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List of Abbreviations 

3D Three-dimensional 

AIF Arterial Input Function 

BW Bandwidth 

CNR Contrast-to-noise-ratio 

DCE-MR Dynamic Contrast Enhanced Magnetic Resonance 

DCEf Dynamic Contrast Enhanced late phase image 

GRE Gradient Recalled Echo 

GRPE Golden Radial Phase Encoding 

ICC Intra-class correlation coefficient 

MC Motion corrected 

MEDI Morphology Enabled Dipole Inversion 

MNI Montreal Neurological Institute 

MR Magnetic Resonance 

NMC Non motion corrected 

PCA Principal Component Analysis 

QSM Quantitative Susceptibility Mapping 

RMSD Root Mean Squared Displacement 

ROI Region Of Interest 

SNR Signal-to-noise-ratio 

SPGR Spoiled Gradient Echo 

TA Time of Acquisition 

TE Echo Time 

TI Inversion Time 

TR Repetition Time 
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ABSTRACT 

(English) 

Goal: Development and optimization of quantitative Magnetic Resonance Imaging (MRI) 

methods to provide enhanced image contrasts which can be used as potential biomarkers.  

 

Methods: To achieve this goal, two studies were carried out: (i) optimization of Quantitative 

Susceptibility Mapping (QSM) in the brain. This study, based on 16 healthy volunteers, has 

consisted in evaluating reproducibility and consistency of QSM reconstructions obtained at 1.5T 

and 3T and in optimizing a sequence acquisition protocol to increase image contrast-to-noise 

ratio (CNR) at 1.5T. Four spoiled gradient echo (SPGR) acquisition sequences with different 

acquisition bandwidths were tested. (ii) implementation of a non-rigid respiratory motion 

correction (MC) framework for dynamic contrast enhanced MR (DCE-MR) imaging of the liver. 

DCE-MRI data was acquired at 3T during free breathing for 5 min, using a 3D T1-weighted 

Golden Angle Radial Phase Encoding (GRPE) sequence. Non-rigid respiratory motion 

information was extracted from the acquired data and used in a motion corrected image 

reconstruction to obtain high quality DCE-MRI images with temporal resolution of 6 s and 

isotropic resolution of 1.5 mm. An extended Tofts’ model was fitted to the dynamic datasets, 

yielding quantitative parametric maps of endothelial permeability using the hepatic artery as 

input function. This new technique was evaluated on 11 oncological patients.  

 

Results: As for the evaluation of reproducibility and consistency of QSM across field strenghts 

in (i), all four acquisition sequences reported very good correlation (Pearson correlation 

coefficient R ≥ 0.96, widest limits of agreement I from -18.7 to 25.8 ppb). The CNR evaluation 

reported a statistically significant increase (p < 0.05) in four out of seven regions of interest 

(ROIs) for the lowest bandwidth employed with respect to the highest (25% increase in CNR of 

caudate nucleus). Motion correction in (ii), successfully removed respiratory motion artifacts and 

ensured accurate alignment between time points in the DCE-MR time-series, improving the 

average CNR of hepatic lesions in later phases of DCE-MR images by 47% (p      ). CNR of 

endothelial permeability derived from motion corrected data was improved by 62% (      ) 

compared to images without motion correction. Motion correction also led to better identification 

and differentiation of pathologies such as hemangiomas, cysts and necrotic core tumors. 
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Conclusions: Both the optimized QSM acquisition protocol for 1.5T and the 3D non-rigid 

respiratory motion correction framework for DCE-MR images presented in this thesis improved 

the quality of quantitative MR images and led to a signfician increase of CNR over various 

features of interest. 
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(Deutsch) 

Zielsetzung: Entwicklung und Optimierung von quantitativen Magnetresonanztomographie 

(MRI)-Methoden, zur Verbesserung von Bildkontrasten als neue Biomarker   

 

Methoden: Um dieses Ziel zu erreichen, wurden zwei Studien durchgeführt: (i) Optimierung des 

Quantitative Susceptibility Mapping (QSM) im Gehirn. Diese Studie, die auf 16 gesunden 

Freiwilligen basiert, bestand in der Bewertung der Reproduzierbarkeit und Konsistenz der QSM 

Rekonstruktionen, die bei 1,5T und 3T erhalten wurden, sowie in der Optimierung eines 

Sequenzaufnahmeprotokolls zur Erhöhung des contrast-to-noise-ratio (CNR) bei 1,5T. Es 

wurden vier Spoiled-Gradient-Echo (SPGR) Aufnahmesequenzen mit unterschiedlichen 

Aufnahmebandbreiten getestet. (ii) Implementierung einer nicht-rigiden Methode zur Korrektur 

der Atembewegung (MC) für die Dynamic Contrast Enhanced MR (DCE-MR) Bildgebung der 

Leber. Die DCE-MR Daten wurden bei freier Atmung bei 3T  für 5 Minuten unter Verwendung 

einer 3D T1-gewichteten Golden Angle Radial Phase Encoding (GRPE) Sequenz erfasst. Aus 

den erhaltenen Daten wurden Informationen über nicht-rigide Atembewegungen extrahiert und 

in einer bewegungskorrigierten Bildrekonstruktion verwendet um qualitativ hochwertige DCE-

MRI Bilder mit einer zeitlichen Auflösung von 6 s und einer isotropen Auflösung von 1,5 mm zu 

erhalten. Ein erweitertes Tofts Modell wurde an die dynamischen Datensätze angepasst, wodurch 

sich quantitative parametrische Karten der endothelialen Permeabilität unter Verwendung der 

Leberarterie als Eingangsfunktion ergaben. Diese neue Technik wurde an 11 onkologischen 

Patienten evaluiert. 

 

Resultate: Bezüglich der Bewertung der Reproduzierbarkeit und Konsistenz des QSM über 

Feldstärken in (i), wiesen alle vier Aufnahmesequenzen eine sehr gute Korrelation auf (Pearson-

Korrelationskoeffizient R ≥ 0,96, breiteste Grenzen der Übereinstimmung I von -18,7 bis 25,8 

ppb). Die CNR-Auswertung wies einen statistisch signifikanten Anstieg (p < 0,05) in vier von 

sieben Regionen von Interesse (ROI) für die niedrigste verwendete Bandbreite im Vergleich zur 

höchsten (25% Anstieg des CNR des Nucleus Caudatus) auf. Die Bewegungskorrektur in (ii) 

minimierte erfolgreich Atembewegungsartefakte und gewährleistete eine genaue Ausrichtung 

zwischen den Zeitpunkten in der DCE-MR-Zeitreihe, wodurch sich die durchschnittliche CNR 

der Leberläsionen in späteren Phasen der DCE-MR-Bilder um 47% verbesserte (p < 0,01). Die 

CNR der endothelialen Permeabilität, die aus bewegungskorrigierten Daten abgeleitet wurde, 

verbesserte sich um 62% (p <0,01) im Vergleich zu Bildern ohne Bewegungskorrektur. Die 
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Bewegungskorrektur führte auch zu einer besseren Identifizierung und Differenzierung von 

Pathologien wie Hämangiomen, Zysten und nekrotischen Kerntumoren. 

