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Abstract

Magnetic reconnection is a process in a plasma that changes the magnetic field topology due

to finite electrical resistivity in the field’s plasma environment. A possible trigger for the onset

of reconnection is a high entanglement of the field lines which can exponentially amplify the

influence of small resistive effects. This type of topology-driven reconnection is investigated

by direct numerical simulations based on finite-volume numerics, in which the plasma is

described by the ideal magnetohydrodynamic (MHD) equations. Numerical dissipation is

utilized as a proxy of viscous and resistive non-idealities. A simple numerical configuration

is used to study the relation of potential reconnection events and field line entanglement.

The application of an external velocity field induces magnetic field line movement through the

frozen-in condition. It is used to drive the field lines of an initially homogeneous magnetic

field with constant mean value pointing in the z-direction to a high degree of entanglement.

The footpoints of the field lines are fixed at the boundaries in the z-direction, such that re-

connection events can be observed by changes in the footpoint mapping from one z-boundary

to the other. Damping layers at these boundaries are included in order to damp any pertur-

bations caused by Alfvén waves propagating along the field lines. The boundary conditions

orthogonal to the z-direction of the box-shaped simulation volume are periodic. In this con-

figuration the system initially relaxes into a stationary state, in which the forces acting on the

plasma balance each other and the field lines settle into a twisted state. This state of force-

balance is spontaneously disrupted and a fast transition from the stationary state to a chaotic

state is observed, which is accompanied by a sudden increase in both kinetic and magnetic en-

ergy. The influence of the grid resolution, the forcing amplitude and the damping coefficient

is investigated and discussed.

The chaotic phase is further investigated and shown to be characterized by locally enhanced

current densities, large separations of neighboring field lines and a change in the mapping

of footpoints of particular field line bundles. The correlation of two key diagnostics is used

to investigate the proposed connection between high entanglement and reconnection: the

exponentiation number, σmax, which quantifies the separation of field lines and which is a

measure of the degree of entanglement, and the foot point velocity, v f p, which is an indicator

for potential reconnection events. It is shown that these two quantities are indeed temporally

correlated, supporting the proposed theory. Furthermore, individual field lines undergo dis-

tinct reconnection events which happen on sub-Alfvénic timescales and which are correlated

with high footpoint velocities. The abruptness of the events suggests that it is reconnection

rather than resistive diffusion that causes the motion of the field lines.



Kurzzusammenfassung

Magnetische Rekonnektion ist ein Prozess in einem Plasma, bei dem sich die Topologie des
Magnetfeldes durch die endliche elektrische Resistivität des ionisierten Mediums ändert. Ein
möglicher Auslöser für Rekonnektion ist eine starke Deformation der Magnetfeldstruktur,
welche den Einfluss kleiner resistiver Nichtidealitäten exponentiell verstärken kann. Diese
Art der topologie-getriebenen Rekonnektion wird durch direkte numerische Finite-Volumen-
Simulationen untersucht, in denen das Plasma mit Hilfe der idealen magnetohydrodynamis-
chen (MHD) Gleichungen beschrieben wird. Anstelle von physikalischer Viskosität und Re-
sistivität wird numerische Dissipation für die erforderlichen nicht-idealen Effekte verwendet.
Der Zusammenhang zwischen Rekonnektion und der Deformation der Magnetfeldlinien wird
mithilfe eines einfach aufgebauten numerischen Experiments untersucht.

Ein externes Kraftfeld wird verwendet um die Feldlinien des zu Beginn räumlich homo-
genen Magnetfelds in z-Richtung komplex zu verformen. Die Fußpunkte der Feldlinien
werden an den Rändern des quaderförmigen Simulationsvolumens fixiert, sodass Rekon-
nektionsereignisse über die Veränderung der den jeweiligen Magnetfeldlinien zugeordneten
Fußpunkten festgestellt werden können. Dämpfungsschichten an den Rändern in z-Richtung
sorgen dafür, dass Störungen durch sich entlang des Magnetfeldes ausbreitende Alfvénwellen
gedämpft werden. In x und y-Richtung sind die Randbedingungen periodisch. In dieser Kon-
figuration relaxiert das System in einen stationären Zustand, in dem die Kräfte, die auf das
Plasma wirken, einander ausgleichen, die magnetischen Feldlinien derformiert sind und das
Plasma annähernd ruht. Dieses Kräftegleichgewicht wird spontan und abrupt verlassen und
es wird ein schneller Übergang von dem Gleichgewichtszustand zu einem chaotischen und
dynamisch fluktuierenden Plasmaverhalten beobachtet, in dem sowohl die kinetische als auch
die magnetische Energie neue quasistationäre, von breitbandigen Störungen in Raum und
Zeit charakterisierte Niveaus einnehmen. Der Einfluss der Gitterauflösung, der Amplitude
der antreibenden Kraft und des Dämpfungskoeffizienten wird untersucht und diskutiert.

Es wird gezeigt, dass die chaotische Phase durch lokal erhöhte Stromdichten, Feldliniendefor-
mation und Abweichungen der Fußpunktpositionen gekennzeichnet ist. Die Korrelation von
zwei der zentralen Diagnostiken wird berechnet, um den vorhergesagten Zusammenhang
zwischen Feldlinienverformung und Rekonnektion zu untersuchen. Diese sind die Exponen-
tiationszahl, σmax, welche die Abstandsänderung benachbarter Feldlinien quantifiziert, sowie
die virtuelle Fußpunktgeschwindigkeit, v f p, welche ein Indikator für mögliche Rekonnektion-
sereignisse ist. Es wird gezeigt, dass diese Größen zeitlich korreliert sind. Desweiteren wird
beobachtet, dass einzelne Feldlinien zeitlich und räumlich separierbare diskrete Ereignisse auf
sehr kurzen Zeitskalen durchlaufen. Diese abrupte Plötzlichkeit der Ereignisse deutet darauf
hin, dass diese durch Rekonnektion statt durch resistive Diffusion hervorgerufen wird.
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1 Introduction

A plasma is a quasi-neutral ionized gas. It consists of charged particles interacting with self-
generated magnetic and electric fields and it typically has a high electrical conductivity. Most
of the visible matter in the universe is in a plasma state. Under certain conditions, a plasma
can be described as a single fluid governed by the magnetohydrodynamic (MHD) equations.
In astrophysical plasmas the evolution is often assumed to be ideal, corresponding to an
infinite electric conductivity. In the ideal case the magnetic field is “frozen” into the plasma.
This means that the field lines follow the motion of the plasma and cannot diffuse across it.
The ideal limit is valid if the time scales of interest are much smaller than that of diffusion
across any length scale of interest. Even when these conditions are met, resistivity can still be
important when small scale structures appear, at which the assumption of ideality does not
hold. In the presence of resistivity, the motion of the field lines is less constrained and they
can diffuse across the plasma. The additional presence of strong gradients of the magnetic
field can then even lead to a loss of field line integrity and the formation of a differently
structured magnetic configuration. This process is called magnetic reconnection and it occurs
in different types of plasmas. It is assumed to cause solar flares, auroral phenomena in the
earth’s magnetosphere as well as instabilities in fusion reactor devices. It is a process by which
the connectivity of the magnetic field lines changes due to finite resistivity. This change in the
magnetic topology is usually accompanied by a conversion of magnetic to kinetic energy [27].

The first MHD model to describe steady-state reconnection in a current sheet at a magnetic
null point was developed by Sweet and Parker [31, 24]. In this two-dimensional model, a
diffusion region lies between oppositely directed magnetic field lines, which form a so-called
X-point. Incoming plasma flows push the magnetic field lines into this diffusion region, where
they reconnect and are pushed outward, as shown in figure 1.1. However, the Sweet-Parker

Figure 1.1: Schematic figure of the Sweet-Parker reconnection model: Oppositely directed
magnetic field lines (black arrows) at an X-point are pushed towards each other by incom-
ing plasma flow (gray arrows) and into a narrow diffusion region (shaded), in which they
reconnect. The reconnected field lines (red arrows) are pushed outward.
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4 CHAPTER 1. INTRODUCTION

model is referred to as a model for slow reconnection, as it cannot explain the fast time scales
that are being observed in solar flares. Therefore many other models were developed with
the aim of describing a faster reconnection process [27]. Often these models also describe
reconnection in two dimensions. However, the behavior of field lines in three dimensions is
fundamentally different, such that more recently investigations of magnetic reconnection have
shifted focus to the three-dimensional case, see for example [16, 28, 25].

In this work a three-dimensional reconnection model is investigated, which is described in
[10]. In this model, the proposed mechanism for reconnection is related to the entanglement
of magnetic field lines. When these are driven to a high degree of entanglement, the field lines
become exponentially sensitive to non-ideal effects. This means that a small resistive effect can
trigger reconnection. This topology-driven reconnection model takes into consideration the
behavior of neighboring magnetic field lines in three dimensions, from which a measure of the
degree of entanglement can be obtained. A simple configuration is proposed in section II of
[10], which is accessible to numerical investigation. It consists of an initially uniform magnetic
field that is driven to high spatial complexity by an applied large-scale velocity forcing, which
due to the frozen-in condition leads to field line motion. The relation between the degree
of entanglement and the occurrence of magnetic reconnection can then be probed with this
numerical experiment.

The aim of this work is to perform direct numerical simulations of the proposed model using
a CWENO finite volume scheme to solve the ideal MHD equations. The non-ideal effects re-
quired for reconnection arise due to numerical dissipation. The setup requires special bound-
ary conditions that keep the field lines fixed at the boundary. This makes it possible to keep
track of individual field lines and thus offers a way of observing reconnection events in the
simulation.

This work is structured as follows: chapter two provides the theoretical background on the
fluid description of the plasma as well as on the magnetic reconnection model. In chapter three
the numerical method is introduced and the specific requirements of the reconnection model
such as the boundary conditions and the external forcing are described. The simulations and
the post-processing of the data are described in chapter four and the simulation results are
evaluated and discussed in chapter five. A summary and an outlook are given in chapter six.



2 Theoretical background

This chapter gives an overview of the theoretical background. The first part focuses on the
plasma description using the magnetohydrodynamic (MHD) equations. A simple derivation of
these equations and of their dimensionless form is shown, after which the frozen flux theorem,
also known as Alfvén’s theorem, is derived.

In the second part the concept of topology-driven magnetic reconnection is introduced and
the behavior of magnetic field lines in three dimensions is discussed. Next, the numerical
experiment for the investigation of this model is described. Finally, the concept of exponential
sensitivity is introduced and the calculation of the exponentiation number, a characteristic
quantity for field line behavior, is outlined.

2.1 Plasma description

A fully-ionized plasma is a quasi-neutral gas, consisting of electrons and one or multiple
species of ions. The dynamics are governed by self-generated electric and magnetic fields,
that affect and are affected by the motion of the charged particles. The forces these fields exert
on the particles lead to a collective behavior of the plasma. A plasma can be described by
different models of varying complexity. To completely and accurately describe its dynamics,
the positions and velocities of all particles would have to be known. However, this is neither
achievable with today’s computational power nor practical, as one is generally interested in
averaged quantities rather than the position and velocity of each particle. Commonly, either
kinetic or fluid models are used instead. In a kinetic model, a statistical approach is used to
describe the plasma. The development of the velocity distribution function for each point in
space is considered. In a fluid model, the plasma is described as one or multiple conducting
fluids. Instead of considering the distribution function at each point, macroscopic quantities
such as the average density and velocity are used [5].

In this work a one-fluid model is used to describe the plasma. The governing equations are
the MHD equations. They are a system of nonlinear partial differential equations, which
determine the evolution of the density ρ, the velocity components (vx, vy, vz), the plasma
pressure p and the magnetic field components (Bx, By, Bz), giving a priori eight variables.
This approximation works when studying slow and large scale dynamics of plasmas. It is
applicable when the characteristic time and length scales of the system are much larger than
those associated with collisions of the plasma particles, Debye screening and ion gyration [5].
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6 CHAPTER 2. THEORETICAL BACKGROUND

2.1.1 Derivation of the MHD equations

The MHD equations can be derived from kinetic theory. For simplicity, a macroscopic deriva-
tion based on [7] is outlined here instead. It starts from the continuity equation, the gas’
equation of state, Maxwell’s equations and the forces acting on the plasma.

Mass is a conserved quantity and therefore the density, ρ, fulfills the continuity equation

∂tρ +∇ · (ρv) = 0 (2.1)

∂tρ + v ·∇ρ + ρ∇ · v = 0, (2.2)

with ∂t ≡ ∂
∂t . This shows that any temporal change of ρ is associated with the flux of mass ρv.

Using the convective derivative d
dt ≡ ∂t + v ·∇ this can be rewritten as

dρ

dt
= −ρ∇ · v. (2.3)

In the incompressible case the plasma density following the path of any fluid element is
constant, dρ

dt = 0. It follows that in this case the velocity field is divergence free, ∇ · v = 0.

The momentum equation can be derived by considering the forces acting on a fluid element
of volume δV. These are the following:

(a) The pressure force −δV∇p describes the force exerted on the fluid element due to the
pressure gradient. Here it is assumed that the pressure is isotropic, such that the pres-
sure tensor is reduced to the scalar pressure p.

(b) The Lorentz force acting on a fluid element, ∑i qi (E + vi × B), is the sum of forces acting
on the particles of charge qi due to the magnetic and electric field, B and E, respectively.
Rewriting this in terms of the net charge, δq, and the net current, δj, of the fluid element
leads to δV j × B, as quasi-neutrality, i.e. the lack of fluctuations of the charge density
on macroscopic spatial and temporal scales, results in δq ≃ 0.

(c) The viscous force is defined as δV∇ · ¯̄S, where ¯̄S is the viscous stress tensor. Its compo-
nents are given by

¯̄Sij = µ

(

∂ivj + ∂jvi −
2
3

δij∇ · v

)

, (2.4)

where µ is the dynamic viscosity and δij is the Kronecker delta (equal to 1 if i = j and 0
otherwise). In the incompressible case (∇ · v = 0) the viscous force simplifies to

∇ · ¯̄S = µ∇2v.

(d) Any additional body force acting on the fluid element can be written as δVF, e.g. the
gravitational force, which is, however, not relevant int the scope if this work.

Putting these terms together leads to the momentum equation

ρ
dv

dt
= −∇p + j × B +∇ · ¯̄S + F. (2.5)
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Expanding the convective derivative gives rise to the final expression for the momentum
equation

ρ∂tv = −v ·∇v −∇p + j × B +∇ · ¯̄S + F. (2.6)

Next Maxwell’s equations are used to find expressions for the current density, j, and the
magnetic field, B. They are given by

Gauss’s law ∇ · E =
ρel

ǫ0
≃ 0, (2.7)

Gauss’s law for magnetism ∇ · B = 0, (2.8)

Maxwell-Faraday equation ∇× E = −∂tB, (2.9)

Ampère’s law ∇× B = µ0j, (2.10)

where in Ampére’s law the displacement current can be neglected for non-relativistic plasma
velocities. The Maxwell-Faraday equation describes the evolution of the magnetic field. Am-
père’s law determines the current density and can be used to expand the j × B term, giving

j × B = −∇
B2

2µ0
+

(B ·∇)B

µ0
. (2.11)

The two terms are associated with the magnetic pressure and the magnetic tension force,
respectively. The latter is related to the curvature of the magnetic field lines and acts on
straightening them.

