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C-reactive protein (CRP) is the best-known acute phase protein. In humans, almost

every type of inflammation is accompanied by an increase of CRP concentration. Until

recently, the only known physiological function of CRP was the marking of cells to

initiate their phagocytosis. This triggers the classical complement pathway up to C4,

which helps to eliminate pathogens and dead cells. However, vital cells with reduced

energy supply are also marked, which is useful in the case of a classical external wound

because an important substrate for pathogens is disposed of, but is counterproductive

at internal wounds (e.g., heart attack or stroke). This mechanism negatively affects

clinical outcomes since it is established that CRP levels correlate with the prognosis

of these indications. Here, we summarize what we can learn from a clinical study in

which CRP was adsorbed from the bloodstream by CRP-apheresis. Recently, it was

shown that CRP can have a direct effect on blood pressure in rabbits. This is interesting

in regard to patients with high inflammation, as they often become tachycardic and

need catecholamines. These two physiological effects of CRP apparently also occur

in COVID-19. Parts of the lung become ischemic due to intra-alveolar edema and

hemorrhage and in parallel CRP increases dramatically, hence it is assumed that CRP

is also involved in this ischemic condition. It is meanwhile considered that most of the

damage in COVID-19 is caused by the immune system. The high amounts of CRP could

have an additional influence on blood pressure in severe COVID-19.

Keywords: CRP–C-reactive protein, ischemia/reperfusion injury, cardiovascular, COVID-19, inflammation

INTRODUCTION

Inflammation in humans is deeply evolutionary rooted. A quick and intense inflammatory response
is required for the efficient eradication of injury and was highly beneficial in times where external
wounds or life-threatening infections where the main—if not only—cause of damage to the
body (1). Inflammation as a weapon against environmental risks and triggers is unfortunately
a two-edged sword, because it is dangerous when turned against the own body. In modern
times, an elevated inflammatory function is thought to be associated with higher risk to develop
atherosclerosis, diabetes and other age-related diseases, which are not caused by pathogens (2). But
an enhanced immune system can not only facilitate cardiovascular disease, it also exacerbates acute
incidents, which are “sterile.” In order to heal internal wounds, the body needs the inflammatory
reaction to eliminate dead cells. At the same time activating proliferation and repair mechanisms as
well as restoring tissue homeostasis is essential. This immune response is, however, since centuries
specialized on the thorough eradication of cells around a wound to minimize the risk of infection.
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Even if these cells are only energy deprived but still viable. In
the setting of an internal wound, as e.g., myocardial infarction
or stroke, this effect is often destructive and threatening as
it only aggravates deterioration and involves severe collateral
damage (3, 4).

Likewise, an excessive immune reaction not justified by its
external trigger induces more negative than positive effects
on the body (5). During a systemic inflammatory response
syndrome or sepsis the inflammation is so enormous and
disproportionate that it causes widespread tissue injury and
might finally result in multiple organ failure (6). Here, the whole
body is often affected by inflammation showing hard to control
hemodynamic instability.

Although a multitude of proteins are involved in
inflammation, most of them do not actively participate in
the elimination of pathogens or human cells (1). One of
the acute-phase mediators directly involved in these pro-
inflammatory processes is C-reactive protein (CRP) which was
discovered by Tillett and Francis (7). CRP is well-established
as one of the most reliable markers of inflammation, rising
dramatically during any type of inflammation.

There are several very good and extensive reviews published,
summarizing the role of CRP as unspecific inflammatory marker
and its history from discovery to world-wide used lab marker
(8–11). Even though CRP has been investigated in numerous
clinical studies and its association and correlation with the
progress of certain diseases is evidently clear (12–19), evidence
that it is a mediator of the respective disease in humans was
missing while strong evidence exists for different animal species
(16, 20–22). In addition, CRP can dissociate into monomers
physiologically, although it is still under debate if it thereby
exerts different molecular functions than the pentameric form
(23). The transition of pentameric CRP to monomeric CRP was
described in specific inflammatory microenvironments (24, 25).
Pro-inflammatory isoforms of pentameric and monomeric CRP
were reported (26). The circulating CRP is pentameric and the
actual source of all further processes. Despite this extensive in-
depth knowledge, the widespread opinion is still that in humans
CRP is only an unspecific biomarker.