 

Schlussfolgerungen: Sowohl das optimierte QSM-Erfassungsprotokoll für 1,5T als auch die in 

dieser Arbeit vorgestellte 3D Methode zur nicht-rigiden Atembewegungskorrektur für DCE-MR 

Bilder verbesserte die Qualität der quantitativen MR Bilder und führte zu einem deutlichen 

Anstieg der CNR. 
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SYNOPSIS 

Aim and Structure  

Nowdays, medical imaging can be considered one of the cornerstones on which clinical 

interpretations and diagnoses are made. It is widely used in the clicical practice as qualitative 

assessment tool used to take clinical decisions. Quantitative Magnetic Resonance Imaging is a 

field involved with calculating biophysical parameters and quantities of interest, which have an 

effect on the MR signal that is encoded during the image formation process but at the same time 

are independent of hardware and acquisition protcol related parameters. In the specific case of 

MR, these quantities are related to a wide ensemble of physical and biophysical parameters. 

Physical parameters of interest include for example hydrogen spin density, relaxation times 

experienced by magnetization in soft tissue, diffusion and magnetic susceptibility to name a few, 

while biophysical parameters of interest include perfusion and blood flow velocities (1,2). The 

quantitative approach can in principle greatly aid in the correct diangnosis and interpretation of 

the image data, providing biophysical information that goes beyond what a purely visual 

assessment of the images might yield. In the latter case in fact, there is an intrinsic need for 

qualitative visual contrast between healthy and unhealthy tissue to be able to identify the 

differences. The estimation of quantitative parameters allows for a more precise interpretation of 

the imaged data, bypassing the need of a qualitative evaluation. It follows that this class of 

methods allows in principle for more sensible comparisons between different patients, scans and 

in the evaluation of treatment monitoring. The class of methods falling within this field therefore 

holds a great potential in terms of providing supplementary quantitative information to be 

exploited in the clinical setting in order for example to improve patient diagnosis, select and 

monitor the most appropriate therapies (2,3). On the other hand there are still many challenges 

revolving around this particular field and they are mostly related to the long acquisition times 

involved with the need of acquiring multiple qualitative scans to derive reliable quantitative 

information. 

The goal of this thesis is to develop and optimize methods for quantitative Magnetic 

Resonance Imaging, with a particular focus on providing enhanced contrasts to be used as 

potential biomarkers. Two topics have been addressed in order to achive this goal: (i) the 

optimization of Quantitative Susceptibility Mapping (QSM) at the clinical field strength of 1.5T 

in order to increase contrast between features of interest in the brain. QSM is a viable novel 

contrast mechanism which is finding an evergrowing pool of applications, including tumor 
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detection and study of neurodegenerative diseases; (ii) development of a three-dimensional (3D) 

non-rigid respiratory motion correction framework for dynamic contrast enhanced MR (DCE-

MR) imaging in the liver during free-breathing. The latter can be used obtain functional 

parametric maps of hepatic metastases. The work reported in this synopsis has been published in 

two scientific articles in peer-reviewed journals. Specifically, QSM study has been published in 

(4) and motion correction of DCE-MR in (5).  

The synopsis is structured as follows: section 1 is an introduction, in which the current research 

scenario about QSM and respiratory motion correction is outlined, while details about the 

methods employed and the main results are given in section 2 and section 3, respectively. 

Section 4 presents a discussion about the improvements produced by this work and future 

outlook. In section 5 the main conclusions of this work are summarized.  
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1 - INTRODUCTION 

1.1 QSM 

Scientific Context 

Quantitative susceptibility mapping (QSM) is a newly introduced post-processing method in 

magnetic resonance (MR) imaging, employed to compute maps of apparent magnetic 

susceptibility of the underlying examined tissue (6). Magnetic susceptibility is a physical 

property that characterizes the response of an object when placed inside an external magnetic 

field (7). On the one hand, strong susceptibility variations within an object, for example at the 

air-tissue interfaces in the human brain, generate field distortions both locally and at longer 

ranges that can be propagated in the final MR images as geometric distortion artefacts (8, 9). On 

the other hand the small field distortions created by the variations in susceptibility within soft 

tissues, are sufficiently small to be exploited as MR image contrast (7). QSM maps can provide 

for the first time, quantitative information on the spatial distribution of magnetic susceptibility 

sources such as calcium, iron, gadolinium, blood products and super paramagnetic iron oxide 

nano particles and therefore hold great potential as clinical biomarkers (10). The main idea 

behind this technique is to solve the magnetic-field-to-susceptibility-source inverse problem, by 

performing a dipole deconvolution, which is challenged by the lack of MR signal in areas where 

susceptibility sources are present and by the zeroes that arise in the dipole kernel, making the 

problem ill-posed and therefore giving rise to several solutions (11).  

 Different approaches exist in the current literature to obtain QSM maps. These include 

different types of acquisition sequences to acquire raw data (i.e. magnitude and phase) and also 

different reconstruction algorithms used in post-processing. Regarding the acquisition, Gradient 

Echo (GRE) sequences are considered most appropriate as they generate phase maps that contain 

information on the fluctuations experienced by the magnetic field due to the underlying 

susceptibility distribution (12). Although a single-echo GRE acquisition (13), is in principle 

sufficient to reconstruct QSM, in recent years the use of multiple echoes has found broader 

consensus due to the inherent capability of probing a wider range of tissues susceptibilities (6, 

14) and with increased signal-to-noise-ratio (SNR) with respect to single-echo imaging (15, 16). 

Different acquisition strategies have been tested through variation of the MR sequence readout, 

employing for example spiral imaging (15), 2- and 3-dimensional echo planar imaging (EPI) (13, 

17). The QSM reconstruction per se, is a complex procedure which involves several steps, such 

as phase unwrapping, background field removal and finally field to susceptibility inversion. A 
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comprehensive description of the above mentioned steps and of the currently developed 

algorithms apt at solving them based on different strategies, can be found for example in (6). 

More specifically, some algorithms have implemented the use of regularization to compute QSM 

(18, 19, 14). One such algorithm is the Morphology Enabled Dipole Inversion (MEDI) algorithm 

(19, 20), which utilizes tissue morphological information derived from magnitude images, 

acquired through 3D multi-echo spoiled gradient echo (SPGR) sequences and the magnetic 

susceptibility maps, to apply Bayesian regularization and solve the inverse problem robustly. 

