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Abstract 

Modern biomedical research with the aim of translating research findings into novel 

therapies to benefit patients relies to a large extent on animal models of human 

pathophysiology. However, success stories of translational research – i.e. preclinical 

research that successfully predicts positive outcome of a clinical trial – are scarce. Here, we 

therefore address the current state of preclinical disease modeling as well as actions that 

have been taken to improve the translational value of animal models.  
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3.1.6.1. What is the value of animal models? – Pathophysiological concepts 

The majority of translational research relies on preclinical animal models. However, 

given an incredible number of examples of failed translation, i.e. phase II or phase III clinical 

trials, which were not able to reproduce the beneficial effect of preclinical findings (O'Collins 

et al, 2006; Perrin, 2014; Prinz et al, 2011), the translational value of animal models has 

been questioned. In particular rodent models have been accused of falsely modeling human 

disease conditions.  

Nonetheless, many animal models are geared to replicate pathophysiological 

conditions found in patients. An ideal animal model of a human disease is characterized by 

similarities between both in terms of 1) pathophysiology, 2) phenotypical and 

histopathological characteristics, 3) predictive biomarkers for course or prognosis, 4) 

response to therapies and 5) drug safety or toxicity (Perrin, 2014; Prabhakar, 2012). 

Four types of animal models are used in preclinical research: 1) disease induction 

models, 2) xenograft animal models, 3) inbred strains, and 4) transgenic models (Prabhakar, 

2012). The rodent stroke model of middle cerebral artery occlusion is a typical disease 

induction model. Xenografting or transplantation of organs or tissues from one species into 

another is often used in cancer research. “Humanized” mice are another example of 

xenograft models (see below). Inbred animals are genetically homogenous allowing 

investigation of pathobiology with small sample sizes (Prabhakar, 2012). Using methods of 

molecular biology specific genes are either deleted (knock-out), mutated or overexpressed in 

transgenic animals, mainly mice. Often these models are combined, e.g. disease induction 

models in transgenic mice are often used to investigate the contribution of specific genes in 

diseases. 

Rodent models of cerebral ischemia are good examples of animal models that 

replicate human pathophysiology well (Astrup et al, 1977; Heiss, 2011). The ischemic 

penumbra is defined as the area surrounding the core of the ischemic lesion. While 

physiological cascades are compromised, this area of brain tissue can potentially be rescued 

by medical intervention. This concept was first described in animal models (Astrup et al., 
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1977; Heiss, 2011) and has since been found to be relevant for human stroke 

pathophysiology (Dirnagl et al, 1999; Donnan et al, 2008; Mergenthaler et al, 2004; 

Mergenthaler & Meisel, 2012).  The same has been found true for the concept of stroke-

induced immunodepression. While the pathophysiological concept has initially been 

described in animal models (Chamorro et al, 2012; Prass et al, 2003), clinical trials have 

been able to replicate this concept in human stroke pathophysiology (Chamorro et al., 2012; 

Harms et al, 2008; Mergenthaler & Meisel, 2012), albeit therapeutic protocols making use of 

this concept are still under development (Mergenthaler & Meisel, 2012).  

Likewise, animal models of cancer, and in particular genetically engineered mouse 

models, have significantly contributed to the understanding of tumor biology and cancer 

pathophysiology. In particular advances in genetic engineering have allowed modeling the 

manifold genetic defects underlying many forms of cancer (Cheon & Orsulic, 2011). 

Likewise, the concept that several mutations in the genome might be required for tumor 

development as well as prototypic oncogenes have been established by the use of mouse 

models (Cheon & Orsulic, 2011). However, similar to the situation in stroke (Dirnagl & Fisher, 

2012) mouse models in preclinical cancer research have yet to prove their translational 

capacity (Cheon & Orsulic, 2011). 

 

3.1.6.2. What is a good animal model for translational research? 

It is clear that there is no single ideal animal model of human disease conditions. 

