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Abstract: Porcine lymphotropic herpesviruses -1, -2 and -3 (PLHV-1, PLHV-2 and PLHV-3) are
gammaherpesviruses which are widespread in pigs. They are closely related to the Epstein–Barr
virus (EBV) and Kaposi sarcoma herpesvirus, both of which cause severe diseases in humans. PLHVs
are also related to bovine and ovine gammaherpesviruses, which are apathogenic in the natural host,
but cause severe diseases after transmission into other species. Until now, no association between
PLHVs and any pig diseases had been described. However, PLHV-1 causes a post-transplantation
lymphoproliferative disorder (PTLD) after experimental transplantations in minipigs. This disorder
is similar to human PTLD, a serious complication of solid human organ transplantation linked to EBV.
Xenotransplantation using pig cells, tissues and organs is under development in order to alleviate
the shortage of human transplants. Meanwhile, remarkable survival times of pig xenotransplants in
non-human primates have been achieved. In these preclinical trials, another pig herpesvirus, the
porcine cytomegalovirus (PCMV), a roseolovirus, was shown to significantly reduce the survival time
of pig xenotransplants in baboons and other non-human primates. Although PLHV-1 was found in
genetically modified donor pigs used in preclinical xenotransplantation, it was, in contrast to PCMV,
not transmitted to the recipient. Nevertheless, it seems important to use PLHV-free donor pigs in
order to achieve safe xenotransplantation.
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1. Xenotransplantation: Progress and Virus Safety

Xenotransplantation using pig cells, tissues and organs is under development in order
to alleviate the lack of human transplants. For example, in the USA 107,000 men, women,
and children are on the national transplant waiting list, as of February 2021. However, only
39,000 transplants were performed in 2020 and 17 people die each day waiting for an organ
transplant [1]. To alleviate the shortage of human organs, xenotransplantation is under
development. For several reasons, pigs are the most suited donor animals and rejection of
pig xenotransplants will be prevented by genetic modifications of the animals [2]. Thanks to
these genetic modifications and new powerful immunosuppressive regimens, remarkable
survival times have been achieved in preclinical trials with non-human primates [3,4].
For example, pig islet cells for the treatment of diabetes survived 950 days [5] and pig
hearts transplanted heterotopically survived 945 days [6]. Whereas in 2011, the survival
time of orthotopic (life-supporting) heart transplants was 57 days [7], but thanks to a
better strategy, the survival time was 192 days in 2020 [8] and 9 months in 2021 [9]. This
improved experimental strategy also included screening for and eliminating the porcine
cytomegalovirus (PCMV), which is actually a porcine roseolovirus (PCMV/PRV) [10]. It has
been shown in numerous preclinical trials that the presence of PCMV/PRV in the pig organ
significantly decreases the survival time of the xenotransplant in non-human primates
(for review see [11]). PCMV/PRV, also called suid herpesvirus 2 (SuHV-2), is ubiquitous
and may cause foetal or neonatal deaths in pigs and it has been associated with runting,
rhinitis and pneumonia in piglets. PCMV/PRV was repeatedly found transmitted with pig
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kidneys and heart transplantations to non-human primates, which were always associated
with a significant reduction in the survival time of the xenotransplant. Transmission of
PCMV/PRV reduced the survival time of pig kidneys, on average, from 53 days to 14 days
in baboons [12], from 28 to 9 days in cynomolgus monkeys [13] and reduced the survival
of orthotopically transplanted pig hearts in baboons from 195 days to less than 30 days [14].
These studies also showed for the first time that PCMV/PRV is obviously able to decrease
the survival time of the pig transplant without infecting the host, modulating cytokine
release and coagulation by interactions with the immune system and endothelial cells [14].

These data show that the transmission of potentially zoonotic viruses from the donor
pig to the recipient, and in the near future to human patients, may pose a significant
risk for the recipient and therefore donor animals without zoonotic viruses, including
herpesviruses, should be used.