 Several applications have been developed based on the use of QSM including: 

investigation of iron accumulation in deep gray matter structures which is associated with 

Parkinson’s disease, quantification of gadolinium in contrast-enhanced MR and the evaluation of 

micro bleeds, hemorrhages, calcifications in the brain and the detection of some tumors (4). 

More recent QSM applications have focused on improving anatomical depiction in deep gray 

matter structures together with improving quantitative measurements of functional imaging 

parameters such as perfusion and oxygenation, which in turn could be used for the assessment of 

strokes and tumors (21, 22).  

 

Motivation and Challenges 

One of the main challenges faced today in the clinical implementation of QSM rests in the 

variability of reproducibility and consistency of QSM reconstructions, which renders multi-

center and comparative studies hard to achieve (23, 24). This variability can be attributed to 

different factors, spanning from acquisition protocols to QSM reconstruction algorithms to the 

clinical field strengths employed (1.5T and 3T), which render multi-center and comparative 

studies hard to achieve (23, 25). Therefore, the challenges undertaken by this work were to 

firstly evaluate the reproducibility and consistency of QSM values obtained through a specific 

algorithm and SPGR acquisition protocol, on two different field strengths of 1.5T and 3T of a 

single vendor. Secondly, even if 3T scanners can generally achieve higher image quality thanks 

to the two-fold increase in SNR with respect to the 1.5T counterparts (25), the lower field 

alternative is still most commonly found in the clinical setting (26, 27). It is was therefore 

deemed worth investigating whether the image quality of QSM reconstructions obtained at 1.5T 

may be enhanced through the acquisition protocol. Specifically, the variation of the acquisition 

bandwidth was evaluated for this purpose, because of the direct effect it exerts on the sampling 

and echo times which in turn have an influence on the sampled noise and magnitude of the 

susceptibility artifact in GRE images (28). In order to quantify the effect on the final QSM maps 

of this parameter alone, a specific set of SPGR protocols was designed, in which only bandwidth 
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and strictly related acquisition times were varied, while all other factors were kept constant. This 

implied testing on a group of healthy volunteers, acquired on the same 1.5T machine and 

processed with the same algorithm to yield QSM maps. The choice of the MEDI algorithm 

seemed most appropriate for this study, thanks to the recently introduced L1 regularization 

(19,20), which potentially introduces a more robust framework for resolving QSM especially in 

diseased subjects with areas of lower SNR in the brain (24). The aim of this work (4) was to 

evaluate the reproducibility and consistency of QSM reconstructions obtained with the MEDI 

algorithm on two different field strengths of 1.5T and 3T, followed by the evaluation of image 

quality enhancement in terms of contrast-to-noise-ratio (CNR) obtainable on 1.5T through 

variation of the acquisition bandwidth. 

 

 

1.2 Motion Correction 

Scientific Context 

Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MR) is a powerful qualitative 

and quantitative tool, used in oncological examinations of the liver to identify metastases in T1-

weighted anatomical MR scans (29-31). The technique is based on the study of the uptake 

dynamics (contrast uptake curve) in the tissue of interest, of a paramagnetic MR contrast agent 

that is injected intravenously during the examination. Using qualitative images, it is capable of 

easily contrasting healthy tissue from metastatic tissue in the late phases of the contrast uptake 

curve. Using quantitative pharmacokinetic modeling, it can be used to derive important 

functional information from the anatomical DCE-MR time-series. This yields a series of 

complimentary functional parametric maps, such as: the endothelial permeability (      ), the 

fractional volume of contrast agent present in the vascular compartment (  ) and the fractional 

volume of contrast agent contained in the extravascular extracellular compartment (  ) (31). 

However, it is often not possible in the clinical setting to derive such maps from the DCE-MR 

time-series of the liver, as the number of image volumes acquired in time is rather limited (3 to 5 

phases), due to restrictions imposed by respiratory motion. A reliable fit of the pharmacokinetic 

model using only so few phases is often not possible. Respiratory motion is a major 

challenge in DCE-MR of the liver, where it leads to motion artifacts, image blurring and 

misregistration between neighboring temporal phases. These artifacts are propagated through the 

pharmacokinetic model into the final maps. To minimize respiratory motion during 

examinations, the clinical standard requires patients to hold their breath up to 15 seconds at 
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different phases of the contrast uptake curve (33). This practice has shown to yield anatomical 

T1-weighted images with good image quality and high in-plane spatial resolution, but often 

suffers from: incompliance from patients with impaired breathing, low slice resolution and 

misregistration between the different dynamic phases, as no two breath-holds can be easily 

repeated identically and the organs’ position differs each time. Regarding this last case, some 

studies have attempted to minimize misalignment of the organs through registration in post-

processing (34, 35). Furthermore, as introduced in the previous paragraph, breath-holding only 

allows for the acquisition of a few DCE phases, strongly limiting the applicability of a 

pharmacokinetic model. Other common approaches utilized to minimize the negative effects 

introduced by respiratory motion, involve the use of free-breathing and fast acquisition 

techniques such as radial imaging, parallel imaging and compressed sensing (36-38). These 

approaches however are limited in terms of achieved signal-to-noise-ratio (SNR) and low 

through-plane resolution, in addition to being affected by residual motion artifacts. Lastly, a 

number of studies have also attempted to resolve the motion issue by registering the DCE phases 

to a reference both rigidly (39) and non-rigidly (40,41), but they have only been demonstrated to 

work for a limited number of time points (3 to 4) and/or with an intermediate slice resolution. 

Furthermore, methods that involve registration may not be very well suited for DCE, if they do 

not take into consideration the signal variations that are induced by the presence of the MR 

contrast agent other than respiration alone. This effect would in fact then result in a bias in the 

measured image intensity that can be erroneously processed by the registration algorithms (42).  

 

Motivation and Challenges 

Respiratory motion is an important obstacle in the correct derivation of DCE-MR dynamic 

datasets, as it hampers both the qualitative and quantitative nature of the images. Current clinical 

and experimental DCE-MR protocols often lack the required spatial and temporal resolutions 

required to fully exploit the pharmacokinetic modeling and the characterization of small features 

of interest. Sources of  variability (43), together with that induced by respiratory motion, pose a 

practical limitation to the standardization needed to make quantification comparisons across 

studies that are carried out with different acquisition strategies or post-processing and data 

analysis techniques (44, 45). The aim of this work (5) was therefore to develop a novel 

approach to acquire DCE images of the abdomen with high spatial (1.5 mm isotropic) and high 

temporal (6 s) resolution during free breathing, that would allow for enhanced visualization and 

quantitative characterization of small hepatic lesions. Non-rigid motion correction was used to 

minimize respiratory motion artifacts and to ensure accurate functional maps can be derived 
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from the qualitative DCE images using an Extended Tofts Pharmacokinetic Model (32). A data 

analysis framework was therefore also developed on top of the motion correction, to carry out 

the pharmacokinetic modeling. Data was acquired using a 3D Golden Angle Radial Phase 

