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SUMMARY 

Soil aggregates are clusters of soil particles, supporting the soil physical structure. Soil 

aggregation is key to the functions of ecosystem, including aeration, water infiltration and 

storage, nutrient cycling, and the pore system.  

This doctoral work investigates the effects of threats on the stability of soil aggregates. First, a 

laboratory study explores the effects of elevated temperature and microplastic on fungi-induced 

aggregation. This work opens the door for the study on effects of two top important global 

change factors, warming and microplastic pollution, on soil aggregation. Next, a laboratory 

work investigates the effects of organic matter and microplastic on soil aggregation, revealing 

the interactive effects of the two factors, which can influence the soil aggregation substantially. 

Third, a laboratory work was done to explore the interactive effects of microbial diversity and 

elevated temperature on soil aggregation.  

Our investigation of above-mentioned factors on aggregation revealed the interactive effects 

among these factors. Elevated temperature and microplastic jointly influenced soil aggregation, 

while the effects varied among fungal species. Then we conducted an experiment to investigate 

the effects of organic matter and microplastic on aggregation; we assumed that different types 

of organic matter could induce various levels of microbial activity, which could lead to 

aggregation to different degrees. We found that effects of microplastic on aggregation 

depended on the type of added organic matter. We then found that microbial diversity and 

elevated temperature had interactive effects on aggregation, that microbial community and 

elevated temperature could influence aggregation by mitigating rates of decomposition. 

Our results provide insight about how emerging threats (microplastic, warming and microbial 

diversity loss) can influence aggregation in the context of different conditions (different 

species of fungi and organic matter addition). Microplastic fibers affected soil aggregation by 

interfering with the formation of stable aggregates. Fungi-induced aggregation is sensitive to 

microplastic and temperature, while those effects will shift in terms of the species of fungi, 

which play a dominant role in the formation of aggregates. In the presence of fungi that are 

more able to form the aggregates at elevated temperature, microplastic could lead to more 

loss in aggregates at elevated temperature. The organic matter-induced aggregation is also 

vulnerable to microplastic, the magnitude of negative effects of microplastic on aggregate 

stability depended on the type of added organic matter. Both chapter 2 and chapter 3 indicate 

that greater soil aggregation activity could lead to increased opportunities for microplastic to 

be integrated into aggregates, leading to subsequent destabilization of these structures by as 
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yet unknown mechanisms. These studies contribute to the context dependency of microplastic 

effects in terrestrial ecosystems. Chapter 4 reveals that elevated temperature decreased the 

aggregates probably by accelerating decomposition of binding-agents, and also decreased the 

allocation of soil organic matter into aggregates. Different microbial communities had 

different reactions to elevate temperature, resulting in interactive effects between elevated 

temperature and microbial diversity on aggregates and formation of aggregate-protected C.  
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ZUSAMMENFASSUNG 

Bodenaggregate sind Zusammenschlüsse von Bodenpartikeln, die die physikalische Struktur 

des Bodens bilden. Die Bodenaggregation ist der Schlüssel für zahlreiche 

Ökosystemfunktionen, einschließlich Bodenbelüftung, Wasserinfiltration und –speicherung 

und verschiedenster Nährstoffkreislauf. 

In dieser Doktorarbeit werden die Auswirkungen verschiedener Faktoren des anthropogenen 

Umweltwandels auf die Stabilität von Bodenaggregaten untersucht. Zunächst werden in einer 

Laborstudie die Auswirkungen von erhöhter Temperatur und Mikroplastik auf die 

pilzinduzierte Aggregation untersucht. Diese Arbeit öffnet die Tür für die Untersuchung der 

Auswirkungen der beiden wichtigsten Faktoren des globalen Wandels, der Erderwärmung 

und der Verschmutzung durch Mikroplastik, auf die Bodenaggregation. Als nächstes wurden 

in einer Laborarbeit die Auswirkungen von pflanzlichem organischem Material und 

Mikroplastik auf die Bodenaggregation untersucht, wobei die interaktiven Effekte der beiden 

Faktoren, die die Bodenaggregation wesentlich beeinflussen können, aufgedeckt wurden. 

Drittens wurde eine Laborarbeit durchgeführt, um die interaktiven Effekte von mikrobieller 

Diversität und erhöhter Temperatur auf die Bodenaggregation zu untersuchen.  

Unsere Untersuchung der oben genannten Faktoren auf die Aggregation zeigten auf, dass es 

Interaktionen zwischen diesen Faktoren gibt. Erhöhte Temperatur und Mikroplastik 

beeinflussten gemeinsam die Bodenaggregation, während die Effekte zwischen den Pilzarten 

variierten. Dann führten wir ein Experiment durch, um die Auswirkungen von organischer 

Substanz und Mikroplastik auf die Aggregation zu untersuchen; wir nahmen an, dass 

verschiedene Arten von organischem Material unterschiedliche Niveaus mikrobieller 

Aktivität induzieren konnten, was zu Aggregation in unterschiedlichem Ausmaß führte. Wir 

fanden heraus, dass die Auswirkungen von Mikroplastik auf die Aggregation von der Art des 

hinzugefügten organischen Materials abhängt. Wir fanden außerdem heraus, dass die 

mikrobielle Diversität und die erhöhte Temperatur interaktive Effekte auf die Aggregation 

haben, dass also die mikrobielle Gemeinschaft und die erhöhte Temperatur die Aggregation 

beeinflussen können, indem sie die Zersetzungsraten abschwächen. 