2. PLHVs: Biology and Prevalence

Herpesviruses (family Herpesviridae) are pathogens that infect a wide variety of
animals, including humans, monkeys, birds, frogs, and fish. The Herpesviridae family
contains three subfamilies: alphaherpesvirinae, betaherpesvirinae, and gammaherpesviri-
nae. Nine human herpesviruses (HHV) have been identified that cause a wide spectrum
of human diseases: herpes simplex virus 1 (HSV-1) (HHV-1) causes herpes genitalis and
labialis, encephalitis, vision loss and others; HSV-2 (HHV-2)—genital herpes; varicella
zoster virus (VZV) (HHV-3)—chickenpox and shingles; Epstein–Barr virus (EBV) (HHV-
4)—infectious mononucleosis; cytomegalovirus (CMV) (HHV-5)—mononucleosis and
pneumonia; HHV-6A and HHV-6B are the causative agents of roseola (exanthema subi-
tum); HHV-7 is associated with several syndromes, including exanthema subitum and the
Kaposi sarcoma herpesvirus is HHV-8.

During the course of evolution, most herpesviruses have adapted to a single or
a limited number of host species. However, herpesviruses are not so species-specific
as previously thought [15], and in recent years, numerous trans-species transmissions
of several members of the Herpesviridae family have been reported, which have often
resulted in severe or fatal outcomes in the new hosts [16]. For example, herpes B virus is a
zoonotic herpesvirus that infects macaques and causes approximately 80% mortality in
untreated humans [17].

In pigs, suid herpesvirus 1 (SuHV-1), also known as pseudorabies virus (PRV), causes
Aujeszky’s disease in both wild and domestic swine. SuHV-1 has a broad host range
and causes disease in distantly related mammals such as sheep, dogs, cattle, mink, and
puma [18,19]. SuHV-2 is the above mentioned PCMV/PRV [10].

Porcine lymphotropic herpesviruses -1, -2, and -3 (PLHV-1, PLHV-2, and PLHV-3),
also known as SuHV-3, SuHV-4, and SuHV-5, are gammaherpesviruses assigned to the
genus Macavirus. Their role as primary pathogens of swine, or as co-factors in other
viral infections, is largely unknown. They were found in domestic and wild pig popu-
lations and their frequency is comparable between healthy and diseased animals. The
prevalence of PLHV-1, PLHV-2, and PLHV-3 varies between 29% and 80%, between 11%
and 41%, and between 5 and 65%, respectively, in various studies performed in Germany,
Italy, Spain, France, USA, and Ireland, and their prevalence has not changed significantly
in the last 20 years [20–23]. Despite their high prevalence, PLHVs’ relevance for the
swine industry appears low. Their transmission occurs mainly horizontally, but vertical
transmission is possible [24–26]. PLHVs were found in different pig tissues and in the
persistently infected porcine B cell line L23 [20,27]. PLHV-1 causes a post-transplantation
lymphoproliferative disorder (PTLD) in minipigs after experimental allogenic bone marrow
transplantations [28–30]. This disorder is similar to human PTLD, a serious complication
of solid human organ transplantation linked to EBV (HHV-4).

Porcine lymphotropic herpesviruses (PLHVs) are closely related to alcelaphine her-
pesvirus type 1, AlHV-1, and ovine herpesvirus type 2, OvHV-2, two gammaherpesviruses.
These viruses are apathogenic in their natural hosts but cause serious lymphoprolifera-
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tive diseases in other species [31]. Accordingly, PLHV could be apathogenic in pigs but
pathogenic in other species.

3. Detection Methods

To detect PLHVs, PCR tests and to quantify them, real-time PCRs have been
used [20,22–30,32–42]. The primers and probes were located in the DNA polymerase
gene and in the gene encoding the glycoprotein B.

To detect an antibody response in the infected animals, a Western blot assay and ELISA
were established using the recombinant glycoprotein B [43,44]. Antibodies were found
in slaughterhouse pigs, which were all PLHV-3 positive by PCR, but not in Göttingen
minipigs [44].