Encoding (GRPE) protocol, which is particularly suited for undersampling and for extracting a 

robust respiratory navigator from central k-space lines, which are periodically acquired (46). In 

this manner, all necessary information for the motion correction (i.e. self-navigator signal, coil 

sensitivity information and motion displacement fields) are derived from the DCE data. There 

was therefore no need for external motion tracking devices or any additional MR scans and 

100% scan efficiency was ensured.  
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2 - METHODS 

2.1 QSM 

Study Population and Data Acquisition 

The study was conducted on a population consisting of 16 healthy volunteers (6 women; mean 

age 27.8 ± 3.2 years) with no history of any relevant disease who provided written informed 

consent and was approved by the local review board. Two MR scanners (Siemens Healthcare, 

Erlangen, Germany), a Siemens Magnetom Avanto of 1.5T and a Siemens Magnetom Skyra of  

3T, were used in the experiment to scan each subject once with each field strength and with 

identical scan sessions. A scan session consisted in four variations of an SPGR protocol that 

were named QSM-1 to QSM-4 and were used in the subsequent QSM reconstructions, together 

with a 3D anatomical T1-weigthted scan consisting of a magnetization-prepared rapid gradient-

echo (MPRAGE). The MPRAGE images were necessary in order to carry out the segmentation 

of the brain and normalization to the Montreal Neurological Institute (MNI) space of QSM 

images. The experiment was designed this way in order to evaluate the reproducibility and 

consistency of the QSM reconstructions across the two employed field strengths and across four 

distinct receiver bandwidths. The latter evaluation will also serve in a quantitative assessment of 

image quality for the 1.5T QSM images. The SPGR protocols share the following common 

acquisition parameters: field of view = 240 mm; matrix size =  260 × 320 × 60; slice thickness = 

3 mm; flip angle = 15°; parallel imaging factor = 2. Each of the four SPGR protocols differs 

from the others  in: initial echo time (TE0); temporal spacing between each echo (δTE); number 

of echoes (n); receiver bandwidth (BW); acquisition time (TA). Characteristic parameters for the 

individual protocols are reported in Table 1. The MPRAGE protocol was acquired on both 

scanners with the following parameters: field of view = 230 mm, matrix size = 256 × 256 × 176; 

slice thickness = 1 mm; flip angle = 8°; inversion time (TI) = 900 ms; echo time (TE) = 2.5 ms; 

repetition time (TR) = 2200 ms; parallel imaging factor = 2.  

 

SPGR Characteristic Sequence Parameters 

SPGR TE0 [ms] δTE [ms] n BW [Hz/Px] TA [min] 

QSM-1 6.4 4.1 10 260 4:32 

QSM-2 7.1 5.3 8 200 4:32 

QSM-3 7.5 5.8 8 180 4:54 

QSM-4 8.1 6.9 8 150 5:44 

Table 1: SPGR sequence-specific custom parameters. The presented table is based on previously 

published work in (4).  
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Image Processing and Statistical Analysis 

QSM maps of each subject were obtained through the software MEDI (19, 20) and setting the 

regularization parameter to 1000 for all subjects. In essence the algorithm first generates a 

magnitude image and an unwrapped phase image from the SPGR data. Secondly the background 

field is removed and a map of the field represented by the tissue alone is created. Lastly the QSM 

maps are obtained from the joint use of the magnitude images with the tissue field maps in the 

dipole inversion process (11). 

 In order to evaluate the reproducibility and consistency of QSM maps obtained at 

different field strengths at a group level, these needed first to be coregistered for each subject to 

the MPRAGE of the respective field strength and normalized to MNI space. An average QSM 

template was then generated in this space for each subject to draw masks of regions of interest 

(ROI) around several structures in the brain (set I). As a last step, these masks were used to carry 

out an ROI-based evaluation through Bland-Altman analysis (difference (M) and limits of 

agreement (I)) and linear regression analysis (Pearson correlation coefficient (R) and slope of 

regression line (b)) on the normalized QSM maps of each subject. Moreover, a voxelwise-based 

evaluation on whole-brain normalized QSM maps, obtained through averaging over subjects for 

each BW, was also carried out.  

The CNR evaluations were designed to quantitatively investigate the variations in image 

quality while varying the acquisition bandwidth. QSM-1 to QSM-4 maps were coregistered to 

the average magnitude image obtained for each subject, and were then also averaged to create a 

template apt at drawing a new set of ROIs (set II) identified by the caudate nucleus, globus 

pallidus, red nucleus, putamen, splenium, thalamus and substantia nigra. The CNR was then 

calculated for each ROI in set II on the QSM map of all subjects, according to the following: 

 
     

  ̅    ̅

  
 (1) 

where  ̅  represents the mean QSM value measured inside each ROI,  ̅  is the mean QSM value 

measured in an external ROI encircling but not comprising  ̅  and    is the standard deviation of 

the external ROI. Weighted average and respective standard deviations (   ̅̅ ̅̅ ̅̅      ̅̅ ̅̅ ̅̅ ) were 

calculated over all subjects, using the number of voxels from each ROI as weights. Percentage 

variations of    ̅̅ ̅̅ ̅̅  values were also calculated across maximum and minimum BW for each ROI. 

The unequal-variances t-test was used to verify the statistical significance of the    ̅̅ ̅̅ ̅̅  

differences, set at p < 0.05. 
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All the image processing and statistical analyses were implemented in an automated 

custom Matlab pipeline (2016b, The Mathworks, Natick, MA) making use of SPM12 (Wellcome 

Department of Imaging Neuroscience, University College London, United Kingdom) (47). 

Masks were manually drawn with FSLView (48).  

 

Image Quality Assessment 

A qualitative image analysis was performed by two radiologists (one with board certification), 

that consisted in visually evaluating and comparing the image quality of QSM maps, specifically 

set II of ROIs, over varying BW with a five-point linear grading scale (from 1 = non-diagnostic 

to 5 = excellent quality). Inter-observer reliability was established through the intra-class 

correlation coefficient (ICC), varying from poor (ICC < 0.4) to excellent (ICC > 0.75). Statistical 

significance in the differences in image quality evaluation were assessed through the Wilcoxon 

rank sum test, with p < 0.05. 

