
Chapter 6

Multiple Surface Alignment

In his book “Algorithms on strings, trees, and sequences” [72], Chapter 14, Dan Gusfield
motivates the usefulness of multiple string comparison as follows.

“For a computer scientist, the multiple string comparison problem may at first
seem like a generalization for generalization’s sake – ‘two strings good, four strings
better’. But in the context of molecular biology, multiple string comparison (of
DNA, RNA, protein strings) is much more than a technical exercise. It is the
most critical cutting-edge tool for extracting and representing biologically impor-
tant, yet faint or widely dispersed, commonalities from a set of strings. These
(faint) commonalities may reveal evolutionary history, critical conserved motifs
or conserved characters in DNA or protein, common two- and three-dimensional
molecular structure, or clues about the common biological function of the strings.
These characterizations are then used in database searches to identify other po-
tential members of a family. Because many important commonalities are faint or
widely dispersed, they might not be apparent when comparing two strings alone
but may become clear, or even obvious, when comparing a set of related strings.”

Clearly, multiple sequence alignment and multiple structure alignment are very different in
many aspects, yet, most of the above citation is also true for multiple structure alignment.
For example, the commonalities among a set of molecular structures will, in general, be
much smaller than between two molecular structures. But, these faint commonalities
might in fact be the essential properties a molecular structure needs to have to perform
a specific function. Of course, whether the true essentials of some biological function will
be found, strongly depends on the diversity of the molecular structures. The essential
structural motifs that are responsible for the biological function of the molecules build
the pharmacophore, which can be used to search databases “to identify other potential
members of a family” [72], here, the family of active compounds.

In order to compute a multiple surface alignment from pairwise surface alignments, it
is not sufficient to take only the best pairwise alignments of all molecules and overlay the
molecules according to these best pairwise alignments. The reason for this lies in the fact,
that a best pairwise alignment might be the best alignment only due to some “coincidental”
similarity of two molecules. This coincidental similarity might not have anything to do
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132 Chapter 6. Multiple Surface Alignment

with the essential features responsible for some biological function. Instead, there might be
other pairwise alignments with slightly worse scores, which, however, might be preferred
in the context of a multiple alignment. Nevertheless, it seems to be reasonable that a
small set of diverse good pairwise alignments, e.g. 10 or 20, contains the most important
alignments for pharmacophore identification. This assumption has to be made in order
to be able to compute the multiple surface alignments with the method described in this
chapter.

This chapter begins in Section 6.1 with a short overview. This is followed by the main
part of this chapter, Section 6.2, in which we explain how to derive multiple alignments
from pairwise alignments. Section 6.3 explains, how multiple matchings are scored and
sorted using the concept of Pareto dominance. In Section 6.4, we give experimental results,
which are followed by a short summary and conclusion in Section 6.5.

6.1 Overview

The computation of multiple alignments from pairwise alignments essentially involves four
steps:

1. Computation of pairwise alignments.
2. Reduction of the number of pairwise alignments.
3. Computation of multiple alignments from pairwise alignments.
4. Scoring and sorting of multiple alignments.

Computation of pairwise alignments. The computation of pairwise alignments is a
two-step process, which has been thoroughly described in the previous chapter. In the first
step of this process, initial transformations are generated (cf. Section 5.2), which are locally
optimized in the second step, using an iterative point matching scheme (cf. Section 5.3).
The pairwise matchings that were thus computed define pairwise alignments, which can
be generated by rms-fitting the matched points.

Reduction of the number of pairwise alignments. Among the pairwise alignments
generated by the pairwise surface alignment algorithm, we generally find many alignments
that are very similar to other pairwise alignments. In particular, around local maxima
of the matching score, the number of similar pairwise alignments is large. These similar
pairwise alignments again will lead to many similar multiple alignments being generated
in the second step. But not only the large number of similar multiple alignments is
a problem, but also the increase in the computational cost is enormous. Due to this
observation, the reduction of pairwise alignments is a crucial step. To realize it, we first
compute a partitioning of the pairwise alignments w.r.t. the rigid transformations. Then,
to allow execution of the second step, we reduce the number of pairwise alignments to a
predefined size, say 10 or 20. The details of reducing the pairwise alignments have been
given in Section 5.4.

Computation of multiple alignments from pairwise alignments. Once the number
of pairwise alignments has been reduced to a practical size, we can perform the actual
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generation of multiple alignments. Here, we work on the pairwise matchings underlying
the pairwise alignments. From the pairwise matchings, we compute multiple matchings by
sequentially intersecting the pairwise matchings of different query molecules. That is to
say, we start by intersecting the pairwise matchings of two query molecules. The resulting
multiple matchings from this first intersection, including the original pairwise matchings,
are then intersected with the pairwise matchings of the third query molecule, and so forth,
until the pairwise matchings of all query molecules have been handled. This step will be
described in detail in Section 6.2.

Scoring and sorting of multiple alignments. The computation of multiple alignments
is only finished, if the multiple alignments have been scored and sorted, such that the user
has a means of traversing the multiple alignments in a feasible order. This last step, which
uses the concept of Pareto dominance, will be explained in Section 6.3.

6.2 From Pairwise to Multiple Alignments

6.2.1 Multiple Matchings

Multiple matchings are the basis for the computation of multiple alignments. They con-
stitute a straightforward extension to pairwise matchings (cf. Definition 5.1.5) introduced
in Chapter 5.

Definition 6.2.1 (Multiple Matching). A multiple matching f defined on k +1 finite sets
P , Q1, . . ., Qk is a mapping

f : P̃ → Q̃1 × Q̃2 × . . .× Q̃k, P̃ ⊆ P , Q̃j ⊆ Qj , j = 1, . . . , k ,

where each of its components f j : P̃ → Q̃j is a pairwise matching. The components of f
will also be referred to as the pairwise matchings induced by f . We further define

fP := {p ∈ P | ∀j ∈ {1, . . . , k} ∃q ∈ Qj : f j(p) = q} , and

fQj
:= {q ∈ Qj | ∃p ∈ P : f j(p) = q} ,

where fP = P̃ is the domain of f and fQ1 × fQ2 × . . .× fQk
its range.

