the patterns it includes as well as in the literals included in its patterns.

It can easily be seen that a thrifty theory is formed out of prime patterns. In [35]
the authors stated the theorem below, which follows directly from the construction
of a thrifty theory:

Theorem 2.8. [35] If there exists a theory of order k for a pdBf then there exists a
thrifty theory of order at most k. In particular, there exists a lowest order theory that is

thrifty.

A special class of theories, which we mentioned already in the very beginning of this
thesis, is the class of bi-theories. In [23] the authors lie special emphasis on these
kind of theories as they seem to be the most justifiable theories because they are
supported both by the negative and the positive observations. Let us explain this in
more detail.

Following the definitions of Crama et al. [35] a theory (or sometimes called positive
theory) is an extension of the pdBf (21, Q™) that can be written as a disjunction of
positive patterns. A co-theory [23] (or sometimes called negative theory) is a theory
for the pdBf (2, Q") and thus a Boolean function in Disjunctive Normal Form built
out of negative patterns.

Definition 2.18 (Bi-theory). A theory e is called a bi-theory if €, the complement of e,

is a co-theory.

Bi-theories play a special role in the LAD methodology because they are not only
based on the observations of positive patterns leading to a positive classification, but
also have a supported result regarding the negative classification.

In [23] the authors state that the class of reasonable Decision Trees is a subset of
the class of bi-theories. According to [23] we call a Decision Tree D reasonable for
(Q, Q) if

1. D defines an extension of (Q,Q7);

2. for every leaf u of D, at least one observation of (Q+, Q™) is classified into u;

Chapter 2 Logical Analysis of Data

242

3. for every nonterminal vertex v of D, at least one positive observation Ot € QT
is classified into a descendant of v, and at least negative observation O~ € Q~
is classified into another descendant of v.

Reasonable Decision Trees are a well-studied field [74, 87, 28].

A discriminant to make predictions

In the last paragraphs, we introduced the concept of extensions and theories in LAD
and how different classes can be used to model different behaviors of the underlying
data set. In this subsection, we show how a theory can be built in practice and used
for prediction with help of a discriminant [24].

There are several steps in the theory formation process where decisions have to be
made according to the data and application. The first step is to select a representative
subset of patterns. On the one hand, this subset should be large enough to capture
all features of the data set. On the other hand, it should not be too large, because it
might become hard to understand and might lead to uncertain classifications. To
ensure that positive observations are assigned positive by the theory and negative
observations are assigned negative, the subset of patterns should be chosen such that
every positive (negative) observation is covered by at least one positive (negative)
pattern. For this reason, we refer to such a subset of patterns as a pattern cover. An
observation is classified as positive (negative) if it is covered by some of the positive
(negative) patterns in the theory and by no negative (positive) pattern.

In the case that an observation is covered by both positive and negative patterns of
the pattern cover, we construct a discriminant to weigh the positive and negative
characteristic of the observation. Therefore, relative weights are assigned to each of
the patterns: The discriminant A for v € {0, 1}" is given by

A(v) =Y wiPf(v) +) w B (v), (2.12)

k 1
where P",..., P, k € N are the positive patterns with their positive weights
wy,...,w; and P ,..., P, 1 € N are the negative patterns with negative weights
wy,...,w, . For classification, a threshold ¢ has to be chosen. A vector v is classified

as positive if A(v) > ¢ and negative if A(v) < t.

To increase the separating power of the discriminant described above the authors
in [24] proposed to require that each positive (negative) point has to be covered
by several positive (negative) patterns. The weights for the patterns can be chosen

2.4 Theories

37

2.4.3

38

according to the application. In [24] the authors proposed to weight the patterns
according to their properties like low degree or high coverage. We notice again
that the LAD method gives space for the adjustment of the model according to the
application.

Algorithm for theory formation

In the next paragraph, we introduce an algorithm proposed by Hammer et al. [35]
and taken up by Ryoo et al. [106] later for the calculation of a pattern cover.

An iterative algorithm for the generation of a pattern cover

As we described before, a main part of the theory formation step is the selection of
a reasonable pattern cover for the given set of positive and negative observations.
In the first paper on LAD [35] the authors proposed a procedure to calculate a
pattern cover for a given data set. This algorithm was later adapted in [106]
under the name PattGen. In Algorithm 2 we show the proposed procedure. The
algorithm successively calculates a positive pattern covering some of the given
positive observations. These positive observations covered are deleted in the next
step from the set of positive observations for which a pattern that covers them still
has to be chosen. This way a positive pattern cover is generated. As a final step
the generated patterns have to be checked for redundancies, which might occur
due to the construction of the algorithm. To get a pattern cover of all positive and
negative observations, the same procedure has to be implemented for the negative
observations analogously. Besides the data set the algorithm takes a pattern type T
as input. Any type introduced in the former section can be chosen here, although
one has to pay attention to the fact that it may not be possible to find a pattern cover
consisting only of patterns of the given type. We will make use of the algorithm
explained in the later chapters of this thesis.

At this point we have learned about the major steps pattern generation and theory
formation of LAD. These are the only two steps forming the LAD methodology as it
was proposed in [35]. However, we already mentioned that, since data is usually not
binary, a preprocessing step had to be added to the LAD workflow. In the following
section we explain how non-binary data is transformed into binary data in LAD as
proposed by [24].

Chapter 2 Logical Analysis of Data

Algorithm 2 Algorithm for the generation of a positive pattern cover based on the
procedure proposed in [35].

1: input:
DatasetQ=QTUQ;
Pattern type T’
2: output:
A set of positive patterns covering the whole set of positive observations

ot :=Qt;

while O" # () do
Calculate a pattern P of type T for O;
Ot :=07%\ Cov(P);

end while

Ny hw

2.5 Data binarization and preprocessing

2.5.1

LAD was originally designed for binary data sets and it has been shown that it works
well for this case. Nevertheless, most real-life data sets are not binary. To make such
data sets accessible to the method and, therefore, suitable as inputs for LAD it is a
crucial step in the methodology to discretize them. Many methods for discretization
have been developed and studied in the literature (see [66] for an overview). In this
section, we describe how binarization is done according to [24]. This binarization
workflow is still the state-of-the-art procedure in LAD [69].

The data binarization is subdivided into two steps, which are the Introduction of
Boolean variables and the Selection of a support set. In fact, already the first step
provides us with a binary representation of the original data set, but in general
this binary data set is way too large for further calculations. For this reason, it
is important to choose a support set of features that is sufficient to represent the
original data and does not include any redundant information.

Introduction of Boolean variables

Non-binary variables can be of different type. The simplest type for our purpose are
nominal (or descriptive) variables that are not ordered. An example for a nominal
variable is “color”, whose values could be “red”,“blue” and “yellow”. To binarize
such a variable x we introduce to each value v, a Boolean variable b(x, vs) such

that
1, ifx =
b(x,vs) =
0, otherwise.

2.5 Data binarization and preprocessing

39

40

Note that there is no need to introduce Boolean variables to nominal variables that
take only two different values. In that case the values are simply renamed to “1”
and “0”.

In the special case where the values of nominal variables can be ordered as in, for
example, “blood pressure” taking the values “low”, “normal” and “high” we follow a
different procedure, which we explain in the following part. Those ordered nominal

variables will be treated the same way as numerical variables.

Examples for variables having numerical values are “temperature” and “weight”. As
for the ordered nominal variables described before the values of numerical variables
follow an ordering. In many real life scenarios numerical variables are binarized
in practice. For the example of “body temperature” this could be the translation to
“normal” or “abnormal” depending on whether the temperature is inside or outside
a certain interval or, in other words, is below or exceeds a given threshold. The
binarization of the variable works by comparing the values to a so called cut-point.
The question of which cut-points should be used in LAD discretization has been
studied in [12]. In the following we explain how cut-points are used to binarize
numerical variables according to [24]. For each numerical variable (or ordered
nominal variable) we introduce two families of Boolean variables.

The first Boolean variables associated to each cut-point are the level variables. They
show whether the value of the original variable is above or below the cut-point.
For every variable x and cut-point ¢ we introduce the Boolean variable b(z, t) such

that

1, ifx>t;

b(x,t) =

0, ifz<t.
The second type of Boolean variables introduced are called interval variables and
are associated with each pair of cut-points. They show whether the value of the
original variable lies inside or outside the interval defined by the cut-points. For
every variable x and pair of cut-points ¢ and ¢” with ¢’ < ¢” we introduce the Boolean
variable b(z, ', t") such that

1, ift <z <t
bz, t' 1) =< -
0, otherwise.

The number of observations in the data set is finite and, therefore, each ordered
variable takes only a finite number of values. Let these values be v < v < --- < v,.
Two cut-points ¢ and ¢ with vs_; < ' and " < wvs produce the same Boolean

Chapter 2 Logical Analysis of Data

2.5.2

[Il o o] s |

1 || yellow | 5 | high
2 blue 1 | low
3 || yellow | 3 | low oF
4 red 2 | high
5 red 6 | high
6 || blue | 3 | high } O
7 || blue 2 | low

Fig. 2.4.: An example of a non-binary data set.

variables on this data set. Having this in mind we do not have to consider any
cut-points that lie outside the interval vy, va, . . ., v,]. We define the cut-point ¢, by

1
ts = E(Usfl + US)-

To reduce the number of cut-points that are considered, we introduce the following
definition. We call a cut-point ¢, essential if there exist both a positive and a negative
observation in the data set such that one of them has x = v, while the other one has
x = vs_1. It is easy to see that it is sufficient to use essential cut-points only.

In Figure 2.4 we show an example of a non-binary data set. In Figure 2.5 the
binarization of the example is shown via introduction of Boolean level and interval
variables.

Selection of a support set

As mentioned in the beginning of this section, we can translate a given data set
including non-binary variables to a binary data set by introducing Boolean variables
according to suitable cut-points only. The binary data set produced this way is very
large and usually carries a lot of redundant information. When discretizing data
sets bigger than the one seen in the example in Figure 2.4 the number of Boolean

variables introduced this way grows rapidly and makes further computations hard.

To make the binarization step useful in practice we show, in this subsection, how
the size of the binary data set can be reduced by the selection of a support set. The
main property of the data sets we analyze using LAD is that they are partitioned
into two disjoint subsets of positive and negative observations. This property, which

we call contradiction-free, has to be maintained by any discretization of the data set.

Therefore, we formulate the following definitions:

2.5 Data binarization and preprocessing

41

42

by bo b3 by b5 b b7
xy=red | z; =blue | z; =yellow || 22 > 1,5 | 29 > 2,5 | 20 >4 | 2 > 5,5
1 0 0 1 1 1 1 0
2 0 1 0 0 0 0 0
3 0 0 1 1 1 0 0
4 1 0 0 1 0 0 0
5 1 0 0 1 1 1 1
6 0 1 0 1 1 0 0
7 0 1 0 1 0 0 0
bg bg b1o b1 b12 b3 b4
$3=h1gh 1,5§]72 1,5S£U2 1,5§$2 2,5§$2 2,5§$2 4§$2
<2,5 <4 <55 <4 < 5,5 <5,5
1 1 0 0 1 0 0 1
2 0 0 0 0 0 0 0
3 0 0 1 1 1 1 0
4 1 1 1 1 0 0 0
5 1 0 0 0 0 0 0
6 1 0 1 1 1 1 0
7 0 1 1 1 0 0 0

Fig. 2.5.: Binarization of the data set given in Figure 2.4 with the help of level and interval
variables.

Definition 2.19 (Support set). A set of Boolean variables of a binarization of a non-
binary data set is a support set if the data set obtained by the elimination of all the
other variables remains contradiction-free.

Definition 2.20 (Irredundant). A support set is irredundant if no proper subset of it
is a support set.

To illustrate the approach of how to choose a support set we look at the binarization
of the positive observation 1 and the negative observation 5 in Figure 2.5. They differ
in the Boolean variables b1, b3, b7, b11 and b14. To ensure that those two observations
remain contradiction-free, at least one of the Boolean variables in which they differ
has to appear in every support set.

Let us introduce for each Boolean variable b; a decision variable y; with y; = 1 if b;
is included in a support set and y; = 0 otherwise. The above example then gives us
for every support set the constraint

y1+ys+yr +yin+yua = 1

We generalize this approach. Let by, . .., b, be a set of Boolean variables and v, . .

k) yq
the set of Boolean decision variables associated to them as above. For a positive

observation p and a negative observation n we define by I(p, n) the set of indices in

Chapter 2 Logical Analysis of Data

Y1

(L)1 0 1.0 001 000 1O0O0T1 Y2 1
(L6)|]0O0 1. 1.0 01 00O 1T 01 11 Y3 1
(L7001 101101 110001 m 1
(2,5)]1 010001 0O0O0OT1O0TO0°1 Ys 1
(2,6)]0 0 01 1001 011110 Y6 1
(2,0 0 0 1 0000111000 yr | < 1
3511 0100111011110 ys | — |1
(3,6)]0 1. 1.0 0001 00 0O0O0O0 Yo 1
3710 1101000100110 Y10 1
(4510 0001 1101 11000 Y11 1
(46)|]1 1001 000100110 Y12 1
47\1 1.0 0000 10O0O0O0O0O0O0 Y13 1
Y14

Fig. 2.6.: System of inequalities for the support set calculation for the example shown in
Figure 2.4.

which p and n differ. Then (y1,...,y,) is the characteristic vector of a support set if
and only if the following constraints are satisfied:

> w1 Vpe Qt VneqQ . (2.13)
i€I(p,n)

A smallest support set can be found by solving the optimization problem that emerges
from this:

q
min Z Yi
i=1

st. > y>1 VpeQtvneq” (2.14)
i€l(p,n)

y; € {0,1}, i=1,...,q.
Here the selection of a support set is modeled as a set covering problem. In the case
that the original data set involves monotone variables, we have to strengthen some
of the constraints. This is due to the fact that we aim to choose a support set in such

a way that the resulting pdBf has an extension in which all level variables corre-
sponding to originally positive (negative) attributes remain positive (negative).

To do so, we eliminate those indices 7 in the set I(p, n) for which the binary variable
b; is positive and p; = 0 and n; = 1; and those for which b; is negative and p; = 1
and n; = 0. In Figure 2.6 the set of inequalities according to (2.13) for Example 2.4
is shown. With the help of (Mixed-) Integer Programming solvers it is possible to
find an optimal solution to the above problem even for large data sets. Interestingly,

2.5 Data binarization and preprocessing

43

44

the authors in [24] stated that for our purpose of finding a binarization for further
calculations as pattern generation and theory formation, it is as good as (or even
better) to find an approximate solution to (2.14). This is due to the goal that we
want to achieve. On the one hand, features have to be selected to make the binary
data set smaller and, therefore, reduce the complexity for the computations of
patterns and theories. On the other hand, LAD aims to keep as much information
as possible and make it available to the user. The process of selecting a support
set becomes an act of balance between minimizing the number of features and not
losing important information that we are not yet aware of. The support set selection
process remains a field of research. In [30] the authors reformulated the problem
using weighted set covering. For this purpose they propose to modify the constraints
of (2.14) by adding coefficients and then use a greedy approach to solve the problem
approximately. We explain this idea in the following.

Distinguishing true and false observations in more than one attribute

In order to make sure that true and false observations differ in more than one
attribute in the resulting binarization, the right-hand side of the inequalities in
(2.14) can be replaced by a higher value . The value of i needs to be chosen
depending on the application at hand and the size and structure of the given data
set. While a natural bound on p is that it can not exceed the Hamming distance
between the set of positive and negative observations, another goal should be to
keep the support set small and computationally feasible.

Give weight to the attributes according to their discriminating power

As a second step, weights can be assigned to the attributes y; in the objective function
in (2.14) to give preference to those having more discriminating power. Possible
ways to choose these weights named in [24] are statistical measures like entropy or

variance.

Give weight to the cut-points according to their discriminating power

The next modification is to assign weights as coefficients in the inequalities. This way
cut-points having high discriminating power are favored. One possibility is to take
the coefficient equal to the minimum of the two distances from the cut-point to the
attribute values of the corresponding positive and negative observation, normalized

Chapter 2 Logical Analysis of Data

by the spread of the corresponding attribute. The spread is the difference between

the highest value of the attribute and the lowest value of the attribute in the data.

The resulting modifications of (2.14) are shown in (2.15).

q
min Z Ui Y;
i=1

S.t. Z CjiYi > i, j=1....m (2.15)
i€l(n,p)

y; € {0,1}, i=1,...,q.

To solve the optimization problem shown in (2.15) the authors in [24] propose a

greedy method. The procedure is shown in Algorithm 3.

Algorithm 3 Greedy algorithm for the solution of (2.15) [24].

1:

e N>R

input:
{u;} > g-vector of objective function coefficients
{cji} > m x g-matrix of constraint coefficients
{1} > m-vector of right hand side coefficients

: output:

{vi} > characteristic g-vector of support set
initialize:

y:=0;

s eR™; 5:=0;
while s # ;1 do

choosei* € {i=1,...,q:y; =0}

to maximize .- 37 ;. jiy—s;>0 MAn{1, M;i"sj ks

yir =15

sj =8+ cix,g=1,...,m;
end while

The output of the greedy algorithm in Algorithm 3 is a set of support variables. By

eliminating all the other variables from the binarized data set we obtain a smaller

set of binary variables, which maintains the important properties and information of
the data.

Besides the pure binarization of a data set other preprocessing steps can be consid-

ered. An important one described in [24] is how to deal with errors. We describe

this in the following subsection.

2.5 Data binarization and preprocessing

45

2.5.3

46

Dealing with errors in data sets

Most of the real-life data sets are not perfect. Measurement errors, missing values or
wrong classifications might occur. To cope with such imperfectness we shall follow
certain steps [24] while preprocessing a data set, depending on the type of error.

Classification errors

There are two types of classification error, which manifest themselves by different
behaviors during the pattern generation process. The first type of a classification
error is that a negative observation is labeled as positive. We become attentive to
this kind of error when positive patterns of low degree do not cover this observa-
tion assuming that the majority of observations are correctly classified. We shall
follow two different approaches depending on whether there exist only a few such
erroneously classified observations or there exist a lot of them. In the first situation,
we remove the observations from the data set. In the second situation we generate
some patterns of higher degree to cover the observations to make sure that these,
apparently significant, observations are not left out of our consideration.

The second type of a classification error is that a positive observation is labeled as
negative. In that situation we see that patterns covering a high number of positive
observations also cover some isolated negative points. Those observations should
then be disregarded in the evaluation of the patterns. In [24] the authors proposed
to call a term a positive pattern if the ratio of negative and positive points covered
by it does not exceed
2]
TW,

where 7 is a problem dependent threshold. The authors state that in their numerical
experiments 0 < 7 < 0, 2 led to the best results.

Missing attribute values

Another type of error that might occur in a data set is that of missing attribute values.
This type of error is more striking than the type described before as it propagates
through the whole procedure. When the value of an original attribute is missing then
the values of the introduced Boolean variables are missing. If we want to construct
a support set from a binary data set we cannot use variables with missing attributes
in order to be able to distinguish between positive and negative observations.

Chapter 2 Logical Analysis of Data

The authors in [24] introduce a new definition of covering an observation in the
case of a data set having missing attribute values.

Definition 2.21 (Weak covering and strong covering). A term covers an observation
weakly if there exists an assignment of 0-1 values to the missing values in the observation
such that the resulting 0-1 observation is covered by the term. A term covers an
observation strongly if for any assignment of 0-1 values to the missing values in the
observation the resulting 0-1 observation is covered by the term.

Building up on this refinement of the covering definition, we can define robust
positive (negative) patterns for data sets including missing attribute values.

Definition 2.22 (Robust patterns). A term is a robust positive (negative) pattern
if it covers strongly at least one positive (negative) observation and it does not even
weakly cover any negative (positive) observation.

In the case of data sets without missing values the above definition reduces to the
original definition of patterns. For further studies of the application of LAD to data
sets with missing values see [25] and [27].

Measurement errors

The last type of error we refer to are measurement errors. Whenever data is produced
by experiments or calculations, measurement errors occur. While the error might
be small in the numerical case the impact of the error increases in the binarization
process.

If the numerical value of an attribute is close to the chosen cut-point the value of
the binarized variable can depend strongly on the error. In order to avoid such error-
dependent variables the authors propose to consider a variable value as missing if
it is close to the corresponding cut-point. For every attribute 2 and cut-point ¢ we
introduce a level variable

1, ifz>t+oy,;
b(z,t) =<0, ifex<t— o

x, ifo,—t<z<t+oy,,

where o, is an attribute-dependent measure of accuracy and x stands for a missing
attribute value. A similar modification has to be done for the interval variables.

2.5 Data binarization and preprocessing

47

2.6

48

When using the Boolean variables as described above we might introduce missing
attribute values to data sets, which originally did not have any. The resulting problem
has to be handled as described in the previous subsection.

Summary and discussion

In this chapter, we introduced the methodology of LAD. LAD is a method for machine
learning and data analysis that is based on the generation and interpretations of
patterns of various types.

We followed the three main steps of the method, namely data binarization, pattern
generation and theory formation. While LAD can keep up with other known machine
learning approaches like Support Vector Machines or Decision Trees regarding their
prediction accuracy [24], it is especially interesting with respect to applications. The
concept of patterns as compact pieces of information helps the communication of
relevant data information across disciplines. For that reason, LAD is of particular
interest in the context of biomedical research. In the following chapters we will
show how patterns and theories based on the LAD method can be used in practice
to analyze data sets from the field of life sciences.

Chapter 2 Logical Analysis of Data

Part Il

AnswerSetLAD - A software
package for LAD using
Answer Set Programming

In the following chapter, we present the development of our software package
AnswerSetLAD, which is available on GitHub [14]. This package was created on
the basis of the LAD methodology. It is designed to automate the process of data
analysis focusing on the generation of different kinds of patterns.

The idea arose in collaboration with Alexander Bockmayr, who recognized the
usefulness of the LAD method in our interdisciplinary work field. I designed and
implemented the preliminary version of an ASP model for pattern generation.
In consultation with Martin Gebser and Torsten Schaub from the University
of Potsdam the foundation of AnswerSetLAD was laid. We published a first
conception of the design of a LAD software using an ASP framework [15].
This publication introduces the implementation of general and prime pattern
generation, and the formation of minimal pattern covers only. In this chapter of
the thesis, we describe our ASP extension of the software functionalities to all
prominent LAD pattern types, as well as python tools for the binarization and
theory formation step. Two further ASP approaches for theory formation are
discussed in Chapter 4 under the aspect of our theoretical advancement of the
LAD methodology.

In this chapter, we first introduce the requirements and goals for the development
of the software package. We then illustrate why Answer Set Programming (ASP)
is a suitable environment for the given tasks and give an introduction to the ASP
language. Next, we explain the structure of AnswerSetLAD following the three work

steps of LAD, namely data binarization, pattern generation and theory formation.

The implementation of the LAD functionalities using ASP is described in detail. At
the end of this chapter, we show in a performance study that for certain pattern
types our ASP approach is able to solve problem instances much faster than the
state-of-the-art Mixed-Integer Linear Programming (MILP) approach, which makes
AnswerSetLAD a promising alternative within the LAD software available.

51

3.1

52

Goals and requirements

Within the previous chapters we got an insight into the methodology of LAD. This
method, which combines ideas from Boolean functions, machine learning, combina-
torics and optimization, provides a broad theoretical background for data analysis
based on patterns. We discussed that LAD yields excellent results regarding pre-
diction accuracy of classical data sets used for benchmarking in machine learning
and is, therefore, a valid approach for classification problems. Especially regarding
applications in interdisciplinary work fields, where results have to be communicated
across different professional backgrounds, LAD is a beneficial method. LAD provides
the user with comprehensible pieces of information in form of patterns. Particularly
in the biomedical area LAD enjoys growing popularity [56].

In terms of application, any method is useless without a good software that integrates
the theory. Over the past decades several software tools for LAD have been developed.
These include a C++ tool designed by Mayoraz [77], the LAD-WEKA software by
Bonates and Gomes [21] written in WEKA, which is a data mining software package
in Java, and ladoscope by Lemaire [70] in 0Caml. Most of these tools are no
longer maintained and although some of them like 1adoscope offer a wide range of
functions, new functionalities of LAD might be of interest, which are hard to add to
the existing code.

Our main goal was to provide a software that includes the broad range of LAD
functionalities and makes them accessible to the user. Of course, for the sake of
utility, we wanted to use a framework that allows a good performance regarding
running times on large data sets. Besides that the encoding should be as clear and
succinct as possible such that, on the one hand, maintenance and integration of
further features can be handled in an uncomplicated manner and, on the other hand,
results can be understood and interpreted easily. We think that this is an obvious
course of action as it goes in line with the original idea of LAD to make information

communicable.

To achieve these goals, the programming paradigm Answer Set Programming (ASP)
is a natural choice. The structure of the problem, namely the enumeration of patterns
of Boolean expressions, is another important reason for choosing the ASP framework.
ASP is in particular suitable for combinatorial (optimization) problems. We discuss
ASP and its advantages in more detail in the following section.

Chapter 3 AnswerSetLAD - A software package for LAD using Answer Set
Programming

3.2 Design

3.2.1

In the previous paragraphs we illustrated our goals for the software and explained
our choice of the ASP framework on a general level. In this section, we want to go
in more detail by introducing its syntax and semantics. We then give an overview of
the structure of our software package AnswerSetLAD [14].

Answer Set Programming (ASP)

Answer Set Programming (ASP) [73, 13, 50] is a declarative programming paradigm.
In contrast to imperative programming, the task for the user is to give a detailed
description of what the problem is rather than explaining how the problem should
be solved. The implementation of a problem in ASP consists thus of a concise
representation of the problem by logical rules, which are then instantiated by an
ASP grounder and solved by an ASP solver. ASP is particularly applicable for
combinatorial (optimization) problems like the task of pattern generation in LAD.
For that reason it is an eminently suitable choice.