We want to focus on the controversy/debate that CRP also
in humans is not only a marker but an active pro-inflammatory
protein, which contributes causally to the severity of tissue
damage and the outcome of various diseases (27).

CRP IS AN ACTIVE INFLAMMATORY
PROTEIN

CRP is secreted by the liver into the blood circulation
where it efficiently detects and opsonizes bacteria upon their
infiltration (28, 29). By marking these pathogens, it initiates their
phagocytosis via activation of complement. This mechanism is
mainly caused by the binding of CRP to the phosphorylcholine
groups in the membrane of bacteria. These groups, however,
are also present in all human cells, albeit not accessible
on healthy cells. Cells that are apoptotic, necrotic, energy-
depleted or simply exposed to inflammatory environments,
often being acidic and hypoxic, undergo conformational and

biochemical changes in their membrane (30). One of these
being the partial hydrolyzation of phosphatidylcholine (PC) to
lyso-phosphatdiylcholine (LPC) by another acute-phase-protein,
namely the secretory phospholipase A2 type IIa (sPLA2 IIa) (31–
34). This makes the phosphorylcholine group accessible to the
binding of CRP. Hence, CRP irreversibly marks dying, dead,
damaged or hypoxic/ischemic cells. Subsequently, the classical
complement pathway is activated and the CRP-marked cells
are disposed by phagocytosis (35–40). See Figure 1 for the
hypothesized pathomechanism of CRP after an acute phase
response caused by inflamed or hypoxic/ischemic tissue.

In the setting of an internal wound this generates a vicious
cycle: The primary inflammation triggered by e.g., ischemia
(e.g., acute myocardial infarction or stroke) activates a switch
to anaerobic metabolism and a striking synthesis and secretion
of CRP mediated by IL-6. CRP is circulated to the wound,
where it mediates the disposal of dead and dying cells. High
CRP concentrations cause more cells to be marked, including
still viable cells, which could have regenerated their membrane
after restoration of the oxygen flow and switching back to
aerobic metabolism. The phagocytosis of these cells in turn
produces IL-6, inducing the synthesis of additional CRP,
subsequently amplifying the immune response. Thereby, CRP
causally contributes to the tissue damage and scarring after an
incident [Figure 1, adapted from (41)] (22, 42–44). It should be
noted that CRP is synthesized and secreted as a pentamer by
the liver, however, it can dissociate into monomers within the
microenvironment of the inflamed/ischemic tissue and might
exert the drawn functions as monomer (Figure 1).

Although not every step of this molecular mechanism
has been proven and shown in detail, there have been
convincing proof-of-concept studies in animals substantiating
this hypothesis. A large body of data obtained either in rats,
porcine models or in vitro in the infarcted myocardium
of humans has demonstrated that CRP plays an active
role in exacerbating ischemia and reperfusion-induced
damage (16, 22, 45–50).

Recent studies exceedingly revealed that CRP modulates
signaling cascades besides the classical complement pathway (51–
54). This shows that CRP has direct physiological effects on
not only inflammation but also the function of e.g., endothelial
cells, be it their metabolism, differentiation or migration (55–
57). In the context of endothelial cells, it is also discussed if
CRP might have protective effects in atherosclerotic lesions. It
was shown that, although CRP induces complement activation, it
protects the bound cells from the formation of final complement
components (58, 59), mainly by recruiting complement factor H
(60). The role of CRP in atherosclerosis is however still under
debate and cannot be compared to acute ischemic incidents
regarding the circulating concentration of CRP.

