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1. Introduction

The subject of this thesis is the derivation and analysis of numerical approximations
of multi-component, multi-phase field systems. The latter are of importance in a
variety of industrial applications. Among these are the production of mechanical
workpieces via metal casting as well as semi-conductor devices such as solar cells. In
both examples, crucial aspects of the respective elastic, plastic, or electronic quality can
be directly correlated with the microscopic structure of the material. Many of these
solidified systems of interest exhibit grains at a distinctive scale between molecular
level and the typical device size. Depending on the setting, these grains may differ in
structure, composition, or mere orientation and one aims to capture their state and
evolution in terms of mathematical models in order to assess or predict the desired
mechanical or electrical quality.

These grain-like structures are thought of as phases, generalizing the strict physical
notion of a phase state in this context. From the microscopic point of view, they
are usually assumed to be separated adjacent structures which interact in defined
ways, motivating the modeling by sharp interface models comprising free or moving
boundary problems, cf. Crank 1987; Kinderlehrer and Stampacchia 2000. The Stefan
problem (see Visintin 2012) is considered as a typical model problem in that domain.
A direct numerical approach explicitly tracking the interfaces poses intricate numerical
challenges, e.g. due to topological changes with vanishing and emerging phases.

Phase field descriptions have emerged as a powerful tool to alternatively model these
systems. An order parameter describes the locally present phase and varies strongly
across a finite diffuse interface between different neighboring grains. For that, a
Ginzburg–Landau type contribution is used to smear out the sharp interface energy
over a small length scale ε. Two prototypical approaches are the so-called Allen–Cahn
and the Cahn–Hilliard equations. The former describe phase transition processes and
is hence considered non-conserving. Caginalp 1989 derived such a system coupled to
a temperature variable to assess solidification phenomena. The approach by Cahn
and Hilliard 1958 considers conserved masses and is thought of as being interfacially
diffuse ab-initio. Here the interface parameter ε can be carefully adapted to fit the
numerically accessible scale.

Alongside mechanical properties, thermal boundary/environmental conditions play an
important role in the evolution of devices investigated by phase fields motivating mod-
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1. Introduction

els such as Caginalp 1989; Penrose and Fife 1990; Wheeler, Boettinger, and McFadden
1992. While original models considered binary phase fields, more complex settings were
investigated, e.g. eutectic systems, and required the development of multi-phase field
systems, cf. Wheeler, McFadden, and Boettinger 1996; Steinbach et al. 1996. Mul-
tiple chemical constituents contributing to the emergence of different phases led to
the postulation of multi-component, multi-phase field models such as Stinner, Nestler,
and Garcke 2004; Eiken, Böttger, and Steinbach 2006. Observations and the conse-
quences drawn in S. G. Kim, W. T. Kim, and Suzuki 1998; Plapp 2011; Choudhury and
Nestler 2012 fostered viewpoints favoring formulations in thermodynamic potentials
other than those of the conserved variables. Numerical approximations of solutions to
such multi-component, multi-phase field models have been obtained in e.g. Nestler,
Garcke, and Stinner 2005; Steinbach 2013 and are mostly based on explicit schemes.
The increasing scale of the arising problems in terms of variables as well as domain
size requires for optimized numerical solution approaches, cf. Nestler and Choudhury
2011.

In this work, we consider a thermodynamically consistent, multi-component, multi-
phase field system as proposed by Stinner, Nestler, and Garcke 2004 and analyzed by
Stinner 2007. The intent to calibrate such a model to a specific application usually con-
flicts with the desire to simplify its various input parameters for numerical purposes. In
particular, both Ginzburg–Landau energy contributions, i.e. the multi-well potential
enforcing pure phase regions as well as the gradient term penalizing large interfaces,
exhibit these difficulties. The numerical accessibility of smooth well potentials comes
at the price of additional correction terms, cf. Nestler, Garcke, and Stinner 2005, and a
more refined numerical framework is necessary to tackle proper obstacle potentials, cf.
Kornhuber 1997; Kornhuber and Krause 2006; Gräser and Sander 2014b. Similarly,
the gradient term becomes particularly intricate for anisotropic settings and was e.g.
investigated by Gräser 2011; Gräser, Kornhuber, and Sack 2013.

Our focus lies on the derivation of numerical approximations within the thermody-
namically consistent context with high efficiency and robustness. We aim to exploit
the special mathematical structure of the model and the underlying thermodynamics
without introducing additional regularizations.

The outline of the thesis is as follows. We introduce the notation for this work as well
as the thermodynamic and multi-phase setting in chapter 2 and continue by motivating
and presenting the thermodynamically consistent multi-component, multi-phase field
model in chapter 3. Based on Rothe’s method, we obtain a semi-discretization allowing
for adaptive meshes in chapter 4 and the implicit problems are analyzed. In chapter 5,
a full discretization with adaptive finite elements based on hierarchical a posteriori
error estimation is set up. We transition to a purely algebraic formulation and present
the iterative approximation of solutions with a nonsmooth Schur–Newton multigrid
approach in chapter 6. Finally, in chapter 7, we perform numerical experiments to
underline the thermodynamical consistency and numerical efficiency of our method.
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2. Setting for thermodynamically
consistent phase field models

Throughout this thesis we consider a bounded domain Ω ⊂ Rd, d = 1, 2, 3 with Lips-
chitz boundary ∂Ω and a time interval I = (0, t∗) ⊂ R, t∗ > 0.

2.1. Notation

We give a short overview of the notational convention in this work with the goal in
mind to foster the focus on the points of interest.

2.1.1. Euclidean spaces

The Euclidean scalar product for two vectors a, b ∈ RM is denoted by a · b. The
associated norm (and induced operator norm) is denoted by |·|. As this work comprises
vector-valued parameters of order M ∈ N subject to sum constraints, let

ΣM
c = {v = (vi)

M
i=1 ∈ RM |

∑M
i=1 vi = c}

the respective affine subspaces. The tangent space to elements of ΣM
c usually is iden-

tified with ΣM
0 . It is convenient to define the projection

PM0 : RM → ΣM
0 ,

PM0 = IdM − 1M,M/M

where 1M,N = (1)M,N
i,j=1 and IdM ∈ RM×M the M -dimensional identity. eMi denotes the

i-th Euclidean basis vector in RM .

As the functions under consideration will be allowed to take infinite values, we denote
by R = R ∪ {−∞,∞} the extended real line.
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2. Setting for thermodynamically consistent phase field models

2.1.2. Derivatives, integrals, and superposition

For a function f with general domain Ω × I all gradients and derivatives shall be
understood w.r.t. the spatial domain Ω unless explicitly written differently, e.g. the
partial derivative w.r.t. time., i.e. ∂tf .

Integration over Ω or subsets thereof generally is w.r.t. the usual Lebesgue measure of
appropriate dimension. We omit the measure for integration w.r.t. the domain Ω for
brevity and write d∂Ω in slight abuse of notation to denote integration over ∂Ω with
(d− 1)-dimensional Lebesgue measure. We write |Ω| :=

∫
1. Integration w.r.t. time is

explicitly denoted by dt.

Let f : RM → R and x : Ω → range(x) ⊂ RM . We denote by f̂(·) the superposition
(or Nemyckii/Nemytskij) operator induced by

f̂(x)(ξ) = f(x(ξ))

for x : Ω→ RM , ξ ∈ Ω. Generally, we aim to distinguish the operator from its gener-
ating function explicitly through this notation in order to clearly separate pointwise
and bulk arguments. For legibility we abuse the notation slightly in the case of deriva-
tives, i.e. derivatives w.r.t. superposition shall be understood in the pointwise sense,
specifically

∇f̂(x)(ξ) = ∇f(x(ξ)).

The well-definedness of the operators f̂,∇f̂ is discussed in place.

2.1.3. Hilbert function spaces

The relevant function spaces in this work are the Hilbert spaces L2 and H1 endowed
with their usual scalar products denoted by (·, ·) and the induced norm written as ‖·‖.
Absent additional indicators imply the use of the respective L2 scalar product. Using
the Riesz representation theorem, many dual operators are identified with their primal
counterparts without further notice.

Boundary contributions (on ∂Ω) are denoted by (·, ·)∂ and all bulk quantities (on Ω)
occurring as their arguments are to be understood in the sense of their traces. For
functions u, v ∈ (H1)M , we use a common generalization of the notation for Sobolev
scalar products to Cartesian products without introducing another indicator, i.e. let

(∇u,∇v) =
M∑
i=1

∫
∇ui · ∇vi.
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2.2. Convex analysis setting

We generally omit the domain if it refers to Ω and explicitly specify it otherwise, i.e.

L2(X) = L2(Ω, X), H1(X) = H1(Ω, X).

2.2. Convex analysis setting

We use some common results from convex analysis. We provide a short list of the key
properties and consequences here and refer to Ekeland and Témam 1999; Rockafellar
1970a for a detailed discussion. Though most of the concepts have straightforward
generalizations to real topological vector spaces and their duals involving the dual
pairing, we confine ourselves to the notationally simpler setting with Hilbert space
(H, (·, ·)), where everything can be written in terms of primal variables by virtue of
the Riesz representation theorem.

Let f : H → R for the upcoming definitions. The effective domain of f is given by

dom f = {x ∈ H | f(x) <∞}.

f is considered proper, if dom f 6= ∅ and {x ∈ H | f(x) > −∞} = H. It is called
convex, if

f(t1x1 + t2x2) ≤ t1f(x1) + t2f(x2)

for all 0 ≤ t1 ≤ 1, t2 = 1 − t1 and x1 6= x2 ∈ dom f . We call f strictly convex, if the
inequality is strict for 0 < t1 < 1.

f is called strongly convex, if

f(t1x1 + t2x2) ≤ t1f(x1) + t2f(x2)− 1
2mt1t2‖x1 − x2‖2

with m > 0. For a twice continuously differentiable function, positive semi-definiteness
(or a strictly positive lower bound) of its Hessian yields strict convexity (or strong
convexity, respectively).

Convex functions may still be unbounded from below, like e.g. − log : R+ → R, which
is why one cannot expect related minimization problems to be well defined. A useful
trait to capture these cases is coercivity. f is said to be coercive, if

‖f(x)‖ ‖x‖→∞−→ ∞.

We use the following result to simplify the deduction of coercivity for composed func-
tions.
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2. Setting for thermodynamically consistent phase field models

Proposition 2.1 (Gräser 2015, Proposition 2). Let a, b continuous symmetric bilinear
forms on H. Let ker a finite dimensional. Let a coercive on (ker a)⊥ and b positive
semi-definite on H but positive definite on ker a. Then a+ b is coercive on H.

Convexity and coercivity are commonly used to infer the existence of minimizers by
being complemented with the property of f being lower semi-continuous, i.e.

∀a ∈ R : {x ∈ H | f(x) ≤ a} is closed.

Proposition 2.2 (Ekeland and Témam 1999, Proposition 1.2). Let f proper, convex,
lower semi-continuous and coercive. Then

{x ∈ H | f(x) = inf{f(x) | x ∈ H}} 6= ∅,

i.e. the inner minimization problem has a solution. The solution is unique if f is
strictly convex.

In addition, convexity provides a setting to a specific generalized differentiability. In
this work we consider functions incorporating the so-called obstacle potential. To that
extent let χ denote the characteristic function as used in convex analysis, i.e.

χA(x) =

{
0 if x ∈ A,
∞ if x /∈ A.

Proposition 2.3. χA : A→ R is convex if and only if ∅ 6= A convex.

χ is generally not differentiable in the classical sense. However, a generalization exists
in the form of the convex subdifferential. y ∈ H is called a subgradient of f at x0 if

f(x)− f(x0) ≥ (y, x− x0)

for all x ∈ H. The subdifferential of f at x0 is then given by the set of all subgradients,
i.e.

∂f(x0) = {y ∈ H | y is a subgradient of f at x0}.

In general the subdifferential is set-valued and may be empty. For the case where
the subdifferential contains exactly one subgradient, a distinct relation to ordinary
differentiation can be formulated.

A function f is Gâteaux-differentiable with Gâteaux-derivative ∇f at x, if the direc-
tional derivative exists for all directions x′ and

(∇f(x), x′) = limt↘0(f(x+ tx′)− f(x))/t.
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2.2. Convex analysis setting

Proposition 2.4 (Ekeland and Témam 1999, Proposition 5.3). Let f convex. If f
is Gâteaux-differentiable, then it is subdifferentiable with only that very subgradient.
Conversely, if it is continuous, finite and comprises exactly one subgradient, then that
is its Gâteaux-differential.

We call a function f Fréchet-differentiable with Fréchet-derivative Df at x, if Df(x)
is a bounded linear operator such that

f(y + δy)− f(y)−Df(y)δy = o(δy).

Proposition 2.5 (Zorn 1946). Let f Gâteaux-differentiable with continuous Gâteaux-
derivative. Then f is Fréchet-differentiable.

The theory of monotone operators pairs nicely with the previous concepts. An operator
T is called monotone, if

(Tx− Ty, x− y) ≥ 0

for all x, y ∈ H. It is said to be maximal monotone if its graph is maximal in the sense
of set inclusion among all monotone operators. The subdifferential of a proper, convex
and lower semi-continuous function is maximal monotone, cf. Rockafellar 1970b.

Functions can be paired with dual space functions by conjugation. In our Hilbert
space setting this simplifies as follows. We call

f∗ : H → R,

f∗(y) = sup{(y, x)− f(x) | x ∈ H}

the polar of f , also known as the Legendre–Fenchel transform. It is convex by construc-
tion and, for convex f , we have f∗∗ ≡ f which motivates the notion convex conjugate.
For differentiable f , the convex conjugate coincides with the Legendre transform on
the interior of its effective domain.

Proposition 2.6. f∗ is convex and lower semi-continuous.

The subgradients of f can be characterized by the following polar relationship, cf.
Ekeland and Témam 1999, Proposition 5.1.

Proposition 2.7. y ∈ ∂f(x)⇔ f(x) + f∗(y) = (x, y).

Proposition 2.8. Let f proper, strictly convex and continuously differentiable on
int dom f . Then ∇f∗(y) = (∇f)−1(y) for all y ∈ int dom f∗.

7



2. Setting for thermodynamically consistent phase field models

Proof. f being strictly convex implies that∇f is strictly monotone and can be inverted
single-valuedly. Then the result follows from proposition 2.7.

In this work, time derivatives of differentiable, strictly convex functions are approx-
imated with finite differences. We prepare the following result that allows to obtain
coercivity of the arising (finite dimensional) spatial problems.

Proposition 2.9. Let H finite-dimensional and f proper, strictly convex and con-
tinuously (Fréchet)-differentiable on int dom f . For ∀x0 ∈ int dom f let f0(x) =
f(x)− (∇f(x0), x). Then f0 is coercive.

Proof. We construct a cone containing graph f with apex over x0 (but not exactly at
(x0, f(x0))) and use it to show that the difference between the tangent hyperplane at
x0 and the cone boundary grows at least linearly in x.

For fixed x0, let ε > 0 such that Bε(x0) = {x ∈ H | ‖x − x0‖ ≤ ε} ⊂ int dom f .
Consider x 6= x0, xε := x0 + ε(x− x0)/x− x0. By strict convexity we have

0 < m(xε) := (∇f(x0)−∇f(xε), x0 − xε).

We can express x = x0 − δ(x0 − xε), δ = ‖x − x0‖/ε. We estimate using the tangent
hyperplane at xε to obtain

f(x)− (∇f(x0), x) ≥ f(xε) + (∇f(xε), x0 − xε)− (∇f(x0), x0) + 1
εm(xε)‖x− x0‖.

Consequently, we have

f(x)− (∇f(x0), x) ≥ c0 + c1‖x− x0‖,
c0 = inf{f(x) + (∇f(x), x0 − x)− (∇f(x0), x0) | x ∈ ∂Bε(x0)},
c1 = inf{1

εm(x) | x ∈ ∂Bε(x0)},

for all x ∈ int dom f with constant c1 > 0 by continuity of ∇f and compactness of
∂Bε.

2.2.1. Linearly parametrized conjugates

We prepare some particular results for linearly parameter dependent convex conju-
gates. To this extent let now

f : RM ×RN → R, dom f = P × Y,

8



2.2. Convex analysis setting

proper with convex effective domain and P ⊂ RM closed, Y ⊂ RN open. Let further-
more f be linear in P and continuously differentiable as well as strictly convex in Y .
Precisely, for all p ∈ P and y, y0 ∈ Y there exists fy ∈ RM such that

f(p, y) = p · fy,
f(p, y) > f(p, y0) +∇yf(p, y0) · (y − y0).

Convex functions can be characterized by their epigraph being a subset of the inter-
section of all half spaces constructed from tangent planes to the function. In case of a
linearly parametrized f as given here, this reads as follows.

Lemma 2.1. For all p, p0 ∈ P, y, y0 ∈ Y we have

f(p, y) ≥ f(p0, y0) +∇1f(p, y) · (p− p0) +∇2f(p0, y0) · (y − y0).

Proof. By linearity in p and convexity in y we have

∇1f(p, y) · (p− p0) = f(p, y)− f(p0, y) ≤ f(p, y)− f(p0, y0)−∇2f(p0, y0) · (y − y0).

Let f? the convex conjugate of f for every fixed p ∈ P 1, i.e.

f? : P ×RN → R, (2.1a)

f?(p, z) = sup{z · y − f(p, y) | y ∈ RN}, (2.1b)

or equivalently,

f?(p, z) = (f(p, ·))∗(z).

The straightforward conclusion from proposition 2.8 reads

y?(p, z) := (∇2f(p, ·))−1(z) = ∇2f
?(p, z). (2.2)

By definition of f? and the properties of f we have

f?(p, z) = z · y? − f(p, y?), (2.3a)

f?(p,∇2f(p, y)) = y · ∇2f(p, y)− f(p, y). (2.3b)

Additionally, the derivative w.r.t. the parametrization satisfies a helpful relation which
allows to avoid analytically determining the parametrized convex conjugate to evaluate
its derivatives.
1note the difference f∗ and f?
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2. Setting for thermodynamically consistent phase field models

Lemma 2.2.

∇1f
?(p, z) = −∇1f(p, y?), (2.4a)

∇1f
?(p,∇2f(p, y)) = −∇1f(p, y). (2.4b)

Proof. ∇1f
?(p, z) = d

dp(z ·y?−f(p, y?)) = z ·∇1y
?−∇1f(p, y?)−∇2f(p, y?) ·∇1y

?.

Moreover, the strict convexity is expanded to the entire parameter domain in this
specific setting as follows.

Lemma 2.3. f? is strictly convex.

Proof. For i = 1, 2 let pi ∈ P, zi ∈ RN , ti > 0 where zi ∈ dom f?(pi, ·), y?i the solution
to zi = ∇yf(pi, y

?
i ), and t1 + t2 = 1. Let furthermore (p3, z3) =

∑
i=1,2 ti(pi, zi).

Then, by strict convexity of f(pi, ·) we have with y 6= yi for i = 1, 2,

f(pi, y)− f(pi, yi) > (y − yi) · zi, (2.5)

i.e. f(pi, ·) grows quicker than its linear approximation zi at yi towards any y. For
y1 6= y2 we use the linearity of f(·, y) to obtain∑

i=1,2 ti(f(pi, y)− f(pi, y
?
i )) >

∑
i=1,2 ti(y − y?i ) · zi

⇔ f(p3, y)−
∑

i=1,2 tif(pi, y
?
i ) > y · z3 −

∑
i=1,2 tiy

?
i · zi

⇔
∑

i=1,2 ti(yi · zi − f(pi, y
?
i )) > y · z3 − f(p3, y)

which for y = y?3 = (∇yf(p3, ·))−1(z3) is equivalent to∑
i=1,2 tif

?(pi, zi) > f?(p3, z3)

yielding strict convexity of f?.

2.3. Diffuse interface models

Problems of phase transitions can be formulated as free boundary problems for the
boundaries of the phases of interest. Particular attention was paid historically to the
description of the evolution of a given boundary through problems of Stefan-type, cf.
Visintin 2012, implicitly tracking the velocity of the sharp boundary.
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2.3. Diffuse interface models

Sharp interface models that explicitly describe the evolution of boundaries are cum-
bersome to deal with when topological changes occur, e.g. when boundaries collapse
due to the inscribed region vanishing, or split when an a connected region is becoming
disconnected. One way to look at phase field models is that they approximate or re-
place the sharp interface representation of the boundary by a diffuse interface of finite
width proportional to some custom variable ε > 0, cf. Brokate and Sprekels 1996. This
approach allows to circumvent the topological issues described above at the expense
of a higher dimensional problems whose computational overhead can be minimized
with appropriate numerical frameworks, e.g. adaptive grids. Through methods such
as matched asymptotic expansions, cf. Lagerstrom 1988, these diffuse models can be
led back to sharp interface models.

The underlying functional governing the phase separation and transition processes is
often referred to as Ginzburg–Landau energy where the lower-dimensional interface
integral from the sharp model is replaced by an integral with nonzero contribution
in close proximity. In models with thermodynamic background, phase field models
often occur naturally in the sense that the sharp interfaces are not the original moti-
vation. Two prototypical phase-field models are the so-called Allen–Cahn-model and
the Cahn–Hilliard-model. They arise from gradient flows for the Ginzburg–Landau
energies w.r.t. a L2- or H−1-like scalar product, respectively. The model to be con-
sidered in this work exhibits strong relations to both approaches. These basic phase
field models comprise a bulk parameter that captures the relative local fraction of the
respective quantity of interest.