 

 

2.2 Motion Correction 

Study Population and Data Acquisition 

This study involved the enrollment of 11 patients from oncology, who were being examined 

through whole-body hybrid Positron Emission Tomography and Magnetic Resonance (PET-MR) 

Imaging on a 3T Biograph mMR (Siemens Healthcare, Erlangen, Germany) to investigate the 

presence of established and/or presumed hepatic metastases (5 patients) or to investigate other 

pathologies unrelated to hepatic imaging (6 patients). The former group received an injection of 

0.01 mmol/kg of Gadoxeate disodium (relaxivity (r) at 3T of 6.2 mM
-1

 s
-1

) as the MR contrast 

agent, while the latter received an injection of 0.1 mmol/kg of Gadobutrol (r at 3T of 5 mM
-1

 s
-1

). 

All injections took place approximately 1 min after the start of the scan. The study was approved 

by the local review board and written informed consent was provided by all patients. A total of 

19 lesions could be identified across all patients and were used for quantitative evaluations of the 

proposed motion correction approach. 

 The DCE-MR scan protocol employed in this experiment consisted of a 3D Gradient 

Recalled Echo (GRE) T1-weighted GRPE scheme with fat suppression (49), which is 

characterized by radial sampling in the phase encoding plane and by a Cartesian readout along 

the foot-heat direction. Relevant imaging parameters for this protocol are: field of view = 288 × 

(288 – 345) × (288 – 345) mm
3
; matrix size = 192 × 120 × 640; resolution = 1.5 × 1.5 × 1.5 

mm
3
; Partial Fourier Factor = 5/8; TE = 1.36 ms; TR = 3.3 ms; flip angle = 12°; TA = 4 min. A 
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Turbo Spin Echo with fat suppression was also acquired to characterize metastases as part of the 

standard clinical protocol. 

 

Derivation of Respiratory Self-Navigator and Respiratory Motion Estimation 

In a first step a self-navigator is obtained from  the k-space center lines sampled along the foot-

head direction (50) describing the internal abdominal motion. Nevertheless, it is also influenced 

by the MR contrast agent uptake dynamic. Therefore, a principal component analysis (PCA) is 

applied in order to select the component with the most prominent signal variations induced by 

respiration. This step is achieved by evaluating the frequency spectrum of each PCA component 

and selecting the one with the highest energy in the typical frequency domain of respiration 

(0.1−0.5 Hz). Lastly, PCA is applied to the concatenation of the all the identified respiratory 

components from all coils to yield a single respiratory self-navigator. The acquired MR raw data 

is then separated into eight different respiratory motion states (MS) based on the amplitude of the 

self-navigator signal.  

 Motion information in the form of vector motion fields (MF) is then obtained through 

registering non-rigidly (51), the various MS to a reference. Prior to carrying out this step, it is 

necessary to reconstruct the k-space MS to image space and this is achieved iteratively with a 

sensitivity-encoding method (52): 

  ̂     (‖    ‖ 
                 ) (2) 

with  ̂ being the reconstructed image of a specific MS; E being the encoding operator; k 

representing the k-space data in the selected MS; TVt and TVs representing the total image 

variation in time measured in temporally adjacent MS and the total image variation in space 

inside the selected MS, respectively;    and    represent the regularization parameters employed 

to adjust the regularization process which were selected constant for all patients. 

  

Implementing Motion Correction 

Once the MFs have been calculated for each MS, motion correction of the DCE-MR time series 

can be applied inside an iterative kt-SENSE image reconstruction framework (53) to yield 48 

dynamic phases with a temporal resolution of 6 s. The k-space data employed to generate each 

DCE-MR phase is selected with a sliding-window approach. With the aid of the respiratory 

navigator each phase is divided into 8 MS, which are then reconstructed to image space where 

they are shifted to the reference MS through the MFs. The kt-SENSE image reconstruction 

framework can be described by the following: 
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where  ̂ is the entire DCE-MR image time series (48 phases) given in the temporal frequency 

domain; E is the encoding operator and contains the MF necessary to implement motion 

correction;      is the Fourier transform from frequency to time domain; k is the k-space data;   

is the regularization parameter; P represents a training dataset of low spatial resolution DCE-MR 

images used to aid in separating the effects on the DCE images of the undersampling artifacts 

from the ones of the MR contrast uptake, selectively suppressing the former in the regularization 

process. All image the image reconstructions (respiratory motion estimation and motion-

corrected DCE-MR image reconstruction) were implemented in Python (Python Software 

Foundation) and Matlab (R2016b, The Mathworks, Natick, MA). In addition to the motion-

corrected (MC) data sets also non-motion corrected images were reconstructed (NMC) for 

reference. 

 

Functional Parametric DCE Maps and Quantitative Motion Correction Analyses 

In order to perform quantitative investigations on the DCE datasets, it is first necessary to 

convert the image intensities from arbitrary units to the concentration of contrast agent expressed 

in mM. This step is achieved by implementing a single-reference tissue method for heavily T1-

weighted acquisition protocols in a custom pipeline (54, 55): 

 

 
     

         

    
   

  
    (4) 

where      is the image intensity in a given voxel in the liver at time t;    and   
   

 represent the 

image intensity measured before the injection of the MR contrast agent in a given voxel in the 

liver and in reference tissue (liver parenchyma) respectively;      is the concentration of contrast 

agent in mM at time t;   
   

 is the T1 value of the reference tissue before contrast injection (56) 

and r is the relaxivity of the contrast agent (57). Once the DCE-MR timeseries are converted, the 

Extended Tofts’ Model (32) can be resolved, extrapolating functional parametric maps of the 

liver, according to the following: 

 
                        

 
      

  
  
           (5) 

where        is the volume transfer constant characterizing the flow of contrast agent from the 

vascular compartment to the tissue compartment, therefore representing permeability and is 

expressed in min
-1

;      is once again the contrast agent uptake in a given voxel of interest and 
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expressed in mM;    is the fractional volume of contrast agent contained in bold plasma;    is 

likewise the fractional volume of contrast agent contained in the extracellular space;    is the 

time delay in min between the MR contrast injection and the peak of enhancement registered in 

the tissue of interest;   represents the convolution operator and the     is known as the Arterial 

Input Function and represents the contrast agent concentration measured in mM in the vascular 

compartment. We attempted to sample the AIF in both the aorta and the smaller hepatic artery, in 

order to show the bias respiratory motion can induce on the shape of the AIF of smaller vascular 

structures. 

 The maximum displacement of all lesions due to respiratory motion was measured based 

on the motion fields. This was done by first manually masking in FSLView (48), the hepatic 

metastases in the latest phase of the DCE-MR image series (DCEf) where they appear most 

evidently, and subsequently calculating the root mean squared displacement (RMSD) 

experienced in average by each mask. The second part of the evaluation was designed to 

specifically verify the effects of the proposed motion correction method on the image contrast 

over the lesions. Particular attention was given to small structures which tend to be heavily 

blurred or disappear in DCE-MR images that are not corrected for respiratory motion. The 

evaluation involves measuring the CNR of each lesion, with the aid of the same masks 

introduced in the previous paragraph, with respect to the healthy tissue surrounding the lesion. 