We refer to dim(f) := k as the dimension of the multiple matching f . The multiple
matching f can also be written as a set f∗ of (k+1)-tuples from P ×Q1 ×Q2 × . . .×Qk

with (p, q1, . . . , qk) ∈ f∗ ⇔ f j(p) = qj , qj ∈ Qj , ∀j ∈ {1, . . . , k}. The number |f∗| of
(k+1)-tuples will be referred to as the size of f .

The set of all multiple matchings f with domain fP ⊆ P and range fQ1 × fQ2 × . . .×
fQk ⊆ Q1 ×Q2 × . . .×Qk is denoted by F(P,Q1, Q2, . . . , Qk).

Remark 6.2.2 (Reference and Query Sets). While for a pairwise matching f ∈ F(P,Q)
the sets P and Q can be exchanged, in a multiple matching f̃ ∈ F(P,Q1, Q2, . . . , Qk) the
set P has an extraordinary status. We call P the reference set and the sets Q1, Q2, . . . , Qk

the query sets. Likewise, the underlying molecules will be called reference molecule and
query molecules, respectively.
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Remark 6.2.3 (Mapping of Query Sets). In the first place, a multiple matching defines
a mapping of the reference set to the Cartesian product of the query sets. However,
implicitly it also defines mappings between the query sets, where two points qk ∈ Qk and
ql ∈ Ql are mapped to each other, if they belong to the same multiple matching tuple.
Hence, we can think of a multiple matching as a mapping that relates the elements of all
sets participating in the matching to each other.

The definition of a combined pairwise matching (cf. Definition 5.3.1) w.r.t. decompo-
sitions of the involved point sets can also be extended to multiple matchings in a straight-
forward way. This leads us to the definition of combined multiple matchings.

Definition 6.2.4 (Combined Multiple Matching). Let P , Q1, . . ., Qk be finite sets with
decompositions {Pi}Ni=1, {Q1

i }Ni=1, . . ., {Qk
i }Ni=1, respectively (cf. Definition 5.3.1). Fur-

thermore, let fi ∈ F(Pi, Q
1
i , Q

2
i , . . . , Q

k
i ), i = 1, . . . , N , be multiple matchings on Pi, Q1

i ,
. . ., Qk

i . Then we define the combined multiple matching f ∈ F(P,Q1, Q2, . . . , Qk) w.r.t.
the decompositions {Pi}Ni=1, {Q1

i }Ni=1, . . ., {Qk
i }Ni=1 by

f(p) := fi(p), if p ∈ Pi .

It directly follows that

f∗ =
N⋃

i=1

f∗i .

Even though the notion of a pairwise matching is easily extended to a multiple match-
ing, the score of a multiple matching is not as easily generalized. If we again take a look
at multiple sequence alignment, the sum-of-pairs score, given by the sum of scores of the
pairwise sequence alignments induced by the multiple sequence alignment, has been used
by many people [72]. In analogy to multiple sequence alignments, we can define the sum-
of-pairs score of a multiple matching f as the sum of scores of the pairwise matchings
induced by f (cf. Definition 6.2.1).

Definition 6.2.5 (Sum-of-Pairs Score). Let f : P̃ → Q̃1 × Q̃2 × . . . × Q̃k be a multiple
matching and let f j : P̃ → Q̃j , j = 1, . . . , k, be the pairwise matchings induced by f .
Then the sum-of-pairs score of the multiple matching f is defined as

score∗sp(P,Q1, . . . , Qk; f) :=
k∑

j=1

score∗(P,Qj ; f j) .

This score is only comparable for multiple matchings with the same dimension k, i.e. for
multiple matchings in which the same number of molecules are involved. In order to be
able to compare multiple matchings of different dimensions, we need to normalize the
sum-of-pairs score, yielding the normalized sum-of-pairs score.

Definition 6.2.6 (Normalized Sum-of-Pairs Score). Let f : P̃ → Q̃1 × Q̃2 × . . .× Q̃k be
a multiple matching. Then the normalized sum-of-pairs score of f is defined as

score∗nsp(P,Q1, . . . , Qk; f) :=
score∗sp(P,Q1, . . . , Qk; f)

k
. (6.1)
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6.2.2 Computing Multiple Matchings

In this section we explain how we generate multiple matchings from sets of pairwise match-
ings. Essentially, this is done by representing each pairwise matching as a bit-string and
successively intersecting these bit-strings to generate multiple matchings. After each in-
tersection, we need to check whether the intersected bit-string already exists. To do this
efficiently, we use PATRICIA trees. For ease of reading, we only describe PATRICIA
trees in Section 6.2.3. Since it is a technical detail not necessary for understanding the
computation of multiple matchings, it may be skipped at first reading. For the following
subsection it should suffice, that PATRICIA trees enable us to quickly identify equal bit-
strings. Each bit-string is represented by a single leaf, which stores the multiple matchings
corresponding to the respective bit-string.

Intersection of Matching Bit-Strings

The first step in computing multiple matchings from pairwise matchings is to represent
the domain of each pairwise matching as a bit-string of length equal to the number of
elements in the reference set (cf. Remark 6.2.2), where each bit is set, if and only if the
corresponding element of the reference set is in the domain of the pairwise matching.

Definition 6.2.7 (Pairwise Matching Bit-String). Let f ∈ F(P,Q) be a pairwise matching
with domain fP ⊆ P . Then bf : P → {0, 1}, defined by

bf (p) :=

{
1 , if p ∈ fP

0 , otherwise
,

denotes the mapping of f to its associated matching bit-string bf . For a bit-string b we
denote by |b| the number of bits equal to 1, i.e. |bf | = |fP |. The definition of a pairwise
matching bit-string can be directly transferred to multiple matchings. Thus, for a multiple
matching we will use the same notations as for pairwise matchings.