2.3.1. Vector-valued order parameters and obstacles

Basic models tackle binary problems in the sense that the scalar order parameter
models the presence of a single phase p ∈ [0, 1]. Simultaneously, regions of absence
of the model parameter phase implicitly represent the presence of a second, counter-
acting disorder phase 1−p ∈ [0, 1]. As the latter phase is implicitly defined by a scalar
p anyway, many binary models are symmetrized and rescaled to an order parameter
p ∈ [−1, 1] for computational convenience.

For models that take into account a third phase or more, one usually represents each
phase explicitly by a separate order parameter. In this work we consider problems with
M ∈ N order parameters. Points where a single phase is present are characterized
by only the respective order parameter being one while all others are zero. Diffuse
interface regions where one phase transitions to another exhibit more than a single
non-zero order parameter. Here we interpret the order parameters as relative fractions
of the presence of each phase. Consequently, they should be non-negative and add up
to one. This is accounted for formally by introducing the M − 1-simplex or Gibbs

11



2. Setting for thermodynamically consistent phase field models

simplex GM , and its function space relative imposing the constraint pointwise

GM = {v = (vi)
M
i=1 ∈ ΣM

1 | vi ≥ 0, i = 1, . . . ,M},
GM = {v ∈ L2(Ω,RM ) | v(x) ∈ GM a.e.}.

We consider an order parameter

p : Ω× I → GM ⊂ RM

where the positivity and sum constraint are built into an optimization functional in
terms of χGM leading to models of so-called obstacle potential type.

2.3.2. Ginzburg–Landau energy

A pivotal modeling factor for phase field models usually ensues from the Ginzburg–
Landau contribution

∫
g to the underlying energy functional. Its generating function

g comprises two basically counteracting terms. On one hand there is the local contri-
bution glocal(p) that drives the system towards pure phases. It is commonly modeled
as a multi-well potential with M distinct global minima in GM . In this work, we
consider multi-well potentials of obstacle type, i.e. with contribution χGM . On the
other hand there is a gradient contribution ggrad(p,∇p) which usually is assumed to
be homogeneous of degree two in the second variable, i.e.

ggrad(p, α∇p) = α2ggrad(p,∇p)

for all α ∈ R+, p ∈ RM ,∇p ∈ RM×d. It punishes steep gradients and allows to account
for multi-phase anisotropy (that is in the sense of equilibrium shapes - anisotropic
velocities are usually incorporated via a relaxation parameter in the ensuing partial
differential equation). We have

g(p,∇p) = χGM (p) + 1
εg

local(p) + εggrad(p,∇p)

with ε > 0 scaling the diffuse interface width.

In this work we incorporate a well-known simple instance of such a Ginzburg–Landau
contribution, namely the isotropic, quadratic multi-well obstacle potential with a
purely concave smooth local contribution, i.e.

glocal(p) = −1
2‖p‖

2, (2.6a)

ggrad(p,∇p) = 1
2‖∇p‖

2. (2.6b)

The corresponding Ginzburg–Landau functional in this work occurs in the form

G : H1(RM )→ R, (2.7a)

p 7→
∫
ĝ(p,∇p) (2.7b)
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2.4. Thermodynamic potentials and free entropies

by means of superposition and exhibits the splitting

G(p) = Gε(p) + χGM (p)

with smooth contribution Gε and χGM the functional simplex obstacle. We assume
that Gε is Fréchet-differentiable with Gâteaux derivative ∇Gε, see Gräser 2011.

2.4. Thermodynamic potentials and free entropies

Classical thermodynamics captivates by its state functions, in particular the thermody-
namic potentials. These are formulated in terms of so-called natural variables allowing
to obtain other state functions by partial differentiation. This section shall serve as a
short introduction to thermodynamic potentials while already adhering to a notation
that allows a smooth transition to the forthcoming chapters.

The thermodynamics of irreversible processes considered in this work is based on the
local thermodynamic equilibrium assumption. Hereby local refers to the meso-scale
of the respective system of interest, i.e. it resolves the so-called microstructure but
abstracts from the atomic scale through the meaningful incorporation of temperature,
composition, energy and entropy density, etc.

Thermodynamic variables are commonly categorized into extensive variables that scale
with the size of the system and their intensive counterparts. We use latin letters to
denote extensive variables. These are e.g. the total mass of the chemical composition,
but also include in particular the common thermodynamic potential densities for en-
tropy and the internal energy. Intensive variables like the chemical potentials, but also
temperature, are denoted by greek letters in this work.

To this extent let e the internal energy density, s the entropy density and θ the
temperature. From the first and second law of thermodynamics, one can derive the
fundamental thermodynamic relation

de = θ ds+

imax∑
i=1

ρi dpi (2.8)

in terms of e. Here {θ, s} is the conjugate pair of (extensive) absolute temperature θ
and (intensive) entropy s. For finitely many further external variables pi that are nec-
essary to characterize the system, their (intensive) conjugates ρi denote the respective
generalized forces. Equation (2.8) provides a description of the potential’s differential
in terms of the differentials of its variables and motivates the interpretation of e as a
function of the natural variables (s, p1, . . . , pimax).

13



2. Setting for thermodynamically consistent phase field models

The definition suggests that there is no single thermodynamic potential for a system.
The specific choice relies on the applied constraints (in physical context when con-
sidering small volumes sometimes referred to as boundary conditions) and henceforth
the variables of interest. While the term internal energy is coined for all natural vari-
ables being extensive, other combinations of natural variables are reasonable as long
as either the extensive or the intensive representation of each pair of conjugates is
chosen. An appropriate tool to explore the set of thermodynamic potentials is the
Legendre transform as it allows to consecutively swap between both representations
of each pair until a suitable representation is obtained. Classical thermodynamics
for gases considers the conjugate pairs {θ, s}, {pressure, volume}, {µj , cj}, where the
latter denote the chemical potentials or the relative concentrations of particles of a
certain specimen, respectively. The corresponding classical thermodynamic potentials
have dedicated names, such as the internal energy e(s, volume, c), Helmholtz free en-
ergy f(θ, volume, c), the enthalpy h(s, pressure, c), the Gibbs enthalpy or Gibbs free
energy g(θ,pressure, c), and the grand canonical potential ω(θ,pressure, µ).

In addition to the thermodynamic potentials obtained as described above, the role
of independent variables and describing function may eventually be reversed. A
monotone relationship between e and s allows to obtain a state function of entropy
s(e, volume, c). Again, replacing variables by their conjugate counterparts generates
more state functions with different natural variables. They are being referred to as
free entropies and comprise the Massieu potential sMassieu(β, volume, c), the Planck
potential sPlanck(β, β · pressure, c), as well as the reduced grand canonical potential
ψ(β, β · pressure, β · µ). Here the intensive variable of negative inverse temperature
β = −1/θ is the conjugate variable to e.

2.4.1. Thermodynamic bulk entropy densities

The model to be presented in the following chapter is based on thermodynamic prin-
ciples formulated in free entropy. From an application point of view, the fundamental
equation for a thermodynamical potential is generally the most assessable in Helmholtz
free energy representation f . This is due to the fact the coefficients for a desired
parametrization can be obtained by carefully conducted experiments and measure-
ments due to the extensive nature of its variables with the notable exception of tem-
perature which is an intensive quantity. A Legendre transform leads to an internal
energy formulation which, by monotonicity w.r.t. its independent variable s, allows
to obtain a parametrization of entropy. A final Legendre transform yields a formula
for the reduced grand canonical potential ψ. In this section we obtain an explicit
fundamental equation for the reduced grand canonical potential according to these
relationships.

This section concentrates on the local derivation of said potentials within a fixed pure
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2.4. Thermodynamic potentials and free entropies

phase (bulk) on the relative meso-scale as introduced previously. The global, multi-
phase version is obtained by suitable interpolation in section 3.3.1.

We assume that, regardless of the local composition, the mass density is constant.
Furthermore, we assume that the pressure is constant. Hence, its constant contri-
butions to the potentials are neglected. Let a parametrization of the free energy
f : R+ × intGN1 → R be given by

f(θ, c) = (θL̃− L) · c+ cmθc · log c− cvθ(log θ − 1), (2.9)

with cv, cm ∈ R+, L̃, L ∈ RN , N ∈ N, and log the natural logarithm applied compo-
nentwise. Such parametrizations are obtained e.g. for models of ideal solutions, c.f.
Haasen 1994.

−f is a convex function in θ. Its Legendre transform w.r.t. θ is the internal energy
and the respective conjugate variable is entropy. We deduce

s = −∂θf(θ, c) = −L̃ · c− cmc · log c+ cv log θ, (2.10a)

θ = exp((s+ L̃ · c+ cmc · log c)/cv), (2.10b)

e = f + θs = −L · c+ cvθ (2.10c)

which allows us to express the internal energy e : R × intGN1 → R in its natural
variables

e(s, c) = −L · c+ cv exp((s+ L̃ · c+ cmc · log c)/cv).

Notice that e is convex and, in particular, strictly monotone in s. Hence, we can
globally invert e(·, c) for arbitrary fixed c, yielding the entropy density s : X → R,
which then is given by

s(e, c) = cv log(e+ L · c)− L̃ · c− cmc · log c− cv log cv

in its natural variables and on the domain X = {(e, c) ∈ R × intGN1 | e + L · c > 0}.
Its partial derivatives up to second order are

∂e(−s)(e, c) = −cv/(e+ L · c),
∂c(−s)(e, c) = −cv/(e+ L · c)L+ L̃+ cm(1 + log c),

∂2
e,e(−s)(e, c) = cv/(e+ L · c)2,

∂2
e,c(−s)(e, c) = cv/(e+ L · c)2L,

∂2
c,c(−s)(e, c) = cv/(e+ L · c)2LTL+ cm diag 1

c

and

−(e′, c′)T (∇2s(e, c))(e′, c′) = cv(e+ L · c)−2(e′ + L · c′)2 + cmc
′T diag 1

c c
′ > 0
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2. Setting for thermodynamically consistent phase field models

which shows that −s is strictly convex.

We now compute its Legendre transform explicitly and introduce related notation to
use later on. The resulting function is the reduced grand canonical potential ψ = (−s)∗
and its natural variables are denoted negative inverse temperature β and reduced
chemical potentials η. Formally, we consider the function −s̃(e, c) = −s(e, c) if (e, c) ∈
X and ∞ else and obtain a conjugate function ψ̃ : R×RN → R. However, we restrain
our notation to its effective domain domψ which we identify with R− × ΣN

0 . Then

ψ(β, η) = sup{e · β + c · η + s(e, c) | (e, c) ∈ X}
= ẽ(β, η) · β + c̃(β, η) · η + s(ẽ, c̃),

with (ẽ, c̃) = (−∇s)−1(β, η).

We introduce helper functions to reduce notational clutter in the remainder. These
definitions should be considered temporary at this point and are made more rigorous
later on in the multi-phase context of section 3.3.1. We omit their arguments wherever
it is convenient and unambiguous. Let η̃, σk, ζ : R×RN → R,

η̃j(β, η) = exp((ηj − L̃j − βLj)/cm), j = 1, . . . , N,

σk(β, η) =
∑N

j=1 L
k
j η̃j(β, η), k ∈ N,

ζ(β, η) = cm log σ0(β, η),

with exp the exponential function applied componentwise and η̃ = (η̃)Nj=1.

By the identification of T(e,c)(X) with R− × Σ0
N we obtain

β = ∇1(−s)(ẽ, c̃), (2.11a)

η = ∇2(−s)(ẽ, c̃)− t1N (2.11b)

with t = ∂c(−s)(ẽ, c̃) · 1N/N2 ∈ R by orthogonal projection of the ambient gradient
to the relevant subspace which yields

β = −cv/(ẽ+ L · c̃) ⇔ ẽ = −cv/β − L · c̃, (2.12a)

η + t1N = βL+ L̃+ cm(1 + log c̃) ⇔ c̃ = exp(t/cm − 1)η̃. (2.12b)

The constraint 1 =
∑N

i=1 c̃i =
∑N

i=1 exp(t/cm − 1)η̃i = exp(t/cm − 1)σ0 implies

t = cm − ζ, (2.13a)

c̃ = η̃/σ0. (2.13b)
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2.4. Thermodynamic potentials and free entropies

We use these expressions for c̃ and consequently ẽ as functions in β, η to get

s(ẽ, c̃) = −cv log(−β)− L̃ · c̃− cmc̃ · log c̃

= −cv log(−β)− L̃ · c̃− cm/σ0η̃ · log η̃ + ζ,

ψ(β, η) = ẽ · β + c̃ · η + s(ẽ, c̃)

= −cv(1 + log(−β)) + ζ.

The first order partial derivatives of ψ are

e = ∂βψ = −cv/β − σ1/σ0, (2.14a)

cj = ∂ηjψ = η̃j/σ0 (2.14b)

which coincides with the relations in equations (2.12) and (2.13). Note that equa-
tion (2.14a) implies e+Lc > 0 which combined with equation (2.10c) corresponds to the
strict positivity of temperature θ > 0. Equation (2.14b) directly yields c ∈ intGN1 .
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3. Continuous non-isothermal multi-phase
field systems

In this chapter, we consider a model that is capable of describing phase transformation
processes in non-isothermal multi-component alloys as well as in grain structure evo-
lution. In this setting, phase transformations are not restricted to the physical notion
of an aggregate phase but can also represent transitions of different crystal orientation
or other distinctive characteristics.

3.1. Motivation of the phase field model

We present the derivation of a phase field model according to the approach in Stinner,
Nestler, and Garcke 2004. Therein, the focus lies on the thermodynamical consistency
for non-isothermal settings, support for an arbitrary number of phases and compo-
nents, and the assessability of the required parameters for densities (bulk free energy
and surface energy) and coefficients (diffusion and mobility).

We consider the independent variables

p : Ω× I →RM , (3.1a)

e : Ω× I →R, (3.1b)

and c : Ω× I →RN , (3.1c)

where p is the phase field (or order) parameter, e is the internal energy density, and
c the chemical (component) concentration with M,N ∈ N. We interpret p and c as
relative fractions of a structural property or a chemical substance respectively. Hence,
it is natural to require additionally that

p ∈ GM a.e., (3.2a)

c ∈ intGN a.e.. (3.2b)

While the former is incorporated by the simplex obstacle functional in the Ginzburg–
Landau contribution, the latter constraint has to be considered separately. Notice that
we exclude the edge cases where c ∈ ∂GN .
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3. Continuous non-isothermal multi-phase field systems

The model is derived from an energy functional in entropy form

FS(p, e, c) = S(p, e, c)−G(p), (3.3)

with entropic contributions for the bulk

S(p, e, c) =

∫
s(p, e, c) (3.4)

where

s(p, e, c) : Ω× I →R (3.5)

and G a Ginzburg–Landau functional as introduced in equation (2.7b). This functional
is thought of representing the system’s global entropy as the sum of both, the bulk as
well as the interfacial entropic contributions.

We include additional energetic source terms in the form

esrc(p, e, c) : Ω× I →R. (3.6)

The system is postulated as a gradient flow for FS with the driving forces δpFS , δeFS ,
and δcFS and taking into consideration the constraint equation (3.2a) by incorporat-
ing the subdifferential of the non-smooth convex functional χGM . More precisely, a
weighted L2 scalar product is chosen for the evolution of p along with a dissipation
mechanism characterized by the kinetic coefficient pkin that leads to an Allen–Cahn
type phase field problem. A weighted H−1 like scalar product is used to postulate the
evolution of (e, c) and leads to continuity equations that satisfy conservation principles
to be emphasized later.

In formulas, for the non-conserved phase field parameter we postulate

pkinε∂tp ∈ δpF̃S(p, e, c)− ∂χGM (p) (3.7)

where F̃S = S −Gε with pkin > 0 complemented by no-flux boundary conditions.

For the conserved parameters of internal energy and component bulks we have the
balance equations

∂te = −∇ · J0(p, e, c) + esrc (3.8a)

∂tci = −∇ · Ji(p, e, c), i = 1, . . . , N (3.8b)

with the fluxes being linear functions of the thermodynamic driving forces, i.e.

J0(p, e, c) = κ∇δeF̃S(p, e, c), (3.9a)

Ji(p, e, c) =
∑N

j=1 mij∇δcj F̃S(p, e, c), i = 1, . . . , N. (3.9b)
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A corollary (...) is that the free energy of a mixture (...) is not the interpo-
lation of the free energies of the respective phases at a given concentration,
but it is a mixture of the phases at the respective concentrations at which
they are at thermodynamic equilibrium, i.e., at the same chemical potential
(...)

Figure 3.1.: Choudhury and Nestler 2012

Here, m ∈ RN,N is symmetric and positive semi-definite with

ker m = span{1N}

thereby satisfying the Onsager reciprocal relations, cf. Onsager 1931, which ensures
the conservation of mass. Consequently also ηTmη > 0 for η ∈ ΣN

0 .

Decoupling the flows in the sense that we are not incorporating ∇δeF̃S in Ji and no
∇δcj F̃S in J0 implies that we neglect any cross effects of mass and energy diffusion.

We impose Robin type boundary conditions to complement these fluxes which are
specified later.

3.2. Conjugated thermodynamic modeling

The thermodynamic governance of the system is determined by the choice of the
thermodynamic potential density s. We now replace it by the reduced grand canonical
potential density and formulate our system in its natural variables instead. Such
a reformulation of the system related to the work by Stinner, Nestler, and Garcke
2004 was derived and analyzed in Stinner 2007. S. G. Kim, W. T. Kim, and Suzuki
1998 showed that models based on interpolated free energies are prone to generating
excess energy in the interfaces. As a consequence the interface thickness related to
ε is constrained to avoid altering the system’s dynamics. While this alone hampers
the numerical approximation significantly, the interfacial energy contributions in g
are effectively also functions of the free energy density landscape as explained by
Choudhury and Nestler 2012 in the isothermal case. Plapp 2011 discusses how a
grand canonical potential approach allows to unify two different approaches to phase
field problems modeling alloy solidification. The different viewpoint provides a more
benign modeling approach that allows independent modeling of the bulk and interface
contributions.

Notably, Choudhury and Nestler 2012 also consider a Ginzburg–Landau contribution
of obstacle type, which is also done in this work, and derive an appropriate antitrapping
current, which is not considered here.
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3. Continuous non-isothermal multi-phase field systems

Consider the reduced grand canonical potential density (the Massieu potential density)
ψ as the convex conjugate of −s (as a function of (p, e, c)) w.r.t. (e, c). Its natural
variables are the derivatives of −s(p, ·, ·) which we identify with elements of R× ΣN

0 .
We have

β : Ω× I → R,

η : Ω× I → ΣN
0 ,

and

ψ(p, β, η) : Ω× I → R.

It bears the inverse relations

∇2ψ(p, β, η) = e, (3.10a)

∇3ψ(p, β, η) = c. (3.10b)

Using these relations we can transform our system (pointwise) and obtain a corre-
sponding evolution in terms of a global entropy functional in reduced grand canonical
potential form FΨ(p, β, η) = FS(p, e(p, β, η), c(p, β, η)) with the representation

FΨ(p, β, η) = SΨ(p, β, η)−G(p)

where the contributions for the bulk are given by

SΨ(p, β, η) =
∫
ψ(p, β, η)− βe(p, β, η)− η · c(p, β, η).

This transformation specifically simplifies the representations for the thermodynamical
driving forces from the bulk since

−δeS(p, e(p, β, η), c(p, β, η)) = β,

−δcS(p, e(p, β, η), c(p, β, η)) = η

by convex conjugate duality of −s(p, ·, ·) and ψ(p, ·, ·) and

δpS(p, e, c) = ∇1s(p, e(p, β, η), c(p, β, η)) (3.11a)

= d
dps(p, e, c)−∇1eβ −∇1c · η (3.11b)

= ∇1(ψ − β∇2ψ − η · ∇3ψ)−∇1eβ −∇1c · η (3.11c)

= ∇1ψ(p, β, η). (3.11d)

This results in the effective postulation of the transformed system as

pkinε∂tp ∈ δpF̃Ψ(p, β, η)− ∂χGM (p) (3.12a)
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where δpF̃Ψ = ∇1ψ(p, β, η) − ∇pGε(p) (c.f. equation (3.11)) with natural boundary
conditions coupled to

∂t∇2ψ(p, β, η) = −∇ · J0(p, β, η) + βsrc, (3.13a)

∂t∇3ψ(p, β, η) = −∇ · Ji(p, β, η), i = 1, . . . , N, (3.13b)

with source term βsrc = esrc and with fluxes

J0(p, β, η) = κ∇(−β), (3.14a)

Ji(p, β, η) =
∑N

j=1 mij∇(−ηj), i = 1, . . . , N. (3.14b)

We specify the thermodynamical boundary conditions at this point to be

J0 · n = β00(β − β∂), (3.15a)

Ji · n = 0, i = 1, . . . , N, (3.15b)

with β00 ≥ 0 and n the unit outward normal to Ω thereby imposing no mass flux over
the boundary and a (negative inverse) temperature regulation given by 0 < β∂ a.e.
and controlled by β00 on ∂Ω.

3.3. Choice of thermodynamic fundamental equation

In the previous section we set up a model based on a reduced grand canonical po-
tential formulation. In section 2.4.1 we constructed explicit expressions for reduced
grand canonical potential densities for multiple components in a fixed phase. Con-
sider M of these thermodynamic bulk potentials each w.r.t. a fixed phase i, i.e. we
tag them by a respective subscript, i.e. ψi,−si etc. We now construct multi-phase
potentials ψ(p, β, η),−s(p, e, c) etc. from these pure phase thermodynamic potentials
with ψ(ei, β, η) = ψi(β, η),−s(ei, e, c) = −si(e, c) etc. for i = 1, . . . ,M .