Unsere Ergebnisse geben Aufschluss darüber, wie aufkommende Bedrohungen, wie 

Mikroplastikverschmutzung, Erderwärmung und der Verlust der mikrobiellen Diversität, die 

Bodenaggregation im Zusammenhang mit verschiedenen Bedingungen (verschiedene 

Pilzarten und Zugabe von organischem Material) beeinflussen können. Mikroplastikfasern 
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beeinflussten die Bodenaggregation, indem sie die Bildung von stabilen Aggregaten 

behinderten. Die pilzinduzierte Aggregation ist empfindlich gegenüber Mikroplastik und 

Temperatur, wobei sich diese Effekte in Bezug auf die Pilzarten, die eine dominante Rolle bei 

der Bildung von Aggregaten spielen, verschieben. Bei Vorhandensein von Pilzen, die eher in 

der Lage sind, die Aggregate bei erhöhter Temperatur zu bilden, kann Mikroplastik zu einem 

stärkeren Verlust an Aggregaten bei erhöhter Temperatur führen. Die durch organisches, 

pflanzliches Material induzierte Aggregation ist ebenfalls anfällig für Störungen durch 

Mikroplastik, wobei das Ausmaß der negativen Auswirkungen von Mikroplastik auf die 

Aggregatstabilität von der Art des zugesetzten organischen Materials abhängt. Sowohl 

Kapitel 2 als auch Kapitel 3 deuten darauf hin, dass eine größere Aktivität der 

Bodenaggregation zu erhöhten Möglichkeiten für Mikroplastik führen könnte, in Aggregate 

integriert zu werden, was zu einer nachfolgenden Destabilisierung dieser Strukturen durch 

noch unbekannte Mechanismen führt. Diese Studien tragen zur Kontextabhängigkeit der 

Auswirkungen von Mikroplastik in terrestrischen Ökosystemen bei. Kapitel 4 zeigt, dass eine 

erhöhte Temperatur die Aggregate wahrscheinlich durch eine beschleunigte Zersetzung der 

Bindemittel verringerte und auch die Allokation der organischen Bodensubstanz in die 

Aggregate verringerte. Verschiedene mikrobielle Gemeinschaften reagierten unterschiedlich 

auf die erhöhte Temperatur, was zu interaktiven Effekten zwischen erhöhter Temperatur und 

mikrobieller Diversität auf Aggregate und die Bildung von aggregatgeschütztem C führte.  
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Chapter 4: Soil carbon protection by aggregates is influenced by temperature and microbial 
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the data analyses. YL, EL, AL and MR wrote the manuscript and contributed to the final 
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1. GENERAL INTRODUCTION 

Soil is an assemblage of primary soil particles, organic matter, water, air and biota living inside. 

Soil provides many ecosystem functions including gas exchange, water infiltration, erosion 

resistance, carbon storage (Stewart and Hartge, 1995; Wheeler and von Braun, 2013; Crowther 

et al., 2016). The physical soil structure is key for soil to fulfil these ecosystem functions. 

1.1 Soil physical structure and soil functions 

1.1.1 Pore system 

Soil pore characteristics are an important indicator of soil quality, determining hydraulic 

conductivity, aeration, transportation and storage of water and nutrient (Kravchenko et al., 

2015). Soil pores are generally categorized into macropores, mesopores and micropores; even 

though there is no uniform size classification of pores (Tippkötter et al., 2009; Zaffar and Lu, 

2015), it is agreed that pores between 0.2 and 30 µm can retain water, pores larger than 30 

µm are filled by air (Hardie et al., 2014; Kuncoro et al., 2014; Negassa et al., 2015). 

Therefore, larger pores are important for water movement which determines hydraulic 

conductivity (Blackwell et al., 1990; Nachabe, 1995; Kutílek, 2004); micropores are 

important for water holding capacity, the pore size distribution therefore can determine the 

water and air distribution in soil. The distribution of water and gas in soil pores influences the 

survival and activity of microbes, the balanced provision of water and air is crucial for biotic 

activity (Cook and Orchard, 2008). Moreover, the water obtained in pore system is important 

for nutrient flow. The diffusive pathway is necessary for substrate diffusion and bacterial 

motility (Chowdhury et al., 2011), resulting in substrate accessibility to microbes especially 

bacteria (Poll et al., 2006). However, the soil pores with small size could protect substrate 

from decomposition, the diameters of bacteria and fungi are typically 0.5 - 1 μm, and 3 - 10 

μm, respectively (Killham, 1994). Both fungi and bacteria cannot enter pores smaller than 

their sizes, such occlusion of organic component may preserve organic carbon for a long 

time. 

The stable soil physical structure fundamentally supports the soil pore system. Aggregate size 

was found to be correlated with porosity and pore size (Mangalassery et al., 2013). It was 

assumed that during the binding of microaggregates into macroaggregates, bigger pores would 

occur, resulting in increased macroaggregates and macropores (Sun and Lu, 2014). 
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Anthropogenic activities such as tillage decrease aggregate stability, also leading to loss in 

porosity and larger pores (Wang et al., 2012b; Gao et al., 2019).  

1.1.2 Nutrient cycling  

Nutrient cycling regulates the transformation and availability of nutrients (Power, 1994), the 

microbial processes acting on soil organic matter could release soluble components that could 

be taken up by microbes and plants to support their growth and activity. Soil struture 

regulates nutrient cycling by influencing water availability, gaseous exchange and nutrient 

transport. For example, reduced air-filled porosity causes an anaerobic condition, in which 

denitrification occurs more prevalently; nitrous oxide release would increase during the 

progress (Linn and Doran, 1984; Dobbie and Smith, 2003; van der Weerden et al., 2012). Soil 

structure is also related to nutrient leaching, especially nitrate leaching in agricultural fields 

(Yoo et al., 2014).  

1.1.3 C storage 

The amount of C stored in soil is approximately 3 times larger than that in the atmosphere, C 

emission from soil has been considered seriously as a source of greenhouse gases, which 

accelerates global warming (Oelkers and Cole, 2008). Nearly two-thirds of the total increase 

in atmospheric CO2. came from the burning of fossil fuels, the remainder came from terrestrial 

ecosystems (Lal, 2004).   

Physical protection, mineral-association and chemical recalcitrance are key mechanisms for 

C storage. Recent studies found that the preservation time of C is not relevant to the chemical 

properties of C , while soil physical structure plays a critical role in controlling microbial 

processes of soil organic matter (Van Veen and Kuikman, 1990; Dungait et al., 2012). The 

transformation of nutrients from labile form to stabilized form by microbes contributes to C 

sequestration in soil substantially (Ma et al., 2018; Liang et al., 2019). The preservation of 

mineral-associated C lasts for decadal to millennial timescales (Cotrufo et al., 2013). Those 

microbially derived components, necromass and other small organic components are rapidly 

associated with minerals and physically incorporated into macroaggregates, thus are 

protected by aggregate-occlusion additionally. Macroaggregates provide physical protection 

of particulate organic matter; this slows down the decomposition and promotes the formation 

of microaggregate within macroaggregates (Six et al., 2004). It was suggested that C 
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occluded in the microaggregate within macroaggregate was a major mechanism of long‐term 

soil C sequestration in agroecosystems (Kong et al., 2005).  