Gauss’s law cannot be used to determine the electric field as quasi-neutrality leads to a vanish-
ing charge density, ρel . Instead, Ohm’s law is used, which in the restframe of the fluid element
is given by E = ηel j, with ηel the electrical resistivity. In the laboratory reference frame the
fluid element is moving at the speed v. The electric field is therefore obtained by a Galilean
transformation, E → E′ = E + v × B, which leads to the generalized version of Ohm’s law

E′ = E + v × B = ηel j, (2.12)

where E is the electric field in the laboratory frame and E′ is the electric field in the restframe
of the fluid element. Using this in the Maxwell-Faraday equation leads to the induction
equation, which governs the magnetic field evolution:

∂tB = ∇× (v × B)− ηel∇× j

= ∇× (v × B)− ηel

µ0
∇× (∇× B)

= ∇× (v × B) + η∇2B.

(2.13)

Here the magnetic diffusivity, η = ηel

µ0
, has been introduced.

In order to close the system of equations, the pressure p has to be determined from the
equation of state, which in this work is taken to be isothermal. In this case the pressure is
simply given by

p = ρc2
s , (2.14)
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where cs is the sound speed, constant in the whole domain, due to the constancy of the tem-
perature T for an isothermal system. The ideal gas law shows that for a constant temperature,
the pressure only depends on the density:

p =
NkBT

V

=
NkBT

m
ρ

= Rs ρT,

(2.15)

where N is the number of molecules, kB is the Boltzmann constant, V is the volume, m is the
total mass and Rs is the specific gas constant. The density is given by ρ = m

V . Furthermore,
the temperature of an ideal gas is related to its kinetic energy, Ekin = 3

2 NkBT, such that the
pressure can be understood as kinetic energy per volume. The number of variables described
by the MHD equations is thus reduced to seven in the isothermal case.

The closed system of MHD equations then consists of the following equations

∂tρ = −∇ · (ρv), (2.16)

ρ ∂tv = −ρ(v ·∇)v −∇p +
1
µ0

(∇× B)× B +∇ · ¯̄S + F, (2.17)

∂tB = ∇× (v × B) + η∇2B, (2.18)

p = ρc2
s , (2.19)

under the constraint ∇ · B = 0.

The ideal inviscid MHD equations are obtained from equations (2.16)-(2.19) by setting the
viscosity term in the momentum equation and the magnetic diffusivity term (corresponding
to the electrical resistivity) in the induction equation to zero. The relative importance of the
viscous and resistive terms becomes apparent when the equations are transformed into a
non-dimensional form. This is shown in the following section.

2.1.2 Non-dimensional equations

The MHD equations can be rewritten in a non-dimensional form by introducing characteristic
scales for time and length, t0 and L0, as well as for the quantities (ρ, v, B). The temporal and
spatial derivatives are then transformed to non-dimensional derivatives, ∂t′ and ∇′, by

∂t →
1
t0

∂t′

∇ → 1
L0

∇
′.

(2.20)

The variables are written in terms of their characteristic scales (marked with subscript zero)
and dimensionless quantities (marked with primes), e.g. ρ → ρ0ρ′.
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Using this in equations (2.16)-(2.19) leads to

∂t′ρ
′ = −∇

′ · (ρ′v′),

ρ′ ∂t′v
′ = −ρ′(v′ ·∇′)v′ − p0

ρ0v2
0

∇
′p′ +

B2
0

µ0ρ0v2
0

(∇′ × B′)× B′ +
µ

ρ0v0L0
∇

′ · ¯̄S′ +
F0L0

ρ0v2
0

F ′,

∂t′B
′ = ∇

′ × (v′ × B′) +
η

v0L0
∇

′2B′,

(2.21)

where the relation v0 = L0
t0

was used. The viscous stress tensor was rewritten as ¯̄S → µv0/L0
¯̄S′

using equation (2.4). Evidently only terms in the momentum and induction equation contain
coefficients due to the introduction of the non-dimensional variables. Therefore the choice of
the remaining characteristic quantities, ρ0, L0, t0, p0, B0 and F0, as well as the viscosity, µ, and
the magnetic diffusivity, η, determine the weight of the individual terms.

The characteristic pressure, p0, only appears in front of the pressure gradient in the momen-
tum equation. As stated above, pressure is related to the kinetic energy density. Therefore the
characteristic pressure can be set to p0 = ρ0v2

0, such that the coefficient is equal to one. The

characteristic external force can be written as F0 =
ρ0v2

0
L0

, such that the prefactor of F′ becomes
one as well.

B0 and ρ0 are taken as the mean magnetic field strength and the mean density, and L0 is
defined as the box size of the system along the mean guide magnetic field. One can further

set the characteristic velocity to the Alfvén velocity, v0 = vA, which is defined as vA =

√

B2
0

µ0ρ0
.

This choice means that the time is measured in Alfvén time units, such that t0 = tA = L0/vA.

Only two coefficients remain: one determines the influence of viscosity and the other of mag-
netic diffusivity on the system. In both cases dimensionless quantities are introduced, namely
the Reynolds number, Re, and the magnetic Reynolds number, Rm, (which is equal to the
Lundquist number since v0 = vA)[6]. They are defined as:

Re ≡
ρ0v0L0

µ
, (2.22)

Rm ≡ v0L0

η
. (2.23)

This finally leads to the non-dimensional set of equations (in which the primes are omitted):

∂tρ = −∇ · (ρv),

ρ ∂tv = −ρ(v ·∇)v −∇p + (∇× B)× B +
1
Re

∇ · ¯̄S + F,

∂tB = ∇× (v × B) +
1

Rm
∇

2B.

(2.24)

The ideal MHD equations are obtained when Rm becomes infinite, corresponding to a plasma
with infinite electrical conductivity. Similarly, the inviscid equations are obtained as the
Reynolds number goes to infinity, such that the viscosity term in the momentum equation
becomes negligible.
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Figure 2.1: Schematic figure of the frozen flux theorem: in an ideal plasma the magnetic flux
through a surface S is constant in time. When the surface is distorted by plasma motion, the
field lines follow the motion, so that the flux through the surface (i.e. the number of field
lines going through it) stays constant.

The numerical method used in this work solves the ideal, inviscid MHD equations. It can
be used to study topology-driven magnetic reconnection, even though reconnection can only
occur in the presence of non-ideal effects. This is due to the existence of numerical dissipa-
tion, which arises due to the discretization of the equations. It is essential for the numerical
experiment carried out in this work, but has the disadvantage that its magnitude is not known
or controllable.

2.1.3 Frozen flux theorem

In an ideal plasma the magnetic field lines are “frozen” into the plasma. This concept can be
understood by considering an arbitrary, closed curve in space that is advected by the plasma.
The magnetic flux through the surface defined by this curve is conserved. This means that
as the curve is deformed by the plasma flow, the magnetic field lines passing through it are
distorted as well.

This effect was first described by Hannes Alfvén and is thus known as Alfvéns theorem [1]. It
can be derived from the expression for the magnetic flux, Φm, through a surface S defined by
the closed curve C in an ideal plasma,

Φm =

¨

S
B · dS, (2.25)

where dS is the vector normal to an infinitesimal surface element. The change of magnetic
flux over time can then be expressed as the sum of two terms,

dΦm

dt
=

¨

S

∂B

∂t
· dS +

˛

C
B · (v × dl). (2.26)

The first term describes the change in magnetic field, while the second one refers to a de-
formation of the surface, which is enclosed by the curve C. Changes to the surface can be
expressed as v × dl, where v is the plasma velocity acting on the line element dl and the
closed line integral sums up all of these changes.
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Substituting the ideal induction equation (2.13) into equation (2.26) then leads to

dΦm

dt
=

¨

S
∇× (v × B) · dS +

˛

C
B · (v × dl)

=

˛

C
(v × B) · dl −

˛

C
(v × B) · dl = 0,

(2.27)

where in the second step Stokes’s theorem was applied to the first term, so that both terms
cancel each other out [27]. The magnetic flux in an ideal plasma is thus conserved in time,
effectively freezing the magnetic field lines into the plasma. This is shown schematically in
figure 2.1.

This property is important to understand the dynamics of the magnetic field lines, but also
has a practical use when it comes to the numerical experiment presented in section 2.2.1. It
can be used to fix the magnetic field lines at the bounding planes in z-direction by setting the
velocity v at these boundaries to zero. As the magnetic field lines follow the plasma motion,
this effectively prohibits them from moving at the boundaries, when the evolution is strictly
ideal. In the presence of finite resistivity magnetic field line diffusion can lead to deviations
from this ideal behavior.

2.2 Topology-driven magnetic reconnection

This section is based on Boozer’s description of topology-driven magnetic reconnection, in
which magnetic reconnection is discussed in three dimensions and a numerical experiment is
proposed [10].

The following introduction to the theory is based on section I of [10], in which magnetic
reconnection is defined as a process in which magnetic field lines change their connections,
thereby changing the topology of the magnetic field. It can be shown that this can only occur
when the evolution of the magnetic field deviates from an ideal evolution due to resistive
effects. The demonstration involves the mathematical concept of generalized coordinates and
is not included here.

Topology-driven magnetic reconnection can occur when the magnetic field is driven to a high
spatial complexity. In the ideal case the magnetic field lines can be stretched and twisted
and become increasingly entangled without ever being cut. However, the increasing spatial
complexity of the magnetic field leads to an increased sensitivity to small non-ideal effects, a
phenomenon that is characteristic of highly nonlinear systems and that is sometimes referred
to as "butterfly effect". Specifically, this means that an exponentially small non-ideal effect can
trigger reconnection in a highly entangled magnetic field. It is essential to study this in three
dimensions in order to obtain high levels of entanglement, as a two-dimensional magnetic
field is much more constrained.

A measure of the presence of non-ideal effects is obtained by integrating the electric field E

along a magnetic field line

V ≡
ˆ

E · dl, (2.28)
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which can be understood further by expressing the electric field with Ohm’s law (eq. (2.12))

E = ηel j − v × B. (2.29)

Equation (2.28) then becomes

V =

ˆ

(ηel j − v × B) · dl

=

ˆ

ηel j · dl,
(2.30)

as B and dl are parallel along a field line so that (v × B) · dl = 0. When the plasma is
ideal it has an infinite electrical conductivity (that is ηel = 0), in which case equation (2.30)
becomes V = 0. Conversely V 6= 0 indicates the presence of non-ideal effects. This measure
is commonly used as a proxy for the reconnection rate [16, 15, 26].

To quantify the relative importance these non-ideal effects have on a certain magnetic field,
the dimensionless parameter B is introduced as

B ≡
∣

∣

´

E · dl
∣

∣

E0L0
, (2.31)

where E0 is the characteristic electric field strength and L0 is a characteristic length scale of the
system. This number gives an approximation of how much the non-ideal effects contribute to
changes in the magnetic field. Using equations (2.30) and (2.10) and noting that the charac-
teristic electric field strength is given by E0 = vAB0 for a plasma with an Alfvénic E × B flow,
equation (2.31) becomes:

B =
ηel

∣

∣

´

∇× B · dl
∣

∣

µ0vAB0L0

≈ ηB0

vAB0L0

≈ 1
Rm

,

(2.32)

showing that it is inversely related to the magnetic Reynolds number. Furthermore, the ratio
of the two terms in the induction equation (2.13), which governs the evolution of the magnetic
field, is given by

∥

∥∇× (v × B)
∥

∥

∥

∥η∆B
∥

∥

≈ L2
0vAB0

ηL0B0

≈ Rm,

(2.33)

which illustrates that the relative importance of the diffusive term is given by Rm, where
again v0 = vA is assumed. This means that non-ideal effects will influence the magnetic field
evolution in proportion to R−1

m ≈ B on a time scale of the order of the Alfvén time tA = L0/vA.

In astrophysical systems, B is usually of the order of 10−4 to 10−20. It is commonly assumed
that reconnection occurs when it increases to the order of unity, B ∼ 1, either due to suf-
ficiently large current densities j (as B ∼ j) in small regions or through turbulence effects
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[20]. For small B it is, however, more likely that reconnection is caused by entanglement,
through which the field becomes exponentially sensitive to small non-ideal effects. In order
to express this mathematically, the behavior of magnetic field lines has to be investigated. It
can be shown that in three dimensions they tend to exponentiate apart, meaning that the dis-
tance between initially infinitesimally close magnetic field lines increases exponentially with
the distance l along the field line. Denoting the separation between neighboring field lines at
distance l along the lines by δ(l), this exponential behavior can be expressed as

δ(l) = δ0 eσ(l), (2.34)

where δ0 is the initial separation and σ is the exponentiation number. It is a useful quantity to
characterize the separation, which can vary across several orders of magnitude.

An increasingly complex and entangled magnetic field leads to increased current densities j,
as can be seen from the low-frequency Ampère’s law in equation (2.10). Furthermore it can
be shown that the maximum exponentiation number between field lines scales with the ratio
of parallel current density to the characteristic current density of the system [9]

σmax ∼
j‖

B/(µ0L)
, (2.35)

such that σmax is a measure of the entanglement of field lines.

As will be shown in section 2.2.2 the criterion for topology-driven reconnection can be written
as

eσmaxB ∼ 1, (2.36)

which together with equation (2.35) gives rise to the current density, that is required to fulfill
the criterion. It scales as

j‖ ∼
B

µ0L
ln
(

1
B

)

, (2.37)

such that even in systems with small B the current density required for reconnection is com-
parably small.

In summary, eσmaxB ∼ 1 has to be fulfilled for reconnection to occur. A magnetic field that is
driven to high entanglement will lead to an increased current density, which results in a linear
increase in B and an exponential growth through σmax. In systems in which the characteristic
value of B is much smaller than unity (e.g. space and astrophysical systems), the latter one is
the dominant effect.

This theory of topology-driven magnetic reconnection can be investigated with the help of
simulations. Before going into further detail on the exponential sensitivity and how to com-
pute the exponentiation number, the numerical experiment proposed by Boozer is introduced.

2.2.1 Numerical experiment

A numerical model is proposed in section II of [10], which consists of a box-shaped compu-
tational domain, that is periodic in the x and y-directions with a period of length Lp. In the
z-direction it is bounded by planes at z = 0 and z = L, which are assumed to be perfectly
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(a)

(b)

Figure 2.2: Numerical model for investigating reconnection: (a) the computational domain is
periodic in x and y with a period of Lp and bounded by two perfectly conducting planes at
z = 0 and z = L. At these planes the field lines are fixed and the mapping of footpoints from
the bottom to top plane is trivial. The initial magnetic field B0 in the z-direction is driven
into an entangled state by an applied forcing. (b) Magnetic reconnection changes the field
line connections, which is visible through a change in the mapping of the footpoints.

conducting. The plasma is initially uniform and at rest with a uniform magnetic field that
points in the z-direction, i.e.

