
ROUTING AND STABBING

Dissertation zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften

vorgelegt am

Fachbereich Mathematik und Informatik

der Freien Universität Berlin

von

MAX WILLERT

Berlin, 2020

Erstgutachter: Prof. Dr. Wolfgang Mulzer

Zweitgutachter: Prof. Dr. Matias Korman

Tag der Disputation: 24. März 2021

© Copyright by Max Willert, November 2020. All rights reserved.

iii

Selbständigkeitserklärung
Ich erkläre gegenüber der Freien Universität Berlin, dass ich die vorliegende Dissertation
selbständig und ohne Benutzung anderer als der anegegebenen Quellen und Hilfsmittel
angefertigt habe. Die vorliegende Arbeit ist frei von Plagiaten. Alle Ausführungen, die
wörtlich oder inhaltlich aus anderen Schriften entnommen sind, habe ich als solche kenntlich
gemacht. Diese Dissertation wurde in gleicher oder ähnlicher Form noch in keinem früheren
Promotionsverfahren eingereicht. Mit einer Prüfung meiner Arbeit durch ein Plagiatsprü-
fungsprogramm erkläre ich mich einverstanden.

__
Max Willert

(Berlin, 27. November 2020)

v

Abstract
Routing. Let G be a simple, connected, undirected graph. We consider routing with prepro-
cessing in G. In a preprocessing step, each vertex of G receives a label and a routing table.
Then, we must be able to route a packet between any two vertices s and t of G, where each
step may use only the label of the target node t, the routing table of the current node and the
packet header. This problem has been studied extensively for general graphs, where efficient
routing schemes with polylogarithmic routing tables have turned out to be impossible. Thus,
special graph classes are of interest.

Let P be an x-monotone orthogonal polygon with n vertices. We call P a simple histogram
if its upper boundary is a single edge; and a double histogram if it has a horizontal chord
from the left boundary to the right boundary. Two points p and q in P are co-visible if and
only if the (axis-parallel) rectangle spanned by p and q completely lies in P. In the r-visibility
graph Vis(P) of P, we connect two vertices of P with a unit weighted edge if and only if they
are co-visible. We present a routing scheme for visibility graphs of simple and of double
histograms that have label size dlogne and table size O(logn deg(v)) for each vertex v of
P, where deg(v) is the degree of v in Vis(P). In simple histograms we can route along a
shortest path and need no additional header, whereas in double histograms we need headers
of size dlogne and we can route on a path that has twice the length of an optimal path. The
preprocessing time is in both cases O(m), where m is the number of edges in Vis(P).

Let V ⊂ R2 be a set of n sites in the plane. The unit disk graph DG(V) of V is the
graph with vertex set V where two sites v and w are adjacent if and only if their Euclidean
distance is at most 1. The edge weights correspond to the Euclidean distance of its endpoints.
Moreover, we use D to denote the diameter of DG(V). We show that for any given ε >
0, we can construct a routing scheme for DG(V) that achieves stretch 1 + ε, has label
size O

(
ε−1 logD log3 n/ log logn

)
, table size ε−O(ε−2) log3 n(1 + logD/ log logn) and the

header needs at most O(log2 n/ log logn) bits. The preprocessing time is O(ε−1n2 log2 n).

Stabbing. Suppose we are given a set D of n pairwise intersecting disks in the plane. A
planar point set P stabs D if and only if each disk in D contains at least one point from P.
We present a deterministic algorithm that takes O(n) time to find five points that stab D.
This provides a simple—albeit slightly weaker—algorithmic version of a classical result by
Danzer that such a set D can always be stabbed by four points. Furthermore, we give a simple
example of 13 pairwise intersecting disks that cannot be stabbed by three points.

vii

Acknowledgements
After ten years of learning, teaching, and living at Freie Universität Berlin, this thesis closes

an important period of my life. There are many people who helped me to conclude this thesis
and who became important persons in my life.

First of all, I would like to thank Wolfgang Mulzer, who was a great supervisor. His door
was always open for all my questions – including the stupid ones. It was inspiring to talk to
him about computational geometry, algorithms, mathematics and it was no problem to chat
about off-topics – in Berlin, but on trips to other cities and countries as well. Moreover, I am
very thankful for his confidence in my teaching skills.

Furthermore, thank you to Matias Korman and his Sendai crew for giving me and my
colleagues the opportunity to visit the wonderful country Japan, to eat a lot of new and
delicious food, and of course to work in a group of brilliant researchers. I have fond memories
of these visits.

Additionally, I would like to thank the group of the theoretical computer scientists for their
great support in all facets. Especially Katharina and Jonas offered great help during summer
term 2018 but also their comments on my thesis. It was a pleasure to me to study and work
with them. Moreover, thank you to Bahar for her technical support regarding my thesis. I
will also never forget our joint time in Japan. Finally, thank you to Frank and Klaus. Their
tuition is the basement of my mathematical knowledge. Frank, we all miss you!

I would also like to thank all my coauthors: the research group from Sendai, I already
mentioned, but also the group from Israel around Micha Sharir, Liam Roditty, and Haim
Kaplan. Both groups presented nice research topics I really enjoyed to think about. They
encouraged me with their feedback to present shorter and more intuitive proofs.

Thanks to Nils and his quite concentrated work on his bachelor thesis, I could focus on the
last meters of my own work.

I am very grateful for all my students and teaching assistants I could supervise in the
last decade. Most of all, I loved our discussions about mathematics, computer science, and
good teaching. I am so proud of you all and hope that I could give you the core ideas about
student centered teaching. In this context, I would like to thank the professors Ralf Romeike,
Christian Haase, and Jan Vahrenhold for their ideas and trust.

Last but not least, I would like to thank my family for their emotional support and of course
their interest for my research.

ix

Contents
1 Introduction 1

1.1 Routing . 1
1.2 Stabbing . 3
1.3 Contributions . 5
1.4 Thesis Outline . 5
1.5 Publications . 6

2 Preliminaries 7
2.1 Geometry . 7

2.1.1 Points, Lines and Disks . 7
2.1.2 Simple Polygons . 8
2.1.3 Range Spaces . 9

2.2 Graphs . 10
2.3 Routing Schemes . 12

I Routing 17

3 Simple Histograms 21
3.1 Landmarks . 21
3.2 Structural Insights . 23
3.3 The Routing Scheme . 25

4 Double Histograms 31
4.1 Landmarks . 31
4.2 Structural Insights . 33

4.2.1 Visibility in Double Histograms . 34
4.2.2 The target is close . 34
4.2.3 The target can be made close in one step. 36
4.2.4 The target is far away . 39

4.3 The Routing Scheme . 43

5 Span, Cover, Decompose 47
5.1 Planar Spanners . 47
5.2 Sparse Covers . 48
5.3 Shortest-Path Separator Decomposition . 49
5.4 Approximate Shortest-Path Separator Decomposition 57

xi

6 Unit Disk Graphs 63
6.1 Small Diameter . 63
6.2 Large Diameter . 64
6.3 A Routing Scheme with Stretch 1 + ε . 69

II Stabbing 75

7 Pairwise Intersecting Disks 79
7.1 Upper Bound . 79
7.2 Simple Bounds . 83

8 Computation of five Stabbing Points 87
8.1 A simple near-linear time algorithm . 87
8.2 A linear time algorithm . 88

9 Conclusions 97

Bibliography 101

Zusammenfassung 109

xii

CHAPTER 1
Introduction

Graph theory is one of the main research fields in computer science [CLRS09]. It provides
a mathematical model that can be used to analyze networks, like wireless networks, Internet,
traffic, but also social connections between people. In this thesis we consider two different
problems connected to graph theory and examine the influence of geometry on these problems.

1.1 Routing
Suppose we want to watch our favorite movie using our favorite streaming provider. The
video file lies on a big server – we do not know where. However, the file is split into small
data packets and each packet has to find its way in the Internet to our home desktop – it has
to be routed through a network.

The routing problem is a classic question in distributed graph algorithms [Gav01, GS04,
PU89]. We would like to preprocess a graph G for the following task: given a data packet
located at a source vertex s, route the packet to a target vertex t, identified by its label. We
strive for three main properties: locality (to find the next step of the packet, the scheme
should use only information at the current vertex or in the packet header), efficiency (the
packet should choose a path that is not much longer than a shortest path between s and t),
and compactness (the space for labels, routing tables, and packet headers should be as small
as possible). The ratio between the length of the routing path and a shortest path is called
stretch factor.

Obviously, we could store at each vertex v of G the complete shortest path tree of v. This
routing scheme is local and perfectly efficient: we can send the packet along a shortest
path. However, the scheme lacks compactness. Thus, the general challenge is to balance the
(potentially) conflicting goals of compactness and efficiency, while maintaining locality.

There are many routing schemes for general graphs (e.g., [ABNLP90, AG11, Che13, Cow01,
EGP03, RT15, RT16, SK85] and the references therein). For example, the scheme by Roditty
and Tov [RT16] stores a poly-logarithmic number of bits in the packet header and it routes a

1

2 Introduction

packet from s to t on a path of length O
(
k∆+m1/k

)
, where k > 2 is any fixed integer, ∆ is

the shortest path distance between s and t, and m is the number of edges in the graph. The

routing tables use mnO(1/
√

logn) total space, where n is the number of vertices.
In the late 1980’s, Peleg and Upfal [PU89] proved that in general graphs, any routing

scheme with constant stretch factor must store Ω(nc) bits per vertex, for some constant
c > 0. Later, Gavoille and Gengler could prove that there exists an n-vertex graph on which
every routing scheme that achieves stretch factor strictly smaller than 3 requires at least
Ω(n2) bits of total routing information [GG01].

This provides ample motivation to focus on special graph classes to obtain better routing
schemes. For instance, trees admit routing schemes that always follow the shortest path and
that store O(log2 n/ log logn) bits at each node [FG01, TZ01]. Moreover, in planar graphs,
for any fixed ε > 0, there is a routing scheme with a poly-logarithmic number of bits in each
routing table that always finds a path that is within a factor of 1 + ε from optimal [Tho04].
Furthermore, in graphs with bounded doubling dimension we can find a huge number of
routing schemes, e.g. [AGGM06, CGMZ16, Sli05, Tal04], but the most recent result is by
Konjevod, Richa, and Xia [KRX16]. For any fixed ε > 0, there is a routing algorithm for
graphs of doubling dimension α with O(logn) bit labels, O(log2 n/ log logn) header size,
and routing tables of size ε−O(α) log3 n. Observe, that the table size does not depend on the
normalized diameter of the input graph.

Another approach is geometric routing: the graph lies in a geometric space, and the routing
algorithm must find the next vertex for the packet based on the coordinates of the source and
the target vertex, the current vertex, and its neighborhood; see, e.g., [BFvRV15, BFvRV17]
and the references therein. In contrast to compact routing schemes, there are no routing
tables, and the routing is purely based on the local geometry (and possibly the packet header).
For example, the routing algorithm for triangulations by Bose and Morin [BM04] uses the
line segment between the source and the target for its routing decisions. In a recent result,
Bose, Fagerberg, van Renssen, Verdonschot [BFvRV17] showed that if vertices do not store
any routing tables, no geometric routing scheme can achieve stretch factor o(

√
n). This holds

irrespective of the header size.
We consider a particularly interesting and practically relevant class of geometric graphs,

namely visibility graphs of polygons. Banyassady et al. [BCK+17] presented a routing scheme
for polygonal domains with n vertices and h holes that uses O(logn) bits for the label,
O((ε−1 + h) logn) bits for the routing tables, and achieves a stretch of 1 + ε, for any fixed
ε > 0. However, their approach is only efficient if the edges of the visibility graph are
weighted with their Euclidean lengths. Banyassady et al. ask whether there is an efficient
routing scheme for visibility graphs with unit weights (the hop-distance). This setting seems
to be more relevant in practice, and similar results have already been obtained in unit disk
graphs for routing schemes [KMRS18, YXD12] and for spanners [Bin20, JV09].

We focus on r-visibility graphs of simple and double histograms. A simple histogram is
a monotone orthogonal polygon whose upper boundary consists of a single edge; a double
histogram is a monotone orthogonal polygon that has a horizontal chord that touches the
boundary of P only at the left and the right boundary. Let P be a (simple or double) histogram
with n vertices. Two vertices v and w in P are connected in the r-visibility graph Vis(P)

1.2 Stabbing 3

by an unweighted edge if and only if the axis-parallel rectangle spanned by v and w is
contained in the (closed) region P. We say that v and w are co-visible. At first, the focus on
r-visibility graphs of (double) histograms may seem a strong restriction. However, even this
case turns out to be quite challenging and reveals the whole richness of the compact routing
problem in unweighted, geometrically defined graphs: on the one hand, the problem is still
highly nontrivial, while on the other hand, much better results than in general graphs are
possible. Histograms constitute a natural starting point, as they are often crucial building
blocks in visibility problems [Bär11, BGM+14, BGP17, BGR17, BS14, HKS+18]. Moreover,
r-visibility is a popular concept in orthogonal polygons that enjoys many useful structural
properties; see, e.g., [Hof90, HKS+18, MRS90, O’R87, WK07] and the references therein for
more background on histograms and r-visibility.

Another graph class of interest comes from the study of mobile and wireless networks.
These networks are usually modeled as unit disk graphs [CCJ90]. Nodes in this network are
points in the plane and two nodes are connected if their distance is at most one. This is
equivalent to a disk intersection graph in which all disks have diameter one. For unit disk
graphs there are several known routing schemes. The first routing scheme is by Kaplan,
Mulzer, Roditty, and Seiferth [KMRS18]. They present a routing scheme with stretch 1 + ε
and routing table size O(log2 n log2D), whereD is the diameter of the given unit disk graph.
Their routing is recursive and needs an additional header of size O(logn logD). The second
routing scheme is due to Yan, Xiang, and Dragan [YXD12]. They present a routing scheme
with label size O(log2 n) and show that a data packet routes along a path of length at most
5∆ + 13, where ∆ is the length of the optimal path. The two results use slightly different
notions of routing schemes; see Chapter 2 for further details.

Thorup and Zwick introduced the notion of a distance oracle [TZ05]. Given a graph G,
the goal is to construct a compact data structure to quickly answer distance queries for any
two nodes in G. A routing scheme can be seen as a distributed implementation of a distance
oracle [RT16]. We will use the recently developed distance oracle from Chan and Skrepetos
[CS19] and turn it into an efficient routing scheme for unit disk graphs.

1.2 Stabbing
Another well-known problem from graph theory is the clique problem. It is defined as follows.

Clique Problem:

Given: simple, undirected graph G, integer value k ∈ N
Question: Does G contain the complete graph with k vertices?

In 1972, Richard Karp proved that the clique problem is NP-hard [Kar72]. Furthermore,
Zuckerman [Zuc06] showed that the optimization version of the clique problem is hard to
approximate, unless P = NP.

However, if the input graph is the intersection graph of disks we can find efficient (approxi-
mation) algorithms: for unit disk graphs the clique problem can be solved in polynomial time
[CCJ90]. Moreover, Bonamy et al. presented a randomized EPTAS for the clique problem in

4 Introduction

disk graphs [BBB+18]. Finally, Ambühl and Wagner [AW05] presented a polynomial time
algorithm that computes a τ/2-approximation, where τ is the so called stabbing number. One
goal of this thesis will be to understand this stabbing number. Therefore, we want to give a
short definition and later we present some bounds of this number.

Let D be a set of n disks in the plane. If every three disks in D intersect, then Helly’s
theorem shows that the whole intersection

⋂
D of D is nonempty [Hel23, Hel30, Rad21].

In other words, there is a single point p that lies in all disks of D, i.e., p stabs D. More
generally, when we know only that every pair of disks in D intersect, there must be a point
set P of constant size such that each disk in D contains at least one point in P – the minimum
cardinality of P is the stabbing number of D. It is not surprising that D can be stabbed by a
constant number of points, but for some time, the exact bound remained elusive. Eventually,
in July 1956 at an Oberwolfach seminar, Danzer presented the answer: four points are always
sufficient and sometimes necessary to stab any finite set of pairwise intersecting disks in the
plane. Danzer was not satisfied with his original argument, so he never formally published it.
In 1986, he presented a new proof [Dan86]. Previously, in 1981, Stachó had already given an
alternative proof [Sta84], building on a previous construction of five stabbing points [Sta65].
This line of work was motivated by a result of Hadwiger and Debrunner, who showed that
three points suffice to stab any finite set of pairwise intersecting unit disks [HD55]. In later
work, these results were significantly generalized and extended, culminating in the celebrated
(p,q)-theorem that was proven by Alon and Kleitman in 1992:

(p,q)-Theorem. Let D be a family of compact, convex sets in Rd and let
p > q > d+ 1 be natural numbers. If among any p members of the family some
q have a nonempty intersection than the family D can be stabbed by a constant
number1 of points. [AK92]

See also a recent paper by Dumitrescu and Jiang that studies generalizations of the stabbing
problem for translates and homothets of a convex body [DJ11].

Danzer’s published proof [Dan86] is fairly involved. It uses a compactness argument that
does not seem to be constructive, and one part of the argument relies on an underspecified
verification by computer. Therefore, it is quite challenging to check the correctness of the
argument, let alone to derive any intuition from it. There seems to be no obvious way to turn
it into an efficient algorithm for finding a stabbing set of size four. The two constructions
of Stachó [Sta84, Sta65] are simpler, but they are obtained through a lengthy case analysis
that requires a very disciplined and focused reader. Here, we present a new argument that
yields five stabbing points. Our proof is constructive, and it lets us find the stabbing set in
deterministic linear time. Following an open question in Har-Peled et al. [HKM+18], Carmi,
Katz, and Morin posted a draft on the arXiv in which they claim the existence of an algorithm
that can find four stabbing points in linear time [CKM18].

As for lower bounds, Grünbaum gave an example of 21 pairwise intersecting disks that
cannot be stabbed by three points [Grü59]. Later, Danzer reduced the number of disks to
ten [Dan86]. This example is close to optimal, because every set of eight disks can be stabbed
by three points, as mentioned by Stachó [Sta65]. We prove his claim. However, it is hard to

1To be more precise: the number depends only on p, q and d, but is independent of |D|.

1.3 Contributions 5

verify Danzer’s lower bound example—even with dynamic geometry software, the positions
of the disks cannot be visualized easily. In this thesis, we present a simple construction that
needs 13 disks and can easily be verified, almost by inspection.

1.3 Contributions
We briefly discuss the major contributions of this thesis.

Routing in orthogonal polygons. Let P be a simple or double histogram with n vertices.
The visibility graph Vis(P) of P has vertex set V(P) and there is an edge between two vertices
v,w ∈ V(P) if and only if they are r-visible, i.e., the axis-spanned rectangle of v and w is
contained in P. The edge weights equal to 1. We use m to denote the number of edges of
Vis(P), and deg(v) is the degree of v in Vis(P). We provide routing schemes for simple and
double histograms. For simple histograms we present a routing scheme with stretch 1, label
size dlogne, no headers, table size O(logn deg(v)) for v ∈ V , and preprocessing time O(m).
For double histograms we present a routing scheme with stretch 2, label and header size
dlogne, table size O(logn deg(v)) for v ∈ V , and preprocessing time O(m).

Routing in unit disk graphs. Let V be a set of n points in the Euclidean plane. The unit disk
graph DG(V) of V has vertex set V and there is an edge between two vertices v,w ∈ V if and
only if their Euclidean distance is at most 1. The edge weight equals the Euclidean distance
of its endpoints. Let D be the diameter of DG(V). For each ε > 0, we present a routing
scheme for unit disk graphs with stretch 1+ε, label sizeO

(
ε−1 logD log3 n/ log logn

)
, table

size ε−O(ε−2) log3 n(1 + logD/ log logn), header size O(log2 n/ log logn), and preprocess-
ing time O(ε−1n2 log2 n). This routing scheme is based on the well-known shortest-path
separator decomposition.

Stabbing pairwise intersecting disks. Let D be a set of n pairwise intersecting disks in
the Euclidean plane. We present a new proof that shows that the stabbing number of D
is upper bounded by 5. Moreover, we obtain a linear time algorithm that can find these 5
stabbing points assuming the real ram model. Finally, we present a simple construction of 13
pairwise intersecting disks that cannot be stabbed by 3 points.

1.4 Thesis Outline
We now describe the structure of this thesis. First of all, we present geometric and graph-
theoretic background in the preliminaries and define the concept of routing. The remainder
of the thesis is then split into two parts. In the first part, we present the already mentioned
routing schemes for visibility graphs of simple and double histograms as well as for unit disk
graphs. In the second part we present some lower bounds on the stabbing number, give the

6 Introduction

construction of five stabbing points for pairwise intersecting disks and show how these five
points can be computed in linear time. We conclude with open problems.

1.5 Publications
The results that are covered by this thesis appeared in the following publications.

[HKM+18] Sariel Har-Peled, Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth,
Micha Sharir, and Max Willert. Stabbing pairwise intersecting disks by five
points. In Proceedings of the 29th Annual International Symposium on Algorithms
and Computation (ISAAC), pages 50:1–50:12, 2018.

[CCK+20] Man-Kwun Chiu, Jonas Cleve, Katharina Klost, Matias Korman, Wolfgang
Mulzer, André van Renssen, Marcel Roeloffzen, and Max Willert. Routing in
histograms. In Proceedings of the 14th International Conference and Workshops
on Algorithms and Computation (WALCOM), pages 43–54, 2020.

[MW20] Wolfgang Mulzer and Max Willert. Compact routing in unit disk graphs. In
Proceedings of the 31st Annual International Symposium on Algorithms and
Computation (ISAAC), pages 16:1–16:14, 2020.

CHAPTER 2
Preliminaries

In this chapter, we want to present the notational aspects of geometry, graphs, and routing
schemes. Throughout the thesis we use Σ to denote the binary alphabet, i.e., Σ = {0, 1}.
Moreover, Σ∗ denotes the set of all binary strings (including the empty string). Additionally,
let [m] = {0, 1, . . . ,m}, for m ∈ N.1 For a complete description of geometric and graph
theoretic objects, see [DBVKOS97] and the references therein.

2.1 Geometry
2.1.1 Points, Lines and Disks

Throughout the whole thesis we work in the Euclidean plane. A point p is a tuple of two real
values, i.e., p = (px,py) ∈ R2. Let p and q be two points in R2. The Euclidean distance
between p and q is defined as

|pq| =
√
(px − qx)2 + (py − qy)2.

Moreover, we use pq to denote the line segment between the points p and q, that is

pq =
{
λ · p+ (1 − λ) · q | λ ∈ [0, 1]

}
.

We refer to p and q as the endpoints of the line segment pq. The length |pq| of the line
segment equals the Euclidean distance |pq| of its endpoints. Next, for a point c ∈ R2 and a
real value r > 0, we use D(c, r) to denote the closed Euclidean disk with center c and radius r,
i.e.,

D(c, r) =
{
p ∈ R2 | |cp| 6 r

}
.

Later, we will define the notion of balls. This notion does not differ too much from the
notion of Euclidean disks. However, whenever we talk about disks we mean Euclidean disks.

1Remark that it is more common to exclude 0 from [m]. Nevertheless, we include 0 for technical reasons.

7

8 Preliminaries

p

q

r

s

p

q

s

r

Figure 2.1: Left: `-visibility. The points p and q can see each other, the points r and s cannot.
Right: r-visibility. The points p and q are co-visible. The points r and s are not
co-visible but they see each other with respect to `-visibility.

2.1.2 Simple Polygons

A closed polygonal chain π = p0p1,p1p2, . . . ,pn−2pn−1,pn−1p0 is a sequence of n line seg-
ments, where every 3 consecutive endpoints pi−1,pi mod n,p(i+1) mod n are non-collinear.
It suffices to identify the polygonal chain with its vertices pi, i.e. π = p0p1 . . .pn−1. Further-
more, the polygonal chain is simple if and only if adjacent line segments intersect only in one
of their endpoints and any two non-adjacent line segments do not intersect at all. A simple,
closed polygonal chain π in the Euclidean plane always separates the plane into two disjoint
sets: the bounded interior of π – noted by intπ – and the unbounded exterior.

Definition 2.1 (Polygon). Let π = p0p1 . . .pn−1 be a simple, closed polygonal chain of at least
3 vertices. A polygon P(π) is the set of all points of the Euclidean plane contained in intπ or in
π, i.e., P(π) = π ∪ intπ. The polygonal curve π is the boundary of P(π). The set intµ is the
interior of P(π). We use the notation V(P) = {p0, . . . ,pn−1} for the set of vertices.

Visibility. When we talk about polygons it is natural to look at the concept of visibility.
There are at least two different concepts. First of all, there is `-visibility (or line-visibility),
which is the standard type and also the most natural one. Here, two points p,q ∈ P can
see each other if and only if the line segment pq is fully contained in P. Note, that the
line segment is allowed to touch the boundary since by definition the boundary is part of
the polygon. Secondly, there is the so called r-visibility (or rectangular-visibility). In this
concept, two points p,q ∈ P can see each other if and only if the axis-aligned rectangle
�(p,q) spanned by p and q is fully contained in the polygon P. Both concepts are shown in
Figure 2.1. Throughout this thesis, we only use r-visibility. Hence, we say that two points
p and q are co-visible or see each other if and only if �(p,q) ⊆ P. However, r-visibility only
makes sense in polygons where each boundary segment is parallel to the x- or the y-axis.

2.1 Geometry 9

p

q

u

v

w

t

Figure 2.2: This figure shows an orthogonal x-monotone polygon. The interval [p,q] is the
set of green vertices. The vertices u and w are reflex, the vertices v and t are
convex. On the other hand, u and v are left vertices, while w and t are right
vertices.

Orthogonal polygons. A polygon P is said to be orthogonal if every edge is either horizontal
or vertical, i.e., every interior angle is either π/2 or 3π/2.

We can classify the vertices of P as follows. A vertex v in P is incident to exactly one
horizontal edge h. We call v a left vertex if it is the left endpoint of h; otherwise, v is a
right vertex. Furthermore, v is convex if the interior angle at v is π/2; otherwise, v is reflex.
Accordingly, every vertex of P is either `-convex, r-convex, `-reflex, or r-reflex. The different
types of vertices are shown in Figure 2.2.

Monotone polygons. An orthogonal polygon P is said to be x-monotone if and only if for
every vertical line ` the intersection of ` with P is either empty or one line segment; refer to
Figure 2.2. Next, let p and q be two points (not necessarily vertices) in P. We say that p is
(strictly) to the left of q, if px 6 qx (or px < qx). The term (strictly) to the right of is defined
analogously. The interval [p,q] of p and q is the set of vertices in P between p and q, i.e.,

[p,q] =
{
v ∈ V(P) | px 6 vx 6 qx

}
.

The interval of two points is depicted in Figure 2.2.

2.1.3 Range Spaces

We define the notion of hypergraphs or range spaces, which are synonyms. The following
definitions and properties can be found in [HP11].

10 Preliminaries

Definition 2.2. A range space S is a pair (X,R), consisting of a set X and a set of ranges R,
which is a family of subsets of X.

In computational geometry, as also in our work, the Vapnik-Chervonenkis dimension [VC15]
plays a crucial role. For this, let Y be a subset of X. Then, SY = (Y,RY = {R ∩ Y | R ∈ R}) is
the range space induced by Y. We say that Y is shattered by S if RY is the power set of Y, i.e.,
it contains every subset of Y and therefore, |RY | = 2|Y| if Y is finite.

Definition 2.3. Let S = (X,R) be a range space. The VC-dimension of S is the maximum
cardinality of a shattered subset of X. If there are arbitrarily large shattered subsets, i.e., the
maximum does not exist, the VC-dimension is∞.

Next, we define another important measure. Let S = (X,R) be a range space. The shatter
function is defined as

πS(n) = max
Y⊆X,|Y|=n

|RY |.

Finally, the shattering dimension of S is the smallest number δ such that πS(n) ∈ O(nδ) for all
n ∈ N. We will need the following important property that relates the shattering dimension
to the VC-dimension. A proof can be found in [HP11].

Lemma 2.1. Let S be a range space, d its VC-dimension and δ its shattering dimension. Then
we have πS(n) ∈ O(nd) and d ∈ O(δ log δ).

Remark. The first statement of the lemma implies δ 6 d which is known as Sauer-Shelah
lemma [Sau72, She72].

2.2 Graphs
A graph G is a pair of vertices VG and edges EG. We use V instead of VG and E instead
of EG if the context is clear. Throughout this thesis we consider simple, undirected graphs,
which means that E does not contain any loops or multi-edges, i.e., E ⊆

(
V
2

)
. Moreover, we

only consider finite graphs: V is a finite set and we use n to denote its cardinality. Hence,
a graph G can be seen as range space in which every range has cardinality 2. For a vertex
v ∈ V , we use N(v) to denote the neighborhood of v, i.e., the set of adjacent vertices of v in
G. The degree of v in G is defined as deg(v) = |N(v)|. Moreover, the closed neighborhood of
v, denoted by N[v], contains v and all its neighbors. We extend N(·) to sets as usual: for
W ⊆ V , we let N(W) be the set of all vertices of G, that have a neighbor in W. Finally, we
let N[W] = N(W) ∪W.

Paths and connectedness. A sequence π : 〈v0, v1, . . . , vk〉 of vertices is called a path if and
only if two consecutive vertices of π share an edge, i.e., {vi−1, vi} ∈ E, for i = 1, 2, . . . ,k.
Moreover, we call v0 and vk the endpoints of π. The path is simple if and only if vi 6= vj, for
i 6= j. Moreover, let PathG(s, t) be the set of all paths in G whose endpoints are s and t. A
graph G is connected if and only if for every pair of vertices s, t ∈ V the set PathG(s, t) is
non-empty.

2.2 Graphs 11

Figure 2.3: This figure shows the r-visibility graph of the orthogonal polygon from Figure 2.1.

Shortest path metric. We consider also weighted graphs. That means our graph G is a
triple consisting of the set of vertices V , the set of edges E, and a weight functionw : E→ R+
that assigns to every edge e ∈ E a positive value w(e). Next, we want to define the distance
of two vertices in the graph. First of all, let π : 〈v0, v1, . . . , vk〉 be a path. We use |π| to denote
the length of π, that is

|π| =

k∑
i=1

w
(
{vi−1, vi}

)
.

We define the shortest path distance of s and t in G as

dG(s, t) = min {|π| | π ∈ PathG(s, t)} .