1.1.4 Habitats for microorganisms 

Soil structure provides habitats for microbes and other soil animals, contributing to the 

coexistence of the diverse species living in soil, thus also helping them drive ecosystem 

functions. It was found that bacteria are predominantly located in pores 3 - 20 µm in 

diameter, fungi were usually observed in pores >10 µm, the biomass of nematodes was found 

to depend on the volume of pores 30–90 µm (Hassink et al., 1993). The small pores inside the 

aggregates could protect bacteria and fungi from predation (Rutherford and Juma, 1992), and 

also provide partitioned habitats for microorganisms (Chenu et al., 2001; Mummey and Stahl, 

2004; Ruamps et al., 2011). The heterogeneous spatial distribution of microorganisms 

promotes microbial diversity by mitigating competition and predation. 

1.1.5 Resistance to erosion 

Soil erosion caused by water or wind is one of the main threats to soil, which is accelerated 

by intensive land use and extreme climate events (Song et al., 2005). It is estimated that the 

global rate of soil erosion is about 1.4 t ha−1yr−1 on all land (Wuepper et al., 2020), the eroded 

soil per year was predicted as 35.9 Pg (Borrelli et al., 2017). Once the rain, flood or irrigation 

arrives on the soil surface, if water cannot rapidly filtrate, soil surface run-off will occur, and 

thus cause soil erosion. (Qiu et al., 2021). The wind velocity also causes erosion, leading to 

loss in surface dry aggregates, causes air pollution and threats to human health (Dale A. 

Gillette, 1977; Alfaro et al., 1998).  

A stable physical structure is crucial to resist erosion (Eldridge and Leys, 2003; Tisdall et al., 

2012), the size and stability of the soil particles is reversely related to the soil erodibility 

(Hevia et al., 2007; Zamani and Mahmoodabadi, 2013; Zobeck et al., 2013). 

1.2 Factors influencing the formation and stability of aggregates   

Soil aggregates are the configuration and assemblage of soil particles, aggregates and 

associated pore networks (Lal, 1991), with the stability of aggregates a key indicator of soil 

physical structure. According to the aggregate hierarchy model, primary soil particles are 

assembled into microaggregates, then microaggregates cluster into macroaggregates; 
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microaggregates can also form within the macroaggregates (Tisdall and Oades, 1982; Oades 

and Waters, 1991; Six et al., 2000). 

1.2.1 Physical interactions 

Wet-dry cycling can cause uneven wetting and drying in soil, subsequently causing fractures 

and cracks between soil particles, thus decreasing the size of aggregates (Hadas, 1990; Ma et 

al., 2015). Nevertheless, wetting-caused swelling can increase contact between organic and 

mineral compounds that favours bond formation in some cases; such contrary wet-drying 

cycle effects on aggregation were attributed to the differences in clay types, cycle numbers, 

water content, and other factors (Singer et al., 1992; Ma et al., 2015).  

Freeze-thaw cycles generally reduce stable aggregates, due to the ice crystalization leading to 

the breakdown of aggregates; however, the effects are dependent on the soil water content, 

number of cycles and soil type (Benoit, 1973; Oztas and Fayetorbay, 2003; Wang et al., 2012a). 

It was found that freeze-thaw cycles decreased aggregates more pronouncely with high 

moisture contents, but could exhibit a positive effects on aggregate stability with an 

intermediate water content (Li and Fan, 2014). 

1.2.2 Chemical interactions 

The association among clay, polyvalent cations and organic matter is responsible for the 

stability of soil aggregates, the effects depending on the clay minerology (Oades, 1984). 

Clays are mostly aluminosilicates and a range of oxides, hydroxides and oxyhydroxides, the 

main types of clay aluminosilicates are kaolinite, illite and smectite (Churchman et al., 1993). 

Unlike smectites, kaolinites and illites do not swell when wetted (Dixon, 1991; Pal et al., 

2009), and they have lower cation exchange capacity and specific surface area than smectites 

(Dixon, 1991; Churchman et al., 2006). The swelling may cause aggregate slaking (Bartoli et 

al., 1988), therefore soils with high content of kaolinite are more stable than those with high 

content of smectite (Amézketa, 1999).  

Fe, Al, and Mn oxides can bridge between negatively charged organic carbon and negatively 

charged clays, and simultaneously stabilize aggregates (Muneer and Oades, 1989); such 

binding mechanisms are especially important for the stabilization of microaggregates (Oades, 

1984).  
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1.2.3 Biochemical and biological factors 

Geophagous animals such as earthworms contribute to aggregation greatly (Bossuyt et al., 

2006; Fonte and Six, 2010). The earthworm cast, a mixture of soil and organic matter, can 

promote the formation of stable aggregates (Bossuyt et al., 2005). Earthworm burrows could 

enhance the water filtration, gas exchange and root growth, thus also promote aggregation 

(Lee and Foster, 1991; Schon et al., 2017).  

Fungi were found to have the most substantial positive effects on aggregate stability among 

biotic factors (Lehmann et al., 2017). The fungal hyphal network could entangle soil particles 

and organic matter, the fungi produced polymers act as binding agents, altogether 

contributing to the formation and stabilization of aggregates (Chenu, 1989; Degens, 1997b). 

The fungal capacity to stabilize aggregates varies among species (Lehmann et al., 2020). 

Mycorrhizal fungi release proteins that are potentially important for stable soil structure 

formation (Rillig and Mummey, 2006). Bacteria can also contribute to aggregation by 

secreting mucilage, polysaccharides and other extracellular compounds that act as gluing  

agents (Tisdall, 1994).  

Plant can increase aggregates by root enmeshment (Totsche et al., 2018), plant derived 

polysaccharides and humic substances also directly contribute to aggregation (Mbagwu and 

Piccolo, 1989). Moreover, root exudates and plant litter material can stimulate microbial 

activity and thus promote the production of microbially derived components, acting as the 

binding agents (Angers and Caron, 1998). 