Since we consider pairwise matchings with the same reference set P only, the bit-strings
of these pairwise matchings have equal lengths. For two such strings, the intersection can
be defined as follows.

Definition 6.2.8 (Intersection of Matching Bit-Strings). Let f ′ and f ′′ be two match-
ings, pairwise or multiple, with matching bit-strings bf ′ and bf ′′ , respectively. Then the
intersection of bf ′ and bf ′′ is denoted by bf ′ ∧ bf ′′ and defined by

(bf ′ ∧ bf ′′)(p) :=

{
1 , if bf ′(p) = 1 ∧ bf ′′(p) = 1
0 , otherwise

.

It is not feasible to compute all intersections, in particular those that have a small
number of bits set to 1, since the number of intersection bit-strings grows exponentially
with the dimension of the multiple matchings. We therefore need to restrict this number
to a manageable size. We do this by introducing a minimum size constraint, which is a
user-specified minimum of the number of bits set to 1 in a multiple matching bit-string.
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Definition 6.2.9 (Minimum Size of Multiple Matchings). Let P be the reference point
set, and let Q1, . . . , QM be the query point sets. Let Fi ⊂ F(P,Qi), i = 1, . . . ,M , denote
the sets of computed pairwise matchings of point sets P and Qi. For Fi, i = 1, . . . ,M ,
we denote by minSize(Fi) the minimum size a multiple matching containing query set Qi

needs to have.
In our experiments, we specified the minSize(Fi) with the help of a relative minimum

size, minSizerel ∈ (0.0, 1.0], such that

minSize(Fi) = minSizerel · max
fi∈Fi

|fi| . (6.2)

Since the maximum size of the pairwise matchings, i.e. the maximum number of bits
set to 1 in any pairwise matching bit-string, may vary considerably among the pairwise
matching sets Fi, this minimum varies from query point set to query point set. Recall,
that we are not only interested in multiple matchings from F(P,Q1, Q2, . . . , QM ), but
in multiple matchings from all possible sets F(P,Ql1 , Ql2 , . . . , Qlk), k = 1, . . . ,M , and
lj ∈ {1, . . . ,M} pairwise distinct. Included here are pairwise matchings, which, in fact,
are multiple matchings of dimension 1 and as such they will be handled.

In order to be able to give the complete algorithm, we need one further definition,
namely the definition of a maximal multiple matching.

Definition 6.2.10 (Maximal Multiple Matching). Let P be the reference point set, and
let Q1, . . . , QM be the query point sets. Furthermore, let F̃ be a set of multiple matchings
from all possible sets F(P,Ql1 , Ql2 , . . . , Qlk), k = 1, . . . ,M , and lj ∈ {1, . . . ,M} pairwise
distinct. More precisely,

F̃ ⊂
⋃

k=1,...,M
lj∈{1,...,M}
li 6=lj ,∀i6=j

F(P,Ql1 , Ql2 , . . . , Qlk) .

Then a multiple matching f ∈ F̃ is a maximal multiple matching w.r.t. F̃ if and only if
there does not exist a multiple matching f̃ ∈ F̃ satisfying the following two properties
(maximality constraints):

1. fP = f̃P , and
2. dim(f) < dim(f̃).

The Algorithm

The aim of the algorithm is to compute all maximal multiple matchings (cf. Defini-
tion 6.2.10) satisfying the minimum size constraint (cf. Definition 6.2.9) given by the
values minSize(Fi), i = 1, . . . ,M . The complete algorithm for this problem is given in
Algorithm 6.1.

We store the maximal multiple matchings, as they are computed, in the PATRICIA
tree. For each leaf v representing a multiple matching we maintain a list of matchings, de-
noted by v.matchings. This list contains all pairwise matchings that make up the multiple



6.2. From Pairwise to Multiple Alignments 137

Algorithm 6.1 Computation of multiple matchings
Input: Reference set P and query sets Q1, . . . , QM

Input: Family F = {Fi}Mi=1 of sets of pairwise matchings of P and Qi, respectively
Output: PATRICIA tree T , implicitly containing all maximal multiple matchings

1: F̃ ← arg minF∈F minSize(F )
2: for all f ∈ F̃ do . Initialize PATRICIA tree T .
3: v ← insert bf into T . Algorithm 6.2
4: v.matchings← v.matchings ∪ f
5: v.minSize← minSize(F̃ )
6: end for
7: F ← F \ F̃
8: while F 6= ∅ do
9: F̃ ← arg minF∈F minSize(F )

10: clear PATRICIA tree T̃
11: for all f ∈ F̃ do
12: v ← insert bf into T̃ . Algorithm 6.2
13: v.matchings← v.matchings ∪ f
14: end for
15: LT ← all leaves v of T . Copy leaves to LT .
16: for all leaves ṽ of T̃ do
17: for all v ∈ LT do
18: b← ṽ.string ∧ v.string . Intersection.
19: if |b| ≥ v.minSize then . Valid multiple matching.
20: w ← insert b into T
21: if w.matchings = ∅ then . Is w a new leaf?
22: w.minSize← v.minSize
23: end if
24: for all f ∈ v.matchings ∪ ṽ.matchings do
25: if f 6∈ w.matchings then . Ensure that matching is unique.
26: w.matchings← w.matchings ∪ {f}
27: end if
28: end for
29: end if
30: end for
31: for all f ∈ ṽ.matchings do . Insert pairwise matchings.
32: w ← insert ṽ.string into T
33: if w.matchings = ∅ then . Is w a new leaf?
34: w.minSize← minSize(F̃ )
35: end if
36: if f 6∈ w.matchings then . Ensure that matching is unique.
37: w.matchings← w.matchings ∪ {f}
38: end if
39: end for
40: end for
41: F ← F \ F̃
42: end while



138 Chapter 6. Multiple Surface Alignment

matching. By v.minSize we denote the minimum size a multiple matching containing the
matchings stored at v must have.