ρ0 = 1,

(ρv)0 = 0,

B0 = B0ẑ.

(2.38)

As magnetic fields cannot move through a perfect conductor, the footpoints of the magnetic
field lines are fixed at the two planes. This means that the field lines are free to move and
stretch between the planes, but their footpoints cannot move across them, as shown schemat-
ically in figure 2.2a. This makes it possible to keep track of the individual field line identities
while studying their dynamics between the planes. In order to achieve this behavior, special
boundary conditions are necessary. As described in section 2.1.3, Alfvén’s theorem states that
in an ideal plasma the magnetic field lines follow the plasma movement. Therefore the foot-
points of the field lines can be fixed by setting the plasma velocity at the boundary to zero, if
the resistive effects due to numerical dissipation are sufficiently small.

Furthermore, this model can be used to study reconnection by observing changes in the field
line connectivity. Each field line is defined by its coordinates (x0, y0) at the bottom plane,
z = 0. The coordinates at the top plane are then a function of x0, y0 and time t and are
denoted by xL(x0, y0, t) and yL(x0, y0, t). At t = 0 the mapping is trivial such that xL = x0 and
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yL = y0 and it will stay so as long as the field lines’ evolution is ideal. If magnetic reconnection
occurs, there will be a change in the mapping, as illustrated in figure 2.2b. However, a change
in the mapping does not necessarily mean that reconnection has occurred, but more generally
indicates that the evolution has deviated from an ideal evolution, e.g. through field line
diffusion.

A constant force field is applied to the plasma in order to entangle the magnetic field lines and
drive reconnection. It should vanish at the z-boundaries, be periodic in the x and y-directions
and have no component in the z-direction, such that field-parallel plasma dynamics are kept
minimal. The following force field F and its corresponding driving potential U fulfill these
requirements:

F = ẑ ×∇U(x, y, z, t) (2.39)

U = π

(

Lp

L

)2 B2
0

µ0ρ0
u(x, y, z, t), (2.40)

where ρ0 is the initial uniform density and u is a dimensionless potential, which is chosen as

u = (1 − e−t/τ)

[

S(x, y) sin
(

πz

L

)

+ C(x, y) sin
(

2πz

L

)

]

ua . (2.41)

The forcing amplitude is regulated through the time constant τ and reaches a final amplitude
of ua. The dependence on x and y is contained in S and C, which are defined as:

S(x, y) ≡ sin

(

2πx

Lp

)

sin

(

2πy

Lp

)

C(x, y) ≡ cos

(

2πx

Lp

)

cos

(

2πy

Lp

)

.

(2.42)

The power put into the system by the forcing is v · F and is thus dependent on the plasma
velocity v. If the system relaxes into an equilibrium with no plasma flow, then the power
input is also zero.

Furthermore, the relation between the exponentiation number and the applied forcing can
be estimated by assuming that the system reaches a longterm quasi-stationary state in which
ρF ∼ j × B. The derivation is presented in section IV B of [10] and is briefly outlined here.

In the strong guide field limit, L/Lp → ∞, the magnetic field can be written as

B = B0ẑ +∇A × ẑ, (2.43)

where the scalar potential, A(x, y, z, t), determines the magnetic field components perpendic-
ular to the constant strong guide field given by B0ẑ. The current density in this case becomes

j =
1
µ0

∇× B =
1
µ0

(

∇∂z A − ẑ∇2A
)

. (2.44)

From equations (2.43)-(2.44) j × B can be expressed as

j × B = − 1
µ0

(

B0ẑ ×∇∂z A −∇2
⊥A∇A

)

, (2.45)
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where ∇⊥ denotes the x and y-components of the gradient. The scaling of this term can be
estimated by expressing A as

A =
L2

p

L
B0A(x, y, z, t), (2.46)

where the non-dimensional potential A(x, y, z, t) is a measure of the strength of the magnetic
field deviation from the guide field along the z-direction. Furthermore, it can be shown that

A ∼ σ, such that A ∼ L2
p

L B0σ. Using this in equation (2.45) the forcing required to reach a
certain exponentiation number can be estimated to scale as

ρF ∼ j × B ∼ B2
0

µ0L

Lp

L
σ2, (2.47)

where the ion density in the original expression has been replaced by the average density
ρ. This estimated scaling can be tested by varying the forcing amplitude and observing the
number of exponentiations reached, which is expected to approximately scale as σ ∼

√
F.

2.2.2 Exponential sensitivity

The mapping of the bottom to the top plane introduced in the previous section is helpful in
understanding the concept of exponential sensitivity. For an ideal evolution this mapping will
remain trivial. An exponentially small non-ideal deviation can lead to magnetic reconnection,
when the field lines exponentiate away from each other in the region between those planes.

This can be expressed mathematically by introducing the field line coordinates at the mid-
plane, xL/2 and yL/2, which depend on the lateral footpoint coordinates at a boundary plate,
x0, y0 and t. The derivatives of the mapping from the bottom to the mid plane contain
information on how far the field lines deviate from their original position in the x-y plane.
The Jacobian matrix Jl contains these derivatives and can be written in terms of its Singular
Value Decomposition (SVD) [33]

Jl ≡





∂xL/2
∂x0

∂xL/2
∂y0

∂yL/2
∂x0

∂yL/2
∂y0



 = U ·
(

eσ 0
0 e−σ

)

· V†. (2.48)

Similar to an eigenvalue decomposition, a SVD decomposes a matrix into the product of
three matrices, where U and V† are orthogonal matrices (i.e. UTU = I). The entries of the
diagonal matrix are the singular values, which in this case correspond to the largest possible
deviation from the initial coordinates (x0, y0) given by eσ. When the mapping preserves area,
the singular values are positive and the inverse of each other, which means that the Jacobian
matrix has a determinant of one. Actually, not the area but the magnetic flux has to be
preserved by the mapping (see frozen-in theorem in section 2.1.3). However, area and flux
conservation are the same if the field strength is independent of position. This avoids the use
of flux conserving Jacobian matrices which would lead to a more involved formulation of the
problem [10]. The interested reader can refer to section VE of [8].

Similarly, a Jacobian matrix Ju can be defined for the mapping from the mid to the top plane.
The chain rule implies that the Jacobian matrix for the entire regions is then given by the
product of both the upper and lower region, Jul = Ju · Jl . In the absence of non-ideal effects,
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reconnection cannot occur and the mapping from the top to the bottom plane is trivial, such
that Jul is the identity matrix:

Jul ≡ Ju · Jl =

(

1 0
0 1

)

= V ·
(

1 0
0 1

)

· V†. (2.49)

Using this relation, an expression for the matrix of the upper region can be derived for the
non-reconnecting case:

Ju = V ·
(

e−σ 0
0 eσ

)

· U†. (2.50)

Introducing a small non-ideal effect ∆ in the evolution, for instance in the upper half of the
system, leads to a modified Jacobian Ju

Ju = V ·
(

e−σ 0
∆ eσ

)

· U†, (2.51)

which in turn affects the mapping across the entire region

Jul = V ·
(

1 0
∆eσ 1

)

· U†. (2.52)

The field line connections are scrambled when ∆eσ & 1, as this gives a matrix that is far
from the identity matrix which is obtained in the ideal case. A non-ideal perturbation ∆ is
of the order of magnitude of B, as this measures the relative magnitude of the resistive term
to the ideal term in the induction equation (see equations (2.32)-(2.33)). This gives rise to the
criterion for reconnection of the previous section: eσmaxB ∼ 1.

While the above demonstration is useful for understanding the concept of exponential sensi-
tivity, it only considers the separation of magnetic field lines in the x and y-directions. This is
a good assumption for systems with a strong mean field in the z-direction, but in general the
separation of field lines has components in all three directions. When it comes to the explicit
computation of the exponentiation number in the following section, the more general case is
considered.

2.2.3 Computation of the exponentiation number

The number of exponentiations σ along a field line is an important quantity, that can be used
to localize areas in which magnetic reconnection is likely to occur. First of all, this requires
the knowledge of the field line coordinates itself. Along these coordinates, quantities such as
σ can be computed through an SVD [9, 17].

The coordinates along a magnetic field line, r, are determined by solving the following differ-
ential equation

dr(l)

dl
= b(r) (2.53)

with the initial condition
r(l = 0) = (x0, y0, z0), (2.54)
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where l is the length along the magnetic field line and b = B
‖B‖ is the normalized magnetic

field. In the proposed model, the field lines are located between two plates in the z-direction,
such that the coordinate in the z-direction is initially set to zero, z0 = 0, and the field line is
followed until it reaches the end plate at z = L.

The exponentiation number is a quantity connected to the distance between two neighboring
field lines r0 and r. Their separation can be written as δ = r − r0. Using this in equation (2.53)
gives rise to a differential equation for the separation along the field lines

d(δ + r0)

dl
= b(δ + r0)

dδ

dl
= b(δ + r0)−

dr0

dl
dδ

dl
= b(δ + r0)− b(r0).

(2.55)

In the limit of two infinitesimally close field lines, δ → 0, this becomes

dδ

dl
= (∇b)r0

· δ, (2.56)

where ∇b is the Jacobian matrix of the normalized magnetic field. This equation consists of
three coupled differential equations for the three components of δ and can be expanded to

d
dl







δx

δy

δz






=







∂xbx ∂ybx ∂zbx

∂xby ∂yby ∂zby

∂xbz ∂ybz ∂zbz






·







δx

δy

δz






= M(l) ·







δx

δy

δz






, (2.57)

where for clarity the Jacobian matrix for the field line r0 at length l is denoted by M(l).

The formal solution to this equation is







δx

δy

δz






= exp

(

ˆ l

0
M(l′)dl′

)







δx

δy

δz







l=0

. (2.58)

However, instead of computing the exponential, N(l) = exp
(

´ l
0 M(l′)dl′

)

, directly, which

may be numerically unstable [17], it can be determined by the differential equation

dN

dl
= MN, (2.59)

which can be verified by substituting the expression for N into this equation:

d
dl

exp

(

ˆ l

0
M(l′)dl′

)

= exp

(

ˆ l

0
M(l′)dl′

)

d
dl

ˆ l

0
M(l′)dl′

= MN.

To solve equation (2.58), the initial value, N(l = 0), is required. As the integral in the exponent
is evaluated from 0 to l, the integral will give the null matrix for l = 0. The exponent of the
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null matrix gives the identity matrix, so that

N(l = 0) =







1 0 0
0 1 0
0 0 1






.

After obtaining N(l) as described above, it can be used in equation (2.58), which can be
compactly written as

δ(l) = N(l) δ0

δ(l)

‖δ0‖
= N(l) δ̂0,

(2.60)

where δ̂0 is the normalized initial separation vector. This equation describes a linear transfor-
mation of the set of initial vectors, δ0, to the set of separation vectors, δ(l). The exponentiation
number is independent of the norm of the initial separation vector, ‖δ0‖, which can be seen
from its definition:

σ(l) = ln

(
∥

∥δm(l)
∥

∥

‖δ0‖

)

. (2.61)

Here δm(l) is the separation vector of maximal length:
∥

∥δm(l)
∥

∥

‖δ0‖
= max

∥

∥

∥N(l) δ̂0

∥

∥

∥ , (2.62)

where the maximum on the right-hand side was taken over all the normalized initial sepa-
ration vectors δ̂0 on a sphere of radius one. Therefore one can set ‖δ0‖ = 1 without loss of
generality concerning the exponentiation number σ.

The problem of finding this maximal separation and thus the exponentiation number is es-
sentially a singular value problem and can be solved by finding the SVD of the matrix N, as
described above. The meaning of the singular values can be understood by the geometrical
interpretation of a SVD for a 3 × 3 matrix. The set of initial separation vectors form a sphere
of radius one. By applying the linear operator N onto this set, the sphere is transformed to an
ellipsoid, the semi-axes of which correspond to the singular values of N. In this case, the SVD
of N can be written as

N = U ·







eσ1 0 0
0 eσ2 0
0 0 eσ3






· V†. (2.63)

The largest singular value then corresponds to the maximal separation
∥

∥δm(l)
∥

∥ and its loga-
rithm gives the exponentiation number.

Finally, this results in values for σ for each step of size dl for a single field line. Performing
this calculation for many field lines (each defined by their respective starting coordinates at
z = 0) and finding the maximum exponentiation number σmax along each field line provides
a way to check for the occurrence of large separations. The field lines with high σmax are
then exponentially sensitive to non-ideal effects and are possible candidates for magnetic
reconnection events. The exponentiation number and footpoint mapping of the field lines
together thus are useful tools for identifying and localizing occurences of reconnection.



3 Numerical method

There are several different numerical approaches to solving differential equations, e.g. finite
differences, finite elements or finite volume schemes. In this work a dimension-by-dimension
fourth order accurate finite volume CWENO (centrally weighted essentially non-oscillatory)
scheme is used, which is described in great detail in [35]. It consists of a fourth-order accurate
finite volume scheme to compute the right-hand side of the ideal MHD equations, where a
constrained transport technique is used for the magnetic field components. A fourth-order
accurate strong stability preserving Runge-Kutta (SSPRK) method is employed for the time
evolution. It is used mainly for simulations of astrophysical plasmas.

For this work the code was used to simulate the setup described in section 2.2.1 to investigate
topology-driven magnetic reconnection. This model requires special boundary conditions to
fix the footpoints of the magnetic field lines at the z-boundaries. In the other two directions
periodic boundaries are used, which are the default setting in this code. The required non-
periodic boundary conditions were implemented as part of this work. The following sections
give an overview of the main steps of the numerical scheme before describing the implemen-
tation of the boundary conditions and the external forcing in more detail.

3.1 Finite volume scheme

In any numerical scheme the computational domain, (x, y, z) ∈ [0, Lx]× [0, Ly]× [0, Lz], has to
be discretized in a certain way. In a finite volume approach this is realized by dividing the
domain into discrete cells, each containing a certain volume. In this case, we make use of a
Cartesian grid with box-shaped cells and the uniform grid sizes, ∆x, ∆y and ∆z, as shown in
figure 3.1a. The total number of grid cells in each direction is given by Nx, Ny and Nz, such
that for example the total number of cells in the x-direction is given by Nx = Lx

∆x .

The differential equations to be solved numerically are the ideal MHD equations, which were
introduced in section 2.1.1. The hydrodynamic equations can be rewritten in a conservative,
dimensionless form:

∂tρ = −∇ ·
(

ρv
)

, (3.1)

∂t(ρv) = −∇ ·
[

ρvvT +

(

p +
1
2
|B|2

)

1 − BBT

]

, (3.2)

where 1 is the 3 × 3 identity matrix and BBT is a second-order tensor. As before ρ, v, B,
E and p denote the plasma density, velocity, magnetic field, electric field and pressure, re-

20
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Figure 3.1: Finite volume discretization: (a) the computational domain (x, y, z) ∈ [0, Lx] ×
[0, Ly]× [0, Lz] is discretized into cells with grid sizes ∆x, ∆y and ∆z. (b) In each of these cells
the hydrodynamic variables are initially given as volume averages U i,j,k and the magnetic

field components as face averages B
F
x ,B

F
y and B

F
z defined on the face normal to the respective

component direction.

spectively. The conservative equations (3.1) − (3.2) imply that density and momentum of an
arbitrary control volume only change by the respective flux densities across the control vol-
ume’s surface. In the numerical finite-volume framework this translates to the exact mutual
cancellation of flows across the boundary of any two neighboring grid cells. The conservation
of these quantities is thus an inherent property of the finite-volume scheme.