3.3.1. Multi-phase reduced grand canonical potential

We choose to linearly interpolate in this work. The good thermodynamic potential to
interpolate in this context is the reduced grand canonical potential ψ as emphasized
in section 3.2. Only in reduced models this coincides with linearly interpolating the
entropy, internal energy, or free energy over the phase transition regions. It is a
modeling freedom that yields preferential calibration properties (see Stinner, Nestler,
and Garcke 2004; Plapp 2011; Choudhury and Nestler 2012) and leads to linearity and
convexity properties that we make use of later in this work. We set

ψideal(p, β, η) =
∑M

i=1 piψi(β, η),

ψi(β, η) = −cv(1 + log(−β)) + cm log
∑N

j=1 exp((ηj − L̃i,j − βLi,j)/cm)
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with, again, positive constants cv, cm, latent heats resp. latent heats reduced by melt-
ing temperature L, L̃ ∈ RM,N for component j = 1, . . . , N in phase i = 1, . . . ,M .
Throughout this work we stick to the convention of phase i = 1 representing the liquid
phase, i.e. L1 = L̃1 = 0N .

In light of the sum constraint p ∈ ΣM
1 as of equation (3.2a), we simplify the notation

for the logarithmic negative inverse temperature contribution to be independent of
p. Also, we drop the constant contributions since we are not interested in absolute
values but derivatives of ψ. We denote the addend for the logarithmic negative inverse
temperature contribution by

π : R→ R,

β 7→

{
−cv log(−β) if β < 0,

∞ else.

For the chemical potential contribution, we use

ζi : R× ΣN
0 → R,

(β, η) 7→ cm log σ0,i(β, η)

where

σk,i : R× ΣN
0 → R, k ∈ N, i = 1, . . . ,M,

(β, η) 7→
∑N

j=1 L
k
i,j η̃i,j ,

η̃i,j : R× ΣN
0 → R, i = 1, . . . ,M, j = 1, . . . , N,

(β, η) = exp((ηj − L̃i,j − βLi,j)/cm),

and we write ζ = (ζi)
M
i=1. For the remainder of this work, we consider a regularized

version of ψideal by ν
2 |η|

2 with a fixed but arbitrary ν > 0. To that extent let

ψ : RM ×R× ΣN
0 → R,

(p, β, η) 7→ π(β) + p · ζ(β, η) + ν
2 |η|

2.

Proposition 3.1. ψ(p, β, η) is (affine) linear in p and strictly convex in (β, η) for
p ∈ GM .

Proof. π is strictly convex in β and ν
2 is strictly convex in η. ζi is convex as of

proposition A.1 and so is p · ζ by non-negativity of pi for i = 1, . . . ,M .
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3.3. Choice of thermodynamic fundamental equation

For p ∈ GM , ψ is a convex combination of strictly convex functions. This has several
consequences which are exploited throughout this work, mostly in terms of proper-
ties of functionals incorporating ψ and relying on these properties pointwise almost
everywhere.

We have

∇π : R→ R,

β 7→

{
−cv/β if β < 0,

∞ else,

∇1ζi : R× ΣN
0 → R,

(β, η) 7→ −σ1,i/σ0,i,

∇2ζi : R× ΣN
0 → ΣN

1 ,

(β, η) 7→ (η̃i,j/σ0,i)
N
j=1

and we write ∇ζ = (∇1ζ,∇2ζ) = (∇1ζi,∇2ζi)
M
i=1. Then

∇1ψ(p, β, η) = ζ(β, η),

∇2ψ(p, β, η) = ∇π(β) + p · ∇1ζ(β, η),

∇3ψ(p, β, η) = p · ∇2ζ(β, η) + η.

3.3.2. Massieu potential for fixed concentrations

Let ρi denote the convex conjugate of the pure phase entropy density si for fixed c, i.e.
ρi(β) = (si(·, c))∗(β), where a direct calculation analogous to the one in section 2.4.1
allows to derive an explicit fundamental equation for each i = 1, . . . ,M . By linearly
interpolating the phase variable in analogy to section 3.3.1, we obtain the potential
density

ρ(p, β) =

{
−cv log(−β)− cmp · (βLc+ L̃c) if β < 0

∞ else
. (3.16)

Here, Lc, L̃c ∈ RM are the latent heats resp. latent heats reduced by melting temper-
atures for each phase i = 1, . . . ,M . The notation incorporating c does not allow for
it to be variable, but serves as a reminder that this expression allows to deal with the
single-component case as well as multiple-fixed-concentrations cases alike and arises as
a special case by restriction of the more general ψideal. Also, it avoids additional nota-
tion and we expect it to be obvious from the context whether c is variable or not. cv, cm
are positive constants like before. We omitted all additional constant contributions to
ρ arising from the deduction process of its fundamental form for brevity.
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3. Continuous non-isothermal multi-phase field systems

3.4. Multi-component problem in RGCP form

We now write down a closed weak formulation of the model postulated in equa-
tions (3.12) to (3.15a). By definition of the subdifferential inclusion we obtain the
following continuous partial differential inequality for a non-isothermal multi-phase
multi-component problem in reduced grand canonical potential form.

Problem 3.1. Find the phase field p ∈ H1(I, L2(RM ))∩L2(I,H1(RM )), the negative
inverse temperature density β ∈ H1(I, L2(R−)) ∩ L2(I,H1(R−)), and the reduced
chemical potentials η ∈ H1(I, L2(ΣN

0 )) ∩ L2(I,H1(ΣN
0 )) such that

p(0, ·) = ~p, β(0, ·) = ~β, η(0, ·) = ~η (3.17)

holds with given initial conditions ~p ∈ L2(GM ), ~β ∈ L2(R−), ~η ∈ L2(ΣN
0 ) and

0 ≤ χGM (p′)− χGM (p) + (pkinε∂tp, p
′ − p) + (∇Gε(p), p

′ − p)H1 − (∇1ψ̂, p
′ − p),

(3.18a)

0 = −(∂t∇2ψ̂, β
′)− (κ∇β,∇β′)− (β00(β − β∂), β′)∂ + (βsrc, β

′), (3.18b)

0 = −(∂t∇3ψ̂, η
′)− (m∇η,∇η′) (3.18c)

for all test functions p′ ∈ H1(RM ), β′ ∈ H1(R), η′ ∈ H1(ΣN
0 ) with smooth reduced

grand canonical potential density contributions ∇iψ̂ = ∇iψ̂(p, β, η) for i = 1, 2, 3,
interface parameter ε > 0 , kinetic phase coefficient pkin = pkin(p,∇p) > 0, and
Fréchet differentiable interface energy functional Gε(p), as well as source term βsrc,
boundary negative inverse temperature β∂ with coefficient β00 > 0, and diffusivity
coefficients κ(p, β, η) > 0 and m = m(p, β, η) ∈ Rn×n s.p.s.-d.

3.4.1. Existence of solutions

Weak solutions to the system of problem 3.1 have been shown to exist with βsrc = 0
under additional assumptions and slightly different regularity conditions for p, β, η and
the parametrizations of ψ.

Theorem 3.1. There exist solutions to problem 3.1 if sufficient bounds and regularity
conditions are met for the initial data and the coefficient functions.

We do not present a full proof here and refer to Stinner 2007, Theorem 3.1-3 instead
for details, also stating precisely the additional conditions. The proof for the linear
growth in η is tackled by approximating it with functions with scaled quadratic reg-
ularization in η and letting their scaling go to 0. Quadratic terms are also used to
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3.4. Multi-component problem in RGCP form

tackle the logarithmic growth in β by approximating it with functions which continue
the logarithm with quadratic tails outside of some interval determined by the slope
range [s, 1/s], s > 0 and letting s→ 0.

Note that the theorem does not include reduced grand canonical bulk densities that
are of both, logarithmic growth in β and linear growth in η which is why we shy away
from incorporating ψideal and consider the regularized ψ instead with ν > 0. Further-
more, the smoothness assumptions on the Ginzburg–Landau contributions exclude the
incorporation of obstacle potentials and as such the above existence result does not
apply to the more general subdifferential inclusion case ad-hoc.

The work of Stinner 2007 also motivates some other restrictive modeling decisions, like
e.g. disallowing mass-related energy transport (equation (3.9a) is independent of δcF̃S)
and enforcing thermal exchange of the system with its surrounding (β∂ , κ > 0).

Note that in our case of ψ with logarithmic growth in β, existence of a solution to
problem 3.1 implies β < 0 almost everywhere even if not explicitly required.

3.4.2. Thermodynamic consistency

From a modeling point of view, the derivation of the system is such that it is thermo-
dynamically consistent in the sense of adherence to the fundamental laws of thermo-
dynamics, in particular the first and second one as follows. To this extent we consider
in addition to FΨ the functionals

EΨ(p, β, η) =

∫
e =

∫
∇2ψ̂(p, β, η), (3.19a)

CΨ(p, β, η) =

∫
c =

∫
∇3ψ̂(p, β, η) (3.19b)

to capture the total internal energy as well as the total chemical masses in terms
of the natural variables of the reduced grand canonical potential by equation (3.10).
Since our system is not necessarily isolated energetically, we have to account for the
interaction with the environment by

Ψ∂(p, β, η) = (β00(β − β∂), β)∂ . (3.20)

Principally, the underlying gradient flow structure of the model provides the thermo-
dynamical consistence (and Lyapunov stability) in terms of FΨ, EΨ, CΨ after pointwise
transformation of thermodynamical potential densities −s and ψ. For a more thor-
ough investigation of the implications of gradient flow modeling, we refer to Garcke
2000; Mielke 2011; Peletier 2012. The precise consequences for the system at hand are
as follows.
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3. Continuous non-isothermal multi-phase field systems

Proposition 3.2 (Nonnegative entropy production). Let (p, β, η) be a solution to
problem 3.1 with βsrc = 0 and p ∈ C1([t0, t1], H1(RM )) for 0 < t0 ≤ t1 ∈ I. Then

FΨ(p(t), β(t), η(t)) ≥ FΨ(p(t0), β(t0), η(t0)) +

∫ t

t0

Ψ∂(p, β, η) dt (3.21)

for all t ∈ [t0, t1].

Proof. We have p ∈ GM almost everywhere in [t0, t1]. Test equation (3.18a) with p(t−
τ), τ 6= 0, divide by τ and let τ ↘ 0; test equation (3.18b) with β and equation (3.18c)
with η to obtain

(pkinε∂tp, ∂tp) ≤ (∇1ψ̂(p, β, η), ∂tp)− (∇Gε(p), ∂tp)H1 (3.22a)

(κ∇β,∇β) = −(∂t∇2ψ̂(p, β, η), β)− (β00(β − β∂), β)∂ (3.22b)

(m∇η,∇η) = −(∂t∇3ψ̂(p, β, η), η) (3.22c)

for almost all t. As the left hand side expressions are all quadratics, this implies
nonnegativity of the right hand side terms of equation (3.22). On the other hand, the
thermodynamical bulk functional as of equation (3.11a) implies

∂tSΨ(p, β, η) = ∂t[
∫
ψ̂(p, β, η)− (∇2ψ̂(p, β, η), β)− (∇3ψ̂(p, β, η), η)]

= (∂tp,∇1ψ̂(p, β, η))− (∂t∇2ψ̂(p, β, η), β)− (∂t∇3ψ̂(p, β, η), η).

Consequently, adding up equation (3.22) yields

∂tF̃Ψ(p, β, η) = δtSΨ(p, β, η)− (∇Gε(p), ∂tp)H1 ≥ Ψ∂(p, β, η)

and integrating over [t0, t] yields the claim.

Proposition 3.3 (Conservation of mass and energy). Let (p, β, η) be a solution to
problem 3.1 with βsrc = 0. Then

EΨ(p(t1), β(t1), η(t1)) = EΨ(p(t0), β(t0), η(t0))−
∫ t1

t0

Ψ∂(p, β, η) dt, (3.23a)

CΨ(p(t1), β(t1), η(t1)) = CΨ(p(t0), β(t0), η(t0)) (3.23b)

for almost all t0 ≤ t1 ∈ I.

Proof. Test equation (3.18b) with β′ = 1 and equation (3.18c) with the orthogonal
projection of the i-the Euclidean basis vector in RN to ΣN

0 , i.e. with η′ = PN0 eNi =
eNi − 1N/N for i = 1, . . . , N . The constant nature of the test functions has many
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3.5. Penrose–Fife type model

terms vanishing: the H−1 contributions due to spatial homogeneity and the projective
contributions due to temporal uniformity. We obtain

0 =

∫
−∂t∇2ψ̂(p, β, η)−Ψ∂(z) (3.24a)

0 =

∫
−∂t∇3ψ̂(p, β, η) · eNi , (3.24b)

for i = 1, . . . , N where integration over [t0, t1] yields the claim.

3.5. Penrose–Fife type model

For the special case N = 1 we have η = 0, c = 1. The incorporation of ρ as introduced
in section 3.3.2 in lieu of ψ allows to rule out the mass conservation equation. Its
partial derivatives are significantly simpler to denote and dealt with than their more
general ψ-counterparts. As a consequence we replace their occurrences directly by
their respective expressions in the upcoming problem formulation.

The arising partial differential equations coincide with the model considered in Gräser,
Kahnt, and Kornhuber 2016. Therein the transition to inverse temperature was made
using the same monotone relationships that are inherent to the strictly convex ther-
modynamical potentials without making the explicit detour over the reduced grand
canonical potential formulation and afterwards reducing the complexity by assuming
constant concentrations. The temperature θ in that work transfers to this work by
β = −θ−1.

Problem 3.2. Find the phase field p ∈ H1(I, L2(RM )) ∩ L2(I,H1(RM )) and the
negative inverse temperature density β ∈ H1(I, L2(R−)) ∩ L2(I,H1(R−)) such that

p(0, ·) = ~p, β(0, ·) = ~β

holds with given initial conditions ~p ∈ L2(GM ) and ~β ∈ L2(R−),

0 ≤ (pkinε∂tp+ cm(βLc+ L̃c), p′ − p) + (∇Gε(p), p
′ − p)H1 + χGM (p′)− χGM (p),

(3.25a)

0 = (cm∂tp · Lc− cv∂tβ/β2, β′)− (κ∇β,∇β′)− (β00(β − β∂), β′)∂ − (βsrc, β
′)
(3.25b)

for all test functions p′ ∈ H1(RM ), β ∈ H1(R), interface parameter ε > 0, kinetic
phase coefficient pkin > 0, and Fréchet differentiable interface energy functional Gε(p),
as well as source term βsrc, boundary negative inverse temperature β∂ with coefficient
β00 > 0, and diffusivity coefficient κ(p, β) > 0.
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3. Continuous non-isothermal multi-phase field systems

The resulting partial differential system is a generalization of the well-established,
two-phase Penrose–Fife model (Penrose and Fife 1990; Brokate and Sprekels 1996)
to multiple components. The general existence result (theorem 3.1) as well as the
thermodynamic consistency properties (propositions 3.2 and 3.3) carry over.

Note that the same approach could also be applied for the case N > 1 in a setting
where the mass (related) transport can be ignored, e.g. since the dynamics are very
slow compared to the time scale of interest (m ≈ 0). In this case the concentrations of
the chemical components become constant in time (c(t) = c(t0) a.e.). Then the reduced
chemical potentials η are not necessarily constant in time as well as they depend on
temperature resp. inverse negative temperature, too. Nevertheless, their variation
from the initial reduced chemical potentials as obtained from the initial chemical
concentration is a function of the negative inverse temperature. For simplicity of
presentation, this reduced setting is not considered explicitly here.

3.6. Problems on thin domains

Additionally we want to consider problems with reduced spatial dimension due to neg-
ligible effects in one space direction. This might be motived by a thin domain. To this
end consider Ω = Ω′ × [0, H], 0 < H. We think of the problem to be thin in the sense
that variations of all quantities normal to Ω′ can be neglected and that the boundary
conditions on top of the thin domain coincide with their spatial counterparts on the
bottom. Aforementioned quantities with negligible normal variation include initial
data, boundary conditions on ∂Ω′ × [0, H], fluxes and all coefficients. Consequently,
the solution will inherit this property as well. Precisely, assume that

∇pi · g = ∇ ~pi · g = 0, i = 1, . . . ,M,

∇β · g = ∇ ~β = 0,

∇ηj · g = ∇ ~ηj = 0, j = 1, . . . , N,

∇βsrc · g = 0

almost everywhere on Ω× I with g = (0d−1, 1) ∈ Ω′ × [0, H]. Assume further that

J̃i · n = 0 on ∂Ω×H,
J̃i((·, 0), t) · n(·, 0) = J̃i((·, H), t) · n(·, H) on Ω′

almost everywhere and for almost every t ∈ I where n the outward normal w.r.t. Ω,
and J̃i = Ji(p, β, η) : ∂(Ω′ × [0, H])× I → Rd for all i = 0, . . . , N .

With these assumptions we can collapse the domain vertically by its height H, and,
since it suffices to test with vertically constant test functions, factor out H from all
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3.6. Problems on thin domains

bulk integrals. For the boundary integral in negative inverse temperature we have

(β00(β − β∂), β′)∂(Ω) = (2β00(β − β∂ , β′))Ω′

without any additional boundary contribution and set

β′00 = 2
Hβ00

β′src = βsrc − 2
Hβ00β∂

on Ω′ × {0} which we identify with Ω′. As a consequence we can write the following
thin-film derivate for this simplified setting w.r.t. the reduced space Ω′.

With the assumptions above, problem 3.1 reduces to the following.

Problem 3.3. Find the phase field p ∈ H1(I, L2(Ω′,RM ))∩L2(I,H1(Ω′,RM )), nega-
tive inverse temperature density β ∈ H1(I, L2(Ω′,R)) ∩ L2(I,H1(Ω′,R)), and reduced
chemical potentials η ∈ H1(I, L2(Ω′,RN )) ∩ L2(I,H1(Ω′,ΣN

0 )) such that

p(0, ·) = ~p, β(0, ·) = ~β, η(0, ·) = ~η

holds with given initial conditions ~p ∈ L2(Ω′, GM ), ~β ∈ L2(Ω′,R−), ~η ∈ L2(Ω′,ΣN
0 )

and

0 ≤ (pkinε∂tp, p
′ − p)− (∇1ψ̂, p

′ − p) + (∇Gε(p), p
′ − p)H1 + χGM (p′)− χGM (p),

(3.26a)

0 = (−∂t∇2ψ̂ − β′00β, β
′)− (κ∇β,∇β′) + (β′src, β

′), (3.26b)

0 = (−∂t∇3ψ̂, η
′)− (m∇η,∇η′) (3.26c)

for all test functions p′ ∈ H1(Ω′,RM ), β′ ∈ H1(Ω′,R), η′ ∈ H1(Ω′,ΣN
0 ).

Similarly, for fixed concentrations, problem 3.2 reduces to the following.

Problem 3.4. Find the phase field p ∈ H1(I, L2(Ω′,RM )) ∩ L2(I,H1(Ω′,RM )) and
negative inverse temperature density β ∈ H1(I, L2(Ω′,R))∩L2(I,H1(Ω′,R)) such that

p(0, ·) = ~p, β(0, ·) = ~β

holds with given initial conditions ~p ∈ L2(Ω′, GM ), ~β ∈ L2(Ω′,R−), and

0 ≤ (pkinε∂tp, p
′ − p) + (βL+ L̃, p′ − p) + (∇Gε(p), p

′ − p)H1 + χGM (p′)− χGM (p),
(3.27a)

0 = (−∂t∂βψ − β00′β, β
′)− (κ∇β,∇β′) + (β′src, β

′) (3.27b)

for all test functions p′ ∈ H1(Ω′,RM ), β′ ∈ H1(Ω′,R), η′ ∈ H1(Ω′,ΣN
0 ).

All existence statements, conservative laws and entropy increase properties carry over
in straightforward fashion. For this reason, the analysis in the remainder of this work
is only formulated in terms of problem 3.1 and 3.2.
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4. Semi-discrete non-isothermal
multi-phase field systems

Rothe’s method As our problems incorporate a phase field parameter whose evolu-
tion is driven by a Ginzburg–Landau functional of obstacle type, the resulting order
parameter are mostly constant in space and exhibit relatively narrow regions of high
spatial variance. The fact that these narrow regions move over time motivates the
use of time-dependent, locally refined spatial grids. As a result, it is convenient to
use Rothe’s method, cf. Bornemann 1990; Deuflhard and Weiser 2011. Hence, we
discretize in time first. The resulting spatial problems subsequently are discretized in
space, independent of each other.

Ginzburg–Landau splitting In light of the well-known stiffness of the non-linear
parabolic system of equations, we avoid using a purely explicit time discretization
scheme. Equation (3.18a) is an anisotropic multi-phase Allen–Cahn problem. Gräser,
Kornhuber, and Sack 2013 showed that unconditional stability cannot be expected for
fully implicit time discretizations. Semi-implicit time discretizations based on split-
tings of the respective Ginzburg–Landau contribution allow to trade unconditional
stability for a potential loss of accuracy, cf. Blank et al. 2012 or Bartels 2015, section
6.3.1. We assume a splitting Gε = Gim + Gex with Fréchet-differentiable addends and
(∇Gim(·), ·)H1 a positive semi-definite, symmetric bilinear form that satisfies

Gε(p
′)−Gε(p) + (∇Gim(p) +∇Gex(p′), p− p′)H1 ≥ 0 (A4.1a)

for all p, p′ ∈ GM to simplify the subsequent analysis. Such splittings usually amount
to a convex-concave splitting though additional non-convex contributions to Gim can
eventually be compensated, e.g. by mass terms originating from the time derivative
∂tp and involving e.g. a time step constraint for unconditional stability, cf. Gräser,
Kornhuber, and Sack 2013.