After Algorithm 6.1 has been run, each leaf of the PATRICIA tree T might in fact
contain more than one multiple matching, since more than one pairwise matching of the
same set Fi may be contained in the list of matchings. If this happens, we simply generate
all possible combinations of pairwise matchings. In practice, however, this is rarely the
case, in particular for large point sets.

The minimum size constraint of all multiple matchings is guaranteed by lines 1, 5, 9,
19, 22, and 34. Lines 1 and 9 ensure that we combine the sets of pairwise matchings in a
sorted order, starting with the pairwise matching set F , having the smallest minSize(F ),
i.e., which introduces the most restrictive constraint. In lines 5, 22, and 34 we set the
minSize-value for new leaves. Since we start with the pairwise matching set having the
smallest minSize-value, these lines together with line 19 guarantee that each multiple
matching obeys the minimum size constraint. Here, line 19 decides whether a new multiple
matching, created by intersecting a previously generated multiple matching with a new
pairwise matching, is a valid multiple matching. Recall, that |b| denotes the number of
bits in b set to 1.

The maximality constraints (cf. Definition 6.2.10) are satisfied by merging all multiple
matchings as well as all pairwise matchings into the same PATRICIA tree T (cf. lines 3,
20, and 32). That is to say, this constraint is guaranteed by construction of the algorithm.

The reason for line 15 lies in the fact that we do not want new multiple matchings
to be created due to “self-intersection”, i.e. due to intersection of a multiple matching
already containing a matching from set F with a pairwise matching of the same set F .
Pairwise matchings of the same set are only inserted into the same leaf by merging all newly
generated multiple matchings into the same PATRICIA tree T (cf. previous paragraph).
Therefore, we need to copy all leaves of tree T before we start intersecting the leaves with
the pairwise matchings of a new set.

Beside the “exhaustive” computation of multiple matchings as described here, we also
implemented a greedy method, which was only used in this thesis to compute multiple
alignments for the set of odor molecules presented in the introduction, Section 1.2. In
this greedy method, we start with the largest pairwise matching as multiple matching
and subsequently intersect the current multiple matching with a new pairwise matching,
such that in each step the multiple matching is maximized. However, since in each step
we compute the maximal multiple matching only w.r.t. the previous maximal multiple
matching, it is not guaranteed that we find the true optimum, as is often the case with
greedy methods.

6.2.3 PATRICIA Trees

During the generation of multiple matchings, which was described in Section 6.2.2, a large
number of matchings is generated which need to be stored efficiently such that matchings
with equal domain (cf. Definition 6.2.1) can be identified quickly. This can be achieved by
representing the domain of each multiple matching as a bit-string of length equal to the
number of elements in the reference set (cf. Remark 6.2.2), where each bit is set, if and only
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Figure 6.1: Comparison between binary tree (left) and PATRICIA tree (right), from top to
bottom with 1, 2, and 3 stored bit-strings. The numbers along the edges denote a single bit
character. The bit-string below each leaf denotes the bit-string stored in that leaf. These bit-
strings are equal to the bit-strings built when concatenating the bit characters along the path to
the leaf. In the case of the binary tree, these bit characters are simply the bits along the edges. In
the case of the PATRICIA tree, the bit-string is made up from the bit characters along the edges
plus the substrings next to the nodes, which can have empty substrings.

if the corresponding element of the reference set is in the domain of the multiple matching.
With this transformation we can represent the domain of each multiple matching as a bit-
string. All bit-strings of multiple matchings with the same reference set have equal lengths.
Thus, the domains of two multiple matchings are equal if their bit-strings are equal. So
the problem of identifying identical domains reduces to the problem of identifying equal
bit-strings.

Kirchner [97] uses a binary tree to store bit-strings. If l is the length of the bit-string,
then this binary tree has depth l. Each path from the root of the tree to a leaf represents a
different bit-string, where the i’th level represents the i’th bit. Starting from the root, the
path is traversed along the right child of the current node, if the corresponding bit is set.
Otherwise the path is traversed along the left child. In a binary tree, each path from the
root to a leaf has exactly length l (cf. Figure 6.1, left). If the bit-strings are short, binary
trees are efficient. However, the number of internal nodes grows exponentially. Thus, for
larger bit-string lengths, binary trees need too much storage.
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A more efficient data structure, both in terms of run time to identify equal bit-strings
and in terms of required storage, was already introduced in 1968 by Donald R. Morri-
son [128]. This data structure is called PATRICIA tree (PATRICIA – Practical Algorithm
To Retrieve Information Code in Alphanumeric). Even though the data structure was orig-
inally developed to store alphanumerical strings, it can directly be applied to bit-strings.
In a PATRICIA tree, internal nodes are only added if they are necessary for separating
distinct bit-strings. As a consequence, the number of internal nodes in a PATRICIA tree
is always one less than the number of leaves. So in the simplest case, if only one string
is stored in the tree, this string is directly stored in the root node, which in this case is
considered to be a leaf (cf. Figure 6.1, right, top). In the binary tree, a bit character is
associated with each edge. In the PATRICIA tree, additionally a substring, which may be
the empty string, is associated with each node. If we follow a path from the root to a leaf,
the bit characters associated with the edges plus the substrings associated with the nodes
along the path make up the bit-string represented by that leaf (cf. Figure 6.1, right).

For our purpose we only need a single operation to be performed on the PATRICIA
tree, which is insertion. When inserting a bit-string into a tree T , we start at the root
node. Let T.r denote the root node and for each node v let v.left denote its left child and
v.right denote its right child. Furthermore, let v.string denote the substring associated
with v, and for a string s let s.length denote the length of s, and let s[i] denote the i’th
bit of s. Moreover, by s.substring(i, j) we denote the substring of s from i to j. If j < i,
s.substring(i, j) is the empty string. Then the insertion operation on a PATRICIA tree is
accomplished by Algorithm 6.2.