Likewise, the design of preclinical experimental studies at present offers substantial room for 

improvement. While this topic has recently received significant attention, many of the 

proposed remedies for the “translational roadblock” have yet to prove themselves in 

translational studies and the design of clinical trials. Among others, considering the complex 

characteristics of the animal models as well as of the human disease state is essential when 

selecting an appropriate model for preclinical studies. Three aspects are often not 
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considered in preclinical studies: the heterogeneous nature of disease, the presence of 

comorbidities, and appropriate outcome measures (Mergenthaler & Meisel, 2012). 

Several approaches to improve translation from animals to the clinic have been 

suggested. Before starting clinical trials preclinical investigations should be performed in 

multiple experimental setting involving different small and large animals modeling different 

disease states including the characterization of the optimal therapeutic window, optimal 

administration routes and schemes as well as dose-response curves (Xiong et al, 2013). 

Furthermore, preclinical studies need to reflect the clinical scenarios. Importantly, these 

include relevant treatment windows and outcome parameters. For example, drug 

administration at onset or even before injury, as performed in many preclinical studies 

investigating disease mechanisms is of minor relevance for therapy.  

Most preclinical research in stroke or traumatic brain injury (TBI) suffers from short-

term studies demonstrating treatment effects 1 to 7 days after the event (Xiong et al., 2013). 

Investigations on long-term outcome weeks to months after injury are still scarce. On the 

contrary, primary endpoints of clinical phase III trials have to focus on relevant long-term 

outcome measures.  

Disease modeling focused on pathophysiological research is invariable an 

oversimplification of the clinical situation. For example, stroke patients often suffer from a 

variety of other diseases such as hypertension, diabetes mellitus or chronic obstructive 

pulmonary disease, which are commonly not modeled. Beyond the comorbidities patients 

have before stroke onset, patients are often affected by several post-stroke complications, 

such as infection or depression, which are also usually either not modeled or not considered. 

The same holds true for other disease models such as TBI. Moreover, stroke patients 

receive a myriad of treatments including medication and general care such as nursing and 

physiotherapy, among others. Although stroke unit care is efficient without any doubt we do 

not know, which single pieces of treatment are of relevance. Nevertheless, modeling of care 
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is probably one prerequisite in successful translation of treatment strategies of complex 

disorders such as stroke (Mergenthaler & Meisel, 2012). 

 

3.1.6.2.1. Modeling comorbidities 

Most investigators disregard the fact that most patients are not young or middle-aged 

males without any comorbidities (Howells et al, 2010; Sena et al, 2010). One fundamental 

criticism of animal research is that most models do not consider age (Howells et al., 2010), 

which is one of the most relevant cofactors of outcome for most non-communicable disorders 

(Howells et al., 2010; Lozano et al, 2012). However, young to middle-aged inbred rodents of 

one gender and of homogeneous genetic backgrounds are typically used for preclinical 

animal studies. Ideally, preclinical animal studies should use animal populations of mixed 

gender, advanced age and with various comorbidities, such as diabetes mellitus, 

hyperlipidemia, hypertension, obesity or other risk factors which are relevant for the 

respective human disease. Such an approach would model the human etiology of most 

diseases more closely. In many cases, such models are readily available (Howells et al., 

2010). In addition, experimental animal populations should be increasingly complex as a 

therapeutic intervention advances in the translational pipeline (Figure 1). The concept of 

establishing a framework as well as funding schemes to enable such preclinical randomized 

controlled trials (pRCTs) has been suggested in many medical disciplines including cancer 

(Cheon & Orsulic, 2011) and stroke (Bath et al, 2009; Dirnagl & Fisher, 2012; Mergenthaler & 

Meisel, 2012). 

 

3.1.6.2.2. Modeling care of patients 

Many successful therapeutic strategies rely on ‘intensified care’ of (critically ill) 

patients in the acute phase of the disease on dedicated and highly specialized hospital 

wards. Acute care is usually complex and committed to optimize physiological parameters. 
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Including such a strategy in preclinical modeling would aid to better model clinical care of 

patients as well as its associated complications.  