CRP HAS AN EFFECT ON BLOOD
PRESSURE

One of these recent studies showed a direct, quick and extreme
effect of CRP on blood pressure in rabbits (61). Human CRP
was intravenously injected in vivo to reach a level of 50 mg/L. It
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FIGURE 1 | Molecular pathomechanism of CRP-mediated damage in ischemic or hypoxemic tissue. Inflammation or acute oxygen-deprivation happens for example

in acute myocardial infarction (AMI), stroke, during COVID-19 related pneumonia, acute pancreatitis as well as during an acute Crohn’s disease relapse. This leads to

energy-depleted, hypoxic or even ischemic tissue. Cells within this tissue display a modified outer cell membrane: Phosphatidylcholine (PC) is converted into

lyso-phosphatidylcholine (LPC) by phospholipase (sPLA2 IIa). Due to the lack of energy, this alteration cannot be reversed. CRP subsequently binds to LPC on

anaerobic cells and recruits complement factors (C1q-C4), activating the classical complement pathway. These opsonized cells will be disposed by phagocytes,

which in turn induce CRP synthesis by secretion of IL-6. CRP also binds Factor H, which inhibits the alternative complement pathway and actually protects healthy

host cells from disposal (16, 22, 79). Although CRP is drawn pentameric, it should be noted that after binding to ischemic cells, the recruitment of C1q and particularly

FH is potentially carried out by dissociated, monomeric CRP. Figure adapted from (41). AMI, Acute Myocardial Infarction; CRP, C-reactive protein; C1q, Complement

component 1q; C2-C4(a/b), Complement component 2-4(a/b); FH, Factor H; IL-6, Interleukin 6; LPC, Lysophosphatidylcholine; PC, Phosphatidylcholine; sPLA2 IIa

secretory phospholipase A2 type IIa.

dramatically reduced the arterial blood pressure within minutes,
while the heart rate remained the same and did not counteract
as expected and necessary to maintain the oxygen supply of the
organism. The effect persisted for more than 17 min.

While it has been shown that blood pressure and heart
rate as well as adrenergic receptor (AR) signaling can affect
CRP concentrations (62–64), a direct influence of CRP on
hemodynamic variables has hardly been investigated so far. Other
in vivo studies administering CRP were performed in rats and

humans (65–67). However, the recombinant CRP used in the
studies never achieved concentrations of 50 mg/l and blood
pressure was measured not directly but only hours after injection
(65, 67). Hence, the acute effects might have been overlooked.

The direct and acute effect of high CRP concentrations on
blood pressure gives a first hint, why critically ill patients,
suffering from e.g., sepsis or acute pancreatitis, can develop
hardly controllable hemodynamic variables with preceding
elevated CRP levels (68).
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After seeing such a dramatic drop in blood pressure the
influence of CRP on AR signal transduction was investigated
in vitro (61). ARs signal via calcium (Ca2+) as second
messenger was measured in real-time. CRP triggered calcium
signaling in a dose-dependent manner in two different human
cell lines, expressing either α- or β-adrenergic receptors.
Further, CRP induced an additional calcium increase that
came on top of AR agonists phenlyephrine or isoprenaline.
This indicates a molecular mechanism that is independent of
adrenoceptor activation.

Effects of CRP on endothelial cells havemostly been attributed
to its effect on endothelial nitric oxide synthase (eNOS), although
studies have to be interpreted with care, as contaminating
products in commercial CRP solutions, such as sodium azide,
were possibly often causally involved (69–71). eNOS is activated
by an increase in intracellular calcium, leading to vasodilatation
(72, 73), which could explain the drop of blood pressure in vivo.
The mechanism underlying CRP’s induction of calcium influx is
still undiscovered and should be investigated in future studies.

Therefore, it was demonstrated that one molecule of the
inflammation cascade has an influence on blood pressure. The
direct influence of other inflammatory mediators needs to
be investigated.

WHAT WE CAN LEARN FROM STUDIES
USING CRP AS A THERAPEUTIC TARGET
MOLECULE

Many reports following the hypothesis that CRP has pathological
effects suffer from a mean to shut down its activity. Knock-
out mice do not represent appropriate models, because CRP in
mice fulfills different functions than in humans and does not act
as an acute-phase protein (74). Other animal models like e.g.,
transgenic rabbits expressing human CRP have been used but
heremost of the investigations focused on atherosclerosis and not
on acute incidents (75).

In humans the use of CRP-lowering drugs has so far not been
successful, since CRP as acute-phase protein increases drastically
within hours and its circulating levels need to be lowered quickly
in an acute setting. This cannot be achieved by targeting its
synthesis or using approaches, which take several days to affect
CRP levels (16, 21, 76).