The history of ASP

ASP is oriented towards difficult, primarily NP-hard, search problems. These search
problems are reduced to the computation of so-called stable models or answer sets.
The ASP methodology was first applied in 1997 by Dimopoulos et al. [36] and
Soininen, Niemeld and Simons in 1998 [80]. One year later, answer set solvers and
their application for difficult search problems were identified as a new programming
paradigm by Marek and Truszczynski [76] and Niemela [81].

Various systems for grounding and solving were developed since then (see for
example [82, 49, 18]). For all our calculations we use the ASP system clingo,
a combination of the grounder gringo and the solver clasp [49] developed by
Potassco, the Potsdam Answer Set Solving Collection [33].

In the following section we give an introduction into the syntax and semantics of

ASP. Our explanations are based on the language of clingo. A detailed description
of its language and precise semantics can be found in [47].

3.2 Design

53

54

Syntax and semantics

ASP is based on the stable model semantics of logic programming [72, 51]. Search
problems are reduced to the computation of stable models, which are found by ASP
solvers. Problems are formulated as logic programs that are finite sets of rules. A
rule r is of the form

Ag - Ay, ..., Ap,not Aypyyq, ..., 00t Ay, (3.1

where n > m > 0, each A4;, 0 < i < n, is an atom and ‘not’ stands for negation by
default. The left side of the rule is called head and the right side of the rule is called
body. In the following, we explain the input language used by ASP systems like
clingo [49]. A rule, as in (3.1), is a conditional constraint, meaning that the head
must be true if the body is true. If n = 0, rule (3.1) is called a fact and denoted by

Ap.

Such a fact expresses that the atom Ay is always true. Omitting Ay in (3.1) amounts
to taking Ay to be false, and rule (3.1) represents an integrity constraint. Accordingly,
the resulting rule

-Ay,...,Ap,not Apiq, ..., 00t Ay,

expresses that a stable model must not satisfy the body. Integrity constraints are
thus often used to eliminate model candidates of a program.

To facilitate the use of ASP in practice, several extensions have been developed.
First of all, rules with variables are viewed as shorthands for the set of their ground
instances. Further language constructs include conditional literals and cardinality
constraints [96]. Conditional literals are of the form A : By,..., B,,, where A and B;
are possibly default negated literals for 0 < ¢ < m. Such conditional literals can be
used to formulate cardinality constraints, which can be written as s {Cy;...;C,} t,
where each Cj is a conditional literal. The numbers s,¢ € N provide lower and
upper bounds on the number of satisfied literals in the constraint. The practical
value of both constructs becomes apparent when used in conjunction with variables.
For instance, a conditional literal like a(X) : b(X) in a rule’s body expands to the
conjunction of all instances of a(X) for which the corresponding instance of b(X)
holds. Similarly, s {a(X) : b(X)} ¢ holds whenever the number of true instances of
a(X) (subject to b(X)) is between s and ¢, s,t € N.

Chapter 3 AnswerSetLAD - A software package for LAD using Answer Set
Programming

3.2.2

In addition to cardinality constraints, the input language of ASP provides further
aggregates such as #min, #max and #sum. Optimization can be done using the
ASP language. Objective functions minimizing the sum of weights w; of literals
B, are expressed as #minimize {w; : By;...;w, : B,}. Specifically, we rely in the
sequel on the input language of the ASP system clingo [49], as detailed in the
corresponding user’s guide [48].

The first step in the process of finding a solution to a problem is the grounding (e.g.
by gringo) of rules that include variables, meaning that those variables are replaced
by constants in ground instances. The grounded program is then passed to the solver
(e.g. clasp), which computes the stable models of the program.

Definition 3.1 (Reduct). The reduct PX of a program P relative to a set X of atoms
is defined by

PX = {head(r) + body™ (r) | r € P and body™ (r) N X = 0},

where body™ (1) is the set of all positive atoms of the body and body ™~ (r) is the set of all
negative atoms of the body.

Definition 3.2 (Stable Model). A set X of atoms is a stable model of a program P if
the inclusion-wise minimal model of the reduct PX of P relative to X is equal to X.

For further questions on the ASP syntax and semantics we refer the reader to [48]
for a detailed description of the clingo system and its use.

The software structure

Like the LAD methodology itself our software AnswerSetLAD can be divided into
three main parts, namely data binarization, pattern generation and theory formation
(Figure 3.1). While these can be seen as consecutive analyzing steps, they can be
used individually depending on the result the user is interested in.

The first part of the software contains the features needed for data preprocessing in
the case that the data set to be analyzed is not binary. The original LAD method is
built on binary data sets. The procedures included in this part of the software follow
very closely the proposed algorithms by Hammer et al. [24]. All methods belonging
to this software part are implemented using python.

The second part includes all functionalities for the generation of patterns of different
types. The pattern generation part contains, besides the enumeration of patterns

3.2 Design

55

3.3

3.3.1

56

Pattern generation
Data binarization
Theory formation

Fig. 3.1.: Overview of the structure and features of our software AnswerSetLAD.

without specific preference, programs to calculate prime, strong, spanned, strong
prime, strong spanned and maximal patterns. All of the programs for pattern genera-
tion are implemented using ASP. As patterns play a key role in the LAD methodology;,
we invested most time and effort to work on this part of the software. Therefore,
this work step of AnswerSetLAD is a central component of our software.

Part three of AnswerSetLAD contains several programs to form theories out of a set
of generated patterns. This work step provides algorithms implemented in python
as well as in ASP. Aside from algorithms described in former studies [35, 106], this
part also includes programs based on our own theoretical extensions of LAD, which
we discuss in more detail in Chapter 4.

Implementation

In this section, we describe the implementation of AnswerSetLAD [14]. It is orga-
nized in the three subsections data binarization and preprocessing, pattern generation
and theory formation reflecting the analyzing steps of the LAD methodology and the
structure of our software package.

Data binarization and preprocessing

The original LAD methodology is based on binary data sets. Investigated data is
mostly not binary. This is the reason why the binarization step is a main part of the
analysis. In this subsection, we explain how our toolbox AnswerSetLAD can be used
to discretize and preprocess numerical data sets.

Chapter 3 AnswerSetLAD - A software package for LAD using Answer Set
Programming

Running example data sets

We show the application of the binarization step on the example of six data sets
from the UC Irvine Machine Learning Repository [38], which are widely used in the
field of classification research and especially in the LAD literature. These data sets
are Breast Cancer Wisconsin (Original) (BCW) [89, 751, Heart Disease (HD) [90],
BUPA Liver Disorders (BLD), Credit Approval (CRED), Pima Indians Diabetes (PID)
and Boston housing (HOUS). They will be used throughout this whole thesis.

In Table 3.1 the basic information on the six data sets are captured. The first column
shows the number of observations times the number of attributes, which might be
binary, numerical or nominal, after preprocessing the source data by deleting all
observations that included missing values or appeared more than once. In more
detail, for all attribute vectors that appeared more than once, belonging to the same
class or to different classes, we kept only the first appearance of the vector and
removed all the following. This leads to a disjoint data set.

The second column shows the number of level variables that were introduced while
binarizing the attributes. These level variables are constructed as described in
Section 2.5 and show whether the attribute value of the observation is above or
below a certain threshold. Other than described in the methodology section and
proposed by Hammer et al. [24], we use only level variables and did not introduce
interval variables. With this decision we follow the proposal of Ryoo et al., who
showed in [93] that it leads to approximately the same results in classification
accuracy when leaving the interval variables out. At the same time this saves a lot of
computational cost.

The last column of the table gives the number of observations times the number of
selected 0-1 features after the greedy feature selection process. Again the observa-
tions are checked for disjointness, which leads to the smaller number of observations
compared to the original data sets. The p-value used for the greedy feature selection
is shown in the third column. In the next paragraph, we discuss the workflow in
detail.

Binarization workflow

The discretization procedure of AnswerSetLAD follows very closely the steps intro-
duced by Hammer et al. [24] and described in Section 2.5. In Figure 3.2 the
workflow of the binarization step is visualized.

3.3 Implementation

57

58

Original Number of Binary
Observations? x attributes || level variables || 1 || Observations® x selected features
BCW 449 x 9 72 6 161 x 20
HD 297 x 13 305 4 73 x 11
BLD 341 x 6 269 5 341 x 15
CRED 653 x 15 773 6 114 x 19
PID 768 x 8 857 5 28 x 24
HOUS 506 x 13 1217 6 14 x 20

Tab. 3.1.: Basic information on the six data sets Breast Cancer Wisconsin (Original) (BCW),
Heart Disease (HD), BUPA Liver Disorders (BLD), Credit Approval (CRED), Pima
Indians Diabetes (PID) and Boston housing (HOUS) taken from the UC Irvine
Machine Learning Repository [38]. 2 Disjoint data set after deletion of incomplete
observations. ? Disjoint data set.

The process starts with an input data file. This input file has to be in csv-format,
where each row of the file represents one observation and each column represents
one attribute. The first column called classes includes the class that the observation
belongs to (0 or 1). In the following columns the attributes are listed under the
names coll, col2, ..., colN.

The python script Binarize.py is used to introduce the threshold variables, namely
level variables and interval variables, if wanted, for each attribute. For the running
data sets we used level variables only. The output of the script is a full binarization
of the data set. In practice, it is not very useful though as it includes a lot of 0-1
variables that carry redundant information and the discretized data gets too big for
pattern or theory calculations. For this reason, some of the variables have to be
selected according to their usefulness to gain a smaller binary representation.

The next step in this direction is to calculate the support matrix consisting of the
difference vectors of positive and negative observations. An entry of the difference
vector for a positive and a negative observation equals 1 if the positive and the
negative observation differ in this attribute and equals O otherwise. This is done
using the program Support.py. The support matrix can then be used to ensure that
the main property of the data, the disjointness of the positive and the negative class,
stays intact. The number of rows of these support matrices is usually very large. The
support matrix of the BCW data set consists of 50268 rows, for example.

To select features based on the calculated support matrix the python program
Greedy.py is used. Because of the size of the support matrices we need to use an
approximate solution to the feature selection problem and use the greedy heuristic
proposed by Hammer et al. [24]. Other techniques for feature selection can be
found in [94].

Chapter 3 AnswerSetLAD - A software package for LAD using Answer Set
Programming

BinarizeData.py

- introduce
Bool iabl classes coll col2 col3 col3
cla(s)ses c0811 cc;lz c10153 oolean variables S5 | o5 | > 125 | >
1 5 4 7 ﬁ 0 1 0 1 0
1 3 1 1 1 0 1 1 1
1 0 0 0 0
Support.py
- calculate support
matrix
classes >co(lsl5 >c02125 >cil?2,5 — — — — —
o [1 [o0 | o >65 | >25 | >1.25 | >4.25
1 0 1 1 (1,0) 1 1 0 1
1 0 0 0 Greedy.py (2,0) 1 0 1 0
- select features
+

PickFeatures.py
- write small data file

Fig. 3.2.: Binarization workflow in our software package AnswerSetLAD.

Some parameters can be adjusted within the program to fit the underlying data set
in the greedy procedure (see Chapter 2 Algorithm 3). These parameters are:

* u;,i=1,...,q, the g-vector of the objective function coefficients;
* ¢i,j=1,...,m,i=1,...,q, the m x ¢g- matrix of constraint coefficients;
* uj,j=1,...,m, the m-vector of the right-hand side coefficients with 1 < p <

Hamm(Q7,Q7), where Hamm/(Q+,Q7) is the Hamming distance between
the set of positive and the set of negative observations.

For all our calculations we used the variances of the attributes for the vector wu,
namely the variance of attribute i as entry u;. This is one option proposed in [24].
Alternatively the authors named other statistical measures like entropy or Fisher’s

exact test statistic.

In our experiments, the entry c;; of the constraint coefficient matrix c is, again
according to [24], taken to be the minimum of the distance of the cut-point used in
column ; to the attribute values of p and p’, the two observations belonging to row
j, divided by the spread of the original attribute.

The choice of the parameter i should be chosen according to the underlying data
set. A u value higher than 1 ensures that every positive observation differs in more
than one attribute from every negative observation. Therefore, a higher value for
u is preferable. On the other hand, higher . values lead to larger support sets,
which can make further calculations more difficult. The value for ;. should be

3.3 Implementation

59

3.3.2

60

chosen by balancing these two objectives [24]. Our choice for the value of x in the
discretization of the six example data sets was guided by the range of ;. values that
Hammer et al. proposed in [56], namely between 3 and 10. We then tried to pick
a value as high as possible such that further calculations are still able to run. The
values we chose for p in the greedy procedure are listed in Table 3.1.

The feature selection step is computationally expensive. The running time including
all calculations for parameter vectors and matrices takes around 6 hours for the
bigger problems such as the HOUS, PID and the CRED data set. In the last step
of the workflow, a binary file including only the selected features is generated by
PickFeatures.py. This data file can then be used for further calculations.

Input data

The programs for pattern generation and theory formation in AnswerSetLAD are
implemented using ASP. Hence the data has to be in a suitable format.

A binary data file generated by the workflow described in the previous section or any
other csv-file in the correct format can be translated into an ASP input file using the
python script MakeDataFile.py. For this purpose the csv-file needs to include one
row for each observation. The first column contains O or 1 depending on whether
the observation is negative or positive. The following columns contain the binary
values of the variables. An example of a data input translated for ASP is shown in
Figure 3.3.

For each entry of the input a predicate i (Sign,ID,Variable,Value) is given, where
Sign is the sign of the observation (1 for positive and 0 for negative), ID is the
identifier of the observation and Value is the binary value of a Variable.

After having generated a suitable input data file we can proceed to the pattern
generation step.

Pattern generation

Once the input data is transformed into a suitable file, the pattern generation pro-
cess can be started. AnswerSetLAD provides programs to calculate several types of
patterns. Besides patterns without any specified preference, called general patterns
in the following, these pattern types are prime patterns, spanned patterns, strong pat-
terns, maximal patterns, strong prime patterns, strong spanned patterns and maximal
prime patterns.

Chapter 3 AnswerSetLAD - A software package for LAD using Answer Set
Programming

i(1,1,1,0). i(1,1,2,0). i(1,1,3,1). i(1,1,4,0). i(1,1,5,1). i(1,1,6,1).
i(1,2,1,1). i(1,2,2,1). i(1,2,3,1). i(1,2,4,1). i(1,2,5,0). i(1,2,6,1).
i(1,3,1,00. i(1,3,2,1). i(1,3,3,1). i(1,3,4,0). i(1,3,5,0). i(1,3,6,1).
i(1,4,1,0). i(1,4,2,1). i(1,4,3,0). i(1,4,4,1). i(1,4,5,1). i(1,4,6,0).
i¢0,5,1,0). i(0,5,2,0). i(0,5,3,0). i(0,5,4,1). i(0,5,5,1). i(0,5,6,0).
i¢o,6,1,1). i(0,6,2,1). i(0,6,3,0). i(0,6,4,0). i(0,6,5,0). i(0,6,6,1).
i¢o,7,1,1). i(¢0,7,2,0). i(0,7,3,1). i(0,7,4,0). i(0,7,5,1). i(0,7,6,1).

Fig. 3.3.: Exemplary data set in csv-format and corresponding input data for AnswerSetLAD
generated by MakeDataFile.py

The ASP programs can be divided into two approaches depending on the basis of
their encoding. A schematic overview of the hierarchy of the encodings for pattern
generation is shown in Figure 3.4. While general patterns, prime patterns and
maximal patterns belong to the approach of literal-based pattern generation, strong
and spanned patterns belong to the approach of coverage-based pattern generation.
This division is due to the definitions of the pattern preferences (see Definition 2.3
to 2.5). Prime patterns have an inclusion-wise minimal set of literals. This naturally
leads to a program including rules to choose a suitable set of literals. For clarification,
we remark here that in this case and in the following text we refer to literals with
respect to the LAD terminology and not to the atoms and negated atoms of the ASP
program if not explicitly stated differently.

In contrast, strong patterns and spanned patterns are defined with respect to their
coverage. For this reason, we base the programs for strong and spanned pattern
generation on the set of covered observations. We explain the two classes for pattern
generation and the programs themselves in detail in the following subsections.

Literal-based pattern generation

We first describe the ASP encodings that belong to the class of literal-based pattern

generation.

3.3 Implementation

61

62

(Literal-based pattern generation) @overage-based pattern generatiorD
| strong spanned | | spanned |

| maximal | | prime
AJ

Fig. 3.4.: Schematic overview of the hierarchy of the encodings for pattern generation in
AnswerSetLAD.

General patterns The encoding for general pattern generation is given in Figure 3.5.
This is the basic program that calculates all patterns without any specified preference.
Any pattern of any type obviously is included in the set of stable models of this
program. Therefore, we can generate all different types of patterns by using this
encoding and narrowing down the answer set to the desired definition of the pattern
type. We describe this procedure in more detail in the later part of this section.

Before running the program, the user defines the four constants degree, sign,
homogeneity and prevalence. A stable model provides a pattern of given degree
and sign with homogeneity and prevalence greater than or equal to the chosen
constants.

The program is organized in three parts, namely generate, define and test. A stable
model is a pattern of given degree. Any stable model thus includes degree many
atoms over the predicate pat (S,B), where S is the variable name and B its Boolean
value. The first rule given in line 2 is a choice rule generating solution candidates.
We know from the definition of a pattern that it has to cover at least one observation
of its sign. Therefore, we choose literals that cover the observations of the same
sign. At this point, it is not given that the set of literals belongs to an actual pattern.
It could be any set of single literals that cover different observations of the correct
sign, but such that the whole set of literals is not covering any of the observations.

The define part is used to specify predicates that narrow the stable model down to
the answer set we want to generate. To ensure that the pattern in the answer set
covers the desired number of observations of the correct sign and not more than the
allowed number of observations of the opposite sign, we introduce the predicate

Chapter 3 AnswerSetLAD - A software package for LAD using Answer Set
Programming

10

11

12

13

% GENERATE
degree { pat(S,B) : i(sign,_,S,B) } degree.

% DEFINE
not_covered(W,X) :- i(W,X,_,_), pat(S,B), not i(W,X,S,B).
covered(W,X) :- not not_covered(W,X), i(W,X,_,).

% TEST

:- pat(S,B), pat(S,Q), Q<B.

:— #sum{ homogeneity-100,X : covered(W,X), W=sign;
homogeneity,X : covered(W,X), W!=sign } > O.

:— nbrcorrectobs(C),
#sum{ 100,X : covered(W,X), W=sign } < prevalencex*C.

Fig. 3.5.: Basic ASP encoding for general pattern generation

covered(W,X) in line 6, which is true if observation X having sign W is covered by
the chosen set of literals. For defining this predicate, we use the auxiliary predicate
not_covered(W,X) in line 5, which is true for an observation W if one of the literals
pat (S,B) does not cover W. Then covered(W,X) is true if not_covered(W,X) is not
true.

In the test part we can make use of the defined predicate and test whether the choice
of literals fulfills the definition of a pattern with given homogeneity and prevalence.
Line 9 is a general test forbidding that a pattern contains the same variable with
different assignments. In line 10 and 11, we test whether the set of literals fulfills
the homogeneity condition (Definition 2.12). In addition, line 12 and 13 make sure
that the prevalence condition (Definition 2.13) is met by the generated pattern. The
unary predicate nbrcorrectobs is calculated in advance and counts the number of
observations having the same sign as the pattern wanted.

One can argue whether it is useful to define the used parameters as input constants
for the program. This of course depends on the output we want to generate. The
constant sign seems to be a reasonable input as the generation of positive and
negative patterns is symmetric and the two resulting sets of patterns are used in
opposite ways, namely for the characterization of the set of positive and negative
observations, respectively. The parameters homogeneity and prevalence can be
used to reduce the size of the pool of answer sets. The set of patterns for a data set is
huge in general. Especially when talking about patterns without specified preference
the pool of answer sets becomes unmanageable large. Therefore, we find it useful
to include these parameters in advance. We added the constant degree here for a
similar reason. As the pool of answers gets large it is helpful to specify the answer

3.3 Implementation

63

64

% DEFINE
covered_after_deletion(W,X,S) :- i(W,X,S,_),
#count{ T : pat(T,C), i(W,X,T,C), T != S } = degree-1.

% TEST

:- not covered(sign,_).

:- pat(S,B), #sum{ homogeneity-100,X : covered_after_deletion(W,X,S),
W = sign; homogeneity,X : covered_after_deletion(W,X,S),
W != sign } <= 0.

Fig. 3.6.: Additional lines to the encoding in Figure 3.5 for the generation of prime patterns.

one is looking for. If one wants to calculate all patterns of any degree this constant
can just be left out from the input. Then the first row simply gets replaced by the

following choice rule:

1{pat(S,B):i(sign,_,S,B)}.

The degree of the pattern can then be determined in a later step if needed. The con-
stants homogeneity and prevalence can be deleted including the last two integrity
constraints if they are not of interest. They then have to be replaced by the rules
coming from the original definition of patterns saying that at least one observation
of correct sign has to be covered and no observation of opposite sign is allowed to
be covered. We have used this setup for some of our applications and later programs
as we will see in the further paragraphs.

Prime patterns By expanding the encoding presented above by only one more test,
we can constrain the set of patterns to those which are prime. The additional lines
presented in Figure 3.6 are based on the definition of prime patterns. A pattern
is prime if and only if the deletion of any of its literals results in a term that is
not a pattern. We determine the coverage of an observation X of sign W for each
term obtained by the deletion of a single literal S (lines 2-3) within the predicate
covered_after_deletion(W,X,S). To ensure that the pattern covers at least one
observation, we use line 6. Then we test whether the term satisfies the homogeneity
condition as described in the program above (lines 7-9). Note that it is not necessary
to test the prevalence condition as a term obtained by leaving out one of the literals
cannot cover less observations than the original pattern. A pattern that still has a
homogeneity above the given constant after the deletion of a literal is not a prime

pattern.

Chapter 3 AnswerSetLAD - A software package for LAD using Answer Set
Programming

Maximal patterns The calculation of maximal patterns is realized by adding only
one additional line to the basic encoding given in Figure 3.5. Maximal patterns
are patterns that have a maximal number of covered observation (Definition 2.11).
For this attempt we simply use the following maximize-statement at the end of the

encoding:

#maximize{1,X : covered(W,X) }.

Coverage-based pattern generation

While the implementations of the three pattern types shown above are based on
stable models of LAD literals the following implementations yield stable models
of covered observations. Whereas prime patterns are defined with respect to their
literal set, the definition of spanned patterns and strong patterns is built on the set
of covered observations. A construction starting from the definitions of the pattern
types thus naturally leads to a different focus in the modeling.

Other than the literal-based encodings the coverage-based encodings, which we
show in this subsection, generate patterns of any degree, any homogeneity and any
prevalence (except for strong and strong prime patterns). This means that degree,
homogeneity and prevalence do not appear as constants given to the program by
the user. Regarding our applications it turned out that we were interested in the
whole set of patterns of a specific type having any degree and any homogeneity
and prevalence. Therefore, for the following encodings the only parameter that
has to be given in advance remains the sign of the patterns. We discussed before
that this is a different approach, which could make sense depending on the desired
result. Of course, this can easily be modified by constraining the choice rules to
a size of degree and adding two more integrity constraints for homogeneity and
prevalence as seen before.

Spanned patterns In Figure 3.7 the encoding for the generation of spanned patterns
is shown. A pattern is called spanned if it is Pareto-optimal with respect to the
selectivity and the evidential preference.

The answer set consists of covered observations of sign. Implicitly the program
thereby calculates the pattern that covers this set of observations. The first rule
given in line 2 is a choice rule picking solution candidates from the total set of
observations. The number 1 on the left hand side of the brackets indicates that at
least one observation has to be covered.

3.3 Implementation

65

10
11
12
13
14
15
16
17
18
19
20
21

22

66

% GENERATE
1 { cov(sign,X) : i(sign,X,_,_) I}.
nbrcovered(N) :- N=#sum{ 1,X : cov(sign,X) }.

% DEFINE

lit_candidate(S,B) :- cov(sign,X), i(sign,X,S,B).

not_lit(S,B) :- lit_candidate(S,B), cov(sign,Y), not i(sign,Y,S,B).
1it(S,B) :- not not_1it(S,B), lit_candidate(S,B).

countlit(E) :- E=#sum{ 1,(S,B) : 1it(S,B) }.

in_opposite_obs(Y,(8,B)) :- 1it(S,B), i(Q,Y,S,B), Q!=sign.
countinop(Y,D) :- i(Q,Y,_,_), Q'!=sign,
D=#tsum{ 1,(S,B) : in_opposite_obs(Y,(S,B)) }.

obsnotincover(sign,Y) :- i(sign,Y,_,_), not cov(sign,Y).
not_addobs(sign,Y) :- obsnotincover(sign,Y), 1it(S,B),

not i(sign,Y,S,B).
addobs(sign,Y) :- obsnotincover(sign,Y), not not_addobs(sign,Y).
% TEST

:- D=E, countlit(E), countinop(_,D).
:— addobs(sign,_).

Fig. 3.7.: Encoding for the generation of spanned patterns

The define part is used to narrow down the chosen set to an accurate answer, namely
a set of covered observations with the according spanned pattern. Sets of pattern
literals that are able to cover the chosen set of observations are generated using
the following definitions. In line 6 the predicate 1it_candidate(S,B) is defined
by each literal that covers a covered observation, where § is the variable name and
B its Boolean value. But not all of these candidates are literals of a pattern. Only
those literals that cover every covered observation can be included in a pattern. For
this purpose, in lines 6-8 the literals 1it (S,B) are calculated as the subset of the
literal candidates 1it_candidate(S,B) that are not not literals not_1it(S,B). A
not literal here is a literal that appears in the set of literal candidates but there exists
an observation included in the chosen set of covered observations that is not covered
by this literal (line 7).