We omit the subscript G if the context is clear. Moreover, since the weights of the edges are
positive, we know that dG(s, t) is well-defined and every shortest path between s and t is
simple. The diameter of G, denoted by diam(G), is the length of the longest shortest path,
i.e.,

diam(G) = max
s,t∈V(G)

dG(s, t).

Next, for v ∈ V and r > 0, we define B(v, r) = {w ∈ V | dG(v,w) 6 r} as the ball of v with
radius r inG. Moreover, it is important to define the hop distance and to distinguish it from the
shortest path distance. For the weighted graph G = (V ,E,w) we define H(G) = (V ,E,w1)
where w1(e) = 1, for each e ∈ E. In other words, we forget the original weights of the
edges and assign to every edge the unit cost 1. Then, the hop distance of s and t in G,
denoted by hG(s, t), is the shortest path distance of s and t in H(G). More formally, it is
hG(s, t) = dH(G)(s, t). Again, we omit the subscript G if the context is clear.

12 Preliminaries

Figure 2.4: The disks in the unit disk graph have diameter 1 and there is an edge between
two centers if and only if their corresponding disks intersect.

Visibility graphs. Let P be an orthogonal polygon. The visibility graph Vis(P) of P is a
simple, undirected, weighted graph with vertex set V(P) and an edge between every pair
of vertices v,w ∈ V(P) if and only if v and w are co-visible, that is �(v,w) ⊆ P; see for
example Figure 2.1. The weight of the edge {v,w} equals the unit weight 1. Hence, in our
visibility graph we focus on the hop distance. Since P is simple, Vis(P) is connected. Recall,
that for a vertex v ∈ V(P) the set N(v) contains exactly the vertices that share an edge with
v. In other words, N(v) is the set of vertices visible from v.

Unit Disk Graphs. Let V ⊂ R2 be a set of n sites in the Euclidean plane. The unit disk
graph DG(V) of V is a simple, undirected, weighted graph with vertex set V and an edge
between every pair of vertices v,w ∈ V if and only if |vw| 6 1; see Figure 2.4. The weight of
the edge {v,w} equals the Euclidean distance |vw|. Throughout, we will assume that DG(V)
is connected. Clearly, we have diam(G) 6 n− 1. As depicted in Figure 2.4, a unit disk graph
can also be seen as a disk intersection graph: there is an edge between two vertices v and w
if and only if the (Euclidean) disks D(v, 0.5) and D(w, 0.5) intersect. Thus, for v ∈ V , we
have N(v) = D(v, 1) ∩ V = B(v, 1). Recall, that D(·, ·) is the Euclidean disk, whereas B(·, ·)
is the graph theoretic ball.

2.3 Routing Schemes
In this section, we discuss all the different routing models and provide a precise definition of
our notion of a routing scheme. For this, let G = (V ,E,w) be a simple, undirected, weighted,
and connected graph with n vertices.

The ports. The first main ingredient for a precise definition of a routing scheme is the port
model. Let v ∈ V be a vertex. This vertex can access an adjacent vertex w ∈ N(v) through a
port number p, i.e., the vertex v can send information to w by using the port p. We write
w = node(v,p). Different port numbers lead to different neighbors. In terms of routing the
literature distinguishes at least two different models [FG01, FG02, TZ01]. In the fixed-port
model we treat the port numbers as part of the input and hence, we are not allowed to change
them, they are assigned in arbitrary manner. On the other hand, there is the designer-port

2.3 Routing Schemes 13

model. Here, it is allowed to assign port numbers during the preprocessing steps. This
gives much more power to the designer of the routing scheme [FG01, FG02, TZ01, YXD12].
However, a routing scheme that uses the designer-port model cannot easily be used as a
building block for more complicated routing schemes, since additional lookup tables become
necessary in order to store the assignments of the port numbers. The routing schemes in this
thesis use the fixed-port model. We assume that a port number is represented as a binary
string of length exactly dlogne.

The labels. The next main idea for a routing scheme is the concept label. Each vertex v ∈ V
obtains a label lab(v) ∈ Σ∗ which is a binary string. The literature distinguishes at least two
models. In the name-independent model the label of a vertex corresponds to an identifier of
the vertex which is given as input, see for instances [AGM04a, AGM+04b, ACL+06, KRX16].
Hence, in this model the designer is not allowed to assign any labels different from the
identifier. The routing scheme is built on top of the names. In contrast to that, the labeled
model allows the designer to store additional information in the label. Hence, the label is
used to identify the node in the network but might also contain more information about the
topology of the graph. This model gives more power to the designer. Throughout this thesis,
we use the labeled model.

The tables. Every node v ∈ V in the network obtains a routing table tab(v) ∈ Σ∗ which is –
like the label – a binary string. This routing table contains information about the topology of
the graph as well as the identity of the corresponding vertex v. A lot of routing schemes do
not distinguish between labels and tables, because we can easily concatenate both strings.
The designers of these routing schemes talk about labels rather than tables. However, the
concatenation only makes sense if the string lengths are asymptotically equal. This is the
reason, why we want to distinguish between labels and tables.

The header. A data packet consists of three parts: the message, the static header and the
dynamic header. The message is the information that has to be sent to the destination node,
like an email or a video. Its content is independent of the routing scheme – we ignore it. Let
us assume that the data packet is located at some node (perhaps the destination). The node
has to know the destination of the data packet to decide on the hop to the next node (or to
read the message). This part of information is stored in the static header. It is created during
some initialization step at the source node and does not change again. The dynamic header
is a bit string that contains additional information and might change during the routing of
the data packet through the network. Like other routing schemes, we want to use the term
“target label” instead of “static header” and “header” rather than “dynamic header”. It is not a
problem to use this notion, since in this thesis the static header will always contain the target
label only. As we can see next, in some cases the static header might not contain the target
label. However, this does not occur in this thesis.

The initialization of the header. When a data packet is created at some source node s
and we are given some target label lab(t), the static part of the header has to be initialized.

14 Preliminaries

There are different techniques how this can be done. First, the most obvious idea is to put
lab(t) into the static header. The second idea is to use lab(t) as well as tab(s) to compute a
static header which might differ from lab(t). Both ideas are simple and can be done locally.
We briefly sketch a third idea that is called handshaking, refer to [TZ01]. For this, we use
a data packet whose message is empty and send it through the network in a deterministic
fashion. While this packet travels through the network it collects information about the
graph. Eventually, this data packet – together with the collected information – returns to
the start node s. Finally, we use lab(t), tab(s), and the collected information to compute
the static header. Obviously, handshaking is more general than the second idea which is
more general than the first idea. Moreover, handshaking is not restricted to the initialization
of the static header. It can also be used during the routing process to update the dynamic
header. However, we will not make use of this concept – neither for the initialization nor the
routing process. We will use the first idea for our definition of a routing scheme to keep the
presentation as slim as possible.

The routing function. Last but not least we have to discuss the process of routing. For
this, we assume that a data packet, together with its static header hs and its dynamic header
hd, is located at a node v ∈ V . The routing function uses the two parts of the header as
well as the routing table tab(v) of the current node v and computes a port p as well as a
new dynamic header h ′d. The data packet is then sent to the next vertex node(v,p) while
the dynamic header of the data packet is updated to h ′d. Hence, the routing function can
be seen as a transition function like we have in finite automatons – it models exactly one
step of the routing process. In the literature we can find different answers on the question
of what a routing function is allowed to access. For instance, the concept of geometric
routing allows the routing function to have direct access to geometrically induced coordinates
[BFvRV15, BFvRV17, BKvRV17a, BKvRV17b]. These coordinates might be irrational which
yields an impractical routing scheme. Moreover, we can find routing schemes where the
routing function has direct access to the vertices in the neighborhood of the current one
[KMRS18]. Since the neighborhood test problem is fundamental in the context of routing we
will not make use of these tricks.

The mathematical definition. Let G be a graph class. The routing model is depicted in
Figure 2.5. A routing scheme R for G consists of a family of label functions labG : VG → Σ∗

and table functions tabG : VG → Σ∗, for each G ∈ G. As before, we omit the subscript G if
the context is clear. Furthermore, R has a routing function σ : Σ∗ × Σ∗ × Σ∗ → Σ∗ × Σ∗.
The routing function σ describes the behavior of the routing scheme, as follows: assume a
data packet with (dynamic) header h is located at a vertex s ∈ VG and must be routed to
a destination t ∈ VG. Then, σ(tab(s), lab(t),h) computes a port p so that the next hop of
the data packet is from s to node(s,p), as well as a string h ′ which is then updated in the
header of the data packet. Now, let v0 = s, h0 = ε, σ(tab(vi), lab(t),hi) = (pi+1,hi+1)
and vi+1 = node(vi,pi+1), for i > 0. The sequence (vi,hi)i∈N is called routing sequence.
The routing scheme R is correct for G ∈ G, if and only if for all distinct vertices s, t ∈ VG,
there is a number m(s, t) ∈ N such that vi = t and hi = ε, for all i > m(s, t), and vi 6= t,

2.3 Routing Schemes 15

01001000111
01101010001
00001110110
01111010110

Data

Current Vertex

01101001011
00111010111
00011111000
11011110001

TableConnections
Port1: vertex v1

Data Packet
Target Label

Header
1010101100110001
1101101011110010

Target = Current Vertex?

yes

done

no
Calculate new Port
use: Header, Table, Target Label

Forward Packet

Port2: vertex v2

Port3: vertex v3

Port4: vertex v4

Update Header

Figure 2.5: The routing model.

for all i ∈ [m(s, t) − 1]. If R is correct for G, then δG(s, t) =
∑m(s,t)
i=1 w(vi−1, vi) is called

the routing length between s and t in G.

The measures. Let G(n) be the set of all graphs of G with exactly n vertices. Let R be a
correct routing scheme for all G ∈ G. We want to present the main measures that are used to
compare different routing schemes.

First of all the sizes of the labels and the tables have to be small, since we want to use a
small amount of storage for the tables in the nodes and for the labels in the static header.
The routing label size L(n) and the routing table size T(n) are formally defined as

L(n) = max
G∈G(n)

max
v∈VG

| labG(v)|,

T(n) = max
G∈G(n)

max
v∈VG

| tabG(v)|.

We measure the size of the labels and tables, resp., by maximizing over all v ∈ VG. Instead
it is also possible to measure the size by summing over all v ∈ VG. This measure is usually
used for routing schemes, where a lot of nodes have small labels, resp. tables, and only a few
vertices store huge amounts. Moreover, this measure is often used for lower bound results.

The stretch relates the length of the routing path to the length of the shortest path. It is
formally defined as

S(n) = max
G∈G(n)

max
s6=t∈VG

δG(s, t)
dG(s, t)

.

Next, the size of the header should be as small as possible. It can be measured as follows.
Let hi(s, t) be the header of the i-th routing step from s to t. The header size is defined as

H(n) = max
G∈G(n)

max
s,t∈VG

max
i∈[m(s,t)−1]

|hi(s, t)|.

16 Preliminaries

The objective is, to design routing schemes that minimize all four values at the same
time. However, the computation of labels and tables occurs in a preprocessing step. This
preprocessing time should be as small as possible.

Routing in trees. We give a short overview for routing in trees. Routing in trees will play
an important role in the routing schemes discussed in this thesis. There are many different
such schemes, based on similar ideas. The following two lemmas are due to Fraigniaud and
Gavoille [FG01] as well as Thorup and Zwick [TZ01]. Both lemmas appear in both articles.

Lemma 2.2. Let T be an n-vertex tree with arbitrary edge weights. In the fixed-port model, there
is a routing scheme for T with label and table size O(log2 n/ log logn) whose routing function
σtree sends a data packet along a shortest path, for any pair of vertices. The preprocessing time
of the labels, resp. tables, is O(n logn) and the header is not used.

Lemma 2.3. Let T be an n-vertex tree with arbitrary edge weights. In the designer-port model,
there is a routing scheme for T with label and table size O(logn) whose routing function sends
a data packet along a shortest path, for any pair of vertices. The preprocessing time of the labels,
resp. tables, is O(n logn) and the header is not used.

Both routing schemes are asymptotically optimal. More precisely, for each tree routing
scheme in the fixed-port model, that achieves stretch 1, there exists an n-vertex tree T and
a vertex of T that needs Ω(log2 n/ log logn) bits in the label, resp. table. This was proven
by Fraigniaud and Gavoille [FG02]. A similar statement holds for the designer-port model.
However, the designer-port routing scheme for trees is not useful as a building block for more
complex routing schemes, especially if we need to be able to route in several subtrees of the
input graph: If a graph is covered by a set of trees and a vertex is contained in different trees,
we need a lookup table that maps the virtual ports of the different trees to the physical port
numbers. In fact, we only use Lemma 2.2.

I
Routing

17

19

Part Outline
In this part of the thesis we give the details of routing schemes for three different graph
classes: visibility graphs of simple histograms, visibility graphs of double histograms and
intersection graphs of unit disks.

Definition 2.4 (Histogram). A simple histogram P is an x-monotone orthogonal polygon where
the upper boundary consists of exactly one horizontal edge. The upper horizontal edge is called
base edge, its endpoints are called base vertices; see Figure 2.6, left. A double histogram P is
an x-monotone orthogonal polygon with a base line, a horizontal line segment whose relative
interior lies in the interior of P and whose left and right endpoints are on the left and right
boundary edge of P; see Figure 2.6, right.

base vertex base vertex
base edge

base line

Figure 2.6: Left: Simple Histogram. Right: Double Histogram.

Let P be a simple or double histogram with n vertices. The visibility graph Vis(P) has vertex
set V(P) and there is an edge between two vertices v,w ∈ V(P) if and only if �(v,w) ⊆ P.
The visibility graph has unit weights. Let V be a finite set of points in the Euclidean plane.
The unit disk graph DG(V) has vertex set V and there is an edge between v,w ∈ V if and
only if |vw| 6 1. The unit disk graph has Euclidean weights.

First, we present a routing scheme for visibility graphs of simple histograms and subse-
quently a routing scheme for visibility graphs of double histograms. Both routing schemes
do not use any known routing schemes as building blocks. Hence, the insight of these two
chapters lies in the combinatorial structure of the shortest paths in these types of polygons.

Secondly, we present a routing scheme for unit disk graphs on the edges. In contrast to the
histograms, we use a lot of known techniques and data structures and combine them to an
efficient routing scheme for unit disk graphs. The main building block of this scheme is the
shortest-path separator decomposition by Mikkel Thorup [Tho04]. There is a complete chapter
for the description of this decomposition, but it also includes a brief outline of covers and
spanners.

CHAPTER 3
Simple Histograms

In this chapter we present an efficient routing scheme for visibility graphs of simple his-
tograms with r-visibility assuming hop distance.

Let P be an n-vertex simple histogram and Vis(P) the visibility graph of its vertices assuming
r-visibility. The edges have unit weights. We use V to denote the vertex set V(P) of P. Hence,
|V | = n. To make the discussion easier, we assume1 that each vertex v ∈ V has a unique
identifier vid ∈ [n − 1], where the left base vertex has index 0 and the indices increase
counterclockwise along the boundary. Thus, the right base vertex has index n−1. We assume
that no three vertices are on a horizontal or vertical line. The chapter is organized as follows:
first of all we present some notions relating to simple histograms. After that, we analyze the
structure of shortest paths in Vis(P). Last but not least, we present the routing scheme.

3.1 Landmarks
We want to understand how shortest paths in P behave. Therefore, we associate with each
v ∈ V three landmark vertices in P; see Figure 3.1. Whenever we compute the minimum or
maximum of a set of tuples, we use lexicographic order.

First, the corresponding vertex of v, cv(v), is the unique vertex within the same horizontal
edge as v. Next, the right vertex of v, r(v), is the lexicographically largest vertex of N(v), i.e.,

r(v) = argmax
{
(wx,wy) | w ∈ N(v)

}
.

The geometrical interpretation of r(v) is as follows: we shoot a rightward ray r from v. Let e
be the vertical edge where r first hits the boundary of P. The vertex r(v) is the endpoint of e
closer to the base edge. In a similar way, we obtain the left vertex `(v) of v, by shooting the
horizontal ray to the left, i.e.,

`(v) = argmin
{
(wx,−wy) | w ∈ N(v)

}
.

1We can drop the assumption by performing a simple scan of the graph in time O(number of edges).

21

22 Simple Histograms

v

cv(w)w

`(v)
`(w)r(v)

u

`(u) = `(s)
s

r(s)I(v)

w
cv(u)

r(u)

cv(v)

r(w) = cv(s)

Figure 3.1: Left, right, and corresponding vertices. The interval I(v) of v is the set of vertices
between `(v) and r(v).

It is easy to see that r(v) = argmax {wid | w ∈ N(v)} and `(v) = argmin {wid | w ∈ N(v)}.
The following observation shows the relationship between the indices and the x-coordinates
of the vertices.

Observation 3.1. If p is either an r-reflex vertex or the left base vertex and q is either `-reflex
or the right base vertex, then [p,q] =

{
v ∈ V | pid 6 vid 6 qid

}
.

Additionally, the interval of a vertex v, I(v), is the interval of the left and right vertex of
v, that is I(v) = [`(v), r(v)]. Every vertex visible from v is in I(v), i.e., N(v) ⊆ I(v). This
interval will be crucial in our routing schemes and gives a very useful characterization of
visibility in simple histograms.

The previous definitions give notions for different landmarks relative to one vertex. To
characterize shortest paths we have to take a look at some important landmarks that depend
on both, the start and the target vertex; see Figure 3.2. Let s and t be two vertices. The
following definitions can only be applied for the case that t ∈ I(s) \N(s). We assume that t
lies strictly to the right of s, the other case is symmetric. The near dominator nd(s, t) of t
with respect to s is the rightmost vertex in N(s) to the left of t. If there is more than one
such vertex, nd(s, t) is the vertex closest to the base edge. To be precise:

nd(s, t) = argmax
{
(wx,wy) | w ∈ N(s),wx 6 tx

}
.

In contrast to that, the far dominator fd(s, t) of t with respect to s is the leftmost vertex in
N(s) but to the right of t, i.e.,

fd(s, t) = argmin
{
(wx,−wy) | w ∈ N(s), tx 6 wx

}
.

The interval I(s, t) =
[
nd(s, t), fd(s, t)

]
contains all the vertices between (and including)

the near and far dominator. Specifically, it is t ∈ I(s, t) by definition.

3.2 Structural Insights 23

s

t1

nd(s, t1)

fd(s, t1)

t2

nd(s, t2)

`(s) = fd(s, t3)

t3

nd(s, t3)

I(s, t1)
r(s) = fd(s, t2)

Figure 3.2: The near and the far dominators, as well as the corresponding interval I(s, t1).

3.2 Structural Insights
Next, we give several characterizations of visibility in simple histograms and analyze how the
shortest paths between vertices behave.

Observation 3.2. Let v ∈ V be r-reflex (resp., `-reflex) or the left (resp., right) base vertex, and
let A = [v, r(v)] (resp., A = [`(v), v]). Then, for all vertices u ∈ A \ {v, r(v), `(v)} we have
I(u) ⊆ A.

Proof. Let v be r-reflex or the left base vertex. Assume for the sake of contradiction, that
`(u) or r(u) is outside of A. Then, u must have a larger y-coordinate than v. It follows that
v cannot see r(v). This contradicts the definition of r(v). Hence, we have `(u), r(u) ∈ I and
therefore, I(u) ⊆ A. If v is `-reflex or the right base vertex, the proof is symmetric.

Observation 3.3. Let v ∈ V be a left (resp., right) vertex distinct from the base vertex. Then, v
can see exactly two vertices to its right (resp., left), namely cv(v) and r(v) (resp., `(v)).

Proof. Suppose that v is a left vertex; the other case is symmetric. Any vertex visible from
v to the right of v lies in in [cv(v), r(v)]. If cv(v) is convex, the observation is immediate,
since then [cv(v), r(v)] = {cv(v), r(v)}. Otherwise, cv(v) is r-reflex and r(v) = r(cv(v)).
By Observation 3.2, we get that for all u ∈ [cv(v), r(v)] \ {cv(v), r(v)}, we have I(u) ⊆
[cv(v), r(v)]. Thus, v /∈ I(u) for any such u, and since N(u) ⊆ I(u), v cannot see u.

We analyze the (shortest) paths in a simple histogram. The following lemma identifies
certain “bottleneck” vertices that appear on any path; see Figure 3.3.

Lemma 3.4. Let v,w ∈ V be co-visible vertices such that v is either r-reflex or the left base
vertex and w is either `-reflex or the right base vertex. Let s and t be two vertices with s ∈ [v,w]
and t /∈ [v,w]. Then, any path between s and t includes v or w.

Proof. LetA = [v,w]. Since t /∈ A, not both v,w are base vertices. Thus, suppose without loss
of generality that vy < wy. Then, cv(v) is a left vertex and can seew. Hence, Observation 3.3
implies that r(v) = r(cv(v)) = w. By Observation 3.2, we get N(u) ⊆ I(u) ⊆ A, for any

24 Simple Histograms

v
w = r(v)

s

cv(v)

⊆ P

t

t

s

Figure 3.3: Left: Any path from s to t includes v or w, since the blue rectangle contains only
v and w as vertices. Right: A shortest path from s to t using the highest vertex.

u ∈ A\ {v,w}. Thus, a neighbor of u cannot be outside of A. Therefore, the only two vertices
of A that can see a vertex not in A are v and w. Hence, any path between s and t must
include v or w.

An immediate consequence of Lemma 3.4 is that if t /∈ I(s), then any path from s to t uses
`(s) or r(s). The next lemma shows that if t /∈ I(s), there is a shortest path from s to t that
uses the higher vertex of `(s) and r(s), see Figure 3.3.

Lemma 3.5. Let s and t be two vertices with t /∈ I(s). If `(s)y > r(s)y (resp., `(s)y < r(s)y),
then there is a shortest path from s to t using `(s) (resp., r(s)).

Proof. Assume `(s)y > r(s)y, the other case is symmetric. Let π : 〈s = p0, . . . ,pk = t〉
be a shortest path from s to t. If π contains `(s), we are done. Otherwise, by Lemma 3.4,
there is a 0 < j < k with pj = r(s) and pi 6= r(s), for i > j. Thus, pj+1 /∈ I(s). Since we
assumed `(s)y > r(s)y, it follows that `(pj) = `(r(s)) = `(s), so pj+1 must be to the right of
pj. Therefore, by Observation 3.3, we can conclude that pj+1 ∈ {cv(pj), r(pj)}. Now, since
`(s) is higher than r(s), it can also see cv(pj) and r(pj), in particular, it can see pj+1. Hence,
〈s, `(s),pj+1, . . . ,pk〉 is a valid path of length at most |π|, so there exists a shortest path from
s to t through `(s).

The next lemma considers the case where t is in I(s). Then, the near and far dominator
are the potential vertices that lie on a shortest path from s to t (see also Fig. 3.5).

Lemma 3.6. Let s and t be two vertices with t ∈ I(s) \N(s). Then, nd(s, t) is reflex. Moreover,
if t is to the left of s then fd(s, t) = `(nd(s, t)), and if t is to the right of s then fd(s, t) =
r(nd(s, t)).

Proof. Without loss of generality, t lies strictly to the right of s. First, assume that nd(s, t)
is `-convex. Since s can see nd(s, t) and since nd(s, t) is to the right of s, it follows that s
and nd(s, t) share the same vertical edge. Then, cv(nd(s, t)) is also visible from s and its
horizontal distance to t is smaller. This contradicts the definition of nd(s, t).

3.3 The Routing Scheme 25

v = br(u)

br(v)
w

br(w)

u b

br(b)

Figure 3.4: The breakpoints of some vertices.

Next, assume that nd(s, t) is r-convex. Let v be the reflex vertex sharing a vertical edge
with nd(s, t). Then, N(nd(s, t)) ⊆ N(v) and v ∈ N(s). Furthermore, since t is strictly to the
right of v but still inside I(s), the vertices v and r(s) must be distinct. Thus, vy < sy, so that
cv(v) is also visible from s. Moreover, the horizontal distance of cv(v) and t is smaller than
the horizontal distance of nd(s, t) and t. This again contradicts the definition of nd(s, t). The
first part of the lemma follows.

It remains to show that fd(s, t) = r(nd(s, t)). First of all, fd(s, t) is higher than nd(s, t),
since otherwise fd(s, t) would not be visible from s. Moreover, if nd(s, t) and fd(s, t) are not
co-visible, there must be a vertex v strictly between nd(s, t) and fd(s, t) that is visible from s

and higher than nd(s, t). Now, either t ∈ [nd(s, t), v] or t ∈ [v, fd(s, t)]. In the first case, the
horizontal distance between v and t is smaller than between t and fd(s, t), and in the second
case, the horizontal distance between v and t is smaller than between t and nd(s, t). Either
case leads to a contradiction. Therefore, fd(s, t) is higher than nd(s, t), strictly to the right of
nd(s, t) and visible from nd(s, t). Thus, Observation 3.3 gives fd(s, t) = r(nd(s, t)).

3.3 The Routing Scheme
We now describe our routing scheme and prove that it gives a shortest path. The idea for our
routing scheme is as follows: as long as the target vertex t is not in the interval I(s) of the
current vertex s, i.e., as long as there is a higher vertex that blocks visibility between s and
t, we have to leave the interval of s as fast as possible. Once t ∈ I(s), we have to find the
interval containing t.

The labels and routing tables. Let v ∈ V . It is lab(v) = vid. For the table of v, letw ∈ N(v)
be one of its neighbors. Ifw is convex, we storewid and the port number pw that points from
v to w in tab(v). Otherwise, suppose that w is an r-reflex vertex or the left base vertex. The
breakpoint of w, br(w), is defined as the left endpoint of the horizontal edge with the highest
y-coordinate to the right of and below w that is visible from w; analogous definitions apply
to `-reflex vertices and the right base vertex; see Figure 3.4. We store (wid, br(w)id,pw) in

26 Simple Histograms

s

`(s)

.

r(s)

fd

nd

t t t ttt

Figure 3.5: The cases where the vertex t lies and the corresponding vertices where the data
packet is sent to. If t ∈ [`(s), s] we have nd(s, t) = cv(s) and fd(s, t) = `(s).

the table of v. Again, pw is the port number pointing from v to w. Finally, we store lab(v) in
tab(v). Therefore, we need exactly dlogne bits for the label and at most 3 · logn ·(deg(v)+1)
bits for the table of v.

The routing function. We are given the table tab(s) of the current vertex s and the label
lab(t) of the target vertex t. The routing function does not need a header, i.e., H(n) = 0;
refer to Algorithm 3.1. If t = s, i.e., if lab(t) = lab(s), we are done. Next, if t is visible from
s, i.e., if tid is in tab(s), we directly go from s to t on a shortest path by using the port number
stored in tab(s). Thus, assume that t is not visible from s. First, we check if t ∈ I(s). This is
done as follows: we determine the smallest and largest id in the table tab(s) of s (ignoring
the id’s of the breakpoints). The corresponding vertices are `(s) and r(s). Then, we can check
if tid ∈ [`(s)id, r(s)id], which is the case if and only if t ∈ I(s). Now, there are two cases,
illustrated in Figure 3.5. First, suppose t /∈ I(s). We have to determine which one of `(s) and
r(s) is higher. For this we look at the breakpoints. If one of the two has no breakpoint entry
in tab(s), it has to be a convex vertex. This means the corresponding vertex is a base vertex.
We take a hop to that base vertex, since no other vertex can be higher. Hence, assume that
both vertices are stored together with the indices of their breakpoints. If the breakpoint of
r(s) is to the right of `(s), i.e., `(s)id < br(r(s))id, the vertex `(s) is higher. We take the hop
to that one. Finally, if otherwise br(`(s))id < r(s)id, the vertex r(s) is higher. We take the
hop to r(s). However, in each case we took the hop to the highest vertex in {`(s), r(s)}. By
Lemma 3.5, this hop lies on a shortest path from s to t.

Second, suppose that t ∈ I(s) \N(s). This case is slightly more involved. We use the table
tab(s) of s and the label lab(t) of t to determine fd(s, t) and nd(s, t). Again, we can do this by
comparing the id’s. Lemma 3.6 states that either fd(s, t) = `(nd(s, t)) or fd(s, t) = r(nd(s, t)).
We discuss the case that fd(s, t) = r(nd(s, t)), the other case is symmetric. By Lemma 3.4,
any shortest path from s to t includes fd(s, t) or nd(s, t). Moreover, due to Lemma 3.6,
nd(s, t) is reflex, and we can use tab(s) to access bid = br(nd(s, t))id. The vertex b splits
I(s, t) = [nd(s, t), fd(s, t)] into two disjoint subintervals [nd(s, t),b] and [cv(b), fd(s, t)].
Also, b and cv(b) are not visible from s, as they are located strictly between the far and the

3.3 The Routing Scheme 27

Algorithm 3.1 The routing function for simple histograms with stretch 1.

1: procedure ROUTINGFUNCTION(tab(s) ∈ Σ∗, lab(t) ∈ Σ∗)
2: Outputs: port p ∈ Σ∗
3: if t = s then return ε
4: if t ∈ N(s) then return pt
5: if t /∈ [`(s), r(s)] then
6: if `(s)id = 0 then return p`(s) . `(s) is left base vertex.

7: if r(s)id = n− 1 then return pr(s) . r(s) is right base vertex.

8: if `(s)id < br(r(s))id then return p`(s) . `(s) is higher than r(s).
9: else return pr(s) . r(s) is higher than `(s).

10: b = br(nd(s, t))
11: if t ∈ I(s) and tid < sid then
12: if t ∈ [b, nd(s, t)] then return pnd(s,t)
13: else return pfd(s,t)

14: if t ∈ I(s) and sid < tid then
15: if t ∈ [nd(s, t),b] then return pnd(s,t)
16: else return pfd(s,t)

near dominator. Based on bid, we can now decide on the next hop.
If t ∈ [nd(s, t),b], we take the hop to nd(s, t). If t = b, our packet uses a shortest path of

length 2. Thus, assume that t lies between nd(s, t) and b. This is only possible if b is `-reflex,
and we can apply Lemma 3.4 to see that any shortest path from s to t includes nd(s, t) or b.
But since d(s,b) = 2, our data packet routes along a shortest path.