In cerebral ischemia, stroke units are prepared to treat the clinical condition as well as 

potential complications (Donnan et al., 2008). Infections have largely been neglected in 

preclinical stroke research (Meisel & Meisel, 2011; Meisel et al, 2005), although they heavily 

influence stroke outcome (Mergenthaler & Meisel, 2012; Westendorp et al, 2011). While 

preventive antibacterial treatment not only prevents infections, it also improves survival and 

neurological outcome after experimental stroke compared with placebo treatment (Meisel et 

al, 2004); recent phase IIb trials have successfully proven this experimental concept 

(Chamorro et al, 2005; Harms et al., 2008; Schwarz et al, 2008) by demonstrating that 

prevention of infection is effective in stroke patients (van de Beek et al, 2009). Thus, basic 

research findings and preclinical modeling preceded the development of this new treatment 

approach (Mergenthaler & Meisel, 2012).  

A novel approach to preclinical research would include modeling the acute, subacute 

and chronic phase of disease. Clinical and empirical evidence indicate that intensified and 

specialized treatments are beneficial for long-term outcome. Thus, taking “care” of patients 

should be reflected in future preclinical trials. In summary, preclinical trials as the foundation 

for future clinical trials should include large and complex cohorts of animals, and include 

gender-mixed, aged animals from different strains, ideally with different comorbidities, and 

model care of (hospitalized) patients. Furthermore, complex long-term outcome analyses 

should be performed to evaluate the success of a novel therapeutic concept or 

pharmacological agent (Figure 1). 

 

3.1.6.3. What is the translational value of animal models? 

Recurrent failure to translate promising treatment strategies in animal models into the 

clinic has challenged the value of animal research for predicting the effectiveness of 

treatment strategies in humans. Thus, animal models of human disorders are more and more 
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condemned, have been considered meaningless or at best as imprecise for the human 

setting, all medical areas employ models that have advantages or limitations. At least, animal 

models are used successfully to define basic pharmacokinetic properties as well as to 

investigate safety and toxicity issues (McGonigle & Ruggeri, 2014). 

One example for this approach is the following. The devastating neurodegenerative 

disorder amyotrophic lateral sclerosis (ALS) is characterized by a progressive degeneration 

of motor neurons leading to a generalized paralysis, respiratory insufficiency and death 

usually within 3 to 5 years. Stem cell transplantation has emerged as a promising approach 

for ALS patients. Rather than motor neuron replacement current approaches consider 

mesenchymal or neural stem cells as supporters for motor neurons delaying 

neurodegeneration. Although some ALS models suggest that stem cell-based approaches 

might delay motor neuron degeneration current strategy in the field is rather not proving 

efficacy than demonstrating safety in preclinical models aiming at quick “translation” to the 

clinical setting investigating efficacy in patients. The main argument for this approach is the 

rather poor understanding of the ALS pathobiology (Thomsen et al, 2014).  However, 

whether or not this safety focused approach in translation is successful or not remains to be 

demonstrated.  

 Even preclinical studies aiming at toxicity analysis might fail in predicting safety for 

humans. For example, the immunomodulatory humanized agonistic anti-CD28 monoclonal 

antibody TGN1412, which was developed for autoimmune disorders such as multiple 

sclerosis or rheumatoid arthritis was tested successfully for safety in various animal models 

including mice. However, in the first in man (phase I) trial TGN1412 caused a severe 

systemic inflammatory response syndrome due to a “cytokine storm” resulting in a disastrous 

outcome with a multi organ failure for the study participants, despite the fact that the dose 

used was 500 times lower than the dose found to be safe in animal studies (Suntharalingam 

et al, 2006). 



9 / 28 
 

Drug discovery begins with target identification and validation, proceeds with 

identification and development of candidate therapeutic agents. At each step of this process, 

which often requires more than 12 years, animal models are needed (Whiteside et al, 2013). 