Equation 1 is used to calculate the CNR over the lesions from DCEf and also from the functional 

       maps. The average CNR and relative standard deviation are calculated for MC (   ̅̅ ̅̅ ̅̅
   

   ) and NMC (   ̅̅ ̅̅ ̅̅
        ) datasets respectively. The normality assumption of the    ̅̅ ̅̅ ̅̅  

distributions was first verified by a Kolmogorov-Smirnov test, while the statistical significance 

in the difference of values was assessed with an equal-variances t-test. The p value was set to be 

< 0.05 for both tests.  

19



 

 

3 - RESULTS 

3.1 QSM 

Statistical Analysis 

The reproducibility and consistency assessment of all employed SPGR protocols and respective 

QSM map, obtained on the two different field strengths and for equal protocols, in both the 

whole-brain voxelwise-based analysis and ROI-based analysis for set of ROIs I, are reported in 

Table 2. As a general trend it can be observed that all  four the SPGR sequence variations 

produced QSM maps with very high inter-field correlation (     , | |      ,         

    ) already at the voxelwise-based level and even higher at a ROI-based level (      , 

| |     ,             ), with a slight decrease along with decreasing BW, going from 

QSM-1 to QSM-4. As for the reproducibility investigations conducted specifically over different 

BW (QSM-1 vs QSM-4) and acquired at equal field strengths (Table 2), it can also be 

appreciated that the level of correlation is very high between the tested sequences both at the 

voxelwise level (     3, | |      ,             ) and at ROI level (      , 

| |     ,             ). 

 

Table 2 -  Statistical results of reproducibility of QSM across field strengths and BW 

Voxelwise-

based 

Sequences R b M [ppb] I [ppb] 

 QSM-1 0.93 1.02 0.06 -7.14 to 7.02 

QSM-2 0.92 1.02 0.14 -8.27 to 7.99 

QSM-3 0.91 1.03 0.05 -8.62 to 8.54 

QSM-4 0.90 1.03 0.09 -9.28 to 9.09 

ROI-based 

 QSM-1 0.98 1.09 2.9 -15.7 to 21.4 

QSM-2 0.98 1.06 2.7 -15.7 to 21.2 

QSM-3 0.97 1.06 3.6 -18.7 to 25.8 

QSM-4 0.96 1.03 2.1 -17.3 to 21.5 

Voxelwise-

based 

QSM-1 vs QSM-4 

(1.5T) 
0.97 1.02 0.01 -4.24 to 4.26 

QSM-1 vs QSM-4 

(3T) 
0.93 1.03 -0.03 -7.69 to 7.63 

ROI-based 

QSM-1 vs QSM-4 

(1.5T) 
0.99 1.00 0.4 -16.1 to 15.6 

QSM-1 vs QSM-4 

 (3T) 
0.99 0.96 -0.3 -12.7 to 12.1 

Results of voxelwise and ROI-based QSM reproducibility and consistency analyses over different field 

strengths and fixed BW and over fixed field strengths and varying BW. M is the mean difference, I are 

the limits of agreement set at 95%, R is the Pearson correlation coefficient and b is the slope of the 

regression line. The presented table is based on previously published work in (4).  
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The quantitative CNR (set of ROIs II) evaluation carried out between QSM-1 and QSM-4 at 

1.5T and apt at verifying the possibility of increasing image contrast over brain structures at this 

specific field strength by optimizing the acquisition BW, has shown a statistically significant 

increase in the    ̅̅ ̅̅ ̅̅  values of 4 out of 7 regions. The interested ROIs and respective CNR 

percentage increase are: caudate nucleus (25%); thalamus (19%), red nucleus (15%) and 

substantia nigra (13%). The putamen, globus pallidus and splenium also registered an increase in 

the average CNR (13%, 8% and 6% respectively), but were not found to be statistically 

significant according to the sample size. An overview of the differences in image quality and 

contrast obtained at 1.5T for QSM-1 and QSM-4 is displayed in Figure 1, where the caudate 

nucleus, globus pallidus and putamen are also put in evidence.  

 The qualitative analysis of QSM images obtained at 1.5T and carried out by two 

independent radiologists on set of ROIs II, has also reported results with good inter-observer 

agreement (ICC median = 0.65 and interquartile range from 0.49 to 0.82), but also in good 

agreement with the CNR findings discussed in the last paragraph. In essence, significant increase 

in QSM image quality were found in all ROIs except the splenium when comparing QSM-1 to 

QSM-4, with an average percentage increase in the observer scores for the thalamus (40%), 

substantia nigra (39%), red nucleus (34%), putamen (32%), caudate nucleus (20%) and globus 

pallidus (17%). 

 

 

 

 

 

 

 

 

 

Figure 1: Axial slice of QSM maps reconstructed from QSM-4 (left) and QSM-1 (right), acquired at the 

field strength of 1.5T. The red circle highlights the caudate nucleus, globus pallidus and putamen. The 

presented figure has been adapted from previously published work in (4). 
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3.2 Motion Correction 

Motion Correction Assessment on Hepatic Lesions 

The evaluation of lesion displacement through the use of the RMSD, resulted to be in average 

3.82 ± 1.11 mm along the main direction of motion (ie. foot-head direction) and with a 

maximum recorded displacement of 5.19 mm for individual lesions. Figure 2a depicts the 

blurring effects induced by respiratory motion on a hepatic lesion (red circle) and shows the 

improvements in image quality and contrast achieved by motion correction. In the MC dataset, 

the edges of the liver and surrounding structures are well defined and sharp. The lesion can be 

identified well in the later phases of the MC dataset, which does not hold true for the NMC.  

 
 

 

Figure 2: (a) DCE-MR sagittal section of a patient through the center of a hepatic lesion (red circle) and 

depicting contrast uptake throughout the whole sequence acquisition. (b) Time evolution of a line of 
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voxels going through the center of the lesion along the foot-head direction. The presented figure was 

based on data published in (5). 

Figure 2b shows the temporal evolution of a line of voxels drawn along the foot-head direction 

and passing through the center of the lesion depicted in Figure 2a. As can be seen in the section 

where the lesion is present (white arrow), the MC dataset shows a dark segment which highlights 

the typical uptake behavior of a lesion, while in the NMC dataset the induced blurring noticeably 

reduces the contrast on the tumor to the surrounding healthy liver tissue. The CNR analysis of 

the 19 lesions conducted on the MC and NMC DCEf images showed significant average 

percentage increase of 47% in favor of motion correction, confirming the qualitative findings. 

  Sampling of the AIF in the aorta resulted to be almost identical for MC and NMC curves 

of most patients, while in the hepatic artery the uptake curves differed particularly in the shape of 

the peak, which appeared suppressed with respect to MC as can be seen in Figure 3. The MC 

contrast uptake curve of the lesion (blue curve) showed the typical early rise in signal followed 

by a quick descent found in malignancies, while the NMC curve showed a delayed rise followed 

by a plateau (red curve), as did the healthy tissue (green curve). 