Selective immuno-adsorption of CRP from the serum avoids
these problems and has been shown to efficiently reduce
CRP concentrations by ∼60% within hours (77–79). The
elimination of pathogenic substances from the blood by means of
extracorporeal apheresis is an established therapy in the clinical
routine of numerous diseases.

CRP apheresis aims to remove CRP from the blood plasma
after an infarction to reduce acute tissue damage and ischemic
reperfusion damage (41). It has most extensively been utilized
after acute myocardial infarction (AMI).

CRP Depletion After Myocardial Infarction
Patients recovering from a heart attack often suffer from a
reduced quality of life and a very high risk of subsequent

serious complications (e.g., heart failure, arrhythmias, second
heart attack, death), which imposes an enormous burden
on the healthcare system. It was observed that this risk
correlates significantly with the size of myocardial injury and
scarring (80, 81).

It has long been known that inflammation, mainly mediated
by the innate immune system, expands myocardial injury.
However, anti-inflammatory strategies to mitigate myocardial
necrosis have so far failed, perhaps because these processes
are also necessary for the healing and repair of the heart
(3, 4, 82, 83). Whereas, baseline CRP values are recognized
as a determinant of the incidence of cardiovascular disease
(12, 14), serum CRP concentration after AMI correlates with
the clinical outcome (19, 42, 44, 84–87). It is textbook
knowledge that high CRP peaks in the first 72 h after AMI
correlate with larger infarct size and higher mortality and
the incidence of additional adverse cardiovascular events (42–
44). This has been documented for four decades and is
consistent with the described pathological function of CRP
to eliminate cells in the area at risk (27, 30, 88, 89). This
region comprises cells that might recover after revascularization
and reperfusion, but are eventually destroyed by immune-
mediated mechanisms, as explained above and shown in detail
in numerous experimental approaches specifically focusing on
AMI (20, 46, 48, 85, 90, 91).

It has therefore been suggested earlier to target CRP
in AMI, but the therapeutic approaches were not clinically
relevant or sufficiently rapid (16, 92–94). This changed when
it was shown that specific extracorporeal removal of CRP
by CRP apheresis resulted in a significant reduction of the
infarct area and stabilization of the left ventricular ejection
fraction (LVEF) in a preclinical trial in pigs (22, 50). An
interesting observation is that the scarmorphology of the animals
after CRP apheresis was completely different from controls,
supporting the hypothesis that CRP is directly involved in tissue
destruction and scarring after the incident (22). Consequently,
CRP apheresis has been used in one clinical trial and two
case reports in patients with ST-elevation myocardial infarction
(STEMI) (77, 79, 95).

In the CAMI-1 trial it was investigated whether specific
depletion of CRP can reduce the size of myocardial infarction in
humans. Eighty-three patients were included and the treatment
was safe and well-tolerated (79). The extent of increase of CRP
concentration during the first 32 h after STEMI significantly
correlated with the infarct size in control patients. Patients
with similar initial CRP increase who subsequently underwent
CRP apheresis, had smaller infarct sizes and better LVEF
and wall motion (strains) when compared to control patients.
Surprisingly, some patients treated with CRP apheresis had not
even minor infarct scars and a normal LVEF (96).

It is possible that the supply bottleneck in ischemic tissue does
not immediately lead to tissue necrosis, but rather to a conversion
of the energy metabolism into anaerobic glycolysis, which leads
to a significant lack of energy of the individual cardiomyocytes
(97). Afterwards, the cardiomyocytes go into stunning until the
metabolism switches back to the aerobic one which eliminates
the energy deficiency. This suggests that the cardiomyocytes only
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survive if they are not marked by CRP and thus disposed of
by phagocytes.

CRP in Stroke
This effect can possibly be applied to other ischemia-mediated
injuries as for example stroke. Here, similar mechanisms to
AMI take place and inflammation plays a crucial role during
the occlusion but also subsequent therapeutic reperfusion of
the tissue (98, 99). The inflammatory response after stroke
has been discovered to be a key prognostic factor for patients
(100, 101). High CRP concentrations during the first 48 h
after the incident significantly predict immediate and long-
term mortality as well as the overall prognosis (13, 101,
101–103). This is supported by pre-clinical evidence in a
stroke model in rats and subsequent application of high
amounts of human CRP (49). This strongly supports the
hypothesis that CRP plays a similar pathological role as
in AMI.