If t ∈ [cv(b), fd(s, t)], we take the hop to fd(s, t). If t = cv(b), our packet uses a shortest
path of length 2. Thus, assume that t lies between cv(b) and fd(s, t). This is only possible if
cv(b) is r-reflex, so we can apply Lemma 3.4 to see that any shortest path from s to t uses
fd(s, t) or cv(b). Since d(s, cv(b)) = 2, our packet routes along a shortest path. Thus, we
can conclude that our routing function routes the data packet along a shortest path.

The preprocessing time. Let m be the number of edges of Vis(P). If we want to compute
the labels and tables, we have to compute for every vertex v ∈ V the two vertices `(v) and
r(v). Moreover, for every reflex vertex v we need to compute its breakpoint br(v). Since the
output consists of Θ(m logn) bits2, the overall preprocessing time has to be at least Ω(m).
First, we provide an algorithm that computes `(v), r(v), and br(v), for all v ∈ V , in O(n)
time. The routing tables and labels can then be computed in O(m) time.

First, we present an algorithm that computes r(v) for every vertex v; see Algorithm 3.2 for
the details and Figure 3.6 for an illustration. The algorithm works as follows: we start at the
left base vertex, i.e., the vertex with id = 0, and push it onto an empty stack. Then we walk
counterclockwise along the boundary. Whenever we encounter a right vertex (a vertex with

2We assume that Θ(logn) bits can be written in constant time.

28 Simple Histograms

Algorithm 3.2 Computes r(v) for all v.

1: procedure COMPUTERIGHTVERTICES(simple histogram P)
2: S = new empty stack
3: id = 0
4: while id < n do
5: S.push(vid) . vid is a right vertex or the left base vertex
6: id = id+1
7: w = S.top()
8: while w.y 6 vid.y do . vid is a left vertex or the right base vertex
9: w.r = cv(w).r = vid . vid is the right vertex of w and cv(w)

10: S.pop()
11: if S = ∅ then return
12: w = S.top()

13: id = id+1

v2

v4

v6

v8

v10

v12

v14

v0

v11

v15

v0

v2

v4

v6

v8

v10

 w = v11

v0

v10.r = v11

v8.r = v11

v6.r = v11

v4.r = v11

v2.r = v11

v0

v14

v12 w = v11

v14.r = v15

v12.r = v15

v0.r = v15

∅

Figure 3.6: This figure shows the process how the right vertices are computed.

even id) we push that vertex onto the stack. Once we encounter a vertex v with odd index –
v is either a left vertex or the right base vertex – we pop a vertex w from the stack as long as
v is higher than the popped vertex. In this case, we set w.r and cv(w).r to v. This process
continues until we encounter the right base vertex. We claim the following lemma.

Lemma 3.7. Algorithm 3.2 is correct. More precisely, upon the termination of the algorithm we
have v.r = r(v) for every vertex v.

Proof. First of all, it is obvious that the algorithm proceeds correctly for the left and right
base vertex. Next, we claim that for every right vertex w on the lower part of the boundary
the algorithm satisfies r(w) = w.r. Once we have proved the claim, we can immediately
conclude the correctness of the lemma, since for every left vertex w on the lower part of the
boundary we have r(w) = r(cv(w)) = cv(w).r = w.r by construction.

For the proof of the claim let w be a right vertex on the lower part of the boundary and

3.3 The Routing Scheme 29

let v be the reason why w is removed from the stack. Assume for the sake of contradiction
that v 6= r(w). Since r(w) is the leftmost vertex on the boundary that is higher than w (but
still to its right), v must be strictly to the right of r(w). Since w has not been removed from
the stack when r(w) has been processed, there must be a vertex w ′ on the stack satisfying
w ′y > r(w)y > wy. Since this vertex appears in the stack higher than w it must lie on
the boundary strictly between w and r(w). This contradicts the definition of r(w). Hence,
v = r(w). This finishes the proof.

Next, we have to analyze the running time. There are n/2 vertices that are pushed onto
the stack. Hence, the inner while-loop can only make a linear number of runs in total.
Every basic operation is constant. Thus, the total running time is in O(n). Moreover, we can
compute `(v) for every v using the same procedure but walking counterclockwise around the
boundary starting at the right base vertex. This costs linear time as well.

Last but not least, we have to compute the break points for all reflex vertices. We focus
attention on an r-reflex vertex w and observe that its breakpoint br(w) is the rightmost left
vertex v satisfying `(v) = w. Hence, Algorithm 3.3 computes the breakpoints in linear time.
Once, `, r and br have been computed, the routing table of a vertex v can be computed in
O(deg(v)) time. Therefore, we can conclude with our first theorem.

Algorithm 3.3 Computes br(v) for all v.

1: procedure COMPUTEBREAKPOINTS(simple histogram P)
2: for id = 0, . . . ,n− 1 do
3: if vid is a left vertex then
4: br(`(vid)) = vid

5: for id = n− 1, . . . , 0 do
6: if vid is a right vertex then
7: br(r(vid)) = vid

Theorem 3.8. Let P be a simple histogram with n vertices and m edges in Vis(P). There is a
routing scheme for Vis(P) without header, label size dlogne, and each vertex v obtains a routing
table of size Θ(logn deg(v)). The labels and tables can be computed in time O(m) and we can
route between any two vertices on a shortest path.

Remark. In a slightly different routing model, we distinguish two parts in the table of a
vertex v. The first one is called link table. It saves the labels and ports of all neighbors N(v).
Technically, some version of this table always exists, since otherwise we were not able to
distinguish the physical ports pointing to the neighbors. The second part in this context is
then called routing table. It contains information of the remaining topology of the graph.
Turning our routing scheme for simple histograms into this model gives us a link table of size
Θ(logn deg(v)) but the routing table of v would only contain the label of v; see [CCK+20].

CHAPTER 4
Double Histograms

In this chapter we present an efficient routing scheme for visibility graphs of simple his-
tograms with r-visibility assuming hop distance.

Let P be ann-vertex double histogram and Vis(P) the visibility graph of its vertices assuming
r-visibility. The edges have unit weights. We use V to denote the vertex set V(P) of P. Hence,
|V | = n. We assume general position, i.e., no three vertices are on a vertical or horizontal
line. The chapter is organized as follows: first of all we present some notions used to address
properties of double histograms. After that we analyze the structure of shortest paths in the
visibility graph. Last but not least, we present the routing scheme.

4.1 Landmarks
In this section we assume that the baseline lies on the x-axis. This does not influence any
properties but makes the presentation easier. Two vertices v, w in V are on the same side
if both are below or above the base line, i.e., if vy ·wy > 0. Next, for a vertex v of P, we
want to define the vertices `(v), r(v), and cv(v) as well as the interval I(v). The definition
of cv(v) is transferable from simple to double histograms. Hence, cv(v) is the unique vertex
that shares the same horizontal edge with v and is again called corresponding vertex of v.
If we define `(v) and r(v) as before, we run into the problem that in some cases `(v) and
r(v) might not be on the same side of the base line. We solve this problem by relaxing the
definition in the following way: we do not require `(v) and r(v) to be vertices. This leads to
the following definition of the left point `(v) of v: we shoot a leftward horizontal ray r from
v. Let e be the vertical edge where r first hits the boundary of P, the intersection of r and
e is the leftward projection pr`(v) of v. If e is the left boundary of P; then `(v) = pr`(v). If
e is not the left boundary of P, we let `(v) be the endpoint of e closer to the base line. The
formal definition of `(v) is as follows:

`(v) = argmin
{
(wx, |wy|) | w ∈ N(v) ∪ {pr`(v)}, vy ·wy > 0

}
.

31

32 Double Histograms

v

`(v)
r(v)

u`(u) t r(t)

I(v)
r(u)

cv(u) cv(t)

`(t)

cv(v)

Figure 4.1: Left and right points, the corresponding vertex, and the near and far dominators.
The interval I(v) of v is the set of vertices between `(v) and r(v). The dashed line
is the base line.

The right vertex r(v) of v is defined analogously, by shooting the ray r rightwards until it hits
the boundary in the point prr(v). The formal definition is

r(v) = argmax
{
(wx,−|wy|) | w ∈ N(v) ∪ {prr(v)}, vy ·wy > 0

}
.

The three landmark vertices are illustrated in Figure 4.1. Finally, the interval of a vertex v,
I(v), is the interval of the left and right point of v, I(v) = [`(v), r(v)]. Moreover, we get the
property we wanted, i.e., every vertex visible from v is in I(v), that is, N(v) ⊆ I(v).

Last but not least, we want to define the far and the near dominator like we did in simple
histograms. We should recap the intuition of the near and the far dominator. Let s and t
be two vertices with t ∈ I(s) \ N(s) and assume t is to the right of s. The definitions for
the case that t is to the left of s are symmetric. In simple histograms the near and the far
dominator are the two vertices visible from s whose x-coordinate are closest to tx. The near
dominator is located before t and the far dominator is located behind t, relative to s. If we
try to define the far dominator as before, like

fd(s, t) = argmin
{
(wx,−wy) | w ∈ N(s), tx 6 wx

}
,

we might get the problem, that there is no vertex w in N(s) satisfying tx 6 wx; as we can
see in Figure 4.2. As before we solve this problem by not forcing the far dominator to be a
vertex. In contrast to the left and right points we do not care about the side of the dominators:
they might be on the same side or on different sides. Summarized, the two definitions of the
dominators are as follows. The near dominator nd(s, t) of t with respect to s is the rightmost
vertex in N(s) to the left of t. If there is more than one such vertex, nd(s, t) is the vertex
closest to the base line (the y-coordinate is closer to 0). To be precise we present the formal
definition:

nd(s, t) = argmax
{
(wx,−|wy|) | w ∈ N(s),wx 6 tx

}
.

4.2 Structural Insights 33

s

r(s)

t1

nd(s, t1)

fd(s, t1)

t2

nd(s, t2)

fd(s, t2)

`(s) = fd(s, t3)

t3

nd(s, t3) I(s, t1)

Figure 4.2: The near and the far dominators. Observe that fd(s, t3) is not a vertex.

We have to argue why the near dominator is well-defined, i.e., why there always is a vertex w
visible from s that is to the left of t. If t is not visible from s then there has to be some object
between s and t blocking the visibility. But then there has to be at least one vertex between s
and t visible from s. Hence, the near dominator is well-defined. For the far dominator we
remember that r(s) might not be a vertex but a projection of s onto the right boundary of P.
The far dominator fd(s, t) of t with respect to s is the leftmost point in N(s) ∪ {r(s)} to the
right of t. If there is more than one such point, fd(s, t) is the vertex closest to the base line.
As formula we have

fd(s, t) = argmin
{
(wx, |wy|) | w ∈ N(s) ∪ {r(s)}, tx 6 wx

}
.

Again, we argue that the far dominator is well-defined. We assumed t to be in I(s). Hence,
tx 6 r(s)x and therefore, the definition makes sense.

Like in simple histograms, the interval I(s, t) =
[
nd(s, t), fd(s, t)

]
contains all vertices

between the near and far dominator, especially the vertex t. Figure 4.2 shows the dominators
and the interval.

4.2 Structural Insights
Let P be a double histogram. Again, we assume that the base line lies on the x-axis. Let s
and t be two vertices. To understand shortest paths in double histograms between s and t,
we distinguish three cases, depending on where t lies relative to s. First, if t is close, i.e., if
t ∈ I(s), we focus on the near and far dominators. Second, if t /∈ I(s) but there is a vertex v
visible from s with t ∈ I(v), then we can find a vertex on a shortest path from s to t. Third, if
there is no visible vertex v from s such that t ∈ I(v), we can apply our intuition from simple
histograms: go as fast as possible towards the base line.

34 Double Histograms

4.2.1 Visibility in Double Histograms

The structure of the shortest paths in double histograms can be much more involved than in
simple histograms; in particular, Lemma 3.4 does not hold anymore. However, the following
observations provide some structural insight that can be used for an efficient routing scheme.

Observation 4.1. Two vertices v,w are co-visible if and only if v ∈ I(w) and w ∈ I(v).

Proof. The forward direction is immediate, as co-visibility implies v ∈ N(w) ⊆ I(w) and
w ∈ N(v) ⊆ I(v). For the backward direction, consider the rectangle �(v,w) spanned by
v and w. Since v ∈ I(w) and w ∈ I(v), the upper and lower boundary of �(v,w) do not
contain a point outside P. As P is a double histogram, this implies that the left and right
boundary of �(v,w) also do not contain any point outside P. Since P has no holes, we can
conclude that �(v,w) ⊆ P. Hence, v and w are co-visible, as claimed.

Observation 4.2. Let a, b, c, and d be vertices in P with ax 6 bx 6 cx 6 dx. If a ∈ I(c)
and d ∈ I(b), then b and c are co-visible.

Proof. This follows immediately from Observation 4.1 and the fact that intervals are monotone.

Observation 4.3. The intervals form a laminar family, i.e., for any two vertices v and w on the
same side of the base line, we have (i) I(v) ∩ I(w) = ∅, (ii) I(v) ⊆ I(w), or (iii) I(w) ⊆ I(v).

Proof. Suppose there are two vertices v and w on the same side of P with `(v)x < `(w)x 6
r(v)x < r(w)x. By Observation 4.2, `(w) and r(v) are co-visible. Since `(w) and r(v) are on
the same side of P, either r(v) cannot see any vertex to the left of `(w) or `(w) cannot see
any vertex to the right of r(v). This contradicts the fact that `(v) and r(v) as well as `(w)
and r(w) must be co-visible.

4.2.2 The target is close

Let s, t be two vertices with t ∈ I(s) \N(s). In contrast to simple histograms, fd(s, t) now
might not be a vertex. Furthermore, fd(s, t) and nd(s, t) might be on different sides of the
base line. In this case, Lemma 3.6 no longer holds. However, the next lemma establishes a
visibility relation between them; see Figure 4.3.

Lemma 4.4. The vertices nd(s, t) and fd(s, t) are co-visible.

Proof. Without loss of generality, t is strictly to the right of s. Suppose for a contradiction that
r(nd(s, t)) is strictly left of fd(s, t). Then, we get r(nd(s, t)) ∈ I(s). Also, s ∈ I(nd(s, t)) ⊆
I(r(nd(s, t))). Hence, by Observation 4.1, s can see r(nd(s, t)). But then r(nd(s, t)) is a
vertex strictly between the near and far dominator visible from s, contradicting the choice of
the dominators. Thus, sx 6 nd(s, t)x 6 fd(s, t)x 6 r(nd(s, t))x, and Observation 4.2 gives
the result.

Lemma 4.5. One of nd(s, t) or fd(s, t) is on a shortest path from s to t. If fd(s, t) is not a
vertex, then nd(s, t) is on a shortest path from s to t.

4.2 Structural Insights 35

s

t1

nd(s, t1)

fd(s, t1)

t2

nd(s, t2)

fd(s, t2)

fd(s, t3)

t3

nd(s, t3)

Figure 4.3: The far and the near dominator can see each other.

Proof. Without loss of generality, t is to the right of s. Let π : 〈s = p0, . . . ,pk = t〉 be
a shortest path from s to t, and let pj be the last vertex outside of I(s, t). If j = 0, then
pj+1 must be one of the dominators, since by definition they are the only vertices in I(s, t)
visible from s. Now, assume j > 1. If pj is to the left of nd(s, t), we apply Lemma 4.4
and Observation 4.2 on the four points pj, nd(s, t), pj+1, and fd(s, t) to conclude that
nd(s, t) can see pj+1. Symmetrically, if pj is to the right of fd(s, t), the same argument shows
that the far dominator can see pj+1. Thus, depending on the position of pj we can exchange
the subpath p1, . . . ,pj in π by nd(s, t) or fd(s, t) and get a valid path of length k− j+ 1 6 k.
The second part of the lemma follows because pj cannot be to the right of fd(s, t), if fd(s, t)
is not a vertex but a point on the right boundary.

Next, we consider the case where fd(s, t) is a vertex but not on a shortest path from s to t.
Then, fd(s, t) cannot see t, and we define fd2(s, t) = fd(fd(s, t), t). By Lemma 4.4, nd(s, t)
and fd(s, t) are co-visible, so fd2(s, t) has to be in the interval [nd(s, t), t], and therefore it is
a vertex. The following lemma states that fd2(s, t) is strictly closer to t than s; see Figure 4.4.

Lemma 4.6. If fd(s, t) is a vertex but not on a shortest path from s to t, then we have
d(fd2(s, t), t) = d(s, t) − 1.

Proof. Without loss of generality, t is to the right of s; see Figure 4.4. By Lemma 4.5, nd(s, t)
lies on a shortest path from s to t. Let 〈s = p0, nd(s, t) = p1,p2, . . . ,pk = t〉 be such a
shortest path. We claim that fd2(s, t) can see p2. Then, 〈fd2(s, t),p2, . . . ,pk = t〉 is a valid
path of length k− 1 = d(s, t) − 1. To prove that fd2(s, t) can indeed see p2, we show that
p2 ∈ I

(
fd2(s, t)

)
and fd2(s, t) ∈ I(p2) and then apply Observation 4.1.

First, we show p2 ∈ I(fd(s, t), t) by contradiction. Thus, suppose that p2 /∈ I(fd(s, t), t).
Since t ∈ I(fd(s, t), t), there is a j > 2 with pj+1 ∈ I(fd(s, t), t) and pj /∈ I(fd(s, t), t).
First, if pj,x < fd2(s, t)x, then pj,x < fd2(s, t)x 6 pj+1,x 6 nd(fd(s, t), t)x. By Lemma 4.4,
fd2(s, t) and nd(fd(s, t), t) are co-visible, so Observation 4.2 implies that fd2(s, t) and pj+1

are co-visible. Then it follows that 〈s, fd(s, t), fd2(s, t),pj+1, . . . ,pk = t〉 is a valid path of
length k− j+ 2 6 k, contradicting the assumption that fd(s, t) is not on a shortest path. If
nd(fd(s, t), t)x < pj,x, it follows with the same reasoning that the vertices nd(fd(s, t), t) and

36 Double Histograms

s

t

nd(s, t)

fd(s, t)

nd(fd(s, t), t)

fd2(s, t)

Figure 4.4: fd2(s, t) lies between nd(s, t) and fd(s, t) and is closer to t than s. The darker
region is I(fd(s, t), t) and a subset of I(s, t), the brighter region.

pj+1 are co-visible then fd(s, t) is on the path 〈s, fd(s, t), nd(fd(s, t), t),pj+1, . . . ,pk = t〉
which is a valid path of length k − j + 2 6 k. This is again a contradiction. Now, since
I(fd(s, t), t) =

[
fd2(s, t), nd(fd(s, t), t)

]
⊆ I(fd2(s, t)), we get p2 ∈ I(fd2(s, t)). Since p2

sees nd(s, t) which is to the left of fd2(s, t) and since p2 is in I(fd(s, t), t), and thus to the
right of fd2(s, t), it follows that fd2(s, t) ∈ I(p2).

4.2.3 The target can be made close in one step.

Let s, t be two vertices so that t /∈ I(s) but there is a vertex v ∈ N(s) with t ∈ I(v). For
clarity of presentation, we will always assume that s is below the base line. The crux of this
case is this: there might be many vertices visible from s that have t in their interval. However,
we can find a best vertex as follows: once t is in the interval of a vertex, the goal is to shrink
the interval (i.e., reduce it to include fewer vertices) as fast as possible. Therefore, we must
find a vertex v ∈ N(s) whose left or right interval boundary is closest to t among all vertices
in N(s). This leads to the following inductive definition of two sequences ai(s) and bi(s) of
vertices in N(s); see Figure 4.5. We omit (s) if the context is clear and instead write ai and
bi, respectively. For i = 0, we let a0 = b0 = s. Otherwise, let i > 0. We let Ai(s), and write
Ai instead, to be the set of all vertices that can see further to the left than ai−1 but are still
visible from s, i.e.,

Ai =
{
v ∈ N(s) | `(v)x < `(a

i−1)x
}

.

The vertex ai is the leftmost vertex in Ai, that can see further to the right than ai−1. The
formal definition of ai also captures the case that Ai is empty and breaks unambiguity:

ai =

{
ai−1 if Ai = ∅
argmin

{
(vx, |vy|) | v ∈ Ai

}
otherwise.

The definition of bi is quite similar but focusing the attention to the right instead of to the
left. It is

Bi =
{
v ∈ N(s) | r(bi−1)x < r(v)x

}

4.2 Structural Insights 37

s

`(s)

ai−1

`i−1

r(s)
`(r(s))

Aiai

Figure 4.5: All the vertices in Ai can see further to the right than ai−1. The leftmost vertex
in Ai is ai.

and

bi =

{
bi−1 if Bi = ∅
argmax

{
(vx,−|vy|) | v ∈ Bi

}
otherwise.

Finally, let a∗ be the vertex with a∗ = ai = ai−1, for an i > 0, and b∗ the vertex with
b∗ = bi = bi−1, for an i > 0, respectively. Let us try to understand this definition. For i > 0,
we write `i for `(ai); and we write `∗ for `(a∗). Then, we have a0 = s and `0 = `(s). Now, if
`(s) is not a vertex, then a∗ = s, because there is no vertex whose left point is strictly to the
left of the left boundary of P. On the other hand, if `0 is a vertex in P, we have a1 = `0 = `(s),
and [`1,a1] is an interval between points on the lower side of P. Then comes a (possibly
empty) sequence of intervals [`2,a2], [`3,a3], . . . , [`k,ak] between points on the upper side
of P; possibly followed by the interval [`(r(s)), r(s)]. There are four possibilities for a∗: it
could be s, `(s), a vertex ai on the upper side of P, or r(s). If a∗ 6= s, then the intervals
[`1,a1] ⊂ [`2,a2] ⊂ · · · ⊂ [`∗,a∗] are strictly increasing: `i is strictly to the left of `i−1 and
ai is strictly to the right of ai−1; see Figure 4.6. Symmetric observations apply for the bi;
we write ri for r(bi) and r∗ for r(b∗).

Lemma 4.7. For i > 1, the vertices `i−1, ai as well as ri−1, bi are co-visible.

Proof. We focus on `i−1 and ai. We show that `i−1 ∈ I(ai) and ai ∈ I(`i−1); the lemma
follows from Observation 4.1. The claim `i−1 ∈ I(ai) is due to the facts that [`i,ai] ⊆ I(ai)
and `i−1 ∈ [`i,ai] (this holds also for i = 1, as then `i−1 = ai). Next, since ai−1 ∈ I(`i−1),
the vertex ai−1 is to the left of r(`i−1); and since `i−1 ∈ I(r(`i−1)), the point `(r(`i−1)) is to
the left of `i−1. Thus, if r(`i−1) is visible from s, we have ai = r(`i−1), by the definition of
ai. On the other hand, if r(`i−1) is not visible from s, the visibility must be blocked by r(s),
and then ai = r(s). In either case, we have ai ∈ [ai−1, r(`i−1)] ⊆ I(`i−1), as desired.

Finally, the next lemma tells us the following: if t ∈ [`∗, r∗] we find a vertex v ∈ N(s) with
t ∈ I(v).

38 Double Histograms

s

a1,b3`1

a2

a3

a4

`2

`3

`4

b1

b2

r1

r2

r3

Figure 4.6: Illustration of the ai and bi. Observe that `(s) = a1 = b3 and r(s) = b1.

Lemma 4.8. If t ∈ [`i, `i−1], for some i > 1, then ai is on a shortest path from s to t. If
t ∈ [ri−1, ri], for some i > 1, then bi is on a shortest path from s to t.

Proof. We focus on the first statement; see Figure 4.7. Let π : 〈s = p0, . . . ,pk = t〉 be a
shortest path from s to t, and let pj be the last vertex on π outside of [`i, `i−1]. If j = 0, then
pj+1 must be `0 = `(s), because this is the only vertex `i−1 visible from s. Then, i = 1 and
ai = `(s) is on π. From now on, we assume that j > 1.

First, suppose that pj+1 and ai are co-visible. Then 〈s,ai,pj+1, . . . ,pk〉 is a path from s

to t that uses ai and has length k − j + 1 6 k. Second, suppose that pj+1 and ai are not
co-visible. Then, the contrapositive of Observation 4.2 applied to the four points `i, pj+1,
ai, and pj shows that pj is strictly to the left of ai. There are two subcases, depending on
whether pj is strictly to the left of `i or strictly to the right of `i−1.

If pj is strictly to the left of `i, then j > 2, since `i is to the left of `0 = `(s) and we need at
least two hops to reach a point strictly to the left of `(s) from s. We apply Observation 4.2
on the four points pj, `i, pj+1, and ai, and get that `i and pj+1 are co-visible. Hence,
〈s,ai, `i,pj+1, . . . ,pk〉 is a path that uses ai and has length k− j+ 2 6 k.

Finally, assume that pj is strictly to the right of `i−1. By Lemma 4.7, ai can see `i−1. Thus,
pj+1 6= `i−1 and there is no vertex strictly between `i−1 and ai on the same side as `i−1

that can see a vertex strictly to the left of `i−1. Thus, pj and ai−1 are on different sides of
the base line. Let b be the rightmost vertex that (i) lies on the same side of P as pj; (ii) is
strictly between `i−1 and ai; (iii) is closest to the base line. The vertex b exists (since pj

is a candidate), is not visible from s (because b is strictly left of ai and can see strictly left
of `i−1); and thus strictly left of `(s). The vertex pj cannot be strictly to the right of b, as
otherwise b would obstruct visiblity between pj and pj+1. We conclude that j > 2, since we
need at least two hops to reach a point strictly to the left of `(s) from s. If pj ∈ {b, cv(b)},
ai can see pj and thus, 〈s,ai,pj,pj+1, . . . ,pk〉 is a path of length k − j + 2 6 k using ai.
If pj 6∈ {b, cv(b)}, then b is strictly closer to the base line than pj. Then, we have j > 3,
because we need two hops to cross the vertical line through `(s) and one more hop to cross
the horizontal line through b. We apply Observation 4.2 on the four points pj+1, `i−1, pj,

4.2 Structural Insights 39

ai

s

`(s)

b

ai−1

`i−1

`i

Figure 4.7: The vertex ai is on a shortest path. The vertex pj can lie in the red regions, the
vertex pj+1 can lie in the orange region, and the blue region cannot contain any
point outside of P.

and b to conclude that `i−1 can see pj. Hence, 〈s,ai, `i−1,pj,pj+1, . . . ,pk〉 is a path of
length k− j+ 3 6 k using ai.

4.2.4 The target is far away

Finally, we consider the case that there is no vertex v ∈ N(s) with t ∈ I(v), i.e., t /∈ [`∗, r∗].
The intuition now is as follows: to widen the interval, we should go to a vertex that is visible
from s, but closest to the base line. In simple histograms, there was only one such vertex,
but in double histograms there might be a second one on the other side. These two vertices
are the dominators of s. They might have their own dominators, and so on. This leads to the
following inductive definition.

For k > 0, we define the k-th bottom dominator bdk(s), the k-th top dominator tdk(s), and
the k-th interval Ik(s) of s. For any set Q ⊂ V(P), we write Q− (resp. Q+) for all points
in Q below (resp. above) the base line. We set bd0(s) = td0(s) = s and I0(s) = {s}. For
k > 0, we set Ik(s) = I(bdk−1(s)) ∪ I(tdk−1(s)). If Ik(s)− is nonempty, we let bdk(s) be
the leftmost vertex inside Ik(s)− that minimizes the distance to the base line. If Ik(s)+ is
nonempty, we let tdk(s) be the leftmost vertex inside Ik(s)+ that minimizes the distance to
the base line; see Figure 4.8. If one of the two sets is empty, the other one has to be nonempty,
since s ∈ Ik(s). In this case, we let tdk(s) = bdk(s). We write bd(s) for bd1(s) and td(s) for
td1(s).

Observe, that I1(s) = I(s) and I2(s) = [`∗, r∗]. If I(bdk−1(s)) = V(P), we have bdk(s) =
bdk−1(s). The same holds for the top dominator. We provide a few technical properties
concerning the k-th interval as well as the k-th dominators.

Lemma 4.9. For any s ∈ V and k > 0, we have Ik(s) ⊆ I(bdk(s)) ∩ I(tdk(s)) and bdk(s),
tdk(s) are co-visible.

40 Double Histograms

bdk−1(s)

tdk−1(s)

bdk(s)

tdk(s)

r(bdk−1(s))

`(tdk−1(s))

Ik(s)

Figure 4.8: The k− 1-th and k-th dominators and the k-th interval.

Proof. We have Ik(s) ⊆ I(bdk(s)), since by definition, the interval Ik(s) contains no vertex
that is on the same side as bdk(s) and strictly closer to the base line, so no vertex can obstruct
horizontal visibility of bdk(s) in Ik(s). Analogously, Ik(s) ⊆ I(tdk(s)), as desired.

By definition and the first part, tdk(s) ∈ Ik(s) ⊆ I(bdk(s)) and bdk(s) ∈ Ik(s) ⊆
I(tdk(s)). The claim now follows from Observation 4.1.

The following lemma seems rather specific, but will be needed later to deal with short
paths.

Lemma 4.10. For any s ∈ V , we have I3(s) = I2
(
bd(s)

)
∪ I2

(
td(s)

)
.

Proof. We begin by showing that

I
(
bd2(s)

)
= I
(
bd(td(s))

)
∪ I
(
bd(bd(s))

)
. (4.1)

If bd(s) is above the base line, then bd(s) = td(s) and I2(s) = I(bd(s))∪ I(td(s)) = I(td(s)).
The definition of bd2(s) then gives bd2(s) = bd(td(s)), and Equation (4.1) follows.

If bd(s) is below the base line, the vertex b1 = bd(bd(s)) is below the base line. Let b2 =
bd(td(s)). By Lemma 4.9, bd(s) and td(s) are co-visible, so bd(s) ∈ I(td(s))−. Therefore,
b2 is below the base line. Since I(b1) and I(b2) are not disjoint (both contain s) and since
b1 and b2 are on the same side of the base line, Observation 4.3 gives I(b1) ⊆ I(b2) or
I(b2) ⊆ I(b1). Because bd2(s) is the highest vertex in

(
I(bd(s)) ∪ I(td(s))

)−, we get that
bd2(s) is b1 or b2, and Equation (4.1) follows also in this case. Symmetrically, we have

I(td2(s)) = I(td(td(s))) ∪ I(td(bd(s))). (4.2)

We use the definitions and Equations (4.1) and (4.2) to get

I3(s) = I
(
bd2(s)

)
∪ I
(
td2(s)

)
= I
(
bd(td(s))

)
∪ I
(
bd(bd(s))

)
∪ I
(
td(td(s))

)
∪ I
(
td(bd(s))

)
= I2

(
bd(s)

)
∪ I2

(
td(s)

)
,

as desired.