1.3 Threats to soil aggregates 

Our soil is facing many unprecedented challenges. Anthropogenic activity influences the global 

climate, and also brings new threats to terrestrial ecosystem, such as warming, microplastic 

pollution and microbial diversity loss in soil (Butchart et al., 2010; Rillig, 2012; Allen et al., 

2014a). These changes act upon the soil system with far-reaching but poorly understood 

consequences on soil physical structure. 

1.3.1 Warming 

Human activity increased global temperature compared to pre-industrial times (1850-1900) and 

will likely induce 1.5 °C warmer temperatures around 2040 (Shukla et al., 2019). Warming is 

considered as an urgent and potentially irreversible threat to natural ecosystem. Under global 
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warming, the elevated temperature could simulate microbial activity (Pietikäinen et al., 2005), 

thus accelerating organic matter decomposition, the simultaneously boosted respiration (Zogg 

et al., 1997; Allison and Treseder, 2008; Dang et al., 2009; Bell et al., 2010) can cause positive 

feedbacks to warming. The stimulated respiration might be attributed to several reasons. First, 

higher temperature might accelerate the substrate diffusion, thus the possibility of substrate 

bound to enzyme’s active site increases (Monson et al., 2006). Second, the higher temperature 

causes the desorption of organic C from the SOM complex (Kaiser et al., 2001). Third, higher 

temperature could select for fungi capable of degrading recalcitrant C (Treseder et al., 2016). 

Therefore, more substrates are available to microbial decomposers due to warming, the 

decomposition rate increases as a result. 

Nevertheless, data on the influence of soil warming on soil aggregation are very limited. We 

assume that soil aggregation is very likely to be influenced by warming. Higher temperature 

increases the growth and activity of microbes, accelerates decomposition, leads to greater 

hyphae network and microbially-derived components, which benefit stable aggregate 

formation. However, we assume that the soil C depletion might cause the degradation of 

binding agents of stable aggregates. It was found that warming substantially decreased the 

microbial C fraction (Liang and Balser, 2012); higher temperature could induce shifts in the 

microbial community, which had more microbes with lower biomass (Li et al., 2019); the 

higher temperature could also change the microbial physiology, leading to lower carbon use 

efficiency. Therefore, higher temperature could decrease the microbial contribution to stable C 

and likely decrease the binding agents, leading to less stable aggregates.  

1.3.2 Microplastic 

Microplastic has been proposed as a new global change factor (Rillig and Lehmann, 2020), 

possessing pervasive and persistent influences on ecosystem. Microplastic is widely studied in 

marine ecosystems (Eriksen et al., 2014; Bergmann et al., 2015; Jambeck et al., 2015), and 

only in recent years has attention shifted to terrestrial ecosystems (Rillig, 2012; Bläsing and 

Amelung, 2018; de Souza Machado et al., 2018a; Zhou et al., 2020b). Microplastics are defined 

as plastics ranging in size from 5 mm to 1 μm (Moore, 2008; Barnes et al., 2009; Zhou et al., 

2018). Due to the different uses and purpose of plastic, plastics are produced in different 

polymer types (e.g., polyester, polyethylene, polyacrylic, polypropylene) (Geyer et al., 2017), 

are modified by different additives (Bandow et al., 2017), appear in different shapes (e.g., 
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fragment, film, fiber) (Rillig et al., 2019), and thus microplastics have various inherent 

properties.  

Microplastic fibers are a dominant shape encountered in microplastic pollution. Microplastic 

fibers derived from textiles are commonly discovered in wastewater (Pirc et al., 2016; Athey 

et al., 2020), sediments (Browne et al., 2011) and air deposition (Cai et al., 2017). It was found 

that particle number of microplastics released from the treated effluent to a recipient river could 

be 2.2 × 107 particles per day on average (Blair et al., 2019); the microplastics particles 

accumulated in sediments had an average concentration of 34 ± 10 items/kg sediments (Zobkov 

and Esiukova, 2017); hundreds of particles are deposited from the atmosphere per square meter 

per day (Dris et al., 2017; Brahney et al., 2020). Microplastic fibers derived from textiles are 

likely to be present in sludge and biosolids in the end, which would be applied on agricultural 

fields as fertilizer (Henry et al., 2019; Crossman et al., 2020), resulting in a considerable 

pollution of microplastic fibers in soils (van den Berg et al., 2020; Zhou et al., 2020a). 

Anthropogenic activities, such as tillage, and movement of soil animals can accelerate the 

incorporation of microplastic fibers into the soil (Huerta Lwanga et al., 2017; Rillig et al., 2017). 

Microplastic fibers have been shown to influence soil quality and health by being detrimental 

to soil aggregate stability (de Souza Machado et al., 2018b; Lehmann et al., 2019a) and altering 

microbial activity (Liu et al., 2017; Huang et al., 2019). Microplastic could also change the 

microbial community, as microplastic could be a potential substrate and habitat to microbes 

(Zhang et al., 2019). The shift in microbial community and microbial activity could lead to 

changes in microbial functions, the decrease in stability of aggregates can be one of the 

consequences. However, soil aggregation is determined by many factors, the effects of 

microplastic fiber on soil aggregation under different soil conditions are not well studied. 

1.3.3 Loss of microbial diversity 

Our earth is facing biodiversity loss due to pressures such as intensive land use, pollution, 

climate change, alien species invasion, resource consumption (Butchart et al., 2010; Zhang et 

al., 2016); biodiversity continues to decrease despite of some conservation successes (Rands 

et al., 2010). The loss in biodiversity could alter functions of ecosystems and their services 

(Cardinale et al., 2012), such as productivity of ecosystems or climate regulation.  

In terrestrial ecosystems, microbial diversity is pivotal to maintaining ecosystem 

multifunctionality (Delgado-Baquerizo et al., 2016). For example, microbial biodiversity is 

associated with the microbial processes acting on soil organic matter (Tardy et al., 2015); for 
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example, microbial diversity can promote decomposition (Maron et al., 2018), thus supporting 

nutrient cycling, soil fertility and crop productivity. It is generally assumed that lignin 

degradation can be altered by microbial diversity, because processing of such plant physical 

structural polymers can only be carried out by a few organisms (Cox et al., 2001). It was also 

found that degradation of plant sugar decreased due to microbial diversity loss (Baumann et 

al., 2013). However, some studies found the loss in microbial diversity increased soil 

respiration (Zhang and Zhang, 2016).  