However, only 15% of novel drugs successfully tested in animal models pass early clinical 

trials and approximately half of them surviving phase III becomes finally approved by the 

regulatory authorities for clinical practice (Ledford, 2011).  

Extrapolation of preclinical findings into the clinical settings might also depend on the 

substances under investigation. For example, animal models mimicking airway susceptibility 

in different lung disorders have been demonstrated to be predictive for the human situation 

for anesthetic drugs like halothane, isoflurane, propofol and ketamine but not lidocaine, 

morphine or muscle relaxants. Among others, variability between species in different 

receptor distributions and drug affinities might account for the different predictability of the 

preclinical models (Habre & Petak, 2013). 

Animal models of human tumors are considered as indispensable for drug discovery 

and development. The commonly used ectopic and orthotopic xenografts models, primary 

human tumorgraft models, genetically engineered models, or various multi-stage carcinogen-

induced models all have different strengths and weaknesses (Cheon & Orsulic, 2011; Heyer 

et al, 2010). These models should be used as sophisticated biological tools at specific stages 

of drug development in a hierarchical manner of increasingly complex modelling (Figure 1) of 

the diversity of human cancers (Ruggeri et al, 2014). 

One approach to test the predictive power of animal models is conducting reverse-

translational studies investigating known effective treatment strategies of human disorders in 

appropriate animal models. Temozolamide is a good example of a successful forward and 

reverse translational approach for the treatment of glioblastoma. A systematic review and 

meta-analysis of temozolomide in animal models of glioblastoma predicted clinical efficacy. 

This treatment is effective in reducing tumor volume and improving survival clinically as well 

as in experimental models of malignant glioma. The reported efficacy for treatment has not 
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significantly changed after publication (Hirst et al, 2013) of the seminal phase III 

temozolomide trial demonstrating efficacy in glioblastoma patients (Stupp et al, 2005), 

although evidence suggests a publication bias overemphasizing its therapeutic efficacy (Hirst 

et al., 2013). 

Genetic mouse models of Huntington’s disease (HD) should help to identify and 

prioritize the most promising treatment strategies to be tested in clinical trials (Menalled & 

Brunner, 2014).  Many neural circuits affected by Huntington disease are evolutionary 

conserved. More than a dozen genetic mouse models express a mutation similar to that 

responsible in HD with many variations in CAG length of the Huntington gene. These models 

mimic the human genetic insult with different phenotypic aspects of HD (Menalled & Brunner, 

2014) 

Numerous transgenic or surgically induced pig models of neurodegenerative 

disorders have been established in order to develop cell-replacement strategies. Defining the 

optimal cell dose, immunosuppression protocols and testing new cell delivery devices were a 

prerequisite for designing human clinical trial protocols in neurodegenerative disorders such 

as ALS, stroke, spinal cord and traumatic brain injury, Huntington’s disease, Alzheimer’s 

disease and Parkinson’s disease. In contrast to other animal models, fully or partially MHC-

matched pig strains model the human situation, thereby better modelling host versus graft 

and graft versus host reactions of cell and tissue replacement strategies (Dolezalova et al, 

2014).  

In neuropathic pain research, the effect size of successful pain treatment is almost 

twice in animal models as in clinical trials. Correspondingly, the number needed to treat 

(NNT), which reflects the number of individuals that must be treated in order to see one 

successful treatment outcome, is almost half in animal compared to clinical pain trials.  