A corresponding splitting for the isotropic, quadratic interaction potential arising from
the choice (2.6) is given by Gim(p) = ε

2‖∇p‖
2, Gex(p) = − 1

2ε‖p‖
2.

Semi-implicit time-discretization We derive consistent discretizations of the contin-
uous models with Euler-type discretizations in time and finite elements in space. We

33



4. Semi-discrete non-isothermal multi-phase field systems

aim at inheriting the structure-defining properties as of propositions 3.2 and 3.3 from
the continuous modelling.

Let 0 = t0 < t1 < . . . < tnmax = tmax a partition of I with uniform step size

0 < τ = tn − tn−1

for n = 1, . . . , nmax and given nmax ∈ N.

We approximate the time derivatives by backward finite differences with step size τ > 0
while freezing all coefficients and taking the (concave) Ginzburg–Landau contribution
Gex(p) explicitly.

4.1. Multi-component problem in RGCP form

From problem 3.1 we obtain the semi-discrete partial differential inequality for a non-
isothermal multi-phase multi-component problem in reduced grand canonical potential
form.

Problem 4.1. Find (pn, βn, ηn) ∈ H1(RM )×H1(R−)×H1(ΣN
0 ) for n = 1, . . . , nmax

such that

z0 = ~z

holds with given initial conditions ~z = ( ~p, ~β, ~η) ∈ L2(GM )× L2(R−)× L2(ΣN
0 ) and

0 ≤ (pkin
ε
τ (pn − pn−1), p′ − pn)− (∇1ψ̂

n, p′ − pn) + (G′ε, p
′ − pn)H1 + χ(p′)− χ(pn),

0 = (−∇2ψ̂
n +∇2ψ̂

n−1, β′)− (τκ∇βn,∇β′) + (τβsrc, β
′)− (τβ00(βn − β∂), β′)∂ ,

0 = (−∇3ψ̂
n +∇3ψ̂

n−1, η′)− (τm∇ηn,∇η′)

for all test functions (p′, β′, η′) ∈ H1(RM ) × H1(R) × H1(ΣN
0 ) with reduced grand

canonical potential densities ∇iψ̂n = ∇iψ̂(pn, βn, ψn), interface parameter ε > 0 and
step size τ > 0, kinetic phase coefficients pkin = pkin(pn−1) > 0, interface energy
contributions G′ε = ∇Gim(pn) + ∇Gex(pn−1), as well as source term βsrc = βsrc(t

n),
boundary negative inverse temperature β∂ = β∂(tn) with coefficient β00 ≥ 0, and dif-
fusivity coefficients κ = κ(pn−1, βn−1, ηn−1) > 0,m = m(pn−1, βn−1, ηn−1) ∈ RN×N
with 1N ∈ ker m a.e.

The semi-discrete problem exhibits a sequence of stationary problems. We look at
a single time step at a time and simplify our notation accordingly. We no further
explicitly denote the time step for frozen or solution-independent coefficients. For the
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4.1. Multi-component problem in RGCP form

variables p, β, η we drop the superscripts for the current time step n and replace the
superscripts for the previous time step n− 1 by (.)old.

As the subsequent analysis makes heavy use of Lagrange duality theory for saddle
point problems, we adjust our notation accordingly. The potentials β, η form the dual
variable and we write

y = (β, η),

Y = R× ΣN
0 .

Assumptions We make the following assumptions.

The initial conditions (and the subsequent semi-discrete time iterates, as will be shown)
fulfill

pold ∈ L2(GM ), (A4.2a)

yold ∈ L2(Y ), (A4.2b)

1/βold ∈ L2(R), (A4.2c)

−βold > 0 a.e. (A4.2d)

and the thermal boundary conditions satisfy the regularity assumptions

β00 ∈ C1(∂Ω), (A4.3a)

β∂ ∈ C1(∂Ω), (A4.3b)

as well as the bounds

β00,- ≤ β00(∂ξ) ≤ β00,+, (A4.4a)

βbnd,- ≤ −β∂(∂ξ) ≤ βbnd,+, (A4.4b)

for almost all ∂ξ ∈ ∂Ω with positive constants 0 < β00,-, β00,+, βbnd,-, βbnd,+.

The source term shall also be bounded, i.e.

βsrc,- ≤ βsrc ≤ βsrc,+. (A4.5a)

For the mass terms we assume the bounds (and list ν for completeness)

p-‖p‖2 ≤ (pkinp, p) ≤ p+‖p‖2, (A4.6a)

ν‖η‖2 = (νη, η) (A4.6b)
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4. Semi-discrete non-isothermal multi-phase field systems

as well as for the Laplace terms

G-‖∇p‖2 ≤ (∇Gim(p), p)H1 ≤ G+‖∇p‖2, (A4.7a)

κ-‖∇β‖2 ≤ (κ∇β,∇β) ≤ κ+‖∇β‖2, (A4.7b)

m-‖∇η‖2 ≤ (m∇η,∇η) ≤ m+‖∇η‖2, (A4.7c)

for all p ∈ H1(RM ), β ∈ H1(R), η ∈ H1(ΣN
0 ) with positive constants

0 < p-, p+, ν,G-,G+, κ-, κ+,m-,m+.

We introduce the bilinear and linear forms

ap(p, p
′) = (pkin

ε
τ p, p

′) + (∇Gim(p), p′)H1

c(y, y′) = (τκ∇β,∇β′) + (τm∇η,∇η′) + (τβ00β, β
′)∂ + (νη, η′),

fp(p
′) = (pkin

ε
τ p

old, p′)− (∇Gex(pold), p′)H1 ,

fy(y
′) = (−∇2ψ(pold, yold), y′)− (τβsrc, β

′)− (τβ00β∂ , β
′)∂

which allows to equivalently write each stationary subproblem of problem 4.1 as fol-
lows.

Problem 4.2. Find p ∈ H1(RM ), y ∈ H1(Y ) such that β < 0 a.e. and

fp(p
′ − p) ≤ ap(p, p′ − p) + χ(p′)− χ(p)− (ζ̂(y), p′ − p), (4.8a)

fy(y
′) = −(∇π̂(y) + p · ∇ζ̂(y), y′)− c(y, y′) (4.8b)

for all test functions p′ ∈ H1(RM ), y′ ∈ H1(Y ).

As a consequence of the assumptions above the bilinear forms a, c are continuous and
coercive on H1(RM ) and H1(Y ), respectively, i.e.

aell‖p‖2 ≤ ap(p, p) ≤ acnt‖p‖2, (4.9a)

cell‖y‖2 ≤ c(y, y) ≤ ccnt‖p‖2, (4.9b)

with positive constants 0 < aell, acnt, cell, ccnt by the trace theorem and where, for the
coercivity of c, we use Gräser 2015, Proposition 2. Similarly, the linear forms fp, fy
are continuous as

|fp(p)| ≤ fp,+‖p‖, (4.10a)

|fy(y)| ≤ fy,+‖y‖, (4.10b)

with positive constants 0 < fp,+, fy,+.
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We show that finding a solution to problem 4.2 can equivalently be done by minimizing
a functional for the dual variable y and incorporating an associated and uniquely
defined primal variable p̂(y). We proceed with the following steps: Show that for a fixed
dual variable, the primal variable is uniquely obtained as a minimizer for a functional
associated with equation (4.8a). Use this to construct the dual Schur complement
and show that the resulting problem associated with equation (4.8b) admits a unique
solution.

4.1.1. Existence and uniqueness of the phase field

We have the following property for the superposition operator ζ̂.

Proposition 4.1. The Nemyckii operator ζ̂ : L2(Y )→ L2(RM ) is bounded.

Proof. By growth condition A.1a and application of Zeidler 1990, Proposition 26.6.

As a result of proposition 4.1, it is meaningful to consider the functional

Z : L2(RM )× L2(Y )→ R,

(p, y) 7→ (ζ̂(y), p).

Let the functional

ϕ : H1(RM )→ R,

p 7→ 1
2ap(p, p) + χGM (p).

The optimization functional associated with equation (4.8a) for arbitrary but fixed
y ∈ L2(Y ) is

H1(RM )→ R,

p 7→ ϕ(p)− fp(p)− Z(y, p)

and its (to be shown) respective minimizer is denoted by

p̂ : L2(Y )→ H1(GM ),

y 7→ argmin{ϕ(p)− fp(p)− Z(y, p) | p ∈ H1(RM )}.

Proposition 4.2. Let y ∈ L2(Y ). Then fp + Z(y, ·) ∈ L2(RM )′ ⊂ H1(RM )′.
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4. Semi-discrete non-isothermal multi-phase field systems

Proof. fp and Z(y, ·) are bounded linear functionals on L2(RM ). This is implied by
assumptions A4.2a and A4.6a as well as Fréchet-differentiability of Gex (see chapter 4)
for fp and by proposition 4.1 for Z(y, ·).

Theorem 4.1. p̂ is well-defined.

Proof. ϕ is strictly convex, lower semi-continuous and coercive since a(·, ·) is continu-
ous and strongly convex and GM is closed and convex. Proposition 4.2 holds. Conse-
quently, the optimization functional is proper, strictly convex, lower semi-continuous
and coercive. Existence and uniqueness of the minimizer p̂(y) is then given by propo-
sition 2.2. p̂(y) ∈ GM since the effective domain coincides with domχGM .

By the minimizing property, we have 0 ∈ ∂(ϕ(·)− fp − Z(y, ·))(p̂(y)), i.e.

p̂(y) = (∂ϕ)−1(fp + Z(y, ·)) = ∂ϕ∗(fp + Z(y, ·)) (4.11)

with ϕ∗ : H1(RM )′ → R the convex conjugate of ϕ. By definition of the convex
subdifferential, this is equivalent to p̂ solving equation (4.8a).

Proposition 4.3. p̂ is Lipschitz-continuous.

Proof. ∂ϕ∗ is Lipschitz-continuous with constant 1/aell by Goebel and Rockafellar
2008, Corollary 4.3. ζ̂ is Lipschitz with c2 =

∑M
i=1 c2,i the sum of the componentwise

Lipschitz-constants for ζi from equation (A.1c) such that

‖p̂(y′)− p̂(y)‖H1(RM ) ≤ 1
aell
‖fp + Z(y′, ·)− fp − Z(y, ·)‖H1(RM )′

≤ 1
aell
‖Z(y′, ·)− Z(y, ·)‖L2(RM )′

= 1
aell
‖ζ̂(y′)− ζ̂(y)‖L2(RM )

≤ 1
aell
c2‖y′ − y‖L2(Y ).

4.1.2. Dual Schur-complement formulation

We now replace occurrences of p in equation (4.8b) by p̂ to obtain a problem in y only
using the relationship in equation (4.11). To that extent we introduce, formally,

∇r : L2(Y )→ L2(Y ),

y 7→ ∇ζ̂(y)p̂(y),

which is benign in the following sense.
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4.1. Multi-component problem in RGCP form

Proposition 4.4. ∇r is well-defined and continuous.

Proof. Let C =
∑M

i=1|c2i| with c2i the constants from equation (A.1b) for each phase
i = 1, . . . ,M . Since p̂ ∈ GM we have that

‖∇r(y)‖2 ≤
∫ (∑M

i=1|∇ζ̂i(y)|p̂i(y)
)2
≤ C2|Ω|,

which shows that indeed ∇r(y) ∈ L2(Y ) for all y ∈ Y . To show continuity, we
can appropriately add and subtract a term ∇ζ̂(y)p̂(y′), use the triangle inequality,
proposition 4.3 with Lipschitz constant Lp, and the fact that p̂ ∈ G to obtain

‖∇r(y)−∇r(y′)‖ ≤ C2|Ω|Lp‖y − y′‖+ |Ω|‖∇ζ̂(y)−∇ζ̂(y′)‖

for all y, y′ ∈ Y and by growth equation (A.1b) and Zeidler 1990, Proposition 26.6, ∇ζ̂
is a continuous and bounded Nemyckii operator as well. This proves the claim.

Now let

h′ : H1(Y )×H1(Y )→ R,

(y, y′) 7→

{
(∇π̂(y) +∇r(y), y′) + c(y, y′) + fy(y

′) if ∇π̂(y) ∈ L2(R),

∞ else,

which by theorem 4.1 allows to formulate the following Schur-complement formula-
tion.

Problem 4.3. Find (β, η) = y ∈ H1(Y ) such that β < 0 a.e. and

h′(y, y′) = 0

for all y′ ∈ H1(Y ).

Corollary 4.1. (p, y) solves problem 4.2 iff y solves problem 4.3 and p = p̂(y).

4.1.3. Existence and uniqueness of the potentials

First of all, we consider the term coupling the equations (4.8a) and (4.8b). To that
extent let

r : L2(Y )→ R,

y 7→ ϕ∗(fp + Z(y, ·))

which is well-defined by proposition 4.2. By convex conjugation and proposition 4.1
we infer the following.

39



4. Semi-discrete non-isothermal multi-phase field systems

Corollary 4.2. r is lower semi-continuous.

Proposition 4.5. r is strictly convex.

Proof. Let t1 ∈ (0, 1), t2 = 1− t1 and y1 6= y2 ∈ L2(Y ) with y3 = t1y2 + t2y2. Then

t1r(y1) + t2r(y2)− r(y3) = t1ϕ
∗(fp + Z(y1, ·)) + t2ϕ

∗(fp + Z(y2, ·))
− ϕ∗(fp + Z(y3, ·))
≥ t1(fp(p̂(y3)) + Z(y1, p̂(y3))− ϕ(p̂(y3))

+ t2(fp(p̂(y3) + Z(y2, p̂(y3))− ϕ(p̂(y3)))

− (fp(p̂(y3)) + Z(y3, p̂(y3))− ϕ(p̂(y3))

= (t1ζ̂(y1) + t2ζ̂(y2)− ζ̂(y3), p̂(y3)) > 0

since (p̂(y3))i ≥ 0 a.e. and ζi strictly convex for all i = 1, . . . ,M .

Proposition 4.6. r is Gâteaux-differentiable with derivative ∇r(y).

Proof. (∇r(y), ·) is a continuous linear functional by proposition 4.4. Equation (4.11)
implies

ϕ∗(p′) ≥ ϕ∗(fp + Z(y, ·)) + p′(p̂(y))− fp(p̂(y))− Z(y, p̂(y))

for all p′ ∈ H1(RM )′. In particular for all y′ ∈ Y inserting p′ = fp + Z(y′, ·) yields

r(y′) ≥ r(y) + Z(y′, p̂(y))− Z(y, p̂(y))

and by non-negativity of (p̂(y))i a.e. and convexity of ζi, i = 1, . . . ,M also

Z(y′, p̂(y))− Z(y, p̂(y)) = (ζ̂(y′)− ζ̂(y), p̂(y)) ≥ (∇r(y), y′ − y)

which implies ∇r(y) ∈ ∂r(y). Consequently, ∇r is monotone and

F : L2(Y )→ L2(Y ),

y 7→ y +∇r(y)

is strongly monotone. Continuity of F implies that it is a bijection using Deimling
2010, Theorem 11.2. By Brézis 1971, Theorem 2, we deduce that∇r : L2(Y )→ L2(Y )′

is maximal monotone and hence coincides with ∂r. Since r is continuous and finite
the claim follows by proposition 2.4.
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4.1. Multi-component problem in RGCP form

Finally r is bounded from below by

r(y) ≥ fp(pold)− ap(pold, pold)− c0|Ω| − c1|Ω|
1
2 ‖y‖ (4.12)

for all y ∈ Y by the linear lower bound of ζ pointwise. The constants c0, c1 can be
taken as the respective maximum over the constants in equation (A.1a) per phase.

Now we address the non-coupling contributions in equation (4.8b), while taking special
care of the logarithmic barrier for the negative inverse temperature β imposed by π̂.
The results resemble the approach of Klein 1997, Chapter 5, where a related problem
was investigated. Nevertheless, in our presentation we adhere to the layout of Schiela
2009, Section 4 and 5 despite the differing contextual objective.

To that extent, let

q : H1(Y )→ R,

y 7→ 1
2c(y, y) + fy(y).

Proposition 4.7. q is strictly convex, lower semi-continuous, and coercive.

Proof. Note that we have the bounds equations (4.9b) and (4.10b). Strict convex-
ity follows directly from the strong convexity of c and the linearity of fy. Lower
semi-continuity is implied by the continuity. q is coercive, since the strongly convex
contributions dominate the linear terms for ‖y‖ → ∞.

Proposition 4.8. q is Gâteaux-differentiable with derivative (∇q(y), ·) = c(y, ·) + fy.

Proof. q is even trivially Fréchet-differentiable by the assumptions implying that c
and fy are continuous quadratic and linear forms, respectively, cf. equations (4.9b)
and (4.10b).

Let

Π : L2(Y )→ R,

y 7→

{∫
π̂(y) if π̂(y) ∈ L1(R),

∞ else,

h : H1(Y )→ R,

y 7→ q(y) + r(y) + Π(y).

Lemma 4.1. Π is well-defined, strictly convex, and lower semi-continuous.
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4. Semi-discrete non-isothermal multi-phase field systems

Proof. Follows pointwise from the properties of π, cf. Schiela 2009, Proposition 4.3.

Its subdifferential is single-valued, wherever not empty.

Proposition 4.9.

∂Π(y) =

{
{(∇π̂(y), 0N )} if 1/β ∈ L2(R) and β < 0 a.e.,

∅ else.

Proof. C.f. Brézis 1971, p. 115, Klein 1997, Lemma 5.3, and Schiela 2009, p. 1009.

This property is reasonably close to the Gâteaux-differentiability of the other contri-
butions to h to allow establishing an analogue relationship between potential h and
its directional derivative h′.

Also, we have the following lower bound implied by the pointwise definition of π̂.

Π(y) ≥ −cv|−
∫

1 + β| ≥ −cv(|
∫
−β| − |Ω|) ≥ −cv|Ω|

1
2 ‖β‖+ cv|Ω| (4.13)

Theorem 4.2. h admits a unique minimizer y = (β, η) and β < 0 a.e.in Ω.

Proof. h is proper, since h(yold) <∞. h is strictly convex and lower semi-continuous
by summing the properties of corollary 4.2, propositions 4.5 and 4.7, and lemma 4.1.
W.r.t. coercivity we have

h(y) ≥ C‖y‖2H1(Y ) − C
′‖y‖ − C ′′

with positive constants C,C ′, C ′′ by equations (4.9b), (4.10b), (4.12) and (4.13). Con-
sequently the claim holds by proposition 2.2 and β < 0 a.e. since h(y) is finite.

Theorem 4.3. Problem 4.3 has a unique solution.

Proof. Let y the unique minizer of h. Then

0 ∈ ∂h(y) = ∂(q + r)(y) + ∂Π(y)

where the sum-rule holds due to Ekeland and Témam 1999, Proposition 5.6 since
(−1, 0N ) ∈ dom(q+r)∩dom Π and q+r is continuous on H1(Y ) 3 (−1,0N ). Also, q+r
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is Gâteaux-differentiable by propositions 4.6 and 4.8. Furthermore, by proposition 4.9,
y in dom ∂Π and hence

0 = c(y, ·) + fy + (∇r(y), ·) + (∇π̂(y), ·) = h′(y, ·)

which shows existence.

Let y1, y2 ∈ H1(Y ) solutions. Then for y′ = y1 − y2 we have

0 = h′(y1, y
′)− h′(y2, y

′)

= (∇π̂(y1)−∇π̂(y2), y′) + (∇r(y1)−∇r(y2), y′) + c(y′, y′)

≥ cv
∫
β′2/(β1β2) + cell‖y′‖2

using the monotonicity of ∇r and equation (4.9b). This shows that η1 = η2. Since
β1β2 > 0 a.e. also β′ = 0⇔ β1 = β2 almost everywhere in Ω from the first term.

Corollary 4.3. Problem 4.2 has a unique solution.

4.1.4. Thermodynamical consistency

The proposed time discretization preserves the structural thermodynamical consis-
tency in the way described by the following two propositions.

Proposition 4.10 (Nonnegative entropy production per time step). Let z = (p, y) a
solution to problem problem 4.2 with βsrc = 0. Then

FΨ(z) ≥ FΨ(zold) + τΨ∂(z). (4.14)

Proof. Test equation (4.8a) with p′ = pold and equation (4.8b) with y′ = y to obtain

(pkin
ε
τ (pold − p), pold − p) ≤ (−∇1ψ̂(p, y), pold − p) + (G′, pold − p)H1

(τm∇y,∇y) = (−∇2ψ̂(p, y) +∇2ψ̂(pold, yold), y)− (τβ00(β − β∂), β)∂

where G′ = ∇Gim(p) + ∇Gex(pold) which implies that the sum of the r.h.s. terms
is nonnegative. The difference in bulk entropy in terms of equation (3.11a) can be
estimated pointwise almost everywhere according to lemma 2.1 yielding

SΨ(z)− SΨ(zold) =
∫
ψ̂(z)− ψ̂(zold)− y · ∇2ψ̂(p, y) + yold · ∇2ψ̂(pold, yold)

≥
∫
∇1ψ̂(p, y) · (p− pold) + y · (∇2ψ̂(pold, yold)−∇2ψ̂(p, y)).