Under global warming, we assume the loss in diversity could cause unprecedented influence 

on terrestrial ecosystem. Many studies found that microbial diversity increases the stability of 

ecosystems functions under stress (Pennekamp et al., 2018; Yang et al., 2021), decreased soil 

microbial diversity could lead to vulnerable ecosystem that fail to resist warming (Yang et al., 

2020). However, the interactive effects of microbial diversity and warming is unknown. 

1.4 Research Aims 

The aim of this doctoral work is to target the gaps identified above. Chapter 2 reports on an 

experiment investigating the effects of experimental warming and microplastic on fungi-

induced aggregation; Chapter 3 reports on the interactive effects of microplastic fibers and 

organic matter on soil aggregation. Chapter 4 reports on an experiment exploring the interactive 

effects of experimental warming and microbial diversity on soil aggregation; These three works 

provide insight about influence of warming or microplastic or microbial diversity loss on soil 

aggregation in certain contexts that reflect relatively realistic scenarios. 

  



 19 

2. ELEVATED TEMPERATURE AND MICROPLATIC FIBERS JOINTLY 

INFLUENCE SOIL AGGREGATION BY SAPROBIC FUNGI 

Yun Liang, Anika Lehmann, Max-Bernhard Ballhausen, Ludo Muller and Matthias C. Rillig 

An open access version of this chapter has been published as: 

Liang, Y., Lehmann, A., Ballhausen, M., Muller, L., & Rillig, M. C. (2019). Elevated 

temperature and microplastic fibers jointly influence soil aggregation by saprobic 

fungi. Frontiers in Microbiology, 10, 2018. 

https://doi.org/10.3389/fmicb.2019.02018 

  



 20 

Keywords: abrupt, gradual, temperature, microplastic, fungi, soil aggregation.  

2.1 Abstract 

Microplastic pollution and increasing temperature have potential to influence soil quality; yet 

little is known about their effects on soil aggregation, a key determinant of soil quality. Given 

the importance of fungi for soil aggregation, we investigated the impacts of increasing 

temperature and microplastic fibers on aggregation by carrying out a soil incubation 

experiment in which we inoculated soil individually with 5 specific strains of soil saprobic 

fungi. Our treatments were temperature (ambient temperature of 25℃ or temperature 

increased by 3℃, abruptly versus gradually) and microplastic fibers (control and 0.4% w/ w). 

We evaluated the percentage of water stable aggregates (WSA) and hydrolysis of fluorescein 

diacetate (FDA) as an indicator of fungal biomass. Microplastic fiber addition was the main 

factor influencing the WSA, decreasing the percentage of WSA except in soil incubated with 

strain RLCS 01, and mitigated the effects of temperature or even caused more pronounced 

decrease in WSA under increasing temperature. We also observed clear differences between 

temperature change patterns. Our study shows that the interactive effects of warming and 

microplastic fibers are important to consider when evaluating effects of global change on soil 

aggregation and potentially other soil processes. 

2.2 Introduction 

Our soils are confronted with an unprecedented change: due to anthropogenic influence the 

climate is globally changing but also new threats of contamination are emerging (Allen et al., 

2014b; de Souza Machado et al., 2018a). These changes act upon the soil system with far-

reaching but poorly understood consequences on soil biota, soil functions (e.g. gas exchange, 

water infiltration, erosion resistance (Stewart and Hartge, 1995)) and ecosystem services (e.g. 

carbon storage, food production (Wheeler and von Braun, 2013; Crowther et al., 2016)). A 

key aspect of soil to consider is its structure: the configuration and assemblage of soil 

particles, aggregates and associated pore networks (Lal, 1991). Soil structure can be affected 

by aspects of global change and in turn controls key aspects of soil biota and soil functions; 

thus, in order to mechanistically understand effects of global change on soil we need to assess 

consequences for soil structure and the process leading to soil structure, soil aggregation. The 

process of soil aggregation encompasses the process components formation, stabilization and 
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disintegration; all working simultaneously under natural conditions giving rise to soil 

aggregates which represent building blocks of soil structure.  

Soil aggregation is a biota-driven process with soil microbes in general and filamentous soil 

fungi in particular as substantial contributors (Forster, 1990; Degens, 1997a; Lehmann and 

Rillig, 2015; Lehmann et al., 2017). Soil fungi contribute to and are affected by their complex 

and heterogeneous environment in multiple ways: during their foraging activities, hyphae of 

soil fungi entangle and enmesh soil particles (Tisdall, 1991; Daynes et al., 2012a; Gupta and 

Germida, 2015) and aggregates, while also exuding exo-biopolymers functioning as binding 

agents (Chenu, 1989; Caesar-Tonthat, 2002; Daynes et al., 2012b). Conversely, fungal 

growth and activity itself is modulated by the biotic, abiotic and spatial context of the soil 

matrix (Harris et al., 2003; Boswell et al., 2006).  

It is widely acknowledged that temperature is a crucial factor determining activity of soil 

microbes (Pietikäinen et al., 2005), with higher temperature stimulating biological activities, 

such as respiration, growth rate, decomposition, extracellular enzyme activity, and secretion 

of metabolites (Zogg et al., 1997; Allison and Treseder, 2008; Dang et al., 2009; Bell et al., 

2010); this also holds true for soil fungi (Jackson et al., 1991; Loera et al., 2011; A’Bear et 

al., 2012). Thereby, elevated temperature potentially influences soil processes driven by 

microbes, including soil aggregation. Nevertheless, data on the influence of soil warming on 

soil fungal contributions to soil aggregation are very limited. The limited data available 

suggest that with increasing soil temperature soil aggregate stability decreases (Rillig et al., 

2002; Guan et al., 2018). The role of soil fungi in this decrease of soil aggregation with 

increasing temperature is not clear.  