4.2 Structural Insights 41

It is possible to prove the following property: let ` be the leftmost and r be the rightmost
vertex with hop distance exactly k from s, then, Ik(s) = [`, r]. We do not need this property,
so we leave it as an exercise for the reader to find a proof. Instead, we prove the following
weaker statement. For this, recall that due to its definition, bdk(s) might not be on the lower
side of the histogram (and tdk(s) might not be on the upper side).

Lemma 4.11. Let k > 0 and let s, t ∈ V with d(s, t) 6 k. Then, t ∈ Ik(s).

Proof. We show that for any j > 0 and any vertex v ∈ Ij(s), we have N(v) ⊆ Ij+1(s). The
lemma then follows by induction. If v ∈ Ij(s)−, then bdj(s) is on the lower side, and by
definition, I(v) ⊆ I(bdj(s)). If v ∈ Ij(s)+, by a similar argument I(v) ⊆ I(tdj(s)). Thus,
N(v) ⊆ I(v) ⊆ I(bdj(s)) ∪ I(tdj(s)) = Ij+1(s), as desired.

Let k > 0 and s ∈ V . For i = 1, . . . ,k, by Lemma 4.9, bdi−1(s), tdi−1(s) ∈ I(bdi(s)) ∩
I(tdi(s)). Moreover, by definition, bdi(s), tdi(s) ∈ I(bdi−1(s)) ∪ I(tdi−1(s)). As we show
in the full version, now both bdi(s) and tdi(s) can see at least one of bdi−1(s) or tdi−1(s).
Therefore, there is a path πb(s,k) : 〈s = p0, . . . ,pk = bdk(s)〉 from s to bdk(s) and a
path πt(s,k) : 〈s = q0, . . . ,qk = tdk(s)〉 from s to tdk(s) with pi,qi ∈ {bdi(s), tdi(s)}, for
i = 0, . . . ,k. We call πb(s,k) and πt(s,k) the canonical path from s to bdk(s) and from s to
tdk(s), respectively. The following two lemmas show that for every t /∈ Ik+1(s) one of the
canonical paths is the prefix of a shortest path from s to t. To show Lemma 4.13 we need
Lemmas 4.11 and 4.12.

Lemma 4.12. Let k > 1 and s ∈ V . If I(bdk−1(s)) 6= V , we have that d(s, bdk(s)) = k. If
I(tdk−1(s)) 6= V we have d(s, tdk(s)) = k.

Proof. On the one hand, d(s, bdk(s)) 6 |πb(s,k)| = k and d(s, tdk(s)) 6 |πt(s,k)| = k.
On the other hand, we show that bdk(s) /∈ Ik−1(s) and tdk(s) /∈ Ik−1(s). The claim then
follows by the contrapositive of Lemma 4.11.
Case 1: First, assume that bdk−1(s) ∈ Ik−1(s)−. Since I(bdk−1(s)) 6= P, at least one of its
bounding points is a vertex v contained in Ik(s). Then, v is strictly closer to the base line
than bdk−1(s), and since v is a candidate for bdk(s), the same applies to bdk(s). It follows
that bdk(s) 6∈ Ik−1(s). Similarly, we get that if tdk−1(s) ∈ Ik−1(s)+, the vertex tdk(s) is
not in Ik−1(s).
Case 2: Second, assume that bdk−1(s) ∈ Ik−1(s)+. Then, we have that bdk(s) /∈ Ik−1(s)−,
since this set is empty. Thus, suppose for a contradiction that bdk(s) ∈ Ik−1(s)+. This can
only be the case if bdk−1(s) = tdk−1(s) and bdk(s) = tdk(s). However, in Case 1 we showed
that tdk(s) 6∈ Ik−1(s)+ if tdk−1(s) ∈ Ik−1(s)+. Hence, bdk(s) /∈ Ik−1(s)+, as desired.

Lemma 4.13. Let s and t be vertices and k > 1 an integer such that t /∈ Ik+1(s). Then bdk(s)
or tdk(s) is on a shortest path from s to t.

Proof. First, observe that Ik+1(s) = I(bdk(s)) ∪ I(tdk(s)) 6= V , as t /∈ Ik+1(s). Next, let
π : 〈s = p0, . . . ,pm = t〉 be a shortest path from s to t, and pj the last vertex in Ik+1(s).
Without loss of generality, pj+1 is strictly to the right of s. By Lemma 4.11, we get that pj is
not in Ik(s) and thus, again by Lemma 4.11, we have j > d(s,pj) > k+ 1.

42 Double Histograms

bdk(s)

tdk(s)

b

Ik+1(s)

Ik(s)

Figure 4.9: bdk(s) or tdk(s) is on a shortest path. The vertex pj lies in one of the red regions,
pj+1 lies in one of the orange regions, and the blue region cannot contain any
point outside of P.

First, suppose that pj and bdk(s) (resp. tdk(s)) are co-visible. Then, πb(s,k) ◦ 〈pj, . . . , t〉
(resp. πt(s,k) ◦ 〈pj, . . . , t〉) is a valid path of length k + 1 + (m − j) 6 m. Here, ◦
concatenates two paths. Second, suppose pj be visible from neither bdk(s) nor tdk(s).
First, we claim that pj is strictly to the right of bdk(s) and tdk(s). Otherwise, since pj+1

is strictly to the right of both dominators, we would get bdk(s), tdk(s) ∈ I(pj). Moreover,
pj ∈ Ik+1(s) = I(bdk(s)) ∪ I(tdk(s)). Observation 4.1 now would imply that pj can see
bdk(s) or tdk(s) — a contradiction. The claim follows. Next, we claim bdk(s) 6= tdk(s). If
not, pj ∈ I(bdk(s)) = Ik+1(s), and since pj can see a point outside of Ik+1(s), we would
get pj ∈ {`(bdk(s)), r(bdk(s))}, which again contradicts our assumption that pj cannot see
bdk(s). The claim follows. There are two cases, depending on which dominator sees further
to the right.
Case 1: r(bdk(s))x < r(tdk(s))x; see Figure 4.9. Let b be the leftmost vertex in the interval
[r(bdk(s)), r(tdk(s))]− closest to the base line. Observe that b is strictly to the right of Ik(s),
because r(bdk(s)) is strictly to the right of Ik(s). Since pj is not visible from tdk(s), it has
to be strictly to the right of and strictly below b. Next, we claim that no vertex v ∈ Ik(s)
can see pj. If one could, by Observation 4.1, we would have v ∈ I(pj). But since pj is
strictly to the right of and strictly below b, then v would be to the right of b, which is
impossible. This shows the claim. Thus, by Lemma 4.11, j > d(s,pj) > k + 2. We apply
Observation 4.2 to tdk(s), pj, r(tdk(s)) and pj+1 and get that r(tdk(s)) can see pj. Therefore,
πt(s,k) ◦ 〈r(tdk(s)),pj, . . . , t〉 is a valid path of length k+ 1 + (1 +m− j) 6 m.
Case 2: r(tdk(s))x < r(bdk(s))x. Let b be the leftmost vertex in [r(tdk(s)), r(bdk(s))]+

closest to the base line. Observe that b is strictly to the right of Ik(s), because r(tdk(s)) is
strictly to the right of Ik(s). Since pj is not visible from bdk(s), it has to be strictly to the right
of and strictly above b. Next, we claim that no vertex v ∈ Ik(s) can see pj. If one could, by
Observation 4.1, we would have v ∈ I(pj). But since pj is strictly to the right of and strictly

4.3 The Routing Scheme 43

above b, then v would be to the right of b, which is impossible. This shows the claim. Thus,
by Lemma 4.11, j > d(s,pj) > k + 2. We apply Observation 4.2 to bdk(s), pj, r(bdk(s))
and pj+1 and get that r(bdk(s)) can see pj. Therefore, πb(s,k) ◦ 〈r(bdk(s)),pj, . . . , t〉 is a
valid path of length k+ 1 + (1 +m− j) 6 m, as desired.

4.3 The Routing Scheme
Let Vis(P) be the visibility graph of a double histogram. We assume that the graph is
represented with adjacency lists with direct access to the coordinates of the vertices P ⊂ R2.
We say the representation is canonical if the x-coordinates of the vertices are integers in
[n/2 − 1]. We describe the routing scheme for canonical representations. Later, we briefly
discuss how to drop this assumption.

The labels and routing tables. Since we assumed that no three points are on a horizontal
line, we conclude that for every integer k ∈ [n/2 − 1] there are exactly 2 vertices in P
having x-coordinate k. Let v be a vertex. There is exactly one vertex u sharing the same
vertical edge with v – it has the same x-coordinate. We define b(v) = 1 if v is closer to
the base line and b(v) = 0 if u is closer to the base line. We set lab(v) = (vx,b(v)) and
observe that | lab(v)| = dlogne. Moreover, lab(v) identifies v in the network. Next, let
w ∈ N(v) be a neighbor of v and pw the port number pointing from v to w. We store
(lab(w), `(w)x, r(w)x,pw) in the table of v. Moreover, we store the bounding x-coordinates
of I2(bd(v)) as well as the bounding x-coordinates of I2(td(v)) in the table of v. Last but not
least, let πb(v, 2) = 〈v,q, bd2(v)〉. Remark, that q ∈ {bd(v), td(v)}. We store pq as well as
the port p from q to bd2(v) in tab(v). Finally, we store lab(v) in tab(v). In summary, we can
conclude that the table size of v is dlogne(4 deg(v) + 7) − 2(deg(v) + 2) ∈ Θ(logn deg(v)).

The routing function. The routing function for double histograms is presented in Algo-
rithm 4.1. We are given a current vertex s together with its routing table tab(s), the label
of a target vertex t, and a header h. If t ∈ N(s), then lab(t) is in the routing table of s,
and we send the data packet directly to t. If the header is non-empty, it will contain a port
number. We clear the header and use this port number for the next hop. The remaining
discussion assumes that the header is empty and that t 6∈ N(s). The routing function now
distinguishes four cases depending on whether t ∈ I(s), t ∈ I2(s) or t ∈ I3(s). We can check
the first and the second condition locally, using the routing table of s as well as the label of t
(note that from the routing table of s, we can deduce `(s), r(s), a∗(s) and b∗(s), and their
interval boundaries). To check the third condition locally, we use Lemma 4.10 which shows
that I3(s) = I2(bd(s)) ∪ I2(td(s)). Since we stored the bounding x-coordinates of these two
intervals in the routing table of s, we can check t ∈ I3(s) easily.
Case 1 (t ∈ I(s) \N(s)): if fd(s, t) is a vertex, we can determine it by using the routing
table and the label of t. The packet is sent to fd(s, t). If fd(s, t) is not a vertex, we determine
nd(s, t) and send the packet there. The header remains empty.
Case 2 (t ∈ I2(s) \ I(s)): there is an i > 1 with t ∈ [`i, `i−1] or t ∈ [ri−1, ri]. We find i

44 Double Histograms

Algorithm 4.1 The routing function for double histograms with stretch 2.

1: procedure ROUTINGFUNCTION(tab(s) ∈ Σ∗, lab(t) ∈ Σ∗, header h ∈ Σ∗)
2: Outputs: (port p ∈ Σ∗, header h ′ ∈ Σ∗)
3: if h 6= ε then return (h, ε)

4: if t = s then return (ε, ε)

5: if t ∈ N(s) then return (pt, ε)

6: if t ∈ I(s) and fd(s, t) ∈ N(s) then return (pfd(s,t), ε)

7: if t ∈ I(s) and fd(s, t) /∈ N(s) then return (pnd(s,t), ε)

8: if t ∈ I2(s) and tx < `(s)x then
9: compute i with t ∈ [`i, `i−1] and return (pai , ε)

10: if t ∈ I2(s) and tx > r(s)x then
11: compute i with t ∈ [ri−1, ri] and return (pbi , ε)

12: if t ∈ I2(bd(s)) then return (pbd(s), ε)

13: if t ∈ I2(td(s)) then return (ptd(s), ε)
14: else
15: extract the entry (pq,p) from tab(s)
16: return (pq,p)

using the routing table and lab(t). The packet is sent to ai or bi. The header remains empty.
Case 3 (t ∈ I3(s) \ I2(s)): if t ∈ I2(bd(s)), we send the packet to bd(s). Otherwise,
t ∈ I2(td(s)), and we send the packet to td(s). In both cases, the header remains empty.
Case 4 (t /∈ I3(s)): the routing table has the entry (pq,p). We store p in the header and
use pq to send the packet to q ∈ {bd(s), td(s)}.

The label and table size have been analyzed so far. The header size is H(n) = dlogne,
obviously. It remains to analyze the stretch as well as the preprocessing time.

The stretch. First, we present a bound for the stretch factor. The following lemma proves
the correctness and bounds the stretch factor by 2.

Lemma 4.14. Let s, t ∈ V . After at most two steps of the routing scheme from s with target
label lab(t), we reach a vertex v with d(v, t) 6 d(s, t) − 1.

Proof. First, if t ∈ N(s), then we take one hop and decrease the distance to 0. Second,
suppose that t ∈ I(s) \ N(s). If fd(s, t) is not a vertex, the next vertex is nd(s, t), which
is on a shortest path from s to t due to Lemma 4.5. Otherwise, fd(s, t) is the next vertex.
If fd(s, t) is on a shortest path from s to t, we are done. Otherwise, t is not visible from
fd(s, t), so fd2(s, t) has to be the second vertex on the routed path. By Lemma 4.6, we
have d(fd2(s, t), t) = d(s, t) − 1. Third, if t ∈ I2(s) \ I(s), there is an i > 1 such that
the next vertex is either ai or bi. By Lemma 4.8, this vertex is on a shortest path. Fourth,
assume t ∈ I3(s) \ I2(s). Let v1 and v2 be the next two vertices on the routing path. We
use Lemma 4.9 and Lemma 4.13 to conclude d(v1, t) 6 d(s, t), as v1 is either td(s) or bd(s).

4.3 The Routing Scheme 45

Due to the construction of the routing function, we have t ∈ I2(v1) \ I(v1). Thus, there is an
i > 1, such that v2 = ai(v1) or v2 = bi(v1). By Lemma 4.8, the vertex v2 is on a shortest
path from v1 to t and we can conclude d(v2, t) = d(v1, t) − 1 6 d(s, t) − 1. Last, assume
t /∈ I3(s). Then, the packet is routed to a vertex p ∈ {bd(s), td(s)}, whichever is on a shortest
path to bd2(s), and then bd2(s). Lemmas 4.9 and 4.13 give d(bd2(s), t) 6 d(s, t) − 1, as
claimed.

The preprocessing time. Next, we want to take a closer look at the preprocessing and
analyze its time complexity. Let m be the number of edges in the Vis(P). Again, since the
output consists of Θ(m logn) bits, the overall preprocessing time has to be at least Ω(m).
First, we compute an explicit representation of the boundary of the double histogram in
O(m) time by using the adjacency lists of Vis(P). We can then translate the double histogram
(and the visibility graph) in O(n) time such that the base line is on the x-axis. Next, we want
to present an algorithm that computes `(v), r(v), td(v) and bd(v), for all v ∈ V , in O(n)
time. The routing tables and labels are then immediate and can be computed in O(m) time.

We introduce two dummy vertices: the intersection of the base line with the boundary of
P. The left dummy vertex is denoted by vl, while the right dummy vertex is denoted by vr.
We split the double histogram into two parts: the lower part PL and the upper part PU. Both
parts are simple histograms with base vertices vl and vr. We focus our description on PL.
The preprocessing for the vertices of PU is symmetric. Since PL is a simple histogram, we
can use the preprocessing algorithm to compute `(v) as well as r(v) for every vertex v of PL.
Moreover, we can immediately compute bd(v), since

bd(v) =


v if `(v) = vl ∧ r(v) = vr
`(v) if `(v) 6= vl ∧ r(v) = vr
r(v) if `(v) = vl ∧ r(v) 6= vr
argmax{`(v)y, r(v)y} otherwise.

The computation of `(v), r(v) and bd(v) for every vertex v of PL can be done in linear time.
Next, we have to compute td(v). This computation is a bit more involved. First, we observe
that in the general case, i.e., td(v) is located in PU, the vertex td(v) has to be reflex. Thus,
we are looking for a reflex vertex in PU with minimum y-coordinate that is contained in
the interval [`(v)x, r(v)x]. This corresponds to the RMQ-Problem (range minimum query
problem). It is defined as follows:

RMQ-Problem:

Given: Array A with n elements of a well ordered universe

Want: Preprocess A such that the following query can be answered: for given
0 6 k1 6 k2 6 n − 1 find the smallest element x of A whose index i satisfies
k1 6 i 6 k2.

It is known that A can be preprocessed in linear time and queries can then be answered in
constant time [BFC00, BV93, FH06]. Hence, we can do the following to compute td(v) for all

46 Double Histograms

vertices v of PL: we introduce an array A with n/2 elements. By assumption we know that
all x-coordinates of the vertices are integers in [n/2 − 1]. The array A is defined as follows:

A[i] =

{
vy if there is a reflex vertex (i, vy) in PU∞ otherwise.

We can compute A in linear time using a simple scan of PU from left to right. Next, we
preprocess A according to the RMQ-Problem, which can be done in linear time, as well.
Finally, to compute td(v) for a given vertex v of PL, we query the array A with the parameters
k1 = `(v)x and k2 = r(v)x. This means, we look for the vertex with smallest y-coordinate
within I(v)+, which is exactly td(v). Let (vx, vy) be the query answer. If vy =∞, we know
that there is no vertex in I(v)+. Hence, we set td(v) = bd(v). Otherwise, td(v) = (vx, vy).
A query for one vertex v can be done in constant time. Thus, to compute all td(v) we need
linear time. Once, this process is over, the labels and routing tables can now be computed in
O(deg(v)) time per vertex.

Non-canonical representations. Finally, we briefly discuss how to handle a visibility graph
with vertices whose x-coordinates are arbitrary real numbers. First, we compute in O(m)
time an explicit representation of the boundary of the double histogram. Moreover, let
L = (e0, e1, . . . , en/2−1) be the list of all vertical edges of the boundary sorted by increasing
x-coordinate. Since we have an explicit representation of the boundary we can compute L
in O(n) time by walking simultaneously on the upper and lower part. Now, we assign the
x-coordinate i to both vertices of the edge ei ∈ L, for each i ∈ [n/2 − 1]. The y-coordinate
remains unchanged. We observe that the order of the vertices relative to the x-axis (resp.
y-axis) has not been changed. Finally, it is well-known that the r-visibility graph does not
change if the relative orders of the vertices do not change. Hence, we can apply the routing
scheme for the canonical representation. This yields our theorem for double histograms.

Theorem 4.15. Let P be a double histogram with n vertices and m edges in Vis(P). There is a
routing scheme for Vis(P) with header size dlogne, label size dlogne, and each vertex v obtains
a routing table of size Θ(logn deg(v)). The labels and tables can be computed in time O(m)
and the stretch factor is 2.

Remark. In the slightly different routing model where we distinguish the link and the
routing table we again obtain link tables of size Θ(logn deg(v)) but routing tables of size of
O(logn); see [CCK+20].

CHAPTER 5
Span, Cover, Decompose
In this chapter we want to present results on how to span, cover and decompose planar

graphs or unit disk graphs. These techniques are used to design the routing scheme for unit
disk graphs. Every graph is considered to be undirected and weighted.

5.1 Planar Spanners
The first ingredient for our routing scheme is the concept of planar spanners.

Definition 5.1 (c-spanner). Let G = (V ,EG,wG) be a simple, weighted graph and c > 1 a
real number. A graph H = (V ,EH,wH) is called c-spanner for G if and only if the following
two properties hold:

(i) H is a subgraph of G, i.e., EH ⊆ EG and wH(e) = wG(e) for each e ∈ EH.

(ii) H preserves distances approximately, i.e, ∀s, t ∈ V : dG(s, t) 6 dH(s, t) 6 c · dG(s, t).

The left inequality of Property (ii) is not necessary for the definition, since it immediately
follows from the fact that H is a subgraph of G.

We are interested in a specific class of spanners: planar c-spanners of unit disk graphs.
Let V be a set of n points in the plane. The graph UDel(V) is obtained from the Delaunay
triangulation of V by removing all edges of weight larger than one; see Figure 5.1. The
following lemma shows, that UDel(V) is a planar spanner of the unit disk graph DG(V) whose
construction is easy and efficient. The proof for the spanning ratio is due to Li, Calinescu,
and Wan.

Lemma 5.1 (see [LCW02]). Let V be a set of n points in the euclidean plane. Then there exists
a planar 2.42-spanner for the unit disk graph DG(V) that can be computed in time O(n logn).

47

48 Span, Cover, Decompose

Figure 5.1: Left: DG(V). Middle: Delaunay triangulation of V . Right: Intersection of both:
UDel(V).

5.2 Sparse Covers
The second technique can be applied to planar graphs and serves as a building block to cover
a unit disk graph.

Definition 5.2 (r-cover). Let H = (V ,E) be a planar graph, and let r ∈ N. An r-cover for H
is a collection of m subgraphs {H1,H2, . . . ,Hm} of H with the following two properties:

(i) For each vertex v ∈ V , there is at least one subgraph Hi that contains all the vertices
w ∈ V with dH(v,w) 6 r.

(ii) Every subgraph Hi is connected and has diam(Hi) 6 O(r).

A cover {Hi}i of H is said to be sparse if and only if every vertex v ∈ V is contained in O(1)
subgraphs Hi.

The following lemma summarizes some key facts about sparse covers. The existence
of a sparse r-cover was proven by Busch, LaFortune, and Tirthapura [BLT07]. They also
gave an algorithm that computes a sparse r-cover. The running time was later analyzed by
Kawarabayashi, Sommer, and Thorup [KST13].

Lemma 5.2. For any planar graph H = (V ,E) with n vertices and for any r ∈ N, we can
compute a sparse r-cover {Hi}i for H in O(n logn) time. Moreover, each vertex v ∈ V is
contained in at most 18 subgraphs and has diam(Hi) 6 48 · r, for each Hi.1 For a given
vertex v, we can identify in constant time2 a subgraph Hi containing all vertices w ∈ V with
dH(v,w) 6 r.

1To be more precise: Every subgraph Hi contains a rooted spanning tree of depth at most 24 · r− 8.
2This was not mentioned explicitly by the authors but follows immediately from their construction.

5.3 Shortest-Path Separator Decomposition 49

Busch, LaFortune, and Tirthapura already presented an algorithm that computes a sparse
r-cover [BLT14] where each subgraph Hi contains a spanning tree of depth at most 16r,
implying a diameter of at most 32r. However, they proved a polynomial running time but do
not present any precise order of magnitude. For our purposes it suffices to know that the
diameters of the subgraphs are in O(r). Hence, we will use the older result for which we
have a precise running time.

5.3 Shortest-Path Separator Decomposition
In this section we want to look into a well-known hierarchical decomposition of planar graphs
– the shortest-path separator decomposition. Throughout the whole section we will follow the
presentation of Thorup [Tho04], in which only sketches of proofs were given. We provide the
details for completeness. Another presentation of a shortest-path separator decomposition is
given by Kawarabayashi, Sommer, and Thorup [KST13]. First of all, we have to introduce
some notions that are necessary for the description of the decomposition.

The separation lemma. Let H = (V ,E) be a connected planar graph and let T = (V ,ET)
be a spanning tree of H rooted arbitrarily. Moreover, for v ∈ V we define T(v) as the unique
path from the root to v in T . We extend the notion of T(·) to sets as follows: for W ⊆ V , let
T(W) be the tree that contains T(w) for each w ∈W, i.e.,

T(W) =
⋃
w∈W

T(w).

Here, the union of two graphs is defined as usual, that is H1 ∪H2 = (VH1 ∪VH2 ,EH1 ∪EH2).
In addition to that, we need a second type of union for graphs. Let H1 and H2 be two
subgraphs of H with disjoint vertex sets. The expression H1 +H H2 denotes the graph that
contains the vertices and edges of H1 ∪H2 but also contains all the edges of H that have one
endpoint in H1 and the other in H2. We omit the index H if the context is clear. Formally, it is

H1 +H2 =
(
VH1 ∪ VH2 ,EH1 ∪ EH2 ∪ {{u, v} ∈ E | u ∈ VH1 , v ∈ VH2}

)
.

Finally, for each subset W ⊆ V let χW : V → {0, 1} be the characteristic function of W, i.e.,
χW(v) = 1 if and only if v ∈ W. The following lemma is due to Mikkel Thorup [Tho04]
and plays a crucial role in the development of the shortest-path separator decomposition for
planar graphs.

Lemma 5.3. Let H be a connected, planar n-vertex graph, T a spanning tree of H, and let
χ : VH → R+0 be a non-negative function. We can find in O(n) time three vertices r, s, t ∈ VH
such that for every connected component Hi of H \ T

(
{r, s, t}

)
we have∑

v∈VHi

χ(v) 6
1
2

∑
v∈VH

χ(v).

50 Span, Cover, Decompose

H
r

s

t

T({r, s, t})

H1 H2

H3

H4

H5

H6

Figure 5.2: The algorithm SEPARATE computes a separator T({r, s, t}) of H whose removal
decomposes the graph into connected subcomponents H1, . . . ,H6 ∈ C. We have
χ(Hi) 6 χ(H)/2 for each component Hi ∈ C.

Thorups lemma is similar to the classic version that has been proven by Lipton and Tarjan
[LT79]. They give a construction that finds 2 paths instead of 3 but the components have 2/3
of the original weight. Thorup argued that his separation provides smaller constants when
applied recursively. We want to follow his arguments and use SEPARATE(H, T ,χ) to denote
the implementation by Thorup [Tho04] that returns a triple (r, s, t) and a set of components
C according to Lemma 5.3; see also Figure 5.2. Here, we can assume that SEPARATE outputs
an explicit representation for each component Hi ∈ C, where vertices and edges in Hi might
have pointers to their copies in H, if necessary.3 The following lemma is now immediate.

Lemma 5.4. LetH, T and χ be as in Lemma 5.3 and (r, s, t,C) = SEPARATE(H, T ,χ). Moreover,
let Hi ∈ C be a component of H and a ∈ VHi one of its vertices. Then the subtree of T rooted at
a is a subgraph of Hi, i.e., for each b ∈ V with a ∈ VT(b) we have b ∈ VHi .

Proof. First, assume for the sake of contradiction that b is a vertex of the separator T({r, s, t}).
Since a is an ancestor of b in T , the vertex a has to be in the separator as well – a contradiction.

Secondly, assume that b is a vertex of a second component Hj ∈ C (with i 6= j). Let π be
the subpath of T(b) with endpoints a and b. Since T({r, s, t}) is a separator, every path in H
between b and a, especially π, has to use a vertex of T({r, s, t}). Next, since a and b are not
part of the separator, the separator intersects π in a vertex x that is distinct from a and b. Let
y be the lowest common ancestor of a and x in T . Since y is an ancestor of x it is an element
of the separator and therefore, it is distinct from a. We can construct a cycle as follows: start
at y, go on T(b) until you reach x and go back to y by using the separator. This cycle only
uses edges of the tree T , which is again a contradiction. Hence, the claim follows.

3In fact, given H, T , r, s, and t, the components can be computed in linear time, see also[HT73].

5.3 Shortest-Path Separator Decomposition 51

bd(µ1)

H(µ1)
H = H(µ0)

T(int(µ0))

r

s

t

Figure 5.3: Left: The root µ0 of T does not have a boundary but internal separators. Right:
A leaf µ1 of T consists of a subgraph H(µ1) of H and a boundary bd(µ1) which
is, according to Lemma 5.8 disjoint from H(µ1).

The decomposition tree. We want to present an algorithm that takes a planar graph H as
well as a shortest-path spanning tree T of H (rooted arbitrarily) as input and computes a
shortest-path separator decomposition. The overall idea of this algorithm is as follows: We
use Lemma 5.3 to decompose the graph into smaller parts and then recurse on these parts.
This process continues until the parts have constant size. During the recursion we alternate
between two types of decomposition: we either reduce the size of the subgraph or the number
of pieces being on the boundary of the subgraph. This recursion yields a decomposition tree
which we denote by T(H, T). We abbreviate it by T since H and T are clear from the context.

Before we describe the computation of such a decomposition tree, we introduce the essential
notation. Let µ be a node of the decomposition tree. It is assigned a set of vertices V(µ) ⊆ V
whose induced subgraphH(µ) is a connected component ofH. Moreover, µ gets two different
sets of shortest-path separators: the external separator paths and the internal separator paths.
These paths are root-to-node-paths in the shortest-path tree T and thus, they are shortest
paths. Since T(·) is a bijection between the vertices of H and the root-to-node-paths in T , it
suffices to store the endpoints distinct from the root, i.e., ext(µ) is a set of endpoints of the
external separator paths T(ext(µ)). Analogously, int(µ) is a set of endpoints of the internal
separator paths. The external separator paths serve as the boundary of V(µ), i.e., every path
in H with one endpoint inside V(µ) and one endpoint outside of V(µ) intersects T(ext(µ)).
We will prove this statement in Lemma 5.11. We use bd(µ) as notation for T(ext(µ)) and call
T(r) boundary part, for r ∈ ext(µ). Finally, the node µ is assigned its depth in T, denoted by
depth(µ). This depth is not necessary for the data structure but will help us with the analysis.

The computation. We refer to Algorithm 5.1 which presents the pseudocode of the compu-
tation of T. Let µ be a node created during the execution of SPSD(H, T). If the node µ has
depth 0, i.e., µ is the root, then H(µ) is the input graph H and µ has no external separator
paths, see Line 4 of the algorithm and Figure 5.3 (left). Next, if V(µ) is of constant size, µ is
a leaf and will not have any internal separator paths, see Line 9 and Figure 5.3 (right).

52 Span, Cover, Decompose

Algorithm 5.1 The shortest-path separator decomposition.