At this point of the program we found a combination of literals that covers all
the chosen covered observations, but we do not know yet whether this literal
combination covers an observation of the opposite sign. To make sure that it does
not and that the literal combination as a result is a pattern, the definitions in line 11-
12 are needed. In the predicate in_opposite_obs(Y, (S,B)) all literals 1it (S,B)

Chapter 3 AnswerSetLAD - A software package for LAD using Answer Set
Programming

are collected together with the observation Y of the opposite sign that the literal
is covering. The number D of literals that cover an observation Y of opposite sign
are counted in the predicate countinop(Y,D) (line 12-13). This predicate can then
be used in the test part to ensure that none of the observations of opposite sign is
covered by all literals of the generated term (line 21). In that case the term is a
pattern. More precisely it is a pattern which is selectivity-wise preferred.

For the evidential preference of the pattern we use the definitions in lines 15-18.
We have to make sure that the set of covered observations chosen is as large as
possible for the set of literals. Therefore, we collect all observations of the correct
sign which are not in the chosen set of covered observations with the predicate
obsnotcover(sign,Y) (line 15). We cannot add an observation Y to the set of
chosen covered observations if a literal of the pattern does not cover this observation
(lines 16-17). Symmetrically we can add the observation if we cannot not add it to
the chosen set (line 18). If this is possible, then the pattern formed by the set of
literals is not spanned, because it is not evidentially preferred. Therefore, we exclude
these results from the set of answers (line 22). A stable model of the program is a
spanned pattern together with the set of observations that it covers.

Strong Spanned patterns Strong spanned patterns are those patterns that are
Pareto-optimal with respect to the lexicographic refinement of the evidential prefer-
ence by the selectivity preference. They are the strong patterns having an inclusion-
wise maximal set of literals. For this reason, the structure of the encoding resembles
the one calculating spanned patterns. The whole program is shown in Figure 3.8.
We here explain the parts in which this program differs from the one before.

The first 13 lines are exactly the same as in the program explained before. A set of
covered observations is chosen and the set of literals of the pattern is defined by the
set of literals which cover all of the chosen observations.

Within the following lines we define predicates to check whether it is possible to
add an observation of the correct sign to the set of chosen observations. This is the
evidential preference.

For this purpose, we first define the predicate 1it_in_new(Y, (S,B)), which is used
to show which of the literals (S,B) that where already chosen also covers an obser-
vation Y of correct sign that is not in the set of chosen covered observations (line 15).
We use the same predicate structure as before for the original literals 1it (S,B) to
test whether this subset of literals also covers an observation of opposite sign. In
detail this means that we define for every pair of observation Z of the opposite

3.3 Implementation

67

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27

68

% GENERATE
1 { cov(sign,X) : i(sign,X,_,_) I}.
nbrcovered(N) :- N=#sum{ 1,X : cov(sign,X) }.

% DEFINE

lit_candidate(S,B) :- cov(sign,X), i(sign,X,S,B).

not_lit(S,B) :- lit_candidate(S,B), cov(sign,Y), not i(sign,Y,S,B).
1it(S,B) :- not not_1it(S,B), lit_candidate(S,B).

countlit(E) :- E=#sum{ 1,(S,B) : 1it(S,B) }.

in_opposite_obs(Y,(8,B)) :- 1it(S,B), i(Q,Y,S,B), Q!=sign.
countinop(Y,D) :- i(Q,Y,_,_), Q'!=sign,
D=#tsum{ 1,(S,B) : in_opposite_obs(Y,(S,B)) }.

lit_in_new(Y,(S,B)) :- 1it(S,B), i(sign,Y,S,B), not cov(sign,Y).
nbrlitinnew(Y,M) :- lit_in_new(Y,_),
M=#sum{ 1,(S,B) : 1lit_in_new(Y,(S,B)) }.

litinnew_in_op(Z,(S,B),Y) :- lit_in_new(Y,(S,B)), i(Q,Z,S,B), Q!=sign.
litinnew_countinop(Z,D,Y) :- i(Q,Z,_,_), Q!=sign,
litinnew_in_op(Z,_,Y),
D=#sum{ 1,(S,B) : litinnew_in_op(Z, (S,B),Y) }.
notpat(Y) :- nbrlitinnew(Y,M), litinnew_countinop(Z,D,Y), M=D.

% TEST
:= D=E, countlit(E), countinop(_,D).
:- not notpat(Y), lit_in_new(Y,_).

Fig. 3.8.: The encoding for the generation of strong spanned patterns

sign and observation Y of correct sign which is not in the original chosen set of
observations the predicate litinnew_in_op(Z, (S,B),Y) that exists if the literal
(8,B) covers the observation Z (line 19). In the following lines 20-22 we first count
the D literals which cover the observation Z of opposite sign and then compare this
number to the full number of literals which cover all chosen observations plus the
observation Y in line 23. If those two numbers are the same, meaning that the whole
term covers an observation of opposite sign, then the term is not a pattern. This
implies that we do not find a pattern which covers the chosen set of observations
plus the observation Y. In that case, the predicate notpat (Y) is true. Within the test
part we then say that any chosen set of observations and the associated set of literals
is not an answer set, or strong spanned pattern, if it is possible to add an observation
Y of correct sign to the set of covered observations and find a pattern which covers
them all (line 27). The resulting answer sets are all strong spanned patterns.

Chapter 3 AnswerSetLAD - A software package for LAD using Answer Set
Programming

10

11

12

13

% GENERATE
1 { pat(S,B) : 1lit(S,B) }.

% DEFINE
not_covered(W,X) :- i(W,X,_,_), pat(S,B), not i(W,X,S,B).
covered(W,X) :- not not_covered(W,X), i(W,X,_,).

% TEST

:- pat(S,B), pat(S,Q), Q<B.

:— #sum{ homogeneity-100,X : covered(W,X), W=sign;
homogeneity,X : covered(W,X), W!=sign } > O.

:- nbrcorrectobs(C), #sum{ 100,X : covered(W,X), W=sign }
< prevalence*C.

Fig. 3.9.: Additional lines to the encoding in Figure 3.8 for the generation of strong patterns

Strong patterns The encoding for strong patterns builds on how strong patterns
are defined in relation to strong spanned patterns. The additional lines of code
we need for expanding the code in Figure 3.8 in order to get stable models that
represent the strong patterns is shown in Figure 3.9. We noted before that strong
spanned patterns are a subset of strong patterns. While the property spanned ensures
that a stable model of the encoding for the strong spanned pattern calculation in
Figure 3.8 consists of an inclusion-wise maximal number of literals, the full set of
strong patterns are all possible combinations of literals that form a pattern for an
inclusion-wise maximal set of covered observations. Therefore, we can generate the
set of strong patterns out of the set of strong spanned patterns by combining the
computed set of literals in every possible way such that the resulting combination
remains a pattern, i.e., does not cover an observation of the opposite sign (or does
not contradict the chosen bounds on homogeneity and prevalence). The additional
lines given in Figure 3.9 thus are the same as the encoding for general patterns
in Figure 3.5 except for line 2 where the predicate pat (S,B) is chosen out of the
already calculated set of literals instead of all possible literals for a data set.

Strong prime patterns The encoding for strong prime pattern generation is based
on the calculation of strong patterns, as the strong prime patterns are a subset of
the strong patterns for a data set. We show the additional lines to the encoding in
Figure 3.9 in Figure 3.10. They very closely resemble the already introduced code
for the generation of prime patterns (see Figure 3.6). The only difference is that in
line 2 the degree D has to be counted and stored in the predicate countdegree (D)
because the degree is not given to the program as a constant.

3.3 Implementation

69

10
11
12
13

14

70

% DEFINE
countdegree(D) :- D=#sum{ 1,(S,B) : pat(S,B) }.

covered_after_deletion(W,X,(S,B)) :- i(W,X,_,_), pat(S,B),
not i(W,X,S,B), #sum{ 1,(T,C) : pat(T,C), i(W,X,T,C),
(T,C)!=(S,B) }= D-1, countdegree(D).

homgood(S,B) :- pat(S,B), #sum{ homogeneity-100,X:
covered_after_deletion(W,X, (S,B)) ,W=sign;
homogeneity,X : covered_after_deletion(W,X,(S,B)), W!=sign }
<= 0.

% TEST
:- homgood(S,B).

Fig. 3.10.: Additional lines to the encoding in Fig. 3.9 for the generation of strong prime
patterns

Using asprin for the calculation of Pareto-optimal patterns

Within the last paragraphs of this chapter we described in detail our implementation
using ASP for the generation of the various different Pareto-optimal pattern types
defined by Hammer et al. [57]. For each pattern type we presented a program
coding the desired preference via hard constraints. These programs can then be
grounded and solved by the ASP solver and grounder. We used clingo [49] for
all our experiments, but various other systems for ASP grounding and solving are
available too.

Within Potassco [33], the Potsdam Answer Set Solving Collection, several systems
besides clingo have been developed for specific purposes. One of them is asprin
[29]. While clingo includes functionalities for single objective and lexicographic
optimization with priorities or weights, the framework asprin allows the compu-
tation of optimal answer sets with preferences. Some commonly used preference
types like subset minimality and Pareto-optimality are defined in the asprin library.
Besides that, new preferences can be added according to the individual aims of the
user. In the following text, we give an insight into the use of asprin with respect
to the functionalities needed for our intent. For a detailed description we refer the
reader to [29] or [48].

Making use of asprin, the different pattern types can easily be implemented based
on the encoding for general pattern generation in Figure 3.5, varying only the
preference specifications at the end of the logic program. The three preferences used

Chapter 3 AnswerSetLAD - A software package for LAD using Answer Set
Programming

for LAD patterns (see Section 2.3.1) can be implemented using asprin and based
on the predicates in the encoding for general patterns in Figure 3.5 in the following
way:

* The simplicity preference:
#preference(simplicity,subset){pat(S,B)}.

* The selectivity preference:
#preference(selectivity,superset){pat(S,B)}.

* The evidential preference:

#preference(evidential,superset){covered(sign,X)}.

The preference specifications are indicated by #preference. The name of each
preference is given first, here simplicity, selectivity and evidential, followed
by the type of the preference. The types we use are subset and superset. Lastly
the predicate for the preference is given. In the simplicity preference specification,
for example, we define the preference called simplicity of type subset over the
atoms of the predicate pat/2. For the specification of the optimization objective an
optimization statement has to be added to the end of the program, which includes
the name of the preference to be optimized.

For the LAD prime pattern generation we, therefore, expand the encoding for general
pattern generation in Figure 3.5 using asprin by the following lines:

#preference(simplicity,subset){pat(S,B)}.
#optimize (simplicity) .

The program is modified to calculate strong patterns by adding:

#preference(evidential,superset){covered(sign,X)}.

#optimize(evidential).

In the asprin framework preferences can also be combined using different principles.
We here make use of two of them, which are pareto and lexico, referring to Pareto-
optimality and optimality with respect to lexicographic refinement, respectively.

For the generation of spanned patterns we write the following lines:

3.3 Implementation

71

72

#preference(selectivity,superset){pat(S,B)}.

#preference(evidential,superset){covered(sign,X)}.

#preference (spanned,pareto) {**selectivity;**evidentiall.

#optimize (spanned) .

Strong prime and strong spanned patterns are defined using lexicographic refine-
ment. This leads to the following lines for the implementation of strong prime
patterns:

#preference(simplicity,subset){pat(S,B)}.

#preference(evidential,superset){covered(sign,X)}.

#preference(strongprime,lexico){1: :**simplicity;2::**evidential}.

#optimize (strongprime) .

The order of the preferences has to be defined using weights for the preference types
in the lexico preference. Here the evidential preference has higher weight and,
therefore, higher priority than the simplicity preference. This notation of asprin is
orientated towards the syntax and semantics of clingo. In a similar way the strong
spanned patterns can be encoded:

#preference(selectivity,superset){pat(S,B)}.

#preference(evidential,superset){covered(sign,X)}.

#preference(strongspanned,lexico){1l: :**selectivity;2: :**evidential}.

#optimize (strongspanned) .

We showed in the former paragraphs how asprin can be used for a succinct im-
plementation of the pattern types with preferences in LAD. With respect to clarity
and comprehensibility of the encodings the use of asprin is definitely favorable
compared to the encodings shown in the previous subsection. However, we also have
to take the performance regarding running time of the implementations with and
without asprin into account. We ran tests on the six data sets from the UC Irvine
Machine Learning Repository [38] introduced in the former section (see Table 3.1).
We used the data sets after binarization and feature selection. In this study, we
compared the running time of the calculations for all patterns of a pattern type by
the implementations explained before, using hard constraints and no asprin, with
the running time for the same calculations by the implementation using asprin as

Chapter 3 AnswerSetLAD - A software package for LAD using Answer Set
Programming

just described. The results are shown in Table 3.2. We present the running time for
the given task. In parentheses the number of patterns calculated is listed. The faster
of the two approaches is marked in green for each task.

The first remark on the running times of the asprin versus the no asprin imple-
mentations is that we do not see a clear answer to the question which of the two
solves the given problems faster. Only for the generation of spanned patterns our
implementation using hard constraints has a shorter running time than the asprin
approach in all experiments. For each of the other pattern types it seems to depend
on the underlying data set whether the one or the other approach yields a faster
result.

For both approaches the running time mostly goes up when a lot of patterns have
to be calculated, which makes sense because of the time needed for enumeration.
Taking a closer look at the spanned pattern calculation we think that here the no
asprin implementation has an advantage because a lot of patterns are calculated by
asprin that are not optimal. For the CRED data set, for example, asprin generated
2809 models in total out of which only 672 are optimal. The implementation not
using asprin does not use optimization at all and might, therefore, be faster when
only enumerating answer sets.

For all pattern types including the evidential preference, namely strong, strong
prime and strong spanned patterns, the experiment suggests that for smaller data
sets (at the end of the table) our original implementations lead to less running
time while for the larger data sets (at the beginning of the table) the asprin-based
approach takes over. This behavior could be due to the more restricted search space
via the implementations using hard constraints. A more restricted search space
leads to faster results for small instances. However, the asprin-based approach uses
significantly less rules, which leads to less overhead and rules after grounding. This
makes the implementation using asprin preferable for larger instances.

In this subsection, we explained in detail all ASP-encodings for pattern generation
within our software package AnswerSetLAD. The calculated patterns or sets of
patterns carry a lot of useful information about the characteristics of a data set
and its positive and negative class of observations. They are, therefore, of interest
on their own. However, if one wants to make predictions for the class of a new
observation a theory has to be built. In the following subsection we address this step
of LAD and its implementation in AnswerSetLAD.

3.3 Implementation

73

74

prime strong spanned
asprin asprin | no asprin asprin no asprin
BCW 13.9s 9.3s 4d14h06m0.3s
(95) (8407) (37758)
HD 2.9s 1.7s 38.2s
(100) (145) (493)
BLD 1m10.2s 1.0s
(28800) (6)
CRED || 2m44.6s 29.6s 5m58.0s
(324) (37656) (672)
PID 41.0s 14.1s
(131) (955400) (89)
HOUS 6.7s 2.7s
(70) (1120) 27)
strong prime strong spanned
asprin | no asprin || asprin | no asprin
BCW 1m10.6s
(26)
HD 2.6s
(29)
BLD 19.9s
4)
CRED 32.6s
(32)
PID
HOUS
Tab. 3.2.: Results of the running times (CPU) of the implementations for the generation of

all patterns of the different pattern types using asprin and no asprin on the six
data sets taken from [38]. (See Table 3.1 for more details on the data sets.) The
number of patterns calculated is shown in parentheses.

Chapter 3 AnswerSetLAD - A software package for LAD using Answer Set

Programming

3.3.3 Theory formation and prediction

The last step in the LAD workflow and the AnswerSetLAD package is the theory
formation and the associated prediction for new observations. The theory formation
step is implemented in AnswerSetLAD using both python and ASP code.

An iterative algorithm for the calculation of a pattern cover

In the introductory chapter on LAD, Chapter 2, we showed the algorithm proposed
by Hammer et al. [35] and revisited by Ryoo et al. [106] for the successive selection
of patterns based on a data set to form a theory (see Chapter 2 Algorithm 2). The
algorithm is based on the principle to consecutively choose a pattern that covers
a (maximal) set of observations, which are then deleted from the input set of
observations. This is done repeatedly until enough patterns are chosen such that
each observation is covered. We implemented the procedure within AnswerSetLAD
in python under the name PattGen.py following the naming of [106]. The python
implementation needs two ASP files as input, which are the binary data file and the
pattern type that should be used for the cover in form of the ASP program. Up to
now the implementation is designed to use maximal patterns only following the
proposed algorithm in [106] but it can easily be extended to take different pattern
types as input. In that case one has to be aware that not all pattern types can be
used here as it is not given that each observation of a data set is covered by a pattern
of each type, which is crucial for the presented algorithm to finish.

An exemplary program call for the binary BCW data set after feature selection looks
as follows:

python PattGen.py BCW_selectedfeatures.asp AnswerSetLAD_maximal.asp

The program PattGen.py subsequently produces the following output:

--- PattGen generates a full pattern cover for you. ---
data file: BCW_selectedfeatures.asp

pattern type used for cover: AnswerSetLAD_maximal.asp
--— Positive patterns ---

pattern: [’pat(14,1)’]

size of coverage: 95

3.3 Implementation

75

76

pattern: [’pat(13,1)’, ’pat(16,1)’]

size of coverage: 26

pattern: [’pat(17,1)’, ’pat(15,1)°]

size of coverage: 13

pattern: [’pat(11,0)’, ’pat(20,1)’]

size of coverage: 7

pattern: [’pat(18,1)’, ’pat(19,1)’]

size of coverage: b5

pattern: [’pat(10,1)’, ’pat(18,1)°]

size of coverage: 1

pattern: [’pat(20,0)’, ’pat(7,0)’, ’pat(6,0)’,
’pat(16,0)’, ’pat(17,0)’, ’pat(18,0)°’]

size of coverage: 1

pattern: [’pat(1,1)’]

size of coverage: 1

pattern: [’pat(9,1)’, ’pat(6,0)’, ’pat(17,0)’]

size of coverage: 1

pattern: [’pat(12,1)’]

size of coverage: 1

pattern: [’pat(9,1)’, ’pat(16,1)’]

size of coverage: 1

--— Negative patterns ---

pattern: [’pat(1,0)’]

size of coverage: 9

As mentioned before the algorithm and its implementation can be used to find a
full pattern cover for a data set. However, there might be more reasonable ways to
choose patterns than by their coverage. This part of our software is still expandable
and leaves room for prospective work.

Another highly interesting topic, which is solvable in diverse ways, is if and how
weights should be chosen when building a discriminant based on a pattern cover
as described in Chapter 2 Section 2.4.2. Several ideas are given in [24], which all
depend on the application and the underlying data.

We will address the topic of theory formation more closely in terms of theoretical
ideas in Chapter 4. We refer the interested reader to this part of the thesis for an

Chapter 3 AnswerSetLAD - A software package for LAD using Answer Set
Programming

3.4

3.4.1

ASP approach to build a prime theory out of the set of all prime patterns for a data
set. For this specific class of theories, AnswerSetLAD contains an ASP program called
AnswerSetLAD_predict.asp that predicts the class of a new observation based on
whether it is covered by more positive or more negative patterns.

Performance testing

In the previous section, we presented the implementation of the LAD functional-
ities in our software package AnswerSetLAD. Besides the declarative style of the
programs, which allows easy handling and maintenance, one of our main goals
was runtime efficiency on large data sets. In this section, we test the performance
of AnswerSetLAD exemplarily with respect to the generation of maximal patterns
by comparing our approach to Mixed-Integer Linear Programming (MILP). MILP is
widely used for the calculations of patterns in LAD.

Comparison to a Mixed-Integer Linear Programming approach

Apart from the clear language of ASP our software AnswerSetLAD provides a promis-
ing alternative to the commonly used Mixed-Integer Linear Programs (MILP) for
pattern generation regarding running time. To substantiate this statement, we ran
experiments on the six data sets BCW, HD, BLD, HOUS, CRED and PID, which we
discretized and discussed before in Section 3.3.1. These data sets are widely used in
the LAD literature (see [24, 56, 93, 106] for example).

The MILP

For this study we used the MILP proposed by Ryoo et al. [93] for the generation of
maximal patterns. The MILP is shown in Chapter 2 Figure 2.3.

In order to bring the program into a format that is accessible for a MILP solver we
used the algebraic modeling language ZIMPL [108] by Thorsten Koch [65]. The
MILP written in ZIMPL is shown in Figure 3.11.

Depending on the underlying data sets the input for the MILP and with it the
parameters have to be adjusted. We see an example for the input of the introductory
data set for LAD on the patient having stomach ache (see Chapter 2 Table 2.1) in
Figure 3.12. The data set consists of 6 attributes and 7 observations. The class of each

3.4 Performance testing

77

VO ® N U AW N

WON N ONNNN NN NN B R e e s e e
S 0 ®» N & G A ® N = S vV ® N O U A W N = O

78

#GENERAL SETS

#index sets (rows*columns)

#rows

set I :={1..m};

#columns

set J:={1..n};

#index set for negated parameters
set K := { n+t1 .. 2*%n };

#MILP

var Y[Positive] binary;

var X[J] binary;

var Xneg[K] binary;

var degree integer >= 1 <=n ;

minimize notcovered: sum <k,1> in Positive: Y[k,1];

subto onlyone: forall <j> in J do
X[j] + Xnegl[j+n] <=1 ;

subto patterndegree: sum <j> in J : X[j] + sum <k> in K :
Xneg[k] == degree;

subto opposallnotcovered: forall <i,1> in Negative do
sum <j> in J : (ali,j]l * X[j]) + sum <k> in K :
(anegli,k] * Xneglk]) <= degree - 1;

subto atleastonecovered: forall <i,l1> in Positive do
sum <j> in J : afi,j] * X[j] + n * Y[i,1] + sum <k> in K :
aneg([i,k] * Xneglk] + n * Y[i,1] >= degree;

Fig. 3.11.: MILP approach for maximal pattern calculation by Ryoo et al. [93] notated
using ZIMPL [108].

observation is documented in the set Classes. The matrix param a[I*J] consists
of the attribute values belonging to the seven given observations. The MILP also
needs the negated attribute values, which are given in the matrix param aneg[I*K].
For our purposes, we wrote a python script to parse a csv-data file to a MILP input
file as shown in Figure 3.12.

Setup

To compare the run time efficiency of AnswerSetLAD and the MILP approach pro-
posed in [93] for the generation of maximal patterns, we used the six data sets
taken from the UC Irvine Machine Learning Repository [38], which we introduced
in Section 3.2. For reasons of comparability we chose to do tests both on the full

Chapter 3 AnswerSetLAD - A software package for LAD using Answer Set
Programming

VO ® N U AW N

WoW W W W W NN NN NN NN NN R R e e e e e e e
X ®W R0 = O VW ® N 6 s W N = O OV ® N O A WN R~ O

#PARAMETERS
#number of attributes

param n := 6;

#number of observations
param m := 7;

#DATA

#classes

set Classes := {<1,1>,<2,0>,<3,1>,<4,1>,<5,0>,<6,1>,<7,0>};

#positive and negative observations
set Positive := { <k,1> in Classes with 1 ==
set Negative := { <k,1> in Classes with 1

]

#attribute values
param al[IxJ] :=
[1,2,3,4,5,6]|
[110,0,1,0,1,1]
[210,0,0,1,1,0]1
[311,1,1,1,0,1]1

1410,1,1,0,0,1]
|511,1,0,0,0,1]|
1610,1,0,1,1,0]|
1711,0,1,0,1,11;

#negated attribute values
param aneg[I*K] :=
7,8,9,10,11,12]
[111,1,0,1,0,0]|
211,1,1,0,0,1]|
1310,0,0,0,1,0]|

|411,0,0,1,1,0]
|510,0,1,1,1,0]|
1611,0,1,0,0,1]|
1710,1,0,1,0,0];

Fig. 3.12.: Example of an input based on the data set shown in Chapter 2 Table 2.1 for the
MILP in Figure 3.11 notated using ZIMPL [108]

binary data sets consisting of all the level variables and the alternative binary data
sets including only the selected features after the greedy selection process (see
Table 3.1).

With respect to the standard workflow of LAD any non-binary data set is preprocessed
including binarization and feature selection. The second step is crucial to make
the data set accessible for further calculations as discussed before. This reason,
and the fact that the authors in [93] and [106] did their calculations on data sets
after feature selection, justifies our choice of the binary data sets including only the
selected features. On the other hand the feature selection process includes several

3.4 Performance testing

79

80

Binarized data sets after feature selections
MILP (solved by SCIP) || ASP (solved by clingo)
size first all first all
BCW | 161 x 20 || 5.81s 7.92s 0.04s 0.04s
HD 73 x 11 0.74s 1.28s 0.01s 0.01s
BLD 341 x 15 || 0.06s 7.05s 0.05s 0.20s
CRED | 114 x 19 || 0.84s 1.29s 0.03s 0.03s
PID 28 x 24 0.04s 0.14s 0.01s 0.01s
HOUS | 14 x 20 || 0.02s 0.35s 0.00s 0.01s

Tab. 3.3.: Results for the running times (CPU) of the MILP and ASP approach for the
calculation of positive maximal patterns on the six binarized data sets from the
UC Irvine Machine Learning Repository [38] after feature selection.

parameters that can be adjusted according to the data set and the aims of the user.
This leads to different features, which are selected, and, therefore, to different binary
data sets. The setting for the parameters in the greedy procedure in [93] and [106]
is not given in the respective articles. Hence, it was not possible for us to reconstruct
the exact data sets. We tried to adjust our parameter settings in such a way that
the number of resulting features is approximately the same as in the articles cited
above.