Studies on increasing temperature commonly increase temperature abruptly, which ignores 

the fact that temperature might also rise gradually in nature. The limited suite of studies 

applying such a gradual approach detected less pronounced effects in plant and soil microbe 

activity than under abrupt changes (for CO2 and salinity (Klironomos et al., 2005a; Yan and 

Marschner, 2013). For soil microbes (e.g., arbuscular mycorrhizal fungi), shifts in community 

composition and functionality were detectable (Klironomos et al., 2005b), suggesting that 

slower, more gradual rates of environmental change can result in more adapted and thus more 

resilient, final populations of organisms or fewer extinctions. In addition, a simulation study 

demonstrated specifically for soil warming that an abrupt change resulted in larger soil 

respiration than did gradual change (Shen et al., 2009). Considering these data, it is necessary 
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to assess the effects of abrupt vs. gradual change when investigating the impact of increasing 

temperature on fungal contributions to soil aggregation, because such a comparison may 

yield more robust insights. 

Soils are exposed to a multitude of global change factors some of which recently moved into 

research focus; among these is microplastics - a group of pervasive, ubiquitous, 

anthropogenic contaminants (de Souza Machado et al., 2018a). Microplastics comprise 

chemically diverse polymers of varying shapes and structures, with a size range from 5 mm 

to 1 µm which are produced as (primary) or fragmented into (secondary) micro-sized plastic 

particles via environmental factors (Hartmann et al., 2019).  Microplastics can be found 

world-wide not only in marine but also terrestrial ecosystems, which received considerable 

attention recently (Rillig, 2012; Huerta Lwanga et al., 2016; Bläsing and Amelung, 2018). 

The limited data available so far suggests that microplastic particles, especially fibers, have 

indirect effects on soil aggregation via the soil microbial pathway by physically changing soil 

properties (e.g. decreasing soil bulk density (de Souza Machado et al., 2018c)). By changing 

the conditions in the soil matrix, a shift in fungal growth and activity can be expected. There 

are so far no studies evaluating the effect of microplastics on soil fungi; a significant gap in 

our knowledge, which has to be approached to understand microplastic impact on soil 

aggregation. We assume that lower bulk density, particularly due to microplastic fiber 

addition, leads to higher aeration-dependent microbial activities, moreover, the increased 

pore space likely provides favorable conditions for hyphal extension (Elliott et al., 1988; 

Wang et al., 2017).  

Although environmental factors affect soils in combination, studies tend to test these factors 

in isolation. This hampers our understanding of potential interactive effects on the targeted 

study systems. To contribute to the identified research gaps in effects of environmental 

factors on fungal mediated soil aggregation, we conducted a laboratory study with soil 

inoculated with filamentous soil fungal strains and microplastic fiber and temperature (with 

both abrupt and gradual increase) treatments. We aimed to investigate interactive effects of 

two global change drivers of significant importance for soil and fungal systems. We test the 

following hypotheses: 1. Rising temperature will lead to higher fungal activity resulting in 

higher fungal contribution to soil aggregation as compared to control settings. 2. Gradually 

rising temperatures will affect fungal activity and soil aggregation less than abrupt 

temperature change. 3. Microplastic fibers will promote fungal activity and fungal 
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contributions to soil aggregation. 4. Microplastic fibers and increasing temperature will 

interact in their effects on fungal activity and soil aggregation. 

2.3 Materials and methods 

2.3.1 Microfiber 

In this experiment, we focus on microplastic fibers, since in a previous experiment plastic 

fibers elicited stronger effects on soil aggregation than fragments or beads (de Souza 

Machado et al., 2018c). Additionally, recent studies found that atmospheric deposition of 

microplastic fibers is an important source of soil contamination (Dris et al., 2016; Zhang and 

Liu, 2018; Henry et al., 2019). From the many available polymer types, we chose polyacrylic 

(PAN) fibres, which are produced from acrylonitrile. Polyacrylic fibers are easy to process 

and can affect soil aggregation (de Souza Machado et al., 2018c). We produced microfibers 

by manually cutting 100% acrylic “Bravo” yarn (schachenmayr.com) into length ranges from 

0.37 to 3.14 mm (Appendix Figure A2.1). The diameter of these polyacrylic fibers was 

0.026± 0.005 mm. The microfibers were sterilized by microwaving and subsequently added 

to the soil as 0.4% (w/w), 0.4% was determined as the upper limit concentration in previous 

study in our lab, which was determined based on the highest concentration at which soils 

experienced minor changes in volume after the addition of linear microplastics (de Souza 

Machado et al., 2018c). The sterilized fibers were placed on PDA (see below) plates, no 

contamination was observed after 7 days.  

2.3.2 Fungi inoculum preparation 

We selected five fungal strains from a set of filamentous fungi maintained in our lab 

(Andrade-Linares et al., 2016), the method of identification were in Appendix Table A2.1, 

originally isolated from a natural semi-arid grassland (Mallnow Lebus, Brandenburg, 

Germany, 52°27.7780' N, 14°29.3490' E): RLCS 01, RLCS 05, RLCS 06, RLCS 07, RLCS 

08, the species are: Mucor fragilis, Fusarium sp., Chaetomium angustispirale, 

Amphisphaeriaceae strain 1, Gibberella tricincta, respectively (Appendix Table A2.1). 

Instead of referring to a species name, we address our strains solely with the identifier RLCS 

following with the strain-specific number. Strains are sorted by colony radial extension rate 

from high to low (Appendix Table A2.1). The fungal strain information table is in the 

Appendix Table A2.1. The fungal strains were filamentous, saprobic fungi, selected for 

comparable growth rate on potato dextrose agar (PDA X931.2, Roth, Germany) (Zheng et al., 
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2018), and optimum growth temperature around 25 ℃ (data not shown here). They exerted 

different ability in forming soil aggregates (Lehmann et al., 2019b), RLCS 01 is the poorest 

soil aggregator while RLCS 08 is the best. Though fungi may not performance the same each 

time, by this, we avoid confounding effects by differences in produced fungal biomass, while 

covering variance of soil aggregation capability.  Fungi were cultured in potato dextrose 

broth (PDB CP74.2, Roth, Germany) for 4 days on a rotary shaker (New Brunswick™, 

Eppendorf) at 150 rpm. Hyphal fragments for inoculation were produced by disrupting the 

mycelium with glass beads (diameter = 0.25- 0.5 mm; Roth, Germany) shaken on a vortex 

mixer at highest speed for 1 min (Vortex-Genie, Scientific Industries, U.S.A). The resulting 

suspension was passed through a 20 µm nylon membrane to retrieve fungal fragments of a 

homogeneous size. In order to minimize the difference in propagule numbers, fungal 

mycelium fragments were diluted in PDB to a concentration of 40-100 fragments per 20 µl. 