With pold, p ∈ GM and assumption A4.1a this yields the claim.
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Proposition 4.11 (Conservation of mass and energy per time step). Let z = (p, y) a
solution to problem problem 4.2 with βsrc = 0. Then

EΨ(z) = EΨ(zold)− τΨ∂(z), (4.15a)

CΨ(z) = CΨ(zold). (4.15b)

Proof. Test equation (4.8b) with y′ = (1, 0N ) and y′ = (0, (PN0 eNi )) for i = 1, . . . , N ,
respectively, like in the continuous proof to proposition 3.3 to obtain

0 =
∫
−∇2ψ(p, β, η) +∇2ψ(pold, βold, ηold)− τΨ∂(z),

0 =
∫

(−∇3ψ(p, β, η) +∇3ψ(pold, βoldηold)) · eNi

which yields the claim.

4.2. Multi-component problem in entropy form

Here we introduce an equivalent problem formulation in order to prepare for a straight-
forward spatial discretization that preserves the conservative properties of the model.
Note that the additional coupling introduced for that matter is partially reverted when
solving the arising discrete spatial problems afterwards.

The non-smoothness ψ couples the primal and dual problem in problem 4.2. We seek
to reformulate the problem such that the coupling is merely linear. Previously, we
have implicitly identified the tangent spaces TY ∼= Y with the original Euclidean
subspace for convenience. From now on, for consistency with the interpretation of
the conserved quantities and biconjugation, we generally identify the tangent spaces
D = TY ∼= R × ΣN

1 and Y ∼= TD with appropriate affine subspaces in order to
emphasize the respective sum constraints.

To that extent let ψ? denote the convex conjugate of ψ for fixed p, i.e. ψ?(p, d) =
(ψ(p, ·))∗(d) as introduced in equation (2.1). Then

ψ? : RM ×D → R,

(p, d) 7→ sup{d · y − ψ(p, y) | y ∈ domψ(p, ·)}.

Note that for d(p, y) = ∇2ψ(p, y), we have∇1ψ(p,∇2ψ(p, ·)−1(d)) = −∇1ψ
?(p, d(p, y))

by equation (2.4a) and we add this relation in weak form with the additional variable
d. We call the arising problem in entropy form to emphasize the incorporation of
ψ?, which is an interpolation of the pure-phase negative entropies as explained in
section 3.3.1.
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Precisely, we denote the extended variables by

x = (p, d), where d = (e, c)

y = (β, η),

as well as xold = (pold, dold), dold = (eold, cold) and let the associated extended bi- and
linear forms

a(x, x′) = ap(p, p
′),

b(x, y) = −(d, y),

fx(x) = fp(p),

fy(y) = −(dold, y)− (τβsrc, β)− (τβ00β∂ , β).

Note that fy here does not differ from its earlier definition for all y ∈ H1(Y ) at this
point. However, in the finite dimensional setting of the following chapter 5, dold and
∇2ψ(pold, yold) cannot be identified pointwise a.e. We stick to this definition for the
entropy based formulation in order to allow maintaining the conserved quantities, see
proposition 5.3.

We condense the non-smooth contribution to the primal problem in terms of

φ(x) = χGM (p) + ψ?(x),

Φ(x) = χGM (p) +
∫
ψ̂?(x),

with the usual superposition operator induced by the pointwise convex conjugate
parametrized by p

ψ̂?(x)(ξ) = ψ?(p(ξ), d(ξ)) = sup{d(ξ) · y − ψ(p(ξ), y) | y ∈ Y }

for all ξ ∈ Ω and derivatives (if they exist). Note that Φ(x) = ∞ iff p /∈ GN or
d /∈ rangeψ(p, ·) a.e.

Problem 4.4. Find x ∈ H1(RM )× L2(D), y ∈ H1(Y ) such that β < 0 a.e. and

fx(x′ − x) ≤ a(x, x′ − x) + Φ(x′)− Φ(x) + b(x′ − x, y) (4.16a)

fy(y
′) = b(x, y′)− c(y, y′) (4.16b)

for all test functions x′ ∈ H1(RM )× L2(D), y′ ∈ H1(Y ).

Theorem 4.4. (p, y) solves problem 4.2 iff (x, y) solves problem 4.4 where x = (p, d)
with d = ∇2ψ(p, y) = ∇π(y) + p · ∇ζ(y) almost everywhere.

We prepare the following result for the proof. Convex conjugation of the parametrized
functional is equivalent to convex conjugating its parametrized integrand.
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Lemma 4.2. Let p ∈ GM , d ∈ L2(D) such that ψ̂?(p, d) ∈ L1(R). Then

(
∫
ψ̂(p, ·))∗(d) =

∫
ψ̂?(p, d).

Proof. (
∫
ψ̂(p, ·))∗(d) ≤

∫
ψ̂?(p, d) follows straightforward from the pointwise convex

conjugation. For the converse, let ψn(p, y) = ψ(p, y) + 1
n |y|

2, n > 0. We show in
sequence the (in-)equalities

(
∫
ψ̂(p, ·))∗(d) ≥ (

∫
ψ̂n(p, ·))∗(d), (4.17a)

(
∫
ψ̂n(p, ·))∗(d) ≥

∫
ψ̂?n(p, d), (4.17b)

limn→∞
∫
ψ̂?n(p, d) =

∫
ψ̂?(p, d) (4.17c)

which completes the proof.∫
ψ̂(p, y) ≤

∫
ψ̂n(p, y) for all y ∈ L2(Y ) follows from the pointwise definition and

implies equation (4.17a) by convex conjugation. ψ?n(p, d) = sup{dy − ψ(p, y)− 1
n |y|

2 |
y ∈ Y } is proper, strictly convex, coercive and has a unique minimizer ỹ pointwise a.e.
We have the bound ψn(p, ỹ) − dỹ ≤ ψ(p, y) + 1

n |y|
2 − dy, for y = (−1,0N ) ∈ Y a.e.

Since we can linearly lower bound ψ on GM × Y and d ∈ L2(Y ) it follows from the
pointwise bound with constant y ∈ L2(Y ) that ỹ ∈ L2(D) and also ψ(p, ỹ) ∈ L1(R).
Then

∫
ψ̂n(p, ·))∗(d) ≥ (d, ỹ) −

∫
ψ̂n(p, ỹ) which settles equation (4.17b). Finally,

ψ?(p, d) is finite and the limit of the non-decreasing sequence (ψ?n(p, d))∞n=1 pointwise
almost everywhere. Now, by Beppo Levi’s monotone convergence theorem, we have
equation (4.17c).

Proof of theorem 4.4. Let (x, y) solve problem 4.4. Then testing equation (4.16a) with
(p, d′) yields

0 ≤
∫
ψ̂?(p, d′)−

∫
ψ̂?(p, d)− (d′ − d, y),

i.e. y ∈ ∂(
∫
ψ̂?(p, ·))(d) and y ∈ ∂(

∫
ψ̂(p, ·))∗(d) by lemma 4.2. By proposition 2.7,

(
∫
ψn(p, ·))(y) + (

∫
ψn(p, ·))∗(d) = (d, y), i.e.

∫
ψn(p, y) + ψ?n(p, d)− dy = 0. Since the

integrand is necessarily nonnegative by the pointwise definition of ψ?, we deduce that
it is zero almost everywhere and hence y = ∇2ψ

?(p, d), d = ∇2ψ(p, y) a.e. Plugging
this into equation (4.16b) yields equation (4.8b). Testing equation (4.16a) with (p′, d)
yields

fp(p
′ − p) ≤ ap(p, p′ − p) + χGM (p′)− χGM (p) +

∫
ψ?(p′, d)− ψ?(p, d)

and pointwise we have ψ?(p′, d)−ψ?(p, d) ≤ ∇1ψ
?(p, d)(d′−d) = −∇1ψ(p, y)(d′−d) by

convexity of ψ? and subsequent application of equation (2.4b), yielding equation (4.8a).
Consequently, (p, y) solves problem 4.2.
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For the converse, equation (4.16b) is immediate from equation (4.8b) and d = ∇2ψ(p, y)
a.e. This also implies d ∈ L2(D). Additionally we have∫

ψ̂?(p′, d′)− ψ̂?(p, d)− (d′ − d, y) ≥
∫
ψ̂(p, y)− ψ̂(p′, y) = (ζ̂(y), p− p′)

for all (p′, d′) ∈ H1(RM )×L2(D) by application of equation (2.3b) and lower-bounding
ψ?(p′, d′) ≥ y · d′ − ψ(p′, y) pointwise a.e. Consequently equation (4.8a) implies equa-
tion (4.16a).

4.2.1. Alternative convex conjugate splitting

By the decomposition of ψ w.r.t. π and ζ, another equivalent problem formulation
can be obtained by only conjugating w.r.t. ζ(y) · p a.e. Its advantages, predominantly
the conservation of the strict barrier for β, are exploited in the subsequent section. To
that extent let

γ(x) = χGM (p) + (p · ζ(·))∗(d),

Γ(x) = χGM (p) +
∫
ζ̂?(x),

where

ζ̂?(x)(ξ) = (p(ξ) · ζ(·))∗(d(ξ)) = sup{d(ξ) · y − p(ξ) · ζ(y) | y ∈ Y } for all ξ ∈ Ω,

in slight abuse of the notation for parametrized convex conjugates in ζ̂?.

Problem 4.5. Find x ∈ H1(RM )× L2(D), y ∈ H1(Y ) such that β < 0 a.e. and

fx(x′ − x) ≤ a(x, x′ − x) + Γ(x′)− Γ(x) + b(x′ − x, y) (4.18a)

fy(y
′) = b(x, y′)− c(y, y′)− (∇π̂(y), y′) (4.18b)

for all test functions x′ ∈ H1(RM )× L2(D), y′ ∈ H1(Y ).

Theorem 4.5. (p, y) solves problem 4.2 iff (x, y) solves problem 4.5 where x = (p, d)
with d = p · ∇ζ(y) almost everywhere.

The proof is virtually the same as for theorem 4.4.
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4. Semi-discrete non-isothermal multi-phase field systems

4.3. Linearized Penrose–Fife type problem

The discretization and corresponding results above also apply to problem 3.2 in analo-
gous manner. Additionally, for problem 3.2 consider the linearized semi-discretization
obtained by approximating the time derivatives ∂tp, ∂tβ by backward finite differences
and subsequent approximation of the non-smoothness by first-order Taylor expansion,
cf. Deuflhard and Bornemann 2002, Section 6.4, i.e.

1/β =̇ 2/βold − β/βold2
, (4.19a)

1/β2 =̇ 3/βold2 − 2β/βold3
. (4.19b)

In particular this yields

∂t1/β =− 1/β2∂tβ (4.20)

=̇ − 1/β2(β − βold)/τ = (−1/β + βold/β2)/τ (4.21)

=̇ (1/βold − β/βold2
)/τ. (4.22)

This (temporal) linearization in β along with the special structure of the continuous
problem gives rise to the (bi-)linear forms

cβ(β, β) = (cvβ/β
old2

, β) + (τκ∇β,∇β) + (τβ00β, β)∂ ,

fp,β(p) = fp(p)− (L̃c, p),

fβ(β) = −(cv/β
old, β)− (pold, βLc) + (τβsrc, β)− (τβ00β∂ , β)∂ .

Note that the coupling between p and β is linear here in contrast to problem 4.2.

Problem 4.6. Find p ∈ H1(RM ), β ∈ H1(R) such that

fp,β(p′ − p) ≤ ap(p, p′ − p) + χGM (p′)− χGM (p) + (p′ − p, βLc), (4.23a)

fβ(β′) = (p · Lc, β′)− cβ(β, β′) (4.23b)

for all p ∈ H1(RM ), β ∈ H1(R).

Theorem 4.6. Let βsrc = 0, pold ∈ GM , βold ∈ H1(R), esssupβold < 0. Then prob-
lem 4.6 admits a unique solution.

Proof. C.f. Gräser, Kahnt, and Kornhuber 2016, Theorem 3.1 up to scaling by τ .

We refer to Klein 1997 for a more in-depth analysis of the non-smooth scalar case.

48



4.3. Linearized Penrose–Fife type problem

The linearization surely changes the total entropy production behaviour of the system.
However, we can show that overall entropy production is still nonnegative in terms
of

FΨ,ρ(p, β) =

∫
−cv log(−β)− pL̃c+ const. (4.24)

Proposition 4.12 (Nonnegative entropy production per time step). Let (p, y) a so-
lution to problem problem 4.6 with βsrc = 0. Then

FΨ,ρ(p, β) ≥ FΨ,ρ(p
old, βold) + τΨ∂(β). (4.25)

Proof. Cf. Gräser, Kahnt, and Kornhuber 2016, Proposition 3.1 for the bulk and
proposition 4.10 for the boundary contributions.

Note that the conservation of energy is generally not maintained since e.g. testing
equation (4.23b) with β′ = 1 yields∫

e− eold = cv
∫
β − 2βold + 1/βold2

+
∫
. . . d∂Ω.
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5. Discrete non-isothermal multi-phase
field systems

Let T a simplicial grid partitioning Ω and consider the linear finite element spaces

S = S(T ) = {v ∈ C(Ω̄) | v|τ is affine ∀τ ∈ T } ⊂ H1(Ω). (5.1)

We drop the argument of S in the remainder unless the triangulation it refers to is not
obvious, i.e. if it does not refer to the current one. In the simplest case, we assume T
to be conforming, i.e. nonempty intersections of simplices are faces of each of them

τi ∈ T , i = 1, . . . , imax, ∅ 6=
⋂
i

τi =⇒
⋂
i

τi is a face of τj , j = 1, . . . , jmax.

We incorporate an adaptive refinement strategy that locally refines the grid in order
to reduce the spatial discretization error with an efficient allocation of the necessary
degrees of freedom. To avoid stability issues resulting from degenerate triangles, we
stick to the simplicial subdivision scheme known as red refinement, cf. Bey 2000;
Bornemann, Erdmann, and Kornhuber 1993. With this choice, the assumption of
T being conforming implies that our refinement is either uniform (and thereby non-
local, opposing our adaptivity motivation) or requires closures, e.g. green closures,
cf. Grande 2018. However, in this work we avoid such closures and allow for grids
obtained from an initial conforming partitioning by red refinement with local hanging
nodes on edge midpoints. Such a possibly non-conforming mesh hierarchy still induces
a natural hierarchy of subspaces that can be used in geometric multigrid methods. For
a detailed discussion of finite element spaces on hierarchies of non-conforming, locally
refined grids, we refer to Gräser, Kornhuber, and Sack 2014; Gräser 2011.

Let N the set of non-hanging nodes of S and {λq | q ∈ N} the uniquely defined nodal
basis with λq(r) = δqr, q, r ∈ N , linear on each element τ ∈ T . These basis func-
tions equal the well-known hat functions in case of a conforming mesh (e.g. obtained
by uniform refinement). They generalize to hat functions at non-hanging nodes aug-
mented by linear terms to compensate for the hanging nodes such that inter-element
continuity is ensured.

We consider the usual Cartesian product spaces of S, e.g. SM ,M ∈ N. Additionally,
we denote by

SNc = {(ηi)Ni=1 ∈ SN |
∑N

i=1 ηi = c}
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5. Discrete non-isothermal multi-phase field systems

the affine subspace with sum constraint c ∈ R. The remainder makes use of the
subspace SN0 ∼= SN−1 ∼= TSN1 and the affine subspace SN1 ∼= SN0 + {1N/N} ∼= TSN0 .
We set

X = SM × S × SN1 , Y = S × SN0

the primal and dual finite element subspaces of interest, respectively.

We choose the approximations to the inner products following the line of thought in
Gräser 2011, section 3.4.3, i.e. we aim to lump the non-linear contributions imposed
by superposition operators, we choose coinciding inner products for contributions orig-
inating from the same term in the time discretization process, we preserve the inherent
saddle point structure, and preserve the conservation principles.

Let the linear nodal interpolation w.r.t. T given by

IT (f) =
∑

n∈N f(n)λn

where f(n) is the evaluation of f at the node n ∈ N ⊂ Ω.

5.1. Multi-component problem in entropy form

We define the lumped non-linear and non-smooth operator

ΦT (x) =
∫
IT (φ)(x) =

∑
n∈N φ(x(n))

∫
λn

w.r.t. the non-hanging triangulation vertices. See Gräser 2011, Section 3.2 for a short
discussion on the lumping of superposition operators preserving their locality. This
definition gives rise to the following discretization of problem 4.4 with linear finite
elements.

Problem 5.1. Find x ∈ X , y ∈ Y and

fx(x′ − x) ≤ a(x, x′ − x) + ΦT (x′)− ΦT (x) + b(x′ − x, y) (5.2a)

fy(y
′) = b(x, y′)− c(y, y′) (5.2b)

for all test functions x′ ∈ X , y′ ∈ Y.

We define the subset

Y ⊂ Y− = {y = (β, η) ∈ Y | (λn, β) < 0 for all n ∈ N}
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5.1. Multi-component problem in entropy form

which determines the dual domain. Note that this is an open set. Let

L(x, y) = J(x) + b(x, y)− 1
2c(y, y)− fx(x)− fy(y),

J(x) = 1
2a(x, x) + ΦT (x)

the Lagrangian associated with equation (5.2). Then we can state the following saddle
point problem.

Problem 5.2. Find x ∈ X , y ∈ Y such that

L(x, y′) ≤ L(x, y) ≤ L(x′, y) (5.3)

for all x′ ∈ X , y′ ∈ Y.

5.1.1. Existence and uniqueness

Both problems are equivalent and exhibit a unique solution.

Theorem 5.1. Problem 5.2 admits a unique solution.

Proof. Let g(y) = J∗(fx− b(·, y)) and h(y) = g(y) + 1
2c(y, y) + fy(y). At first we show

that h has a unique minimizer. Obviously g, h are proper. c(·, ·) + fy is continuous
and strictly convex. g is lower semi-continuous and convex by convex conjugation
of J and linearity of fx − b(·, y) in y. Consequently h is lower semi-continuous and
strictly convex. We have the lower bound g(y) ≥ fx(xold) − b(xold, y) − J(xold) and
c is an elliptic bilinear form, hence, h is coercive. h admits a unique minimizer ŷ by
proposition 2.2. Also,

g(y) ≥ const + sup{(d, y)−
∑

n∈N ψ
?(p, d(n))Wn | d ∈ S × SN1 }

= const +
∑

n∈N Wn sup{W−1
n d · (λn, y)− ψ?(p, d) | d ∈ R× ΣN

1 }
= const +

∑
n∈N Wnψ(p,W−1

n (λn, y))

for all p ∈ GM where Wn =
∫
λn > 0, const = −1

2a(p, p) + fp(p) and (λn, y) to be
understood componentwise, i.e. (λn, y) = ((λn, β), (λn, ηj)

N
j=1) ∈ R × ΣN

0 . Then for

y /∈ Y− we have that g(y) = ∞ since W−1
n (λn, y) /∈ domψ(p, ·) for some n ∈ N and

consequently ŷ ∈ Y−.

b(·, y)−fx is a bounded linear functional. J is strictly convex and lower semi-continuous
on X . For y ∈ Y−, p ∈ GM , we have that W−1

n (λn, y) ∈ dom(p(n), ·) for all n ∈
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5. Discrete non-isothermal multi-phase field systems

N , i.e. there is d̃ ∈ S × SN1 such that d̃(n) ∈ domψ?(p(n), ·) and W−1
n (λn, y) =

∇2ψ
?(p(n), d̃(n)). Then

L(x, y) = 1
2a(x, x) + ΦT (x) + b(x, y)− fx(x) + const(y)

≥ aell‖p‖2 − const‖p‖+
∑

n∈N Wn(ψ?(x(n))−W−1
n d(n) · (λn, y))

= aell‖p‖2 − const‖p‖+
∑

n∈N Wn(ψ?(p(n), d(n))− d(n) · ∇2ψ
?(p(n), d̃(n))

≥ aell‖p‖2 − const‖p‖+
∑

n∈N Wn(c0,n + c1,n|d(n)− d̃(n)|)
≥ cp‖p‖2 + cd‖d‖+ const

by application of proposition 2.9 for all n ∈ N with positive constants cp, cd > 0
and hence L(·, y) is coercive for y ∈ Y−. Consequently x̂(y) = argmin{L(x, y) | x ∈
SM × S × SN1 } is well-defined by proposition 2.2 for y ∈ Y−.

x̂(ŷ) minimizes L(·, ŷ) by the previous argument and ŷ maximizes L(x̂(ŷ), ·) since
L(x̂(y), y) = −h(y) for y ∈ Y−. Consequently (x̂(ŷ), ŷ) is a solution to problem 5.2. It
is unique since for two saddlepoint candidates (x1, y1) 6= (x2, y2) the strict convexity
above implies the contradiction

L(x1, y2) < L(x1, y1) < L(x2, y1) < L(x2, y2) < L(x1, y2).

Just like for the semi-discrete problems, problem 5.1 holds just the optimality condi-
tions for the Lagrangian L.

Proposition 5.1. Problem 5.1 and problem 5.2 are equivalent.

Proof. C.f. Ekeland and Témam 1999, Proposition 1.7 wherein the closedness of the
domain is not essential for our usage. The equality in equation (5.2b) is obtained from
the inequality by choosing appropriate test directions.

5.1.2. Thermodynamic consistency

The lumped non-linearity ΦT disallows for a straightforward entropy growth preser-
vation in terms of FΨ or any of its conjugate relatives from the continuous modeling
without additional assumptions or approximations. Instead we consider the following
discrete variant.

Proposition 5.2 (Nonnegative discrete entropy production per time step). Let xold|τ
affine for all τ ∈ T and (x, y) the solution to problem problem 5.1 with βsrc = 0. Then∫

IT (−ψ?)(x) ≥
∫
IT (−ψ?)(xold) + τΨ∂(p, y).
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5.1. Multi-component problem in entropy form

Proof. Test equation (5.2a) with xold and equation (5.2b) with y, cf. proposition 4.10.