 
Figure 3: AIF sampling in the Aorta, Hepatic Artery for MC and NMC data. Sampling of contras uptake 

curve in a lesion for MC and NMC data and in healthy tissue for MC data only. The presented figure was 

based on data published in (5).  

Figure 4 shows the MC and NMC coronal section of the liver cutting through a number of 

lesions (black circles) in the DCEf (Figure 4a and Figure 4b) images and        maps (Figure 4d 

and Figure 4e). Some metastases (black ellipse) do not appear clearly in either MC or NMC 

DCEf images but can be distinguished in         maps and their presence is further confirmed by 
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inspecting the Turbo Spin Echo image (Figure 4c). In the MC        map as well as in the MC 

DCEf image, it is possible to distinguish some metastases that are severely blurred in the NMC 

(three smaller black circles). Especially in the         map the smaller focal lesions are well 

distinguished with respect to their background in MC while tend to either completely vanish or 

blur into their surroundings. Furthermore, the level of noise in terms of blurring is noticeably 

higher in both NMC images. The results of the CNR evaluation averaged over 10 lesions 

demonstrated a statistically significant percentage increase of    ̅̅ ̅̅ ̅̅
   = 62% for MC. The 

motion correction framework improved the detection of other features such as cysts, 

hemangiomas and tumors with necrotic substructures, as can be seen in an example shown in 

Figure 5, where the central region of the lesion is characterized by very low permeability values.  

 
Figure 4: Coronal section of the liver depicting various metastases (black circles) and vessels. Images 

are: (a) NMC DCEf, (b) MC DCEf, (c) Turbo Spin Echo, (d) NMC        map and (d) MC        map. 

The presented figure was based on data published in (5). 
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Figure 5: Axial section of necrotic core lesion, showing low permeability in its center (blue arrow). 

Images depict from left to right: NMC        map, MC        map and Turbo Spin Echo image used to 

confirm the presence of the necrotic core given by hyperintensity measured in its center. The presented 

figure was based on data published in (5).  
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4 - DISCUSSION 

4.1 QSM 

QSM in the brain is a very versatile novel tissue contrast mechanism that has found broad use in 

recent years, in a variety of different applications that include iron quantification for the 

investigation of neurodegenerative diseases and the detection of calcifications, hemorrages and 

some tumor types (6). In this work we first attempted to establish the level of correlation and 

reproducibility among QSM reconstructions of identical protocols, obtained through the MEDI 

algorithm (19, 20) at the field strenghts of 1.5T and 3T respectively. This step served two 

purposes: firstly to provide valuable information on the reproducibility of QSM recostructions 

with MEDI, specifically on the scanners and vendor employed, that could be exploited for 

comparative and multicenter studies; secondly, after the former point has been established, to 

verify reproducibility of QSM reconstructions within each field strength and by varying 

acquisition BW, with the scope of enhancing image contrast.  

  The evaluation of reproducibility and consistency across the two field strenghts 

demonstrated a very high degree of correlation (     ) between all four QMS reconstructions, 

already at the whole-brain voxelwise-level. Correlation for the ROI-based analysis was even 

higher (     ). This suggests that the MEDI algorithm in conjunction with the proposed 

SPGR protocols, is capable of yielding highly reproducible and consistent QSM reconstructions 

across different field strenghts. Similar findings were reported in the investigation of 

reproducubility and consistency of QSM measurements carried out within the same field strength 

and varying the BW (      ). In general the reproducibility evaluations, seem to advocate a 

certain degree of robustness of the QSM maps obtained with the MEDI algorithm, in response to 

acquisition BW variation and field strength used. This robustness can be exploited in case of BW 

variation to enhance the image contrast over structures sensible to such variation (up to 25% 

increase in caudate nucleus), while ensuring reconstruction of stable and consistent QSM maps. 

This feature would in principle facilitate the design of multicenter and comparative QSM studies 

to be used for several different applications, meanwhile permitting the continued use of 1.5T 

scanners, which still make up the vast majority of MR scanners in the clinical scenario.  

Due to the large variety of combinations available between MR acquisition protocols, 

field strengths employed and QSM reconstruction frameworks, a direct comparison of QSM 

studies is often very challenging. However, similar studies to the presented work have 

investigated the reproducibility and consistency of QSM measurements deriving from SPGR 

protocols across 1.5T and 3T scanners, both with the MEDI algorithm (24) and with different 
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algorithms (23). All results seem to indicate a very good level of correlation across the employed 

field strengths and also across the different algorithms employed, suggesting that the presented 

and other examined frameworks are sufficiently robust to converge to comparable results. In this 

study, the variability found in the comparisons among QSM maps can be ascribed only to the 

variation in field strength and to the variation of the acquisition bandwidth, separately. 

Furthermore, voxel size and matrix size were also kept constant across protocols in order to 

ensure this assumption. 

The main reasons for choosing bandwidth as the viable acquisition parameter to be varied 

for this study, lie in the relationship that it has with SNR and sampled noise. Infact, bandwidth is 

inversely proportional to SNR and directly proportional to the sampling time. Therefore 

increasing the bandwidth reduces the SNR and increases the amount of sampled noise, allowing 

in principle to: probe shorter TEs which are used to detect tissues characterized by strong 

susceptibilities (11); increase the number of available echoes in multi-echo GRE (and SPGR), 

which affect the range of available tissues to probe and also aid in the estimation of the field map 

by increasing the number of available phase points to be fitted (14); help reduce the 

susceptibility artefacts that are directly proportional to the TE employed and inversely 

proportional to the acquisition bandwidth (34). For the above reasons it was therefore expected 

to be able to observe changes in QSM image quality by introducing bandwidth variation and a 

good compromise was sought between gain in SNR and scan time increase. 

 The presented work represents a first step towards enhancement in QSM image quality, 

obtainable through the optimization of the acquisition bandwidth for the introduced SPGR 

protocol acquired at 1.5T and post-processed by the MEDI algorithm. Several additional 

sequence parameters and QSM reconstruction algorithms still need to be investigated in 

combination, in order to further enhance QSM image quality and quantitativity and will be the 

object of follow up studies. Effects on the implemented evaluations, derived from increasing 

spatial resolution (0.8 × 0.8 × 1.5 mm
3
) and varying the regularization parameter (     ) have 

also been tested, resulting in good agreement with previous findings. 