In a preliminary test, we plated the mycelium fragment solutions of the different strains and 

counted the emerging colonies (Appendix Table A2.2). For each strain, we prepared final 

inoculum suspensions with the appropriate dilution factor. We used 20 µl of mycelium 

fragment-PDB suspension for inoculation and 20 µL of mycelium-free PDB for the controls. 

2.3.3 Incubated soil 

Fresh soil was collected from Mallnow Lebus, a dry grassland in a natural reserve 

(Brandenburg, Germany, 52°27.7780' N, 14°29.3490' E) characterized as a sandy loam soil 

texture(Horn et al., 2015), from which the focal fungal strains had been originally isolated In 

this study,  soil was sieved (1 mm) and thoroughly homogenized; this method is commonly 

used to measure macroaggregate formation in laboratory incubations (De Gryze et al., 2006). 

We placed 10 g (± 0.01 g) of the soil in test tubes which were autoclaved twice (121℃ for 

20min).  After drying the soil at 60℃, we transferred the sterilized soil into Petri dishes (60 × 

15 mm) to mix the sterilized soil with 40 mg of microfiber and 20 µl of fungal homogenate, 

depending on the treatment. The soil mixture was uniformly wetted with sterilized distilled 

water amended with glucose to keep water content at 80% water holding capacity and to 

ensure that every microcosm received 1.89 mg C-glucose to stimulate fungal growth. Glucose 

as an easily decomposable substrate that can rapidly stimulate the growth of soil 

microorganisms and has no direct effect on macroaggregation (Abiven et al., 2008), and our 

own preliminary data (not shown here) also confirmed this. Controls without inoculation also 

received the same amount of water and glucose. 
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All samples were sealed with parafilm and placed into plastic boxes with covers. We placed 

wet paper towels inside the boxes to maintain high air humidity to prevent the soil from 

drying. Samples were incubated for 42 days during which the temperature treatments were 

applied. 

2.3.4 Temperature treatment 

We incubated all microcosms at ambient temperature (25 ℃) for the first 7 days to let 

inoculants establish. To realize the gradually rising temperature, we increased temperature by 

3 °C from 25 ℃ to 28 ℃ at the speed of 0.15 ℃ day-1 from day 8 to day 27. For the abrupt 

temperature treatment, the 3 °C increase was applied on day 18. This difference in timing 

ensured that the mean temperature was the same for the gradual and abrupt temperature 

treatment (Appendix Figure A2.2). We increased temperature by 3℃ based on climate 

models,  which predict that the mean annual global surface temperature will increase by 1- 

3.5 °C until 2100 (Beckage et al., 2018). 

2.3.5 Experimental design 

Each of the five fungal isolates and the control were exposed to the combinations of 

microfiber (yes (M)/no (C)) and temperature (ambient (0), abrupt (+3abrupt) and gradual 

(+3gradual)), resulting in 6 treatments: T0-C, T0-M, T+3abrupt-C, T+3abrupt-M, T+3gradual-C, 

T+3gradual-M. Each treatment had 7 replicates, for a total of 252 experimental units. The units 

under elevated temperature were placed in three independent incubators split in groups of 

three and two-times two units. By this approach, we were able to also replicate increased 

temperature and account for the variability among incubators. 

2.3.6 Aggregate stability 

We dried soil samples at 40 ℃ and then sieved them (2 mm). Before wet-sieving, 4.0 g dry 

soil was placed into sieves for capillary rewetting and subsequently submerged in deionized 

water for 5 min. We used 0.25 mm sieves to test the stability of the soil fraction >0.25 mm 

(macroaggregate) against water as disintegrating force. For the test, sieves carrying the 

wetted soil samples were placed in a wet-sieving machine (Eijkelkamp, Netherlands) for 3 

min. The fractions left on the sieves were dried at 60 ℃ for 24 h. The coarse matter (sand and 

organic matter fraction) was extracted before calculation of the percent water stable 

aggregates (WSA):  
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%𝑾𝑺𝑨 =
𝐰𝐚𝐭𝐞𝐫	𝐬𝐭𝐚𝐛𝐥𝐞	𝐟𝐫𝐚𝐜𝐭𝐢𝐨𝐧 − 𝐜𝐨𝐚𝐫𝐬𝐞	𝐦𝐚𝐭𝐭𝐞𝐫

𝟒𝒈 − 𝒄𝒐𝒂𝒓𝒔𝒆	𝒎𝒂𝒕𝒕𝒆𝒓  

2.3.7 Hydrolysis of fluorescein diacetate 

We measured he fluorescein diacetate (FDA) hydrolytic activity to indicate fungal activity, 

which is considered as an indicator of fungal biomass (Gaspar et al., 2001). We quantified the 

hydrolysis of fluorescein diacetate (FDA, Sigma-Aldrich) by adding 0.75 ml of 100 mM of 

potassium phosphate buffer (pH 7.6) and 0.1 ml of 2 mg/ml FDA (Adam and Duncan, 2001) 

to 0.5 g of dry soil. The reaction mixture was placed on a shaker (New Brunswick™, 

Eppendorf) at 150 rpm at 30 °C for 2 h. The reaction was terminated by adding 0.75 ml of 

acetone (Roth, Germany). After shaking and centrifugation of samples for 5 min at 3000 rpm, 

the extracted fluorescein was determined at 490 nm by spectrophotometry (UV-3100 PC, 

VWRTM, Germany). 

2.3.8 Statistical analysis 

We analyzed the effects of elevated temperature, microfiber addition and fungal species by 

using three-way ANOVAs. We used Shapiro Wilk test and Bartlett test to check the 

normality of residuals and the homogeneity of variances, respectively, with a p-value cutoff 

of 0.05. We compared the difference between the treatments according to Duncan’s test or 

Student’s t-test at a probability level of 5%. All statistics were conducted in R (R Core Team, 

2017) with the basic packages, while the plots were created with the graphic package 

‘ggplot2’ (Hadley and Winston, 2016). 