The pressure is specified by the isothermal gas’ equation of state (2.14). The magnetic field
evolution is governed by the Maxwell-Faraday equation

∂tB = −∇× E

= ∇× (v × B).
(3.3)

It should be noted that although these are the ideal MHD equations, diffusive effects exist
due to numerical viscosity and resistivity, which are introduced by the discretization of the
equations. While this type of diffusivity is not controllable and the magnitude unknown, it
is essential for the numerical experiment carried out in this work, as reconnection can only
occur in the presence of non-ideal effects.

Now the finite volume framework can be applied to the MHD equations. The hydrodynamic
variables, U ≡ (ρ, ρvx, ρvy, ρvz), are evolved in time using equations (3.1)-(3.2). They are de-
fined as volume averages U i,j,k. The magnetic field components, B ≡ (Bx, By, Bz), are defined

as staggered area averages B
F
i,j,k on the corresponding faces of each cell as required by the

constrained-transport procedure, e.g. Bx is defined on the face normal to the x-direction, as
shown in figure 3.1b. Their evolution is described by equation (3.3).
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3.1.1 Hydrodynamic variables

Mathematically, the cell average U i,j,k is obtained by integrating U over the cell volume:

U i,j,k =
1

∆x∆y∆z

˚

Ωi,j,k

dx dy dz U(x, y, z), (3.4)

where Ωi,j,k is the region of space spanned by [xi − ∆x
2 , xi +

∆x
2 ] × [yj − ∆y

2 , yj +
∆y
2 ] × [zk −

∆z
2 , zk +

∆z
2 ] and xi, yj and zk are the coordinates of the central point of the cell (i, j, k), e.g.

xi = (i + 1
2 )∆x.

Taking the time derivative of this equation and inserting equations (3.1)-(3.2) leads to

dU i,j,k

dt
=

1
∆x∆y∆z

˚

Ωi,j,k

dx dy dz
dU(x, y, z)

dt

= − 1
∆x∆y∆z

˚

Ωi,j,k

dx dy dz∇ · f ,

(3.5)

where f denotes the point-valued flux for each quantity in U that appears in the right-hand
side of equations (3.1)-(3.2). With Gauss’s theorem the volume integral is transformed into a
surface integral over the surface S enclosing the volume with normal vector n, giving

dU i,j,k

dt
= − 1

∆x∆y∆z

‹

S
dS ( f · n)

= − 1
∆x∆y∆z

(

¨

Sx

dy dz
[

f x(xi+1/2, y, z)− f x(xi−1/2, y, z)
]

+

¨

Sy

dx dz
[

f y(x, yj+1/2, z)− f y(x, yj−1/2, z)
]

+

¨

Sz

dx dy
[

f z(x, y, zk+1/2)− f z(x, y, zk−1/2)
]

)

,

(3.6)

where the integration surfaces Sx, Sy and Sz are defined analogously to the volume Ωi,j,k, e.g.

Sx = [yj − ∆y
2 , yj +

∆y
2 ]× [zk − ∆z

2 , zk +
∆z
2 ].

The x-component of the point-valued flux f x is defined at the center of the cell face normal to
the x-direction and can be deduced from equations (3.1)-(3.2)

f x =











ρvx

ρv2
x + p + 1

2 |B|2 − B2
x

ρvxvy − BxBy

ρvxvz − BxBz











. (3.7)

Rewriting equation (3.6) in terms of area-averaged fluxes leads to

dU i,j,k

dt
= −

F
x
i+1/2,j,k − F

x
i−1/2,j,k

∆x
−

F
y
i,j+1/2,k − F

y
i,j−1/2,k

∆y
−

F
z
i,j,k+1/2 − F

z
i,j,k−1/2

∆z
, (3.8)
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Figure 3.2: Main steps in the RHS computation of the hydrodynamic variables in one di-
mension: The initial cell averages are used to reconstruct the face averages with a CWENO
polynomial reconstruction. After transforming the face averages to point values, the phys-
ical fluxes at each interface between two cells are computed and finally transformed into
area-averaged fluxes.

with the area-averaged flux in the x-direction given by

F
x
i±1/2,j,k =

1
∆y∆z

¨

Sx

dy dz f x(xi±1/2, y, z). (3.9)

The fluxes in the y and z-direction are defined analogously.

Equation (3.8) is the final equation, from which the time evolution of the hydrodynamic vari-
ables can be obtained via time integration. This means that starting from initial cell averages,
U i,j,k, the area-averaged fluxes have to be calculated. This is done dimension by dimension,
which spares computation time as compared to solving a truly multidimensional problem
[34]. The main steps for the procedure in the x-direction are shown in figure 3.2, the first of
which is described briefly below. Only a terse summary of the remaining steps is given. The
reader interested in the technical details is kindly referred to section 3 of [35].

In the first step a 1D fourth-order polynomial is reconstructed from the cell-averaged values,
which is centrally weighted and essentially non-oscillatory (CWENO). In order to achieve this
behavior, three quadratic polynomials, Pi

i−1,j,k(x), Pi
i,j,k(x) and Pi

i+1,j,k(x), are reconstructed for
each cell (i, j, k), using three cell averages each centered around the cells i − 1, i and i + 1,
respectively. Therefore a total of five cells are needed, two to each side of the cell in which the
polynomial is reconstructed. The coefficients of the polynomials are found uniquely through
the conservation of the volume averages of the three cells being used, which can be written as







































1
∆x

ˆ xm−1/2

xm−3/2

dx Pi
m,j,k(x) = Um−1,j,k

1
∆x

ˆ xm+1/2

xm−1/2

dx Pi
m,j,k(x) = Um,j,k

1
∆x

ˆ xm+3/2

xm+1/2

dx Pi
m,j,k(x) = Um+1,j,k

, (3.10)

with m ∈ {i − 1, i, i + 1} denoting the three polynomials. These are then combined to give the
final polynomial Ri,j,k(x) as

Ri,j,k(x) =
i+1

∑
m=i−1

wi
m,j,kPi

m,j,k. (3.11)
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The weights wi
m,j,k are chosen to ensure fourth-order accuracy in smooth regions. In shocked

regions, the polynomials corresponding to a discontinuity are associated with a vanishing
weight, so as to prevent an oscillatory reconstruction. The weights are positive and sum up to
one, such that the conservation constraint for Ri,j,k(x),

1
∆x

ˆ xi+1/2

xi−1/2

dx Ri,j,k(x) = U i,j,k, (3.12)

is satisfied.

Next, area-averaged values are obtained by evaluating the reconstruction polynomial at xi±1/2.
These are converted to point values by means of a Taylor expansion, which are then used in
equation (3.7) to compute the point-valued flux f x. The passage through point values is
necessary in order to keep the scheme fourth-order accurate. At each interface two fluxes
are obtained, one from each cell at each side of the interface. Finding the physical flux at
the interface is a Riemann problem, which is solved by employing the local Lax-Friedrichs
flux (LLF) approximation. Finally, the point-valued physical flux is transformed into the
area-averaged flux. These steps are repeated for the y and z-direction and the resulting area-
averaged fluxes are used to compute the right-hand side of equation (3.8), after which the
time integration is performed [35].

3.1.2 Magnetic field

Before describing the time integration method, however, the procedure for the magnetic field
will be briefly outlined. It has to be treated separately in order to ensure ∇ · B = 0, which
typically grows in time if the procedure used for the hydrodynamic variables is applied to
the magnetic field components. Thus, in order to avoid unphysical effects, various different
approaches can be employed. In this code the constrained transport (CT) procedure [14] is used,
which maintains the solenoidality up to machine precision.

The magnetic field components are defined as area averages on the face normal to their re-
spective direction, e.g. the x-component is given by

(B
F
x )i−1/2,j,k =

1
∆y∆z

¨

Sx

dy dz Bx(xi−1/2, y, z), (3.13)

where Sx refers to the cell surface with normal vector in the x-direction as used in equation
(3.6). The y and z-components are defined analogously.

Taking the time derivative of equation (3.13) (and the corresponding equations for the y and
z-components), using Faraday’s law and applying Stokes’s theorem results in

d
dt

(B
F
x )i−1/2,j,k = − (Ez)i−1/2,j+1/2,k − (Ez)i−1/2,j−1/2,k

∆y
+

(Ey)i−1/2,j,k+1/2 − (Ey)i−1/2,j,k−1/2

∆z
(3.14)

d
dt

(B
F
y )i,j−1/2,k = − (Ex)i,j−1/2,k+1/2 − (Ex)i,j−1/2,k−1/2

∆z
+

(Ez)i+1/2,j−1/2,k − (Ez)i−1/2,j−1/2,k

∆x
(3.15)
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d
dt

(B
F
z )i,j,k−1/2 = − (Ey)i+1/2,j,k−1/2 − (Ey)i−1/2,j,k−1/2

∆x
+

(Ex)i,j+1/2,k−1/2 − (Ex)i,j−1/2,k−1/2

∆y
,

(3.16)
where the electric field components encircling the surfaces are defined as edge-averaged val-
ues. The x-component is given by

(Ex)i,j−1/2,k−1/2 =
1

∆x

ˆ xi+1/2

xi−1/2

dx Ex(x, yj−1/2, zk−1/2). (3.17)

It can be shown that this approach ensures the solenoidality of the magnetic field by consid-
ering the ∇ · B term, which can be approximated as

(∇ ·B)i,j,k ≈
(B

F
x )i+1/2,j,k − (B

F
x )i−1/2,j,k

∆x
+

(B
F
y )i,j+1/2,k − (B

F
y )i,j−1/2,k

∆y
+

(B
F
z )i,j,k+1/2 − (B

F
z )i,j,k−1/2

∆z
.

(3.18)

Inserting equations (3.14)-(3.16) into the time derivative of equation (3.18) leads to
d

dt (∇ · B) = 0, as the terms cancel pairwise. Therefore the solenoidality is maintained at
all times, as long as ∇ · B is zero initially.

Equations (3.14)-(3.16) determine the time evolution of the magnetic field from the edge-
averaged electric field components, which have to be calculated from the initial area-averaged
magnetic field and the reconstructed face-averaged velocity field. Once they are known, the
equations can be integrated in time as described in the following section. As with the hy-
drodynamic variables, several steps are needed to compute the edge-averaged electric field
component. The detailed descriptions and equations are not shown here. The interested
reader is kindly referred to section 4 of [35].

3.2 Time integration

The time integration is done with a fourth-order strong stability-preserving Runge-Kutta
(SSPRK) method, which avoids the introduction of oscillations due to the time integration.
The method used in this code consists of ten stages and is described in section 6 of [35]
and pseudocode 3 of [19]. The principle of the time integration is described for the classical
four-stage Runge-Kutta (RK4) method, see for example [3], as this method is also used in the
post-processing described in the following chapter.

Solving the MHD equations numerically is an initial value problem, that can be expressed as
follows:

dW

dt
= C[W(t)], W(t0) = W0. (3.19)

Here the hydrodynamic variables and the magnetic field components are denoted as W =

(U i,j,k, B
F
i,j,k), the right hand-sides of equations (3.8) and (3.14)-(3.16) as C[W(t)] and the initial

values as W0.
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Now using a time step ∆t, the value of W(t + ∆t) can be approximated from the previous
value W(t) as

W(t + ∆t) = W(t) +
1
6
(k1 + 2k2 + 2k3 + k4), (3.20)

where the quantities kn, n ∈ {1, 2, 3, 4} are defined as follows:

k1 = ∆t C
[

W(t)
]

k2 = ∆t C

[

W(t) +
k1

2

]

k3 = ∆t C

[

W(t) +
k2

2

]

k4 = ∆t C
[

W(t) + k3
]

.

The time step is determined by the Courant-Friedrichs-Lewy (CFL) stability criterion [22]

∆t = Cc f l min
i,j,k





∆x

ax
i,j,k

,
∆y

a
y
i,j,k

,
∆z

az
i,j,k



 , (3.21)

where Cc f l is the Courant number and ax
i,j,k is the local maximum speed of propagation of in-

formation in the x-direction, which corresponds to fast magnetosonic waves, see [35] for more
details.. The time step is adapted for each iteration step for a more efficient computation. For
a Courant number of one, the time step is given by the minimum time needed for informa-
tion to propagate across a cell. The choice of the Courant number depends on the method
used and its numerical stability. Due to the high stability of the SSPRK method used in this
code, the Courant number is set to 1.95 for the 1D simulations and 1.5 for the 3D simulations
presented in this work.

3.3 Boundary conditions

In any numerical simulation, the computational domain is finite and limited by its boundaries.
It is therefore necessary to set boundary conditions that define what happens there.

Two types of boundary conditions are used in this work. The Dirichlet boundary condition
directly sets a value at the boundary, e.g. the function f takes on a fixed value c

f = c. (3.22)

The Neumann boundary condition on the other hand fixes the value of the normal derivative
at the boundary

∇ f · n = c, (3.23)

where n is the unit vector normal to the boundary. In 1D this reduces to ∂ f
∂x = c.

The implementation of boundary conditions into a numerical scheme involves defining the
value of each variable at the boundary. In the code used in this work, this has to be done
at each step of the right-hand side calculation. Generally periodic boundary conditions are
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Figure 3.3: Schematic figure of the computational domain in two dimensions: It consists of
the physical domain and the ghost cells. The code runs in parallel on multiple processors,
among which the computational domain is divided into equal parts. The inner ghost cells are
responsible for the communication between neighboring processors, while the outer ghost
cells determine the boundary conditions.

used, which can be imagined as placing a copy of the physical domain at each boundary.
However, special boundary conditions are required for the simulation of the magnetic recon-
nection model. Therefore the possibility to use different types of boundary conditions was
implemented as part of this work.

3.3.1 Implementation

The boundary conditions are implemented using additional cells, so-called outer ghost cells.
The total computational domain consists of the physical domain and the ghost cells. The code
runs in parallel on multiple processors for an efficient computation using a message-passing

interface (MPI) [29]. The communication between the processors is done with inner ghost cells.
Each processor has two layers of ghost cells in each direction, which is shown schematically in
figure 3.3 in two dimensions. They are necessary for the various steps of the RHS computation
since information of neighboring cells either in the physical domain of neighboring processors
or given by the boundary conditions are required. The maximum number of neighboring cells
is required for the CWENO polynomial reconstruction, where two cells to the left and right of
each cell are needed. Therefore at any boundary (inner or outer) values have to be assigned
to these two additional ghost cells at each step of the calculation.