6.3 Rating of Multiple Matchings

The algorithm presented in Section 6.2 usually generates a large number of multiple match-
ings. In order to allow the user to step through these multiple matchings and their resulting
alignments, we need to bring the alignments into a feasible order. This is not an easy task,
not because the number of alignments might be too large, but because the alignments are
not easily comparable. The reason for this lies in the fact that the multiple matchings
vary not only in size, but also in dimension, and, e.g., the normalized sum-of-pairs score
(cf. Definition 6.2.6). Some of these scoring functions are competing, i.e. improving one of
them will most certainly worsen another one. For example, if a multiple matching has a
larger dimension, it will, in general, have a smaller normalized sum-of-pairs score. Thus, in
order to consider all scoring functions equally well, we need a means that is not dependent
on a certain choice of weights for the scoring functions. We use the concept of Pareto
dominance, which we introduce in the following subsection.

6.3.1 Pareto Sets

What is generally done in the case of multiple scoring functions is to compose an overall
scoring function from all scoring functions, where a certain weight is assigned to each
single scoring function. The quality of such an overall scoring function, however, depends
largely on the choice of the weights.
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Algorithm 6.2 Insertion operation for a PATRICIA tree
Input: PATRICIA tree T , bit-string s to be inserted
Output: leaf v whose path from the root is equal to s

1: if T.isEmpty () then
2: T.r.string← s
3: else
4: v ← T.r
5: i← 1
6: while i ≤ s.length do
7: t← v.string
8: for j ← 1, t.length do
9: if s[i] 6= t[j] then

10: v′ ← new Node
11: v′′ ← new Node
12: v.string← t.substring (1, j − 1)
13: v′.string← s.substring (i + 1, s.length)
14: v′′.string← t.substring (j + 1, t.length)
15: if s[i] = 1 then
16: v.right← v′

17: v.left← v′′

18: else
19: v.left← v′

20: v.right← v′′

21: end if
22: return v′

23: end if
24: i← i + 1
25: end for
26: if i > s.length then
27: return v . Bit-string s has been inserted previously
28: else if s[i] = 1 then
29: v ← v.right
30: else
31: v ← v.left
32: end if
33: end while
34: end if
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For sorting alignments according to multiple scoring functions, Handschuh [74] used
the concept of Pareto optimization developed by Vilfredo Pareto [61] to solve multi-
dimensional optimization problems. According to the optimization due to Pareto, an
optimal state is reached if no parameter can be improved without worsening another pa-
rameter [74]. Instead of combining all scoring functions, i.e. parameters, into a single
overall scoring function, we consider the values of all scoring functions of each multiple
matching as a vector and define a partial relation on these vectors. Using this relation we
generate so-called Pareto sets [166], where each set contains multiple matchings that are
considered to be equally good. There exists a total order on these sets, but not on the
elements within the sets.

Definition 6.3.1 (Vector Dominance). Let u, v ∈ Rk. Then vector u = (u1, . . . , uk) is
said to dominate vector v = (v1, . . . , vk), denoted by u � v, if and only if u is partially
larger than v, i.e.,

∀i ∈ {1, . . . , k} : ui ≥ vi ∧
∃j ∈ {1, . . . , k} : uj > vj .

By u 6� v we denote the fact that u does not dominate v. Note, that u 6� v does not
necessarily mean v � u.

With the relation of vector dominance we can now define the notions Pareto set and
Pareto set dominance.

Definition 6.3.2 (Pareto Set). Let P ⊂ Rk be a set of vectors of dimension k. Then P
is called Pareto set if and only if P satisfies

∀u, v ∈ P : u 6� v .

Definition 6.3.3 (Pareto Set Dominance). Let P and Q be two Pareto sets. Then P is
said to dominate Q, denoted by P � Q, if and only if

∀q ∈ Q ∃p ∈ P : p � q ∧
∀p̃ ∈ P ∀q̃ ∈ Q : q̃ 6� p̃ .

Given a set of multiple matchings, instead of computing a total order on the elements
in this set, we are interested in decomposing the set of all multiple matchings into Pareto
sets. This leads us to the definition of Pareto set decomposition.

Definition 6.3.4 (Pareto Set Decomposition). Let P ⊂ Rk be a set of vectors of di-
mension k and let {Pi}ni=1 be a decomposition of P. Then {Pi}ni=1 is called a Pareto set
decomposition of P, if Pi, i = 1, . . . , n, are Pareto sets which satisfy

(Pi � Pj) ∨ (Pj � Pi) , ∀i, j ∈ {1, . . . , n}, i 6= j .
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It follows directly from Definition 6.3.4 that there exists a total order on the Pareto
sets given by the Pareto set decomposition. The Pareto set dominating all other Pareto
sets of this decomposition is called Pareto optimal set. More formally it can be defined as
follows.

Definition 6.3.5 (Pareto Optimal Set). Let P ⊂ Rk and let {Pi}ni=1 be a decomposition
of P. Then we call Pk, k ∈ {1, . . . , n}, the Pareto optimal set of P, if

Pk � Pi , ∀i ∈ {1, . . . , n}, i 6= k .

6.3.2 Sorting

To use the concept of Pareto dominance for sorting the multiple matchings, for each
multiple matching we transform the values of all, say n, scoring functions into a vector of
dimension n, where each dimension represents the same scoring function for all multiple
matchings. We then compute the Pareto set decomposition (cf. Definition 6.3.4) of the
set of vectors representing all multiple matchings. There exists a total order on this
decomposition which we use to group the multiple matchings. As mentioned previously,
the elements of each Pareto set are considered equally good. In general, in each Pareto
set there exist multiple matchings of different (potentially all possible) dimensions. Also,
e.g. multiple matchings with smaller size but larger score will exist in each Pareto set.

Since the computation of multiple matchings, as proposed in Section 6.2, is based on
intersecting pairwise matchings, an additional score might be of interest. This score, the
average matching score, averages the pairwise matchings from which a multiple matching
was computed.