Among others, placebo effects in clinical trials, which are absent in animal research, are 

significant confounders. Effect sizes of at least 60% pain relief in animal models are required 

to predict clinical efficacy (Whiteside et al., 2013). 
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Psychiatric disease is not directly translatable to animal models. For example, even 

transgenic mouse models of neuropsychiatric disorders cannot fully represent the broad 

spectrum of symptoms, including confusion or suicidal thoughts. However, these models 

serve to explore psychiatric disorders by unravelling disturbances of neural circuits 

underlying disease relevant phenotypes, in particular how environmental and (epi-)genetic 

factors interact to shape behavioral phenotype and predispositions to psychiatric disorders 

(Donaldson & Hen, 2014). Traditionally in psychiatric animal models abnormal animal 

behavior was created, phenotypically resembling the aspects of mental disorders. Reverse 

translation using knowledge about the mechanisms of human disorders has been used to 

identify and develop animals that have the molecular and cellular abnormalities found in 

these diseases (Malkesman et al, 2009). For example, depression has been modeled in mice 

having point mutations in the mitochondrial DNA polymerase (Kasahara et al, 2006) and 

glutamate receptor 6 knock mice have a high face and predictive validity for mania (Shaltiel 

et al, 2008). 

Lost in translation has become a very popular paraphrase for the obstacles 

encountered in translational research. Three reasons for the “Lost In Translation Problem” 

have been suggested. First, small differences in the models might lead to vast differences in 

the results, which has been attributed to the chaotic behavior of the models and termed the 

“butterfly effect”. Second, the effect size is decreasing from biochemical models over cell and 

tissue cultures to animal experiments to human studies, which seems to be unexpected 

according to the “princess and the pea” story. Finally, the “two cultures” of preclinical and 

clinical research are different (Ergorul & Levin, 2013; Mergenthaler & Meisel, 2012).   

 

3.1.6.4. Remedies for failed translation. – Improving preclinical research 
3.1.6.4.1. Improving models 

In order to improve the quality of translational biomedicine it has been suggested to 

make the process of preclinical research more like clinical research. Among them, applying 
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similar rules used by regulatory agencies for clinical trial has been suggested also for 

preclinical studies. Using methods such as systematic reviews and meta-analyses have 

become more and more popular in animal research to identify robust treatment effects. 

Commonly accepted “futility” and “stopping” rules in clinical research become increasingly 

accepted in preclinical research. These approaches have been demonstrated to improve the 

predictive value of animal research (Perel et al, 2007). 

An ideal animal model will meet all of the following 3 criteria: face validity, predictive 

validity and construct validity. Face validity refers to the phenomenological similarity between 

the model and its corresponding disorder. Predictive validity refers to the ability of the model 

to have comparable biomarkers and treatment responses as the human disorder. Construct 

validity reflects the degree to which a model measures what it claims to be measuring 

(Willner, 1986).  

In order to improve construct validity it has been proposed that therapeutic 

interventions should be tested in animal models of CNS disorders under conditions of greater 

environmental enrichment. One limitation of current research is that most animal studies are 

performed under caging conditions with sedentary, unstimulated animals having unlimited 

access to food. Enriched environment stimulating sensory system, cognition and physical 

exercise have been demonstrated to affect outcome significantly (McOmish et al, 2014).   

In order to improve translational power, the use of more humanized models has been 

suggested (Ergorul & Levin, 2013). Immunodeficient mice that have been engrafted with 

human primary haematopoietic cells and tissues generating a functional human immune 

system in these mice are a well-established example of humanized mice. These models 

have been successfully used investigating infectious diseases, autoimmune disorders and 

tumors (Shultz et al, 2012).  

Recent exciting findings in stem cell biology open the door to novel approaches in 

disease modeling using human model systems. Terminally differentiated human somatic 
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cells may be reprogrammed to an induced pluripotent stem cell (hiPSC) state in order to then 

differentiate these cells into any cell type of interest (Lee & Studer, 2010). These 

developments might revolutionize investigations of human disorders, in particular those 

affecting the CNS (Philips et al, 2014). Patient-derived hiPSCs can be differentiated in 

specific neuronal subpopulations, e.g. cortical neurons (Zhang et al, 2013) or striatal medium 

spiny neurons (Philips et al., 2014), which are affected in brains of patients suffering from 

Huntington’s disease. Obviously, brain cells are usually not directly accessible as primary 

material, neither for study disease mechanisms nor for specific treatment. Furthermore, in 

recent years, organoid technologies have revolutionized experimental biomedical research 