1: procedure SPSD(graph H, shortest-path spanning tree T of H)
2: Outputs: shortest-path separator decomposition tree T

3: create a new node µ
4: V(µ) = VH; ext(µ) = ∅; depth(µ) = 0
5: return NODE(µ)

6: procedure NODE(µ)
7: Outputs: shortest-path separator decomposition subtree of T for H(µ)
8: if |V(µ)| is constant then
9: children(µ) = ∅; int(µ) = ∅;

10: return µ
11: H ′ = H(µ) + bd(µ)
12: T ′ = T(V(µ)) ∪ bd(µ)
13: W = (depth(µ) mod 2 == 1) ? ext(µ) : V(µ)
14: (r, s, t,C) = SEPARATE (H ′, T ′,χW)

15: int(µ) = {r, s, t}
16: for Hi ∈ C with VHi \ Vbd(µ) 6= ∅ do
17: create a new node σi
18: V(σi) = VHi \ Vbd(µ)
19: ext(σi) = int(µ) ∪ (ext(µ) ∩ VHi)
20: depth(σi) = depth(µ) + 1
21: children(µ).add(NODE(σi))

22: return µ

Suppose V(µ) is not of constant size. We focus on the subgraph H ′ = H(µ) + bd(µ),
see Line 11. Let T ′ be the subtree of T spanning H ′, see Line 12. Next, we compute a
suitable separator for H ′. As mentioned, we distinguish two cases depending on the parity
of depth(µ), see Line 13 as well as Figure 5.4 for both cases. If the depth is even, we want
to reduce the size of the subgraph H(µ). Hence, we compute a separator T({r, s, t}) of H ′

such that each component of H ′ \ T({r, s, t}) has at most half the number of vertices of H(µ).
Otherwise, if the depth is odd, we reduce the number of boundary parts, i.e., the size of
ext(µ). For this, we split H ′ so that the boundary of each subcomponent has half the number
of separator paths. In both cases we recurse on the subpieces, see Lines 16-21. Remark, that
the internal separator paths of µ become external separator paths of all the children of µ, see
Line 19. The whole process is demonstrated for the subgraph reducing case in Figure 5.5.

Lemma 5.5. Let µ be a node of T and x ∈ int(µ) ∪ ext(µ). Then T(x) is a shortest path in H.

Proof. This follows from Lemma 5.3 and the fact, that T is a shortest-path tree.

Lemma 5.6. Let µ be a node of T and σ1 and σ2 two distinct children of µ. Then V(σ1) and
V(σ2) are disjoint and V(σi) ⊆ V(µ), for i ∈ {1, 2}.

Proof. This follows from Lemma 5.3 as well as Line 18.

5.3 Shortest-Path Separator Decomposition 53

bd(µ)

H(µ)T(int(µ))

r s t

bd(µ)

H(µ)

r

s

t
T(int(µ))

Figure 5.4: Left: A subgraph reducing node of even depth. Right: A boundary reducing node
of odd depth. Observe that µ will only have one child σ with H(µ) = H(σ) but
less boundary parts.

bd(µ)

H(µ)

r s t r s t

H1

H2
H3

H4

H5
H6

H7

H(σ1)

bd(σ1)

Figure 5.5: The subgraph reducing process. After int(µ) has been computed, the graph is split
into subgraphs H1, . . . ,H7. In this case, there will be a node σi for i = 1, . . . , 4.
The subgraphs H5, H6, and H7 are discarded by Line 16 of the algorithm.

Lemma 5.7. Let µ be a node of T and x ∈ ext(µ). Then there is an ancestor µ ′ of µ in T such
that x ∈ int(µ ′).

Proof. New separator paths are only created in Line 14. They become the internal separator
paths of the corresponding nodes and are then passed down to its children together with the
external paths, see Line 19. The claim follows from a simple inductive argument.

Lemma 5.8. Let σ be a node of T. Then we have V(σ) ∩ Vbd(σ) = ∅.

Proof. The statement is obvious for the root, see Line 4. Thus, assume that σ is not the root.
Let µ be the parent node of σ. Moreover, let C be the set of components and int(µ) = {r, s, t}
the leafs of the separator paths computed in Line 14. We can conclude that the node σ was
created with respect to a subgraph Hi ∈ C. Since V(σ) = VHi \Vbd(µ), by Line 18, it suffices
to show that T(intµ) does not share any vertices with V(σ), by Line 19. However, this is
clear, since T({r, s, t}) is the internal separator of H(µ) and therefore, it is disjoint from V(σ).
The claim follows.

54 Span, Cover, Decompose

Lemma 5.9. Let µ be a node of depth d in T and σ a child of µ.

(i) If d is even, then |V(σ)| 6 1
2 |V(µ)| and | ext(σ)| 6 | ext(µ)|+ 3.

(ii) If d is odd, then |V(σ)| 6 |V(µ)| and | ext(σ)| 6 1
2 | ext(µ)|+ 3.

Proof. Let (r, s, t,C) be the result of the computation in Line 14 with int(µ) = {r, s, t}. Let
Hi ∈ C be the component for which the child σ was created in Line 17 and let H(σ) =
Hi \ bd(µ). By Lemma 5.8, we know that V(µ) and Vbd(µ) are disjoint and thus, H(σ) is a
subgraph of H(µ). Hence, we get |V(σ)| 6 |V(µ)|. Additionally, from Line 19, we can derive
| ext(σ)| 6 | ext(µ)|+3. Both results do not depend on the parity of the depth of µ. The other
two inequalities will depend on it.

For the first case, let d be even, then χ = χV(µ) was used for the separation. Furthermore,
we know by Lemma 5.8 that χ(v) = 0 for each v ∈ Vbd(µ). Hence, we can use Lemma 5.3 to
derive

|V(σ)| =
∑

v∈V(σ)

χ(v) =
∑
v∈VHi

χ(v) 6
1
2

∑
v∈VH ′

χ(v) =
1
2

∑
v∈V(µ)

χ(v) =
1
2
|V(µ)|.

For the second case, let d be odd, then χ = χext(µ). From Lemma 5.3, we conclude

| ext(σ)| 6 | ext(µ) ∩ VHi |+ 3 6
∑
v∈VHi

χ(v) + 3 6
1
2

∑
v∈VH ′

χ(v) + 3 =
1
2
| ext(µ)|+ 3.

This finishes the proof.

Lemma 5.10. The algorithm terminates and T has height O(logn).

Proof. By Lemma 5.9, the size of V(·) is halved in every second level. Once, the size is
constant, there are no more recursive calls. Hence, the algorithm terminates and the resulting
tree has height O(logn).

As stated earlier, every path between vertices of different components must intersect a
separator path. We can now formally prove that a path that leaves a component H(µ) must
first intersect its boundary bd(µ).

Lemma 5.11. Let µ be a node of T. Then, we have N[V(µ)] ⊆ V(µ) ∪ Vbd(µ).

Proof. Let {v,w} ∈ EH be an edge such that v ∈ V(µ) and w /∈ V(µ). We need to show that
w ∈ Vbd(µ). Let P be the set of all nodes µi of T satisfying v ∈ V(µi) and w /∈ V(µi), we let
k = |P|. By Lemma 5.6, P is a path in T with nodes of increasing depth. Let µ1 be the highest
node in P, and let µi be the child of µi−1 in P, for each i = 2, . . . , k.

We prove by induction on i, that each node µi ∈ P satisfies w ∈ Vbd(µi). Then, the claim
follows, since µ ∈ P. For the induction base, let µ0 be the parent node of µ1. By definition
of P, we get v,w ∈ V(µ0). Since w /∈ V(µ1), either w ∈ VT(int(µ0)) or there is a child σ of
µ0 distinct from µ1 such that w ∈ V(σ). However, the second case is not possible, since the

5.3 Shortest-Path Separator Decomposition 55

separator T(int(µ)) must intersect every path between v and w, especially the edge {v,w}.
Hence, we have w ∈ VT(int(µ0)) ⊆ VT(ext(µ1)) = Vbd(µ1) as claimed.

For the induction step, let µi be a node in P with i > 1. By the induction hypothesis we
have w ∈ Vbd(µi−1). Let H ′ = H(µi−1) + bd(µi−1) and let Hi ∈ C be the subgraph of H ′

computed in Line 14 that refers to the node µi. Because w is a vertex of H ′, it is either
in T(int(µi−1)) or in a subgraph Hj ∈ C. In the first case, the claim follows from the fact
that T(int(µi−1)) is a subgraph of bd(µi), by Line 19. For the second case, w has to be in
Hi since it is not possible to separate v from w. Because w ∈ bd(µi−1), there exists an
s ∈ ext(µi−1) with w ∈ T(s). By Lemma 5.4, we know that s is a vertex of Hi. Now, because
s ∈ ext(µi−1) ∩ VHi , it follows from Line 17 that s ∈ ext(µi). Finally, since w ∈ T(s) we
derive w ∈ bd(µi) as claimed.

Lemma 5.12. Let µ be a node of T. We have | int(µ)| = 3 and | ext(µ)| 6 11.

Proof. The first statement follows immediately from Line 15. For the second statement we
take a look at the following recursively defined function f : N0 → N0, namely

fd =


0, if d = 0

fd−1 + 3, if d is odd⌊
fd−1

2

⌋
+ 3, otherwise

We show by induction on d that fd 6 11. For the induction base, we have f0 = 0 6 11 as
well as f1 = 3 6 11. Next, for the induction step we let d > 2 and distinguish two cases
according to its parity. If d is even, we conclude

fd =

⌊
fd−1

2

⌋
+ 3 6

⌊
11
2

⌋
+ 3 = 8 6 11.

If d is odd, we derive

fd = fd−1 + 3 6

⌊
fd−2

2

⌋
+ 3 + 3 6

⌊
11
2

⌋
+ 6 = 11.

Finally, let µ be of depth d. If d = 0, the node µ does not have any external separators, i.e.,
| ext(µ)| = f0. Otherwise, we can conclude from Lemma 5.9 that | ext(µ)| 6 fd. This finishes
the proof.

We can also bound the number of nodes in T. Remark that the degree of a node in T might
be one. This, however, will not influence the asymptotic size of T.

Lemma 5.13. T has O(n) nodes.

Proof. By Lemma 5.6, we know that the leafs of T represent a partition of a subset V ′ ⊆ V .
Hence, T has at most n leafs. Moreover, since the number of vertices in the components is
halved in every second step, by Lemma 5.9, the claim follows.

56 Span, Cover, Decompose

bd(µ)

H(µ)

bd(µ)

H(µ)

Figure 5.6: The graph H ′ = H(µ) + bd(µ). The filled black dots represent the unimportant
vertices, the large blue dots represent the topological vertices, and the remaining
ones are the selected vertices. The green lines are all edges between H(µ) and
bd(µ). Left: The boundary with unimportant vertices. Right: After the deletion
of all unimportant vertices. The size of the boundary is significantly smaller.

The running time. Since our decomposition tree is later used as building block we are inter-
ested in its structure rather than its preprocessing time analysis. However, we briefly sketch
the main issues of the running time analysis. We refer to Mikkel Thorups description [Tho04]
and follow his argumentation. The following details are not presented in the pseudocode,
since they would make its presentation unclear. The idea is depicted in Figure 5.6.

Let us fix a node µ in the tree and let H ′ = H(µ) + bd(µ). Moreover, let n(µ) be the
number of vertices in H ′, that is, n(µ) = |V(µ)|+ |Vbd(µ)|. Next, we let E(µ) be the set of all
edges that have at least one endpoint in H(µ) and use e(µ) to denote the cardinality of E(µ).
By Lemmas 5.8 and 5.11, we know that the endpoints of edges in E(µ) are either in H(µ) or
in bd(µ). Finally, we let t(µ) be the preprocessing time for the node µ without its recursive
calls. Then, if µ is an inner node, we have t(µ) ∈ O(n(µ)) by Lemma 5.3, and if µ is a leaf,
t(µ) ∈ O(n(µ)) holds trivially. Thus, we have to be sure that n(µ) is not too large. For this,
we adapt bd(µ) appropriately.

Recall, that bd(µ) is a tree. We call a vertex v of bd(µ) topological if it is a leaf or a
branching vertex, i.e., it does not have degree 2 in bd(µ). Observe, that by Lemma 5.12, the
boundary must have a constant number of topological vertices. A vertex v is called selected if
it is adjacent to a vertex in H(µ), i.e., v ∈ N(V(µ)). The vertices that are neither topological
nor selected are unimportant.

Now, to decrease the number of vertices in bd(µ), we iterate over all unimportant vertices
v and do the following: Let u and w be the two neighbors of v in bd(µ), we remove v (and
its two incident edges) from bd(µ) and introduce a new edge {u,w} whose weight is the
sum of the weights of the two deleted edges. This iteration is performed in the recursive
call where the node µ is created. After this iteration we have a boundary that consists of a
constant number of topological vertices and at most e(µ) selected vertices, see Figure 5.6.
This yields n(µ) ∈ O(e(µ)).

For the running time, we fix a number h and use Lh to denote the set of all nodes in T that

5.4 Approximate Shortest-Path Separator Decomposition 57

have level h. Let µi,µj ∈ Lh be two distinct nodes. By Lemma 5.6, we know that V(µi) and
V(µj) are disjoint. Thus, E(µi) and E(µj) are disjoint as well. From this we can derive∑

µi∈Lh

e(µi) 6 |E| ∈ O(n).

Plugging everything together, we get

∑
µi∈Lh

t(µi) ∈ O

 ∑
µi∈Lh

n(µi)

 = O

 ∑
µi∈Lh

e(µi)

 = O(n).

The height of the decomposition tree is O(logn), see Lemma 5.10, which gives us a
near-linear preprocessing time.

Lemma 5.14. T can be computed in O(n logn) time.

5.4 Approximate Shortest-Path Separator
Decomposition

In this section, we want to present a decomposition of unit disk graphs for which the shortest-
path separator decomposition is the main building block.

Let DG(V) be a unit disk graph with vertex set V , diameter D, and let ε > D−1. As usual,
n denotes the number of vertices of DG(V). We present a data structure for DG(V) which
we call approximate shortest-path separator decomposition (short: approximate-spsd). The
data structure was first presented by Chan and Skrepetos [CS19] and follows an idea of
Kawarabayashi, Sommer, and Thorup [KST13]. We slightly adapt the data structure for our
purposes and shorten the proofs.

First of all, we compute the planar 2.42-spanner H of DG(V) from Lemma 5.1 which
needs O(n logn) time. Then, we use Dijkstras algorithm to compute in O(n logn) time
a shortest-path tree T of H, rooted arbitrarily. We use this shortest-path tree to build the
shortest-path separator decomposition T for H. According to Lemma 5.14, this can also be
done in O(n logn) time .

We get the approximate-spsd tree Tε by extending the nodes with further information.
Therefore, let µ be a node of T. We compute a set of portals for µ, denoted by port(µ), as
follows. If µ is a leaf, we let port(µ) = V(µ). Otherwise, assume µ to be an inner node.
Let x ∈ int(µ) be the leaf of the internal separator path T(x). We select a set of O(1/ε)
vertices in V(µ) ∩ VT(x) such that two selected consecutive vertices on T(x) are at distance
at most εD. This is possible since εD > 1 by assumption. The result is denoted by Vε(x).
Let int(µ) = {r, s, t}. We define the portal set of µ as port(µ) = Vε(r) ∩ Vε(t) ∩ Vε(t);
see Figure 5.7. By construction, port(µ) ⊆ V(µ) holds for each node µ. Furthermore, by
Lemmas 5.3, 5.6 and 5.8, the portal sets of two distinct nodes µ1 and µ2 are disjoint, i.e.,
port(µ1)∩port(µ2) = ∅. Finally, we prove the following lemma that bounds the preprocessing
time and the size of the portal sets.

58 Span, Cover, Decompose

bd(µ)

H(µ)

r s t

Vε(r) 6 εD

Vε(s)
Vε(t)

Figure 5.7: The portals of a node µ. Two consecutive portals have distance at most εD.

Lemma 5.15. The portal sets can be computed in O(n) additional time and for each node µ of
T we have | port(µ)| ∈ O(1/ε).

Proof. The second part of the lemma follows on the one hand from the fact that every inner
node has a constant number of internal separator paths and on the other hand from the fact
that leafs have vertex sets of constant size.

For the running time, we first observe that, by Lemma 5.13, there are only O(n) nodes in
T. Next, let µ1 and µ2 be two different inner nodes of T. From Lemmas 5.3, 5.6 and 5.8, we
can conclude that V(µ1) ∩ VT(int(µ1)) and V(µ2) ∩ VT(int(µ2)) are disjoint. Hence, we need
to look at O(n) vertices in total when computing the portal sets of all nodes. This gives a
running time of O(n).

Finally, for each portal p ∈ port(µ), we compute a shortest-path tree rooted at p spanning
DG(V(µ)) and store it in µ together with all distances between v and p in DG(V(µ)), denoted
by dµ(v,p), for each v ∈ V(µ). The result is our approximate-spsd tree Tε. Wang and Xue
have shown how to compute a shortest path tree in O(n ′ log2 n ′) time if unit disk graph has
n ′ vertices [WX20]. To argue about the size of the whole running time we let Lh be the set of
all nodes in Tε of height h. Remark, that by Lemma 5.6 the components located at height h
in T represent a partition of a vertex set V ′ ⊆ V . Moreover, each node µ has at most O(1/ε)
portals. Hence, the running time t(h) over all nodes of height h is bounded by

t(h) =
∑
µ∈Lh

O
(
ε−1|V(µ)| log2 |V(µ)|

)
= O

(
ε−1|V ′| log2 |V ′|

)
= O

(
ε−1n log2 n

)
.

Last but not least, since T and therefore Tε has height O(logn), by Lemma 5.10, we can
conclude the following lemma.

Lemma 5.16. Let DG(V) be an n-vertex unit disk graph. We can compute the approximate-spsd
tree Tε in O(ε−1n log3 n) time.

5.4 Approximate Shortest-Path Separator Decomposition 59

Distance Oracle. Finally, let us describe what the approximate-spsd tree Tε is used for.
First, we know that the portal sets for two distinct nodes µ1 and µ2 of Tε are disjoint. Hence
let p be a portal, we let µ(p) be the unique node µ in Tε for which p ∈ port(µ) holds. Let s
and t be two vertices of DG(V). We use P(s, t) to denote the set of all portals that belong to
a node µ containing s and t in its component V(µ), i.e.,

P(s, t) =
{
p ∈ port(µ) | s, t ∈ V(µ)

}
.

The following observation bounds the size of P(s, t) and is straightforward.

Observation 5.17. |P(s, t)| ∈ O
(
ε−1 logn

)
.

Proof. The set of nodes µ of Tε with s, t ∈ V(µ) is a path with one endpoint being the
root. Since Tε has height O(logn) by Lemma 5.10, and since port(µ) has size O(1/ε), by
Lemma 5.15, the claim follows.

Next, we define

θ(s, t) = min
p∈P(s,t)

{
dµ(p)(s,p) + dµ(p)(p, t)

}
.

The following lemma shows that θ(s, t) approximates the distance between s and t.

Lemma 5.18. Let s and t be two vertices of DG(V). Then we have

d(s, t) 6 θ(s, t) 6 d(s, t) + 6.84εD.

Proof. The left inequality is easy to see, since each p ∈ P(s, t) satisfies

d(s, t) 6 dµ(p)(s, t) 6 dµ(p)(s,p) + dµ(p)(p, t).

For the right inequality, let π be a shortest path in DG(V) between s and t. Moreover, let
µ be the lowest node in Tε such that DG(V(µ)) contains the path π. First, assume that µ is
a leaf of Tε. Hence, we can conclude that s ∈ port(µ) and therefore, s ∈ P(s, t) as well as
µ(s) = µ. Moreover, since π is a shortest path in DG(V) but also in DG(V(µ)) we can derive
d(s, t) = dµ(s, t). Thus, we have

θ(s, t) 6 dµ(s)(s, s) + dµ(s)(s, t) = dµ(s, t) = d(s, t).

Otherwise, let us assume that µ is not a leaf of Tε. Let σ be the child of µ with s ∈ V(σ),
see also Figure 5.8. We start at s and walk along π until we find the first edge {u, v} such
that u ∈ V(σ) and v /∈ V(σ). This edge has to exist, since µ is the lowest node containing π.
Next, since H is a 2.42-spanner of DG(V), we know that there is a path πu,v in H of length
at most 2.42 · |uv| connecting u and v. We start at u and walk along πu,v until we find
the first vertex w that is outside of V(σ). This vertex exists, since v is outside of V(σ). By
Lemma 5.11, we know thatw is on the boundary bd(σ) of σ. Let µ ′ be the lowest ancestor of
σ satisfying w ∈ V(µ ′) ∩ VT(int(µ ′)). Such a node has to exist, by Lemma 5.7. Observe, that
µ = µ ′ is possible. Next, let p be the portal of µ ′ closest to w. Hence, it is µ(p) = µ ′ and

60 Span, Cover, Decompose

s tu v

w

π

πu,v

p

H(σ)
bd(σ)

H(µ(p))

Figure 5.8: The vertex v is the first vertex on the shortest path π outside of H(σ). The path
πu,v is in H and approximates the edge {u, v} which might not be in H. The
vertex w is the first vertex on πu,v outside of H(σ). It lies on bd(σ) and has p as
closest portal.

by construction, we have dµ(p)(w,p) = d(w,p) 6 εD. Moreover, since V(µ(p)) ⊇ V(µ),
we conclude dµ(p)(s, t) = dµ(s, t) = d(s, t). Finally, we can use the triangle inequality to
derive

θ(s, t) 6 dµ(p)(s,p) + dµ(p)(p, t) 6 dµ(p)(s,w) + dµ(p)(w, t) + 2 · dµ(p)(w,p)

6 dµ(p)(s,u) + dµ(p)(u, t) + 2 · |πu,v|+ 2 · dµ(p)(w,p)

6 dµ(p)(s, t) + 4.84 · |uv|+ 2 · d(w,p) 6 d(s, t) + 6.84 · εD.

This finishes the proof.

Last but not least, we want to summarize all the necessary information in one theorem.

Theorem 5.19. Let DG(V) be an n-vertex unit disk graph of diameter D and let ε > D−1. We
can compute a decomposition tree Tε for DG(V) that has the following properties.

(i) Tε has O(n) nodes and height O(logn).

(ii) Tε can be computed in time O(ε−1n log3 n).

(iii) Every node µ of Tε is assigned two sets: port(µ) ⊆ V(µ) ⊆ V . The subgraph of DG(V)
induced by V(µ) is connected and it is | port(µ)| ∈ O(1/ε).

(iv) If µ is the root, then V(µ) = V .

(v) If µ is an inner node with children σ1, . . . ,σk, the sets port(µ),V(σ1), . . . ,V(σk) are
pairwise disjoint, and we have V(σi) ⊆ V(µ), for 1 6 i 6 k.

(vi) For each portal p, there is a shortest-path tree Tp rooted at p spanning DG(V(µ(p))).

5.4 Approximate Shortest-Path Separator Decomposition 61

(vii) If µ1 and µ2 are two distinct nodes, then port(µ1) and port(µ2) are disjoint.

(viii) For every pair of vertices s and t it holds

d(s, t) 6 θ(s, t) = min
p∈P(s,t)

{
dµ(p)(s,p) + dµ(p)(p, t)

}
6 d(s, t) + 6.84 · εD.

Remark. If we use the approximate SSSP algorithm proposed by Wan et al. [WX20] it is
possible to decrease the preprocessing time of Tε to O(ε−1n log2 n+ ε−1n logn log2(ε−1)).
However, this would increase the constant in the stretch and will make the description of the
routing scheme more cumbersome.

CHAPTER 6
Unit Disk Graphs

In this section, we describe the building blocks for our routing scheme. For this, we review
some simple routing schemes from the literature, and we show how to obtain a new routing
scheme for unit disk graphs that achieves an additive stretch. This later scheme is based on
the data structure of Chan and Skrepetos [CS19], which we described in Section 5.4.

6.1 Small Diameter
First, we present a routing scheme that is efficient for unit disk graphs with small diameter. For
this scheme, we use the labeled routing scheme for graphs with bounded doubling dimension
by Konjevod, Richa, and Xia [KRX16]. The doubling dimension of a graph G is the smallest
value α such that any ball B(v, r) of G can be covered by at most 2α balls of radius at most
r/2. The following lemma is due to Konjevod et al. [KRX16]. The preprocessing time has
been analyzed by Nils Goldmann [Gol21].

Lemma 6.1. Let G be an n-vertex graph with doubling dimension α. Furthermore, let ε > 0.
There is a routing scheme with label size dlogne, table size (1/ε)O(α) log3 n, and header size
O(log2 n/ log logn), whose routing function achieves stretch factor 1 + ε. The preprocessing
time is O(ε−1n2 log2 n).

The following lemma bounds the doubling dimension of a unit disk graph in terms of D.

Lemma 6.2. Let DG(V) be a unit disk graph, v ∈ V a vertex, and r > 0. We can cover the ball
B = B(v, r) with O(max(1, r2)) balls of diameter at most r/2.

Proof. Let E ⊂ R2 be the Euclidean disk of radius r centered at v. Obviously, B ⊂ E. Moreover,
the Euclidean disk E can be covered by a set E of K = O(max(1, r2)) Euclidean disks each
of radius r ′ = min(r/4, 1/2). This follows from a simple covering argument. For each disk
Ei ∈ E, we fix a vertex vi as follows: if Ei ∩ B 6= ∅, then vi is an arbitrary vertex of Ei ∩ B.

63

64 Unit Disk Graphs

Otherwise, if Ei ∩B = ∅, we let vi be an arbitrary vertex of B. Since r ′ 6 1/2, the vertices in
Ei form a clique in DG(V). Hence, we have Ei ∩ B ⊆ B(vi, 2r ′). Next, from r ′ 6 r/4 we get
B(vi, 2r ′) ⊆ B(vi, r/2). Thus,

B(v, r) ⊆
K⋃
i=1

(Ei ∩ B) ⊆
K⋃
i=1

B(vi, 2r ′) ⊆
K⋃
i=1

B(vi, r/2).

This finishes the proof.

Finally, the routing scheme for unit disk graphs with small diameter follows from Lemma 6.1
and Lemma 6.2.

Lemma 6.3. Let DG(V) be an n-vertex unit disk graph with diameter D. Furthermore, let
ε > 0. There is a routing scheme with label size dlogne, table size (1/ε)O(D

2) log3 n, and
header sizeO(log2 n/ log logn), whose routing function σdiam achieves stretch factor 1+ε. The
preprocessing time is O(ε−1n2 log2 n).

6.2 Large Diameter
In the last section we presented a routing scheme that is efficient for unit disk graphs with
low diameter. In this section we present a routing scheme that is efficient for unit disk graphs
with large diameter. Let DG(V) be an n-vertex unit disk graph with diameter D, and let
ε > D−1. Let cn = 2dlogne, we define x∗ = bx · cnc, for each x ∈ R+0 . We assume that the
conversion from x to x∗ needs O(log x+ logn) time.

The labels and tables. We start with a description of the labels and tables and analyze
its size and preprocessing time. First, we assign to each vertex v ∈ V a unique number
vid ∈ [n− 1]. Then, we compute the approximate-spsd tree Tε of DG(V). Let µ be a node of
Tε and let p ∈ port(µ) be a portal of µ, i.e., µ = µ(p). We perform a postorder enumeration
of the vertices in the shortest-path tree Tp. We use rp(v) to denote the postorder number of v
in Tp, for each v ∈ V(µ). Next, the subtree of Tp rooted at v is called Tp(v) and we use `p(v)
to denote the smallest postorder number in Tp(v). The postorder enumeration provides the
following observation.

Observation 6.4. Let w ∈ V(µ(p)). Then we have:

w ∈ Tp(v)⇔ rp(w) ∈ [`p(v), rp(v)].

Finally, we apply the tree routing from Lemma 2.2 to Tp and denote by labp(·) and
tabp(·) the corresponding labels and tables, respectively. Now, for each v ∈ V(µ), we store
(pid,dµ(p)(v,p)∗, rp(v), labp(v)) in lab(v) and (pid,dµ(p)(v,p)∗, `p(v), rp(v), tabp(v)) in
tab(v). The following two lemmas bound the size of the labels and the preprocessing time.
Finally, Lemma 2.2 implies that routing table and routing label have the same asymptotic
size.

6.2 Large Diameter 65

Lemma 6.5. For every vertex v ∈ V , we have | lab(v)| ∈ O
(
ε−1 log3 n/ log logn

)
.

Proof. Since Tε has height O(logn), we know that v is in O(logn) different sets V(µ).
Moreover, for every node µ, there are at most O(1/ε) portals. Thus, the label of v contains
O(ε−1 · logn) different entries. The value dµ(p)(v,p)∗ is a natural number, and since
cn 6 2n, we have

dµ(p)(v,p)∗ = bdµ(p)(v,p) · cnc 6 2n2.

Thus, we need O(logn) bits for the number dµ(p)(v,p)∗. Moreover, the identifier pid as
well as the postorder numbers stored in one entry only need O(logn) bits. Finally, we apply
Lemma 2.2 to conclude that one entry of the routing label has size O(log2 n/ log logn). The
claim follows.

Lemma 6.6. The preprocessing time of the labels and tables is O(ε−1n log3 n).

Proof. First, the approximate-spsd can be computed in timeO(ε−1n log3 n), see Lemma 5.16.
Next, let us fix a depth d and let µ be a node of depth d in Tε. If µ does not contain any portals,
we do nothing. Otherwise, let p ∈ port(µ). The computation of the postorder numbers
`p(·) and rp(·) of the tree Tp can be done in time O(|V(µ)|). Moreover, the approximate
distances dµ(p)(·,p) can be computed in time O(|V(µ)| logn), since the correct distances
are stored in µ and since dµ(p)(v,p) 6 n for each v ∈ V(µ). The labels labp(·) and tables
tabp(·) can be computed in time O(|V(µ)|) because of Lemma 2.2. By Lemma 5.15, the node
µ has O(1/ε) different portals. Thus, we can conclude that the processing for one node µ
needs O(ε−1|V(µ)| logn) time. Furthermore, by Lemma 5.6, the vertex sets of all nodes
of depth d are a partition of a subset V ′ ⊆ V . According to Lemma 5.10, Tε is of height
O(logn) and thus, the computation of all labels and tables needs O(ε−1n log2 n) time once
the approximate-spsd has been computed. In the end, the preprocessing time of the labels
and tables is dominated by the computation of Tε. This finishes the proof.