Definition 6.3.6 (Average Matching Score). Let f ∈ F(P,Ql1 , . . . , Qlk) be a multiple
matching generated by intersecting k pairwise matchings fi ∈ F(P,Qli). In contrast
to the normalized sum-of-pairs score which averages the score of the induced pairwise
matchings, the average matching score is defined on the scores of the original pairwise
matchings.

score∗avg(P,Ql1 , . . . , Qlk ; f) :=
1
k

k∑
j=1

score∗(P,Qlj ; fj) . (6.3)

This score looks very similar to the one defined in Definition 6.2.6. The crucial differ-
ence lies in the pairwise matchings whose score is averaged. In Definition 6.2.6 these were
the pairwise matchings induced by the multiple matching. The size of all induced pairwise
matchings is the same. In this score, we average over the pairwise matchings from which
the multiple matching was computed. The size of these pairwise matchings may differ
largely.

6.4 Experimental Results

From the pairwise alignments of the thermolysin and HIV-1 protease inhibitors presented
in Section 5.6, we computed multiple alignments with the algorithmic approach described
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in the preceding sections. This was done both for the experimental conformers and the
conformer ensembles. We also computed multiple alignments from pairwise atom align-
ments and compared them with the multiple alignments computed from pairwise surface
alignments. All results are described in the subsequent subsections.

Let us recall, that the pairwise alignments presented in Section 5.6 represent diverse
pairwise matchings, and that we only considered the 10 top-ranked pairwise alignments
for each query molecule. The same 10 pairwise alignments of each query molecule were
now used to compute multiple alignments.

While for the pairwise alignment several parameters had to be specified, for the compu-
tation of multiple alignments, we only need one parameter, namely the relative minimum
size (cf. Equation 6.2). In all experiments we used a relative minimum size between 0.3
and 0.4, depending on the number of multiple matchings that were generated. We gener-
ally started with a value of 0.4. If the number of multiple matchings generated with this
value was too small, we decreased the value in steps of 0.05.

Ranking of the multiple matchings was done using the normalized sum of pairs score
(cf. Definition 6.2.6), the average pairwise matching score (cf. Definition 6.3.6), and the
size and dimension of the multiple matchings (cf. Definition 6.2.1).

After sorting the multiple matchings, which were computed w.r.t. the user-specified
relative minimum size, a single multiple matching was selected from the Pareto optimal
set (cf. Definition 6.3.5). As criterion for the selection of this multiple matching, we used
the minimal rms distance criterion. That is to say, we selected the multiple matching with
the minimal rms distance to the experimental conformers over all molecules.

6.4.1 Thermolysin Inhibitors

Experimental Conformers

The computation of multiple alignments, as presented in this paragraph, was done on the
basis of the pairwise alignments of experiments 2a and 3 (cf. Section 5.6.2), respectively.
The results are summarized in Tables B.1 and B.2.

In all but five cases, the selected multiple surface alignments (cf. Table B.1) positioned
the experimental conformers to the experimental position with an rms distance below
1.0 Å. In only one of these cases, the rms distance was above 1.5 Å, yet below 2.0 Å. In this
case, the inhibitor 3TMN was involved, which misses the negatively charged group present
in the other inhibitors. Multiple alignments without 3TMN gave even better results. A
comparison of two multiple alignments, one of which includes 3TMN, is given in Figures 6.2
and 6.3. In these multiple alignments, the inhibitor 5TLN, which is least similar to the
rest of the inhibitors, was used as reference structure. A close-up of the negatively charged
groups together with their corresponding matched surface points is shown in Figure 6.4.

The results of multiple atom alignment (cf. Table B.2) are much worse than those of
multiple surface alignment. In 25 of 56 cases, the rms distance was above 1.0 Å, and in
three of these cases even above 2.0 Å. Partly, these results can be explained by the already
worse pairwise atom alignments. But in contrast to multiple surface alignment, with
multiple atom alignment the rms distances increased compared to the rms distances from
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Figure 6.2: Multiple surface alignment of the thermolysin inhibitors with the experimental con-
former of 5TLN (yellow, ball-and-stick) as reference structure (cf. Table B.1). The inhibitor 3TMN
(light blue) is aligned worst with an rms distance of 1.76 Å. All other inhibitors are aligned with
an rms distance below 1.0 Å. In the left image, the surface of 5TLN is shown together with the
matched surface points of all molecules. Note, that in the region of the negatively charged group
(red circle), there are hardly any matched points. This is due to the fact that inhibitor 3TMN not
only misses a negatively charged group in this region, but has no atoms there at all.

Figure 6.3: Multiple surface alignment of the thermolysin inhibitors except for 3TMN with the
experimental conformer of 5TLN (yellow, ball-and-stick) as reference structure. In the left image
the surface of 5TLN is shown together with the matched surface points of all molecules. Note the
large number of matched surface points in the region of the negatively charged group (red circle).
This large number of points is due to a superposition of several properties, namely shape, acceptor
and negative MEP, denoted by different colors. In Figure 6.4, this region is shown as close-up view.
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Figure 6.4: Close-up of negatively charged group binding to the zinc ion (cf. Figure 6.3). The
small spheres denote the matched surface points of all inhibitors except 3TMN, which misses this
group. Different colors represent different properties, i.e., the dark blue spheres represent shape, the
light green spheres represent acceptor points, and the yellow spheres represent a negative charge.
Note, that even though the atomic structure of the overlaid groups varies, the physico-chemical
properties on the surface are very similar. Left: The semi-transparent surface depicts the solvent
excluded surface of 5TLN. Right: Negatively charged groups of the inhibitors in the active site of
thermolysin, interacting with the positively charged region (red) around the zinc ion. The SES of
thermolysin has been colored according to the electrostatic potential.

pairwise alignment. The most probable reason for this phenomenon lies in the scaffold
based alignment. As a result of multiple alignment, the scaffolds become even smaller and
thereby the molecules might get aligned worse. For molecules whose scaffolds fit perfectly
well, this has no negative effect, but if the scaffolds fit not as good, this effect becomes
more dominant.