For the inner ghost cells, this is straightforward: neighboring processors have to exchange the
information of the cells located at their shared boundary. In the case of periodic boundaries,
the same applies to the outer ghost cells, as no actual physical outer boundary exists. Instead
one can imagine copies of the physical domain to be attached to the boundaries, as shown in
figure 3.4. However in the non-periodic case these values depend on the desired behavior at
the boundary. There are many possibilities, three of which were implemented in this work:
a zero-gradient, an antisymmetric and a constant boundary. In the zero-gradient approach,
the values in the ghost cells are chosen symmetrically, such that the gradient at the boundary
vanishes. This is a Neumann boundary condition as it specifies that the derivative at the
boundary is zero. The other two cases are Dirichlet conditions: In the constant case, the outer
ghost cells are set to a constant value c. In the antisymmetric case, the values in the outer
ghost cells are obtained by point reflection at the boundary around the value c. The different
types of non-periodic boundaries are shown in figure 3.4 in one dimension for c = 0.
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Figure 3.4: Implementation of boundary conditions shown in one dimension for some vari-
able f : two additional cells, the outer ghost cells, are used to determine the behavior at
the boundary. Periodic boundary conditions are achieved by placing copies of the physical
domain at both sides. Three types of non-periodic boundary conditions are shown. In the
zero-gradient one, the values in the ghost cells are found by reflection at the boundary. In
the constant case, a constant value c is assigned to the ghost cells. Antisymmetric boundaries
are achieved by a point reflection around a point c at the boundary. This is shown here for
c = 0.

This procedure has to be adapted for each step of the right-hand side computation, depending
on whether the variables are defined as cell-, face- or edge-averaged quantities. Furthermore,
special care has to be taken when setting the boundary conditions for the magnetic field
components to ensure that the solenoidality is maintained.

3.3.2 Application to the reconnection model

These boundary conditions can now be applied to the reconnection model. Periodic bound-
aries in the x and y-directions ensure the periodicity of the system. In the z-direction a
combination of the above introduced possible types of boundary conditions has to be chosen
for the various variables, as shown in table 3.1. As discussed in section 2.1.3, the magnetic
field lines can be kept in place at the z-boundaries by using the so-called no-slip condition,
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Table 3.1: Boundary conditions for the reconnection model: three different types of non-
periodic boundary conditions were implemented, namely zero-gradient (zg), antisymmetric
(as) and constant (c). Each variable is assigned a type of boundary condition to fulfill the
requirements of the numerical reconnection model.

variable ρ v B E

boundary condition zg as / c zg as / c

which means setting the velocity to zero. This can be done with the constant or antisymmetric
boundary condition introduced above. For the remaining variables the boundary conditions
are chosen in the following way:

The density ρ and the magnetic field components are set to zero-gradient boundaries. Al-
though the electric field is not an independent variable, it has to be assigned a boundary
condition as well for technical reasons. These have to be consistent with the boundary condi-
tions chosen for v and B. As E = −v × B, the boundary condition for the electric field has to
be the same as for the velocity, i.e. constant or antisymmetric.

3.3.3 Convergence test

Both the finite-volume scheme and the time integration are fourth-order accurate. A con-
vergence test was carried out to check whether the boundary conditions were implemented
correctly and are suitable for the numerical experiments. The initial conditions of this one-
dimensional test (in the y-direction) were chosen as follows:











ρ

ρvx

ρvy

ρvz











t=0

=











1
A exp(− 1

2σ2 (y − µ)2)

0
0











,







Bx

By

Bz







t=0

=







0
1
0






. (3.24)

The Gaussian function in the x-component of the momentum has a certain amplitude, A,
standard deviation, σ and mean value, µ, which were chosen to be A = 0.01, σ = 0.05 and
µ = 0.4 for a computational domain of size Ly = 1.

The perturbation in the plasma momentum induces a deformation of the magnetic field line
that creates a transversal Alfvénic pulse that propagates along the magnetic field line in both

directions. Its speed is given by the Alfvén speed vA =

√

B2
0

µ0ρ0
associated with the mean field

By = 1. After t = 2 tA the wave has interacted with both boundaries and has returned to its
initial position.

The convergence is tested by performing simulations for different resolutions Ny and using
the highest resolution as a reference solution. An average error dUmean is then computed by
summing over the differences of all seven variables Ui at time t = 2 tA:

dUmean(Ny) =
1

7Ny

7

∑
i=1

∣

∣

∣
Ui(Ny)− Ui(Ny,max)

∣

∣

∣
. (3.25)
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Figure 3.5: Convergence test for different types of boundary conditions: The convergence
order is given by the slope (in a double-logarithmic plot) with which the mean error
dUmean(Ny) decreases when the resolution Ny is increased. Both the antisymmetric and pe-
riodic cases have a convergence order of four, while the constant case exhibits a convergence
order of one, which is indicated by the dashed lines with the slopes −1 and −4.

The error was computed with the non-periodic boundaries listed in table 3.1 as well as periodic
boundaries as a reference. The convergence order can be seen in the double logarithmic plot
in figure 3.5. When the velocity boundary condition is constant, the error converges with
order one, while in the antisymmetric and periodic cases the convergence order is four. The
worse performance in the constant case could be due to unexpected cancellation effects in
the polynomial reconstruction mechanism. Since the proper order of convergence is observed
for the antisymmetric case, the simulations of the reconnection model are carried out with
antisymmetric boundary conditions for the velocity and the electric field and zero-gradient
boundaries for the density and the magnetic field.

3.4 Forcing

An external forcing is applied to the initially uniform system at rest to cause an entanglement
of the magnetic field lines. In the numerical framework this is done by adding the force field
ρF multiplied by the time step ∆t to the momentum term ρv to give an updated momentum,
in which the forcing is included:

(ρv)new = ρv + ρF(U(t), B(t), t)∆t.

3.4.1 Driving force

The forcing for the numerical experiment described in section 2.2.1 is used to drive the mag-
netic field to high spatial complexity and cause an entanglement of field lines. As it is periodic
in the x and y-direction and falls to zero at the z-boundaries, it suits the no-slip boundary
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Figure 3.6: Force field F in the x-y plane at different z-positions (with L = Lp = 1): At z ≈
0.125 the field shows a slight twisting structure, which turns into a shearing structure at z ≈
0.33 and back to a more pronounced twisting in the middle of the domain. It should be noted
that the amplitude of the vectors was rescaled such that the structure is easily discernible,
but in fact the amplitude varies in the z-direction and falls to zero at the boundaries z = 0
and z = 1.

conditions. It is obtained by putting equations (2.39) - (2.42) together, giving the following
expression:

F(x, y, z, t) = F0 (1 − e−t/τ)







fx(x, y, z)

fy(x, y, z)

fz(x, y, z)






. (3.26)

Here F0 denotes the forcing amplitude. The components of the forcing are given by

fx(x, y, z) =
2π

Lp

(

− sin(
2πx

Lp
) cos(

2πy

Lp
) sin(

πz

L
) + cos(

2πx

Lp
) sin(

2πy

Lp
) sin(

2πz

L
)

)

fy(x, y, z) =
2π

Lp

(

cos(
2πx

Lp
) sin(

2πy

Lp
) sin(

πz

L
)− sin(

2πx

Lp
) cos(

2πy

Lp
) sin(

2πz

L
)

)

fz(x, y, z) = 0.

(3.27)

It is constant in time up to a factor of (1 − e−t/τ). This is well suited for the problem as it
does not introduce any probabilistic process into the system, which itself is expected to behave
chaotically. Three z-slices of the force field are shown in figure 3.6.

3.4.2 Damping layers

Additionally, damping layers are included close to the z-boundaries to damp perturbations
caused by Alfvén waves propagating along the magnetic field lines. They further ensure that
the velocity remains zero at the z-boundaries, so that the footpoints of the field lines remain
fixed. They have a certain thickness, rdamp, which if not stated otherwise is set to 10% of the
computational domain. The force field described above is then applied to the remaining inner
part of size LF = L − 2rdamp by replacing the argument of the sinusoidal functions in z in
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equation (3.27):

z

L
→







(z−rdamp)

LF
if rdamp ≤ z ≤ (L − rdamp)

0 otherwise
. (3.28)

The damping is achieved by introducing a friction term in the momentum equation corre-
sponding to

∂tv = − v

τd
. (3.29)

The solution to this equation is an exponential decay v ∝ e−t/τd with a time constant τd. In
practice, the damping is included by updating the momentum with the additional friction
term multiplied with the time step ∆t in the damping layers:

(ρv)new = ρv(1 − ∆t

τd
). (3.30)

It can be easily seen from equation (3.30) that the damping strength increases with decreasing
τd. However, τd should be much larger than the time step ∆t, as otherwise the exponential
decay becomes very steep. This would make the equations stiff, which would then require
an unnecessary small time step in order to prevent the numerical method from becoming
unstable.



4 Simulations and Post-processing

The code described in the previous section is used to perform simulations of the numerical
model introduced in section 2.2.1. This chapter provides an overview of the different sim-
ulation runs and their parameters and explains how the data is further processed. Various
diagnostic quantities are computed by the post-processing program, which was implemented
in Fortan90 as part of this work and is based on the diagnostic tools presented in [17].

4.1 Simulation runs

Several simulation runs were carried out with varying parameters, which are summarized
in table 4.1. They were run on the cluster of the math department of the Technical Univer-
sity Berlin and on the high performance-computing (HPC) system Draco of the Max Planck
Computing and Data Facility (MPCDF).

In the first set of simulations A1-A3 the damping constant is varied in order to investigate the
effect the damping layers have on the system. The second set of runs B1-B5 and the third set
C1-C5 are used to study the dependence on the grid resolution and the forcing amplitude,
respectively.

Table 4.1: Parameters of the simulation runs evaluated in this work

Run Resolution N Forcing amplitude F0 Damping constant τD

A1 64 0.2 -
A2 64 0.2 0.1
A3 64 0.2 0.05

B1 48 0.2 0.05
B2 64 0.2 0.05
B3 96 0.2 0.05
B4 128 0.2 0.05
B5 256 0.2 0.05

C1 64 0.10 0.05
C2 64 0.15 0.05
C3 64 0.20 0.05
C4 64 0.30 0.05
C5 64 0.40 0.05

33
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for all runs. The computational domain was chosen to be cube-shaped with a side length of
L = Lp = 1. With these parameters the Alfvén speed and Alfvén transit time (the time an
Alfvén wave needs to travel across from bottom to top plate) become cA = 1 and tA = 1. The
isothermal sound speed is set to cs = 1. The time constant that regulates the forcing amplitude
(equation (3.26)) is set to τ = 0, such that the forcing is constant in time.

4.2 Post-processing

The simulations produce time frames of the density, the momentum and the magnetic field.
The time evolution of these variables or related quantities, such as the magnetic energy, can
give insight into the dynamics of the system. In order to investigate potential reconnection
events in detail, however, the magnetic field line coordinates are required. They are obtained
by running a post-processing program over each frame returned from the simulations. The
main steps of the program are shown in the flowchart in figure 4.1 and can be summarized as
follows:

Computation of point values in cell center

Computation of 𝒋, 𝜵𝒃, 𝑩𝜵𝑩
Runge-Kutta step to update 𝒓 and 𝑵

Initialize coordinates 𝒓 on z=0 plane

Initialize 𝑵 as identity matrix

ݎ݋݂ ݊௬ ∈ {1 . . ݊𝑓}
ݎ݋݂ ݊௫ ∈ {1 . . ݊𝑓}

𝑤ℎ𝑖𝑙݁ ௭ݎ < 1

Write to file

Load fields from file

do

dodone

done do

done

Interpolation of quantities ݍሺ𝒓ሻ at 𝒓𝑄𝑖௡𝑡 ݊௫, ݊௬ += Δ𝑙 ሺ𝒓ሻݍ
Singular value decomposition of 𝑵 to 

find 𝜎 𝒓 and update 𝜎௠𝑎௫ ݊௫, ݊௬

Figure 4.1: Flowchart visualizing the main steps in the post-processing: the fields from the
simulation are used to find the coordinates r of n f × n f magnetic field lines and simultane-
ously compute the exponentiation number σ from the matrix N by solving equations (2.53)
and (2.59), respectively. The quantities q (kinetic energy, parallel current density and the
parallel magnetic tension) are integrated along the field lines by computing their value at
position r and adding them to the integral Qint for each field line.
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The fields loaded from the time frame are given as cell- or face-averaged quantities for the hy-
drodynamic variables and the magnetic field components, respectively. In a first preparation
step these are transformed into point values in the center of each cell, from which the current
density, j, the Jacobian matrix of the normalized magnetic field, ∇b, and the magnetic tension
term, B∇B, are computed.

The main part of the program consists of two loops over the y and x position of the field lines,
which form an equally-spaced grid of n f × n f field lines. Each starting point is labeled by
(nx, ny) with nx, ny ∈ {1..n f }. The field line coordinates are initialized on the z = 0 plane and
the matrix exponent N (see section 2.2.3) is initialized as a 3 × 3 identity matrix.

The coordinates of each magnetic field line are computed with a constant step size ∆l, by
solving equation (2.53) with a fourth-order Runge-Kutta method (RK4, see section 3.2) until
the z = 1 plane is reached. Simultaneously, equation (2.59) is solved to find the matrix N at the
position r. In general the coordinates r will not coincide with the points in the cell centers, on
which the quantities are defined. Therefore an interpolation method is necessary, so that e.g.
the magnetic field can be computed at any position b(r), from which in turn the coordinate r

is updated (equation (2.53)). In this program a tricubic interpolation method is used [21].

For each integration step a singular value decomposition (using the Linear Algebra Package
(LAPACK) [2]) of matrix N is done, from which the exponentiation number σ(r) is found
as the logarithm of the largest singular value (see section 2.2.3). Finally, the kinetic energy,
parallel current density and the parallel magnetic tension are integrated along the field lines,
by computing their value q at position r through interpolation and then summing over these
points to get the integrated value:

Qint = ∆l ·
rz=1

∑
rz=0

q(r).

In general only the footpoints of the field lines, the maximum exponentiation number σmax

and the integrated quantities along each field line are returned due to memory limitations. For
a small selected number of field lines the coordinates and the profiles of the various quantities

Figure 4.2: Efficiency of the parallelization: the speed up achieved is close to the ideal case,
in which it scales with the number of threads. 300 × 300 field lines were integrated with a
step size of ∆l = 0.01 and grid resolution of 2563.
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Figure 4.3: Coarse-grained mapping of the field line footpoints: The end points on the top
plate are divided into a 5× 5 grid, which is colored in a checkerboard pattern (left). They are
then mapped onto the starting points on the bottom plate, such that changes in the mapping
can be seen as a distortion of the pattern (right).

along them can be returned, when the behavior of the whole field line is of interest or for
visualization purposes.

The outermost loop over the y-coordinates of the starting points was parallelized using the
shared memory interface Openmp [12], which allows the distribution of tasks to multiple
threads. This approach is well suited to the problem, as the individual field lines and thus
the individual tasks are independent of each other. The speedup shown in figure 4.2 is almost
equal to the number of threads used, which is limited to 32 due to the architecture of the
computation nodes on the cluster used in the framework of this work. It is measured by
timing the parallel section of the program, which is run on a 2563 frame with the parameters
n f l = 300 and ∆l = 0.01.

