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Apramycin and florfenicol are two antimicrobial agents exclusively used in veterinary medicine. Resistance deter-
minants to these antimicrobial agents have been described in several staphylococci, yet no inhibition zone-based
epidemiological cutoff (ECOFF) values are available to detect populations harboring resistance mechanisms. In this
study, we propose disk diffusion inhibition zone ECOFF values of Staphylococcus aureus for apramycin and flor-
fenicol. The susceptibility to apramycin and florfenicol was evaluated by disk diffusion of five S. aureus collections,
comprising 352 isolates of animal (n = 265) and human (n = 87) origin. The aggregated distributions of inhibition zone
diameters were analyzed by the normalized resistance interpretation method to obtain normalized wild-type (WT)
population distributions and corresponding ECOFF values. The putative WT populations of S. aureus were char-
acterized by an inhibition zone ‡15 mm (ECOFF = 15 mm) for apramycin and ‡21 mm for florfenicol (ECOFF =
21 mm). Five nonwild-type (NWT) isolates were detected for apramycin, all without inhibition zone and harboring the
apmA gene, whereas five NWT isolates were identified for florfenicol, all carrying the fexA gene. The proposed
ECOFF values for apramycin and florfenicol may be a valuable tool in future antimicrobial resistance monitoring and
surveillance studies to identify S. aureus NWT populations toward these antimicrobial agents.
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Introduction

Staphylococcus aureus is an important pathogen in
veterinary medicine, mainly associated with skin and

soft-tissue infections in companion animals, mastitis in
cattle and systemic infections in poultry.1,2 The past decades
have witnessed an increasing prevalence of antimicrobial-
resistant S. aureus, particularly methicillin-resistant S. au-
reus (MRSA) strains, in various animal species.3 As such,
the occurrence of MRSA in animals has been identified as a
microbiological hazard for human health.4

Apramycin is an aminocyclitol antimicrobial agent pro-
duced by Streptomyces spp. approved only for use in veter-

inary medicine for clinical purposes in Member States of the
European Union.5 It is administered in oral formulations in
feed or drinking water for the treatment of enteric infections
caused by, for example, Salmonella enterica or Escherichia
coli in pigs, calves, lambs, poultry, and rabbits.5,6 Florfenicol
is a fluorinated thiamphenicol derivative. Similarly to apra-
mycin, its use is restricted to veterinary medicine and it is
administered parenterally for the treatment of respiratory
bacterial infections in pigs, cattle, and ovine as well as in oral
formulations in feed and drinking water for the treatment of
bacterial infections in pigs, poultry, and fish.6,7 Florfenicol is
also available, in combination with an antifungal and a ste-
roid, for the topical treatment of otitis externa in dogs caused
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by Staphylococcus pseudintermedius and occasionally S.
aureus.6 Importantly, both antimicrobial agents belong to
classes that are considered as veterinary critically important
antimicrobials,8 as well as critically or highly important an-
timicrobials in human medicine.9

Although apramycin is not used for the treatment of infec-
tions caused by staphylococci in animals, the presence of a
resistance determinant to this antibiotic, apmA, was identified
in MRSA isolates from cattle and pigs belonging to the clonal
complex CC398.10 Since then, apmA has been described in
MRSA isolates collected from a broiler,11 from a nasal swab of
a human working on a broiler farm and the environment of his
residence11 and from the environmental dust of a pig farm.12

This gene was also identified in a Staphylococcus lentus (re-
cently reclassified as Mammaliicoccus lentus)13 isolate from a
veal calf14 and in a Staphylococcus sciuri (recently reclassified
as Mammaliicoccus sciuri)13 isolate from an environmental
sample of a pig farm.15 The apmA gene, which is usually
located on small plasmids or large multiresistance plasmids,16

encodes an acetyltransferase and is associated with elevated
minimum inhibitory concentrations (MICs) of apramycin
(32 to ‡128 mg/L) and gentamicin (8 mg/L).10,12,16

The florfenicol resistance gene fexA was first identified in
a bovine S. lentus isolate.17 To date, this determinant has
been described in various S. aureus and other staphylococcal
isolates (including S. pseudintermedius and Staphylococcus
simulans) collected from pigs,18 cattle,14,19 poultry,20 cats,21

a dog,22 a horse,23 and a marmot24 as well as from soil
surrounding pig farms.25 The fexA gene has also been re-
ported in MRSA isolates from nasal swabs of pig farmers.26