Additionally we did all calculations on the binary data sets including all level
variables before feature selection to allow results on data sets that are reproducible.
The size of these data sets is comparatively large but does not depend on any
parameters. Moreover, the larger data sets lead to longer running times for both the
MILP and the ASP approach, as we discuss more closely in the following paragraphs,
and show more nicely the gap between the two approaches.

Results

The test results are shown in Table 3.3 and Table 3.4. All calculations were made
within a Linux AMD64 with 3.20GHz, 4 cores and 15.6GB of memory. The ASP
programs were solved using the solver clingo [49]. The MILP were solved using
SCIP [52] with the LP solver SoPlex [53, 41].

The times shown are the CPU times of the processes. For each of the six data sets we
took the time to generate the first positive maximal pattern and the time to generate
all positive maximal patterns both by the MILP and the ASP program. This was
done for the smaller data sets with selected features (Table 3.3) and the larger sets
including all level variables (Table 3.4), respectively. Note that the first positive

Chapter 3 AnswerSetLAD - A software package for LAD using Answer Set
Programming

Binarized original data sets (all level variables included)
MILP (solved by SCIP) ASP (solved by clingo)
size first all first all

BCW 449 x 72 7mO08s 34mb52s 0.5s 0.5s

HD 297 x 305 7h39m 6.0s 1h55m
BLD 341 x 269 5h32m 3.6s
CRED | 653 x 773 17m28s

PID 768 x 857 14h02m
HOUS | 506 x 1217 14h42m 54.0s

Tab. 3.4.: Results for the running times (CPU) of the MILP and ASP approach for the
calculation of positive maximal patterns on the six binarized data sets from the
UC Irvine Machine Learning Repository [38] before feature selection.

maximal pattern generated might differ between MILP and ASP. The results for all
positive maximal patterns are the same in both cases.

While the ASP solver clingo provides the option to enumerate all optimal solutions
using -opt-mode=optN, there is no direct approach for the enumeration of all op-
timal solutions implemented in SCIP. For the calculation of all positive maximal
patterns with SCIP we, therefore, followed the instructions given in the SCIP doc-
umentation [101]. First the problem is solved to optimality. Second the objective
function is added as a constraint to the MILP such that the objective function value
has to be equal to the previously calculated optimal value. Next the predefined
counting option in SCIP can be used to collect all feasible solutions for the adjusted
MILP. For that reason, the time to find all positive maximal patterns with MILP,
which is shown in Table 3.3 and Table 3.4, is the sum of the time to find an optimal
solution and the time to collect all feasible solutions for the adjusted MILP.

Table 3.3, which includes the results for the small data sets with selected features,
is in line with the results shown by Ryoo et al. in [106] regarding the timescale of
seconds. All resulting times of the ASP code lie within milliseconds, getting bigger
with data sets having more observations. Note here that the number of attributes is
in the same range for all data sets in the feature selected case. The running times of
the MILP lie above the times of the ASP program in all cases. However, this set of
small benchmarks may not be representative for the overall performance.

Therefore, we evaluated the running times for the larger data sets shown in Table 3.4.
These results clearly show the advantage of ASP. The number of observations in this
table lies between 297 and 768 and the number of attributes goes up to 1217. The
ASP program was able to solve all six tasks of finding one positive maximal pattern.
It took less than a second for the full BCW data set and a few seconds for the larger
sets regarding the number of attributes, which are HD and BLD. In comparison, the

3.4 Performance testing

81

82

MILP needed more than seven minutes for the easiest problem BCW and around five
to eight hours for the data sets HD and BLD.

Interestingly the HOUS data set seems to be the easiest to solve out of the three
larger sets CRED, PID and HOUS, although it includes more attributes. This might be
due to the nature of the data itself but can also indicate that the difficulty depends
on the number of observations more than on the number of attributes. The HOUS
data set is in fact the only data set out of the bigger sets that the MILP was able to
solve before the time-out. It took around 15 hours. The ASP program got the result
for the same task in less than one minute.

For our calculations we used a time-out of 72 hours. The MILP did not finish the
calculation of the first pattern on the CRED and the PID data set within this time
frame. The ASP program was able to find an answer for the CRED data set in around
17 minutes and for the PID data set in around 14 hours.

By looking at the columns including the times to calculate all maximal patterns we
see that both the MILP and ASP reach their limit. The MILP gave a result only for
the smallest data set BCW in around 34 minutes and reached the time-out for all
other tasks. The result for the BCW data set took ASP less than a second. ASP did
also find all maximal patterns for the HD data set in approximately two hours.

Although SCIP is a well developed software we did an exemplary comparison with
Gurobi [55] and CPlex [100] regarding the running times of the MILP to make
sure that our results are not due to the choice of the solver. For this purpose, we
chose the HD data set in the binarized version before feature selection. The data set
is of manageable size for both the MILP and ASP approach but shows a large gap
between the two. Using the same hardware for calculation Gurobi solved the task
of finding one positive maximal pattern for the HD data set in about 23 hours and
CPlex within around 8 hours. We do not want to go into detail regarding the solving
heuristics of the three MIP-solvers. Here we only want to focus on the fact that all
of them took several hours to solve the problem while c1ingo was able to present
an answer within seconds. Hence, we do not believe that the gap in the calculation
times between the MILP and ASP approach depends on the MIP-solver used.

The empirical study clearly shows the advantage of using ASP in the context of
pattern generation in LAD with regard to calculation time. Our ASP program was
faster than the MILP in all cases of finding one or all maximal positive patterns. Not
only was ASP faster in calculating the patterns but in some of the cases the MILP
did not even find an answer at all within our time-out of 72 hours where ASP could

Chapter 3 AnswerSetLAD - A software package for LAD using Answer Set
Programming

3.5

still finish the task. The results of this comparison show that the ASP framework is
perfectly suitable for the LAD methodology.

Discussion and perspectives

In this chapter, we introduced our software AnswerSetLAD [14]. It is the first
package for data analysis according to LAD making use of the ASP framework.

At the beginning we formulated our goals for this project. Our main goal was to
provide a software that includes all LAD functionalities to allow the user to evaluate
and interpret his data based on the LAD method. We perfectly achieved this goal.
Especially regarding the pattern generation step we provide all commonly defined
pattern types for a broad range of possible uses. AnswerSetLAD contains all steps
needed in the LAD workflow from the original non-binary data set to the formation
of a theory, which can be used for prediction of new observations.

Besides the accessibility of the LAD functionalities for a user, another reason for the
development of AnswerSetLAD was that the various existing implementations of the
method [77, 21, 70] are no longer maintained and mostly hard to extend due to
untransparent encodings. The ASP environment is a natural choice if one wants to
allow the comprehensibility of the code. The ASP programs for pattern generation,
which we explained in detail in the former sections, are short and succinct, which
is characteristic for ASP. While we are aware that ASP is not as commonly used as
MILP and future developers might first have to read in the syntax and semantics
of ASP and logic programming in general, we are certain that our programs are
not only easy to use but also understandable and extendible with little effort. All
encodings are available under [14].

The succinct language of ASP was, however, not the only cause for us to choose
this framework for our software. The nature of the problems, namely enumeration
of patterns, optimization of preferences and handling of Boolean functions makes
ASP the perfect environment. In Section 3.4.1 we ran a comparative study between
the ASP implementation of maximal pattern generation in AnswerSetLAD and the
state-of-the art MILP approach [93]. We clearly showed that the ASP approach
is by far superior to MILP regarding this problem. We are, therefore, confident
that ASP and our software AnswerSetLAD can outperform the commonly used MILP
formulations.

3.5 Discussion and perspectives

83

84

Future work The described comparative study between MILP and ASP is a first step.
Here we compared the running times for maximal pattern generation. Even though
this MILP forms the basis for most pattern calculations there are a lot more pattern
types for which the performance should be investigated to make ASP commonly
accepted in this field.

Regarding the pattern generation step we already mentioned that all types of
patterns belonging to the LAD method are implemented within AnswerSetLAD.
Nevertheless, we think that it can be rewarding to revise the encodings for better
performance and readability. We had an insight into the use of asprin with respect
to preference handling. Within our comparison we could not clearly decide for
a strategy, with or without asprin, which one should use for the calculation of
patterns for a data set. More tests regarding this topic should be made such that we
can give a recommendation which of the two approaches should be used based on
the characteristics of the data set and pattern types.

The theory formation step leaves room for further work. Here various theory types
can still be added to extend the software. At this point, we refer the reader to
Chapter 4 Section 4.2 were we talk more about LAD theories on a theoretical level
and introduce the concept of a new theory type.

Another goal should be to implement a theory formation step in ASP without using
the full pattern set as input. This approach is computationally very costly and,
therefore, not useful for larger data sets.

Summarizing the results, we achieved our goals regarding the development of our
software package. With AnswerSetLAD we provide a useful and efficient toolbox for
data analysis. We are convinced that it offers a lot of possible uses for application in
the biomedical as well as the pure analytical context, by offering the broad range of
LAD functionalities and making them accessible to the user. Likewise, we believe
that our work is an interesting innovation for the LAD community itself, as the use
of ASP leads to an excellent performance with respect to the LAD requirements.

Chapter 3 AnswerSetLAD - A software package for LAD using Answer Set
Programming

Part III

Theory

4.1

411

Theoretical extensions of LAD

This chapter presents my work on extending the theory of the LAD method. Most

of the thoughts filling this part of my thesis concern the concept of prime patterns.

We have seen before that prime patterns play a key role in LAD because they are
succinct and easy to interpret.

This chapter is divided into two sections. In Section 4.1 we propose and discuss a
new algorithm called PrimePatternForest for a fast generation of prime patterns in
the case that the positive and negative observations have small Hamming distance.

In Section 4.2 we talk about theories built out of prime patterns, so called prime
theories. We suggest a statistical measure that can be used to rank prime patterns
and, based on this, select those prime patterns that are more significant than others
to form a theory.

PrimePatternForest - An algorithm for the
generation of prime patterns

In this section, we introduce a new algorithm that allows calculating prime patterns
efficiently given a data set having small Hamming distance between positive and
negative observations.

Definition 4.1. For two binary vectors y = (y1,...,Yn), 2 = (21,...,2n) € B" the
Hamming distance Hamm/(y, z) between y and z is the number of positions i €
{1,...,n} where y; # z;. For two sets of vectors Y and Z the Hamming distance
Hamm(Y, Z) between the sets Y and Z is the maximal Hamming distance Hamm(y, z)
between a pair of vectors y € Y and z € Z.

Basic idea

For reasons of clarity, we focus on positive patterns only. Note that each of the
statements holds for negative patterns simultaneously.

87

88

By definition a positive pattern P covers at least one positive observation and none
of the negative observations. For a data set Q = Q* U Q™ consisting of a disjoint
union of a set of positive observations 2 and a set of negative observations 2~
we investigate each positive observation Ot € QT one by one generating positive
patterns that cover O. We note here that this is possible because any term P+ that
is a positive pattern for a data set {O"} U, for one positive observation O" and
a set of negative observations 2~, remains a positive pattern for the data set if we
add any new positive observation. The term P* might in that case cover the new
positive observation or not cover it, which does not change anything about the fact
that Pt is a positive pattern. We further notice that we might end up generating
the same positive pattern several times in the case that it covers multiple positive
observations.

For each positive observation O+ we consider each negative observation O~ € Q~
one by one to ensure that a positive pattern candidate does not cover O~. Let
us assume we have a data set consisting of only one positive observation O* and
one negative observation O~. We now ask the question which literals come into
consideration for a positive prime pattern P+ that covers O" and does not cover
O~ . The answer is that the set of literal candidates for prime pattern generation is
the set of literals that separate O from O~ . Since a positive prime pattern has to
cover the observation O™, all literals of the pattern have to cover O". At the same
time, the pattern must not cover observation O~. We note that for a general pattern
it is possible to include literals that cover observation O, but the property prime
requires that the pattern has an inclusion-wise minimal set of literals. Any literal
covering O~ and O™ at the same time is redundant and could be removed such that
the remaining term is still a positive pattern.

One more important remark, which we state and prove formally in Lemma 4.1, helps
for the understanding of the algorithm. Assume P is a positive prime pattern for a
data set {OT} UQ~, where O™ is one positive observation and Q™ is a set of negative
observations. We add a new negative observation O—, O~ ¢ Q~, to the data set.
Now we want to transform P into a positive prime pattern for {OT} U Q- U{O~}
by appending more literals to the conjunction. There are two cases that might occur.
The first one is that P* does not cover O~. In that case P* is a positive prime
pattern for {O1} U Q™ U{O~}. The second case is that P* does cover O~. In this
case two scenarios are possible. The first one is that it is not possible to transform
P into a positive prime pattern for the new set by the conjunction with any new
literal. The second one is that we need to append exactly one new literal to P*
that discriminates O~ from O™. This is true because of the following reasons. P*
covers O~. To change this situation and ensure that the transformed P still covers

Chapter 4 Theoretical extensions of LAD

O™ we need to choose at least one new literal L that covers O but not O~. The
pattern P* A L still covers O but does not cover O~. We need to choose at most
one such literal L, because of the inclusion-minimality of the prime pattern. Any
literals appended on top of L would be redundant. We note that any new negative
observation O~ cannot lead to a positive prime pattern P’ & P*, where we mean
literal-inclusion.

The set of differences between a positive observation O™ and a negative observation
O~ is a central concept for the algorithm.

Definition 4.2 (Set of differences). Let 2 = QT UQ™ C {0,1}", n € N, be the disjoint
union of positive and negative observations, where each observation is described by n
Boolean variables x;, i = 1,...,n. Further let O € QT be one positive observation
and O~ € Q™ one negative observation. Let a; denote the binary value that the i-th
Boolean variable x; takes in observation O and b; the binary value that x; takes in
O, respectively.

The set of differences Do+ - is a set of literals L;, i = 1,...,m, m € N, m < n. For
each Boolean variable x; both x; and its negation T; are literals. If a; # b, i € 1...,n,
then

Li=z; € Do+ o-, ifa;=1;

LZ'ZTZ‘EDOjL’Of, ifai:O.

Definition 4.3 (Positive prime pattern forest). Let Q@ = QT U Q™ C {0,1}" be a
disjoint union of positive and negative observations.

We consider the data set consisting of one positive observation O and a set of negative
observations ©~ C Q~, where ©~ is built iteratively by adding, one by one, a new
negative observation O~ € Q= to ©~. For one positive observation Ot € Q" and a
set of negative observations ©~ C)~ a positive prime pattern forest 7" is the union
of k, k € N, directed trees T1, ..., T, each having one root r; and each a set of leaves
lity -y lim;, mi € N, i € {1,...,k}. The union B of all leaves of T represents the set
of positive prime patterns of the data set {O"} U ©~. The nodes of T are terms. There
exists a directed edge from a node e to a node f in T if and only if the term e C f and
le| + 1 = | f|, where | - | is the number of literals included in the term.

Note that depending on the order in which the negative observations are considered,
the resulting positive prime pattern forest for {O1} U Q™ differs.

The algorithm PrimePatternForest for the calculation of all positive prime patterns
for a data set is shown in Algorithm 4. We remark that the algorithm can be used
symmetrically for the calculation of all negative prime patterns.

4.1 PrimePatternForest - An algorithm for the generation of prime
patterns

89

Algorithm 4 PrimePatternForest - An algorithm for the generation of all positive
prime patterns for a given data set.

1: input:
DatasetQ=QTUQ;

2: output:
Set of leaves B= All positive prime patterns

3: for each positive observation O;" do
4 for each negative observation O; do
5 calculate the set of differences Do+ o5
6: use each literal in Doj,o; as root of aj\ tree in the prime pattern forest;
7 delete O; from the set of negative observations;
8 end for
9 while 3 a new negative observation O, do
10: calculate the set of differences Doj,ok‘5
11: for each leaf / in B do
12: ifin Doj,o,; # () then
13: return;
14: else
15: delete [from the set of leaves B;
16: while Doj,okf # () do
17: for each literal = in DO?OE do
18: if x € { leaves in B of degree 1} then
19: delete = from Doj,o,;;
20: else
21: new prime pattern candidate P =z A [
22: while P # () do
23: for each literal m in P do
24: if P\ m in set of leaves B then
25: delete z from Doj,okf?
26: else
27: delete m from P;
28: end if
29: end for
30: end while
31: add P = x Al to B as a new leaf;
32: end if
33: end for
34: end while
35: end if
36: end for
37: delete O, from the set of negative observations;
38: end while
39: end for

40: delete all repetitions in B

20 Chapter 4 Theoretical extensions of LAD

4.1.2 Example

For the illustration of the algorithm we investigate a small example. In Table 4.1
a data set of size 7 x 6 is shown. We use the algorithm PrimePatternForest to
calculate all positive prime patterns of this data set. In Figure 4.1 the calculation
steps of the algorithm and the resulting positive prime patterns are visualized.

We start with the positive observation 1 and negative observation 5. The set of
differences is Do, o, = {72, T1}. Each of these literals is used as a root of a tree in
the forest as they are positive prime patterns with regard to the set {O;} U {Os}.
Next the negative observation Og is added to the data set. The set of differences
between O; and Og includes 73 and Tg. None of these literals intersects with any of
the roots/leaves of a tree in the current forest. Therefore, each conjunction can be
appended as new leaves. The last negative observation O yields a set of differences
that intersects with each of the leaves. Therefore, the leaves stay prime and no new
leaf is added.

The positive observation 2 is considered next. The set of differences of O, and Oy
yields five roots for trees in the prime pattern forest, namely x1, %3, 71, 5 and xg.
The positive observation 2 can be discriminated from the negative observation 6 by
the literals x1, 73 and x5. While there exists an intersection with the roots/leaves
x1 and x5 and they, therefore, remain prime, no intersection with the other three
roots exists and the conjunction with the literal 3 can be appended. Here x; and x5
cannot be used for the conjunction as they are included in the set of leaves, which
means that they are prime patterns themselves at this point.

Observation 3 and observation 5 can be separated only by the literal x5. This
is the single root added for the positive observation 3. The set of differences of
observation 3 and observation 6 Do, oy = {x2, %3, %4, %5, T} intersects with this
root and, therefore, no new leaf is added with the negative observation 6. All four
literals included in the set of differences of O3 and O; do not intersect with x5. As
a result all the conjunctions of x5 with the literals of Do, o, = {71, z2,73,Ts} are
appended as leaves.

The last positive observation 4 of the data set differs in 73, 23 and z¢ from observation
5. All of these literals are roots of a tree in the positive prime pattern forest. The
negative observation 6 is different from observation 4 only in one attribute, namely
attribute 4. Observation 4 is covered by the positive literal x4, which is in the
set of differences. The conjunction of x4 with each of the roots leads to three
prime patterns of degree 2. The set of differences Do, 0, = {Z1,75} again has
no intersection with the existing leaves and, therefore, we get six positive prime

4.1 PrimePatternForest - An algorithm for the generation of prime
patterns

91

41.3

92

HEAEYENENEIEN

Q-i—

O

N~ WN -
_ O OO0 o~ Oo
SO RO+~ OO
R R OlrOO0OOo
_ O Rk~ OO
_ O OO0 KO
== Ol o~ O

Tab. 4.1.: An example data set for the illustration of the algorithm PrimePatternForest.

patterns from the conjunction of each of the leaves with each of the literals that
cover the positive observation Oy.

After deleting the repetitions in the leaves of the positive prime pattern forest, the

18 resulting positive prime patterns of the data set are T3x3, T2%g, T4T3, T4L6, L1T3,
T1%4, T5T3, T5T4, TeT3, T5T1, T5T2, T5T6, L2T4T1, L2T4T5, T3T4T1, T3T4T5, T6TaT1

and zgz4T5.

Correctness

In this subsection, we show the correctness of the algorithm PrimePatternForest.
Before doing so, we introduce the following Lemma, which we use in the later

proof.

Lemma 4.1. Let & be the set of positive prime patterns for a set of observations
Q = {0} U Q™ consisting of one positive observation Ot and a set of negative
observations Q~. Let O~ ¢ Q) be a new negative observation. For each positive prime
pattern P € & one of the following three cases applies:

1. The term P is a positive prime pattern for the set QU {O~ }.

2. A positive prime pattern for QU{O~ } can be built based on P* by the conjunction

with exactly one literal.

3. The pattern P cannot be transformed into a positive prime pattern for QU{O~}
by the conjunction with any literal or set of literals.

Proof. A positive prime pattern has two properties. The first is that it is a positive
pattern, meaning that it covers at least one positive and no negative observation.
The second is that it has an inclusion-wise minimal set of literals. Let P+ be a

Chapter 4 Theoretical extensions of LAD

Do, 0, = {72, 73}

Do, 0, = {73, T5} |maws | |mamws| |mams| | 7w

Do, .05 = {21,772, 71, 5, T6 }

Do,.06 = {#1,73, 25} EIEEE
Do, .0, = {73, 73} |TIT3| |TIT4| |T5T3| |T5T4|
Doy.05 = {5}

D03706 = {$27I73? L4, "1;571776}

Doy,.0, = {T1, x2, T3, 6} wsTi| [wsv2] [@sT3| |wsT

DO4,05 = {T% xs3, ‘TG}

Do,,0, = {71}
Do,0, = {71, 75} | Zawami | |Twams | |wawawi| |wswams| [wewami| |wowams

Fig. 4.1.: A visualization of the calculation steps of the algorithm PrimePatternForest
including the resulting positive prime patterns of the data set given in Table 4.1.

4.1 PrimePatternForest - An algorithm for the generation of prime 93
patterns

94

positive prime pattern for a set of observations 2 and let O~ ¢ () be a new negative
observation.

If P* does not cover the new negative observation O~ then P* is obviously still a
positive pattern for Q U {O~}. It covers at least one positive observation, namely
the same positive observation O™ that it covers in 2, and no negative observation,
namely no negative observation in) and not the negative observation O~. Also it
is still prime, because it had an inclusion-wise minimal set of literals regarding 2,
which does not change by adding a new negative observation.

The more interesting scenarios arise if PT covers the new negative observation
O~ ¢ Q. In that case, P is no positive pattern and, in particular, no positive prime
pattern on Q U {O~}. It is still true that P covers at least one positive observation
of QU {O~} C Q2 and no negative observation in this data set apart from O~. Let
L be any fixed literal that covers the positive observation O, which is covered by
PT, and does not cover O~. Such a literal must exist because otherwise O = O~,
which contradicts the main property QT N Q™ = () of our data set. The term P™ A L
covers O and does not cover O~ by construction. It, therefore, covers a positive
observation and no negative observation in Q@ U {O~}. This is true because we
already noted that P does not cover any negative observation apart from O~ so we
can be sure that a combination of P™ with any literal does not cover any of them. It
follows that P+ A L is a positive pattern for Q U {O~}.

If the positive pattern P+ A L does not include any shorter positive pattern, then the
pattern is prime and we are done. This is the second case of the Lemma.

The last possibility is that P™ A L is not prime on the data set 2 U {O~}. This means
that the deletion of a literal of P* A L leads to a positive pattern on QU {O~}. Now
there are two options. The first option is that there exists another literal M # L that
covers OT and not covers O~ and that can be used to form a new term Pt A M,
which is a positive prime pattern on Q2 U {O~ }. Here we then found a positive prime
pattern by adding exactly one literal. The second option is that none of the literals
that cover O and not cover O~ lead to a prime pattern on 2 U {O~}. In this case
it is easy to see that we cannot find a positive prime pattern for 2 U {O~} that
includes P™. To ensure that the new term does not cover O~ we have to append
literals that do not cover O, but those literals have to cover O™ such that we do
not lose the property that the term covers this positive observation. However, we
already know that each combination P+ A K for any such literal K is not prime on
QU {O~}, meaning that it includes a shorter positive pattern. Therefore, any larger
combination with valid literals would include a shorter positive pattern as well. This
means that we cannot transform P into a positive prime pattern on QU {O~}. [

Chapter 4 Theoretical extensions of LAD

Lemma 4.1 immediately leads to a bound on the degree of positive prime patterns
of a data set.

Proposition 4.1. Let P* be a positive prime pattern for a set of observations) =

QT UQ™. Then for the degree deg(P™) of P™ holds:

deg(PT) < ||

The upper bound given in Proposition 4.1 is obviously very high in general as we
look at much larger data sets in practice.

The following proposition, which gives a bound on the number of positive prime
patterns, follows from Lemma 4.1 and the construction of the set of leaves in the
Algorithm PrimePatternForest.

Proposition 4.2. Let O be a positive observation and D, -, i = 1,...,m the sets
of differences for m negative observations O7,...,0O,,. If the pairwise intersection
of the sets of differences is empty for all negative observations O7 ,...,O,,, then the

following statements hold:

1. The number of positive prime patterns that cover the positive observation O

equals T, [Do - |

2. The degree deg(P*) = >"1", 1 = m for all positive prime patterns P that cover
o.

The intuition behind the second statement in Proposition 4.2 is that if the pairwise
intersection of the sets of differences is empty, then for each new negative observation
exactly one literal has to be added to each leaf in the prime pattern forest. As we
assume a data set with m negative observations, each of the resulting prime patterns
has degree m. The first statement is based on the same argument. If the pairwise
intersection of the sets of differences is empty, then all combinations of literals have
to be added as new leaves to the prime pattern forest.

Following up on these general observations, we now prove the central theorem of
this section.

Theorem 4.1. The output set B of the algorithm PrimePatternForest includes
exactly all positive prime patterns of the data set §).

Proof. We prove the correctness of the algorithm PrimePatternForest. In a first
step we show that each term included in the output set, namely each leaf in B, is a

positive prime pattern.

4.1 PrimePatternForest - An algorithm for the generation of prime
patterns

95

96

Therefore, we start looking at lines 3 to 7. In this first step of the algorithm only two
observations are in consideration. One positive observation O;" and one negative
observation O; . We calculate the set of literals that separate O; from O; . Obviously
all these literals were prime patterns of degree 1 if only this one negative observation
existed. All of them are used as roots of a tree in the prime pattern forest. At this
point the output would, therefore, consist of (all) positive prime patterns if no more
negative observations were in the queue.