The routing function. Next, we describe the routing function. Let us first explain the
overall idea of our routing scheme. In the preprocessing we covered the unit disk graph
DG(V) by a set of O(n/ε) shortest-path trees whose roots are the portals of the approximate-
spsd. In every step of the routing we choose one of these trees in a greedy fashion and route
one step in this tree. We never use any information from past, meaning that the dynamic
header during the routing will remain empty. The analysis will show that the routing will
terminate and that the length of the resulting path is related to the number θ(·, ·), which is
computed by the approximate distance oracle, see Section 5.4.

For the routing function, we are given the table tab(s) of the current vertex s and the label
lab(t) for the target vertex t (the header will always be empty); see also Algorithm 6.1. First,
we identify all portals p ∈ P(s, t). We can do this by identifying all vertices p such that the
entry (pid,dµ(p)(s,p)∗, `p(s), rp(s), labp(s)) is in tab(s) while in lab(t) we find the entry
(pid,dµ(p)(t,p)∗, rp(t), labp(t)). Next, let

θ(s, t;p) =

{
dµ(p)(t,p) − dµ(p)(p, s), if t ∈ Tp(s)
dµ(p)(t,p) + dµ(p)(p, s), otherwise.

66 Unit Disk Graphs

V(µ(p))

Tp(s)

V(µ(p))

p p

s s

t

t

Tp(s)

V(µ(p))

p

s t

Tp(s)

Figure 6.1: Left: If t is in Tp(s), i.e., θ(s, t;p) = dµ(p)(t,p) − dµ(p)(p, s), we route away
from p. Middle and Right: If t is not in Tp(s), i.e., θ(s, t;p) = dµ(p)(t,p) +
dµ(p)(p, s), we route towards p. The right picture suggests to define θ(s, t;p) as
dµ(p)(s,p) − dµ(p)(t,p). This does not influence the guarantees of our routing
scheme but would lead to more cases.

See Figure 6.1, for an illustration of the two cases. Let popt be the portal that minimizes
θ(s, t;p) among all portals p. Then, it is easy to see, that d(s, t) 6 θ(s, t;popt) 6 θ(s, t).
Hence, θ(s, t;popt) is a good approximation for the distance between s and t. However,
the routing function cannot compute the optimal portal popt, since we do not have direct
access to the real value dµ(p)(s,popt). Instead, we use the values dµ(p)(·,p)∗ to compute a
near-optimal portal. Analogously to θ(s, t;p), we define

θ∗(s, t;p) =

{
dµ(p)(t,p)∗ − dµ(p)(p, s)∗, if t ∈ Tp(s)
dµ(p)(t,p)∗ + dµ(p)(p, s)∗, otherwise.

Let p0 be the portal that lexicographically minimizes (θ∗(s, t;p),pid), among all portals
p ∈ P(s, t). We call p0 the s-t-portal and set θ∗(s, t) = θ∗(s, t;p0). Observe that the s-
t-portal can be computed by using only the table of s, the label of t and Observation 6.4.
The routing function now uses tabp0(s) and labp0(t) to compute the next vertex in Tp0 and
forwards the data packet to this vertex.

Algorithm 6.1 The routing function σadd for unit disk graphs with additive stretch O(εD).

1: procedure ROUTINGFUNCTION(tab(s) ∈ Σ∗, lab(t) ∈ Σ∗)
2: Outputs: port p ∈ Σ∗
3: p0 = argmin{(θ∗(s, t;p),pid) | p ∈ P(s, t)}
4: return σtree(tabp0(s), labp0(t))

The stretch. Finally, we have to show that the routing scheme is correct and routes along
a short (not necessarily shortest) path. For this, we first show that the routing process
terminates.

6.2 Large Diameter 67

Lemma 6.7. Let s be the current vertex, t the target vertex, and suppose that the routing scheme
sends the packet from s to v. Moreover, let p0 be the s-t-portal. Then, p0 is a possible candidate
for the v-t-portal, and we have θ∗(s, t;p0) > θ∗(v, t;p0) + |sv|∗.

Proof. First, let µ = µ(p0). Since {s, v} is an edge of the shortest-path tree Tp0 , it follows that
v ∈ V(µ(p0)). This gives the first part of the claim. For the second part, we distinguish two
cases:
Case 1: t ∈ Tp0(s). In this case, we have t ∈ Tp0(v), and thus θ∗(v, t;p0) = dµ(t,p0)∗ −
dµ(p0, v)∗. Moreover, we have

dµ(p0, v)∗ = bdµ(p0, v) · cnc = bdµ(p0, s) · cn + |sv| · cnc > bdµ(p0, s) · cnc+ b|sv| · cnc
= dµ(p0, s)∗ + |sv|∗,

since s is on the path in Tp0 from p0 to v. Hence, we get

θ∗(s, t;p0) = dµ(t,p0)∗−dµ(p0, s)∗ > dµ(t,p0)∗−dµ(p0, v)∗+ |sv|∗ = θ∗(v, t;p0)+ |sv|∗.

Case 2: t /∈ Tp0(s). Similarly to the first case, we have dµ(p0, s)∗ > dµ(p0, v)∗ + |sv|∗ and
θ∗(v, t;p0) 6 dµ(t,p0)∗ + dµ(p0, v)∗. Thus, we get

θ∗(s, t;p0) = dµ(t,p0)∗+dµ(p0, s)∗ > dµ(t,p0)∗+dµ(p0, v)∗+ |sv|∗ > θ∗(v, t;p0)+ |sv|∗,

and the claim follows.

Corollary 6.8. Let s, t, and v be as in Lemma 6.7. Then, θ∗(s, t) > θ∗(v, t) + |sv|∗.

Proof. Let p0 be the s-t-portal. From Lemma 6.7, we get

θ∗(s, t) = θ∗(s, t;p0) > θ∗(v, t;p0) + |sv|∗ > θ∗(v, t) + |sv|∗.

The claim follows.

Lemma 6.9. Let s, t and v be as in Lemma 6.7. Let p be the s-t-portal and q be the v-t-portal.
Then, if θ∗(s, t) = θ∗(v, t), it follows that pid > qid.

Proof. From Lemma 6.7, we have

θ∗(v, t;q) = θ∗(v, t) = θ∗(s, t) = θ∗(s, t;p) > θ∗(v, t;p)+|sv|∗ > θ∗(v, t;p) > θ∗(v, t;q).

Hence, θ∗(v, t;p) = θ∗(v, t;q). Furthermore, by construction, we have (θ∗(v, t;p),pid) >
(θ∗(v, t;q),qid). Thus, the claim follows.

Lemma 6.10. The routing scheme is correct.

Proof. Let s be the current vertex, t the desired target vertex, and p the s-t-portal. To measure
the progress towards t, we consider the triple (θ∗(s, t),pid,hp(s, t)), where hp(s, t) denotes
the hop distance in Tp between s and t.

68 Unit Disk Graphs

Suppose that the routing scheme sends the packet from s to v, and let q be the v-t-
portal. We argue that (θ∗(v, t),qid,hq(v, t)) < (θ∗(s, t),pid,hp(s, t))). By Corollary 6.8 and
Lemma 6.9, it suffices to show that if θ∗(s, t) = θ∗(v, t) and p = q, then hp(s, t) > hq(v, t).
However, this is clear, because by Lemma 2.2, {s, v} is an edge of Tp that leads from s towards
t, and Tq = Tp.

Now, since the triples (θ∗(s, t),pid,hp(s, t)) lie inN3 and since (0, 0, 0) is a global minimum,
it follows that the data packet eventually arrives at the target vertex t.

Lemma 6.11. For any two vertices s and t, we have δ(s, t) 6 d(s, t) + 7.84 · εD.

Proof. First, we show that θ∗(s, t) 6 cn · θ(s, t) + 1 as follows: let p0 be the s-t-portal, and
let popt be the portal minimizing θ(s, t; ·) among all portals. Let µ = µ(popt). We obtain

θ∗(s, t) = θ∗(s, t;p0) 6 θ∗(s, t;popt) = bcn · dµ(t,popt)c ± bcn · dµ(popt, s)c
6 bcn ·

(
dµ(t,popt)± dµ(popt, s)

)
c+ 1 6 bcn · θ(s, t)c+ 1 6 cn · θ(s, t) + 1,

where the ±-operator is used to cover the two possible cases in the definition of θ∗, and
because bac+ bbc 6 ba+ bc and bac− bbc 6 ba− bc+ 1, for all a,b > 0.

Next, by Lemma 6.10, we know that the routing terminates. Let π : 〈s = w0, . . . ,wm = t〉
be the routing path. From Corollary 6.8, we get |wiwi+1|∗ 6 θ∗(wi, t) − θ∗(wi+1, t), which
yields

δ(s, t) =
m−1∑
i=0

|wiwi+1| 6
m−1∑
i=0

|wiwi+1|∗ + 1
cn

=
m

cn
+

1
cn

m−1∑
i=0

|wiwi+1|∗

6
m

cn
+

1
cn

m−1∑
i=0

(θ∗(wi, t) − θ∗(wi+1, t)) =
m

cn
+
θ∗(s, t)
cn

6
m

cn
+
cn · θ(s, t) + 1

cn
=
m+ 1
cn

+ θ(s, t)

Now, using Lemma 5.18, the choices of cn = 2dlogne and εD > 1 as well as the fact that
m 6 n− 1, we get

δ(s, t) 6
m+ 1
cn

+ θ(s, t) 6
n

2dlogne + d(s, t) + 6.84 · εD 6 d(s, t) + 7.84 · εD,

as claimed.

We can now conclude with our next theorem.

Theorem 6.12. Let DG(V) be an n-vertex unit disk graph with diameter D. Furthermore, let
ε > D−1. There is a routing scheme with label size O

(
ε−1 log3 n/ log logn

)
whose routing

function σadd routes any data packet on a path with additive stretch 7.84 ·εD. The preprocessing
time is O(ε−1n log3 n).

6.3 A Routing Scheme with Stretch 1 + ε 69

6.3 A Routing Scheme with Stretch 1 + ε
Let DG(V) be an n-vertex unit disk graph with diameter D and let ε > 0.

The labels and tables. Again, let us first describe the preprocessing phase in which the
labels and tables will be computed. First, we compute a planar 2.42-spanner H of DG(V),
as in Lemma 5.1. Then, we have diam(H) 6 2.42D. Next, we use Lemma 5.2 to construct
a sparse 2k-cover (Hk1 ,Hk2 , . . . ,Hkmk

) of H, for each k ∈ I = {dlog 5
εe, . . . , dlog(diam(H))e}.

At this point we should remark, that diam(H) is not known in advance and a computation
of it (approximate or exact) might take too much time. Therefore, it is not possible to use
a foreach-loop. Instead we can use a while-loop in which k is incremented in every step
and which terminates if the corresponding sparse 2k-cover contains the graph H as cluster.
Finally, it is |I| ∈ O(log(diamH)) = O(logD). Let Vki be the vertex set of Hki . A short look
at Lemma 5.2 gives the following observation.

Observation 6.13. For a fixed k ∈ I we have mk ∈ O(n) and

mk∑
i=1

|Vki | ∈ O(n).

Let Gki be the induced unit disk graph of Vki . Let k0 = dlog 5
εe, for each Gk0

i , we apply the
preprocessing mechanism of the low diameter routing scheme from Lemma 6.3. For each
k ∈ I \ {k0}, we apply to each Gki the preprocessing step of the routing scheme with additive
stretch from Theorem 6.12. We use labk,i(·) and tabk,i(·) to denote the resulting labels and
tables for the graph Gki , for k ∈ I.

Finally, we can describe how to obtain the labels and tables for our routing scheme. Let
v be a vertex of DG(V) and let k ∈ I. Since (Hk1 ,Hk2 , . . . ,Hkmk

) is a sparse 2k-cover, there
exists an index i(v,k) such that Hki(v,k) contains all vertices w ∈ V with dH(v,w) 6 2k.

We store
(
k, i(v,k), labk,i(v,k)(v)

)
in lab(v). Moreover, for each i with v ∈ Vki we store(

k, i, tabk,i(v)
)

in tab(v). The following lemma bounds the size of the labels and tables.

Lemma 6.14. For every vertex v ∈ V , we have | lab(v)| ∈ O
(
ε−1 logD log3 n/ log logn

)
and

| tab(v)| ∈ ε−O(ε−2) log3 n(1 + logD/ log logn).

Proof. The label of v contains a tuple for each index k ∈ I. First of all, let us fix one entry(
k, i(v,k), labk,i(v,k)(v)

)
. Clearly, by Observation 6.13, the numbers k and i(v,k) are in

O(n) and thus, O(logn) bits suffice for their representation.1 Moreover, by Lemma 6.3
and Theorem 6.12, we know that each tuple consists of at most O

(
ε−1 log3 n/ log logn

)
bits. Finally, since |I| ∈ O(logD), the first part of the claim follows.

By Lemma 5.2, the vertex v appears in O(1) subgraphs Gki for each k ∈ I. Hence, tab(v)
contains O(logD) entries. Let us fix a tuple

(
k, i, tabk,i(v)

)
. Again, O(logn) bits suffice to

1In fact, it is not necessary to store the value k. Instead the tuples can be ordered by increasing k. However, this
does not change the asymptotic label size.

70 Unit Disk Graphs

represent k and i. If k = k0, the table tabk0,i(v) comes from the low diameter routing scheme.

Since diam(Gk0
i) ∈ O(1/ε), Lemma 6.3 implies that tabk0,i(v) needs ε−O(ε

−2) log3 n bits.
For k ∈ I \ {k0}, we derive the table tabk,i(v) from the additive stretch routing scheme,
Theorem 6.12. Thus, the corresponding tuple takes in total O(ε−1 log3 n/ log logn) bits. In

summary, there is a constant number of tuples requiring ε−O(ε
−2) log3 n bits and O(logD)

tuples that need O(ε−1 log3 n/ log logn) bits. The claim follows.

Lemma 6.15. We need O(ε−1n2 log2 n) time to compute the labels and routing tables.

Proof. First, the spanner H can be computed in O(n logn) time according to Lemma 5.1.
Next, for each k ∈ I we compute the sparse 2k-cover. Lemma 5.2 gives the running time of
O(n logn) for a fixed k. Hence, all covers can be computed inO(n logn logD) time because
|I| ∈ O(logD). Let Gki be a subgraph for a fixed k ∈ I \ {k0} and a fixed i ∈ {1, . . . ,mk}.
We compute the labels and tables for Gki which is possible in time O(ε−1|Vki | log3 n), see
Theorem 6.12. Next, for each v ∈ Vki , we store (k, i, tabk,i(v)) in tab(v). Moreover, due to
Lemma 5.2, we can check in constant time, whether i = i(v,k). If this is the case, we store
(k, i, labk,i(v)) in lab(v). In summary, the preprocessing of Gki needs O(ε−1|Vki | log3 n) in
total. For a fixed k the preprocessing of all Gki needs O(ε−1n log3 n) time. Since |I \ {k0}| ∈
O(logD), the preprocessing for all k 6= k0 needs O(ε−1n log3 n logD) time in total. Finally,
for k = k0, every subgraph Gki has diameter at most O(1/ε) and thus, the preprocessing
time isO(ε−1n2 log2 n) by following the same argumentation as before but using Lemma 6.3
instead of Theorem 6.12. The claim follows.

The routing function. We next describe the routing function σ, see Figure 6.2 as well
as Algorithm 6.2. Suppose we are given the target label lab(t), the source routing table
tab(s), together with the header h. The routing function works as follows: We find the
smallest number k = k(s, t) ∈ I such that the tuple (k, i, labk,i(t)) is in lab(t) and the
tuple (k, i, tabk,i(s)) is in tab(s). By construction, it must hold i = i(t,k) and therefore,
Gki contains each vertex v with dH(v, t) 6 2k, by the first property of a sparse 2k-cover.
Moreover, we can derive the following observation:

Observation 6.16. Let s, t be vertices of Gki with k = k(s, t). Then we have d(s, t) 6 48 · 2k.
Moreover, if k > k0 we have d(s, t) > 1

5 · 2
k.

Proof. By property (ii) of our sparse cover we get d(s, t) 6 diam(Gki) 6 diam(Hki) 6 48 ·2k.
This proves the first inequality.

Next, let k > k0. The minimality of k and property (i) of our sparse cover show that
dH(s, t) > 2k−1 Finally, since H is a 2.42-spanner of G we derive d(s, t) > 2k

5 and the claim
follows.

Once we have k and i, we can distinguish three cases.
If k > k0, we ignore the header (it will be empty) and use the function σadd of the additive

stretch routing scheme to route within Gki . For this, we take the table tabk,i(s) from tab(s)
and the label labk,i(t) from lab(t) to compute the next port. The header remains empty. We
use the computed port to route to the next vertex.

6.3 A Routing Scheme with Stretch 1 + ε 71

t

s

v

Gk
i(t,k)

G
k0
i(t,k0)

Gk′

i(t,k′)

vv

Gk′

i(t,k′)

Figure 6.2: It holds 1
5 · 2

k 6 diam
(
Gki(t,k)

)
6 48 · 2k. We use the additive stretch routing

scheme to route within Gki(t,k) until we find a vertex v that is in Gk
′

i(t,k ′) for

k ′ < k. This process continues until we find a vertex that is in Gk0
i(t,k0)

, here we
use the low diameter routing scheme until we reach t.

If k = k0, we first check the header. If it is empty, we use the function σdiam of the low
diameter routing scheme to route within Gk0

i . Again, we can take the label labk0,i(t) from
lab(t) and the table tabk0,i(s) from tab(s) to compute the next port. This time the routing
function σdiam also outputs a new string h of length O(log2 n/ log logn). Without loss of
generality we assume that h 6= ε. We store h in the header and route the data packet along
the computed port.

If k = k0 and the header contains the non-empty string h, we use tabk0,i(s), labk0,i(t) and
h to route in Gk0

i , while updating the header according to σdiam.

Algorithm 6.2 The routing function for unit disk graphs with stretch 1 + ε.

1: procedure ROUTINGFUNCTION(tab(s) ∈ Σ∗, lab(t) ∈ Σ∗, header h ∈ Σ∗)
2: Outputs: (port p ∈ Σ∗, header h ′ ∈ Σ∗)
3: (k, i) = min{(k ′, i ′) | (k ′, i ′, labk ′,i ′(t)) ∈ lab(t) and (k ′, i ′, tabk ′,i ′(s)) ∈ tab(s)}
4: if k > dlog 5

εe then
5: return (σadd(tabk,i(s), labk,i(t)), ε)
6: else
7: return σdiam(tabk,i(s), labk,i(t),h)

The stretch. Last but not least, we want to show the correctness and analyze the stretch
factor. We start with the correctness. Its proof is quite similar to the correctness proof of σadd.

72 Unit Disk Graphs

Lemma 6.17. The routing scheme is correct.

Proof. Let s be the current vertex, t the desired target vertex and suppose that the routing
scheme sends the packet from s to the vertex t. Moreover, let k = k(s, t) and i = i(t,k) be
the indices that were used by the routing function to determine v. Since the routing step
from s to v takes place in the graph Gki , we know that k is a potential candidate for k(v, t).
Thus, k(v, t) 6 k. If k(v, t) < k, we have made progress. However, if k(v, t) = k, the routing
continues in the subgraphGki , since for each k there is exactly one entry in lab(t). We already
proved in Lemmas 6.3 and 6.10 that the underlying routing schemes for this task are correct.
Hence, after a finite number of steps, we either reach t, or we decrease the value k. Since
there is only a finite number of values for k, correctness follows.

The next lemma bounds the additive stretch as a function of k.

Lemma 6.18. Let s and t be two vertices and let k = k(s, t). Then, we have

δ(s, t) 6 d(s, t) + 753ε · 2k.

Proof. We use induction on k > k0. First, suppose that k = k0 = dlog(5/ε)e and let s, t be
two vertices with k(s, t) = k0. Let Gki be the graph that is used to determine the next vertex
after s. Since k can only decrease while routing, and since k0 is the minimum possible value
of k, we route within Gki , using the low diameter routing scheme, until we reach t. Moreover,
by Lemma 6.3 and Observation 6.16, we get

δ(s, t) 6 (1 + ε)d(s, t) 6 d(s, t) + 48ε · 2k.

Next, assume that k > k0. Let s, t be two vertices with k(s, t) = k, and assume that for
every vertex w with k(w, t) < k, we have δ(w, t) 6 d(w, t) + 753ε · 2k(w,t). Let Gki be
the graph in which our scheme chooses to route the data packet from s to the next node.
Let v be the first node on the routing path from s to t for which k(v, t) < k, see Figure 6.2.
Moreover, let δ ′(·, ·) measure the length of the routing path within the subgraph Gki , using
the additive stretch routing scheme. Next, by the definition of k0 and since k > k0 we get
diam(Gki) > d(s, t) > 1

5 · 2
k > 1/ε from Observation 6.16. Furthermore, we know that

d(v, t) 6 δ ′(v, t), since t is a vertex in Gki . Finally, we use the inductive hypothesis as well
as Theorem 6.12 to derive

δ(s, t) = δ ′(s, v) + δ(v, t) 6 δ ′(s, v) + d(v, t) + 753ε · 2k(v,t)

6 δ ′(s, v) + δ ′(v, t) + 753ε · 2k−1 = δ ′(s, t) + 753ε · 2k−1

6 d(s, t) + 7.84 · ε · 48 · 2k + 753ε · 2k−1 6 d(s, t) + 753ε · 2k,

Hence, the claim follows.

Finally, we can put everything together to obtain our main theorem.

Theorem 6.19. Let DG(V) be an n-vertex unit disk graph and D its diameter. Further-
more, let ε > 0. There is a routing scheme with O

(
ε−1 logD log3 n/ log logn

)
label size,

ε−O(ε−2) log3 n(1 + logD/ log logn) table size and O(log2 n/ log logn) header size whose
routing function achieves the stretch factor 1 + ε. The preprocessing time is O(ε−1n2 log2 n).

6.3 A Routing Scheme with Stretch 1 + ε 73

Proof. It remains to show the stretch factor. Here, it suffices to show that the stretch factor
is 1 + O(ε). Let s and t be two vertices and k = k(s, t). If k = k0 the stretch factor
immediately follows from Lemma 6.3. Thus, assume k 6= k0. On the one hand we know
from Observation 6.16 that 1

52k 6 d(s, t), and on the other hand we know from Lemma 6.18
that δ(s, t) 6 d(s, t) + 753ε · 2k. Putting everything together, we get the desired stretch as
follows:

δ(s, t) 6 d(s, t) + 753ε · 2k 6 d(s, t) + 753ε · 5d(s, t) = (1 + 3765ε)d(s, t).

This finishes the proof.

II
Stabbing

75

77

Part Outline
In this part of the thesis we focus our attention to sets D of pairwise intersecting disks. First,
we present an upper bound on the stabbing number of D and a simple lower bound with 13
disks. Subsequently, we use the proof for the upper bound to present an algorithm that finds
5 stabbing points in linear time. Here, we use the well-known description of LP-type problems
[SW92]. These problems and their properties will be discussed as well.

CHAPTER 7
Pairwise Intersecting

Disks
In this chapter, we want to present some bounds on the stabbing number of pairwise

intersecting disks in the Euclidean plane.

7.1 Upper Bound
Let D be a set of n pairwise intersecting disks in the plane. A disk Di ∈ D is given by its
center ci and its radius ri, that is Di = D(ci, ri). To simplify the analysis, we make the
following assumptions: (i) the radii of the disks are pairwise distinct; (ii) the intersection of
any two disks has a nonempty interior; and (iii) the intersection of any three disks is either
empty or has a nonempty interior. A simple perturbation argument can then handle the
degenerate cases.

The lens of two disks Di,Dj ∈ D is the set Li,j = Di ∩ Dj. Let u be any of the two
intersection points of the boundary ofDi and the boundary ofDj. The angle ∠ciucj is called
the lens angle of Di and Dj. It is at most π. A finite set C of disks is Helly if their common
intersection

⋂
C is nonempty. Otherwise, C is non-Helly. We present some useful geometric

lemmas.

Lemma 7.1. Let {D1,D2,D3} be a set of three pairwise intersecting disks that is non-Helly.
Then, the set contains two disks with lens angle larger than 2π/3.

Proof. Since {D1,D2,D3} is non-Helly, the lenses L1,2, L1,3 and L2,3 are pairwise disjoint. Let
u be the vertex of L1,2 nearer toD3, and let v,w be the analogous vertices of L1,3 and L2,3 (see
Figure 7.1, left). Consider the simple hexagon c1uc2wc3v, and write ∠u, ∠v, and ∠w for its
interior angles at u, v, andw. The sum of all interior angles is 4π. Thus, ∠u+∠v+∠w < 4π,

79

80 Pairwise Intersecting Disks

D1

D2

L1,3L1,2

L2,3

c2
c3

c1

w

D3u v

D1

c1

D2

c2 c

E

q

p

`

Figure 7.1: Left: At least one lens angle is large. Right: D1 and E have the same radii and
lens angle 2π/3. By Lemma 7.2, D2 is a subset of E. {c1, c,p,q} is the set P from
Lemma 7.4.

so at least one angle is less than 4π/3. It follows that the corresponding lens angle, which is
the exterior angle at u, v, or w must be larger than 2π/3.

Lemma 7.2. LetD1 andD2 be two intersecting disks with r1 > r2 and lens angle at least 2π/3.
Let E be the unique disk with radius r1 and center c, such that

(i) the centers c1, c2, and c are collinear and c lies on the same side of c1 as c2; and

(ii) the lens angle of D1 and E is exactly 2π/3 (see Figure 7.1, right).

Then, if c2 lies between c1 and c, we have D2 ⊆ E.

Proof. Let x ∈ D2. Since c2 lies between c1 and c, the triangle inequality gives

|xc| 6 |xc2|+ |c2c| = |xc2|+ |c1c|− |c1c2|. (7.1)

Since x ∈ D2, we get |xc2| 6 r2. Also, since D1 and E have radius r1 each and lens angle

2π/3, it follows that |c1c| =
√

3 r1. Finally, |c1c2| =
√
r21 + r

2
2 − 2r1r2 cosα, by the law

of cosines, where α is the lens angle of D1 and D2. As α > 2π/3 and r1 > r2, we get
cosα 6 −1/2 = (

√
3 − 3/2) −

√
3 + 1 6 (

√
3 − 3/2)r1/r2 −

√
3 + 1, As such, we have

|c1c2|
2 = r21 + r

2
2 − 2r1r2 cosα > r21 + r

2
2 − 2r1r2

((√
3 − 3/2

)r1
r2

−
√

3 + 1
)

= r21 − 2
(√

3 − 3/2
)
r21 + 2(−

√
3 + 1)r1r2 + r22

= (1 − 2
√

3 + 3)r21 + 2(−
√

3 + 1)r1r2 + r22 =
(
r1(
√

3 − 1) + r2
)2.

Plugging this into Equation (7.1) gives |xc| 6 r2 +
√

3r1 − (r1
(√

3 − 1) + r2
)
= r1, i.e.,

x ∈ E.

Lemma 7.3. Let D1 and D2 be two intersecting disks with equal radius r and lens angle 2π/3.
There is a set P of four points so that any disk F of radius at least r that intersects both D1 and
D2 contains a point of P.

7.1 Upper Bound 81

D2
2

D2
1

p

c2

q

D2D1
c1

γ

Qt1

t2s1

s2

Figure 7.2: Left: P = {c1, c2,p,q} is the stabbing set. The green arc γ = ∂D2
1 ∩Q is covered

by D2 ∪Dq.

Proof. Consider the two tangent lines ofD1 andD2, and let p and q be the midpoints on these
lines between the respective two tangency points. We set P = {c1, c2,p,q}; see Figure 7.2.

Given the disk F that intersects both D1 and D2, we shrink its radius, keeping its center
fixed, until either the radius becomes r or until F is tangent to D1 or D2. Suppose the latter
case holds and F is tangent to D1. We move the center of F continuously along the line
spanned by the center of F and c1 towards c1, decreasing the radius of F to maintain the
tangency. We stop when either the radius of F reaches r or F becomes tangent to D2. We
obtain a diskG ⊆ Fwith center c = (cx, cy) so that either: (i) radius(G) = r andG intersects
both D1 and D2; or (ii) radius(G) > r and G is tangent to both D1 and D2. Since G ⊆ F, it
suffices to show that G ∩ P 6= ∅.

We introduce a coordinate system, setting the origin o midway between c1 and c2, so
that the y-axis passes through p and q. Then, as in Figure 7.2, we have c1 = (−

√
3 r/2, 0),

c2 = (
√

3 r/2, 0), q = (0, r), and p = (0,−r).
For case (i), let D2

1 be the disk of radius 2r centered at c1, and D2
2 the disk of radius

2r centered at c2. Since G has radius r and intersects both D1 and D2, its center c has
distance at most 2r from both c1 and c2, i.e., c ∈ D2

1 ∩ D2
2. Let Dp and Dq be the two

disks of radius r centered at p and q. We will show that D2
1 ∩D2

2 ⊆ D1 ∪D2 ∪Dp ∪Dq.
Then it is immediate that G ∩ P 6= ∅. By symmetry, it is enough to focus on the upper-
right quadrant Q = {(x,y) | x > 0,y > 0}. We show that all points in D2

1 ∩ Q are
covered by D2 ∪ Dq. Without loss of generality, we assume that r = 1. Then, the two

intersection points of D2
1 and Dq are t1 = (5

√
3−2
√

87
28 , 38+3

√
29

28) ≈ (−0.36, 1.93) and

t2 = (5
√

3+2
√

87
28 , 38−3

√
29

28) ≈ (0.98, 0.78), and the two intersection points of D2
1 and D2 are

s1 = (
√

3
2 , 1) ≈ (0.87, 1) and s2 = (

√
3

2 ,−1) ≈ (0.87,−1). Let γ be the boundary curve of
D2

1 inQ. Since t1, s2 6∈ Q and since t2 ∈ D2 and s1 ∈ Dq, it follows that γ does not intersect
the boundary of D2 ∪ Dq and hence γ ⊂ D2 ∪ Dq. Furthermore, the subsegment of the
y-axis from o to the start point of γ is contained inDq, and the subsegment of the x-axis from
o to the endpoint of γ is contained in D2. Hence, the boundary of D2

1 ∩Q lies completely
in D2 ∪Dq, and since D2 ∪Dq is simply connected, it follows that D2

1 ∩Q ⊆ D2 ∪Dq, as
desired.