Ensemble of Conformers

The multiple alignment results presented in this paragraph are based on the pairwise align-
ments of experiments 4 and 5 (cf. Section 5.6.2), respectively. The results are summarized
in Tables B.3 and B.4.

Neither with atom alignment nor with surface alignment did we obtain a satisfying
alignment for the inhibitor 3TMN, which is the smallest of the inhibitors and, as pre-
viously mentioned, misses the negatively charged group binding to the zinc ion of ther-
molysin. Consequently, 3TMN is not selective enough to identify active conformers and
their “correct” positions via a multiple alignment.

All inhibitors except for 3TMN performed well as reference structures for surface align-
ment. A look at Table B.3, however, reveals that all inhibitors had some minor problems
with 5TLN. In four multiple alignments, the imino-hydroxyl moiety of 5TLN is disoriented
(cf. Figure 6.6). This problem can already be observed in the pairwise alignments (cf.
Table A.12) and is due to the fact that the surface patch of this wrongly oriented imino-
hydroxyl moiety matches very well with the surface of several reference structures (cf.
Figure 6.5). Note that in the experimental positions, the imino-hydroxyl moiety of 5TLN
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Figure 6.5: Multiple surface alignment of the thermolysin inhibitors except for 3TMN with the
experimental conformer of 5TLN (yellow, ball-and-stick) as reference structure and the ensemble
conformers of the other inhibitors as query structures (cf. Table B.3). In the left image, the surface
of 5TLN is shown together with the matched surface points of all aligned molecules. A comparison
with Figure 6.3 reveals a high similarity to the experimental positions w.r.t. the regions inside
the solvent excluded surface of 5TLN. Differences are visible outside its surface. Note, that the
distribution of matched surface points also shows a high similarity. The red circle denotes the
imino-hydroxyl moiety, which is wrongly oriented in the alignment shown in Figure 6.6.

Figure 6.6: Multiple surface alignment of the thermolysin inhibitors except for 3TMN with
the experimental conformer of 1TLP (light brown, ball-and-stick) as reference structure and the
ensemble conformers of the other inhibitors as query structures (cf. Table B.3). In the left image,
the surface of 5TLN is shown together with the matched surface points of all aligned molecules.
Again, the distribution of matched surface points is very similar to that of the multiple alignments
shown in Figures 6.3 and 6.5. Note, that the imino-hydroxyl moiety (red circle) of 5TLN (yellow),
which used to point upwards (cf. Figure 6.5), is wrongly oriented in order to match the surface of
1TLP (left image).
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is not overlaid with any other inhibitor. Thus, in this respect the experimental alignment
is not favorable over this wrong orientation. In all cases, however, the charged hydroxamic
acid group is oriented correctly. Example alignments with 5TLN and 1TLP as reference
structures are shown in Figures 6.5 and 6.6, respectively.

The results of atom alignment are similar to those of surface alignment with the ex-
ception that with 5TLN as reference structure no satisfactory multiple alignment could be
found with atom alignment, but only with surface alignment. Hence, surface alignment
seems to be superior to atom alignment also for the task of identifying active conformers
and their “correct” positions.

6.4.2 HIV-1 Protease Inhibitors

Experimental Conformers

The multiple alignments of the HIVPI experimental conformers are based on the pair-
wise alignments of experiments 7a and 8 (cf. Section 5.6.2), respectively. The results are
summarized in Tables B.5 and B.6.

The multiple alignment results of the experimental conformers of the HIVPIs are very
similar to those of the thermolysin inhibitors. Using surface alignment, for all inhibitors
acting as reference structure almost perfect multiple alignments could be found. There are
only a few instances with an rms distance slightly larger than 1.0 Å (cf. Table B.5). One
example alignment with TPV as reference structure is shown in Figure 6.7. A close-up
of TPV in the active site of the HIV-1 protease together with the matched surface points
from the multiple alignment is depicted in Figure 6.8.

The results of atom alignment are a lot worse than those of surface alignment. All
table entries show an rms distance above 1.0 Å (cf. Table B.6). This is in analogy to the
thermolysin inhibitors, where the rms distance also deteriorated from pairwise alignment
to multiple alignment. Multiple atom alignment determines small but well fitting scaffolds
which take too little of the molecular structures into account to compute good multiple
alignments.

Ensemble of Conformers

The computation of multiple alignments of the HIVPI ensemble conformers was done on
the basis of the pairwise alignments of experiments 9 and 10 (cf. Section 5.6.2), respectively.
The results are summarized in Tables B.7 and B.8.

The results of the surface alignment (cf. Table B.7) are again very satisfying with
only two rms distances above 4.0 Å and only one complete miss alignment. Even if
tipranavir (TPV) is used as reference structure, which is least similar to the other in-
hibitors, very good results were obtained. Although the rms distances are above 2.0 Å,
except for lopinavir (LPV), a closer look at the aligned structures reveals that the large
rms values are mainly due to disoriented terminating groups, which, in this alignment,
point towards the flaps of the HIV-1 protease. These groups are also not matched in the
alignment of the experimental conformers, since tipranavir does not have atoms in this
region. The alignment can be seen in Figure 6.9. A second multiple alignment, here with
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Figure 6.7: Multiple surface alignment of the HIVPI’s experimental conformers with the ex-
perimental conformer of TPV (yellow, ball-and-stick) as reference structure (cf. Table B.5). Left
column: Surface of TPV together with the matched surface points of all molecules. One dominant
point cluster consisting of shape, donor and acceptor points is clearly visible (red circle). In this
region, a hydroxyl group is present in all molecules, allowing to build a hydrogen bond, whereby
the oxygen may function as acceptor and the hydrogen as donor. Hence, in this region, both donor
and acceptor points are present. Top row: Side view. Bottom row: Top view.