Now in the case that more negative observations exist, we look at them one by
one (see lines 9 and 10). Again the set of differences is calculated for the positive
observation O;" and the new negative observation O, .

For each leaf [of the forest we then look for an intersection with the set of differences
DOJ,O;' Note here that we refer to the roots as leaves too if they have no out-degree.
If such an intersection exists (line 12 and 13), then the leaf remains a prime pattern
(up to the set of negative observations considered), because at least one literal in the
leaf is different from the new negative observation O, . This means that the term
considered obviously covers the positive observation and does not cover the new
negative observation. For the already processed negative observations this is true
recursively. The leaf [, therefore, remains a positive prime pattern for the new data
set including the new negative observation O, .

If there is no intersection (line 14 and following), then the leaf appears in the
negative observation O, . We know with Lemma 4.1 that we have to add exactly
one literal z to the leaf | to make it a prime pattern covering O;" with regard to the
new negative observation O, or there is no option to transform / into a valid prime
pattern regarding O;" and O, . In line 17 to 18 the literals in the set of differences
DOﬁOE are checked for an intersection with the leaves of degree 1. If such an
intersection exists, then the literal x itself is a prime candidate and cannot be added
to any of the leaves.

If not we proceed. Before we can add the combination of the leaf [with literal
T € Doj,o; to the set of leaves B, we have to ensure that no subterm of x A [is
already a leaf of the forest, meaning that this is already a prime pattern up to the
given point. Therefore, we check for each literal m in = A | whether the subterm
(x Al)\misincluded in the leaves B. If this is the case, the literal x cannot be added.
In the case that none of the subterms already exists in B we can add = A [to B.
The new leaves are prime patterns regarding all negative observations considered
up to this point, because they were prime patterns up to the negative observation
considered before by construction and now only one literal is added to make the

Chapter 4 Theoretical extensions of LAD

41.4

term different from O, . No shorter change is possible. Therefore, the leaf is a prime
pattern.

To assure ourselves that we calculate all positive prime patterns we again look at the
first negative observation. Here no other possible literals than the literals in the set of
differences exist as prime patterns. At this step we, therefore, find all prime patterns
up to the one negative observation added. As we do the same for each new negative
observation, namely look at all literals that separate the negative observation from
the positive observation and then add all possible combinations, we generate all
prime patterns up to the current negative observation in each iteration and finally
all positive prime patterns for the data set. O

Performance
Setup

We started this section with the statement that our algorithm PrimePatternForest
is particularly favorable when the underlying data set has a small Hamming distance
between the set of positive and negative observations. Having a look at the algorithm
we see that only those literals appearing in a set of differences D+ - are taken
into account in each iteration step. As we have Hamm(O%,07) = |Do+ o-| our
hypothesis is reasonable, because we use less calculation steps the closer the two
observations O" and O~ are.

To substantiate this observation we did a comparison of the running time of a
python implementation of PrimePatternForest on randomly generated data sets
of fixed size and differing maximal Hamming distance between positive and negative
observations. We, therefore, calculated binary matrices of size 10 x 10 having a
maximal Hamming distance between positive and negative observations of 3, 6
and 9 and of size 20 x 20 having a maximal Hamming distance between positive
and negative observations of 5, 10 and 15. For each of the six properties, we
generated three binary data sets. We then used the algorithm PrimePatternForest
to calculate all positive prime patterns for each of the data sets.

Additionally, we compared our results to the running time of our python implemen-
tation of the classical Term Enumeration Algorithm (see Chapter 2 Algorithm 1)
proposed by [24] and the running time of our software AnswerSetLAD. The results
are shown in Table 4.2. The running times are the averaged results over the three
data sets for each of the data set properties. All times are CPU times of calculations
on a Linux AMD64 with 3.20GHz, 4 cores and 15.6GB of memory.

4.1 PrimePatternForest - An algorithm for the generation of prime
patterns

97

98

Size 10 x 10 | 10 x 10 | 10 x 10
Hamm(Q,Q7) 3 6 9
PrimePatternForest 0.68s 0.94s 3.69s
Term Enumeration 19m12s | 26m42s | 12m31s

AnswerSetLAD 0.02s 0.03s 0.05s
Size 20 x 20 20 x 20 20 x 20
Hamm(Q7,Q7) 5 10 15
PrimePatternForest 28.2s 38m23.4s 57m7.7s
Term Enumeration
AnswerSetLAD 0.8s 12.5s 33.7s

Tab. 4.2.: Averaged results of the running time (CPU time) of the algorithms
PrimePatternForest and Term Enumeration (see Algorithm 1 in Chapter 2)
and the software AnswerSetLAD on randomly generated binary data set having a
fixed maximal Hamming distance between positive and negative observations.
Each time shown is the average of the running time over three data sets.

Results

The results in Table 4.2 obtained from calculations on data sets of size 10 x 10 for
the algorithm PrimePatternForest show that the problem gets more difficult with
a higher maximal Hamming distance. In contrast, we see that the running time
of the Term Enumeration algorithm does not depend on the maximal Hamming
distance used for the generation of the data sets. It needs the largest averaged
running time for data sets having maximal Hamming distance 6, followed by those
having maximal Hamming distance 3 and shows the fastest averaged running
time for data sets having maximal Hamming distance 9. In all three cases the
PrimePatternForest algorithm is much faster than the Term Enumeration method.
PrimePatternForest was able to solve all problems with an averaged running time
under four seconds while the Term Enumeration method used between ten and thirty
minutes. These results suggest that PrimePatternForest is a valuable alternative
to the classical Term Enumeration approach. Although PrimePatternForest is
definitely preferable to Term Enumeration, the comparison to AnswerSetLAD shows
that our ASP tool clearly outperforms the presented algorithm. It solved all three
problems with running times under 0.1 seconds.

The second table, which includes running times for the data sets of size 20 x 20,
supports the observations made before. PrimePatternForest is able to solve all
given problems of size 20 x 20 in times starting from a few seconds for the data

Chapter 4 Theoretical extensions of LAD

41.5

sets with smaller maximal Hamming distance and going up to one hour for the data
sets with higher maximal Hamming distance. We again see a correlation between
running time and maximal Hamming distance. The Term Enumeration method
was not able to calculate the positive prime patterns for any of these bigger data
sets within our time-out of 8 hours. Still we see that AnswerSetLAD is definitely
preferable in all cases but especially when the Hamming distance of the data set is
large.

Concluding from this performance study we summarize that PrimePatternForest
scales well on data sets having a small Hamming distance between the set of positive
and negative observations. It is clearly preferable to the classical Term Enumeration
algorithm formulated in [24] on all tested data sets. Nevertheless, our ASP software
AnswerSetLAD is by far unbeaten in running time.

Discussion

In this section, we introduced a new algorithm for the calculation of prime patterns.
We saw that it is a meaningful alternative to the Term Enumeration algorithm,
which was proposed in [24], because it solves problem instances noticeably faster.
Although the software AnswerSetLAD leads to better results regarding running time
in all our experiments, we still think that the algorithm PrimePatternForest follows
an interesting idea about the composition of prime patterns.

The idea for the algorithm arose from a biological application including a data set
from perturbation measurements on a signaling network in a cell (see Chapter 5).
Perturbation measurements are measurements of activation of proteins in the cell
network under different perturbed settings. As these settings vary only slightly
the observations tend to be similar to each other, meaning that the measurements
differ in only a few proteins. Here the PrimePatternForest algorithm could find a
suitable application. We think that it would be interesting to have a closer look on
biological data sets to find a niche where our algorithm can be of value. As it can be
assumed that biological data for a system is not independent from each other, we
are confident that such an application exists.

4.1 PrimePatternForest - An algorithm for the generation of prime
patterns

99

4.2

4.2.1

100

Prime theories and core theories

In this section, we present ideas and preliminary results on LAD theories. We put the
focus on theories formed by prime patterns. Those theories are called prime theories.
We thereby follow the definition of Yves Crama, Peter L. Hammer and Toshihide
Ibaraki [34].

Definition 4.4. Let ¢ be a DNF consisting only of prime patterns of a pdBf (Q+, Q7).
Then ¢ is called a prime theory for (Q, Q7).

Prime theories play a central role in LAD. On the one hand, this is due to their
structure built out of prime patterns, which are succinct and more easy to interpret
than longer patterns. On the other hand, it is convenient in practice that for each
pdBf we are able to find a prime theory. This is true, because for each positive
(negative) observation, we find a positive (negative) prime pattern that covers the
observation. This prime pattern is the characteristic term of the observation itself
in the “worst” case when all other literal combinations cover an observation of the
opposite sign or a shorter pattern covering the observation. A disjunction of any set
of patterns that covers all observations is a theory.

Obviously the number of prime theories for a data set is large. In this section, we
investigate the question of how to choose a reasonable prime theory out of the pool
of possible ones. More precisely, we suggest a statistical measure that can be used
to rank the prime patterns for a data set according to their literals and leads to a
subset of prime theories, which we will refer to as core theories in the following.

Core theories

As mentioned before any prime theory for a pdBf (27, Q) is a disjunction of some
of its prime patterns. The number of prime patterns for a pdBf is large in general and,
therefore, the calculation of the full set of prime patterns is a difficult and intensively
investigated task [24, 61, 83]. Nevertheless, for data sets like the six examples we
introduced before (see Chapter 3 Table 3.1) from the UC Irvine Machine Learning
Repository [38] having less than 1000 observations and less than 1500 attributes,
we are able to calculate the full set of prime patterns in short time using our software
package AnswerSetLAD. Based on that we do not worry about how to calculate the
full set of prime patterns here, but start from the point were we already have it
at hand. Regarding the problem of choosing a good theory out of the set of all
possible prime theories for a data set, we are interested in the question: How can we

Chapter 4 Theoretical extensions of LAD

determine prime theories that yield better results regarding their prediction accuracy
than others?

For this purpose, we have a closer look at the set of prime patterns belonging to
a data set. More precisely we investigate the occurrence of their literals over the
whole set. To illustrate our approach we consider the discretized BLD data set after
feature selection. There are 16 positive and 48 negative prime patterns in the data.
Our basic idea is that literals that appear more frequently within the whole set of
prime patterns are more trustworthy than literals that appear only a few times. In
Figure 4.2 we see a visualization of the set of prime patterns of the BLD data set.
Here the prime patterns are divided into their literals and then the number of times
each literal appears in the whole set of prime patterns is shown.

All literals that exist in the data set are listed on the X-axis. Each occurrence of a
literal in a positive prime pattern is visualized using a blue square. Each occurrence
of a literal in a negative prime pattern is visualized using a red square.

To choose a prime pattern from the set of all prime patterns we define the core
weight:

Definition 4.5. For a pdBf (Q",Q7), a literal L and its complement L, let
* O, (L) be the number of occurrences of L in a positive prime pattern of (2, Q7);
* O_(L) be the number of occurrences of L in a negative prime pattern of (2, Q7).

The positive core weight cw™ (L) of the literal L is defined by:

04 (L) 0_(L)
(L) = RS- — : 1
cw b= g s 6.1 T e D)+ (L) (4.1)
The negative core weight cw™ (L) of a literal L is defined by:
cw (L) = O_(L) + 0. (L) (4.2)

0_(L)+0_(L) 6.(IL)+0.(L)

The core weight of a positive (negative) prime pattern is the sum of the positive
(negative) core weights of its literals. The core weight of a theory is the sum of the
core weights of its positive prime patterns and the core weights of its negative prime
patterns.

Thus the positive core weight of a literal L is the number of its occurrences in a
positive prime pattern normalized by the total number of times the variable occurs
over all positive prime patterns plus the number of times the complementary literal

4.2 Prime theories and core theories

101

Number of
occurences

15

10

1 11

Xy T T2 Ty T3 Tz T4 Ty X5 Ty Te Tg L1 Ty T Ty L9 Tg T Tig L11 Tl T12 Tie T13 Tiz T4 Tig Ti5 Tip Literals

Fig. 4.2.: The occurrences of the literals in the positive and negative prime patterns of the BLD data set after feature selection. Each occurrence of a
literal in a positive prime pattern is visualized using a blue square. Each occurrence of a literal in a negative prime pattern is visualized
using a red square.

Chapter 4 Theoretical extensions of LAD

02

1

422

L occurs in the set of negative prime patterns normalized by the total number of
times the variable occurs over all negative prime patterns.

The ideas behind the definition of the core weight for the choice of a positive prime
pattern are:

* If a literal L occurs frequently in the set of positive prime patterns, then it is
more reliable than a literal that occurs less often.

o If the complement of L, the literal L, occurs frequently in the set of negative
prime patterns, then the literal L is more reliable for a positive prime pattern.

* A positive prime pattern is more reasonable to use in a theory, when it consists
of a set of reliable literals.

According to these ideas and our definition of core weights, we aim to choose those
positive prime patterns to form a theory that consist of literals that appear frequently
over the set of positive prime patterns and whose complements appear frequently
over the set of negative prime patterns. The same ideas hold for the choice of
negative prime patterns. A theory that has a high core weight is more reasonable
than a theory that has low core weight.

Based on the definition of core weights of prime patterns we can now define a
subclass of prime theories, which we call core theories.

Definition 4.6. Given a pdBf (2, Q7), a prime theory ¢ that has maximal core weight
is called a core theory.

Implementation

For the implementation of our described ideas about prime and core theories we
used ASP to integrate the calculation into the software package AnswerSetLAD.

Input: The set of prime patterns

To generate the set of all (prime) patterns, or a subset of it, in a convenient way, we
used our python script A11Patterns.py that allows enumerating all patterns of any
type within our toolbox AnswerSetLAD [14]. The parameters lower bound on the
degree, upper bound on the degree, lower bound on homogeneity and lower bound on
prevalence can be added to specify the desired set of patterns. The resulting txt-file
is then transformed into an ASP input file for our theory calculation by the parser

4.2 Prime theories and core theories

103

104

ReadAllPatternsForCoverCalc.py. The input file includes for each prime pat-
tern for each of its literals the predicate pat (Id,Sign,Degree, (Variable,Value))
and for each of the observations that is covered by the pattern the predicate
cov(Id,Sign,Degree, (Sign,0bsId)). A pattern can uniquely be identified by
the combination of the first three entries of the predicates. Patterns of different sign
or degree can have the same ID. An example is given below:

pat(2,1,3,(19,1)).
pat(2,1,3,(23,0)).
pat(2,1,3,(7,0)).

cov(2,1,3,(1,10)).
cov(2,1,3,(1,15)).

This pattern has the ID number 2. It has sign 1 , which means that it is a positive
pattern, and has degree 3. Its literals are variable 19 with a positive value, 23
with a negative value and 7 with a negative value. The pattern covers the positive
observations 10 and 15.

Calculating a minimal prime theory

We implemented an ASP program to choose a minimal prime cover from the set of
all prime patterns of a data set calculated and given in the form described above.
We remind that a pattern cover is a set of patterns for a data set, such that all
observations are covered by at least one pattern (see Chapter 2 Section 2.4.2). A
prime cover consists of prime patterns only. A pattern cover is called minimal, if it
includes a minimal number of patterns. Besides the prime patterns, the algorithm
needs the data set in suitable format (see Chapter 3 Figure 3.3) as input. The
encoding is shown in Figure 4.3.

The code follows the generate-define-test structure often used in ASP programs. In
line 2 a set of patterns primecover is chosen from the set of prime patterns pat.
As explained before, a pattern can be uniquely identified by the three variables
N,S,D standing for ID, sign and degree, respectively. Up to that point any set
of prime patterns could be chosen. To narrow down the answer set we use the
following constraints. In line 5 a predicate iscovered is defined that is true for each
observation P of sign X that is covered by a pattern included in primecover. To get
an answer set that represents a full cover of the data set, it is not allowed that any
of the observations remains uncovered. This is the statement given in the integrity
constraint in line 8. We minimize the number of patterns in the cover (line 11) to

Chapter 4 Theoretical extensions of LAD

10

11

% GENERATE
{ primecover(N,S,D) } :- pat(N,S,D,_).

% DEFINE
iscovered(P,X) :- primecover(N,S,D), cov(N,S,D,(P,X)).

% TEST
- i(P,X,_,_), not iscovered(P,X).

% OPTIMIZE
#minimize{ 1,N,S,D : primecover(N,S,D) }.

Fig. 4.3.: The encoding for the generation of a minimal prime cover from the set of prime
patterns.

get a minimal prime cover. A prime cover resulting from this calculation is called
minimal prime cover in the following.

Calculating a minimal core theory

We introduced the concept of core theories as a subset of the prime theories for a
given pdBf (21, Q™). Here we explain our implementation in ASP. The full encoding
is shown in Figure 4.4.

Similar to the program for the calculation of minimal prime theories, this encoding
is based on the full set of prime patterns of a data set. It is organized using the
generate-define-test structure. While the generate and test parts coincide with those
of the minimal prime theory calculation, the define part is longer as the predicates
for the core weights need to be defined. The predicate occ (((Y,V),S),Q) saves for
each literal consisting of variable Y and value V the occurrence Q in the set of positive
prime patterns (S = 1) and negative prime patterns (S = 0). Therefore, in line 8 for
each literal that appears in a pattern the number of times it occurs is counted and
saved in Q. Because some literals do not occur at all in a pattern of sign S, we need
lines 9 and 10 for further calculations.

In a next step the weights are assigned. In predicate literalweight (((Y,V),S),
P,Q,N,R) for each literal (Y,V) the four measures P,Q,N and R are saved, where P
stands for © of the literal (Y,V), Q for ©, of the complement of (Y,V), N for ©_
and R for © _ of the complement of (Y,V).

In the lines 15 and 16 the full literal weight is calculated using the definition of the
core weight of a literal shown in (4.1) and (4.2). The weight W of literal (Y, V) for the

4.2 Prime theories and core theories

105

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27

106

% GENERATE
{ primecover(N,S,D) } :- pat(N,S,D,_).

% DEFINE
theorycov(P,X) :- primecover(N,S,D), cov(N,S,D,(P,X)).

occ(((Y,V),8),Q) :- pat(_,S,_,(Y,V)),

Q = #sum{1,N,S,D : pat(N,S,D,(Y,V)) }.

occ(((Y,V),S8),0) :- pat(_,S,_,_), pat(_,_,_,(Y,),
not pat(_,S,_, (Y, V).

literalweight (((Y,V),S), P,Q,N,R) :- occ(((Y,V),S),P),
occ(((Y,X),S),Q), occ(((Y,V),W),N), occ(((Y,X),W),R),
VI=X, W!=S.

fullliteralweight (((Y,V),S), W) :- literalweight(((Y,V),S), P,Q,N,R),
W=P* (N+R) -N* (P+Q) .

patternweight ((N,S,D),K) :- pat(N,S,D,_),
K = #sum{W, (Y,V),S : fullliteralweight(((Y,V),S), W),
pat(N,S,D, (Y,V)) }.

% TEST

:- i(P,X,), not theorycov(P,X).

R J

% OPTIMIZE
#minimize{ 1@2,N,S,D : primecover(N,S,D) }.
#maximize{ K@1 : patternweight((N,S,D),K), primecover(N,S,D) }.

Fig. 4.4.: The encoding for the generation of a minimal core cover from the set of prime
patterns.

patterns of sign S is then stored in the predicate fullliteralweight (((Y,V),S),
W).

In a last definition in lines 18 to 20 the weight W of a pattern is calculated and stored
within the predicate patternweight ((N,S,D),K). We remind that a pattern can be
uniquely identified by the tuple (N,S,D), where N is its ID, S is its sign and D is
its degree. The core weight W of the pattern (N,S,D) is the sum over all its literal
weights.

The optimization part consists of two optimization statements. We first minimize
the number of patterns within a theory and then maximize the core weight of the
theory. The answer sets of this encoding are, therefore, a subset of the answer sets
of the encoding in Figure 4.3, which calculates all prime covers of minimal size.

Chapter 4 Theoretical extensions of LAD

4.2.3 Discussion

In this section, we illustrated our ideas on how a statistical measure on the literals
of all prime patterns of a data set can be defined to select more reliable patterns and
with that build theories.

With the inclusion of statistics into the LAD process we take a step in a new direction,
which to our knowledge has not been done before. Although measures of statis-
tical significance have been mentioned in the context of pattern selection, see for
example [59], the idea of looking at their literal occurrences is a new concept. It is
important to note again that the calculation of all prime patterns is computationally
very expensive and that it might not be worth the effort when data sets are big.
Nevertheless, we think that the ideas explained before are not only interesting
for the pattern selection process on the way to build theories but also to get an
insight on how important a certain literal might be. Especially when we speak about
interdisciplinary work it is useful to think of understandable pieces of information
that can be communicated across different research fields. We think that measures
on literals can be such pieces of information.

In this subsection, we showed preliminary ideas and implementations. In future
work these concepts should be tested within an extensive study. The comparison
of all prime theories for a data set is, however, computationally very expensive and
time consuming. This is due to the fact that the number of prime theories for a data
set is rapidly growing with its size. For that reason, we leave this as a perspective.

Furthermore, different ways of weighting the patterns according to their literal
occurrences could be investigated in subsequent work. The way we set up our
workflow, we are very flexible to adjust the procedure according to new ideas. We
think that it could be of interest to not only investigate single literals but stick more
closely to the original LAD method and look for subpatterns in the set of patterns.
When we generate all prime patterns for a data set we see that often patterns for
a fixed degree n are formed out of building blocks of size n — 1 or less, combined
with one or a few changing literals. We believe that those building blocks can be
expanded to an interesting and informative concept.

The goal to find a good theory out of all possible theories is central for the LAD
methodology. As we speak about partially defined Boolean functions, known and
unknown data, there will obviously never be a method that can decide for a theory
that will not make errors. The unknown data is unknown and we cannot change that
fact. We can, nevertheless, try to constrain our theories to the ones which seem to

4.2 Prime theories and core theories 107

be more promising according to certain criteria. Here we showed one idea regarding
this important task.

108 Chapter 4 Theoretical extensions of LAD

Part IV

Application

5.1

5.1.1

Biological applications

Perturbation data of signaling networks

This first application of our methods was published as a workshop paper with
Martin Gebser, Torsten Schaub and Alexander Bockmayr [15]. Based on a coop-
eration with the group of Nils Bliithgen at Humboldt University of Berlin and
their work on perturbation experiments [64, 37], I had the idea of analyzing
signaling networks via Logical Analysis of Data. In this section, we show exem-
plarily on the EGFR signaling pathway how LAD and our software AnswerSetLAD
can be used to identify protein interactions.

Biological background

Regulatory signaling networks The regulatory signaling network of a cell consists
of several molecular regulators interacting with each other to coordinate cell actions.
Errors in these networks are responsible for diseases such as cancer. Systems biology,
therefore, investigates cell signaling to understand how changes in the network
structure affect the flow of information. The final goal is to target certain proteins
of the network to stop the mutation or deregulation of a diseased cell or lead it to
apoptosis.

Targeted therapy Mutations happen every time that cells divide. Normally, the
immune system can cope with it. But when the number of mutations increases or
the immune system is stressed, some mutated cells might not be spotted and can
grow without being eliminated. Cancer therapy is a huge research field. Nowadays
chemotherapy is still a method of choice. It works by cutting the signaling pathways
of the cell to stop cell division. This is useful to stop the cells from growing, but
it is not selective enough for cancer cells. For that reason, chemotherapy leads
to numerous undesirable side effects. Targeted therapy in contrast aims to affect
only specific cells and not interfere with the healthy parts of the body. A precise
understanding of the signaling networks in cells is fundamental for this approach.

111

5.1.2

112

Flurescence of second antibody is measured. /\

t

Second antibody binds to first antibody.

First antibody binds to phosphate.

Phosphate binds to protein.

| Phosphorylation measuremen

Protein

Fig. 5.1.: An intuition of the phosphorylation of a protein. A phosphorylation measurement
answers the question of how many phosphates bind to the protein. A protein can
bind different phosphates. Different phosphates can activate different pathways.

Phosphorylation Phosphorylation measurements are a commonly used approach
for the study of regulatory signaling networks. The number of phosphates that
bind to a protein of the cell is counted under varying conditions (see Figure 5.1 for
an intuition). The phosphorylation measurements are then used to indicate that a
protein was active or inactive under the specific setting.

The Epidermal Growth Factor Receptor (EGFR) The Epidermal Growth Factor Re-
ceptor (EGFR) is a protein in the cell surface. Its phosphorylation activates several
signal transduction cascades such as the MAPK and AKT pathways that are associated
with cancer. It is known that an up-regulation or constant activation of EGFR due
to mutations of the cell leads to uncontrolled cell division. The protein EGFR is,
therefore, an interesting target for cancer studies in signaling networks.

|dentifying protein interactions from phosphorylation
measurements via pattern generation

In Table 5.1 we see discretized phosphorylation measurements of proteins in the
EGFR signaling network. The original data before discretization is taken from the
perturbation experiments conducted by [64]. In Figure 5.2 we show an idea of the
known underlying protein network. This figure is adapted from [64].

Chapter 5 Biological applications

I) I3 T4 xT5 i xT7
S6K TGF,, IGF MEK | PI3K | MEK | AKT ERK
inh inh

1 1 0 0 0 0 0 0
1 0 1 0 0 0 1 1
1 1 0 1 0 1 1 0
1 0 1 1 0 1 1 0
1 1 0 0 1 1 0 1
0 0 0 1 0 1 0 0
0 0 0 0 1 0 0 1
0 0 1 0 1 1 1 1

Tab. 5.1.: Discretized phosphorylation measurements of the EGFR pathway. The original
data before discretization is taken from the experiments made in [64].

— EGFR| |IGFR|
VA4

RAF| |PI3K|

|MEK| |AKT|

Fig. 5.2.: The EGFR-signaling pathway adapted from [64].