For case (ii), since G is tangent to D1 and D2, the center c of G is on the perpendicular

82 Pairwise Intersecting Disks

D2

q

p

`

k

k+ k−

c1 c c2

E

D1

xy D2

q

p

`

k

k+ k−

c1 c c2

E

D1
x

Figure 7.3: Proof of Lemma 7.4. Left (Case (i)): x is an arbitrary point in D2 ∩ F \ k+ and
y is an arbitrary point in D1 ∩ F. Right (Case (ii)): x is an arbitrary point in
D2 ∩ F ∩ k+. The angle at c in the triangle ∆xcc2 is > π/2.

bisector of c1 and c2, so the points p, o, q and c are collinear. Suppose without loss of
generality that cy > 0. Then, it is easily checked that c lies above q, and radius(G) + r =
|c1c| > |oc| = r+ |qc|, so q ∈ G.

Lemma 7.4. Consider two intersecting disks D1 and D2 with r1 > r2 and lens angle at least
2π/3. Then, there is a set P of four points such that any disk F of radius at least r1 that intersects
both D1 and D2 contains a point of P.

Proof. Let ` be the line through c1 and c2. Let E be the disk of radius r1 and center c ∈ `
that satisfies the conditions (i) and (ii) of Lemma 7.2. Let P = {c1, c,p,q} as in the proof of
Lemma 7.3, with respect to D1 and E (see Figure 7.1, right). We claim that

D1 ∩ F 6= ∅ ∧ D2 ∩ F 6= ∅ ⇒ E ∩ F 6= ∅. (*)

Once (*) is established, we are done by Lemma 7.3. If D2 ⊆ E, then (*) is immediate, so
assume that D2 6⊆ E. By Lemma 7.2, c lies between c1 and c2. Let k be the line through c
perpendicular to `, and let k+ be the open halfplane bounded by k with c1 ∈ k+ and k− the
open halfplane bounded by k with c1 6∈ k−. Since |c1c| =

√
3 r1 > r1, we have D1 ⊂ k+;

see Figure 7.3. Recall that F has radius at least r1 and intersects D1 and D2. We distinguish
two cases: (i) there is no intersection of F and D2 in k+, and (ii) there is an intersection of F
and D2 in k+; see Figure 7.3 for the two cases.

For case (i), let x be any point in D1 ∩ F. Since we know that D1 ⊂ k+, we have x ∈ k+.
Moreover, let y be any point in D2 ∩ F. By assumption, y is not in k+, but it must be in the
infinite strip defined by the two tangents of D1 and E. Thus, the line segment xy intersects
the diameter segment k ∩ E. Since F is convex, the intersection of xy and k ∩ E is in F, so
E ∩ F 6= ∅.

For case (ii), fix x ∈ D2∩F∩k+ arbitrarily. Consider the triangle ∆xcc2. Since x ∈ k+, the
angle at c is at least π/2. Thus, |xc| 6 |xc2|. Also, since x ∈ D2, we know that |xc2| 6 r2 6 r1.
Hence, |xc| 6 r1, so x ∈ E and (*) follows, as x ∈ E ∩ F.

7.2 Simple Bounds 83

With these tools we can now show that there is a stabbing set with five points.

Theorem 7.5. Let D be a set of n pairwise intersecting disks in the plane. There is a set P of
five points such that each disk in D contains at least one point from P.

Proof. If D is Helly, there is a single point that lies in all disks of D. Thus, assume that D
is non-Helly, and let D1,D2, . . . ,Dn be the disks in D ordered by increasing radius. Let
i∗ be the smallest index with

⋂
i6i∗ Di = ∅. By Helly’s theorem [Hel23, Hel30, Rad21],

there are indices j,k < i∗ such that {Di∗ ,Dj,Dk} is non-Helly. By Lemma 7.1, two disks
in {Di∗ ,Dj,Dk} have lens angle at least 2π/3. Applying Lemma 7.4 to these two disks, we
obtain a set P ′ of four points so that every disk Di with i > i∗ contains at least one point
from P ′. Furthermore, by definition of i∗, we have

⋂
i<i∗ Di 6= ∅, so there is a point q that

stabs every disk Di with i < i∗. Thus, P = P ′ ∪ {q} is a set of five points that stabs every disk
in D, as desired.

Remark. A weakness in our proof is that it combines two different stages, one of finding the
point q that stabs all the small disks, and one of constructing the four points of Lemma 7.4
that stab all the larger disks. It is an intriguing challenge to merge the two arguments so that
altogether they only require four points. The proof of Carmi et al. [CKM18] uses a different
approach.

7.2 Simple Bounds
In this section, we provide some lower and upper bounds on the number of disks for which a
certain number of stabbing points is necessary or sufficient.

Eight disks can be stabbed py three points. For the proof that any set of eight pairwise
intersecting disks can be stabbed by at most three points, we show the following lemma.

Lemma 7.6. Let D be a set of at least 5 pairwise intersecting disks. Then, D contains a
Helly-triple.

Proof. Let D be a set of exactly 5 pairwise intersecting disks. We assume that no three centers
of the disks are on a line, since otherwise these three disks are a Helly-triple. Since the
complete graph K5 does not have a planar embedding, there have to be four different disks
D1, . . . ,D4 ∈ D with centers c1, . . . , c4 and radii r1, . . . , r4 such that the line segments c1c3

and c2c4 intersect, see Figure 7.4. Let x be the intersection point. Moreover, let α (resp., β)
be the intersection of the lens L1,3 (resp., L2,4) and the line segment c1c3 (resp., c2c4). If x is
in α or β, we are done. Otherwise, let y be the point of α that is closest to x and let z be the
point of β closest to x. We can assume without loss of generality that |xy| 6 |xz| and x /∈ D4.
We can derive |c2y| 6 |c2x|+ |xy| 6 |c2x|+ |c2z| 6 r2 to conclude that y ∈ D1∩D2∩D3.

Now consider a set of 8 pairwise intersecting disks. Using the previous lemma, we can find
a Helly-triple. Among the other 5 disks we find a second Helly-triple. The remaining two

84 Pairwise Intersecting Disks

c4

c2

c1

c3

x

α

β

y

z

Figure 7.4: Proof of Lemma 7.6.

disks can be stabbed by one point. This reasoning yields the following corollary, which was
already mentioned by Stachó [Sta65].

Corollary 7.7. Every set D of at most 8 pairwise intersecting disks can be stabbed by 3 points.

Danzer presented a set of 10 pairwise intersecting pseudo-disks with stabbing number
four [Dan86]. However, it is not clear how these 10 pseudo-disks can be realized as pairwise
Euclidean Disks achieving the same stabbing number. Moreover, it is another open problem
whether 9 pairwise intsersecting disks can be stabbed by three points. Instead, we want to
describe a set of 13 pairwise intersecting disks in the plane such that no point set of size three
can pierce all of them.

13 disks with 4 stabbing points. The construction begins with an inner disk A of radius 1
and three larger disksD1,D2,D3 of equal radius, so that each pair of disks in {A,D1,D2,D3}

is tangent. For i = 1, 2, 3, we denote the contact point of A and Di by ξi.
We add six more disks as follows. For i = 1, 2, 3, we draw the two common outer tangents

toA andDi, and denote by T−i and T+i the halfplanes that are bounded by these tangents and
are openly disjoint from A. The labels T−i and T+i are chosen such that the points of tangency
between A and T−i , Di, and T+i , appear along the boundary of A in this counterclockwise
order. One can show that the nine points of tangency between A and the other disks and
tangents are pairwise distinct (see Figure 7.5). We regard the six halfplanes T−i , T+i , for
i = 1, 2, 3, as (very large) disks; in the end, we can apply a suitable inversion to turn the
disks and halfplanes into actual disks, if so desired.

Finally, we construct three additional disksA1, A2, A3. To constructAi, we slightly expand
A into a disk A ′i of radius 1 + ε1, while keeping the tangency with Di at ξi. We then roll A ′i
clockwise along Di, by a tiny angle ε2 � ε1, to obtain Ai.

This gives a set of 13 disks. For sufficiently small ε1 and ε2, we can ensure the following
properties for each Ai: (i) Ai intersects all other 12 disks; (ii) the nine intersection regions
Ai ∩Dj, Ai ∩ T−j , Ai ∩ T+j , for j = 1, 2, 3, are pairwise disjoint; and (iii) ξi /∈ Ai.

7.2 Simple Bounds 85

D1

D3

A

D2

T−
1T+

1

Figure 7.5: Each common tangent ` between A and Di represents a very large disk, whose
interior is disjoint from A. The nine points of tangency are pairwise distinct.

Theorem 7.8. The construction yields a set of 13 disks that cannot be stabbed by 3 points.

Proof. Consider any set P of three points. Set A∗ = A ∪A1 ∪A2 ∪A3. If P ∩A∗ = ∅, we
have unstabbed disks, so suppose that P ∩ A∗ 6= ∅. For p ∈ P ∩ A∗, property (ii) implies
that p stabs at most one of the nine remaining disks Dj, T+j and T−j , for j = 1, 2, 3. Thus, if
P ⊂ A∗, we would have unstabbed disks, so we may assume that |P ∩A∗| ∈ {1, 2}.

Suppose first that |P ∩ A∗| = 2. As just argued, at most two of the remaining disks are
stabbed by P ∩A∗. The following cases can then arise.

(a) None ofD1,D2,D3 is stabbed by P∩A∗. Since {D1,D2,D3} is non-Helly and a non-Helly
set must be stabbed by at least two points, at least one disk remains unstabbed.

(b) Two disks among D1, D2, D3 are stabbed by P ∩A∗. Then the six unstabbed halfplanes
form many non-Helly triples, e.g., T−1 , T−2 , and T−3 , and again, a disk remains unstabbed.

(c) The set P ∩A∗ stabs one disk in {D1,D2,D3} and one halfplane. Then, there is (at least)
one disk Di such that Di and its two tangent halfplanes T−i , T+i are all unstabbed by
P ∩A∗. Then, {Di, T−i , T+i } is non-Helly, and at least 2 more points are needed to stab it.

Suppose now that |P ∩A∗| = 1, and let P ∩A∗ = {p}. We may assume that p stabs all four
disks A, A1, A2, A3, since otherwise a disk would stay unstabbed. By property (iii), we can
derive p 6∈ {ξ1, ξ2, ξ3}. Now, since p ∈ A \ {ξ1, ξ2, ξ3}, the point p does not stab any of D1,
D2, D3. Moreover, by property (ii), the point p can only stab at most one of the remaining
halfplanes. Since {D1,D2,D3} is non-Helly, it requires two stabbing points. Moreover, since
|P \ {p}| = 2, it must be the case that one point q of P \A∗ is the point of tangency of two of
these disks, say q = D2 ∩D3. Then, q stabs only two of the six halfplanes, say, T−1 and T+1 .
But then, {D1, T+2 , T−3 } is non-Helly and does not contain any point from {p,q}. At least one
disk remains unstabbed.

CHAPTER 8
Computation of five

Stabbing Points
In the last chapter we provided a proof that the stabbing number of a set of pairwise

intersecting disks is at most 5. In this chapter, we want to use this property to present a
linear-time algorithm for finding the 5 stabbing points. However, we first present a simple
near-linear time algorithm that already shows some properties about stabbing disks.

8.1 A simple near-linear time algorithm
The proof of Theorem 7.5 leads to a simple O(n logn) time deterministic algorithm for
finding a stabbing set of size five. For this, we need an oracle that decides whether a given
set of disks is Helly. This has already been done by Löffler and van Kreveld [LvK10], in a
more general context:

Lemma 8.1 (Theorem 6 in [LvK10]). Given a set of n disks, the problem of choosing a point in
each disk such that the smallest enclosing circle of the resulting point set is as small as possible
can be solved in O(n) time.

Now, an O(n logn)-time algorithm for finding the five stabbing points is based on the
analysis in the proof of Theorem 7.5. It works as follows: first, we sort the disks in D by
increasing radius, this costs O(n logn) time. Let D = {D1, . . . ,Dn} be the resulting order.
Next, we use binary search with the oracle from Lemma 8.1 to determine the smallest index i∗

such that {D1, . . . ,Di∗} is non-Helly. This yields the diskDi∗ . Here, we have to use the oracle
O(logn) times, which gives a total of O(n logn) for this step. After that, we use another
binary search with the oracle from Lemma 8.1 to determine the smallest index k < i∗ such
that {Di∗ ,D1, . . . ,Dk} is non-Helly. This costs O(n logn) time as well. Then, we perform a

87

88 Computation of five Stabbing Points

linear search to find an index j < k such that {Dj,Dk,Di∗} is a non-Helly triple. This step
works in linear time. Finally, we use Lemma 8.1 to obtain in linear time a stabbing point q
for the Helly set {D1, . . . ,Di∗−1} and the method from the proof of Theorem 7.5 to extend
q to a stabbing set for the whole set D. This last step works in O(1) time since the result
depends solely on {Dj,Dk,Di∗}. Hence, we can present our claimed theorem.

Theorem 8.2. Given a set D of n pairwise intersecting disks in the plane, we can find in
O(n logn) time a set P of five points such that every disk of D contains at least one point of P.

8.2 A linear time algorithm
The proof of Lemma 8.1 uses the LP-type framework by Sharir and Welzl [Cha01, SW92].
As we will see next, a more sophisticated application of the framework directly leads to a
deterministic linear time algorithm to find a stabbing set with five points.

The LP-type framework. An LP-type problem (H,w,6) is an abstract generalization of a
low-dimensional linear program. It consists of a finite set of constraints H, a weight function
w : 2H → W, and a total order (W,6) on the weights. The weight function w assigns a
weight to each subset of constraints. It must fulfill the following two axioms:

• Monotonicity: for any H ′ ⊆ H and H ∈ H, we have w
(
H ′ ∪ {H}

)
6 w(H ′);

• Locality: for any B ⊆ H ′ ⊆ H with w(B) = w(H ′) and for any H ∈ H, we have that
if w

(
B ∪ {H}

)
= w(B), then also w

(
H ′ ∪ {H}

)
= w(H ′).

Given a subset H ′ ⊆ H, a basis for H ′ is an inclusion-minimal set B ⊆ H ′ with w(B) =
w(H ′). The combinatorial dimension of (H,w,6) is the maximum size of any basis of any
subset of H. The goal in an LP-type problem is to determine w(H) and a corresponding
basis B for H. Next, given a set B ⊆ H and a constraint H ∈ H, we say that H violates B if
w
(
B ∪ {H}

)
< w(B).

A generalization of Seidel’s algorithm for low-dimensional linear programming [Sei91,
SW92] shows that we can solve an LP-type problem in O(|H|) expected time, provided that a
constant time algorithm for the following problem is available. Here and below, the constant
factor in the O-notation may depend on the combinatorial dimension.

• Violation test: Given a basis B and a constraint H ∈ H, determine whether H violates
B and return an error message if B is not a basis for any H ′ ⊆ H.1

For a deterministic solution, we need an additional computational assumption. Let B ⊆ H

be a basis of any subset H ′ ⊆ H, we use vio(B) to denote the set of all constraintsH ∈ H that

1Here, we follow the presentation of Chazelle and Matoušek [CM96]. Sharir and Welzl [SW92] use a violation
test without the error message. Instead, they need an additional basis computation primitive: given a basis
B and a constraint H ∈ H, find a basis for B ∪ {H}. If a violation test with error message exists and if the
combinatorial dimension is a constant, a basis computation primitive can easily be implemented by brute-force
enumeration.

8.2 A linear time algorithm 89

D2
D1

D3

D4

D∞

v

Figure 8.1: Left: The disks D3 and D4 are destroyers of the Helly set {D1,D2}. Moreover,
D3 is the smallest destroyer of the whole set {D1,D2,D3,D4}. Right: The disks
without D∞ form a Helly set C. The smallest destroyer of C is D∞ and the point
v is the extreme point for C and D∞, i.e., dist(C) = d(v,D∞).

violate B, i.e., that have w(B ∪ {H}) < w(B). Consider the range space (H,R = {vio(B) |
B is a basis for some H ′ ⊆ H}) and let δ be its shattering dimension. Chazelle and Matoušek
[CM96] have shown that an LP-type problem can be solved in O(|H|) deterministic time if
there is a constant-time violation test as stated above, δ is a constant, and the following
computational assumption holds:

• Oracle: Given a subset Y ⊆ H, we can compute some superset R ′ ⊇ RY in time |Y|δ+1,
where (Y,RY) is the range space induced by Y.

During the following discussion, we will show that the problem of finding a non-Helly
triple as in Theorem 7.5 is LP-type and fulfills the requirements for the algorithm of Chazelle
and Matoušek .

Remark. Löffler and van Kreveld provide proofs that the underlying problem in Lemma 8.1
is of LP-type, but they do not give arguments for the two computational assumptions,
see [LvK10]. However, it is not difficult to also verify the two missing statements.

Geometric observations. The distance between two closed sets A,B ⊆ R2 is defined as
d(A,B) = inf {|ab| | a ∈ A,b ∈ B}. From now on, we assume that all points in

⋃
D have

positive y-coordinates. This can be ensured with linear overhead by an appropriate translation
of the input. We denote byD∞ the closed halfplane below the x-axis. It is interpreted as a disk
with radius∞ and center at (0,−∞). First, observe that for any subsets C1 ⊆ C2 ⊆ D∪ {D∞},
we have that if C1 is non-Helly, then C2 is non-Helly. For any C ⊆ D ∪ {D∞}, we say that a
diskD destroys C if C∪ {D} is non-Helly. Observe thatD∞ destroys every non-empty subset of
D. Moreover, if C is non-Helly, then every disk is a destroyer. See Figure 8.1 for an example.
We can make the following two observations.

90 Computation of five Stabbing Points

D2
D1

D4
D3

v

D2

D1
D4

D3

vw

Figure 8.2: Left: The diskD4 is a destroyer for the Helly sets {D1,D2} and {D1,D2,D3}. The
extreme point v for {D1,D2} is also the extreme point for {D1,D2,D3}. Right:
The disk D4 is a destroyer for the Helly sets {D1,D2} and {D1,D2,D3}. The
extreme point v for {D1,D2} is not in D3. The distance to D4 increases.

Lemma 8.3. Let C ⊆ D be Helly and D a destroyer of C. Then, the point v ∈
⋂
C with

minimum distance to D is unique.

Proof. Suppose there are two distinct points v 6= w ∈
⋂
C with d(v,D) = d

(⋂
C,D

)
=

d(w,D). Since
⋂
C is convex, the segment vw lies in

⋂
C. Now, if D 6= D∞, then every

point in the relative interior of vw is strictly closer to D than v and w. If D = D∞, then
all points in vw have the same distance to D, but since

⋂
C is strictly convex, the relative

interior of vw lies in the interior of
⋂
C, so there must be a point in

⋂
C that is closer to

D than v and w. In either case, we obtain a contradiction to the assumption v 6= w and
d(v,D) = d

(⋂
C,D

)
= d(w,D). The claim follows.

Let C ⊆ D be Helly and D a destroyer of C. The unique point v ∈
⋂
C with minimum

distance to D is called the extreme point for C and D (see Figure 8.1, right).

Lemma 8.4. Let C1 ⊆ C2 ⊆ D be two Helly sets and D a destroyer of C1 (and thus of C2).
Let v ∈

⋂
C1 be the extreme point for C1 and D. We have d

(⋂
C1,D

)
6 d

(⋂
C2,D

)
. In

particular, if v ∈
⋂
C2, then d

(⋂
C1,D

)
= d

(⋂
C2,D

)
and v is also the extreme point for C2

and D. If v 6∈
⋂
C2, then d

(⋂
C1,D

)
< d

(⋂
C2,D

)
.

Proof. The first claim holds trivially: let w ∈
⋂
C2 be the extreme point for C2 and D. Since

C1 ⊆ C2, it follows that w ∈
⋂
C1, so d

(⋂
C1,D

)
6 d(w,D) = d

(⋂
C2,D

)
. If v ∈

⋂
C2,

then d
(⋂

C1,D
)
6 d

(⋂
C2,D

)
6 d(v,D) = d

(⋂
C1,D

)
, so v = w, by Lemma 8.3. If

v /∈
⋂
C2, then d

(⋂
C1,D

)
< d

(⋂
C2,D

)
, by Lemma 8.3 and the fact that C1 ⊆ C2. See

Figure 8.2.

Let C be a subset of D. For 0 < r 6∞ we define C<r as the set of all disks in C with radius
smaller than r. Recall that we assume that all the radii are pairwise distinct. A disk D with
radius r, 0 < r 6∞, is called smallest destroyer of C if (i) D ∈ C or D = D∞, (ii) D destroys

8.2 A linear time algorithm 91

D2
D1

E

D3

D2

D1 D3

E

Figure 8.3: Monotonicity: In both cases, {D1,D2,D3} is non-Helly with smallest destroyer
D3. Adding a disk E either decreases the radius of the smallest destroyer (left)
or increases the distance to the smallest destroyer (right).

C<r, and (iii) there is no disk D ′ ∈ C<r that destroys C<r. Observe that Property (iii) is the
same as saying that C<r is Helly. See Figure 8.1 for an example.

Let C be a subset of D and D the smallest destroyer of C. We write rad(C) for the ra-
dius of D and dist(C) for the distance between D and the set

⋂
C<rad(C), i.e., dist(C) =

d
(⋂

C<rad(C),D
)
. Now, if C is Helly, then D = D∞ and thus rad(C) =∞. If C is non-Helly,

then D ∈ C and thus rad(C) <∞. In both cases, dist(C) is the distance between D and the
extreme point for C<rad(C) and D. We define the weight of C as w(C) = (rad(C),− dist(C)),
and we denote by 6 the lexicographic order on R2. Chan observed, in a slightly different
context, that (D,w,6) is LP-type [Cha04]. However, Chan’s paper does not contain a detailed
proof for this fact. Thus, in the following lemmas, we show the two LP-type axioms, present
a constant time violation test, and a polynomial-time oracle. We start with the monotonicity
axiom followed by the locality axiom.

Lemma 8.5. For any C ⊆ D and E ∈ D, we have w
(
C ∪ {E}

)
6 w(C).

Proof. Set C∗ = C ∪ {E}. Let D be the smallest destroyer of C, and let r = rad(C) be
the radius of D. Since D destroys C<r, the set C<r ∪ {D} is non-Helly. Moreover, since
C<r ∪ {D} ⊆ C∗<r ∪ {D}, we know that C∗<r ∪ {D} is also non-Helly. Therefore, D destroys
C∗<r and we can derive rad(C∗) 6 rad(C). If we have rad(C∗) < rad(C), we are done. Hence,
assume that rad(C∗) = rad(C). Then D is the smallest destroyer of C∗, and Lemma 8.4 gives
− dist(C∗) = −d

(⋂
C∗<r,D

)
6 −d(

⋂
C<r,D) = − dist(C). Hence, w

(
C∗) 6 w(C). See

Figure 8.3 for an illustration.

Lemma 8.6. Let B ⊆ C ⊆ D withw(B) = w(C) and let E ∈ D. Then, ifw
(
B∪ {E}

)
= w(B),

we also have w
(
C ∪ {E}

)
= w(C).

Proof. Set C∗ = C ∪ {E}, B∗ = B ∪ {E}. Let r = rad(C) and D be the smallest destroyer of
C. Since w(C) = w(B) = w(B∗), we have that D is also the smallest destroyer of B and
of B∗. If the radius of E is larger than r, then E cannot be the smallest destroyer of C∗, so
w
(
C∗
)
= w(C). Thus, assume that E has radius less than r. Let v be the extreme point of

92 Computation of five Stabbing Points

F

D
D∞

E
v

v

v

D∞

EE
F

Figure 8.4: A basis can either be a non-Helly triple (left), a pair of intersecting disks E and
F where the point of minimum y-coordinate in E ∩ F is a vertex (middle), or a
single disk (right).

C<r and D. Since w(B∗) = w(B), we know that d
(⋂

B<r,D
)
= d

(⋂
B∗<r,D

)
= d(v,D).

Now, Lemma 8.4 implies that v ∈ E, since E ∈ B∗<r. Thus, the set C∗<r = C<r ∪ {E} is
Helly and therefore, there is no disk D ′ ∈ C∗<r that destroys C∗<r. Furthermore, since D
destroys C<r and C<r ⊂ C∗<r, the diskD also destroys C∗<r. Therefore,D is also the smallest
destroyer of C∗, so rad(C∗) = r = rad(C). Finally, since B∗<r ⊆ C∗<r we can use Lemma 8.4
to derive

d
(⋂

C<r,D
)
= d

(⋂
B∗<r,D

)
6 d

(⋂
C∗<r,D

)
6 d(v,D) = d

(⋂
C<r,D

)
.

The claim follows.

Next, we want to describe the violation test for (D,w,6): given a basis B ⊆ D and a
disk E ∈ D, check whether E violates B, i.e., whether w

(
B ∪ {E}

)
< w(B), and return an

error message if B is not a basis. But before, we show that the combinatorial dimension of
(D,w,6) is at most 3.

Lemma 8.7. For each C ⊆ D, there is a set B ⊆ C with |B| 6 3 and w(B) = w(C).

Proof. Let D be the smallest destroyer of C. Let r = rad(C) be the radius of D, and let
v ∈

⋂
C<r be the extreme point for C<r and D. First of all, we observe that v cannot be in

the interior of
⋂
C<r, since v minimizes the distance toD. Thus, there has to be a non-empty

subset A ⊆ C<r such that v lies on the boundary of each disk of A. Let A be a minimal set
such that d(

⋂
A,D) = d(v,D). It follows that |A| 6 2. See Figure 8.4 for an illustration.

First, assume that A = {E}. Then, since d(E,D) = d(v,D) > 0, we know that E ∩D = ∅.
As the disks in C intersect pairwise, we derive D /∈ C and hence D = D∞. Setting B = A,
we get rad(C) = ∞ = rad(B) and dist(C) = d(v,D) = d(E,D) = dist(B). Thus, |B| 6 3
and w(B) = w(C).

Second, assume that A = {E, F}. Then, v is one of the two vertices of the lens L = E ∩ F.
Next, we show that d(L,D) > d(v,D). Assume for the sake of contradiction that there is a
point w ∈ L with d(w,D) < d(v,D). By general position and since v is the intersection of
two disk boundaries, there is a relatively open neighborhood N around v in

⋂
C<r such that

8.2 A linear time algorithm 93

N is also relatively open in L. Since L is convex, there is a point x ∈ N that also lies in the
relative interior of the line segmentwv. Then, d(x,D) < d(v,D) and x ∈

⋂
C<r. This yields

a contradiction, as v is the extreme point for C<r and D. Thus, we have d(L,D) > d(v,D)
which also shows hat D ∩ E ∩ F = ∅.

We set B = {E, F}, if C is Helly (i.e., D = D∞), and B = {D,E, F}, if C is non-Helly (i.e.,
D ∈ C). In both cases, we have B ⊆ C and |B| 6 3. Moreover, we can conclude that D
destroys B<r = {E, F}, and since B<r is Helly, D is the smallest destroyer of B. Hence, we
have rad(C) = r = rad(B).

To obtain dist(B) = dist(C), it remains to show d(
⋂
B<r,D) = d(

⋂
C<r,D). Since

B<r ⊆ C<r, we can use Lemma 8.4 as well as d(L,D) > d(v,D) to derive

d
(⋂

C<r,D
)
> d

(⋂
B<r,D

)
,= d(L,D) > d(v,D) = d

(⋂
C<r,D

)
as desired. We conclude that w(B) = w(C).

We remark that the set B is actually a basis for C: if B is a non-Helly triple, then removing
any disk from B creates a Helly set and increases the radius of the smallest destroyer to∞.
If |B| 6 2, then D∞ is the smallest destroyer of B and the minimality follows directly from
the definition.

Algorithm 8.1 The violation test.

1: procedure VIOLATES(set B ⊆ D, disk E ∈ D with radius r ′)
2: if |B| > 3 or |B| = 3 and B is Helly then return “B is not a basis.”

3: if |B| = 2 and y-minimum of
⋂
B is also y-minimum of a single disk of B then

4: return “B is not a basis.”
5: if B = {D1} then
6: if y-minimum in E ∩D1 differs from y-minimum in D1 then
7: return “E violates B.”
8: else return “E does not violate B.”
9: if B = {D1,D2} then

10: v = argmin {wy | w ∈ D1 ∩D2}

11: if v /∈ E then return “E violates B.”
12: else return “E does not violate B.”
13: else . B is of size 3, non-Helly, and does not contain D∞.
14: D = smallest destroyer of B
15: {D1,D2} = B \ {D}

16: r = rad(B)
17: if r ′ > r then return “E does not violate B.”
18: else
19: v = argmin {d(w,E) | w ∈ D1 ∩D2}

20: if v /∈ E then return “E violates B.”
21: else return “E does not violate B.”

94 Computation of five Stabbing Points

Following the argumentation of the last proof, the violation test is now immediate and
presented in Algorithm 8.1. It obviously needs constant time. Finally, to apply the algorithm
of Chazelle and Matoušek we still need to check that there is a polynomial-time oracle that
computes a superset of RY for a given set of disks Y.

Lemma 8.8. The range space (D,R = {vio(B) | B is a basis for some D ′ ⊆ D}) has constant
shattering dimension and constant VC-dimension. Moreover, given a set Y ⊆ D of disks, we can
compute a superset of RY in time O(|Y|4).

Proof. Let v ∈ R2 and r > 0. First, we let Rv = {D ∈ Y | v /∈ D} be the range of all disks that
do not contain v. Second, let Rv,r be the range of all disks of diameter smaller than r that do
not contain the point v, i.e., Rv,r = {D ∈ Y | v /∈ D and rD < r}. We define R ′ to be the set
of all ranges Rv over all v and subsequently, we let R ′′ be the set of all ranges Rv,r over all v
and r, that is, R ′′ = {Rv,r | v ∈ R2 and r > 0}.

The discussion from the previous lemmas shows that for any basis B, there is a point
vB ∈ R2 and a radius rB > 0 such that a disk E ∈ D with radius rE violates B if and only if
vB 6∈ E and rE < rB. Hence, we have R ′′ ⊇ RY. We show how to compute R ′′ in polynomial
time. For this, we first construct R ′.