4.2.1 Footpoint diagnostics

The output of the post-processing can be used to gain further insight into the dynamics of
the field lines. The mapping of footpoints from bottom to top is useful to identify potential
reconnection events. This is visualized by applying a coarse-grained grid to the end points
at the top plate and assigning colors in a checkerboard pattern. These are then mapped onto
the equally-spaced starting points, as described in [17] and shown in figure 4.3 for a frame
of simulation A3. The distortion of the checkerboard pattern highlights the regions in which
reconnection might have occurred, as a reconnection event necessarily leads to change in the
footpoint mapping. However, the reverse is not true; a change in the mapping does not mean
that field lines reconnected. Instead, due to numerical resistivity, the field lines can diffuse
through the plasma, as Alfvén’s theorem only holds in the ideal MHD case. Therefore not only
the mapping of footpoints but also the time scales on which changes in the mapping occur
need to be considered in order to discriminate between field line diffusion and reconnection.

Subtracting the end points of two consecutive frames from each other gives rise to a footpoint
drift. The drift of a single point, p(t), divided by the time step between the two frames, ∆τ,
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Figure 4.4: Convergence of footpoint drift for decreasing integration step size ∆l: The scaling
of the mean and the RMS of the footpoint drift error ∆pdri f t and the rough error estimate ∆l

are shown for a grid size of 2563.

corresponds to a mean footpoint velocity

v f p(t) =

∣

∣p(t + ∆τ)− p(t)
∣

∣

∆τ
=

pdri f t

∆τ
. (4.2)

In the limit ∆τ → 0 this evidently turns into the instantaneous velocity at time t.

Due to the periodic boundaries in the x and y-direction, the maximum distance two points can
have at any time is given by

√
0.5, which in turn gives an upper bound for the footpoint veloc-

ity for a given time step ∆τ. For a low time resolution (that is a large ∆τ) the maximal possible
velocity is comparatively low and easily saturated, giving a rough overview over the potential
reconnection regions. Conversely, a small ∆τ makes it possible to resolve single events with
large footpoint velocities, but contains limited information about the system changes on large
scales. Therefore, in order to capture reconnection events, different time intervals between
frames need to be considered.

Estimation of the step size ∆l

The accuracy of the computed footpoint velocity depends on the accuracy of the end points,
which in turn is limited by the integration step size ∆l. The error in the footpoint drift can
therefore be roughly estimated as

∆pdri f t ∼ ∆l.

In order to check this estimation a convergence test is carried out, in which the footpoint drift
of each field line (with a time step of 0.001 tA and a resolution of 2563) is computed for varying
step sizes. The footpoint drift of the smallest step size ∆l = 3 × 10−4 serves as a reference
solution. It is subtracted from the footpoint drift computed with the different step sizes for
each field line. The mean value of the error is then obtained by averaging over the absolute
value of the error of all field lines. Another measure is given by the root-mean-squared error
(RMSE), which is the square root of the averaged squared error. It differs from the mean
value, in that it gives more weight to larger errors and is thus more sensitive to outliers. Both
measures are plotted against the step size with logarithmic scales in figure 4.4. It can be seen
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footpoint velocity

Figure 4.5: Footpoint velocity computed from two consecutive frames (of run B5) with a time
step of ∆τ = 10−3 and an integration step size of ∆l = 10−3 (left) and ∆l = 5 × 10−4 (right).

that both are smaller than the estimate for all step sizes. While the mean error is about an
order of magnitude smaller, the RMSE is initially closer to the estimated value. However
for step sizes smaller than the grid size of 1/256, both measures are of the same order of
magnitude and scale with ∆l as expected. This shows that using ∆l as an upper bound for the
error is a reasonable choice.

As stated above, the maximum distance between two end points is given by
√

0.5 ≈ 0.7. An
integration step of ∆l . 10−3 is necessary in order to resolve drifts of the order of 10−2. Ad-
ditionally the time step ∆τ should be taken into consideration when choosing the integration
step size ∆l, as the error in the footpoint velocity can be roughly estimated as

∆v f p ∼ ∆l/∆τ.

Therefore at higher time resolutions, the spatial integration step size should be decreased, in
order to resolve roughly the same range of footpoint velocity. However, the computation time
scales with the integration step size and the number of field lines, such that a compromise
has to be found: For simulations with time steps ∆τ ≥ 10−2 the step size ∆l = 10−3 was
used. The smallest time step used is ∆τ = 10−3, for which a step size of ∆l = 5 × 10−4 was
chosen. The difference in resolution can be seen in figure 4.5, in which the footpoint velocity
of 400 × 400 field lines is shown for both integration step sizes with the smallest time step.
While the overall structure is similar in both cases, the one with the larger step size shows a
higher noise level, such that some details of the fine-structure are not resolved well.

Footpoint velocity distribution

Finally, the distribution of the footpoint velocity and its evolution in time can be studied and
a criterion for distinguishing between the comparatively slow and gradual diffusion of field
lines and the quick and spontaneous reconnection process can be derived.

The footpoint velocity follows a log-normal distribution, the probability density function (pdf)
of which can be derived from the pdf of a normal distribution f (x) by considering the integral
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Figure 4.6: footpoint velocity distribution: The data is distributed according to a log-normal
distribution (left). The mean, median and mode are measures that characterize the central
tendency and can be used to define a reconnection threshold. After taking the logarithm, the
data follows a normal distribution (right).

over the whole domain
ˆ ∞
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f (x)dx = 1

and substituting x = ln y, such that dx = dy/y, giving
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Here µ and σ denote the mean and standard deviation of the normal distributed variable x.
The pdf of the log-normal distribution is then given by

f (y) =
1√

2πσ2

1
y

exp

(

− (ln y − µ)2

2σ2

)

.

By taking the logarithm of a log-normal distributed variable X, a normal distributed variable
Y = ln X is obtained [30]. This is true regardless of the chosen base. In the following a
logarithm with base 10 is used, as this captures the several orders of magnitude over which the
footpoint velocity is distributed. The pdf’s of both the footpoint velocities and their logarithm
are shown in figure 4.6 (computed for a few frames of run C at a time step ∆τ = 1).

In order to distinguish between a fast (reconnection) event and slower processes, a threshold
for the footpoint velocity can be set. There are three different measures which can be used
to describe the central tendency of the distribution: the mean, the median and the mode,
all of which are shown in figure 4.6 for the log-normal distribution. While the mode of the
distribution corresponds to the most common value and is thus located at the peak, the mean
is shifted to higher values due to the distribution’s long tail. The median marks the point at
which half of the values are distributed below and above it [30]. Which measure is best suited
is further discussed based on the results in the following chapter.



40 CHAPTER 4. SIMULATIONS AND POST-PROCESSING

Furthermore, these measures multiplied with the time step ∆τ give an estimate for the typical
length scale on which the events occur. This can be used to determine the radius of field line
bundles, which can be traced in order to visualize individual events.

4.2.2 Correlation

Running the post-processing program over several time frames results in time series of quan-
tities such as the exponentiation number and the footpoint velocity for each field line. The
theory states that field lines with a high exponentiation number, σmax, are especially sensi-
tive to non-ideal effects. Therefore, it is expected that the footpoint velocity along these field
lines is large as well. Any occurrences of enhanced footpoint velocity (peaks in the time se-
ries) are of interest, as they are potential reconnection events. They can be compared to the
exponentiation number by considering the temporal correlation of these two quantities.

One way of evaluating the linear correlation of two variables X and Y is using Pearson’s
correlation coefficient ρXY. It is defined as

ρXY =
cov(X, Y)

σXσY
, (4.3)

with the covariance cov(X, Y) given by

cov(X, Y) =
1

T − 1

T

∑
i=1

(

Xi − µX

) (

Yi − µY

)

. (4.4)

Here µX, µY, σX and σY denote the mean values and the standard deviations of variables X

and Y, and T is the number of frames in the time series. The correlation coefficient ranges
from -1 to 1, where -1 corresponds to a negative and +1 to a positive linear correlation. When
it is zero the variables show no linear correlation [11].

Furthermore, the duration of an event can be estimated from the autocorrelation function of
the time series of the footpoint velocity. The autocorrelation function r(τ) of a time series of
variable X measures the correlation between Xt and Xt+τ:

r(τ) =
cov(Xt, Xt+τ)

var(X)
, (4.5)

where τ is the lag by which the function is shifted and the sum in the covariance in equation
(4.4) goes from i = 1 to i = T − τ. As before, the function can take on values between -1 and
1 and is defined such that it is maximal at τ = 0 [11].

Now the event duration τevent can be obtained by finding the lag at which the autocorrelation
falls below a certain threshold, for example 1/e. This essentially is a measure of the broadness
of the event peak.



5 Results

In this chapter the data produced by the simulations is analyzed with the diagnostic tools
described in the previous chapter. The mean magnetic and kinetic energy give a general
overview of the system’s evolution, which can be divided into different phases. Furthermore
the diagnostic quantities along the integrated magnetic field lines offer more insight into
the field line behavior. As discussed in the previous chapter, the exponentiation number
measures the degree of entanglement and the footpoint velocity is used to identify potential
reconnection events. The integrated parallel electric field V (equation (2.28)) is a measure of
non-ideal effects, but as in this work the resistivity is of numerical origin and of unknown
magnitude the integrated parallel current density is used instead. Additionally, the kinetic

t = 0 tA t = 0.5 tA t = 1.0 tA

(a)

(b)

Figure 5.1: Snapshots of magnetic field lines reacting to the external forcing for simulation
A3: (a) side view of the computational domain and (b) top view of the x-y plane. The field
lines are distorted by the forcing while maintaining their footpoint positions.
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Figure 5.2: Time evolution of the magnetic energy for varying damping strengths (A1: no
damping, A2: τd = 0.1, A3: τd = 0.05). While in all cases there are initial oscillations and
a sharp increase in energy at some time, the behavior between these events differs. The
fluctuations before the rise of magnetic energy present in run A1 are increasingly damped
in runs A2 and A3.

energy and the parallel magnetic tension are integrated along the field lines, as magnetic
reconnection is associated with a conversion of magnetic to kinetic energy and presumably
changes the curvature of the field lines. Using these diagnostics on the three different sets
of simulation runs listed in table 4.1, the system’s evolution is studied in further detail with
respect to the damping layers (set A), the resolution (set B) and the forcing amplitude (set C).
Finally, a statistical analysis of the high resolution run B5 is presented, in which the correlation
of the exponentiation number and the footpoint velocity is investigated.

5.1 Overview of the system evolution

The general behavior of the magnetic field is shown for simulation A3. The initially uniform
magnetic field is distorted by the forcing, as can be seen in figure 5.1, where the magnetic field
lines are shown at three different time steps. The footpoints of the field lines remain fixed at
their initial positions, such that in the top view of the x-y plane the field lines form closed
loops. This shows that the boundary conditions work in the desired way.

In order to investigate not only the dynamics of a few field lines but of the whole system,
the time evolution of the magnetic energy is studied. It is shown in figure 5.2 for simulations
A1-A3, in which the damping constant τd is varied. As the magnetic field strength initially is
B0 = 1, the magnetic energy starts at Emag = 0.5 . The total energy is not conserved, because
of the applied kinetic forcing.

The behavior is similar for all three runs: in the beginning the energy oscillates as the abrupt
switch-on of the forcing triggers Alfvén waves that travel along the magnetic field lines. At
some point there is a sharp increase in energy followed by fluctuations around some higher
energy level. Without damping (A1) the energy already fluctuates from the beginning, while
in the presence of the damping layers (A2, A3), which continuously decrease the propagating
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(a) (b)

t = 120.0 tA t = 125.0 tA t = 130.0 tA

(c)

Figure 5.3: Time evolution of the magnetic and kinetic energy for run A3: (a) both the kinetic
and magnetic energy initially oscillate (1) until they relax to a stationary state (2), followed
by a transition (3) to a higher fluctuating energy level (4). A zoom-in of the onset and chaotic
phase is shown in (b), where the vertical lines mark the times for which snapshots of the
magnetic field line configurations are shown before, during and after the transition (c). Note
that the initial magnetic energy of 0.5 was subtracted from the total magnetic energy in the
(a) and (b).

Alfvénic fluctuations, it instead relaxes to a nearly stationary state, which persists longer the
stronger the damping. As the main interest lies in the increase in energy and the strongly
fluctuating behavior following it, the damping constant τd = 0.05 of run A3 is used in all
subsequent runs.

The system’s evolution is investigated further for the damped run A3. Not only the magnetic
energy, but also the kinetic energy is of interest. Both are shown in figure 5.3a for run A3,
where the initial magnetic energy was subtracted, and it can be seen that their evolution is
similar. It can be roughly divided into four phases: the relaxation phase, the stationary phase,
the onset phase and the chaotic phase.

During the relaxation phase both the magnetic and kinetic energy oscillate before reaching a
constant level, which in case of the kinetic energy is zero. This means that the system relaxes
into a flow-free state, as the external forcing is balanced by the remaining forces. The field
lines settle into a twisted state (see field lines at t = 120 tA in figure 5.3c) in the stationary
phase, corresponding to an increased constant magnetic energy. The possibility of this force
balance is discussed in section IV of [10] and can be qualitatively understood by considering
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that the Lorentz force acts as a restoring force to straighten the magnetic field lines that have
been deformed by the forcing. The initial damped oscillations can then be interpreted as
the interplay of the j × B force with the external force. The damping layers enable the force
balance to occur in the first place, as they lead to the damping of perturbations caused by
Alfvén waves traveling along the field lines, that would otherwise disturb the system. This is
supported by the fact that in the undamped case in figure 5.2 no stationary state is reached.

The onset phase occurs once the force balance is disrupted and the forcing puts energy into
the system again. The suddenness and steepness at which the increase in energy occurs
suggests that this is caused by a reconnection process. The field lines in the stationary phase
are in an entangled state and due to the increased sensitivity to resistive effects this can
trigger reconnection. This disrupts the force balance as magnetic energy is converted into
kinetic energy, which in turn increases the entanglement of field lines thereby triggering more
reconnection processes.

In the chaotic phase the system fluctuates strongly around an increased energy level, as shown
in 5.3b. Here the magnetic and kinetic energy show an approximately inverse relation char-
acteristic of Alfvénic fluctuations: the kinetic energy increases, when the magnetic energy de-
creases and vice versa, which shows that an exchange of energy is occurring, overlayed with
fluctuations of the total energy caused by the forcing. While it is possible that further recon-
nection processes happen in the chaotic phase, another interpretation is that the reconnected
field configuration allows for additional freedom for the excitation of Alfvénic fluctuations by
the forcing. This state would thus be a bath of propagating Alfven wave packets.

Furthermore, changes in the field line configuration can be observed during the onset. The
field lines are shown before (t = 120 tA), during (t = 125 tA) and after (t = 130 tA) the onset
in figure 5.3c and it can be seen that they become increasingly chaotic. While in the first frame
the footpoints at the bottom and top plate still coincide, the mapping changes in the second
and even more so in the third frame, such that in the x-y projection the field lines no longer
form closed loops. This means that non-ideal effects either cause the field lines to diffuse
across the plasma or to reconnect with each other.