Figure 6.8: Experimental conformer of TPV in active site of HIV-1 protease. In this view, the
flaps of the HIV-1 protease, which are not shown, are above the active site (cf. Figure 5.6). The
small spheres depict the matched points from the multiple surface alignment shown in Figure 6.7.
These points describe the shape of the active site very well. The donor/acceptor region (cf. Fig-
ure 6.7) can be seen in the bottom center of the image, depicted by the cluster of green and blue
spheres.
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Figure 6.9: Multiple surface alignment of the HIVPIs with the experimental conformer of TPV
(yellow, ball-and-stick) as reference structure and ensemble conformers of the other HIVPIs as
query structures (cf. Table B.7). Left column: Surface of TPV together with the matched surface
points of all molecules. The dominant point cluster representing the donor and acceptor region is
still visible though less clear (bottom left image, bottom center). The rms distances of all molecules
except for that of LPV are above 2 Å. These large rms distances are mainly due to the ring moieties
sticking out of the aligned structures (bottom row, top center). Top row: Side view. Bottom row:
Top view.

RTV as reference structure, is shown in Figure 6.10. This alignment correctly overlays the
above mentioned terminating groups. The differences regarding these groups are already
due to the differences in the computation of pairwise alignments.

6.5 Summary and Conclusion

This chapter described in detail, how multiple alignments are computed from pairwise
alignments. To be more precise, multiple matchings, which define multiple alignments,
are computed from pairwise matchings defining pairwise alignments.

We computed multiple surface alignments as well as multiple atom alignments from
the pairwise alignments presented in the previous chapter (cf. Section 5.6.2). This was
done by intersecting pairwise matchings successively. Since the number of possible in-
tersections grows exponentially with the number of molecules, the size of the multiple
matchings had to be restricted. In order to efficiently store the multiple matchings, such
that identical matching bit-strings can be quickly found, PATRICIA trees were applied.
Using the above mentioned size restriction and PATRICIA trees as data structure, multi-
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Figure 6.10: Multiple surface alignment of the HIVPIs with the experimental conformer of RTV
(light brown, ball-and-stick) as reference structure and ensemble conformers of the other HIVPIs as
query structures (cf. Table B.7). Left column: Surface of RTV together with the matched surface
points of all molecules. Again, the point cluster representing the donor and acceptor region is
visible (bottom left image, bottom center). The rms distances of all molecules are below 1.5 Å.
Top row: Side view. Bottom row: Top view.

ple alignments could be computed in interactive times. The multiple matchings were then
partially sorted according to multiple scoring functions using the concept of Pareto set de-
composition. In order to investigate whether the multiple alignment algorithm generated
feasible alignments, the Pareto optimal set was examined whether it contains a multiple
alignment close to the experimentally given positions. Note, that all multiple alignments
contained in the Pareto optimal set are considered to be equally good. A comparison
of the computed multiple surface and atom alignments with the experimental positions
yielded the following results.

Alignment of Experimental Conformers. For the thermolysin inhibitors, the mul-
tiple alignments obtained from atom alignment and surface alignment gave similar results
with a slight advantage of surface alignment over atom alignment, in particular for in-
hibitor 5TLN as reference structure, which is most dissimilar to the other inhibitors.
While multiple surface alignment generally improved the rms distances w.r.t. the pairwise
alignments, with multiple atom alignment the opposite is the case. This could also, and
even more clearly, be observed for the HIV-1 protease inhibitors. Here, for two inhibitors
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as reference structure, the multiple atom alignment algorithm could not successfully align
tipranavir, which has a distinct scaffold to the other molecules.

The increase of rms distance observed for multiple atom alignments can be explained
as follows. The atom alignments are based on atom matchings, i.e. one-to-one correspon-
dences of atoms. Hence, in regions where the atoms cannot get overlaid perfectly, i.e.
regions where the molecules’ scaffolds differ, the atom alignment algorithm chooses the
atom which is closer. However, even though a second atom might only be slightly further
away, this atom will be completely ignored. In surface alignment using points distributed
on the molecular surface, the surface contribution of each atom is represented by several
points. Hence, surface points belonging to one atom of the first molecule can correspond
to surface points belonging to distinct atoms of the second molecule. Consequently, al-
though a surface matching represents a one-to-one correspondence of surface points, it
also represents a “fuzzy” correspondence between atoms or atomic surface patches. This
affects pairwise alignments too, but is amplified in the case of multiple alignments, where
the number of corresponding points or atoms is reduced due to the intersection of the
matchings. What remains in the case of atom alignment is generally a rather small com-
mon scaffold. Where such a common scaffold does not exist among all molecules, problems
arise.

Identification of Active Conformers. In all but one case, the correct position of
inhibitor 3TMN could not be identified using multiple surface alignment. This is due to
the small size of 3TMN, which results in a rather small surface overlap with the other
molecular surfaces. Here, atom alignment, indeed, produced better results. Except for
two cases, with atom alignment an ensemble conformer of 3TMN could be positioned close
to the experimental position. Due to its small size and the large flexibility of the other
molecules, however, with 3TMN used as reference structure, the identification of satisfying
multiple alignments failed for both surface alignment and atom alignment.

For tipranavir, atom alignment already failed to compute satisfying pairwise alignments
in the ensemble test, i.e. the identification of an active conformer. Hence, we did not
consider tipranavir for multiple atom alignment, but only for multiple surface alignment.
But even if we ignore tipranavir, multiple surface alignment produced better results. First
tests showed, that the results for multiple surface alignment could be improved if more
than the 10 top-ranked pairwise alignments were used. This should also be the case
for multiple atom alignment. However, we have not yet performed exhaustive tests to
investigate this further.

Final Conclusion. For the considered experimental conformers of thermolysin inhibitors
and HIV-1 protease inhibitors, the proposed multiple surface alignment algorithm pro-
duced excellent results, which are superior to those of multiple atom alignment.

With the exception of the thermolysin inhibitor 3TMN, multiple surface alignment of
ensemble conformers also produced better results than multiple atom alignment. Partially,
this is due to the fact, that pairwise surface alignment already produced better results than
pairwise atom alignment. However, it is also due to the mentioned inherent problems of
atom alignment with molecules showing dissimilar scaffolds.
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