The perturbation experiment The phosphorylation of the proteins MEK, AKT, ERK
and S6K was measured under different combinations of a stimulus at one of the
growth factors TGF,, and IGF, and inhibitions before MEK and after PI3K. In Table 5.1
the active stimulus is represented by 1 and the absence of a stimulus is represented
by 0. The same holds for the presence of an inhibition (labeled with 1) or its absence
(labeled with 0). In Figure 5.2 the stimuli are marked in green and the points of
inhibition are marked by a red arrow.

Preprocessing the data set We divided the data in Table 5.1 by the readout at
the protein S6K that is located at the end of the pathway. This leads to a division
into positive and negative observations of the data set. All observations having

5.1 Perturbation data of signaling networks

113

114

a high phosphorylation at S6K (indicated by 1) are positive observations and all
observations having a low phosphorylation at S6K (indicated by 0) are negative
observations. We note here that we could divide the table by any of the observed
proteins depending on the research question.

In the following we investigate the data set looking for prime patterns that explain
the outcome of the phosphorylation of the downstream protein S6K.

Positive prime patterns We divide our analysis of positive prime patterns in patterns
including a stimulus at TGF,, and patterns including a stimulus at IGF.

The search for positive prime patterns including TGF,, leads to a single solution,
namely pat(1,1), a prime pattern of degree one. This prime pattern is the only
prime pattern of degree one for this data set. The pattern suggests that using
a stimulus at TGF, the phosphorylation of S6K is independent from the use of
additional inhibitions. When we look at the schematic overview of the known
information on the network in Figure 5.2 this outcome seems obvious. The signal
starting in TGF,, can be transmitted using both pathways over MEK or over AKT and
can thus reach S6K no matter the inhibition of one of the proteins.

The positive prime patterns including a stimulus at IGF all have degree two. The
answer sets are shown below:

Answer: 1
pat(2,1) pat(4,0)
Answer: 2
pat(2,1) pat(5,0)
Answer: 3
pat(2,1) pat(3,1)
Answer: 4
pat(2,1) pat(7,0)

Those stable models can nicely be interpreted in the biological context. The stimula-
tion of IGF does not guarantee a phosphorylation at S6K as the pathway can be cut
using an inhibition at PI3K. Therefore, we do not see a prime pattern of degree one
including IGF.

Answer 2 illustrates the observation that we can have a positive readout at S6K while
stimulating IGF without seeing a phosphorylation of MEK. Answer 4 is a similar
observation including the information that we do not have a phosphorylation of ERK

Chapter 5 Biological applications

5.1.3

when we see a phosphorylation of S6K under the given stimulus. Those two stable
models indicate that MEK and ERK might not lie on the pathway from IGF to S6K.

Answer 3 can be interpreted in the way that an inhibition at MEK does not prevent a
phosphorylation of S6K when using the stimulus at IGF, because the signal starting
at IGF is not running through MEK on the way to the downstream protein.

Answer 1 stands for the stimulation of IGF without the inhibition of PI3K. This prime
pattern represents the path from IGF along PI3K. It is also the only positive prime
pattern including IGF having a higher prevalence than the other three patterns.

Negative prime patterns We analyze the negative prime patterns of the data set in
the same manner. There exists no negative prime pattern including TGF,. This is
easily verified in Figure 5.2 as we can never observe a negative readout at S6K when
the stimulus at TGF,, is active.

There are no negative prime patterns of degree one including IGF and only a
single degree-two prime pattern that consists of the literals pat (2,1) and pat(4,1),
standing for the active stimulus at IGF and the inhibition at PI3K.

Discussion

Our study on perturbation experiments gives an insight on how LAD and our software
package AnswerSetLAD can be used to analyze data sets of protein activation in
signaling networks. We used prime patterns to investigate the pathway structure
of the protein network of EGFR and saw that they nicely display the underlying
structure of the network.

This application uses only a small part of the LAD functionalities and does not
reveal any new knowledge about the network structure. However, we were able to
represent the known network structure by the prime pattern analysis. We, therefore,
believe that this study can be used as a basis for new ideas with respect to the
investigation of protein interactions. The data analysis with LAD seems to be a
promising concept in the area of signaling networks.

5.1 Perturbation data of signaling networks

115

5.2

5.2.1

116

Synthetic biology - cell classifier circuits

The following study is published work with Hannes Klarner, Melania Nowicka
and Heike Siebert [17] and based on a cooperation with Niko Beerenwinkel
and Yaakov Benenson from ETH Zurich. It deals with an application of Boolean
classifiers in synthetic biology making use of the ASP framework.

The study was conceived by Heike Siebert, Hannes Klarner and me. Hannes
Klarner and I designed and implemented the software and started the work on
the case studies and the classifier evaluation according to [78]. Melania Nowicka
extended the framework with the full evaluation procedure and performed the
final case studies. Hannes Klarner performed the simulated data analysis. All
work done was supervised by Heike Siebert.

Biological background

One of the major challenges of our time is to fight diseases that cause massive
damage to the human body such as cancer. Unlike only some decades ago, we now
have advanced possibilities regarding medical engineering and with that we have the
opportunity to actually tackle these diseases. The field of synthetic biology is rapidly
growing and lots of research is done in this area [62, 42]. Cell classifier circuits are
of special interest and studied intensively [99, 62]. Those synthetic devices are built
in the laboratory combining certain biological parts mimicking an electronic circuit
and then transferred into living cells via a plasmid or viral vector. Inside the cell the
classifier circuit “decides” depending on the specific cellular markers, such as the
miRNA fingerprint of the cell, whether or not it is a healthy or a diseased cell. The
outcome of the classification triggers a controlled production output and leads the
diseased cells to apoptosis while not harming the healthy cells. Such cell classifiers,
which are still a futuristic idea, fall into the field of personalized medicine. It is a
vivid and promising research area [58, 71, 78]. While the state-of-the-art methods to
fight cancer, such as chemotherapy, tend to not only kill the cancerous but also a lot
of healthy cells and, therefore, cause damage themselves, personalized cell classifiers
would be able to remove the cancer without affecting the rest of the body. To realize
this approach a first step is to take samples of a patients cancerous and healthy
cells and then convert the implicitly included information into a synthetic circuit as
described before. This complex task is a classical machine learning problem [102,
78]. Many of the biological building blocks of the synthetic circuits are assembled as
logic gates [98, 97], which makes Boolean modeling a natural and well-suited choice.

Chapter 5 Biological applications

5.2.2

Whereas existing approaches often only include an implicit logical formalization
[104, 79, 78], we designed an approach using Boolean functions that outperforms
the heuristic methods on real-life data sets regarding the solution size and provides
us not only with one possible result but all globally optimal classifiers.

The framework - miRNA expression profiles and Boolean
classifiers

This study was conducted based on discussions with the group of Niko Beerenwinkel
and Yaakov Benenson from ETH Zurich. We used real-life data sets presented by
Farazi et al. [44] and preprocessed by Mohammadi et al. [78]. For benchmarking
and cross-validation we used self-generated input data sets. We describe the structure
of the input data in the following paragraph.

The input data: miRNA expression profiles An input data set for our approach

consists of rows including binarized miRNA expression profiles of different samples.

miRNAs are small non-coding RNA molecules that are involved in gene regulation
within a cell. The deregulation of many miRNAs has been associated with diseases
such as cancer. Each row in a data set provides the ID of the sample, which is the
labeling of the samples for identification, followed by Annots, which for each sample
is either O for healthy samples or 1 for cancerous samples, and the discretized levels
of measured miRNA expressions. Here 1 refers to a high level of the given miRNA
and O to a low level. The miRNAs are named by a letter g followed by an integer
that uniquely identifies a miRNA. An example is shown in Figure 5.3.

ID | Annots g2 | g3
1. 0 1 1 0
2. 0 0 1 0
3. 1 1 0 1

Fig. 5.3.: Example data set consisting of 2 negative and 1 positive sample.

While, of course, the discretization step of the input data plays a major role in the
process, we did not work on this part of the methodology within this study.

Boolean classifiers in conjunctive normal form

As discussed before, our mathematical goal is to construct a function that is able
to make a reasonable prediction for new samples based on the knowledge gained

5.2 Synthetic biology - cell classifier circuits

117

118

from the input data. This problem fits perfectly into the field of applications of
LAD as discussed intensively in the previous chapters. However, due to the further
processing, namely building the classifier circuits in the laboratory, certain constraints
have to be fulfilled that do not suit the LAD approach in the standard way. Therefore,
we developed a new ASP based workflow that does generate Boolean classifiers in
Conjunctive Normal Form (CNF).

The structure of the synthetic cell circuits Synthetic gene circuits are designed
consisting of logic gates [98, 97] within a Boolean framework. There are typically
three types of gates that are used. These are disjunctions (OR), conjunctions (AND)
and negations (NOT). The miRNA expression levels are used as inputs to the OR
and NOT gates and then combined by an AND gate, which yields the desired output
(see Figure 5.4).

input (e.g. miRNA data)
g3 g2

ID | Annots

o
N

o
w

1. negative 2.negative

© O ¢ .

3. positive Boolean expression

@ (21 OR g3) AND NOT g2 AND

output (e.g. cell death)

WIN| =
- o
k=
O |
E=lk=]

A) (B) ©

Fig. 5.4.: From miRNA expression profiles to synthetic cell circuits. (A) The inputs are
miRNA expression profiles identifying the cell state as healthy or diseased. (B)
The continuous miRNA levels are binarized. They can then be combined into logic
gates. A Boolean function can be defined by the conjunction of logic gates that
allows classifying the cell state. (C) The input signals are processed by a synthetic
regulatory network. The response of the network may be a controlled production
of a desired RNA or protein output leading to cell apoptosis depending on the cell
state.

Different from the standard LAD approach, which we described and evaluated
in the previous chapters, this demands the underlying Boolean function to be a
conjunction of clauses where each clause is a disjunction of negated and non-

Chapter 5 Biological applications

negated inputs. Therefore, in this study we refer to a classifier as a Boolean function
f:{0,1}" — {0,1}, where n is at most the number of considered miRNAs in
a profile, in Conjunctive Normal Form (CNF). A classifier that can separate the
given samples perfectly, meaning that each sample that is annotated as healthy is
classified as healthy by the classifier, and each sample that is annotated as cancerous
is classified as cancerous, is called a perfect classifier. Since we are considering
real-life data sets it sometimes makes sense to allow some latitude in the accuracy
due to errors that might occur in the process of gaining the input data. We make a
step in this direction by taking also classifiers into account that are not perfect, but
make some false positive or false negative errors. We call such classifiers imperfect
classifiers in the following. An example for a perfect classifier of the data set shown
in Figure 5.3 is:
(g1V g3) A g2,

where A, V and — represent logical conjunction, disjunction and negation, respec-
tively. To classify a new sample as cancerous (positive) according to this classifier
miRNA-g1 or miRNA-g3 should have a high expression and miRNA-g2 should have
a low expression.

Classifier constraints Not only do the classifiers have to separate the given data
set and fulfill the instruction of being in Conjunctive Normal Form, there are more
constraints on the Boolean function that ensure that the resulting classifier can be
assembled in the laboratory.

Based on the discussions with Niko Beerenwinkel and Yaakov Benenson and the
work of Mohammadi et al. [78] we defined a framework of classifier constraints
that force the Boolean function to a form that can be biologically engineered.

Smaller classifiers are easier to assemble, which leads to upper bounds on the overall
number of inputs and the overall number of gates. According to [78] only two types
of gates can be built in the laboratory. We defined those two gate types by the lower
and upper bounds on positive and negative inputs. Gate type 1 includes up to two
positive inputs and no negative input and gate type 2 is a single negative input.
The number of occurrences of the gate types is bounded by two for type 1 and by
four for type 2. The set of these core constraints is shown in Figure 5.5.

As mentioned before, these constraints were designed based on the specific setting
in the laboratory. The constraints can easily be adjusted according to different
preferences.

5.2 Synthetic biology - cell classifier circuits

119

120

gate type 1:
lower bound positive inputs:
upper bound positive inputs:
lower bound negative inputs:
upper bound negative inputs:
upper bound occurences:

gate type 2:
lower bound positive inputs:
upper bound positive inputs:
lower bound negative inputs:
upper bound negative inputs:
upper bound occurences:

upper bound gates: 6

upper bound inputs: 10

N O O wOo

> = O O O

Fig. 5.5.: A full set of core classifier constraints. A classifier that satisfies the core constraints
may consist of up to 6 gates with up to 10 inputs in total. Gates are either of Type
1 (OR gate) or Type 2 (NOT gate). Gates of Type 1 may include only non-negated
inputs. Gates of Type 2 may be only a single negated input.

To make the setting more flexible we added two constraints that bound the number
of false positives and the number of false negatives that the classifier is allowed to
make. This goes in line with the concept of imperfect classifiers and helps us to find
solutions for problems where no perfect classifier exists or we want to allow certain
types of errors in the classification due to possible errors in the data.

To ensure that each miRNA appears only once within the classifier, we added a
constraint to forbid repetitions of miRNAs over all gates. This unique-input constraint
might be relevant for increasing the robustness of the classifier against error in the
miRNA expressions.

Finding optimal classifiers

A data set consisting of samples of miRNA expression profiles can be interpreted
as a partially defined Boolean function (pdBf). If the underlying set of samples
is contradiction-free, meaning that there is no overlap between samples that are
annotated as healthy and those which are annotated as diseased, there exists at least
one perfect classifier to the problem described above. In practice it is interesting
to choose from the set of feasible classifiers the one that optimizes a certain cost
function. This cost function can represent the actual work cost to assemble the
circuit in the laboratory or for example weight specific miRNAs according to how
they might interfere with other components.

Chapter 5 Biological applications

5.2.3

We implemented four different optimization strategies that arise from the general
idea of keeping the classifiers as simple as possible:

(Optl) Minimize the number of inputs.

(Opt2) Minimize the number of gates.

(Opt3) Minimize the number of inputs followed by the number of gates.
(Opt4) Minimize the number of gates followed by the number of inputs.

Obviously the outcome for each of the four optimization strategies is different in
general. In practice it is useful to run several optimization strategies and decide on
the best result based on biological expertise.

Constraint relaxation - Handling non-perfect cases As mentioned before it might
not be possible to find a perfect classifier at all. For those cases we added the
constraints on the number of false positives and false negatives that the classifier is
allowed to make. In practice we tackle those problems by first applying the above
mentioned optimization strategies to find a perfect classifier. If such a classifier
does not exist, we stepwise increase the number of errors allowed until finding an
imperfect classifier making the fewest errors possible. Depending on the underlying
data and the application one might allow only false positives, false negatives or both
types of errors. We call this procedure constraint relaxation.

The ASP encoding

As discussed in Chapter 3 the ASP environment is well-suited for constraint-based
enumeration of optimal Boolean functions. Our software for the generation of
Boolean classifiers in conjunctive normal form is available on GitHub [16]. It
is implemented using python scripts. The script classifier.py translates the
input data file into an ASP program, which can then be solved by clingo [49].
Additionally, it creates an image of the resulting classifier as a directed graph. A
schematic overview of the workflow can be seen in Figure 5.6.

We describe the ASP encoding that is generated by classifier.py out of a csv-file

including the tissue data as in Figure 5.3 in more detail in the following para-
graphs.

5.2 Synthetic biology - cell classifier circuits

121

122

Input data

Binarized miRNA data

ID | Annots g2 | g3
1. 0 1|10
2. 0 0o|1]0
3. 1 1/0]1

Core constraints
- upper bound on gates/inputs

- gate types

Additional constraints
- bounds on errors etc.

Optimization mode
- minimize number of gates/inputs

Python script

Data and constraints
encoded as logical rules

Evaluation

- binary setting
- continuous setting
Python script

Output data

Optimal classifiers

(21 OR g3) AND NOT g2

Fig. 5.6.: The schematic overview of our ASP-based approach to synthetic gene circuit

design.

Input

Data To make the input readable for the ASP solver clingo, we translate the given

data into facts. For each sample a predicate tissue is introduced having as first

variable the tissue ID and as second either healthy or cancer depending on the

annotation of the sample. For each sample the predicate data is generated. It

contains three variables. The first one is again the ID number, the second one is the

name of the miRNA and the third one is a Boolean variable, which is either high, if

the miRNA expression has the binary value 1 or low if it has the binary value 0. The

input example in Figure 5.3 translates that way to the following ASP encoding:

tissue(1l,healthy). tissue(2,healthy). tissue(3,cancer).

data(l,gl,high). data(l,g2,high). data(l,g3,low).
data(2,gl,low). data(2,g2,low). data(2,g3,high).
data(3,gl,low). data(3,g2,high). data(3,g3,low).

The next lines of the code introduce the predicates is_tissue_id and is_mirna for

variable binding. They allow us to iterate over all tissues and miRNAs in the rest of

the program.

is_tissue_id(X) :- tissue(X,Y).

is_mirna(Y) :- data(X,Y,Z).

Chapter 5 Biological applications

Constraints As explained in the previous paragraphs we implemented the option
of defining constraints on the classifier in terms of bounds on the number of inputs
and gates. These bounds are given to the ASP solver as facts and can be adjusted
according to the specific application or preferences.

lower_bound_inputs(1). upper_bound_inputs(10).
lower_bound_gates(1l). upper_bound_gates(2).

The user can define different gate types. They always include a lower and an upper
bound on the positive inputs, a lower and an upper bound on the negative inputs
and an upper bound on the occurrence of this gate type. Here again for variable
binding the predicate is_gate_type assigns an index to the gate type that then
uniquely connects the bounds to it.

is_gate_type(1).
lower_bound_pos_inputs(l, 0). upper_bound_pos_inputs(1l, 2).
lower_bound_neg_inputs(1l, 0). upper_bound_neg_inputs(1l, 0).

upper_bound_gate_occurrence(1l, 1).

Finding a feasible classifier

Choosing gates The first step on the way to a feasible classifier is to choose a
number of gates in the range of the lower and upper bound on the gate number.

1 {number_of_gates(X..Y)} 1 :- lower_bound_gates(X),
upper_bound_gates(Y).
is_gate_id(1..X) :- number_of_gates(X).

The predicate number_of_gates exists exactly once and includes one variable whose
value is a number between the lower and the upper bound on the gates. The
predicate is_gate_id is used for variable binding.

To each of the gates we assign exactly one gate type out of the gate types defined in
the input section.

1 {gate_type(GatelID, X): is_gate_type(X)} 1
:— is_gate_id(GatelID).

Next, gate inputs are chosen from the set of miRNAs. The predicate gate_input
contains the variables. The first is a number that represents the gate ID, the second
is a Boolean variable that is either positive or negative depending on whether

5.2 Synthetic biology - cell classifier circuits

123

124

we choose the non-negated or negated input of the miRNA and the third one is the
name of the miRNA itself. The two possible values for the sign are accessible via the
predicate is_sign.

X {gate_input(GateID, positive, MiRNA): is_mirna(MiRNA)} Y
:- gate_type(GatelID, GateType),
lower_bound_pos_inputs(GateType, X),
upper_bound_pos_inputs(GateType, Y).

is_sign(positive). is_sign(negative).

At this point of the encoding it is possible for a miRNA to appear both as positive
and negative input to the same gate, which would lead to a gate that is active in all
cases. This is not useful in both the mathematical and biological sense. Therefore,
we added the following one-sign-only constraint that allows each miRNA to appear
only positive or negative in one gate.

{gate_input(GateID, Sign, MiRNA): is_sign(Sign)} 1
:— is_mirna(MiRNA), is_gate_id(GateID).

If we are interested in classifiers that contain each miRNA at most once, for reasons
of robustness as explained before, for example, we might drop this constraint and
use the unique-input constraint only, which we describe below.

The last clause on the gates takes the bound on the total number of occurrences of
each gate type into account. Each gate type can appear at most X times, where X is
the upper bound on the gate occurrence.

{gate_type(GatelD,GateType): is_gate_id(GateID)} X

:— upper_bound_gate_occurence(GateType,X) .

Choosing miRNA inputs Within the following lines of the code miRNA inputs are
assigned to the gates. The first constraint ensures that each chosen gate gets assigned
at least one input.

1 {gate_input(GateID,Sign,MiRNA):

is_sign(Sign), is_mirna(MiRNA)}
:- is_gate_id(GateID).

Chapter 5 Biological applications

This constraint is important because a lower bound of O on the positive or the
negative inputs might lead the solver to create a solution including empty gates,
which is meaningless in the mathematical and biological sense.

The next line in the encoding is the unique-input constraint, which might be dropped
in exchange for the one-sign-only constraint as described before. The unique-input
constraint allows each miRNA to appear only once over the whole classifier.

{gate_input (GateID,Sign,MiRNA):
is_sign(Sign), is_gate_id(GateID)} 1
:— is_mirna(MiRNA) .

The number of total inputs used has to lie within the defined range of the bounds
lower_bound_inputs and upper_bound_inputs. Therefore, we add another cardi-
nality constraint.

X {gate_input(GateID,Sign,MiRNA):
is_gate_id(GateID), is_sign(Sign), is_mirna(MiRNA)} Y
:— lower_bound_inputs(X), upper_bound_inputs(Y).

Firing of gates and prediction of the classifier The following lines of the code are
used to evaluate whether a gate fires for one of the given samples or not. The
predicate gate_fires for a gate ID and a tissue ID exists, if the expression level
of the miRNA is in line with the input for the gate. This is the case if the miRNA
expression level is high and the input is positive or if the expression level is low
and the input is negative. Note here again that we are searching for a classifier in
Conjunctive Normal Form. Each gate is, therefore, a disjunction of its inputs and it
is sufficient for one of the inputs to be satisfied on the data to make the gate fire.

gate_fires(GateID,TissueID)
:- gate_input (GateID,positive,MiRNA),
data(TissueID,MiRNA,high).

gate_fires(GateID,TissueID)
:- gate_input(GateID,negative,MiRNA),
data(TissueID,MiRNA,low) .

The full classifier is then a conjunction of its gates. This means that all its gates have
to fire to make the classifier predict cancer. If any of the gates in the classifier do
not fire for a sample, the classifier will predict the tissue to be healthy.

5.2 Synthetic biology - cell classifier circuits

125

5.2.4

126

classifier(TissueID,healthy)
:- not gate_fires(GateID, TissueID), is_gate_id(GateID),

is_tissue_id(TissuelD).

classifier(TissueID,cancer)

:- not classifier(TissueID, healthy), is_tissue_id(TissueID).

Because the outcome of the classifier is binary, i.e. either cancer or healthy, we can
construct the predicate classifier(TissueID,cancer) by negating the previously
introduced predicate classifier (TissueID,healthy).

Consistency of classifier and data The last step of the code is important to make
the classifier consistent with the data. The two following integrity constraints forbid
answer sets including a classifier that predicts cancer for a healthy tissue and the
other way around. That way perfect classifiers for the input data set are generated.

:- tissue(TissuelD,healthy), classifier(TissuelD,cancer).

:~ tissue(TissuelID,cancer), classifier(TissuelID,healthy).

Results

We tested our method on five data sets consisting of tissue data of breast cancer
cells that were presented by Farazi et al. [44] and discretized and examined by
Mohammadi et al. [78]. This way we were able to compare our results directly
to the later study. This part of the work was started by Hannes Klarner and me
and then continued, completed and edited by Melania Nowicka. Here we present a
summary of the results.

Case studies

The five data sets all contain samples of breast cancer cells of patients, which are
labeled as positive (cancerous) or negative (healthy). Each sample consists of the
binarized expression levels of around 400 to 500 miRNAs. The discretization is the
result of the application of a data set dependent threshold. All miRNA expression
levels above this threshold were assumed to be high (1) and all expression levels
below this threshold were assumed to be low (0). A summary of the details on the
five breast cancer data sets is given in Table 5.2.

Chapter 5 Biological applications

Subtype | Samples | Positive | Negative | miRNA | BinThreshold
All 178 167 11 478 250
Triple- 82 71 11 456 250
Her2+ 86 75 11 438 1250
ER+ Her- 32 21 11 392 1250
Cell Line 17 6 11 375 50

Tab. 5.2.: The Breast cancer datasets. The first column shows the overall number of samples,
the second column the number of positive and the third column the number
of negative samples. Column four includes the number of miRNAs taken into
account and the last column shows the binarization threshold applied for data
binarization.

The Breast Cancer All data set is a combination of the other four data sets. Repeated
samples were deleted. For all of the five data sets we applied the same procedure of
searching for a perfect classifier according to the core constraints (see Figure 5.5)
minimizing the number of inputs followed by the number of gates (Opt 3). Only one
data set could be separated by a perfect classifier, namely the data set Breast Cancer
Cell Line. In all the other four cases we applied the constraint relaxation procedure.
We describe the results in more detail in the following paragraphs.

Breast Cancer All In Figure 5.7 two classifiers for the combined data set Breast
Cancer All are shown. The one on the left hand side is an optimal classifier consisting
of only one gate of type 2 with miR-378 as negated input. The classification leads to
four false negative and three false positive errors on the data set. While this classifier
is as short as possible and, therefore, easy to assemble in the laboratory, it is worth
considering larger classifiers due to cancer cell diversity.

One way of approaching this problem could be to forbid a type of error as mentioned
before. We exemplarily show this workflow here by not allowing any false positives
to occur. This results in six optimal classifiers, which are all isomorphic to the one
presented in Figure 5.7 on the right hand side. Note that while here it was possible
to find the isomorphism class by hand this problem might become very large for
certain data sets. A post processing step might be needed for those situations.