CRP MAY INCREASE DESTRUCTION OF
TISSUE IN COVID-19

SARS-CoV-2 can lead to COVID-19 and induces pulmonary
fibrosis and cardiac complications in a minor percentage of
infected individuals, among other organ deterioration (104).
A major therapeutic approach focuses on the treatment of
acute respiratory distress syndrome, as it is the leading cause
of mortality, followed by cardiac and septic complications.
In the severe course of the disease a massive increase in
the CRP concentration accompanied by an initial cytokine
storm is followed by pulmonary fibrosis (105, 106). Intra-
alveolar edema and hemorrhage is a common observation
in the lungs of COVID-19 patients which leads to ischemic
alveolar tissue. It may be assumed that CRP itself triggers
tissue damage by binding to these ischemic cells and is thus
also causally involved in the enlargement of the destroyed
tissue and contributes to irreversible tissue destruction
(22, 79). Both IL-6 and CRP increase dramatically in
the course of clinical manifestation of COVID-19 (107)
and rising CRP levels were shown to significantly predict
the respiratory decline in patients (105). CRP levels also
correlate with CT findings of COVID-19 patients (108). These
findings further support the hypothesis that a significant
increase in CRP is a signal of lung deterioration and
disease progression.

Complement deposits were found by pathologists in the lungs
of deceased COVID-19 patients. Among them was especially
C1Q. Since C1Q also inhibits antiviral CD8+ effector T-cell
responses, a higher frequency of CD8+PD1+ T-cells was found,
possibly indicating T-cell exhaustion (109). Despite the depletion
of the T cells, massive destruction in the lungs is found along
with the extreme levels of CRP in the aggravated COVID-
19 patients. C1Q is known to bind CRP after CRP binds the
lysophosphatidylcholine of ischemic cells (22).

In addition, cardiac involvement was observed by MRI
analysis in 78% of patients, and persistent myocardial
inflammation was observed in 60% of patients with recent
COVID-19 disease, regardless of pre-existing conditions, the
severity and overall course of the acute disease and the time from
initial diagnosis (110). Myocardial inflammation was suggested
as the underlying mechanism (111, 112).

CRP apheresis provides a therapeutic approach to rapidly
decrease the high CRP levels in COVID-19 patients before lung
deterioration can progress (113). Until now, the therapeutic
option of reducing the extremely high amount of CRP has
been used once in the early phase of COVID-19 and in end-
stage patients with one case being reported (113, 114). A
clinical study in this indication would be beneficial and is
currently planned.

CONCLUSION AND OUTLOOK

The understanding of CRP has undergone two basic transitions.
First, CRP has been established as a general biomarker of
inflammation and infection in clinical practice. Then, its
role as a stable and highly useful prognostic factor for
cardiovascular and cerebral disease in healthy individuals has
been widely acknowledged and utilized (17, 115). However, the
characterization of CRP as not only a biomarker but also a
mediator or even trigger of destruction of tissue in humans is still
widely ignored (27, 46, 49).

CRP as an archaic protein of the innate immune system
physiologically disposes cells and responds to almost every
change in tissue homeostasis. From the perspective of the
body’s energy balance, one has to ask oneself why CRP is
produced in large quantities by the liver in situations where
it seems wiser to keep a proper energy reserve. Certainly
not to provide us with a meaningful biomarker. It is more
logical to recognize that it is provided in potentially septic
wounds during enemy defense, to eliminate further cells, so that
they do not serve the enemy for propagation. This function
has unfortunately a negative effect on typically aseptic inner
wounds. Further, the demonstration of a direct effect of CRP
on blood pressure shows us that the molecular functions of
CRP are still not comprehensively described and that the
role of this protein is largely underestimated in critically
ill patients.

Accepting CRP as an active inflammatory protein offers the
promising possibility to therapeutically target CRP whenever the
inflammatory reaction is too extensive or not beneficial. Ongoing
and future clinical trials will illuminate whether this therapeutic
approach will continue to prove its value.
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