Note that the elementwise affinity condition in proposition 5.2 holds e.g. for the case
that T is a refinement of T old; however the adaptive scheme in section 5.3.2 does not
guarantee such a trait in our approach. Regarding upperbounding the discrete entropy
difference above with a entropy difference in the sense of FΨ from the continuous
modeling, note that it is straighforward to upperbound

∫
IT (−ψ?)(x) ≤

∫
−ψ?(x) by

elementwise linearity of x and convexity of ψ?, but we cannot generally lowerbound it
with parameter xold for basically the same reason.

By the choice of scalar products in the discrete formulation, the conservative properties
prevail trivially.

Proposition 5.3 (Conservation of mass and energy per time step). Let (x, y) the
solution to problem 5.1 with βsrc = 0 and x = (p, e, c). Then∫

e =
∫
eold − τΨ∂(p, y),∫

c =
∫
cold.

Proof. Test equation (5.2b) with y′ = (1,0N ) and y′ = (0, PN0 eNi ) for i = 1, . . . , N ,
respectively.

5.1.3. Alternative convex conjugate splitting

Note that in problem 5.1 and 5.2 we do not require the strict negativity of the ap-
proximated negative inverse temperature β. This is due to the fact that we shifted
the logarithmic barrier in π to the primal problem in the entropy form.

By virtue of the splitting exploited in the formulation of ??, let

ΓT (x) =
∫
IT (γ(x)) =

∑
n∈N γ(x(n))

∫
λn,

ΠT (y) =
∫
IT (π(y)) =

∑
n∈N π(y(n))

∫
λn

which leads to the following discretization of ??.

Problem 5.3. Find x ∈ X , y ∈ S × SN0 and

fx(x′ − x) ≤ a(x, x′ − x) + ΓT (x′)− ΓT (x) + b(x′ − x, y) (5.4a)

−fy(y′ − y) ≤ −b(x, y′ − y) + ΠT (y′)−ΠT (y) + c(y, y′ − y) (5.4b)

for all test functions x′ ∈ X , y′ ∈ S × SN0 .
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5. Discrete non-isothermal multi-phase field systems

Existence and uniqueness of solutions to problem 5.3 can be shown in analogy to prob-
lem 5.1, additionally exploiting the strict convexity and lower semi-continuity of Π,
as well as coercivity of the dual problem by the quadratic contributions from c even-
tually dominating any decreasing contribution from ΠT (y). Solutions to problem 5.3
naturally fulfill the strict negativity constraint β < 0 nodewise due to the logarithmic
barrier and by linear interpolation everywhere. However, the nodal interpolation of Π
with triangulations that differ with the progression of time steps makes it difficult to
conserve the overall internal energy (which would be e augmented by appropriate con-
tributions from ΠT ), which is why we neglect this approach in favor of problem 5.1.
Despite the interpretational deficiency of locally nonnegative β for approximations
of the negative inverse temperature field, its role in problem 5.1 is merely that of a
mediating flow variable for the conserved quantities.

5.2. Linearized Penrose–Fife type problem

The discretization of problem 4.6 with linear finite elements is analoguous. The lump-
ing of the non-linearity here is significantly less intrusive in the sense that the nodal
interpolation of the Gibbs simplex constraint implies conservation of the Gibbs simplex
constraint locally everywhere by linearity of the ansatz functions.

Problem 5.4. Find p ∈ SM , β ∈ S such that

fp,β(p′ − p) ≤ ap(p, p′ − p) + (p′ − p, βLc) + χGM (p′)− χGM (p) (5.5a)

fβ(β′) = (p · Lc, β′)− cβ(β, β′) (5.5b)

for all test functions p′ ∈ SM , β′ ∈ S.

Existence and uniqueness as well as thermodynamic consistency in terms of nonnega-
tive entropy production carry over from section 4.3.

5.3. Adaptive finite elements

As the phase field p is expected to strongly vary across the phase boundaries, spatial
adaptivity based on a posteriori error estimates is mandatory.

The initial grid for the adaptive refinement should be sufficiently fine to detect basic
features of the unknown spatial approximation and sufficiently coarse for efficiency of
the overall adaptive procedure. In the first time step, we select a suitable, uniformly
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5.3. Adaptive finite elements

refined grid T old. For successive time steps, the construction of such a grid starts with
the grid T old from the preceding time step. We begin by coarsening T old. To this
end, we keep all simplices from the grid T old from the preceding time step that were
obtained by at most jmin refinements. In addition, we keep all simplices τ such that
pold exhibits a strong local variation on τ that is not visible after coarsening, i.e., such
that

‖∇(Iτp
old)‖L∞(τ) ≥ Tolderefine and ‖∇(Iτ ′p

old)‖L∞(τ ′) < Tolderefine

hold with τ ′ denoting the simplex resulting from coarsening of τ . Here, Iτ and Iτ ′

are the linear interpolation operators to τ and τ ′, respectively. This set of simplices
is completed by additional local refinements. Possible additional refinement is used to
uniformly bound the ratio of diameters of adjacent simplices.

5.3.1. Hierarchical a posteriori error estimation

Hierarchical error estimates rely on the solution of local defect problems. While orig-
inally introduced for linear elliptic problems (cf. Bornemann, Erdmann, and Kornhu-
ber 1993; Deuflhard, Leinen, and Yserentant 1989; Holst, Ovall, and Szypowski 2011;
Zienkiewicz, Gago, and Kelly 1983) this technique was successfully extended to non-
linear problems (cf. Bank and Smith 1993), constrained minimization (cf. Hoppe and
Kornhuber 1994; Kornhuber 1996; Kornhuber, Krause, et al. 2007; Siebert and Veeser
2007; Zou et al. 2011) and non-smooth saddle point problems (cf. Gräser, Kornhuber,
and Sack 2010; Gräser and Sander 2014b; Gräser 2011). We now derive an a posteriori
error estimate by a suitable approximation of the defect problem associated with the
defect Lagrangian

D(ex, ey) = L(x+ ex, y + ey).

Consider a uniform refinement T ′ of the grid T . Let N ′ denote its set of non-hanging
nodes and Q = S(T ′) defined analogously to (5.1) with nodal basis {λ′n | n ∈ N ′}.
Additionally, let E = N ′ \ N the set of all edge mid points in T that are non-hanging
in T ′. Note that we have Q = S ⊕ V with V denoting the incremental space

V = span{λ′n | n ∈ E} ⊂ Q.

In the first step the defect problem is discretized with respect to the larger finite
element space

(QM ×Q×QN1 )× (Q×QN0 ),

where QNc = {(ηi)Ni=1 ∈ QN |
∑N

i=1 ηi = c}. In the second step, the discrete defect
problem is localized by ignoring the coupling between S and V and also the coupling
between λ′n for all n ∈ E . We obtain the following local saddle point problems in
algebraic notation.
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5. Discrete non-isothermal multi-phase field systems

Problem 5.5. For all n ∈ E find ex,n ∈ RM ×R× ΣM
1 , ey,n ∈ R× ΣN

0 such that

Dn(ex,n, y
′) ≤ Dn(ex,n, ey,n) ≤ Dn(x′, ey,n)

for all x′ ∈ RM ×R× ΣM
1 , y′ ∈ R× ΣN

0 .

Here the local defect problems are given by

Dn(ex, ey) = Jn(ex) + b(ex, ey)− 1
2c(ey, ey)− fx,n(ex)− fy,n(ey),

Jn(ex) = 1
2a(ex, ex) + ΦTx,n(x+ ex),

fx,n(ex) = fx(exλ
′
n)− a(x, exλ

′
n)− b(exλ′n, y),

fy,n(ey) = fy(eyλ
′
n)− b(x, eyλ′n) + c(y, eyλ

′
n).

We define the hierarchical a posteriori error estimate

eest
T = (

∑
n∈E e

2
n)

1
2 ,

e2
n = ‖ex,nλ′n‖2a + ‖ey,nλ′n‖2c

for all n ∈ E and with the problem-dependent norms ‖x‖2a = a(x, x), ‖y‖2c = c(y, y).

5.3.2. Adaptive mesh refinement

The adaptive mesh refinement of the initial grid T resulting from our coarsening
procedure is based on the local error indicators en. In each step, the indicators eni ,
i = 1, . . . , |E|, are arranged with decreasing value, to determine the minimal number
i0 of indicators such that ∑i0

i=1 e
2
ni > ρe2

T

holds with a given parameter ρ ∈ [0, 1]. Then all simplices τ ∈ T with the property
ni ∈ τ for some ni with i ≤ i0 are marked for refinement, cf. Dörfler 1996. Each
marked simplex is partitioned by red refinement. Again, possible additional refinement
is used to uniformly bound the ratio of diameters of adjacent simplices. The refinement
process is stopped when the estimated relative error is less than a given tolerance, i.e.,
if

e2
T < Toladapt(‖x‖2a + ‖y‖2c)

with Toladapt > 0.
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6. Algebraic solutions

6.1. Algebraic formulation

Let K = dimS = |N | the dimension of the scalar linear finite element ansatz space,
therefore coinciding with the number of non-hanging vertices N of the grid T . We use
the abbreviated notation λk for the nodal basis function associated with non-hanging
vertex vk ∈ N for k = 1, . . . ,K and given enumeration of the vertices in N . For a
product space SM we construct a convenient numbering of its basis by

λMi = λke
K
j , k = b i−1

M c+ 1, j = (i− 1 mod M) + 1

for i = 1, . . . ,KM . This allows for convenient nodal blocking since all degrees of
freedom associated with the same node exhibit consecutive indices within the product
space.

We identify elements of product spaces of S with their coefficient representation w.r.t.
the associated basis above, e.g. SM 3 x ∼= X ∈ RKM via the bijection induced by

x =
∑KM

i=1 Xiλ
M
i .

We consider the coefficient spaces

X = (RM ×R× ΣN
1 )K ⊂ RK(M+1+N), Y = (R× ΣN

0 )K ⊂ RK(1+N),

and assume that the disambiguation w.r.t. the respective linear finite element function
spaces of the same name is formally obvious from the respective context. Correspond-
ingly, the effective domain for the dual coefficient subset is

Y− = {Y ∈ Y | ((BY )M+1+(M+1+N)(k−1) > 0 for all k = 1, . . . ,K}.

We introduce a blockwise notation using brackets to conveniently account for the
node-wise clustering, i.e. e.g. for X ∈ RK(M+1+N)

X[k] = (Xi)
k(M+1+N)
i=(k−1)(M+1+N)+1

and X = (X[k])Kk=1. This allows e.g. to identify Y− = {Y ∈ Y | ((BY )[k])M+1 >
0 for all k = 1, . . . ,K}.
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6. Algebraic solutions

6.1.1. Multi-component problem in entropy form

The bi- and linear forms give rise to the matrices and vectors

Aij = a(λM+1+N
j , λM+1+N

i ), i, j = 1, . . . ,K(M + 1 +N),

Bij = b(λM+1+N
j , λ1+N

i ), i = 1, . . . ,K(1 +N), j = 1, . . . ,K(M + 1 +N),

Cij = −c(λ1+N
i , λ1+N

j ), i, j = 1, . . . ,K(1 +N),

(Fx)i = fx(λM+1+N
i ), i = 1, . . . ,K(M + 1 +N),

(Fy)i = fy(λ
1+N
i ), i = 1, . . . ,K(1 +N)

and BT the transpose of B. Let W denote the nodal weights

W = (
∫
λk)

K
k=1.

We introduce evaluation of the lumped non-smoothness ΦT in terms of a coefficient
vector X ∈ RK(M+1+N) via its associated linear finite element function

Φcf(X) = ΦT (
∑K(M+1+N)

i=1 Xiλ
K(M+1+N)
i ) =

∑K
k=1 φ(X[k])Wk.

Using these definitions, problem 5.1 can be written in algebraic form.

Problem 6.1. Find X ∈ X , Y ∈ Y such that

AX · (X ′ −X) + Φcf(X ′)− Φcf(X) +BTY · (X ′ −X) ≥ Fx · (X ′ −X) (6.1)

BX · Y ′ + CY · Y ′ = Fy · Y ′ (6.2)

for all X ′ ∈ X , Y ′ ∈ Y.

Quadrature Note that for the right hand side contributions, an exact quadrature rule
can be obtained w.r.t. the grid T old while assembling for T . As a consequence, exact
conservation of energy and mass can be expected for practical algebraic solutions up
to the projection of the initial conditions onto an arbitrarily chosen initial grid, despite
the coarsening and refinement procedures.
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6.2. Non-smooth Newton method for saddle point problem

6.1.2. Linearized Penrose–Fife type problem

In analogous manner, for problem 5.4 we define the matrices and vectors

(Ap)ij = ap(λ
M
j , λ

M
i ), i, j = 1, . . . ,KM,

(Bβ)ij = (λMj , λiLc), i = 1, . . . ,K, j = 1, . . . ,K(M + 1 +N),

(Cβ)ij = −cβ(λj , λi), i, j = 1, . . . ,K,

(Fp,β)i = fp,β(λMi ), i = 1, . . . ,K,

(Fβ)i = fβ(λi), i = 1, . . . ,K,

and capture the (lumped) non-smoothness in terms of a node-wise Gibbs obstacle

GM,K = {P ∈ RKM |
∑KM

i=1 Piλ
MK
i ∈ GM}

giving rise to

χGM,K (P ) =

{
0 if P [k] ∈ GM for all k = 1, . . . ,K

∞ else.

We write an equivalent formulation of problem 5.4 in algebraic form as follows.

Problem 6.2. Find P ∈ RKM , B ∈ RK such that

ApP · (P ′ − P ) + χGM,K (P ′)− χGM,K (P ) +BT
βB · (P ′ − P ) ≥ Fp,β · (P ′ − P ),

(6.3a)

BβP ·B′ + CβB ·B′ = Fβ ·B′ (6.3b)

for all P ′ ∈ RKM , B′ ∈ RK .

6.2. Non-smooth Newton method for saddle point problem

In order to solve the algebraic system in problem 6.1, we use a non-smooth Schur–
Newton method as proposed in Gräser and Kornhuber 2009.

Notable differences to the assumptions made therein are notationally the sign of the
matrix C, our restriction of the dual space to the affine subspace Y, the fact that we
cannot assume global Lipschitz-continuity of the subdifferential of the primal convex
functional in a straightforward manner, and the implicit definition of our primal non-
smoothness Φcf due to the incorporation of ψ?.

A similar approach is taken for problem 6.2. For details, we refer to Gräser, Kahnt,
and Kornhuber 2016. Here we confine ourselves to a presentation of the more general
setting.
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6. Algebraic solutions

6.2.1. The primal problem - decoupled

We consider the primal problem, that is finding a solution X in equation (6.1), for
fixed Y ∈ Y− in terms of

Gcf
Y (X) = Jcf(X) + (BTY − Fx) ·X,
Jcf(X) = 1

2AX ·X + Φcf(X).

By the very arguments as in the proof to theorem 5.1, we conclude that

X̂ = X̂(Y ) = argminGcf
Y (X) = (∂Jcf)−1(Fx −BTY )

is well-defined and omit the dependency on Y for convenience wherever unambigu-
ous.

The coefficients for the primal problem for given potentials, i.e. fixed dual variable
Y , can be obtained by exploiting the special structure that was introduced artificially
when the problem was constructed in section 4.2. There the primal part of the model
problem was built to incorporate the phases, internal energy, and chemical components
by weakly coupling the respective transformations from their dual potentials via the
underlying reduced grand canonical potential ψ. In the discrete case we can partition
the retrieval of the node-wise blocked coefficients into chunks dealing with the phases
and the conserved thermodynamical local quantities separately by explicitly making
use of this. In particular, the non-smooth and implicit contributions to the primal
non-smoothness φ, which pose the main difficulties to the algebraic solution of the
primal problem, are separated again.

To this extent, let X ∈ X , then we deinterlace the contributions of X in terms of

P [k] = (X[k]i)
M
i=1, (6.4a)

D[k] = (X[k]i)
M+1+N
i=M+1 (6.4b)

for k = 1, . . . ,K and P = (P [k])Kk=1, D = (D[k])Kk=1 the phase field respectively energy
and chemical concentration coefficient (block) vectors. Note that we do not denote
the dependency on X explicitly and treat P,D as the respective parts of X implicitly
from here on out. We use X̂ ∼= (P̂, D̂) in the interlaced sense of equation (6.4) for the
respective optimizer as well.

Accordingly, we have the relevant operator representations split up again. As the
primal quadratic operator A and the linear contribution Fx only act on the phase
contribution P , we incorporate Ap as introduced in problem 6.2 and define the separate
phase and conserved right hand side contribution as

(Fp)i = fp(λ
M
i ), i = 1, . . . ,KM ; (Fd)i = 0, i = 1, . . . ,K(1 +N).
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6.2. Non-smooth Newton method for saddle point problem

Similarly, B only acts on the D-part and we define the additional bilinear contribution
associated with the algebraic primal problem

(Bd)ij = −(λ1+N
j , λ1+N

i ), i, j = 1, . . . ,K(1 +N).

We introduce algebraic equivalents for the non-smooth thermodynamical contributions
indicated by the superscript ‘cf‘ as

Ψcf(P, Y ) =
∑K

k=1 ψ(P [k], Y [k])Wk,

Ψ?,cf(P,D) =
∑K

k=1 ψ
?(P [k], D[k])Wk.

Note that ∇1Ψcf does not depend on its first argument since ψ(·, y) is (affine) lin-
ear. We exploit this fact in the following and emphasize the independence by writing
∇1Ψcf(P , Y ). This independence allows to simplify the primal problem significantly
by computationally separating the non-smooth thermodynamical contribution from
the Gibbs obstacle again. To that extent let

ϕcf(P ) = 1
2ApP · P + χGM,K (P ).

Proposition 6.1. ϕcf is proper, strongly convex, and lower semi-continuous. Its sub-
differential is single-valued. The subdifferential’s inverse is single-valued and Lipschitz
continuous.

Proof. AP is positive definite. GM,K is a closed convex set. Then ∂ϕ−1(Q) = P is
the unique solution to finding P ∈ GM,K such that (APP −Q) · (P ′ − P ) ≥ 0 for all
P ′ ∈ GM,K . Furthermore (∂ϕcf)−1 : (RKM , ‖ · ‖A−1

p
) → (RKM , ‖ · ‖Ap) has Lipschitz

constant L ≤ 1, cf. Kinderlehrer and Stampacchia 2000, Theorem 2.1.

Let

M = −(diagW )−1Bd,

V̂ = V̂ (Y ) = (diagW−1)(Fd −BdY )

where Fd ∈ (R × ΣN
0 )K . By the choice of sign M is a symmetric positive definite

matrix embodying the difference between lumped contributions and pure linear finite
element mass matrix. Note that in the algebraic formulation for problem 6.1, we have
Fd = 0(1+N)K . Then V̂ = MY and (V̂ )[k]1 < 0 for all k = 1, . . . ,K iff Y ∈ Y−.

For the defect problems, the contribution Fd ∈ (R × ΣN
0 )K is potentially nonzero,

which is why we include it in the following deductions.

For given potentials we can compute the phase configuration (and subsequently the
conserved quantities) as follows.
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6. Algebraic solutions

Theorem 6.1. Let Y ∈ Y−. Then

P̂ = (∂ϕcf)−1(Fp +∇1Ψcf(P , V̂ )), (6.5a)

D̂ = (diagW )−1∇2Ψcf(P̂, V̂ ). (6.5b)

Proof. The first order optimality conditions for Gcf
Y are

−AX̂ −BTY + FX ∈ ∂Φcf(X̂)

which can be written equivalently in decomposed form

FP −ApP̂ −∇1Ψ?,cf(P̂, D̂) ∈ ∂χGM,K (P̂ ) (6.6a)

Fd −BdY −∇2Ψ?,cf(P̂, D̂) = 0. (6.6b)

By parametrized convex conjugate definition of ψ?, continuous differentiability of ψ
and equation (2.2) we have

∇2ψ
?(P̂ [k], D̂[k]) = V̂ [k] ⇔ ∇2ψ(P̂ [k], V̂ [k]) = D̂[k] (6.7)

for all k = 1, . . . ,K. Hence, (6.6b) ⇔ (6.5b).

The representation of D̂ in equation (6.7) implies

−∇1Ψ?,cf(P̂, D̂) = ∇1Ψcf(P̂ , V̂ )

by applying equation (2.4b) for each k = 1, . . . ,K. Plugging this into equation (6.6a)
yields

Fp +∇1Ψcf(P̂ , V̂ ) ∈ ApP̂ + ∂χGM,K (P̂ ) = ∂ϕcf(P̂ ) (6.8)

which is equivalent to the claim (6.5a).

By convex conjugation and (6.7), we have the identities

Ψ?,cf(X̂) = (Fd −BdY ) · D̂ −Ψcf(P̂, V̂ ),

Φcf(X̂) = Fd · D̂ −BX̂ · Y −Ψcf(P̂, V̂ ) + χGM,K (P̂ ). (6.9)

Note that the primal solution not only is unique for each fixed Y ∈ Y−, but the
mapping X̂ : Y− → X is injective.

Lemma 6.1. Let Y1 6= Y2 ∈ Y. Then X̂(Y1) 6= X̂(Y2).