4. No Transmission of PLHV in Preclinical and Clinical Xenotransplantation Trials

As described above, PLHVs are very common in slaughterhouse pigs, but they were
also detected in pigs generated for xenotransplantation, e.g., in miniature swine and large
white pigs [25]. Although caesarean derivation and barrier maintenance significantly
reduced the incidence of PLHV infection, in comparison with conventionally reared pigs
(from 80% down to 3 to 12.8%), it was not sufficient to eliminate the virus [25]. PLHVs were
not found in Göttingen minipigs [35,36,44], which will be used for islet cell transplantation
in a German trial and were consequently not transmitted when islet cells of these animals
were transplanted in a preclinical trial to rhesus monkeys [37]. In a large study, piglets with
the genetic background Landrace x Yorkshire, obtained by somatic cell nuclear transfer
(SCNT) and derived via caesarean section, were analysed for 30 different porcine viruses
using real-time PCR methods [26]. PLHV-3 was detected in five of nine and PLHV-2
in three of nine piglets, whereas no other viruses were found, with the exception of
influenza B virus. This study shows that caesarean section can remove PLHVs but is not
100% safe. In another large study, large White-Yorkshire x Landrace F1 animals, used as
pancreas donor animals, were screened for more than 30 known viruses [38]. Islets cells
from these animals were transplanted into cynomolgus monkeys and none of the donor
pigs and recipients had PLHV-1, -2 or -3. In another study, pig kidneys and hearts were
transplanted into immunosuppressed baboons [39]. All donor animals carried PCMV, and
55% of them carried PLHV. An increased expression (activation) of PCMV was detected in
all recipients, but in contrast to PCMV and despite immunosuppression and transplant
rejection, neither transplants that were carrying PLHV-1, nor those that were negative,
developed an increased expression (activation) of PLHV-1 [39]. Replication of PLHV was
not observed in the baboon recipient despite prolonged pig cell microchimerism [40].

Although PLHV was found in eight out of eight genetically modified pigs used for
orthotopic pig heart transplantation, it was not detected in the baboon recipients [14].
PLHVs were not transmitted in the first clinical trials transplanting encapsulated islet cells
from Auckland Island pigs, because the donor animals were PLHV negative [41,42].

Reactivation of latent herpesviruses is an important cause of morbidity and mortality
in human transplantation. It remains unclear whether zoonotic pig viruses could be
reactivated in the transplanted tissue and interact with related human viruses. PLHV-
1 encodes several genes with a strong transactivating effect on virus reactivation and
replication, which are conserved in gammaherpesviruses, and it was shown that PLHV-1
transactivators upregulated HHV-8 and EBV promoters [45], supporting the hypothesis
that PLHV-1 might have pathogenic relevance in the course of xenotransplantation.

5. Treatment, Vaccination and Elimination

At present, there is no treatment and no vaccination against all three PLHVs. In addi-
tion, other methods such as early weaning and colostrum deprivation, failed [24], although
they had been successfully used in the case of PCMV [24,46]. Unfortunately, caesarean
derivation was only partially successful [24–26]. Therefore, most of the elimination pro-
grams proposed for other viruses [47] cannot be used for PLHV. Only caesarean derivation
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and selection of the negative animals using sensitive detection methods described above
will be successful and can be applied to eliminate PLHV from donor pigs if necessary.

6. Conclusions

Evidence has accumulated that herpesviruses are not as species-specific as thought
in the past and that trans-species transmissions of members of the Herpesviridae family
resulted in severe or fatal outcomes in the new host. On the other hand, although PLHV
was found in genetically modified donor pigs used in preclinical xenotransplantations,
it was not, in contrast to PCMV, transmitted to the recipients. Nevertheless, it seems
important to use PLHV-free pigs in order to achieve safe xenotransplantation.
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