(Schutgens & Clevers, 2020). In the context of brain research, human brain organoids 

(Lancaster, 2020; Lancaster et al, 2013) provide for the first time a human model system with 

the prospect of studying developmental aspects and disease mechanisms in a brain-like 

model system and have thus far mostly been used for studying brain development and 

developmental disorders (Marton & Pasca, 2020). Using hiPSC technology, specific cell 

differentiation, organoid technologies and refined genomic editing tools (Hendriks et al, 

2020), correction of mutations are feasible and specific treatment is conceivable (Kaye & 

Finkbeiner, 2013). Although it has been suggested that failure in clinical trial could have been 

predicted at least in some cases using human pluripotent stem cell-based model systems 

(Antonic et al, 2018), translational success using these models has yet to be established. 

Finally, cell based models cannot reflect the complexity of an organism. For example, 

investigating systemic effects of local disease, such as post-stroke pneumonia, requires 

animal models (Prass et al., 2003) to complement mechanistic cellular modeling. Another 

example is the blood brain barrier (BBB), a highly selective permeability barrier separating 

the blood from the brain extracellular fluid. Although sophisticated in vitro models of BBB 

have been developed in the last decade, drug transport across the BBB and brain specific 

drug delivery strategies remain challenging for developing of successful treatment strategies 

(Bicker et al, 2014). Enzymes usually cannot pass the BBB. However, local enzyme 

replacement therapy in the brain by intrathecal application is a promising strategy for the 



14 / 28 
 

treatment of patients with metabolic disorders caused by the absence or malfunction 

enzymes involved in cerebral metabolism. For example, repeated injections of a recombinant 

enzyme into the spinal fluid (intrathecal) corrects enzyme deficiency and normalizes 

lysosomal storage in a canine model of mucopolysaccharidosis (Dickson & Chen, 2011). 

 

3.1.6.4.2. Improve rigor of preclinical studies 

The lack of reproducibility of preclinical studies and the failure of translation to the 

clinic have attracted attention in the last years (Howells et al, 2014; Ioannidis, 2005; Macleod 

et al, 2014; Perrin, 2014; Prinz et al., 2011). One important reason is the publication bias 

toward reporting positive results due to difficulties or missing incentives in publishing 

negative results (Dirnagl & Lauritzen, 2010; Dwan et al, 2013). Moreover, experimental 

design (Ioannidis et al, 2014; Neumann et al, 2017), including statistics (Schlattmann & 

Dirnagl, 2010), has been challenged as a quality problem in preclinical trials. For example, 

definition and declaration of statistical approaches and endpoint measures needs to be 

performed before preclinical trials are finally analyzed or even started (Dirnagl & Lauritzen, 

2011). Whereas clinical trial registries are widely accepted as good clinical research practice, 

preclinical trial registries are rather uncommon and may need to be established (Dirnagl, 

2020). Thereby, post-hoc analyses generating hypotheses in an exploratory manner can be 

clearly distinguished from a primary hypothesis that has been tested in a confirmatory 

approach. A priori power calculations and sample size considerations, randomized 

assignment to groups and blinding for treatment groups are further important issues well 

established in clinical but rather not preclinical research (Button et al, 2013).   

 Finally, it has been suggested that bringing the rigor and quality of study design 

expected in clinical trials to preclinical trials will improve translational success (Dirnagl & 

Fisher, 2012; Ioannidis et al., 2014; Macleod et al., 2014). This includes better knowledge 

about the drug and thorough target assessment before starting a preclinical trial (Emmerich 

et al, 2020). For example, pharmacokinetics might be different between mutants and wild-
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type mice (Menalled et al, 2010). Confirmation of research findings includes replication of 

preclinical research in independent laboratories (Figure 2). Using different models will 

increase robustness of the observed findings in treatment effects (Menalled & Brunner, 

2014).  