This gene is located in the Tn558 transposon or its variants,
which can be found on small or large plasmids,3,27 or even
integrated in the staphylococcal chromosomal DNA.23 It
encodes the efflux pump FexA, a 14 transmembrane segment
transporter of the Major Facilitator Superfamily and is asso-
ciated with florfenicol MIC values ranging from 16 to
64 mg/L.17,23,28 Other determinants can convey resistance to
florfenicol, namely, the cfr, optrA, and the poxtA genes. The
cfr gene encodes an rRNA methylase and was first identified
in a bovine S. sciuri isolate,29 but its presence is now reported
in several staphylococci, including S. aureus, from various
animal origins.3 It is usually located on plasmids but can also
be found in the staphylococcal chromosome.3 The optrA gene
codes for an ABC-F protein that has a ribosomal protection
effect and has been described in S. sciuri isolates from cats,
dogs, and pigs.3 Recently, it has also been reported in MRSA
isolates collected from pigs and poultry.27 The poxtA gene
codes also for an ABC-F protein, which, however, is only
distantly related to OptrA.30 Besides resistance to florfenicol,
all three genes also mediate resistance to oxazolidinones. The
gene cfr confers additional resistance to lincosamides,
pleuromutilins, and streptogramin A.3 The poxtA gene also
confers elevated MICs to tetracycline.30

Despite the occurrence of S. aureus strains carrying apra-
mycin and florfenicol resistance genes, there are no inhibition
zone-based epidemiological cutoff (ECOFF) values estab-
lished to identify such strains in a S. aureus population during
antimicrobial resistance surveillance studies. Hence, this
study focused on proposing ECOFFs of S. aureus for apra-
mycin and florfenicol based on inhibition zones that may
allow a rapid identification of isolates with resistance mech-
anisms toward these two antimicrobial agents.

Materials and Methods

Bacterial isolates

The collection studied included 352 S. aureus isolates, 87
of human origin (from 2006 to 2007 and 2014), and 265 of
animal origin (from 2001 to 2020). The isolates of human
origin were collected from several infection sites of hospi-
talized patients (n = 53)31,32 and ambulatory patients (n = 34)
in the Lisbon area. The S. aureus of animal origin were
collected from cattle (n = 83), dogs (n = 46), cats (n = 44),
pigs (n = 41), horses (n = 22), rabbits (n = 16), poultry (n = 6),
dolphins (n = 4), and a bird (n = 1). The animal host species
was not known for two isolates.

These isolates were analyzed at five independent labora-
tories; two located in Portugal (cities of Lisbon [Lab1] and
Oeiras [Lab2]) and three located in Germany (two in Berlin
[Lab3, Lab4], another in Wunstorf [Lab5]). In total, the
collection comprised 178 MRSA isolates and 174
methicillin-susceptible S. aureus isolates.

This study involved only bacterial strains that were al-
ready isolated and thus, no ethics approval was necessary.

Antimicrobial susceptibility testing

Inhibition zone diameters were determined for apramycin
(15 mg) and florfenicol (30mg) disks by the Kirby–Bauer
method according to EUCAST (Lab1, for human isolates) or
CLSI standards.33,34 Antibiotic disks were acquired from
MAST Group Ltd. (Liverpool, United Kingdom) or Thermo
Scientific� Oxoid� (Basingstoke, United Kingdom or
Wesel, Germany). In brief, fresh overnight cultures were
obtained for each isolate on Tryptic Soy Agar (Thermo
Scientific Oxoid) or blood agar plates (Thermo Scientific
Oxoid), from which isolated colonies were transferred to
0.85% (p/v) NaCl to obtain a cellular suspension with tur-
bidity equivalent to 0.5 McFarland. The cellular suspension
was swabbed onto Mueller–Hinton agar (Thermo Scientific
Oxoid) plates and the antibiotic disks were placed on the
inoculated media within 15 minutes. After 5 minutes, plates
were inverted and placed in an incubator at 35�C – 1�C.
After incubation for 18–20 hours, inhibition zone diameters
were measured in millimeters. In agreement with the CLSI
and EUCAST recommendations, S. aureus ATCC�25923�
and S. aureus ATCC�29213� were used as quality control
strains in this study.33,34

Determination of ECOFF values

The inhibition zone-based ECOFF values were estimated
using the normalized resistance interpretation (NRI) meth-
od.35,36 This method uses the distributions of inhibition zone
diameters to make a least-square regression analysis to de-
termine the putative wild-type (WT) population, the mean
inhibition zone diameter and the associated standard devi-
ation (SD) for each species-antimicrobial agent combina-
tion. The ECOFF corresponds to the smallest inhibition zone
diameter presented by the putative WT population and is
calculated at 2.5 · the SD above the mean value and rounded
up to the lowest absolute value.35,36 Thus, the ECOFF allows
the distinction between putative WT populations (devoid of
phenotypically detectable acquired resistance mechanisms)
and nonwild-type (NWT) populations (with phenotypically
detectable acquired resistance mechanisms).37 The ECOFF
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estimated by the NRI method will include 99.4% of the WT
population.36 The NRI method was used with permission
from the patent holder, Bioscand AB, TÄBY, Sweden (Eu-
ropean Patent No. 1383913, U.S. Patent No. 7,465,559). The
automatic and manual excel programs were made available
through courtesy by P. Smith, W. Finnegan, and G. Kronvall
at www.bioscand.se/nri/.