Proof. If X̂(Y1) = X̂(Y2), then equation (6.6b) implies BdY1 = BdY2. Since −Bd =
M ⊗ Id1+N the Kronecker tensor product of Mij = (λj , λi) the common s.p.d. mass
matrix and the identity matrix, this implies Y1 = Y2 which is a contradiction.
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6.2. Non-smooth Newton method for saddle point problem

6.2.2. Dual Schur complement formulation

For (X,Y ) the solution of problem 6.1, we have Y ∈ Y− by the arguments in the
proof for theorem 5.1. Hence, with X̂ the unique solution to the primal problem we
can apply straightforward block elimination to obtain the equivalent dual problem.

Problem 6.3. Find Y such that

−BX̂ − CY + Fy = 0.

The associated optimization potential is an algebraic derivate of the Lagrangian L.
To that extent let

Hcf(Y ) = −Lcf(V̂, Y ),

Lcf(X,Y ) = Jcf(X)− Fx ·X + (BX − Fy) · Y + 1
2CY · Y

denote the dual convex functional with the identities

Hcf(Y ) = (Jcf)∗(Fx −BTY ) + Fy · Y − 1
2CY · Y (6.10)

= −ϕcf(P̂ ) + Ψcf(P̂, V̂ ) + Fp · P̂ − 1
2CY · Y + Fy · Y. (6.11)

by convex conjugation for the primal problem functional and identity (6.9).

In direct adoption of the results from theorem 5.1 we have the following results.

Proposition 6.2. Hcf is proper, strictly convex and lower semi-continuous.

Theorem 6.2. Problem 6.3 admits a unique solution Ŷ ∈ Y−.

In this finite-dimensional setting, locally Lipschitz continuous differentiability is readily
obtained.

Theorem 6.3. Hcf is Fréchet-differentiable and ∇Hcf(Y ) = −BX̂ − CY + Fy.

Proof. P̂ ∈ GM,K single-valued as of equation (6.5a). Hence, Hcf is Gâteaux-differ-
entiable by equation (6.11). Futhermore, P̂ is continuous by proposition 6.1. Propo-
sition 2.5 implies Fréchet-differentiability of Hcf. The gradient identity follows from
application of the chain rule to equation (6.10).
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6. Algebraic solutions

As a consequence of identity (6.5b) we have

∇Hcf(Y ) = MT∇2Ψcf(P̂, V̂ )− CY + Fy.

Proposition 6.3. ∇Hcf is locally Lipschitz.

6.2.3. Minimization of the dual problem

We apply gradient-related descent methods of the form

Yν+1 = Yν + ρνδYν , ν = 0, 1, . . . , (6.12)

with step size ρν and descent direction δYν . The non-smooth Schur–Newton method
as introduced in Gräser and Kornhuber 2009 is such a descent method where

δYν = −H−1
ν ∇Hcf(Yν). (6.13)

Hν = H(Yν) is a generalized linearization of the non-smooth, non-linear but locally
Lipschitz-continuous Schur complement operator −∇Hcf at Yν playing the role of the
Lagrangian’s Hessian. In Gräser and Kornhuber 2009, Section 4, an explicit gener-
alized linearization is obtained for a primal quadratic functional with componentwise
obstacle. Our non-linearity Φcf does not fall into that category. However, by virtue of
the splitting equation (6.4), the non-smoothness is constrained to the phase variable
and similar concepts can be exploited. In order to cope with the simplex constraints
as they occur in our setting for P̂ , we follow the construction in Gräser, Kornhuber,
and Sack 2014. The idea is to restrict the primal operator to the maximal subspace
W such that it is locally smooth.

Consider the identity equation (6.11), allowing for a separation of the simplex obstacle
from the smooth thermodynamical potential contribution. Due to the product struc-
ture of the feasible set GM,K we can determine the subspace in each block individually
using the node-wise blocked notation for P̂ induced by equation (6.4). To that extent
let

W(p) = span{eMi − eMj ∈ RM | 1 ≤ i < j ≤M, pi > 0, pj > 0},

W(P ) = {P̃ ∈ RMK | P̃ [k] ∈W(P [k]) for all k = 1, . . . ,K}

for p ∈ RM , P ∈ RMK . Here W(P̂ [k]) is the maximal subspace where χGM is locally
smooth near P̂ [k]. Since W(P ) is a product space the orthogonal projection PW(P ) :

RMK → W(P ) is given by a block diagonal matrix where the k-th diagonal block is
the orthogonal projection PW(P [k]) : RM → W(P [k]). For an explicit representation

of PW(P [k]) ∈ RM,M we refer to Gräser, Kornhuber, and Sack 2014. We set

Â = PW(P̂ )ApPW(P̂ ) :W(P̂ )→W(P̂ ).
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6.3. Determining algebraic approximations

Although the chain rule does not hold in general for generalized Jacobians in the sense
of Clarke (see, e.g. Gräser 2011), we define a generalized linearization of the non-linear
negated Schur complement operator ∇Hcf at Y in an analogous manner by

∇2Hcf(Y ) ≈ H(Y ) = MT∇21Ψcf(P̂ , V̂ ) · P̂ ′ +MT∇22Ψcf(P̂, V̂ )M − C,
P̂ ′ = Â+∇12Ψcf(P̂ , V̂ )M

where (·)+ is the Moore–Penrose pseudoinverse of Â and P̂ ′ a generalized linearization
of equation (6.5a).

The step sizes are chosen to be efficient, i.e. for any sequence Yν

Hcf(Yν + ρνδYν) ≤ Hcf(Yν)− const(∇Hcf(Yν) · δYν/|δYν |)2

for all ν ∈ N with ∇Hcf(Yν) 6= 0 and the constant positive and independent of ν, cf.
Ortega and Rheinboldt 1970; Gräser and Kornhuber 2009.

As a consequence we can show global convergence.

Theorem 6.4. Let Yν the iterates obtained by the descent method (6.12) with Schur–
Newton directions (6.13) (Hν = H(Yν)) and efficient step size ρν for any initial Y0 ∈
Y−. Then Yν → Ŷ of problem 6.3.

Proof. The claim is implied by Gräser and Kornhuber 2009, Theorem 3.1, if we can
show that the descent directions δYν are gradient-related. Hν is s.p.d. This implies
HνY ·Y ≥ c|Y |2 with c > 0. Furthermore, {Â | there exists P ∈ GM,K such that Â =
PW(P̂ )ApPW(P̂ )} is finite and Hν ∈ {Y | Hcf(Y ) ≤ Hcf(Y0)} compact for all ν ∈ N .

Hence, there exists C > 0 such that |Hν | ≤ C for all ν ∈ N . Consequently,

−∇Hcf(Yν) · δYν ≥ c|H−ν 1∇Hcf(Yν)| ≥ c
C |∇H

cf(Yν)||δYν |

with a constant independent of ν.

6.3. Determining algebraic approximations

By the discretization approach taken in this work, we subsequently compute approxi-
mations of solutions associated with times tn for n = 1, . . . , nmax, cf. chapter 4. Each
of these stationary problems is again approximated by computing a sequence of solu-
tions on nested grids, cf. section 5.3.2. Finally, each such nested approximation itself
is approximated by iterating equation (6.12) until any of the stopping criteria

ν ≥ νstop, ‖Yν+1 − Yν‖c ≤ Tolabs,
Tolabs
‖Yν‖c ≤ Tolrel (6.14)
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is satisfied, where Tolabs is a a mere tool to capture machine precision inaccuracies.
Any initial iterate Y0 ∈ Y− would do as our approach is globally convergent. Note
however that the nested adaptive grids in each time step allow to use nested iteration,
i.e. the initial iterate on each refinement level is obtained by nodal interpolation of the
final iterate from the preceding one. On the first refinement level, the initial iterate is
obtained by nodal interpolation of the final approximation in the preceding time step
or the initial conditions respectively.

During each iteration of the algorithm the following types of subproblems have to be
solved: The primal variable P̂ (Yν) needs to be computed, which allows to evaluate
∇Hcf and determine Â; the descent direction δYν needs to be approximated; and a
step size ρν has to be chosen. Note that it is not necessary to evaluate H−1

ν exactly
in (6.13) because global convergence is preserved as long as the approximation of H−1

ν

is sufficiently accurate. Since the dual functional Hcf is strongly convex, one can also
show global linear convergence with a rate depending on the bounds for Hν and the
step size rule. For further details we refer to Gräser and Kornhuber 2009.

6.3.1. Truncated non-smooth Newton multigrid method

Computing P̂ (Y ) is equivalent to minimizing ϕcf(·)+Ψcf(·, V̂ )−Fp ·(·), cf. theorem 6.1
i.e., a convex minimization problem for a quadratic functional with local simplex con-
straints with linear contribution depending non-linearly on Y . Solutions to these con-
vex minimization problems can efficiently be approximated using non-linear multigrid
methods, cf. Kornhuber and Krause 2006; Gräser, Kornhuber, and Sack 2014. More
precisely the truncated non-smooth Newton multigrid (TNNMG) method for simplex-
constrained problems as proposed in Gräser, Kornhuber, and Sack 2014 allows to solve
these problems with an effective complexity of O(M2K). It is an iterative scheme

Pl+0.5 = Pl + F(Pl),

Pl+1 = Pl+0.5 + C(Pl+0.5).

Its convergence properties mainly stem from a non-smooth smoother instance F that is
best described as a simplicial Gauss–Seidel method, i.e. successive subspace correction
along the Gibbs simplex’ edges for each node, and was shown to converge in Gräser
and Sander 2014a. Its convergence is accelerated using linear corrections C(Pl+0.5)
that are the solutions to the following linear problem.

Problem 6.4. Find δPl+0.5 ∈ W(Pl+0.5) such that

ÂδPl+0.5 = Fp −∇1Ψcf(P , V̂ )

where Â = PW(Pl+0.5)ApPW(Pl+0.5).
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Approximations δP ′l+0.5 to problem 6.4 can be determined by means of a geometric
multigrid method using the existing nested grid structure. To ensure convergence of
the TNNMG method, C(Pl+0.5) is obtained from δP ′l+0.5 by projection to the admissible
set and subsequent damping ensuring that the linear correction does not increase the
system’s energy. This method was used in all subsequent numerical examples.

6.3.2. Schur–Newton descent linear multigrid solver

Another type of subproblems are the linear problems (6.13) for the symmetric positive
definite operatorsHν . Hν is hard to obtain explicitly but is a linear Schur complement.
Hence, it is equivalent to solving the following linear saddle point problem.

Problem 6.5. Find δY ∈ (R× ΣN
0 )K such that(

−Â ∇12Ψcf(P̂ , V̂ )M

MT∇21Ψcf(P̂ , V̂ ) MT∇22Ψcf(P̂, V̂ )M − C

)(
∼
δY

)
=

(
0

−∇Hcf(Y )

)
with indifferent primal variable ∼.

Its solution is unique in (kerPW(P̂ (Yν)))
⊥×(R×ΣN

0 ). Again, these can be approximated
efficiently using a geometric linear multigrid method. We use a Vanka-type smoother
by applying a Gauss-Seidel scheme on the |N | = K blocks (of the multigrid hierarchy
level respectively). The local M + (1 + N)-dimensional symmetric indefinite sub-
problems are then directly solved using a regularized LDLt-decomposition. For this
the truncated diagonal entries are set to one and the corresponding right hand side
values to zero. All other diagonal entries are multiplied by 1 + ρ with ρ = 10−8.

In all our experiments, we used this vertex-based Vanka-approach as pre-smoother,
post-smoother and as iterative base solver. We are not aware of any convergence
proof for the linear iterative method resulting from this approach. To increase its
robustness we use it as preconditioner for a GMRes iteration.

Sparser dual operator Note that the dual operator exhibits the sparsity pattern of
MTM where M is essentially a mass matrix causing a significantly less sparse dual
descent linear operator compared to the original problem. As Gräser and Kornhuber
2009 extended their analysis to inexact versions, in order to reduce the computational
effort, we tested simplifying problem 6.5 by replacing M with Id1+N . This effectively
ignores the coupling for the non-smooth contributions. As a result, the extended
sparsity pattern for the lower right block becomes significantly simpler, i.e. essentially
that of a mass matrix again and thereby reduces the computational complexity for
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both, the assembly of the operator as well as the solution of the linear problem in
all our numerical examples. This approached seemed to be detrimental to the overall
convergence of the dual descent method and we did not investigate it further in this
work.

Explicit sub-problem kernels The regularization of the local sub-problems can be
avoided as the respective kernels are known explicitly. They result from the affine
subspaces and the truncation only. This can be used to compute an explicit trans-
formation such that the transformed indefinite sub-problems exhibit a regular saddle
point matrix, e.g. using Householder transformations. For the primal variable, this
amounts to omitting the truncated degrees of freedom and subsequently transforming
the remaining Msub degrees of freedom to a symmetric negative definite (Msub − 1)-
dimensional operator by exploiting the local Gibbs-constraint where Msub ≤M . More
simply, for the dual variable, this amounts to transforming the 1 +N degrees of free-
dom to a 1 + (N − 1)-dimensional symmetric positive definite operator by exploiting
the local kernel (0,1N ). The local symmetric indefinite regular sub-problems may
then be solved by an LDLt-decomposition. In our experiments the computational
overhead of this method compared to problem-agnostic regularization showed to be
disfavourable.

6.3.3. Stepsize rule

Efficient step sizes ρν as required in Theorem 6.4 can be obtained by classical step size
rules like, e.g., bisection or the Armijo rule. We use the latter, i.e. we iterate

ρν,i = ρν,i−1 · Stepreduce, i = 1, . . .

until the criterion

fν(0)− fν(ρν,i) ≤ Stepaccept ·ρν,i · ∇fν(0)

is met, where fν(ρ) = Hcf(Yν + ρδYν) and ∇fν(0) = δYν · ∇Hcf(Yν).

In order to reduce the computational effort in terms of evaluating the primal variable
when testing for different step sizes, we incorporate the heuristic criterion of setting
step size ρν = 1 if

|δYν | ≤ Descentreduce|δYν−1|

with |δY−1| = 0.
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Implementation Our implementation is based on the finite element assemblers and
solvers of DUNE (Distributed and Unified Numerics Environment) framework writ-
ten in C++, cf. Bastian, Blatt, Dedner, Engwer, Klöfkorn, Ohlberger, et al. 2008;
Bastian, Blatt, Dedner, Engwer, Klöfkorn, Kornhuber, et al. 2008. It depends on the
functionality of several other modules:

� managing the grid using dune-alugrid, cf. Alkämper et al. 2016;

� handling adaptive grids using dune-subgrid, cf. Gräser, Sack, and Sander 2009;

� writing data for visualization using dune-vtk1;

� function space bases and functions using dune-functions, cf. Engwer et al. 2017;
Engwer et al. 2018;

� finite element assemblers and solvers developed and hosted at Freie Universität
Berlin using dune-fufem, dune-solvers, dune-matrix-vector, and dune-tnnmg2.

The implementation is available as a separate DUNE module dune-phasefield3.

Machine specifications The computations are performed on a machine with 4 cores
at 3.30GHz and 8GB RAM.

1https://gitlab.dune-project.org/simon.praetorius/dune-vtk
2https://git.imp.fu-berlin.de/agnumpde
3https://git.imp.fu-berlin.de/maxka-dune
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7. Numerical experiments

Model parameters Unless specifically denoted otherwise, we consider the following
setting.

ε = 5 · 10−2, τ = 5 · 10−2,

cm = 1.0, cv = 1.0, ν = 1 · 10−4,

κ = 1.0, m = PN0 IdNPN0 , T = 1N,M ,

β00 = 0.0, β∂ = −1.0,

Solver parameters In all experiments, we parametrize our mesh adaptivity (sec-
tion 5.3) with

jmin = 1, Toladapt = 8 · 10−3, Tolderefine = 1 · 10−6,

our newton descent (section 6.3) with

Tolabs = 1 · 10−11, Tolrel = 1 · 10−11,

and our multigrid methods in sections 6.3.1 and 6.3.2 are W(2,2)-cycles with a base
solver consisting of 2 smoother iterations.

The Armijo step rule in section 6.3.3 starts with an initial step size ρν,0 = 1 and uses
the parameters Stepaccept = 0.05 and Stepreduce = 0.9. We use Descentreduce = 0.7 for
the heuristic step size rule.

We write νkr for the Schur–Newton iteration count on the r-th adaptive nested grid
level in time step k. By νmax = (νmax)nmax

n=1 we denote the sequence of maximal number
of Schur–Newton iterations needed to satisfy any of the criteria 6.14 for the algebraic
problem of the stationary problem on the respective finest adaptive grid T max. In
addition, let νany = (νany)nmax

n=1 denote the sequence of maximal number of Schur–
Newton iterations needed to solve the spatial problem in time step k, i.e. on any of
the nested adaptive grids.

7.1. Thermal feedback

In order to illustrate the equilibration of energy in terms of latent heat and tem-
perature as well as the evolution of entropy, we consider the multi-phase, single-
component case as of problem 3.2. For results concerning the linearized discretization
problem 4.6, we refer to Gräser, Kahnt, and Kornhuber 2016. Here, we sequentally
solve the nonsmooth problem 5.1 with M = 4, and N = 1. We choose m = 0
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Figure 7.1.: Shrink experiment in 1d: depicting the phases pn1 (blue, liquid) and pn2
(red, solid) at the grid vertices resulting from adaptive refinement at time
step n = 100.

and β∂ = 0 for a thermally isolated system. This allows to assess the thermody-
namical quantities without further ado. Note that this does not conform with our
general (semi-)discrete existence analysis and has ‖·‖c not being a proper norm in
the continuous case. Due to the finite-dimensional nature of the fully discrete prob-
lems this does not pose a significant problem for the numerical experiments, though.
We choose the latent heats Lc1 = 0 and Lci = 2 for i = 2, 3, 4, a constant ini-
tial temperature ~β and an initial binary phase field ~p exhibiting a linear interface
generated via p∗1(x1, . . . , xdim) = min{1,max{0, (x1 − x∗1)/0.15}}. Precisely, let T0 a
regular conforming initial triangulation of Ω and T4 its fourth uniform refinement.
Then ~p1(x) = IT4p∗1(x), ~p2 = 1 − ~p0, and ~p3 = ~p4 = 0. We have ~c = c1 = 1 and

~e = IT4∇2ρ( ~p, ~β) as initial conserved quantity densities.

Model property: Shrink We set x∗1 = 0.75 and ~β = −0.5. For dim = 1 we choose Ω =
[0, 1], T0 = {[0, 1]}, and Toladapt = 5 · 10−4. For dim = 2 we choose Ω = [0, 1]× [0, 0.2],
T0 a conforming triangulation from 5 squares of size [0, 0.2]2 each subdivided into two
triangles, and Toladapt = 1 · 10−2. The phase configurations in time step 100 and the
respective adaptive grids are depicted in figure 7.1 and figure 7.2.

We observe a shrinking of the initial grain. Furthermore, this shrinking process is
slowing down as time increases due to the intrinsic cooling by melting, cf. figure 7.3.
The absorption of latent heat is driving the approximate temperature −1/βn towards
the melting temperature T = 1 at equilibrium.

Model property: Growth We alter x∗1 = 0.15 and ~β = −5. Additionally, we set
κ = 0.2, decelerating the diffusive thermal leveling. The spatial setup is as before.
The phase configurations in time step n = 100 and the respective adaptive grids are
depicted in figure 7.4 and figure 7.5.

We observe a growth of the initial grain. Analogously to before, this growth process
slows down with the time advancing due to the intrinsic heating by solidification,
cf. figure 7.6. The absorption of latent heat is driving the approximate temperature
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7. Numerical experiments

Figure 7.2.: Shrink experiment in 2d: depicting the phases pn1 (blue, liquid) and pn2
(red, solid) and the grid resulting from adaptive refinement at time step
n = 100 in 2d.

Figure 7.3.: Shrink experiment in 1d (left) and 2d (right); depicting the phase
variables pn1 , p

n
2 (blue, red) and negative inverse temperature βn (green,

dashed) over the first spatial coordinate x1 (at x2 = 0.1 in 2d); time steps
n = 0, 10, 100, 200 from top to bottom. The phase interface is moving
to the left with decreasing velocity as the negative inverse temperature
profile approaches −1 (from above).
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7.1. Thermal feedback

Figure 7.4.: Growth experiment in 1d: depicting the phases pn1 (blue, liquid) and pn2
(red, solid) at the grid vertices resulting from adaptive refinement at time
step n = 100.

Figure 7.5.: Growth experiment in 2d: depicting the phases pn1 (blue, liquid) and pn2
(red, solid) and the grid resulting from adaptive refinement at time step
n = 100 in 2d.
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7. Numerical experiments

Figure 7.6.: Growth experiment in 1d (left) and 2d (right); depicting the phase vari-
ables pn1 , p

n
2 (blue, red) and negative inverse temperature βn (dashed,

green) over the first spatial coordinate x1 (at x2 = 0.1 in 2d); time steps
n = 0, 10, 100, 200 from top to bottom. The phase interface is moving
to the right with decreasing velocity as the negative inverse temperature
profile approaches −1 (from below).

−1/βn towards the melting temperature T = 1 at equilibrium.

Numerical thermodynamic consistency The conserved quantities E =
∫
e, C =

∫
c

are maintained numerically as depicted in figures 7.7 and 7.8. In both experiments,
the total approximated discrete entropy Scf =

∫
ψ(p, y) − ∇2ψ(p, y) − g(p) is mono-

tonically increasing over time up to an observable kink in the entropy curve for the
growth experiment in 2D. Here, our solver fails to solve the linear subproblems with
high accuracy leading to insufficient resolution of the approximated entropy density.
Additionally, we plot βmed = (max{β(ξ) | ξ ∈ Ω}+ min{β(ξ) | ξ ∈ Ω})/2.