 

 

4.2 Motion Correction 

Respiratory motion correction is a very powerful and helpful tool to be coupled with DCE-MR 

imaging to minimize respiratory motion artifacts, as it improves image quality and can aid in the 

detection of malignancies in DCE-MR images without depending on patient cooperation (e.g. 
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breathholding). Furthermore, it can enhance the diagnostic power of the technique by providing 

accurate maps of functional parameters to be employed as potential additional biomarkers (44). 

 The improved alignment among the 48 DCE phases and the improved AIF sampling 

especially over the peak of enhancement, ensured that contamination in the signal coming from 

surrounding tissue was prevented as is shown in Figure 3, while also ensuring that        was 

not overestimated, increasing the comparability among different subjects and facilitating 

potential group studies. Figure 4 specifically shows how motion correction enhanced contrast 

over lesions and other small structures characterised by high permeability such as vessels, in 

       maps. This effect can be attributed to the benefits brought to the model fitting procedure 

by the above-mentioned increased DCE-MR image alignment in time and space, the improved 

AIF sampling and the high temporal sampling. As a consequence, functional maps of 

permeability could clearly reveal the presence of structures even when these were not as well 

visible in the respective MC DCEf images due to residual blurring from respiratory motion in the 

single selected time-point. The reduced blurring present in all MC images improved lesion 

delineation in terms of size and sharpness of contours and most importantly, when examining 

permeability maps, it allowed in some instances to see small lesions which were completely 

absent in the NMC data, as was also confirmed by Turbo Spin Echo images. In addition, Figure 

5 shows how motion correction increased sensitivity in permeability maps, aiding in identifying 

the presence of necrotic core tumors, whose presence was also confirmed by the Turbo Spin 

Echo images. This is allowed by the reduction in image blurring among all the DCE phases 

composing a timeseries. The successful alignment among the different DCE-MR phases and the 

removal of the motion artifacts has therefore improved the CNR of the resulting        maps 

significantly by 62% and that of late DCE images by 47%. 

 Other recent studies (38, 41) have also attempted to perform deformable respiratory 

motion correction of the liver. In (38) DCE-MR data is acquired through a stack-of-stars 

sequence that separates the dynamics in two extra dimensions representing contrast-enhancement 

and respiration respectively. On the other hand, the through-plane spatial resolution is over three 

times larger than for the presented framework. Analogous resolution considerations hold for the 

approach presented in (41), where motion correction is carried as a post-processing step rather 

than during image reconstruction. The main factor responsible for the increase in the overall 

spatial and temporal resolution observed in the presented work, is the GRPE sequence used in 

combination with the kt-SENSE reconstruction, which is particularly robust against 

undersampling allowing for the needed resolution flexibility (49). In other words, the use of this 

type of sequence has permitted to tune the balance needed between temporal and spatial 
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resolution, overcoming for this particular instance the problem generally associated with 

reaching sufficient SNR in fast acquisition techniques, thanks to the robustness against 

undersampling characteristic of this sequence. 

Through the proposed motion correction framework, it was possible to obtain MFs that 

yielded DCE images and functional maps with higher quality and contrast of hepatic metastases 

and other features of interest (ie. cysts, hemangiomas and necrotic core tumors) with respect to 

uncorrected images. Respiratory motion artifacts were successfully removed in data acquired 

during free-breathing, while preserving information on the MR contrast agent and at the same 

time providing DCE-MR images with high isotropic spatial resolution (1.5 mm) and good image 

quality. Furthermore, this framework could in principle be applied to correct for any organ 

motion comprising the abdomen, provided the organ in question shows sufficient contrast uptake 

signal in the dynamic frames, in order to be able to estimate respiratory motion (58). 

Currently, further studies are being carried out in order to extend the presented motion 

correction framework to PET data simultaneously acquired with the DCE-MR on a hybrid PET-

MR scanner. The aim of further developing such a framework is to be able to provide 

complementary information (ie. morpholigical, functional/metabolic), that are well aligned to 

each other and with individually increased levels of image contrast, providing a potential tool for 

a comprehensive evaluation of hepatic lesions. A qualitative example showing the improved 

image quality for both PET and MR parameters is reported in Figure 6, where a hepatic lesion is 

shown in motion corrected and uncorrected images.  

 

Figure 6: Axial section of a liver with close-up on small hepatic lesion (white arrows), depicting motion-

corrected (bottom row) and uncorrected (top row) images of PET (a), DCE-MR late phase (b),        (c), 

   (d) and    (d). Motion-corrected and uncorrected images of the same quantities, share the same scale 

in order to enable direct visual comparison. The presented figure was partly based on data published in 

(5). 
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 Future improvements of this method may focus on the employment of Deep Learning 

methods to reduce the time required for carrying out motion correction during image 

reconstruction and fitting of the pharmacokinetic model (59). The long reconstruction time 

required to obtain the quantitative DCE parameters can be currently considered the main 

technical limitation in order to foster integration in the clinical setting. Lastly, in order to further 

verify the effects of the presented motion correction framework on the image contrasts that can 

be derived from PET and DCE-MR data and to robustly investigate the classification potential 

on the lesions, large clinical trials adopting also histopathology should be established. More 

specific and advanced hepatic models, which require the hepatic artery for sampling the AIF 

should also be investigated (60).   
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5 - CONCLUSION 

In this synopsis, an acquisition protocol designed to optimize CNR in QSM reconstructions and a 

3D non-rigid motion correction framework for DCE-MR have been presented, in the context of 

developing and optimizing methods for quantitative MRI apt at generating image contrasts 

which can be used as biomarkers. 

Concerning QSM, correlation of measurements obtained between the clinical field 

strengths of 1.5T and 3T have been verified and compared to that of available similar studies, 

indicating a high level of consistency and reproducibility of measurements across field strengths. 

Moreover, bandwidth variations in the SPGR acquisition protocol have been tested to derive an 

optimal setting, for enhancing contrast in QSM images of the brain reconstructed from 1.5T 

acquisitions. Specifically, the lowest bandwidth sequence yielded a 25% increase in CNR over 

the caudate nucleus with respect to the highest bandwidth sequence. This result demonstrated the 

feasibility of increasing image contrast in final QSM reconstructions over features of interest in 

the brain for a negligible increase in scan time on the clinically most commonly available 1.5T 

scanners. 

Regarding Motion Correction, a framework has been developed to carry out free-

breathing 3D non-rigid motion corrected DCE-MR of the abdomen with isotropic spatial 

resolution of 1.5 mm. The approach uses all acquired data in the reconstruction of the DCE-MR 

series and derives all necessary motion information from it. CNR has been increased by 47% and 

62% in late DCE-MR images and endothelial permeability maps respectively. The motion 

artifact suppression and accurate image realignment achieved by the proposed framework have 

shown to yield higher quality DCE-MR and functional images that can detect lesions and 

features of interest such as necrotic structures in cases where they would otherwise be missed, 

making it a viable tool for aiding and improving clinical diagnosis. 
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