For the given set Y of disks, we compute the arrangement A(Y) and then focus on the
facets of A(Y). Since the arrangement has O(|Y|2) facets, we can compute A(Y) in time
O(|Y|3) using a simple brute-force approach (faster algorithms exist, but are not needed here).
Clearly, for two points v and w of the same facet of A(Y), we have Rv = Rw. Therefore, for
a given facet f, we pick an arbitrary point v ∈ f, and we compute Rv by a linear scan of Y.
Summing over all facets, we can thus compute R ′ in time O(|Y|3).

Finally, to compute R ′′, we iterate over all O(|Y|2) ranges in R ′. Given a range Rv ∈ R ′,
we get all Rv,r for r > 0 by first sorting Rv by increasing radii and then taking every prefix
of the sorted list of disks. For a fixed v, this can be done in time O(|Y|2). Hence, R ′′ can
be computed in O(|Y|4) time. Moreover, since R ′′ has cardinality O(|Y|3) and RY ⊆ R ′′ we
conclude that the shattering dimension is at most 3 and by Lemma 2.1 the VC-dimension is a
constant. This finishes the proof.

The following lemma summarizes the discussion so far.

Lemma 8.9. Given a set D of n pairwise intersecting disks in the plane, we can decide in O(n)
deterministic time whether D is Helly. If so, we can compute a point in

⋂
D inO(n) deterministic

time. If not, we can compute the smallest destroyer D of D and two disks E, F ∈ D<r that form
a non-Helly triple with D. Here, r is the radius of D.

Proof. Since (i) (D,w,6) is LP-type, (ii) the violation test needs constant time, and (iii) the
oracle needs polynomial time, we can apply the deterministic algorithm of Chazelle and
Matoušek [CM96] to compute w(D) = (rad(D),− dist(D)) and a corresponding basis B

in O(n) time. Then, D is Helly if and only if rad(D) = ∞. If D is Helly, then |B| 6 2.
We compute the unique point v ∈

⋂
B with d(v,D∞) = d

(⋂
B,D∞). Since B ⊆ D and

d
(⋂

B,D∞) = d
(⋂

D,D∞), we have v ∈
⋂
D by Lemma 8.4. We output v. If D is non-

Helly, we simply output B, because B is a non-Helly triple with the smallest destroyer D of
D and two disks E, F ∈ D<r, where r is the radius of D.

8.2 A linear time algorithm 95

Theorem 8.10. Given a set D of n pairwise intersecting disks in the plane, we can find in
deterministic O(n) time a set P of five points such that every disk of D contains at least one
point of P.

Proof. Using the algorithm from Lemma 8.9, we decide whether D is Helly. If so, we return
the extreme point computed by the algorithm. Otherwise, the algorithm gives us a non-Helly
triple {D,E, F}, where D is the smallest destroyer of D and E, F ∈ D<r, with r being the
radius of D. Since D<r is Helly, we can obtain in O(n) time a stabbing point q ∈

⋂
D<r

by using the algorithm from Lemma 8.9 again. Next, by Lemma 7.1, there are two disks in
{D,E, F} whose lens angle is at least 2π/3. Let P ′ be the set of four points from the proof of
Lemma 7.4. Then, P = P ′ ∪ {q} is a set of five points that stabs every disk in D.

CHAPTER 9
Conclusions

We presented three completely new routing schemes for geometrically induced graph
classes and gave insights on the stabbing number of pairwise intersecting disks.

Routing in histograms. We gave the first routing schemes for the hop-distance in simple
polygons. In particular, we have a routing scheme for simple and double histograms with
label size dlogne, routing table size O(logn deg(v)) for each vertex v and preprocessing
time O(m). While in simple histograms we can route on optimal paths, we have stretch 2 in
double histograms and need additional headers of size dlogne. This constitutes a first step
towards an efficient routing scheme for the hop-distance in orthogonal polygons. Moreover,
compared to the best known result by Roditty and Tov [RT16] we have better routing table
sizes and achieve much better stretch factors. The following open problems arise naturally.

First, it would be interesting to know, whether it is possible to decrease the stretch in double
histograms to say 1 + ε, for ε > 0. One approach here might be to store more k-dominators
in the routing table. Hence, the routing table would increase and might depend on ε but
we should be able to have more hops on a shortest path. However, the crucial problem of
deciding whether the near or the far dominator is the better choice remains open.

As a next step, it would be interesting to see whether the general position assumption can
be removed. Next, we would like to know how the routing scheme extends to monotone
polygons as well as arbitrary orthogonal polygons, assuming r-visibility. A promising approach
seems to be the well-known window decomposition that partitions an orthogonal polygon into
histograms; see for instances [Bär11, BGM+14, BGR17, BS14, HKS+18]. This decomposition
yields a tree T , in which a node corresponds to a histogram and two histograms are adjacent
in T if and only if they are adjacent in the polygon. Combining the tree routing with the
(double or simple) histogram routing might give a proper routing scheme. However, the
details remain open.

After that, it will be interesting to take a closer look at (orthogonal) polygons assuming
`-visibility. Here, the structure of visibility – even in simple histograms – is much more
complicated. Moreover, we can no longer assume integer coordinates.

97

98 Conclusions

Routing in unit disk graphs. We presented an efficient and compact routing scheme for
unit disk graphs. It achieves stretch 1 + ε and uses ε−O(ε−2) log3 n(1 + logD/ log logn)
bits in the tables and labels. The header size is bounded by O(log2 n/ log logn). It would
be interesting to see if this result can be extended to disk graphs in general. If the radii
of the disks are unbounded, the decomposition of Chan and Skrepetos cannot be applied
immediately. Moreovoer, if we want to decrease the size of the dynamic header and analyze
the preprocessing time we have to take a closer look into the routing scheme of Konjevod et
al. [KRX16] which we used as black box.

Finally, let us compare the routing scheme to the known schemes for unit disk graphs. The
model of the routing scheme of Kaplan et al. [KMRS18] is very close to ours. The routing
scheme can be implemented using the fixed-port model. Instead of the shortest-path separator
decomposition they use the well-separated pair decomposition by Gao and Zhang [GZ05]. We
achieve the same stretch factor and still use additional information of poly-logarithmic size.
Their scheme was generalized to non-unit disk graphs with constant bounded radii [Wil16].
Our main advantage is, that we do not use neighborhood oracles: Kaplan et al. assumes that
the routing function has direct access on the neighborhood of a current vertex (without using
label, table or header), see Section 5.4 in [KMRS18]. The existence of such a neighborhood
oracle makes the routing much easier, since it is a crucial problem to efficiently route in the
neighborhood. However, it is not clear how their scheme can be implemented without such
an oracle.

The idea of the routing scheme of Yan et al. [YXD12] is similar to ours: the graph is covered
by O(logn) different trees. When the routing starts, the labels of the source and the target
are used to determine the identity of a tree and an O(logn)-bit label of the target within
this tree. Finally, they completely forget the original labels and route within this tree until
they reach the target. For any two vertices s, t ∈ V , the routing path between s and t has
length at most 5 · d(s, t) + 13. Our routing scheme can also be transformed to match into
this model, but we have O(logD logn) different trees that cover the unit disk graph and the
label of a vertex in one of the trees has size O(log2 n/ log logn). Nevertheless, we achieve
the near optimal stretch 1 + ε. Moreover, Yan et al. use the designer-port model and thus,
they can route within a tree using labels of size O(logn). But since nodes are contained in
more than one tree, there have to be lookup-tables for the port assignments. Their routing
scheme can easily be turned into the fixed-port model: the stretch would not change and
the label size would increase to O(log3 n/ log logn). Last but not least, their routing scheme
also achieves constant hop stretch. It is unlikely that the hop stretch of our routing scheme is
bounded by a constant. In conclusion, our routing scheme needs an O(logD)-factor more in
the label size but achieves a better stretch if ε < 4. Moreover, our underlying routing model
is specified more clearly.

Stabbing We gave a simple linear-time algorithm to find five stabbing points for a set of
pairwise intersecting disks in the plane. Here we used the concept of LP-type problems. It
remains open how to use the proofs of Danzer or Stachó [Sta84, Dan86] for an efficient
construction of four stabbing points. However, the arXiv proposal by Carmi, Katz, and Morin
[CKM18] claims a linear-time algorithm for finding four stabbing points. It would now be

99

interesting to see whether these results, the ones by Danzer, Stachó, and ours could be used to
find new deterministic approximation algorithms for computing large cliques in disk graphs;
refer to [AW05, BBB+18] for the known algorithms. Moreover, it is still not known whether
nine disks can always be stabbed by three points or not. For eight disks we provided a proof
that three points always suffice, see also [Sta65]. Furthermore, the lower bound construction
of Danzer with ten disks [Dan86] works for pseudo-disks. The example is not easy to draw,
even with the help of geometry processing software. However, until now, we were not able to
check whether his pseudo-disk arrangement can be realized as Euclidean disk arrangement.

Bibliography
[ABNLP90] Baruch Awerbuch, Amotz Bar-Noy, Nathan Linial, and David Peleg. Improved

routing strategies with succinct tables. Journal of Algorithms, 11(3):307–341,
1990.

[ACL+06] Marta Arias, Lenore J Cowen, Kofi A Laing, Rajmohan Rajaraman, and Orjeta
Taka. Compact routing with name independence. SIAM Journal on Discrete
Mathematics, 20(3):705–726, 2006.

[AG11] Ittai Abraham and Cyril Gavoille. On approximate distance labels and routing
schemes with affine stretch. In Proceedings 25th International Symposium on
Distributed Computing (DISC), pages 404–415, 2011.

[AGGM06] Ittai Abraham, Cyril Gavoille, Andrew V. Goldberg, and Dahlia Malkhi. Routing
in networks with low doubling dimension. In Proceedings 26th IEEE Interna-
tional Conference on Distributed Computing Systems (ICDCS), page 75, 2006.

[AGM04a] Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi. Routing with improved
communication-space trade-off. In Proceedings 18th International Symposium
on Distributed Computing (DISC), pages 305–319, 2004.

[AGM+04b] Ittai Abraham, Cyril Gavoille, Dahlia Malkhi, Noam Nisan, and Mikkel Thorup.
Compact name-independent routing with minimum stretch. In Proceedings
16th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 20–24, 2004.

[AK92] Noga Alon and Daniel J. Kleitman. Piercing convex sets and the Hadwiger-
Debrunner (p,q)-problem. Advances in Mathematics, 96(1):103–112, 1992.

[AW05] Christoph Ambühl and Uli Wagner. The clique problem in intersection graphs
of ellipses and triangles. Theory of Computing Systems, 38(3):279–292, 2005.

[Bär11] Andreas Bärtschi. Coloring variations of the art gallery problem. Master’s
thesis, Department of Mathematics, ETH Zürich, 2011.

[BBB+18] Marthe Bonamy, Edouard Bonnet, Nicolas Bousquet, Pierre Charbit, and
Stéphan Thomassé. EPTAS for max clique on disks and unit balls. In Pro-
ceedings 59th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 568–579, 2018.

101

102 Bibliography

[BCK+17] Bahareh Banyassady, Man-Kwun Chiu, Matias Korman, Wolfgang Mulzer, André
van Renssen, Marcel Roeloffzen, Paul Seiferth, Yannik Stein, Birgit Vogtenhuber,
and Max Willert. Routing in polygonal domains. In Proceedings 28th Annual
International Symposium on Algorithms and Computation (ISAAC), pages 10:1–
10:13, 2017.

[BFC00] Michael A Bender and Martin Farach-Colton. The lca problem revisited. In
Proceedings 4th Latin American Symposium in Theoretical Informatics. (LATIN),
pages 88–94, 2000.

[BFvRV15] Prosenjit Bose, Rolf Fagerberg, André van Renssen, and Sander Verdonschot.
Optimal local routing on Delaunay triangulations defined by empty equilateral
triangles. SIAM Journal on Computation (SICOMP), 44(6):1626–1649, 2015.

[BFvRV17] Prosenjit Bose, Rolf Fagerberg, André van Renssen, and Sander Verdonschot.
Competitive local routing with constraints. Journal of Computational Geometry,
8(1):125–152, 2017.

[BGM+14] Andreas Bärtschi, Subir Kumar Ghosh, Matúš Mihalák, Thomas Tschager, and
Peter Widmayer. Improved bounds for the conflict-free chromatic art gallery
problem. In Proceedings 30th Annual Symposium on Computational Geometry
(SoCG), page 144, 2014.

[BGP17] Pritam Bhattacharya, Subir Kumar Ghosh, and Sudebkumar Pal. Constant
approximation algorithms for guarding simple polygons using vertex guards.
arXiv:1712.05492, 2017.

[BGR17] Pritam Bhattacharya, Subir Kumar Ghosh, and Bodhayan Roy. Approximability
of guarding weak visibility polygons. Discrete Applied Mathematics, 228:109–
129, 2017.

[Bin20] Ahmad Biniaz. Plane hop spanners for unit disk graphs: Simpler and better.
Computational Geometry, 89:101622, 2020.

[BKvRV17a] Prosenjit Bose, Matias Korman, André van Renssen, and Sander Verdonschot.
Constrained routing between non-visible vertices. In Proceedings 23rd Interna-
tional Conference on Computing and Combinatorics (COCOON), pages 62–74,
2017.

[BKvRV17b] Prosenjit Bose, Matias Korman, André van Renssen, and Sander Verdonschot.
Routing on the visibility graph. In Proceedings 28th Annual International
Symposium on Algorithms and Computation (ISAAC), pages 18:1–18:12, 2017.

[BLT07] Costas Busch, Ryan LaFortune, and Srikanta Tirthapura. Improved sparse
covers for graphs excluding a fixed minor. In Proceedings 26th ACM Symposium
on Principles of Distributed Computing (PODC), pages 61–70, 2007.

Bibliography 103

[BLT14] Costas Busch, Ryan LaFortune, and Srikanta Tirthapura. Sparse covers for
planar graphs and graphs that exclude a fixed minor. Algorithmica, 69(3):658–
684, 2014.

[BM04] Prosenjit Bose and Pat Morin. Competitive online routing in geometric graphs.
Theoretical Computer Science, 324(2):273–288, 2004.

[BS14] Andreas Bärtschi and Subhash Suri. Conflict-free chromatic art gallery coverage.
Algorithmica, 68(1):265–283, 2014.

[BV93] Omer Berkman and Uzi Vishkin. Recursive star-tree parallel data structure.
SIAM Journal on Computing, 22(2):221–242, 1993.

[CCJ90] Brent N Clark, Charles J Colbourn, and David S Johnson. Unit disk graphs.
Discrete Mathematics, 86(1-3):165–177, 1990.

[CCK+20] Man-Kwun Chiu, Jonas Cleve, Katharina Klost, Matias Korman, Wolfgang
Mulzer, André van Renssen, Marcel Roeloffzen, and Max Willert. Routing in
histograms. In Proceedings 14th International Conference and Workshops on
Algorithms and Computation (WALCOM), pages 43–54, 2020.

[CGMZ16] T.-H. Hubert Chan, Anupam Gupta, Bruce M. Maggs, and Shuheng Zhou. On
hierarchical routing in doubling metrics. ACM Transactions on Algorithms,
pages 55:1–55:22, 2016.

[Cha01] Bernard Chazelle. The Discrepancy Method—Randomness and Complexity. Cam-
bridge University Press, Cambridge, 2001.

[Cha04] Timothy M. Chan. An optimal randomized algorithm for maximum Tukey
depth. In Proceedings 15th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 430–436, 2004.

[Che13] Shiri Chechik. Compact routing schemes with improved stretch. In Proceedings
ACM Symposium on Principles of Distributed Computing (PODC), pages 33–41,
2013.

[CKM18] Paz Carmi, Matthew J. Katz, and Pat Morin. Stabbing pairwise intersecting
disks by four points. arXiv:1812.06907, 2018.

[CLRS09] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to algorithms. MIT press, 2009.

[CM96] Bernard Chazelle and Jǐrı Matoušek. On linear-time deterministic algorithms
for optimization problems in fixed dimension. Journal of Algorithms, 21(3):579–
597, 1996.

[Cow01] Lenore J Cowen. Compact routing with minimum stretch. Journal of Algorithms,
38(1):170–183, 2001.

104 Bibliography

[CS19] Timothy M. Chan and Dimitrios Skrepetos. Approximate shortest paths and dis-
tance oracles in weighted unit-disk graphs. Journal of Computational Geometry,
10(2):3–20, 2019.

[Dan86] Ludwig Danzer. Zur Lösung des Gallaischen Problems über Kreisscheiben
in der Euklidischen Ebene. Studia Scientiarum Mathematicarum Hungarica,
21(1-2):111–134, 1986.

[DBVKOS97] Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Schwarzkopf.
Computational geometry. Springer, 1997.

[DJ11] Adrian Dumitrescu and Minghui Jiang. Piercing translates and homothets of a
convex body. Algorithmica, 61(1):94–115, 2011.

[EGP03] Tamar Eilam, Cyril Gavoille, and David Peleg. Compact routing schemes with
low stretch factor. Journal of Algorithms, 46(2):97–114, 2003.

[FG01] Pierre Fraigniaud and Cyril Gavoille. Routing in trees. In Proceedings 28th
International Colloquium on Automata, Languages and Programming (ICALP),
pages 757–772, 2001.

[FG02] Pierre Fraigniaud and Cyril Gavoille. A space lower bound for routing in
trees. In Proceedings 19th Symposium on Theoretical Aspects of Computer Science
(STACS), pages 65–75, 2002.

[FH06] Johannes Fischer and Volker Heun. Theoretical and practical improvements on
the rmq-problem, with applications to lca and lce. In Proceedings 17th Annual
Symposium on Combinatorial Pattern Matching, pages 36–48, 2006.

[Gav01] Cyril Gavoille. Routing in distributed networks: overview and open problems.
SIGACT News, pages 36–52, 2001.

[GG01] Cyril Gavoille and Marc Gengler. Space-efficiency for routing schemes of stretch
factor three. Journal of Parallel and Distributed Computing, 61(5):679–687,
2001.

[Gol21] Nils Goldmann. Complexity analysis for a labeled routing scheme. Bachelor’s
thesis, Department of Computer Science, Freie Universität Berlin, 2021.

[Grü59] Branko Grünbaum. On intersections of similar sets. Portugaliae Mathematica,
18:155–164, 1959.

[GS04] Silvia Giordano and Ivan Stojmenovic. Position based routing algorithms for
ad hoc networks: A taxonomy. In Ad hoc wireless networking, pages 103–136.
Springer, 2004.

[GZ05] Jie Gao and Li Zhang. Well-separated pair decomposition for the unit-disk
graph metric and its applications. SIAM Journal on Computation (SICOMP),
pages 151–169, 2005.

Bibliography 105

[HD55] Hugo Hadwiger and Hans Debrunner. Ausgewählte Einzelprobleme der kombi-
natorischen Geometrie in der Ebene. Enseignement Mathématique, 1:56–89,
1955.

[Hel23] Eduard Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkten.
Jahresbericht der Deutschen Mathematiker-Vereinigung, 32:175–176, 1923.

[Hel30] Eduard Helly. Über Systeme von abgeschlossenen Mengen mit gemein-
schaftlichen Punkten. Monatshefte für Mathematik, 37(1):281–302, 1930.

[HKM+18] Sariel Har-Peled, Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth,
Micha Sharir, and Max Willert. Stabbing pairwise intersecting disks by five
points. In Proceedings 29th Annual International Symposium on Algorithms and
Computation (ISAAC), pages 50:1–50:12, 2018.

[HKS+18] Frank Hoffmann, Klaus Kriegel, Subhash Suri, Kevin Verbeek, and Max Willert.
Tight bounds for conflict-free chromatic guarding of orthogonal art galleries.
Computational Geometry Theory & Applications (CGTA), 73:24–34, 2018.

[Hof90] Frank Hoffmann. On the rectilinear art gallery problem. In Proceedings 17th
International Colloquium on Automata, Languages and Programming (ICALP),
pages 717–728, 1990.

[HP11] Sariel Har-Peled. Geometric approximation algorithms. American Mathematical
Society, 2011.

[HT73] John Hopcroft and Robert Tarjan. Algorithm 447: efficient algorithms for
graph manipulation. Communications of the ACM, 16(6):372–378, 1973.

[JV09] Philippe Jacquet and Laurent Viennot. Remote-spanners: What to know beyond
neighbors. In Proceedings 23rd IEEE International Symposium on Parallel and
Distributed Processing (IPDPS), pages 1–10, 2009.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Proceedings
of a symposium on the Complexity of Computer Computations, pages 85–103,
1972.

[KMRS18] Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth. Routing in
unit disk graphs. Algorithmica, 80(3):830–848, 2018.

[KRX16] Goran Konjevod, Andréa W Richa, and Donglin Xia. Scale-free compact rout-
ing schemes in networks of low doubling dimension. ACM Transactions on
Algorithms, 12(3):1–29, 2016.

[KST13] Ken-ichi Kawarabayashi, Christian Sommer, and Mikkel Thorup. More compact
oracles for approximate distances in undirected planar graphs. In Proceedings
24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 550–
563, 2013.

106 Bibliography

[LCW02] Xiang-Yang Li, Gruia Calinescu, and Peng-Jun Wan. Distributed construction of
a planar spanner and routing for ad hoc wireless networks. In Proceedings 21st
Annual Joint Conference of the IEEE Computer and Communications Societies,
pages 1268–1277, 2002.

[LT79] Richard J Lipton and Robert Endre Tarjan. A separator theorem for planar
graphs. SIAM Journal on Computation (SICOMP), 36(2):177–189, 1979.

[LvK10] Maarten Löffler and Marc van Kreveld. Largest bounding box, smallest diameter,
and related problems on imprecise points. Computational Geometry Theory &
Applications (CGTA), 43(4):419–433, 2010.

[MRS90] Rajeev Motwani, Arvind Raghunathan, and Huzur Saran. Covering orthogonal
polygons with star polygons: The perfect graph approach. Journal of Computer
and System Sciences (JCSS), 40(1):19–48, 1990.

[MW20] Wolfgang Mulzer and Max Willert. Compact routing in unit disk graphs. In Pro-
ceedings 31st Annual International Symposium on Algorithms and Computation
(ISAAC), pages 16:1–16:14, 2020.

[O’R87] Joseph O’Rourke. Art gallery theorems and algorithms. Oxford University Press,
1987.

[PU89] David Peleg and Eli Upfal. A trade-off between space and efficiency for routing
tables. Journal of the ACM, 36(3):510–530, 1989.

[Rad21] Johann Radon. Mengen konvexer Körper, die einen gemeinsamen Punkt en-
thalten. Mathematische Annalen, 83(1):113–115, 1921.

[RT15] Liam Roditty and Roei Tov. New routing techniques and their applications. In
Proceedings ACM Symposium on Principles of Distributed Computing (PODC),
pages 23–32, 2015.

[RT16] Liam Roditty and Roei Tov. Close to linear space routing schemes. Distributed
Computing, 29(1):65–74, 2016.

[Sau72] Norbert Sauer. On the density of families of sets. Journal of Combinatorial
Theory, Series A, 13(1):145–147, 1972.

[Sei91] Raimund Seidel. Small-dimensional linear programming and convex hulls
made easy. Discrete & Computational Geometry (DCG), 6:423–434, 1991.

[She72] Saharon Shelah. A combinatorial problem; stability and order for models and
theories in infinitary languages. Pacific Journal of Mathematics, 41(1):247–261,
1972.

[SK85] Nicola Santoro and Ramez Khatib. Labelling and implicit routing in networks.
The Computer Journal, 28(1):5–8, 1985.

Bibliography 107

[Sli05] Aleksandrs Slivkins. Distance estimation and object location via rings of neigh-
bors. In Proceedings 24th ACM Symposium on Principles of Distributed Computing
(PODC), pages 41–50, 2005.

[Sta65] Lajos Stachó. Über ein Problem für Kreisscheibenfamilien. Acta Scientiarum
Mathematicarum (Szeged), 26:273–282, 1965.

[Sta84] Lajos Stachó. A solution of Gallai’s problem on pinning down circles. Matem-
atikai Lapok, 32(1-3):19–47, 1981/84.

[SW92] Micha Sharir and Emo Welzl. A combinatorial bound for linear programming
and related problems. Proceedings 9th Symposium on Theoretical Aspects of
Computer Science (STACS), pages 567–579, 1992.

[Tal04] Kunal Talwar. Bypassing the embedding: algorithms for low dimensional
metrics. In Proceedings 36th ACM Symposium on Theory of Computing (STOC),
pages 281–290, 2004.

[Tho04] Mikkel Thorup. Compact oracles for reachability and approximate distances in
planar digraphs. Journal of the ACM, 51(6):993–1024, 2004.

[TZ01] Mikkel Thorup and Uri Zwick. Compact routing schemes. In Proceedings 13th
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
1–10, 2001.

[TZ05] Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the
ACM, 52(1):1–24, 2005.

[VC15] Vladimir Vapnik and Alexey Chervonegnkis. On the uniform convergence of
relative frequencies of events to their probabilities. In Measures of complexity,
pages 11–30. Springer, 2015.

[Wil16] Max Willert. Routing schemes for disk graphs and polygons. Master’s thesis,
Department of Computer Science, Freie Universität Berlin, 2016.

[WK07] Chris Worman and J Mark Keil. Polygon decomposition and the orthogo-
nal art gallery problem. International Journal of Computational Geometry &
Applications, 17(02):105–138, 2007.

[WX20] Haitao Wang and Jie Xue. Near-optimal algorithms for shortest paths in
weighted unit-disk graphs. Discrete & Computational Geometry (DCG), pages
1–26, 2020.

[YXD12] Chenyu Yan, Yang Xiang, and Feodor F Dragan. Compact and low delay
routing labeling scheme for unit disk graphs. Computational Geometry Theory
& Applications (CGTA), 45(7):305–325, 2012.

108 Bibliography

[Zuc06] David Zuckerman. Linear degree extractors and the inapproximability of max
clique and chromatic number. In Proceedings 38th ACM Symposium on Theory
of Computing (STOC), pages 681–690, 2006.

Zusammenfassung
Routen. Wir betrachten Routen mit Vorverarbeitung in einem Graphen G. Während der
Vorverarbeitung von G erhält jeder Knoten ein Label und eine Routingtabelle. Danach müssen
wir in der Lage sein ein Datenpaket zwischen je zwei Knoten s und t von G zu routen,
wobei jeder Schritt lediglich das Label von t, die Routingtabelle von s und den Header
des Pakets benutzen darf. Das Routingproblem wurde bereits ausführlich für allgemeine
Graphen erforscht. Es hat sich herausgestellt, dass kompakte (polylogarithmisch große
Routingtabellen) und effiziente Routingschemata für allgemeine Graphen nicht existieren.

Sei P ein x-monotones orthogonales Polygon mit n Ecken. Wir bezeichnen P als einfaches
Histogramm, wenn der obere Teil des Randes eine einzelne Strecke ist. P ist ein doppeltes
Histogramm, wenn es eine horizontale Sehne gibt, welche vom linken zum rechten Rand geht.
Zwei Punkte p und q sind co-sichtbar genau dann, wenn das achsenparallele Rechteck, aufges-
pannt von p und q, komplett in P liegt. Im r-Sichtbarkeitsgraphen Vis(P) gibt es eine Kante
zwischen je zwei co-sichtbaren Ecken von P. Wir präsentieren ein Routingschema für Sicht-
barkeitsgraphen von einfachen und doppelten Histogrammen, welches Labelgröße dlogne
und Routingtabellengröße O(logn deg(v)) für jede Ecke v von P erreicht, wobei deg(v) der
Grad von v in Vis(P) ist. In einfachen Histogrammen können wir entlang eines kürzesten
Weges routen und benötigen keinen zusätzlichen Header. Für doppelte Histogramme benöti-
gen wir einen Header der Größe dlogne und erreichen Stretch 2. In beiden Fällen ist die
Vorverarbeitungszeit asymptotisch zur Anzahl der Kanten von Vis(P).

Sei V ⊂ R2 eine Menge von n Punkten in der Ebene. Der Einheitskreisgraph DG(V)
ist ein Graph mit Knotenmenge V und einer Kante zwischen je zwei Knoten v und w,
wenn ihr Euklidischer Abstand höchstens 1 ist. Die Kantengewichte sind die Euklidischen
Abstände. Sei außerdem D der Durchmesser des Graphen. Wir konstruieren für jedes
ε > 0 ein Routingschema für DG(V). Das Schema erreicht Stretch 1 + ε, Labelgröße
O
(
ε−1 logD log3 n/ log logn

)
, Routingtabellengröße ε−O(ε−2) log3 n(1 + logD/ log logn)

und Headergröße O(log2 n/ log logn). Die Vorverarbeitungszeit beträgt O(ε−1n2 log2 n).

Piercen. Sei D eine Menge von n sich paarweise schneidenden Kreisscheiben in der Ebene.
Eine Punktmenge P pierct D genau dann, wenn jede Kreisscheibe aus D mindestens einen
Punkt aus P enthält. Wir präsentieren einen deterministischen Algorithmus, der O(n) Zeit
benötigt um 5 Punkte zu finden, die D piercen. Damit liefern wir eine einache, wenn auch
etwas schwächere, algorithmische Version des klassischen Ergebnisses von Danzer, wonach
eine solche Menge D immer von 4 Punkten gepierct werden kann. Außerdem geben wir ein
einfaches Beispiel mit 13 sich paarweise schneidenden Kreisscheiben an, welches nicht von 3
Punkten gepierct werden kann.

109

	Introduction
	Routing
	Stabbing
	Contributions
	Thesis Outline
	Publications

	Preliminaries
	Geometry
	Points, Lines and Disks
	Simple Polygons
	Range Spaces

	Graphs
	Routing Schemes

	Routing
	Simple Histograms
	Landmarks
	Structural Insights
	The Routing Scheme

	Double Histograms
	Landmarks
	Structural Insights
	Visibility in Double Histograms
	The target is close
	The target can be made close in one step.
	The target is far away

	The Routing Scheme

	Span, Cover, Decompose
	Planar Spanners
	Sparse Covers
	Shortest-Path Separator Decomposition
	Approximate Shortest-Path Separator Decomposition

	Unit Disk Graphs
	Small Diameter
	Large Diameter
	A Routing Scheme with Stretch TEXT

	Stabbing
	Pairwise Intersecting Disks
	Upper Bound
	Simple Bounds

	Computation of five Stabbing Points
	A simple near-linear time algorithm
	A linear time algorithm

	Conclusions
	Bibliography
	Zusammenfassung