Endpoint measures are of great importance in preclinical research as well as in 

clinical research and should therefore follow endpoints used in clinical research as close as 

possible. For example, Huntington’s disease is not only characterized by motor symptoms 

but also by cognitive and psychiatric symptoms appearing years before the loss of motor 

control. These complaints often have a large impact on the quality of life. Although survival is 

an important outcome measure also in clinical trials, caution is required when translating 

preclinical into clinical findings. In contrast to animals even in preclinical research, survival in 

patients does not only depend on the specific intervention under investigation but also on 

general care as well as ethical and religious issues leading to end-of-life decisions. 

Specific suggestions for improving the predictiveness of preclinical stroke research 

have been oriented on accepted standards of clinical research (Bath et al., 2009; Dirnagl, 

2020; Macleod et al, 2009; Mergenthaler & Meisel, 2012). In order to improve internal 

validity, good clinical research avoids any kind of bias, in particular selection bias (biased 

allocation to treatment groups), performance (biased care of treatment groups apart from 

intervention under study), assessment (biased rating due to knowledge of treatment 

assignment) and attrition (biased handling of protocol violation and loss in follow up).  

Preclinical research in the final stages of translation into clinical trials should follow 

the guidelines of clinical research by: 1) improving internal validity by predefined 

inclusion/exclusion criteria and primary endpoint(s), randomization, blinding for treatment 

allocation and outcome assessment intention-to-treat analysis; 2) improving external validity 

by studying pathophysiology and treatment strategies in animals of both sexes, old age and 

with co-morbidities, disease-related appropriate dosing and treatment windows for the drug 

under investigation; 3) replicating pivotal findings; 4) publishing negative as well as positive 
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results; focus on long-term functional outcome; use meta-analyses of pre-clinical studies; 5) 

establishing registries of preclinical studies and 6) international multicenter phase III 

preclinical trials (Dirnagl & Endres, 2014; van der Worp et al, 2010). Moreover, preclinical 

trials need a standardized and “humanized” modelling of general as well as disease specific 

patient care (Mergenthaler & Meisel, 2012).   

 

3.1.6.5. Summary 

In summary, many well-defined animal models for human disease are employed in 

modern preclinical and pathophysiology-driven research. However, the scientific community 

across all fields of modern biomedicine has become aware of weaknesses in current 

preclinical animal modeling. Here, we have outlined several strategies that have already 

been set into action to overcome the translational gap that is common to all current 

preclinical modeling of human disease.  
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Figures  

 

Figure 1. The preclinical trial phases of translational research. As therapeutic agents or 

concepts advance in development, the experimental setting increases in complexity. It 

ranges from small cohorts to investigate novel mechanisms to large mixed populations with 

(multiple) comorbidities and additional modeling of stroke care. The final stage of preclinical 

development is the conduct of a randomized-controlled preclinical trial (RCPT), ideally in a 

stroke unit setting. Randomized clinical trials (RCT) commence after this process has been 

completed and is based on evidence gained in preclinical testing. Reproduced with 

permission from: Mergenthaler P & Meisel A. (2012). Do stroke models model stroke? Dis 

Model Mech. 5, 718-725. 
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Figure 2. Modeled after randomized controlled clinical trials (RCT), the final stage of 

preclinical testing is to conduct a randomized controlled preclinical trial (RCPT). A steering 

committee agrees on the intervention to be tested and all related aspects (e.g. models, 

outcome parameters, etc.). All administrative matters are centrally organized by a preclinical 

research organization (pCRO) and include objective criteria for the recruitment of study sites, 

the modes of randomization, collection of the data from the study sites and central monitoring 

of all aspects of the trial. Ideally, all study sites are capable of performing the same 

experiments (i.e. they have access to the same models and equipment). All aspects of the 

RCPT are monitored by an independent organization. Reproduced with permission from: 

Mergenthaler P & Meisel A. (2012). Do stroke models model stroke? Dis Model Mech. 5, 

718-725. 

 