Note that in both classifiers shown miR-378 appears as a negated input to a gate
of type 2. In [44] this miRNA was identified to be low expressed and reasonable
as marker for classification. An unrelated study [84] stated that e.g. miR-144 is
down-regulated in breast cancer. This miRNA appears in the classifier on the right

5.2 Synthetic biology - cell classifier circuits

127

128

miR-378 miR-24-1 miR-103-2 miR-144 miR-378 miR-10b

l ~Ny LoD

Y

Fig. 5.7.: Classifiers for the Breast Cancer All data set.

hand side as negated input. Both of the classifiers seem to be useful and it should be
decided depending on the situation at hand which of the two is chosen.

Breast Cancer Triple- No perfect classifier exists for the Breast Cancer Triple- data
set. The constraint relaxation procedure provides us with two imperfect classifiers
allowing three false negatives and two false positives. These are the fewest errors
possible. The two classifiers are shown in Figure 5.8. Both of the classifiers consist of
two inputs in two different gates. They both contain miR-378 as negated input in a
gate of type 2. The first classifier has another gate of type 2 with the input miR-144.
The second classifier has a second gate of type 1 with miR-24-1 as non-negated
input. Both classifiers seem to be reasonable as miR-378 was recognized to be
down-regulated in cancer by [44] and miR-24-1 and miR-144 were found to be
up-regulated by [91] and [84], respectively.

To decide for one of the two classifiers in practice, a natural approach would be to
check the reliability of the binarized miRNA measurements for the differing miRNAs
and to weigh the cost of building both classifiers in the laboratory.

miR-378 miR-144 miR-24-1 miR-378

OR OR OR OR
AND AND
Fig. 5.8.: Classifiers for the breast cancer Triple- data set.

Breast Cancer Her2+ The data set Breast Cancer Her2+ could not be perfectly
separated. Therefore, we applied constraint relaxation. It was sufficient to allow the
classifier to make only one mistake, namely a false positive error, to find a solution.
The resulting classifier is shown in Figure 5.9.

Chapter 5 Biological applications

miR-21 miR-451-DICER1 miR-320-RNASEN

\ | %

- ~
OR OR OR
AND

Fig. 5.9.: Classifier for the breast cancer Her2+ data separating samples with one false
positive error.

It consists of two gates of type 2, one of them having the miR-451-DICER1 and one
of them having miR-320-RNASEN as negated inputs. The third gate is a gate of type
1 with miR-21 as single non-negated input. In [44] the authors marked miR-451-
DICER1 and miR-320-RNASEN as down-regulated and miR-21 as up-regulated in
Her2+ breast cancer. Our result fits this claim.

Breast Cancer ER+ Her- For the data set Breast Cancer ER+ Her- we present two
results in Figure 5.10. The classifier on the left hand side is the optimal classifier
consisting of two gates with one input each. Its classification results in two false
positive errors. The classifier shown on the right hand side is shorter having only
one gate with one input. This classifier makes three false positive errors on the data
set. Nevertheless, in practice it is reasonable to take this result and the approach of
further relaxing the constraints into account as it may result in shorter and easier to
assemble classifiers. In that case one should take a closer look on the data to see if
the extra error is a reliable sample or not.

Both classifiers shown contain miR-21, which was marked up-regulated by [44]. The
optimal classifier additionally includes miR-320-RNASEN as negated input to a gate
of type 2, which was marked down-regulated in the same study.

miR-21 miR-320-RNASEN miR-21 miR-145
Vo ' l
OR OR OR OR
N ! l
AND AND AND
(A) (B)

Fig. 5.10.: Results for the breast cancer ER+ Her- (A) and Cell Line (B) data sets.

5.2 Synthetic biology - cell classifier circuits

129

Breast Cancer Cell Line The data set Breast Cancer Cell Line was the only one of
the five data sets that is perfectly separable. We found six perfect classifiers for this
data set. All of them consist of one gate with one input only. Five of the perfect
classifiers contain a gate of type 2, having a miRNA as negative input, and one
perfect classifier has a type 1 gate with one miRNA as positive input. All classifiers
are listed in Table 5.3.

We present one of the perfect classifiers as an example in Figure 5.10. This classifier
uses the miRNA miR-145 as a single negated input. This means that each sample
including miR-145 with a low expression level will be classified as cancerous. This is
in line with a study by Farazi et al. [44] where miR-145 is marked as down-regulated
in cancer cells.

| Subtype | Classifier | FNrate | FPrate [AUC | Ma | Mw |
BC All (= miR-378) 0.02 0.27 0.96 | 0.79 | -0.47
Triple- (= miR-378) A (— miR-144) 0.04 0.18 0.98 | 0.81 | -0.34
(miR-24-1) A (= miR-378) 0.04 0.18 0.99 | 0.61 | -0.10

Her2+ (miR-21) A (— miR-451-DICER1) 0.00 0.09 0.99 | 0.87 | -0.24
A (= miR-320-RNASEN)

ER+ Her- (miR-21) 0.00 0.27 1.00 | 0.85 | 0.14

(miR-21) A (= miR-320-RNASEN) 0.00 0.18 0.96 | 0.74 | -0.46
Cell Line (— miR-145) 0.00 0.00 1.00 | 1.66 | 1.33
Cell Line (— miR-143) 0.00 0.00 1.00 | 1.66 | 1.33
Cell Line (— miR-199a-2-5p) 0.00 0.00 1.00 | 1.66 | 1.33
Cell Line (— miR-451-DICER1) 0.00 0.00 1.00 | 1.66 | 1.33
Cell Line (— miR-146a) 0.00 0.00 1.00 | 1.66 | 1.33
Cell Line (— miR-425) 0.00 0.00 1.00 | 1.66 | 1.33

Tab. 5.3.: Evaluation of our breast cancer classifiers. We show the false negative rate, false
positive rate, AUC, average margin and worst margin.

5.2.5 Performance analysis and testing
Classifier evaluation

In [78] the authors developed a scoring for classifiers on data sets of the given kind.
The scoring is based on a mathematical interpretation of a synthetic regulatory net-
work and allows one to estimate the circuit output concentration for the continuous
miRNA data and a Boolean classifier. This scoring is used to estimate whether the
concentration of the output will be sufficient to cause, for example, cell death.

We followed their approach to compare our results and implemented a python script
called scores.py to evaluate our classifiers. Within the script we calculated the

130 Chapter 5 Biological applications

false negative rate (FN rate), false positive rate (FP rate), the area under the curve
(AUQC), average margin (Ma) and worst margin (Mw). For the calculations we kept
the same biochemical parameter sets and binarization thresholds as proposed by
[78]. While the authors only considered the last three scores we added the false
positive and false negative rate to compare results in the binary setting. For the
comparison one should keep in mind that Mohammadi et al. [78] used a different
modeling framework with the discretization error as one of their optimality criteria
while our classifiers are only optimized on the binary data sets. The central goal of
both approaches to find a minimal classifier is the same, nevertheless. In Table 5.3
our results are shown.

In all cases we were able to find shorter classifiers and in most cases improve the
accuracy of classification in the binary setting. Otherwise, the accuracy is identical.
In the continuous setting we obtained comparable results. However, interpretation
of these scores linking the Boolean to the continuous classifier are difficult to assess.
For a detailed comparison with the results of [78] see our publication [17].

Benchmarking

To test our approach we evaluated our method on simulated data sets. After a
collective discussion, this part of the study was mostly done by Hannes Klarner.
Because the results substantiate the usefulness and show the scalability of our
software, we here present a summary of the main results.

All computations, for both the benchmarking and the cross-validation, were per-
formed on a Linux AMD64 with 2.83GHz and 32GB of memory.

Data generation Random 0-1 matrices were generated with each entry independent
and 0 and 1 equally likely to occur. We chose the dimension of the matrices starting
from 10 x 10 to 500 x 500 with step size 10 both for the rows and the columns. The
benchmark, therefore, consists of 50 x 50 = 2500 data points.

For each matrix we generated an annotation classifier to decide which of the sam-
ples is labeled positive and which negative. We used two different setups for the
generation of this annotation classifier. The first setup guarantees the existence of a
solution by choosing the annotation classifier such that it satisfies the core constraints
(see Figure 5.5) by choosing with equal probability each gate and input.

The second setup constructs an annotation classifier uncoupled from any constraints
by using binomial distribution. We defined the number of gates to be |n/10]| and

5.2 Synthetic biology - cell classifier circuits

131

132

the maximal number of inputs per gate as 5. Each gate and input is then chosen
with equal probability. The number of gates and inputs is arbitrary. The setup was
chosen to give an insight on how the algorithm performs when a solution is not
guaranteed.

Experiments In Figure 5.11 the resulting heat maps for Optimization strategy 3
(Opt 3) for both the first feasible and the optimal solution for Setup 1 and 2 are
shown. We used time-outs between 10 minutes to 1 hour.

Figure 5.11 (A) shows the time needed to find a feasible solution for Setup 1. This
graphic illustrates that the problem of finding a feasible classifier in the scenario
where the existence of a classifier satisfying the core constraints is guaranteed, is
easy to solve for our ASP program. Figure 5.11 (B) visualizes the time needed to
compute an optimal solution for the same setup. About 16% of the problems were
timed out. We see here that the number of time-outs increases with the number of
miRNAs but does not seem to depend on the number of tissues. We believe that
this is due to the exponentially growing search space with the number of miRNAs
while additional samples might only add redundant information after a certain size
is reached.

The heat maps for Setup 2 are shown in Figure 5.11 (C,D). The squares outlined in
black indicate that it was proven within the time limit that the problem is infeasible.
Nearly all the problems shown in Figure 5.11 (C) could be solved within the given
time limit. We see that the probability that a feasible solution exists grows with the
number of miRNAs. This behavior could be due to the fact that each miRNA that is
added to the search space might be the one that is needed as an input for the feasible
classifier. The expression levels of the miRNAs are chosen to be independent from
each other. However, in real life data we would not expect this behavior as miRNAs
and their expression levels are likely to be dependent on each other. The heat map in
Figure 5.11 (D) displays the same results with the difference that optimal solutions
are harder to calculate and, therefore, the time-out was reached for nearly all of the
larger data sets.

Cross-validation

Additionally to the benchmarking we performed a 10-fold cross-validation for Setup
1, which guarantees the existence of a feasible classifier satisfying the core con-
straints. The results are shown in Figure 5.12.

Chapter 5 Biological applications

miRNAs

300

200

100

Setup 1, feasible solution

3200

2800

2400

2000

1600

1200

800

400

time (sec)

miRNAs

Setup 1, optimized solution

(strategy 3)

w
=3
o

200

100

540

480

420

360

300

240

180

120

60

time (sec)

100 200 300 100

tissues tissues

(A) (B)

Setup 2, feasible solution Setup 2, optimized solution (strategy 3)

H o 95 540
o
o go Eﬂznn 700
g GaEasGDeRzszENaan 480
400 H HE e 400
s o o . 600
oo @ Saunsl 420
oo o nﬂ o % oo of
E oo =) E oo
oo, o oo o) 500 360
300 o oo EE DUAE o R _ 300 =
1) © %] o
< g matiat EEIFD mnE _h 8 < 300 &
g ol o a.A = 400 3 g Y
E o 0o : e £ E E
8o B h g B e 2 240 =
200t B B ° " oo p-tarhoaiin 8 SRRt 4300 200
éj: == =) mm 000
o B B0 ae0 Baoen o 300000000 180
o o 200
100} 3 100 . 120
o : 100 © poRe 60
or B Fof B
=5 HBSR R RO on g o & HER oty HER e g .
100 200 300 400 500 100 200 300 400 500
tissues tissues

Fig. 5.11.: The results of the benchmarking. Squares filled in black indicate that the time-
out was reached. Squares outlined in black indicate that the infeasibility of the
problem was proven within the time limit. Figure (A) and (B) are results of Setup
1, where the existence of a classifier satisfying the core constraints is guaranteed.
Figure (A) shows the time to compute a feasible and Figure (B) the time to
compute an optimized solution, respectively. Figure (C) and (D) are results of
Setup 2, where the existence of a classifier satisfying the core constraints is not
guaranteed. Figure (C) shows the time to compute a feasible and Figure (D) the
time to compute an optimized solution, respectively. Optimization strategy 3
(first gates, then inputs) was used in both setups.

Each of the data sets represented by a point in the heat map was divided in ten parts
of equal size. A classifier was then built depending on nine out of the ten parts and
tested on the remaining one. We did this ten times for each of the ten parts of the
data set and added up the resulting running times. This sum of the running times
divided by ten is shown in the heat maps in Figure 5.12. Time-outs were treated as
false predictions.

5.2 Synthetic biology - cell classifier circuits

133

5.2.6

134

Setup 1, feasible solution Setup 1, optimized solution (strategy 3)

miRNAs
)

2]
generalization error
miRNAs
)

2
generalization error

200
tissues tissues

(A) (B)

Fig. 5.12.: The results of the cross-validation for Setup 1. Figure (A) shows the cross-
validation for finding a feasible solution. Figure (B) shows the time for finding
an optimized solution with strategy 3 (first gates, then inputs). Time-outs were
treated as false predictions.

In Figure 5.12 (A) two areas of increased error rates can be seen: a vertical strip on
the left and the circular area in the top right corner. We think that the reason for the
first one is that a certain number of samples is needed to make a classifier reliable.
In our case these are around 30 samples. Otherwise the missing examples of positive
and negative observations leave too much room for false classifications. The circular
error region in the top right corner is due to the time-outs that were counted as
misclassification. The bigger the problem the likelier it is to be to difficult to be
solved in time. Our hypothesis is that given unlimited time the error rate will tend
towards zero because the existence of a solution is guaranteed from the setup.

Figure 5.12 (B) shows the same behavior of the program except for the fact that
optimal solutions are more difficult to be calculated and, therefore, a lot more
problems are timed-out when the number of miRNAs increases.

Discussion

This study shows the power of Boolean functions combined with the ASP environ-
ment for a pivotal application from synthetic biology.

We implemented a workflow for classifier optimization to obtain globally optimal
perfect and imperfect (in the case when no perfect classifier exists) classifiers. The
constraints used for the classifier design are real-life requirements for making the
fabrication of the circuit possible in the laboratory.

Chapter 5 Biological applications

We were able to show that our approach outperforms the heuristic method from
Mohammadi et al. [78] regarding the size of the computed classifiers in five real-life
data sets. Furthermore, we achieved comparable scores for our classifiers according
to a scoring scheme developed in [78] although we did not optimize our classifiers
according to the same criteria.

In the first case study we mentioned the problem of the same solution appearing
several times in permuted form. These results are due to the setup of our program.
The encoding shows that, for example, IDs are assigned to gates for binding. Any
permutation of these IDs will result in a different solution for the ASP solver. Anyhow,
all of these solutions lie in the same isomorphism class. Breaking such symmetries
within an ASP program is a topic on its own and we did not investigate solving it for
our approach as it was still easily possible to find the isomorphism classes by hand.
Nevertheless, it would be useful to tackle this problem or add a postprocessing step
to the approach to facilitate the method.

For situations where no perfect classifier exists, we explained our procedure of
constraint relaxation. In perspective work, it might be of interest to use asprin [29]
to search for Pareto-optimal solutions as discussed in Chapter 3.

For future work it might be of interest to take a closer look into the discretization
step and compare the usefulness of available discretization methods [46]. The
data used here was preprocessed by Mohammadi et al. [78]. It could be useful
to weigh the miRNAs according to the reliability of their binarization. This way
more reasonable miRNAs could be chosen for the classifier. The five data sets are
imbalanced regarding positive and negative samples. It is worth to investigate
whether this imbalance affects the results.

The benchmark shows that our approach is capable of computing solutions for
large data sets with hundreds of samples and miRNAs in the case that a solution
exists. The time for the computation generally lies within a time scale of minutes
on a personal computer. We, therefore, think that our method is very useful and
well-suited for medical applications.

Our approach is very flexible in terms of changing the classifier constraints according
to different requirements or allowing different kinds of errors depending on the
problem at hand. This gives the opportunity of further developments in the field of
computational classifier design in close cooperation with experimental experts.

5.2 Synthetic biology - cell classifier circuits

135

Part V

Conclusion

Discussion

The work of this thesis is located at the intersection of mathematics and computer
science with life sciences. In the recent years, technological progress has improved
recording and observation methods substantially, which caused a massive increase
of data set size in this research field. Therefore, a major challenge is to extract the
relevant information out of the untransparent mass of data. Besides developing
efficient analytical methods for this purpose, it is crucial to design the analysis such
that the results are understandable and insights can be shared comprehensively
across the interdisciplinary field. Many of the data analysis problems in biology and
medicine can be summarized by the search for attributes or attribute combinations
that allow assigning an observation to a certain property. In this thesis, we focused
on binary problems only.

The core idea of our work is to identify and optimize a suitable machine learning ap-
proach for data analysis in the biomedical field. Many machine learning approaches
have been evaluated and used in life sciences over the last decades [45, 43, 68].
An approach, which is particularly meaningful regarding biological and medical
applications [56, 3, 8, 88], is the Logical Analysis of Data (LAD) [35]. LAD is a
powerful and well-performing machine learning method [24, 7, 54, 93] combining
ideas from Boolean functions, combinatorics and optimization. We introduced the
concept of LAD in detail in this thesis. Furthermore, we presented our contributions
to LAD in practice, theory and application.

To allow the easy and efficient application of LAD, we developed a software package
including all LAD functionalities, called AnswerSetLAD, which is freely available
on GitHub [14]. AnswerSetLAD makes use of Answer Set Programming (ASP) [73],
a declarative programming paradigm oriented towards difficult search problems
and combinatorial optimization problems. This combination of LAD with ASP is an
innovative idea and a major achievement of this work. We published introductory
results here [15]. The framework of ASP is perfectly suitable for the search for
patterns of various types in large data sets, which play a key role in LAD. Besides its
efficiency, the design of AnswerSetLAD using ASP, provides the user with short, clear
and succinct programs. This adds comprehensibility and communicability. We think
that ASP is in particular meaningful for the implementation of LAD functionalities,

139

140

because it preserves the original idea of LAD, which is to make information accessible
across disciplines.

Our software AnswerSetLAD includes all steps of the LAD process, namely data
binarization, pattern generation and theory formation. We compared our ASP to a
state-of-the-art MILP approach for the generation of maximal patterns, which are
one of the most common pattern types associated with the LAD methodology. Here
we could clearly show that ASP is superior to MILP for the given task. This result
corroborates our hypothesis, that ASP is a sophisticated choice as a framework for
the LAD method.

Regarding the theoretical ideas of LAD, we presented two accomplishments in
the field of prime pattern generation and the formation of prime theories. The
identification of prime patterns is central in LAD research because of their succinct
characteristics, which makes them easy to interpret. The enumeration of all prime
patterns in a data set, however, is a difficult problem in general. We presented
an algorithm, which allows calculating prime patterns efficiently in the case that
the data set has small maximal Hamming distance between positive and negative
observations. With regards to biomedical application, this property is likely to apply
as the players within biological systems are not expected to act independently from
each other.

The second idea regarding the theoretical advancement of LAD is work concerning
the field of prime theories. Since the number of theories for a data set is large in
general, it is useful to develop reasonable measures, which allow ranking the set of
theories. We here proposed an approach using a statistical measure for this purpose.
This measure is based on the occurrences of the different literals over the whole set
of prime patterns.

In the last chapter of this thesis, we applied our work on classification with Boolean
functions using ASP to two biomedical problems. The first application concerns
protein interactions in signaling networks. We think that our new approach of
identifying the protein structure in a cell using LAD is a promising idea and an
interesting application for LAD pattern generation. In the case of the EGFR signaling
network we successfully revealed patterns that reflect the structure of the system.
Nevertheless, we discussed only a small example with a lot of prior knowledge. We
think it is worth putting more work in this field and expand the underlying theory.

The second application is located in the highly topical field of synthetic biology.
We presented our published study on real-life breast cancer data sets [17]. Within
our study we improved former heuristic methods on this topic [78] by effectively

Chapter 6 Discussion

applying the ASP framework, which allows us to find globally optimal classifiers.
The discussed applications show that the here presented methodology of LAD, in
particular in combination with ASP, is meaningful and carries great future potential
in biomedical research.

Future directions Our software package AnswerSetLAD provides various LAD func-
tionalities. However, it could be fruitful to extend the software, especially regarding
the theory formation step. We presented an iterative algorithm [35] to find a pattern
cover for a data set. This algorithm is implemented using python code. We think
that it is worth making use of the advantages of ASP in the theory formation step as
well. As we have seen in the field of pattern generation, the resulting implementa-
tion might outperform classical approaches in runtime efficiency, especially when
processing large data sets.

In Chapter 4 we discussed two ideas and implementations for theory formation in
ASP. Both approaches require a full set of prime patterns for a data set for selection.
This is computationally very expensive and especially for large data sets not feasible.
Regarding future work it is worth putting more effort in an ASP program that finds
a full pattern cover of a specific type directly without the knowledge of the whole
set of patterns for the data set.

Since the number of (prime) theories for a data set is large in general it is an
important challenge to narrow down the pool of solutions to a manageable size.
Therefore, we believe that research in this direction is valuable. The statistical
measure we defined to constrain the set of prime theories to the set of core theories
is a first idea in this direction. This topic should be further investigated by testing the
measure on representative data sets. It could be of interest to vary the composition of
literal weights within the statistical measure or extend it to make use of subpatterns
instead of literals only.

Besides future developments regarding practice and theory a promising field for
further work lies in the application of LAD. AnswerSetLAD is an open-source software
that enables the user to take all advantages of LAD and apply them to any application.
As said before, the fields of biology and medicine, besides others, provide many
suitable topics. We described our approach for identifying protein interactions in a
signaling network. This field of application is highly interesting and offers space for
future developments.

Our work on LAD in the context of biomedical research has been very successful.
The combination of LAD and ASP led to a software package, which shows excellent

141

142

performance and and can be easily extended with further functionalities. We saw
how the application of LAD and ASP to biological data can be used for a deeper
understanding of biological systems. We conclude that discrete mathematics and
especially the here presented methodology of LAD, as well as its combination with
ASP, are able to open new ways in biomedical research and should, therefore, be

considered in further work.

Chapter 6 Discussion

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

Gabriela Alexe, Sorin Alexe, David E. Axelrod, Peter L. Hammer, and Dinah
Weissmann. “Logical analysis of diffuse large B-cell lymphomas”. In: Artificial
intelligence in medicine 34 (2005), pp. 235-67.

Gabriela Alexe, Sorin Alexe, Tibérius O. Bonates, and Alexander Kogan.
“Logical analysis of data — the vision of Peter L. Hammer”. In: Annals of
Mathematics and Artificial Intelligence 49.1 (2007), pp. 265-312.

Gabriela Alexe, Sorin Alexe, David E. Axelrod, Tiberius Bonates, Irina I.
Lozina, Michael Reiss, and Peter L. Hammer. “Breast cancer prognosis by
combinatorial analysis of gene expression data”. In: Breast cancer research :
BCR 8 (2006), R41.

Gabriela Alexe, Sorin Alexe, and Peter L. Hammer. “Pattern-based Clustering
and Attribute Analysis”. In: Soft Comput. 10.5 (2006), pp. 442—452.

Gabriela Alexe, Sorin Alexe, Peter L. Hammer, and Alexander Kogan. “Compre-
hensive vs. comprehensible classifiers in logical analysis of data”. In: Discrete
Applied Mathematics 156.6 (2008). Discrete Mathematics and Data Mining II,
pp- 870 —882.

Gabriela Alexe, Sorin Alexe, Lance A. Liotta, Emanuel Petricoin, Michael
Reiss, and Peter L. Hammer. “Ovarian cancer detection by logical analysis of
proteomic data.” In: Proteomics 4 3 (2004), pp. 766-83.

Gabriela Alexe and Peter L. Hammer. “Spanned patterns for the logical
analysis of data”. In: Discrete Applied Mathematics 154.7 (2006), pp. 1039
-1049.

Sorin Alexe, Eugene Blackstone, Peter L. Hammer, Hemant Ishwaran, Michael
Lauer, and Claire Pothier. “Coronary Risk Prediction by Logical Analysis of
Data”. In: Annals of Operations Research 119 (2002).

Sorin Alexe and Peter L. Hammer. “Accelerated algorithm for pattern de-
tection in logical analysis of data”. In: Discrete Applied Mathematics 154.7
(2006), pp. 1050 -1063.

Uri Alon. An Introduction to Systems Biology: Design Principles of Biological
Circuits. Chapman & Hall/CRC Mathematical and Computational Biology,
2007.

143

144

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Naomi S. Altman. “An Introduction to Kernel and Nearest-Neighbor Non-
parametric Regression”. In: The American Statistician 46.3 (1992), pp. 175-
185.

Martin Anthony and Joel Ratsaby. “Robust cutpoints in the logical analysis
of numerical data”. In: Discrete Applied Mathematics 160.4 (2012), pp. 355
-364.

Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem
Solving. Cambridge University Press, 2003.

Katinka Becker. AnswerSetLAD - an ASP software package for LAD. https:
//github.com/katinkab/AnswerSetLAD. 2020.

Katinka Becker, Martin Gebser, Torsten Schaub, and Alexander Bockmayr.
“Answer Set Programming for Logical Analysis of Data”. In: WCB@CP. 2016,
pp. 15-26.

Katinka Becker and Hannes Klarner. RnaCancerClassifier. https://github.
com/hklarner/RnaCancerClassifier. 2019.

Katinka Becker, Hannes Klarner, Melania Nowicka, and Heike Siebert. “De-
signing miRNA-Based Synthetic Cell Classifier Circuits Using Answer Set
Programming”. In: Frontiers in Bioengineering and Biotechnology 6 (2018),
p- 70.

Robert Bihlmeyer, Wolfgang Faber, Giuseppe Ielpa, Vincenzino Lio, and
Gerald Pfeifer. DLV - User Manual. http://www.dlvsystem.com/html/DLV_
User_Manual.html.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. War-
muth. “Occam’s Razor”. In: Information Processing Letters 24.6 (1987), pp. 377
-380.