5.2 Stationary and onset phases

Before going into more detail regarding the changes in the footpoint mapping, the stationary
state and the nature of the onset are further investigated. This is done by studying how the
kinetic energy evolution is affected by the resolution and forcing strength.

5.2.1 Resolution dependency

The evolution of the kinetic energy is shown for different resolutions N in figure 5.4a with a
logarithmic scale. While the overall behavior is similar in all cases, they differ with respect to
the duration of the initial oscillations, the energy level of the stationary phase Ekin,eq and the
point in time at which the energy increases tonset.
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(a)

(b) (c)

Figure 5.4: Kinetic energy evolution for different resolutions (runs B1-B5) (a): The equilibrium
energy Ekin,eq reached during the stationary phase scales as ∼ N−2 (b). The onset time does
not increase regularly with the resolution, which is due to the fact that the resolution also
influences the actual thickness of the damping layers, which affects the onset time (c).

The equilibrium kinetic energy is approximately zero. It can be observed that it scales with
the resolution as Ekin,eq ∼ 1/N2, as shown in figure 5.4b, where the energy compensated with
N2 is approximately constant. This scaling can be understood by considering that the energy
is computed from cell averaged quantities, such that it is second order accurate and the error
scales with ∼ ∆x2 = N−2. This is reflected in the scaling of the energy level, which essentially
corresponds to the numerical background noise.

When the resolution and thus the accuracy of the numerical scheme is increased, the numerical
diffusion is expected to decrease, which in turn is expected to delay the onset time. The
obtained results, however, show no monotone relation between the resolution and the onset
time, e.g. the onset for a resolution of 963 occurs later than for the highest resolution of 2563.
An explanation for this seemingly random behavior is that among the numerical diffusion
other parameters are affected by a change of resolution. In particular, the damping layers
were set to a thickness of 0.1 for all cases, which translates to a certain amount of cells , i.e.
0.1 N rounded to an integer value. Now depending on the resolution the actual thickness of
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Figure 5.5: Sensitivity of the kinetic energy evolution at a resolution of 643: (left) the thickness
of the damping layers rdamp influences the onset time significantly, where an increase in rdamp

shifts the time to higher values. (right) Changing the optimization level when compiling also
leads to a slight shift in the time, illustrating that the system is highly sensitive to even a
slight change.

the damping layers
rdamp = round(0.1 N)/N

is then slightly above or below the preset value of 0.1, as shown in figure 5.4c. The colored dots
highlight the resolutions which were investigated, and it appears that this slight difference in
size of the damping layers can contribute to explaining the observed onset times. For example,
comparing the resolutions 483 and 643, it can be seen that the thickness of the damping layers
in these two cases is at its highest and lowest value, respectively. This is reflected in the fact
that the onset occurs earlier for the higher resolution of 643. The same is true at a resolution
of 963, which has comparatively thick layers and for which the onset occurs the latest. This
agrees with the behavior shown in figure 5.2, where an increase in the strength of the damping
causes a delay in the onset time.

In order to check if the differences in rdamp can indeed explain the irregular shifts in the onset
times at different resolutions, simulations at resolution 643 with different rdamp were carried
out. The results are shown in figure 5.5. As the number of damped cells increases from four
to eight, the stationary state is reached quicker as perturbations are damped more effectively.
Furthermore the onset time is shifted regularly to higher values, showing that a slight change
in the damping layer thickness has a significant effect on the behavior. This suggests that
the size of the damping layers influences the stability of the stationary phase or in turn that
perturbations that were not completely damped could trigger the reconnection process.

The sensitivity of the onset time is not restricted to the damping layers. For example, changing
the optimization level of the compiler also affects the time evolution shown on the right
in figure 5.5. While initially the difference between the three curves is of the order of the
numerical accuracy ∼ 10−16 it increases over time and manifests itself in a slight shift in the
onset time. This illustrates the chaotic nature of the process.

In order to see how the grid resolution affects the system without simultaneously changing
the relative size of the damping layers, rdamp was set to 1/16 and 1/8 instead of 1/10. This
avoids the rounding problem, as the resolutions that are typically used are multiples of eight.
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Figure 5.6: Resolution dependency of the kinetic energy evolution: The thickness of the
damping layers was set to rdamp = 1/16 (left) and rdamp = 1/8 (right). It can be seen that
the onset time is shifted to higher values as the resolution increases and converges to a fixed
value.

The kinetic energy for different resolutions is shown in figure 5.6 for rdamp = 1/16 (left) and
rdamp = 1/8 (right). In both cases the onset time is shifted to higher values as the resolution
increases. However, in the first case the damping layers are not thick enough for the system to
reach a stationary state and the increase in energy is thus not as sudden. In the second case the
shift in the onset time is more apparent: while the difference between the resolutions 483 and
643 is about 150 tA, it becomes quite small for the larger resolutions. It seems to converge to a
time of about 220 tA. This shows that after a certain resolution is reached, the resolution does
not strongly affect the onset time anymore. Assuming that the numerical resistivity decreases
with increasing resolution, this indicates that the onset time is only weakly dependent on the
resistivity. This is in line with the theoretical prediction that exponentially small non-ideal
effects are sufficient to trigger reconnection. For the following simulations rdamp is again set
to 0.1, as a larger value such as 1/8 shifts almost doubles the onset time for high resolutions
and thus increases the computation time.

5.2.2 Forcing dependency

Another parameter that strongly influences the system’s evolution is the forcing amplitude
F0 introduced in equation (3.26). It affects the stationary energy level, the onset time and the
fluctuating energy level, all of which are shifted to higher values as the forcing amplitude
increases. The total energy (sum of magnetic and kinetic energy) is shown in figure 5.7a for
simulations B1-B5, in which the forcing amplitude is varied from 0.1 to 0.4. The simulation
with the largest forcing amplitude of 0.4 had to be aborted, as the forcing caused large fluc-
tuations in the density which lead to numerical difficulties. On the other hand an amplitude
lower than 0.1 will have an even higher onset time and lower fluctuating level, so that it is
taken as the lower bound.

The total equilibrium energy Eeq, averaged over the stationary interval of each simulation,
shows a quadratic dependency on the forcing amplitude as is shown in 5.7b, where the data
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(a) (b)

Figure 5.7: Forcing dependency of the total energy evolution: the forcing amplitude was var-
ied (runs B1-B5) between 0.1 and 0.4. An increase in amplitude results in a higher stationary
energy level Eeq, a higher chaotic energy level and an earlier onset (a). Averaging over the
stationary interval gives Eeq for each amplitude F0, with an error given by the standard de-
viation. The data points were fitted with a quadratic function ax2 + bx + c (in which the last
point was excluded due to the large error), where the parameters were found to be a=0.506,
b=0.005 and c=0.500 (b).

points were fitted with a quadratic polynomial. The error corresponds to the standard devi-
ation and is only non-negligible for F0 = 0.4. This is due to the fact that the system does not
settle into a stationary state but rather oscillates around a certain energy level. Therefore this
data point was not included in the fit, which agrees well with the remaining data points and
lies within the error interval of the last one.

The quadratic relation can be explained by considering that the power input P due to the
forcing is proportional to P ∼ v · F. Initially, the velocity field is governed by the applied
forcing, such that it is of the order of v ∼ F0 and the initial power input approximately scales
as Pinit ∼ F2

0 . The damped oscillations of the energy in the relaxation phase occur as the
system adapts to the forcing and the different forces balance each other out. In the stationary
phase the velocity and thus the power input are zero. The equilibrium energy is given by the
time integral of the power during the relaxation phase, but is mainly regulated by the initial
power input Pinit that occurs in the first few time steps, as the following oscillations do not
put any net power into the system. With this line of reasoning, the equilibrium energy scales
with the initial power input Eeq ∼ Pinit ∼ F2

0 , which is consistent with the observed scaling in
figure 5.7b.

Both the chaotic energy level and the onset time increase with the forcing amplitude. This
behavior is intuitive: An increased forcing amplitude leads to a higher entanglement of the
field lines, which are thus more sensitive to perturbations and non-ideal effects, such that the
onset happens earlier and more power is put into the system.



5.3. CHAOTIC PHASE 49

Figure 5.8: Probability density functions of the logarithm of the footpoint drift pdri f t during
the relaxation, stationary, onset and chaotic phase of the system’s evolution.

5.3 Chaotic phase

After the analysis of the stationary and onset phase, the chaotic phase is investigated in more
detail. It is characterized by strong fluctuations around an increased energy level. Further-
more it is shown in figure 5.3c that the field lines become increasingly chaotic and the foot-
points at the top plane no longer coincide with those at the bottom. This change in the
footpoint mapping is an indicator for the presence of non-ideal effects, as it is either the result
of magnetic diffusion or magnetic reconnection.

The different diagnostic tools introduced in section 4.2 are used to further investigate the field
line dynamics in the chaotic phase. A qualitative description is given, in which the effect of
resolution and forcing amplitude is again briefly analyzed, after which a statistical analysis of
the high resolution run B5 is presented.

5.3.1 Qualitative behavior

As explained in section 4.2.1 the footpoint drift, pdri f t, and the associated velocity, v f p, are
important quantities, which are useful in identifying potential reconnection events. From the
distributions of the footpoint drift during the various phases of the system evolution shown
in figure 5.8, it can be seen that during the chaotic phase the footpoint drift shows an increase
of about four orders of magnitude compared to the stationary phase. The distributions for
the relaxation and onset phase are comparable to each other and the average values are still
about three orders of magnitude below that of the chaotic phase. The distribution of the onset
phase overlaps with both the stationary and chaotic phase and can thus be understood as
an intermediate state, in which a few field lines start undergoing changes in their mapping,
thereby disrupting the stationary state. Once this occurs, the force balance is no longer given
and the forcing puts energy into the system, which in turn leads to more and larger footpoint
drifts during the chaotic phase. For reference, the maximal possible drift is given by

√
0.5 or

about −0.15 on the logarithmic scale, which shows that the drifts in the chaotic phase are of a
significant magnitude. This quantitatively supports the previous assessment that reconnection
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Figure 5.9: Snapshot from run B5 during the chaotic phase: The first row shows the footpoint
mapping, the maximum exponentiation number and the footpoint velocity. The second row
shows the integrated current density, the integrated kinetic energy and the temporal changes
of the integrated magnetic tension term. Both the footpoint velocity and the difference in
magnetic tension were computed from two consecutive snapshots separated by ∆τ = 0.02tA.

triggers the onset and occurs constantly in the chaotic phase. However, the footpoint drifts
could also be caused by field line diffusion, such that further investigation is necessary.

The various diagnostics can be used to better evaluate what is happening in the chaotic phase.
A snapshot from run B5 during the chaotic phase shows that a strong distortion of the foot-
point mapping is accompanied by a locally enhanced exponentiation number, footpoint veloc-
ity and integrated current density, all of which exhibit a similar spatial structure, see figure 5.9.
The original checkerboard pattern can still be recognized in the deformed footpoint mapping,
which shows an overall distortion of the pattern as well as thin long structures extending from
their original regions, resulting in a complex structure. The exponentiation number reaches
large values with a maximum of about 13. The footpoint velocity was computed from two
snapshots separated by ∆τ = 0.02tA, and reaches values over an order of magnitude above
the Alfvén velocity.

The integrated kinetic energy has a complex spatial structure as well, which does not directly
coincide with the remaining ones. Nevertheless, it can be seen that regions of high kinetic
energy are tendentially located around or close to regions in which the other quantities are
strongly enhanced. This indicates that magnetic energy is converted to kinetic energy for
example by a reconnection process. Finally, the magnetic tension term B∇B was integrated
along the field lines and the difference between two subsequent frames was computed. As
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before, it shows a very similar structure to the previous quantities. A change in the footpoint
mapping of a field line is therefore correlated with a change in the magnetic tension along
that field line. This is intuitive as the magnetic tension measures the curvature of the field
lines and a change in the mapping is likely to result in a change in the curvature.

Note that figure 5.9 only shows a single snapshot of the structure, which is changing its overall
shape on a time scale of the Alfvén transit time tA (e.g. compare to figure 5.10, which shows
a different snapshot of run B5 in the third column). Individual field lines on the other hand
change their footpoint positions significantly on sub-Alfvénic time scales (∼ 0.01tA) as can be
seen by the large footpoint velocities. The accumulation of these quick changes together with
more gradual changes, e.g. through magnetic diffusion, then lead to changes of the large-scale
structure.

Resolution dependency

Snapshots of the footpoint mapping and the exponentiation number are shown for resolutions
N = 64, 128, 256 (runs B2, B4 and B5) in figure 5.10. In all cases, the distortion of the footpoint
mapping is related to a similar structure in the exponentiation number. A higher resolution
results in larger values of the exponentiation number and a more complex structure. While
for N = 64 there are mainly two pronounced regions of high exponentiation number (when
considering that the boundaries are periodic) that coincide with large deviations from the

B2 (N = 64) B4 (N = 128) B5 (N = 256)

Figure 5.10: Snapshots of the footpoint mapping (a) and exponentiation number (b) for dif-
ferent resolutions (runs B2, B4 and B5).
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original mapping, for N = 256 no clear distinct regions are discernible. Instead there exist
many thin and entangled regions of enhanced exponentiation.

For the following statistical analysis, the highest resolution run B5 will be used. However, for
the qualitative understanding of the process, the footpoint mapping of the low resolution run
B2 is more accessible: The regions marked by the different colors of the initial checkerboard
pattern are distorted but generally remain connected. However, the two circles at the end
of the central z-shaped structure for instance (marked by black crosses in figure 5.10), are
largely separated from their original region. By comparing multiple consecutive frames it can
be seen that they do not separate and gradually move away from their colored region but
appear rapidly compared to the general distorting motion. This is comparable to the sudden
changes in the footpoint mapping in regions of high exponentiation observed in [17], in which
a similar numerical experiment was carried out.

Forcing dependency

Similarly, the influence of the forcing amplitude on the field line dynamics during the chaotic
phase is investigated for the runs C1-C5. For the lowest amplitude (run C1) the footpoint
mapping shows only slight deviations from the original pattern and the exponentiation num-
ber is comparatively low, see figure 5.11. An increase in the forcing amplitude leads to higher
exponentiation numbers. This is to be expected as the forcing amplitude controls the plasma
velocity and thus the entanglement of field lines, which is measured by the exponentiation

C1 (F0 = 0.1) C3 (F0 = 0.2) C4 (F0 = 0.3)

Figure 5.11: Snapshots of the footpoint mapping (top row) and exponentiation number (bot-
tom row) for different forcing amplitudes (runs C1, C3 and C4).
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number. Simultaneously, the deformation of the footpoint mapping increases visibly, which
suggests that indeed the exponentiation number is related to the changes in footpoint map-
ping and thus to the occurrence of reconnection events, assuming that changes in the mapping
are a signature of reconnection.