Spatial discretization: order of convergence and hierarchical error estimation We
experimentally investigate the spatial order of convergence for the growth setup on
Ω pruned to the phase-relevant region [0, 0.5] and [0, 0.5] × [0, 0.2] for dim = 1, 2,
respectively. In the two-dimensional case, T0 is built from 10 squares of size [0, 0.1]2.
In each case we consider the stationary problem at time step 5.

We approximate the exact error by eapp
x,T = xT − x∗, eapp

y,T = yT − y∗, with linear finite
element solutions xT , yT for successively uniformly refined grids T = T2, . . . Tmax−1
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7.1. Thermal feedback

Figure 7.7.: Entropy, internal energy, and mass over time steps n = 0, . . . , 200 for the
shrink experiment with dim = 1 (top) and dim = 2 (bot).

Figure 7.8.: Entropy, internal energy, and mass over time steps n = 0, . . . , 200 for the
growth experiment with dim = 1 (top) and dim = 2 (bot).
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7. Numerical experiments

Figure 7.9.: Numerical assessment of spatial order of convergence in 1d (left) and 2d
(right) for the growth experiment at time step 5: eapp

T (red) over uniform
grid refinement level suggests asymptotic order O(h). An equilateral tri-
angle for comparison. Red curves exhibit approximated slopes 1.00 and
1.04 to base 2, respectively. The estimated hierarchical error eest (blue)
over respective maximal grid refinement level exhibits analogous values.

and x∗ = xTmax , y∗ = yTmax the approximations for the respective finest grid Tmax in
lieu of the exact solution. Our results suggest optimal order O(h) of the discretization
error in terms of the approximations

eapp
T = ‖eapp

x,T ‖a + ‖eapp
y,T ‖c,

cf. Hardering 2017, as depicted in figure 7.9. Additionally, we depict the estimated
error eest

T (see section 5.3.1) for the adaptive refinement scheme with hierarchical error
estimation in a scatter plot over the respective maximal grid refinement level for
comparison. Note that the maximal adaptive grid refinement level does not necessarily
increase with each refinement step for the grid adaptivity based on Dörfler marking
from the hierarchical a-posteriori error estimation.

Solver performance For the shrink and growth experiments we investigate the max-
imal number of iterations of the Schur–Newton solver in figures 7.10 and 7.11. Note
that the maximal number of Schur–Newton iterations remains bounded below 9 with
the exception of the spike in time step 99 for the growth experiment in 2D. Here,
the linear solver used to approximate the solution to section 6.3.2 yields non-descent
directions, i.e. ∇Hcf(Yν) · δYν > 0. On detection of these cases, we resort to a simple
gradient descent algorithm, leading to bad convergence rates. We cut off the iterative
solver at νstop = 30. This coincides with the kink observed in the respective entropy
plot in figure 7.8. The boundedness of the iteration steps of the Schur–Newton method
indicates mesh independence and is in accordance with previous computations with
multi-component Cahn–Hilliard systems, cf. Gräser and Sander 2014b.
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7.1. Thermal feedback

Figure 7.10.: Schur–Newton iterations over time step for the shrink experiment with
dim = 1 (top) and dim = 2 (bottom).

Figure 7.11.: Schur–Newton iterations over time step for the growth experiment with
dim = 1 (top) and dim = 2 (bottom).
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7. Numerical experiments

Figure 7.12.: Schur–Newton iterations, degrees of freedom and estimated error over
spatial iterations (adaptive grid refinement steps) for shrink experiment
at time step n = 20 with dim = 1 (top) and dim = 2 (bottom).

Finally, we illustrate the behavior of our solver for the adaptive sequence of algebraic
problems tackled to obtain a spatial approximation for exemplary time step 20, cf.
figures 7.12 and 7.13. The number of degrees of freedom is monotonically increasing
by construction. Accordingly, the estimated error is (mostly) decreasing. The number
of Schur–Newton iterations stays bounded.

7.2. Multicomponent growth

To illustrate approximations of the multi-component case, we consider two following
two settings: dim = 1, M = 3, and N = 2; dim = 2, M = 4, and N = 3 for time steps
k = 1, . . . , 200.

In both settings we choose thermal coefficients

κ =5 · 101, β00 = 5 · 101, β∂ = −1.2,
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7.2. Multicomponent growth

Figure 7.13.: Schur–Newton iterations, degrees of freedom and estimated error over
spatial iterations (adaptive grid refinement steps) for growth experiment
at time step n = 20 with dim = 1 (top) and dim = 2 (bottom).
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7. Numerical experiments

with (frozen in time) component mobilities

m = m(p) = p1 · 5 · 10−2 · ( N
N−1 IdN − 1

N−11N,N ).

Note that these parameter dependent diffusivities are formally not covered by the
infinite-dimensional analysis in this work. We consider latent heats L1j = 0 and Lij =
2+6·δi−1,j for i = 2, . . . ,M , j = 1, . . . , N and melting temperatures Ti,j = 1 for all i, j.
The initial values are obtained as follows: ~p1 = IT6 min{1,max{0, (x1 − 0.15)/0.1}},
~p2 = 1− ~p1, ~pi = 0 for i = 3, . . . ,M . We chose ~β = −1.2 and ~ηj = 0 for j = 1, . . . , N . As

of problem 4.4, the initial values are in terms of internal energy density and chemical
concentration (instead of their potentials), i.e. precisely we have ~e = IT6∇2ψ( ~p, ~β, ~η)
and ~c = IT6∇3ψ( ~p, ~β, ~η).

Numerical thermodynamic consistency The thermal permeability of the boundary
shows in the numerical evaluation of the thermodynamic quantities. The chemical
components are conserved numerically as their total remains unchanged by design,
cf. figure 7.14. Again, we observe kinks which we attribute to cases where the linear
subproblems are not solved with sufficient accuracy.

Spatial discretization: order of convergence and hierarchical error estimation We
experimentally investigate the spatial order of convergence at time step 5 on Ω pruned
to the phase-relevant region [0, 0.5] and [0, 0.5]× [0, 0.2] for (dim,M,N) = (1, 3, 2) or
(2, 4, 3), respectively. With approximated exact errors as before, cf. section 7.1, our
results also suggest optimal order O(h) in the multi-component setting as depicted in
figure 7.15.

Solver performance For both settings we investigate the maximal number of itera-
tions νmax of the Schur–Newton solver for the stationary problem on the respective
finest adaptive grid Tmax for each time step n in figure 7.16.

The maximal number of Schur–Newton iterations remains bounded below 25 in both
with the exception of the spikes in time steps 114 and 164 for the experiment with
(dim,M,N) = (2, 4, 3). Here again, the linear solver used to approximate the solution
to section 6.3.2 yields non-descent directions, i.e. ∇Hcf(Yν) · δYν > 0. On detection
of these cases, we resort to a simple gradient descent algorithm, leading to bad con-
vergence rates. We cut off the iterative solver at νstop = 100, but in both cases the
iterative processes is stopped earlier as the problem energy h(·) is detected to not be
decreasing with the computed updated iterate. The relative increase at these points
is in the order of 10−8. Disregarding these problems originating from a subsolver
deficiency, the boundedness of the iteration steps of the Schur–Newton method indi-
cates mesh independence for our multi-component setting. Again, this is in accordance
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7.2. Multicomponent growth

Figure 7.14.: Entropy, internal energy, and mass over time steps n = 0, . . . , 200 for
(dim, M , N) set to (1, 3, 2) (top) and (2, 4, 3) (bottom). The components
are conserved while the other thermodynamical quantities are impacted
by the thermal boundary conditions. The kinks in the bottom entropy
plot can be attributed to insufficiencies of the linear subsolver.

Figure 7.15.: Numerical assessment of spatial order of convergence: eapp over uniform
grid refinement level suggests asymptotic order O(h). An equilateral
triangle for comparison and the approximated slope to base 2 denoted
in the legend. (dim,M,N) = (1, 3, 2), (2, 4, 3) for top and bottom figure,
respectively.
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7. Numerical experiments

Figure 7.16.: Schur–Newton iterations over time step for (dim,M,N) = (1, 3, 2) (top)
and (2, 4, 3) (bottom), respectively.

with previous computations with multi-component Cahn–Hilliard systems, Gräser and
Sander 2014b.

Finally, we illustrate the behavior of our solver for the adaptive sequence of algebraic
problems tackled to obtain a spatial approximation for exemplary time step 20, cf.
figure 7.17. The number of degrees of freedom ((M−1+1+N−1)+(1+N−1)) ·K is
monotonically increasing by design due to the nested grids originating from adaptive
refinement. Accordingly, the estimated error is decreasing. The number of Schur–
Newton iterations stays bounded.
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7.2. Multicomponent growth

Figure 7.17.: Schur–Newton iterations, degrees of freedom and estimated error
over spatial iterations (adaptive grid refinement steps) for the multi-
component problem with (dim,M,N) = (1, 3, 2) (top) and(2, 4, 3) (bot-
tom), respectively.
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A. Reduced grand potential computations

We consider

ψ : RM ×R× ΣN
0 → R,

(p, β, η) 7→ π(β) + p · ζ(β, η) + ν
2 |η|

2

for M,N ∈ N with ν > 0 as introduced in section 3.3.1 where

π : R→ R,

β 7→

{
−cv log(−β) if β < 0,

∞ else,

ζi : R× ΣN
0 → R,

y = (β, η) 7→ cm log σ0,i(β, η),

with

σk,i : R× ΣN
0 → R,

(β, η) 7→
∑N

j=1 L
k
i,j η̃i,j ,

η̃i,j : R× ΣN
0 → R,

(β, η) = exp((ηj − L̃i,j − βLi,j)/cm),

for k ∈ N, i = 1, . . . ,M , j = 1, . . . , N and cv, cm > 0, L, L̃ ∈ RM,N . We write
σ = (σi)

M
i=1 and ζ = (ζi)

M
i=1.

Functions of the type of ζi are also known in recent machine learning literature as
LogSumExp or RealSoftMax functions where they provide a smooth approximation to
the maximum function.

A.1. Derivatives

In order to simplify the notation for the derivatives, this section uses formal partial
derivatives as if all variables were independent despite the constrained definition with
η ∈ ΣN

0 .
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A. Reduced grand potential computations

Note the following identities for the partial derivatives of our helper functions

∂βσk,i = −σk+1,i/cm,

∂ηjσk,i = Lki,j η̃i,j/cm,

for k ∈ N, j = 1, . . . , N .

The first order derivatives are

∇pψ(p, β, η) = ζ(β, η),

∇βψ(p, β, η) = ∇π(β) +
∑M

i=1 pi∇βζi(β, η),

∇ηψ(p, β, η) =
∑M

i=1 pi∇ηζi(β, η) + νη,

where

∇π(β) = −cv/β,
∇βζi(β, η) = −σ1,i/σ0,i,

and

∇ηζi(β, η) = PN0 (∂ηjζi(β, η))Nj=1,

∂ηjζi(β, η) = η̃i,j/σ0,i.

The second order partial derivatives are

∇p∇pψ(p, β, η) = 0,

∇p∇βψ(p, β, η) = ∇βζ(β, η),

∇p∇ηψ(p, β, η) = ∇ηζ(β, η),

∇β∇βψ(p, β, η) = ∇∇π(β) +
∑M

i=1 pi∇β∇βζi(β, η),

∇β∇ηψ(p, β, η) =
∑M

i=1 pi∇β∇ηζi(β, η),

∇η∇ηψ(p, β, η) = diag ν +
∑M

i=1 pi∇η∇ηζ(β, η),

where ∇βζ = (∇βζi)Ni=1, ∇ηζ = (∇ηζi)Ni=1, and

∇∇π(β) = cv/β
2,

∇β∇βζi(β, η) = (σ2,iσ0,i − σ2
1,i)/(cmσ

2
0,i),

∇β∇ηζi(β, η) = PN0 (∂β∂ηjζi(β, η))Nj=1,

∂β∂ηjζi(β, η) = η̃i,j(σ1,i − Li,jσ0,i)/(cmσ
2
0,i),

∇η∇ηζi(β, η) = PN0 (∂ηk∂ηjζi(β, η))Nk,j=1P
N
0 ,

∂ηk∂ηjζi(β, η) = η̃i,j(δjkσ0,i − η̃i,k)/(cmσ2
0,i),

with δjk denoting the Kronecker delta.
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A.2. Convexity

A.2. Convexity

Let N ∈ N and

r(x, y) = r1(x, y)− r2(x, y),

r1(x, y) =
∑N

j=1 xjy
2
j

∑N
k=1 xk,

r2(x, y) = (
∑N

j=1 xjyj)
2.

Lemma A.1. Let x, y ∈ RN . Then r(x, y) ≥ 0. For x > 0 the inequality is strict iff
y /∈ span{1N}.

Proof. We manipulate the sum indices to find an equivalent form with non-negative
terms, using notably

∑N
j=1

∑N
k=j+1 ajk =

∑N
k=1

∑k−1
j=1 ajk.

r1(x, y) =
∑N

k=1

∑N
j=1 xkxjy

2
j

=
∑N

k=1(
∑k−1

j=1 xkxjy
2
j + x2

ky
2
k +

∑N
j=k+1 xkxjy

2
j )

=
∑N

k=1

∑k−1
j=1 xkxjy

2
j +

∑N
k=1 x

2
ky

2
k +

∑N
k=1

∑N
j=k+1 xkxjy

2
j

=
∑N

k=1

∑k−1
j=1 xkxjy

2
j +

∑N
k=1 x

2
ky

2
k +

∑N
j=1

∑N
k=j+1 xjxky

2
k

=
∑N

k=1

∑k−1
j=1 xkxjy

2
j +

∑N
k=1 x

2
ky

2
k +

∑N
k=1

∑k−1
j=1 xjxky

2
k

=
∑N

k=1

∑k−1
j=1 xkxj(y

2
j + y2

k) +
∑N

k=1 x
2
ky

2
k

r2(x, y) = (
∑N

j=1 xjyj)
2

=
∑N

k=1 xkyk(
∑k−1

j=1 xjyj + xkyk +
∑N

j=k+1 xjyj)

=
∑N

k=1

∑k−1
j=1 xkykxjyj +

∑N
k=1 x

2
ky

2
k +

∑N
k=1

∑N
j=k+1 xkykxjyj

=
∑N

k=1

∑k−1
j=1 xkykxjyj +

∑N
k=1 x

2
ky

2
k +

∑N
j=1

∑N
k=j+1 xjyjxkyk

=
∑N

k=1

∑k−1
j=1 xkykxjyj +

∑N
k=1 x

2
ky

2
k +

∑N
k=1

∑k−1
j=1 xjyjxkyk

= 2
∑N

k=1

∑k−1
j=1 xjyjxkyk +

∑N
k=1 x

2
ky

2
k

r(x, y) = r1(x, y)− r2(x, y)

=
∑N

k=1

∑k−1
j=1 xkxj(y

2
k − 2ykyj + y2

j )

=
∑N

k=1

∑k−1
j=1 xkxj(yk − yj)2 ≥ 0

Proposition A.1. ζi is convex.
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A. Reduced grand potential computations

Proof. The Hessian H of ζi ∈ C∞(R×RN ) satisfies

(β′, η′)TH(β, η)(β′, η′) = β′2(σ2σ0 − σ2
1) +

∑N
k=1 2β′η′k(η̃kσ1 − Lkη̃kσ0)

+
∑N

j,k=1 η
′
jη
′
k(δjkη̃kσ0 − η̃j η̃k)

=
∑N

j,k=1 η̃j η̃k(η
′
j
2 − 2η′jLjβ

′ + L2
jβ
′2 − η′jη′k

+ 2η′jLkβ
′ − LjLkβ′2)

=
∑N

j=1 η̃j(η
′
j
2 − 2η′jLjβ

′ + L2
jβ
′2)
∑N

k=1 η̃k

− (
∑N

j=1 η̃j(η
′
j − Ljβ′))2

= r(η̃, η′ − Lβ′) ≥ 0

for all (β′, η′) ∈ R×RN , using lemma A.1.

For fixed but arbitrary L the directions of non-strict convexity of ζi on R− × ΣN
0 are

those in the 1-dimensional subspace {(β, η) | η − Lβ ∈ span{1M}}.

A.3. Bounds

Proposition A.2. For i = 1, . . . ,M there are c0,i, c1,i, c2,i, c3,i > 0 such that

|ζi(y)| ≤ c0,i + c1,i|y|n, (A.1a)

|∇ζi(y)|n ≤ c2,i, (A.1b)

|ζi(y)− ζi(y′)|n ≤ c2,i|y − y′|n, (A.1c)

for all y, y′ ∈ R×RN , n = 2,∞.

Proof. The Euclidean norm and the maximum norm are equivalent by

(N + 1)−
1
2 |y|2 ≤ |y|∞ ≤ |y|2.

We drop the index i as well as the constant cm > 0 for the remainder of this proof to
shorten the notation. Note the corresponding incorporation of the respective columns
of L, L̃ in lieu of the full matrices. Equation (A.1a) holds by

±ζ(β, η) = log
∑N

j=1 exp(ηj) exp(−βLj)/ exp(L̃j)

≤ |L̃|∞ ± log
(

exp(|β|)±|L|∞
∑N

j=1 exp(ηj)
)

≤ |L̃|∞ + |L|∞|β| ± log (N exp(±|η|∞))

≤ |L̃|∞ + log(N) + 2 max{|L|∞, 1}|(β, η)|∞.
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A.4. Numerical evaluation

Equation (A.1b) holds by

∂βζ(y) = −σ1(y)/σ0(y) ≤ |L|∞,
∂ηjζ(y) = η̃j(y)/σ0(y) ≤ 1.

Equation (A.1c) holds by application of equation (A.1b);

|ζ(y)− ζ(y′)|n ≤
∫ 1

0
|∇ζ(y′ + t(y − y′))t(y − y′)|n dt ≤ c2|y − y′|n

∫ 1

0
t dt.

A.4. Numerical evaluation

The numerical evaluation of ζi can be stabilized using by the following identity:

ζi(β, η) = Vi + cm log σ̃0,i(β, η, Vi)

for any Vi ∈ R where

σ̃k,i(β, η, Vi) =
∑

j L
k
i,j η̃i,j(β, η, Vi),

η̃i,j(β, η, Vi) = exp((ηj − L̃i,j − βLi,j − Vi)/cm).

We choose Vi = max{η̃i,j | j = 1, . . . , N} for each i = 1, . . . ,M . This can also be
applied to the derivatives. As

∂β η̃i,j(β, η, Vi) = −Li,j η̃i,j(β, η, Vi)/cm,
∂ηk η̃i,j(β, η, Vi) = δjkη̃i,j(β, η, Vi)/cm,

and

∂βσ̃k,i(β, η, Vi) = −σ̃k+1,i(β, η, Vi)/cm,

∂ηj σ̃k,j(β, η, Vi) = Lki,j η̃i,j(β, η, Vi)/cm,

we have the identities

∇βζi(β, η) = −σ̃1,i/σ̃0,i,

∇ηjζi(β, η) = η̃i,j/σ̃0,i

and correspondingly for the second derivatives.
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B. Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit einem thermodynamisch konsistenten Mod-
ell zur Beschreibung von Legierungen unter Einbezug mehrerer chemischer Komponen-
ten sowie im Sinne von Phasenfeldmodellen über den physikalischen Begriff hinaus ver-
allgemeinerten Phasen. Aktuelle Simulationen von z.B. Erstarrungsprozessen mittels
solcher Modelle mit anwendungsnahen Parametern sind vorranging expliziter Natur im
Sinne der Zeitdiskretisierung und zuverlässige Ergebnisse erfordern hierbei bekannter-
maßen die Berechnung vieler Zwischenschritte. Implizite Methoden hingegen bergen
einige numerische Herausforderungen insbesondere auch aufgrund der nicht-Glattheit
der zugrundeliegenden Energien.

Ziel dieser Arbeit ist die konsistente Herleitung sowie effiziente und robuste Berech-
nung von impliziten numerischen Annäherungen an kontinuierliche Lösungen solcher
temperaturgekoppelten Mehrphasen- und Mehrkomponenten-Modelle unter Berück-
sichtigung der modellinhärenten Invarianten bei gleichzeitiger Ausnutzung der zu-
grundeliegenden physikalischen Strukturen, insbesondere bezüglich bestimmter Du-
alitäten.

Aufbauend auf den Grundlagen für Mehrphasen- und -komponenten-Modelle in Kapi-
tel 2 wird in Kapitel 3 ein flexibles thermodynamisch konsistentes Modell vorgestellt.
Davon ausgehend werden in den darauffolgenden Kapiteln 4 und 5 schrittweise Diskreti-
sierungen hergeleitet, Existenz und Eindeutigkeit von Lösungen der resultierenden Sys-
teme bewiesen und die Erhaltungseigenschaften der dadurch erzeugten Annäherungen
diskutiert. Hierbei ermöglichen adaptive Gitter eine problemangepasste Verteilung
der räumlichen Freiheitsgrade auf Basis eines hierarchischen Fehlerschätzers. Die nu-
merische Lösung dieser Systeme durch algebraische Umformulierungen und Anwen-
dung von nicht-glatten Mehrgittermethoden wird in Kapitel 6 vorgestellt. Das entste-
hende zentrale nicht-lineare Sattelpunktproblem kann äquivalent durch Auswertung
eines nicht-glatten Teilproblems in ein Minimierungsproblem überführt werden, für
das ein effizientes Abstiegsverfahren bekannt ist. Zuletzt werden in Kapitel 7 rech-
nerische Experimente durchgeführt um die angestrebte thermodynamische Konsistenz
sowie die numerische Effizienz zu belegen.
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