Tibérius O. Bonates and Vaux S. D. Gomes. LAD-WEKA tutorial. https://1lia.
ufc.br/~tiberius/lad/. 2014.

Tibérius O. Bonates, Peter L. Hammer, and Alexander Kogan. “Maximum
patterns in datasets”. In: Discrete Applied Mathematics 156.6 (2008), pp. 846
-861.

Endre Boros, Yves Crama, Peter Hammer, Toshihide Ibaraki, Alexander Kogan,
and Kazuhisa Makino. “Logical analysis of data: classification with justifica-
tion”. In: Annals of Operations Research 188 (2011), pp. 33-61.

Bibliography

https://github.com/katinkab/AnswerSetLAD
https://github.com/katinkab/AnswerSetLAD
https://github.com/hklarner/RnaCancerClassifier
https://github.com/hklarner/RnaCancerClassifier
http://www.dlvsystem.com/html/DLV_User_Manual.html
http://www.dlvsystem.com/html/DLV_User_Manual.html
https://lia.ufc.br/~tiberius/lad/
https://lia.ufc.br/~tiberius/lad/

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

Endre Boros, Peter L. Hammer, Toshihide Ibaraki, Alexander Kogan, Eddy
Mayoraz, and Ilya Muchnik. “An Implementation of Logical Analysis of Data”.
In: Knowledge and Data Engineering, IEEE Transactions on 12 (2000), pp. 292
-306.

Endre Boros, Toshihide Ibaraki, and Kazuhisa Makino. Boolean analysis of
incomplete examples. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996,
pp. 440-451.

Endre Boros, Toshihide Ibaraki, and Kazuhisa Makino. “Error-Free and Best-
Fit Extensions of Partially Defined Boolean Functions”. In: Information and
Computation 140.2 (1998), pp. 254 -283.

Endre Boros, Toshihide Ibaraki, and Kazuhisa Makino. “Logical analysis of
binary data with missing bits”. In: Artificial Intelligence 107.2 (1999), pp. 219
-263.

Leo Breiman, Jerome Friedman, Charles J. Stone, and R.A. Olshen. Classi-
fication and regression trees. Belmont, CA: Wadsworth International Group,
1984.

Gerhard Brewka, James Delgrande, Javier Romero, and Torsten Schaub.
“asprin: Customizing Answer Set Preferences without a Headache”. In: AAAI
(2015).

Renato Bruni. “Reformulation of the support set selection problem in the
logical analysis of data”. In: Annals of Operations Research 150.1 (2007),
pp- 79-92.

Renato Bruni, Gianpiero Bianchi, Cosimo Dolente, and Claudio Leporelli.
“Logical Analysis of Data as a Tool for the Analysis of Probabilistic Discrete
Choice Behavior”. In: Computers and Operations Research (2018).

Christopher Burges. “A Tutorial on Support Vector Machines for Pattern
Recognition”. In: Data Mining and Knowledge Discovery 2 (1998), pp. 121-
167.

Potsdam Answer Set Solving Collection. Potassco. https://potassco.org/.

Yves Crama and Peter L. Hammer. Boolean Functions - Theory, Algorithms,
and Applications. 2011.

Yves Crama, Peter L. Hammer, and Toshihide Ibaraki. “Cause-effect rela-
tionships and partially defined Boolean functions”. In: Annals of Operations
Research 16.1 (1988), pp. 299-325.

Bibliography

145

https://potassco.org/

146

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Yannis Dimopoulos, Bernhard Nebel, and Jana Koehler. “Encoding Planning
Problems in Nonmonotonic Logic Programs”. In: Proceedings of the Fourth
European Conference on Planning (1997).

Mathurin Dorel, Bertram Klinger, Torsten Gross, Anja Sieber, Anirudh Prahal-
lad, Evert Bosdriesz, Lodewyk F. A. Wessels, and Nils Bliithgen. “Modelling
signalling networks from perturbation data”. In: Bioinformatics 34 23 (2018),
pp. 4079-4086.

Dheeru Dua and Casey Graff. UCI Machine Learning Repository. http://
archive.ics.uci.edu/ml. 2017.

Richard Duda, Peter Hart, and David G.Stork. Pattern Classification. 2001.

Jonathan Eckstein, Peter L. Hammer, Ying Liu, Mikhail Nediak, and Bruno
Simeone. “The Maximum Box Problem and its Application to Data Analysis”.
In: Computational Optimization and Applications 23.3 (2002), pp. 285-298.

Leon Eifler, Ambros Gleixner, Matthias Miltenberger, and Daniel Rehfeldt.
SoPlex - Sequential object-oriented simPlex. https://soplex.zib.de/.

Meriem El Karoui, Monica Hoyos-Flight, and Liz Fletcher. “Future Trends in
Synthetic Biology—A Report”. In: Frontiers in Bioengineering and Biotechnol-
ogy 7 (2019), p. 175.

Chin-Yuan Fan, Pei-Chann Chang, Jyun-Jie Lin, and J.C. Hsieh. “A hybrid
model combining case-based reasoning and fuzzy decision tree for medical
data classification”. In: Applied Soft Computing 11.1 (2011), pp. 632 —644.

Thalia Farazi, Hugo Horlings, Jelle ten Hoeve, et al. “MicroRNA Sequence
and Expression Analysis in Breast Tumors by Deep Sequencing”. In: Cancer
research 71 (2011), pp. 4443-53.

Terrence Furey, Nello Cristianini, David Bednarski, and David Haussler. “Sup-
port Vector Machine Classification and Validation of Cancer Tissue Samples
Using Microarray Expression Data”. In: Bioinformatics 16 (2001).

Cristian Gallo, Rocio Cecchini, Jessica Carballido, Sandra Micheletto, and
Ignacio Ponzoni. “Discretization of gene expression data revised”. In: Briefings
in bioinformatics 17 (2015).

Martin Gebser, Amelia Harrison, Roland Kaminski, Vladimir Lifschitz, and
Torsten Schaub. “Abstract Gringo”. In: Theory and Practice of Logic Program-
ming 15 (2015).

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Marius Lindauer, Max
Ostrowski, Javier Romero, Torsten Schaub, Sven Thiele, and Philipp Wanko.
Potassco user guide. https://github.com/potassco/guide. 2019.

Bibliography

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://soplex.zib.de/
https://github.com/potassco/guide

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Martin Gebser, Benjamin Kaufmann, Roland Kaminski, Max Ostrowski, Torsten
Schaub, and Marius Schneider. “Potassco: The Potsdam Answer Set Solving
Collection”. In: AI Commun. 24.2 (2011), 107-124.

Michael Gelfond and Yulia Kahl. Knowledge Representation, Reasoning, and
the Design of Intelligent Agents: The Answer-Set Programming Approach. Cam-
bridge University Press, 2014.

Michael Gelfond and Vladimir Lifschitz. “The Stable Model Semantics for
Logic Programming”. In: Proceedings of International Logic Programming
Conference and Symposium. MIT Press, 1988, pp. 1070-1080.

Ambros Gleixner, Michael Bastubbe, Leon Eifler, et al. The SCIP Optimization
Suite 6.0. ZIB-Report 18-26. 2018.

Ambros M. Gleixner, Daniel E. Steffy, and Kati Wolter. Iterative Refinement
for Linear Programming. ZIB-Report 15-15. 2015.

Cui Guo and Hong Seo Ryoo. “Compact MILP models for optimal and Pareto-
optimal LAD patterns”. In: Discrete Applied Mathematics 160.16 (2012),
pp. 2339 -2348.

LLC Gurobi Optimization. Gurobi Optimizer Reference Manual. http://www.

gurobi.com. 2019.

Peter Hammer and Tiberius Bonates. “Logical analysis of data—An overview:
From combinatorial optimization to medical applications”. In: Annals of
Operations Research 148 (2006), pp. 203-225.

Peter L. Hammer, Alexander Kogan, Bruno Simeone, and Sandor Szedmak.
“Pareto-optimal patterns in logical analysis of data”. In: Discrete Applied
Mathematics 144.1 (2004), pp. 79 -102.

Henry H.Q. Heng, Joshua B. Stevens, Steven W. Bremer, Guo Liu, Batoul Y.
Abdallah, and Christine J. Ye. “Evolutionary Mechanisms and Diversity in
Cancer”. In: Advances in Cancer Research 112 (2011), pp. 217 -253.

Juan Félix Avila Herrera. “Mixed Integer Linear Programming Based Imple-
mentations of Logical Analysis of Data and Its Applications”. PhD thesis.
2013.

Robert C. Holte, Liane Acker, and Bruce W. Porter. Concept Learning and the
Problem of Small Disjuncts. 1989.

Alex Kean and George Tsiknis. “An incremental method for generating prime
implicants/implicates”. In: Journal of Symbolic Computation 9.2 (1990),
pp. 185 -206.

Bibliography

147

http://www.gurobi.com
http://www.gurobi.com

148

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Zoltan Kis, Hugo Pereira, Takayuki Homma, Ryan Pedrigi, and Rob Krams.
“Mammalian synthetic biology: Emerging medical applications”. In: Journal
of the Royal Society, Interface / the Royal Society 12 (2015).

Hiroaki Kitano. “Systems Biology: A Brief Overview”. In: Science (New York,
N.Y.) 295 (2002), pp. 1662—4.

Bertram Klinger, Anja Sieber, Raphaela Fritsche, et al. “Network quantifica-
tion of EGFR signaling unveils potential for targeted combination therapy”.
In: Molecular systems biology 9 (2013), p. 673.

Thorsten Koch. “Rapid Mathematical Prototyping”. PhD thesis. Technische
Universitét Berlin, 2004.

Sotiris Kotsiantis and D. Kanellopoulos. “Discretization techniques: A re-
cent survey”. In: GESTS International Transactions on Computer Science and
Engineering 32 (2005), pp. 47-58.

Michael Lauer, Sorin Alexe, Claire Pothier, Eugene Blackstone, Hemant Ish-
waran, and Peter L. Hammer. “Use of the Logical Analysis of Data Method for
Assessing Long-Term Mortality Risk After Exercise Electrocardiography”. In:
Circulation 106 (2002), pp. 685-90.

Yuh-Jye Lee, Olvi L. Mangasarian, and William H. Wolberg. “Breast Cancer
Survival and Chemotherapy: A Support Vector Machine Analysis”. In: DIMACS
Series in Discrete Mathematics and Theoretical Computer Science 55 (2002).

Miguel Lejeune, Vadim Lozin, Irina Lozina, Ahmed Ragab, and Soumaya
Yacout. “Recent advances in the theory and practice of Logical Analysis of
Data”. In: European Journal of Operational Research 275.1 (2019), pp. 1 -15.

Pierre Lemaire. Ladoscope. http://www.kamick.org/lemaire/software.
html.

Gianpiero Di Leva and Carlo M Croce. “miRNA profiling of cancer”. In: Current
Opinion in Genetics and Development 23.1 (2013), pp. 3 -11.

Vladimir Lifschitz. “Twelve Definitions of a Stable Model”. In: Lecture Notes
in Computer Science (2008). Proceedings of the Twenty-fourth International
Conference on Logic Programming (ICLP’08), 37-51.

Vladimir Lifschitz. “What is Answer Set Programming?” In: AAAI'08 (2008),
1594-1597.

Kazuhisa Makino, Takashi Suda, Kojin Yano, and Toshihide Ibaraki. “Data
analysis by positive decision trees”. In: IEICE Transactions on Information and
Systems E82-D, No.1 (1999), pp. 76-88.

Bibliography

http://www.kamick.org/lemaire/software.html
http://www.kamick.org/lemaire/software.html

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

Olvi L. Mangasarian, W. Nick Street, and William H. Wolberg. “Breast Cancer
Diagnosis and Prognosis Via Linear Programming”. In: Operations Research
(1995), pp. 548-725.

Victor W. Marek and Miroslaw Truszczynski. “Stable models and an alterna-
tive logic programming paradigm”. In: CoRR (1998).

Eddy Mayoraz. C++ tools for logical analysis of data. http: //rutcor .

rutgers.edu/pub/LAD/man.pdf. 1998.

Pejman Mohammadi, Niko Beerenwinkel, and Yaakov Benenson. “Automated
Design of Synthetic Cell Classifier Circuits Using a Two-Step Optimization
Strategy.” In: Cell systems 4 2 (2017), pp. 207-218.

Tae Seok Moon, Chunbo Lou, Alvin Tamsir, Brynne Stanton, and Christopher
Voigt. “Genetic Programs Constructed from Layered Logic Gates in Single
Cells”. In: Nature 491 (2012).

Ilkka Niemel4d, Patrik Simons, and Timo Soininen. “Stable Model Semantics
of Weight Constraint Rules”. In: LPNMR. 1999.

Ilkka Niemeld. “Logic Programs with Stable Model Semantics as a Constraint
Programming Paradigm”. In: Ann. Math. Artif. Intell. 25 (1999), pp. 241-273.

Ilkka Niemeld, Patrik Simons, and Tommi Syrjanen. “Smodels: A System for
Answer Set Programming”. In: CoRR cs.AI/0003033 (2000).

Luigi Palopoli, Fiora Pirri, and Clara Pizzuti. “Algorithms for selective enu-
meration of prime implicants”. In: Artificial Intelligence 111.1 (1999), pp. 41
-72.

Yuliang Pan, Jun Zhang, Huiqun Fu, and Liangfang Shen. “miR-144 functions
as a tumor suppressor in breast cancer through inhibiting ZEB1/2-mediated
epithelial mesenchymal transition process”. In: OncoTargets and Therapy 9
(2016), pp. 6247-6255.

Vili Podgorelec, Peter Kokol, Bruno Stiglic, and Ivan Rozman. “Decision Trees:
An Overview and Their Use in Medicine”. In: J. Med. Syst. 26.5 (2002),
pp. 445-463.

Willard V. Quine. “The problem of simplifying truth functions”. In: The Ameri-
can Mathematical Monthly 59.8 (1952), 521-531.

J. Ross Quinlan. “Induction of Decision Trees”. In: Mach. Learn. 1.1 (1986),
pp. 81-106.

Bibliography

149

http://rutcor.rutgers.edu/pub/LAD/man.pdf
http://rutcor.rutgers.edu/pub/LAD/man.pdf

150

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

Anupama Reddy, Honghui Wang, Hua Yu, Tiberius Bonates, Vimla Gulabani,
Joseph Azok, Gerard Hoehn, Peter . Hammer, Alison E Baird, and King
Li. “Logical Analysis of Data (LAD) model for the early diagnosis of acute
ischemic stroke”. In: BMC medical informatics and decision making 8 (2008),
p- 30.

UC Irvine Machine Learning Respository. Breast Cancer Wisconsin (Original)
Data Set. https://archive.ics.uci.edu/ml/datasets/breast+cancer+
wisconsin+ (original). University of Wisconsin Hospitals, Madison: Dr.
William H. Wolberg.

UC Irvine Machine Learning Respository. Heart Disease Data Set. https :
//archive.ics.uci.edu/ml/datasets/Heart+Disease. Hungarian Insti-
tute of Cardiology. Budapest: Andras Janosi, M.D, University Hospital, Zurich,
Switzerland: William Steinbrunn, M.D, University Hospital, Basel, Switzer-
land: Matthias Pfisterer, M.D., V.A. Medical Center, Long Beach and Cleveland
Clinic Foundation:Robert Detrano, M.D., Ph.D.

Giuseppina Roscigno, Ilaria Puoti, Immacolata Giordano, et al. “MiR-24
induces chemotherapy resistance and hypoxic advantage in breast cancer”.
In: Oncotarget 8 (2017).

Frank Rosenblatt. The perceptron: a theory of statistical separability in cognitive
systems (Project Para). Cornell Aeronautical Laboratory, 1958.

Hong Seo Ryoo and In-Yong Jang. “MILP approach to pattern generation
in logical analysis of data”. In: Discrete Applied Mathematics 157.4 (2009),
pp. 749 -761.

Yvan Saeys, Ifiaki Inza, and Pedro Larranaga. “A review of feature selection
techniques in bioinformatics”. In: Bioinformatics (Oxford, England) 23 (2007),
pp. 2507-17.

Bernhard Scholkopf and Alexander J. Smola. Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond. Cambridge, MA,
USA: MIT Press, 2001.

Patrik Simons, Ilkka Niemeld, and Timo Soininen. “Extending and imple-
menting the stable model semantics”. In: Artificial Intelligence 138.1 (2002).
Knowledge Representation and Logic Programming, pp. 181 —234.

Vijai Singh. “Recent advances and opportunities in synthetic logic gates engi-
neering in living cells”. In: Systems and Synthetic Biology 8 (2014), 271-282.

Piro Siuti, John Yazbek, and Timothy Lu. “Synthetic circuits integrating logic
and memory in living cells”. In: Nature biotechnology 31 (2013).

Bibliography

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://archive.ics.uci.edu/ml/datasets/Heart+Disease

[99]

[100]

[101]

[102]

[103]
[104]

[105]

[106]

[107]

[108]

Shimyn Slomovic, Keith Pardee, and James Collins. “Synthetic biology devices
for in vitro and in vivo diagnostics”. In: Proceedings of the National Academy
of Sciences 112 (2015).

IBM ILOG CPLEX Optimization Studio. CPLEX Optimizer. https://www.ibm.
com/analytics/cplex-optimizer. 2019.

SCIP Optimization Suite. SCIP manual. https://scip.zib.de/doc-6.0.0/
html/.

Jonathan Teo, Sung Sik Woo, and Rahul Sarpeshkar. “Synthetic Biology: A
Unifying View and Review Using Analog Circuits”. In: IEEE transactions on
biomedical circuits and systems 9 (2015).

Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

Zhen Xie, Liliana Wroblewska, Laura Prochazka, Ron Weiss, and Yaakov
Benenson. “Multi-Input RNAi-Based Logic Circuit for Identification of Specific
Cancer Cells”. In: Science (New York, N.Y.) 333 (2011), pp. 1307-11.

Kedong Yan and Hong Ryoo. “A multi-term, polyhedral relaxation of a 0-1
multilinear function for Boolean logical pattern generation”. In: Journal of
Global Optimization 74 (2018).

Kedong Yan and Hong Seo Ryoo. “0-1 multilinear programming as a unifying
theory for LAD pattern generation”. In: Discrete Applied Mathematics 218
(2017), pp. 21 -39.

Kedong Yan and Hong Seo Ryoo. “Strong valid inequalities for Boolean logical
pattern generation”. In: Journal of Global Optimization 69.1 (2017), pp. 183-
230.

ZIMPL - Zuse Institut Mathematical Programming Language. https://zimpl.
zib.de/.

Bibliography

151

https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
https://scip.zib.de/doc-6.0.0/html/
https://scip.zib.de/doc-6.0.0/html/
https://zimpl.zib.de/
https://zimpl.zib.de/

Danksagung

Zuerst mochte ich mich bei meinem Doktorvater Alexander Bockmayr bedanken. Danke fiir
Deine Unterstiitzung und Deine wissenschaftlichen Anstéf3e in den letzten Jahren, fiir die
Klarheit Deiner Gedanken und Formulierungen. Neben all dem, danke ich Dir dafiir, dass
Du auch fiir nicht arbeitsbezogene Themen stets ein offenes Ohr hattest und immer klar
erkannt hast, wenn das normale Leben gerade wichtiger und zeiteinnehmender war als die
wissenschaftliche Arbeit.

Mein zweiter Dank gilt Torsten Schaub. Nachdem Alexander mich auf ASP gestoen hat,
waren es vor allem die Unterhaltungen, Vorlesungen und Vortrage in Potsdam, die mich von
der Schonheit von ASP iiberzeugt haben. Es macht Spal? zu sehen, wenn jemand so fiir ein
Thema brennt und das auch weitergeben kann. Danke, dass Thr mich in Potsdam immer
mit offenen Armen und Ohren empfangen habt und Du schlieBlich auch diese Arbeit als
Zweitgutachter {ibernommen hast.

Ein Grofteil meiner Arbeitszeit wurde iiber das CSB, das Graduiertenkolleg Computational
Systems Biology, finanziert. An dieser Stelle mdchte ich mich fiir diese Hilfe bedanken. Neben
dem Finanziellen war das CSB aber auch immer eine Anlaufstelle fiir wissenschaftlichen
Austausch und ein Ausgangspunkt fiir Kooperationen und Freundschaften. Hier bedanke ich
mich vor allem bei Cordelia fiir viel Organisation und Hilfsbereitschaft. Auerdem mochte
ich Nils Bliithgen, meinem Zweitbetreuer, danken. Gerade am Anfang war mir Deine Arbeit
ein spannender Anstol. Danke auch dafiir, dass Du und Alexander die Freundschaft (und
wissenschaftliche Kooperation) von Torsten und mir schon geplant hattet. Es hat funktioniert.
Danke, Torsten, fiir die schone Zeit. Es ist eine wahre Bereicherung sich mit jemandem
sowohl wissenschaftlich als auch menschlich so gut zu verstehen.

Ich mo6chte mich auch bei den Arbeitsgruppen Mathematics in Life Sciences und Discrete
Biomathematics um Alexander Bockmayr und Heike Siebert bedanken. Von Anfang an habe
ich mich unter Euch allen sehr wohl gefiihlt. Heike, auch wenn Du offiziell nie fiir diese
Rolle vorgesehen warst, habe ich mich von Dir immer gut betreut gefiihlt. Danke fiir die
Unterhaltungen zu Mathe und der Welt und die Hinweise zu meiner Arbeit. Vielen Dank
auch an Katja. Du bist stets bereit uns alle zu unterstiitzen und findest immer eine Losung.
Im Besonderen méchte ich noch Dir, Kirsten, danken. Wir haben die ldngste Zeit zusammen
in einem Biiro verbracht. Auch wenn wir dies nun schon eine Weile nicht mehr tun, so bleibt
unsere Freundschaft hoffentlich noch lange bestehen. Fiir die letzten Monate dieser Arbeit
bin ich doch noch ins richtige Mathegebaude eingezogen. Lin und ich haben gemeinsam
diesen grol3en Schritt des Aufschreibens zu Ende gebracht. Thank you, Lin, for being in the
same situation with me, for your good tea and for your empowering words!

153

Natiirlich wird solch eine Arbeit geschrieben um gelesen zu werden. Es gibt ein paar
Menschen, die das in Teilen auf jeden Fall schon getan haben. Dafiir méchte ich euch
herzlich danken! Danke Alexander, André, Kai, Kirsten, Philipp und Sarah!

Zuletzt mochte ich von Herzen meiner Familie danken. Danke, Papa, dass Du mir von
Anfang an alles ganz genau erklart und an mich geglaubt hast. Danke, Mama, fiir all Deine
Unterstiitzung und den Riickhalt auf dem Weg hierher.

Moritz, ohne Dich hétte mir diese Zeit nicht halb so viel Spal3 gemacht. Mit Dir ist das Leben
schon. Danke, Mira. Du bist die pure und schonste Ablenkung. Und danke an den kleinen
Bruder, dass Du mich das Ganze doch noch hast zu Ende bringen lassen.

Ehrenwortliche Erklarung

Hiermit erklére ich, dass ich alle Hilfsmittel und Hilfen angegeben habe und ver-
sichere, auf dieser Grundlage die Arbeit selbstédndig verfasst zu haben. Die Arbeit
wurde nicht schon einmal in einem friiheren Promotionsverfahren eingereicht.

Berlin, Januar 2020

Katinka Becker

155

	Titlepage
	Abstract
	Zusammenfassung
	Contents
	I Background
	1 Introduction
	1.1 Aims and structure of this thesis
	1.2 Data classification and analysis
	1.3 Preliminaries
	1.3.1 Boolean functions
	1.3.2 Partially defined Boolean functions

	2 Logical Analysis of Data
	2.1 Introduction
	2.1.1 An introductory example
	2.1.2 The main steps of the LAD procedure

	2.2 Basic concepts and notations
	2.3 Patterns
	2.3.1 Types of patterns
	2.3.2 Pattern parameters - Homogeneity and prevalence
	2.3.3 Algorithms for pattern generation

	2.4 Theories
	2.4.1 Classes of extensions
	2.4.2 A discriminant to make predictions
	2.4.3 Algorithm for theory formation

	2.5 Data binarization and preprocessing
	2.5.1 Introduction of Boolean variables
	2.5.2 Selection of a support set
	2.5.3 Dealing with errors in data sets

	2.6 Summary and discussion

	II Practice
	3 AnswerSetLAD - A software package for LAD using Answer Set Programming
	3.1 Goals and requirements
	3.2 Design
	3.2.1 Answer Set Programming (ASP)
	3.2.2 The software structure

	3.3 Implementation
	3.3.1 Data binarization and preprocessing
	3.3.2 Pattern generation
	3.3.3 Theory formation and prediction

	3.4 Performance testing
	3.4.1 Comparison to a Mixed-Integer Linear Programming approach

	3.5 Discussion and perspectives

	III Theory
	4 Theoretical extensions of LAD
	4.1 PrimePatternForest - An algorithm for the generation of prime patterns
	4.1.1 Basic idea
	4.1.2 Example
	4.1.3 Correctness
	4.1.4 Performance
	4.1.5 Discussion

	4.2 Prime theories and core theories
	4.2.1 Core theories
	4.2.2 Implementation
	4.2.3 Discussion

	IV Application
	5 Biological applications
	5.1 Perturbation data of signaling networks
	5.1.1 Biological background
	5.1.2 Identifying protein interactions from phosphorylation measurements via pattern generation
	5.1.3 Discussion

	5.2 Synthetic biology - cell classifier circuits
	5.2.1 Biological background
	5.2.2 The framework - miRNA expression profiles and Boolean classifiers
	5.2.3 The ASP encoding
	5.2.4 Results
	5.2.5 Performance analysis and testing
	5.2.6 Discussion

	V Conclusion
	6 Discussion
	Bibliography
	Danksagung
	Ehrenwort
	Ehrenwörtliche Erklärung