As before only a single snapshot is shown in figure 5.11 for each forcing amplitude, but
the time evolution of the different diagnostic quantities is also of interest. As described in
the previous section, the energy in the chaotic phase fluctuates around a certain level. The
same is true for the exponentiation number, footpoint drift, integrated current density and
integrated kinetic energy. The maximum value of these quantities taken over all field lines is
shown in figure 5.12a for runs C1-C4, where the time axis was shifted by the respective onset
times. All four quantities show a sharp increase during the onset, followed by fluctuations

(a)

(b)

Figure 5.12: Forcing amplitude dependency of the diagnostic quantities for the simulation
runs C1-C4: (a) Time evolution of exponentiation number, footpoint drift, integrated current
and integrated kinetic energy, where in all cases the maximum over all field lines was taken.
The horizontal lines mark the average value computed from the points after the increase (b).
The probability density functions of the logarithm of the exponentiation number.
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Figure 5.13: Scaling of the time-averaged maximum exponentiation number σmax with the
forcing amplitude F0(simulations C1-C5): The values were compensated with 1/

√
F0 to ver-

ify the predicted scaling of σmax ∼ √
F0. The error bars correspond to the standard deviation.

around a constant value. Additionally, the probability density function of the logarithm of
the exponentiation number of all field lines is shown in figure 5.12b. It approximately has
the shape of a normal distribution, which means that the exponentiation number follows a
log-normal distribution. The mean value of log10 σmax is shifted towards higher values for
increasing forcing amplitudes.

This data can be used to investigate the scaling of the maximum exponentiation number with
the forcing amplitude. As described in section 2.2.1 the scaling is estimated to be

σ ∼
√

F0.

It is tested using the maximum exponentiation number max(σmax) over all field lines averaged
over time in the chaotic phase for runs C1-C5. This gives a mean value σmax, shown as
horizontal lines in figure 5.12a. Compensating these values of σmax(F0) with 1/

√
F0 should

result in a horizontal line if the predicted scaling is indeed correct. This is shown in figure
5.13, where the error bars are given by the standard deviation of the averaged maximum
exponentiation number. It can be seen that the values lie on a horizontal line within their
error intervals with the exception of the first data point, which lies significantly lower than
the others. It is possible that this is due to the fact that the lowest forcing amplitude lies right
at the boundary of what is needed to observe the onset and the chaotic phase at all. This
tendency can also be seen in the energy evolution of this run in figure 5.7a, where the shift
in onset time is relatively large compared to the other runs. The estimated scaling thus might
only be valid once a certain forcing amplitude is exceeded. Furthermore, the statistics could
be improved by using more frames in the time series, from which the average σmax(F0) is
computed.

5.3.2 Statistical analysis of run B5

Instead of considering only single snapshots or averaged quantities, a statistical analysis of
the highest resolution run B5 is carried out to quantitatively test the relation of exponentiation
number and changes in the footpoint mapping. These are measured through the footpoint ve-
locity, which is used as a proxy for potential reconnection events. The correlation of these two
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Figure 5.14: Correlation coefficient ρσv of the exponentiation number σmax and the footpoint
velocity v f p computed for each field line (left). A time series consisting of a hundred consec-
utive frames with a time step of ∆τ = 0.001 tA was used. A threshold for the maximum foot-
point velocity was used to select field lines, which underwent potential reconnection events.
The correlation of the selected (center) and the remaining (right) field lines are shown.

quantities is assessed through their correlation coefficients, introduced in section 4.2.2. A typ-
ical length scale of the reconnection regions is obtained from the distribution of the footpoint
velocity. Furthermore, the average event duration is estimated using the autocorrelation of the
footpoint velocities.

Correlation of exponentiation number and footpoint velocity

The relation between the exponentiation number σmax and the footpoint velocity v f p is eval-
uated via the correlation coefficient ρσv introduced in section 4.2.2. In fact, both quantities
follow a log-normal distribution and thus the logarithm of both quantities is used to compute
ρσv. This is done separately for each of the 400 × 400 field lines using time series consisting
of 100 consecutive frames with a time step of ∆τ = 0.001 tA, for a time interval of 0.1 tA. A
total of ten such time series are considered, in order to investigate the correlation at different
points in time. They are spaced apart by 1 tA as the overall structure changes on this time
scale, such that they can be considered independent of each other.

The correlation coefficient for each field line is shown exemplary for one of the samples in
figure 5.14 (left). A structure of high correlation & 0.5 stands out against a noisy background
across the whole range of values. A majority of the field lines actually does not undergo
significant changes in their footpoint positions during the selected time span and is thus not
of interest. Instead, field lines that contain a peak in the time series of their footpoint velocity
should be selected, as these are the ones that experience potential reconnection events. The
selection is done by setting the following threshold for the maximum of the footpoint velocity
vij(t) of the field line indexed by (i, j):

max(vij(t)) ≥ 2v f p. (5.1)

Here v f p denotes the mean value of the footpoint velocity distribution, which takes into ac-
count the velocities of all field lines for each frame in the respective time series. It takes on
values between 0.7 vA and 1.8 vA for all ten samples.
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Figure 5.15: Probability density function of the correlation coefficients ρσv: The field lines are
separated into two groups, depending on whether their maximum footpoint velocity exceeds
a certain threshold (equation (5.1)). The correlation coefficients of all field lines and of the
separate groups are shown for each of the ten samples (thin lines) as well as the average for
each group (thick lines).

As discussed in section 4.2.1 different measures for the central tendency of a distribution
exist, that could be used to define a threshold. However, using the median or the mode of
the distribution would have lowered the threshold such that almost all field lines would have
been selected, as both were significantly smaller than the mean value. The threshold was set
for the maximum velocity such that field lines with a sharp peak but otherwise negligible
footpoint velocity are still selected.

The correlation coefficients of the selected and remaining field lines are shown in figure 5.14
(center and right, respectively). It can be seen that the structure of comparatively high cor-
relation was effectively selected, while the coefficients of the remaining field lines seem to
be distributed randomly, which indicates that the chosen threshold was indeed suitable. The
shapes of the probability density functions of the correlation coefficients shown in figure 5.15
support this assessment. All ten samples were treated separately (thin lines) and have similar
distributions; their averages are given by the thicker lines. The field lines that did not ful-
fill the criterion are distributed over the whole range of coefficients, which indicates that the
two quantities are independent of each other and any positive or negative linear correlation
occurred coincidentally. There is a slight positive skew, that could be caused by the fact that
field lines with a less pronounced peak were not selected and could probably be reduced by
modifying the threshold or adding additional selection criteria. On the other hand, the curves
for the selected field lines have a clear maximum at ρσv ≈ 0.86 and decrease rapidly towards
lower values, such that one has p(ρσv ≥ 0.5) ≈ 0.78. This verifies that there is a strong correla-
tion between the footpoint velocity and exponentiation number for these field lines and thus
supports the theoretical prediction.

An example of the time series of the correlated quantities, log10 σmax and log10 v f p, of a selected
field line with a correlation coefficient of ρσv = 0.88 is given in figure 5.16. Additionally, the
footpoint velocity is shown as it illustrates that distinct events of greatly enhanced velocities
have occurred. Some of the peaks are broadened and seem to consist of several peaks, which
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Figure 5.16: Time series of the logarithm of the exponentiation number, the logarithm of the
footpoint velocity and the footpoint velocity for a single field line. The correlation coefficient
between the first two quantities is given by ρσv = 0.88.

could not be fully resolved with the chosen time step. A higher time resolution could thus
lead to even more pronounced peaks and higher correlation coefficients. Nevertheless, this
clearly shows that the footpoint positions can rapidly and abruptly change with velocities
of the order of ∼ 102 vA. This velocity, though, does not correspond to a material plasma
displacement and should not be interpreted in this way. It represents a measure of footpoint
distance between reconnecting field lines.

Estimation of the event duration

Each occurrence of high footpoint velocity is interpreted as a potential reconnection event. The
event duration τevent of these events can be estimated from the autocorrelation of the footpoint
velocity as explained in section 4.2.2. It is computed for each of the selected field lines and the
ten samples. The resulting probability density function is shown in figure 5.17. The duration
can only attain discrete values prescribed by the time step ∆τ and is limited by the length
of the time series 0.1 tA, but in practice τevent < 0.04 tA. The mode of the distribution lies at
0.003 tA after which the probability density decays approximately exponentially. The median
and the mean value are given by 0.006 tA and 0.008 tA, respectively. The typical time scale of
the events is thus on the order of 10−3 tA.

An example for such an event is given in figure 5.18, where four frames of two field line
bundles are shown in the top view of the x-y plane. The radius of the field line bundles is set
according to the typical length scale of the system, which was estimated to be v f p∆τ ≈ 0.0015.
It can be seen that the field lines in the bundles successively undergo the same motion. First
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Figure 5.17: Probability density of the event duration of all selected field lines for all ten
samples. It was estimated via the autocorrelation of the footpoint velocity.

two field lines of the opposite bundles approach each other, before apparently flipping posi-
tions in what appears to be a spontaneous reconnection process. This occurs on a time scale
of 0.04 tA for a single pair of field lines (see the highlighted field lines in the right frames).

In summary, the presented results suggest that the observed changes in the footpoint mapping
are caused by reconnection, as they occur abruptly on very short time scales. Furthermore,
the footpoint velocity is strongly correlated with the exponentiation number for selected field
lines that undergo such an event. All of this is consistent with the theory that an entanglement
of field lines causes an exponential sensitivity to non-ideal effects.

These results are comparable to those presented in [18], where three-dimensional reconnec-
tion was discussed specifically with regard to eruptive flares. MHD simulations of a flux
rope were carried out with similar line-tied boundary conditions. The changes in footpoint
connectivity are discussed with respect to the so-called squashing factor Q, which is simi-
lar to the exponentiation number and is often discussed in relation to quasi-separatrix layers
(QSLs) [13, 32]. In sections 3.3 and 4.1 the time series of the footpoint velocity of a single
field line is investigated and shown to be highly correlated with the squashing factor Q and

Figure 5.18: Snapshots of two field line bundles successively reconnecting pairwise (top view
of the x-y plane). A pair of reconnecting field lines is highlighted.
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associated quantities. As the motion of the field lines observed is super-Alfvénic, it is classi-
fied as slip-running reconnection. This phenomenon is proposed to fill the gap between abrupt
reconnection and slow magnetic diffusion, as in three dimensions no clear line can be drawn
between those two processes [4].

This line of reasoning supports the argument, that the events observed in this work are indeed
a form of reconnection. Furthermore, the distinction between reconnection and diffusion
is discussed in [17], where changes in the footpoint mapping that occurred rapidly were
classified as reconnection, as opposed to footpoint drifts that occurred gradually due to field
line diffusion. This is similar to what is observed in this work, where the overall structure is
distorted on a much slower time scale than certain individual field lines, that experience very
large footpoint velocities.



6 Summary and Outlook

The aim of this thesis is to investigate the topology-driven reconnection model described in
chapter 2, in which a reconnection trigger is given by the exponential sensitivity to non-ideal
effects of highly entangled field lines. This model is accessible to numerical investigation
through a simple numerical setup, in which an initially uniform magnetic field is driven to a
high degree of entanglement by an externally applied forcing. The footpoints of the field lines
are fixed at the boundary through no-slip boundary conditions, which set the velocity at these
boundaries to zero. This makes it possible to observe reconnection events through changes in
the footpoint mapping. The exponentiation number is introduced as a quantity to measure
the separation of neighboring field lines and characterize the degree of entanglement. It can
be compared to the footpoint velocity in order to verify the theory.

The simulations are performed using a fourth-order accurate CWENO finite-volume scheme
presented in chapter 3, which solves the ideal MHD equations. The resistivity required for
reconnection to occur arises due to numerical dissipation and is not controllable in this setup.
The reconnection model requires the implementation of specific boundary conditions and an
external forcing to drive the field lines to entanglement. Additionally, damping layers are
included to damp perturbations caused by Alfvén waves. It is found that of two tested ways
of setting the boundary condition for the velocity, one of them preserves the fourth-order
accuracy of the numerical scheme.

The various simulation runs listed in table 4.1 are used to investigate the effect of the damping
layers (set A), the forcing amplitude (set B) and the grid resolution (set C) on the system’s
evolution. The time frames produced by the simulations are used to integrate an array of
400 × 400 field lines, along which various diagnostic quantities such as the exponentiation
number and the footpoint velocity are computed, as described in chapter 4.

The results are presented and discussed in chapter 5. The time evolution of the system is
investigated based on the mean magnetic and kinetic energy for different damping strengths.
For the strongest damping, the evolution is divided into four phases: In the first phase the
interplay of the external forcing with the remaining forces causes the system to relax into a
stationary state, in which the magnetic field lines settle into a twisted state and the plasma
velocity becomes zero. A sudden increase in energy in the onset phase, which is presumably
triggered by reconnection and disrupts the force-balance of the stationary phase, is followed
by the chaotic phase, in which the energy fluctuates around an increased energy level. The
stationary phase and the nature of the onset is further investigated and discussed in relation
to the resolution and forcing amplitude in section 5.2.
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Furthermore it is found that during the onset and especially the chaotic phase, drastically
increased footpoint drifts occur, supporting the argument that the onset is triggered by recon-
nection. A snapshot of the various diagnostic quantities during the chaotic phase is shown
for an array of 400 × 400 field lines and it is found that a distortion of the footpoint mapping
is accompanied by locally enhanced exponentiation number, footpoint velocity and parallel
current density, all of which exhibit the same spatial structure, as shown in section 5.3 and
presented in [23].

For the highest resolution run B5 (N = 256) the correlation of the exponentiation number,
σmax, and the footpoint velocity, v f p, is studied, as the former measures the entanglement and
the latter is a measure of reconnection events. The correlation is evaluated via a correlation
coefficient, ρσv, computed from the time series of log(σmax) and log(v f p) for each field line. A
threshold is used to select the field lines that experience a significant foot point velocity during
the time period under investigation and it is found that there is a strong correlation for these
selected field lines, as shown in figure 5.15, which is consistent with the theory. Individual
events are shown to occur abruptly on short time scales of τevent ∼ 0.001 tA, which suggests
that it is indeed reconnection that causes the motion of the field lines.

In the future, this reconnection model could be further investigated by extending the numer-
ical code to include physical resistivity. This has the advantage that the magnitude of the
resistive effects is known and controllable. It can then be varied in order to see its effect on
the system’s evolution and used for the computation of the reconnection rate from the parallel
electric field. Furthermore, the force balance in the stationary state and its disruption could be
investigated in more detail, e.g. by studying the scaling of the onset times, energy levels and
the steepness of the energy increase with the exponentiation number, which in turn depends
on the damping and forcing amplitudes. The analysis of the chaotic phase for run B5 could be
done for other runs, in order to see how the different parameters influence the found results.
It could be further extended by investigating the number of events selected by the threshold
and comparing this to the reconnection rates, once these can be computed. Additionally, other
parameters of the system could be varied, e.g. the dimensions of the computational domain or
the forcing that is used to drive the system. Finally, this reconnection model could be applied
to altogether different systems with more complex initial conditions, to see if the obtained
results can be generalized to other systems.
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