The ECOFF values generated in this study are based on
five data sets from five independent laboratories located in
two countries, which provided data for 142 (Lab 1), 33 (Lab
2), 108 (Lab 3), 32 (Lab 4), and 37 (Lab 5) S. aureus isolates.

Results

The five data sets generated in this study were analyzed
individually before aggregation (Supplementary Table S1).
Each distribution was validated, abiding the minimum
number required of WT isolates (at least n = 15)37 and an SD
below the acceptable SD upper limit of 3.38 mm, re-
commended by the NRI method.

The aggregated distributions of inhibition zone diameters
of apramycin and florfenicol for the 352 S. aureus isolates
included in this study are shown in Fig. 1. Both aggregated
distributions were bimodal, with inhibition zone diameters
ranging from 6 ( = growth until the disk) to 30 mm for
apramycin and from 9 to 38 mm for florfenicol. The ag-
gregated distributions of the putative WT populations and
associated ECOFF values of both antimicrobial agents were
calculated using the NRI method (Table 1). Both normalized
distributions of the WT populations were validated as they
included >100 observations in the putative WT distribu-
tion37 and the SDs were below the acceptable SD upper
limit of 3.38 mm (Table 1).

For apramycin, the NRI analysis characterized a WT
population ‡15 mm with an associated SD of 1.55 mm
(Table 1). Applying the estimated ECOFF = 15 mm, an
NWT population was identified comprising five isolates
(1.4%) collected from cattle (n = 2) and pigs (n = 3). All
these isolates were MRSA, showed no inhibition zone, and
carried the apmA gene for apramycin resistance.

For florfenicol, a WT population with inhibition zone
diameters ‡21 mm was estimated with an associated SD
of 2.30 mm (Table 1). The application of the calculated

ECOFF = 21 mm identified an NWT population of 1.4%,
corresponding to five MRSA isolates collected from cattle
(n = 2), pigs (n = 2), and a dog (n = 1). These isolates pre-
sented inhibition zone diameters ranging between 9 and
11 mm and all carried the fexA gene mediating resistance to
florfenicol in staphylococci.11

Discussion

The aggregated distribution analyzed in this study re-
vealed an NWT population (1.4%) toward apramycin. This
low frequency of NWT isolates is not surprising since dis-
semination of apramycin resistance determinants is still rare
in S. aureus and is mainly associated with food-producing
animals and humans with professional contact to them.3,11

In fact, all the five NWT isolates for apramycin in this study
were collected from food-producing animals, either cattle or
pigs. Apramycin is not affected by most aminoglycoside-
modifying enzymes and in staphylococci, a single acetyl-
transferase encoded by the apmA gene has been identified as
mediating resistance to this antimicrobial agent.3 In this
study, the five isolates carrying apmA showed no inhibition
zone for apramycin. All isolates of human origin were cat-
egorized as WT for apramycin, in agreement with Truelson
et al., who analyzed the distribution of apramycin MICs for
a collection of >100 S. aureus (mainly of human origin),
proposing an MIC-based cutoff value of 32 mg/L and also
finding no NWT population among human S. aureus.38

For florfenicol, the application of the ECOFF value
proposed in this study detected the presence of an NWT
population (1.4%), comprising five isolates collected from
cattle, pigs, and a dog, all harboring fexA. The NWT
MRSA isolate of canine origin belongs to the clonal
lineage ST398 and presents a multidrug resistance phe-
notype, showing additional resistance to fluoroquinolones
and tetracyclines.39 The ECOFF estimated in this study
may complement the MIC-based ECOFF established by
EUCAST for the combination florfenicol—S. aureus,
ECOFFEUCAST = 8 mg/L.

The finding of NWT populations for these antimicrobial
agents confirms the presence of apramycin and florfenicol
resistance determinants in S. aureus isolates from food-
producing and companion animals.

FIG. 1. Aggregated distributions of inhibition zone diameters of apramycin (A) and florfenicol (B) for the 352 Staphy-
lococcus aureus isolates and respective estimated ECOFF values by the NRI method. Black columns represent the inhibition
zone distributions, whereas the gray line indicates the NRI-generated normalized distribution of the WT populations. The
estimated ECOFF values are shown by dashed vertical lines, whereas the WT and NWT populations are indicated by
arrows. ECOFF, epidemiological cutoff; NRI, normalized resistance interpretation; NWT, nonwild-type; WT, wild-type.
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In this study, we propose ECOFF values for two antimi-
crobial agents used exclusively in veterinary medicine,
apramycin and florfenicol, based on the inhibition zone di-
ameter distributions obtained for a collection of 352 S. aureus
independent isolates of animal and human origin from dif-
ferent geographic regions. The application of the proposed
ECOFF values to other collections by other laboratories will
be valuable in antimicrobial resistance monitoring and sur-
veillance studies to identify S. aureus NWT populations to-
ward these antimicrobial agents, in a One Health context.
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