2.4 Results 

2.4.1 Fungal contributions to soil aggregation 

We investigated under ambient, non-contaminated conditions how fungal inoculation affected 

soil aggregation. We detected a significantly higher (p < 0.05) macroaggregate stability than 

in control samples with the exception of the strain RLCS 01 (Figure 2.1 and Appendix Table 

A2.3), the strain RLCS 06 had the strongest positive effect (Appendix Table A2.3) leading to 

a 227.49% increase in the percentage of WSA. The ability to form stable aggregates at 25 ℃ 

varies among fungi.  
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Table 2.1 ANOVA results for the effects of fungi, temperature, plastic micofibers and the 

interaction of these factors on percentage of water-stable macroaggregates. 

Source F value P value 

Fungi  96.489 < 0.0001*** 

Temperature  4.066 0.018* 

Microfibers 68.136 < 0.0001*** 

Fungi × Temperature  3.322 0.0005*** 

Fungi × Microfibers 38.384 < 0.0001*** 

Temperature × Microfibers 2.351 0.098 

 

Fungi × Temperature × 

Microfibers   

3.438 0.0003*** 

The asterisks, *, **, *** denote significant differences (p < 0.05, < 0.01 and < 0.001, 

respectively) 
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Figure 2.1 The effects of temperature and microplastic fiber addition on the percentage of 

water stable aggregates depicted as violin/ box plots. Different capital letters indicate 

significant differences (Duncan’s test, p < 0.05) among different fungi for the same treatment 

(i.e. in columns), and lowercase letters indicate significant differences (Duncan’s test, p < 
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0.05) among temperature treatments in terms of microplastic being present or absent (that is, 

referring to each part of a row). The asterisks, *, **, *** denote significant differences (t-test, 

p < 0.05, < 0.01 and < 0.001, respectively) between microplastic being present and absent 

within the same temperature treatment. The dots (•) represent outliers, squares (▪) represent 

means. 

 

2.4.2 Temperature effects on fungal contributions to soil aggregation 

Elevated temperature alone caused increase in WSA for soil with RLCS 01, RLCS 07 and 

RLCS 08, caused no change in WSA for soil with RLCS 05. Nevertheless, WSA of soil with 

RLCS 06 significantly decreased (p < 0.05) under gradually elevated temperature.  

In case of soil with RLCS 01 and RLCS 06, we observed a significant difference (p < 0.05) in 

the percentage of WSA between abrupt change and gradual change. 

2.4.3 Plastic microfiber effects on fungal contribution to soil aggregation 

Regardless of rising temperature, microfiber addition dramatically decreased the percentage 

of WSA in soil with RLCS 06 and RLCS 07 by 49.08% and 32.69%, respectively, but 

significantly increased the percentage of WSA in soil with RLCS 01 by 86.33%. Microfiber 

addition alone, in the absence of fungi, had no significant effect (p > 0.05) on the percentage 

of WSA. 

2.4.4 Interactive effects of temperature and plastic microfibers on fungal contributions to soil 

aggregation 

We observed significant interactive effects between elevated temperature and plastic 

microfibers (Table 2.1). For soil with RLCS 01, RLCS 07 and RLCS 08, rising temperature 

caused a significant increase (p < 0.05) in the percentage of WSA for treatment T+3abrupt-C, 

T+3gradual-C, T+3gradual-C, compared to control (T0-C). Such increases disappeared in the 

presence of microfibers, resulting in no significant difference in WSA between ambient and 

elevated temperature. 

The effects of rising temperature on WSA might even shift in the presence of microfibers. 

For soil with RLCS 07 and RLCS 08, abruptly and gradually elevated temperature, which 

respectively caused the highest stability, unexpectedly led to the lowest WSA in the presence 
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of microfibers, indicating that effects of rising temperature might even turn to negative, 

leading to greater loss in the percentage of WSA than microfiber alone. Moreover, for soil 

with RLCS 06, though gradually elevated temperature had negative effect, no significant 

difference (p < 0.05) was observed in the percentage of WSA between T+3agradual-M and T0-M 

in the presence of microfibers.  

In our study, the effect of microfibers also depended on temperature change patterns. Under 

abruptly elevated temperature, for soil with RLCS 06, microfibers caused substantial 

decreases in the percentage of WSA by 66.3%, which were higher than the decreases of 

25.68% under gradually elevated temperature. Under abruptly elevated temperature, for soil 

with RLCS 08, microfibers caused a greater decrease in the percentage of WSA than under 

abruptly increased temperature.  

 

Table 2.2 ANOVA results for the effects of fungi, temperature (abrupt and gradually rising 

temperatures), plastic microfiber and the interaction of these factors on FDA hydrolysis 

activity of soil. 

Source F value Pr (>F) 

Fungi 22.58 < 0.0001*** 

Temperature 3.12 0.047* 

Microfibers 2.40 0.12 

Fungi × Temperature 1.44 0.18 

Fungi × Microfibers 18.94 < 0.0001*** 

Temperature × Microfibers 0.34 0.71 

Fungi × Temperature × 

Microfibers 

7.21 < 0.0001*** 

The asterisks, *, **, *** denote significant differences (p < 0.05, < 0.01 and < 0.001, 

respectively) 
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Figure 2.2 The effects of temperature and microplastic fiber addition on FDA hydrolysis 

activity depicted as violin/ box plots. Different capital letters indicate significant differences 

(Duncan’s test, p < 0.05) among different fungi for the same treatment (i.e. in columns), and 

lowercase letters indicate significant differences (Duncan’s test, p < 0.05) among temperature 

treatments in terms of microplastic being present or absent (that is, referring to each part of a 

row). The asterisks, *, **, *** denote significant differences (t-test, p < 0.05, < 0.01 and < 

0.001, respectively) between microplastic being present and absent within the same 

temperature treatment. The dots (•) represent outliers, squares (▪) represent means. 
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2.4.5 FDA hydrolysis activity 

The interactive effect of increasing temperature and microfibers on FDA hydrolysis activity 

was significant (Table 2.2). Generally, FDA hydrolysis activity was positively correlated with 

WSA, especially for soil with RLCS 01 (r = 0.44, p = 0.0039) and RLCS 08 (r = 0.61, p = 

2.1e-05). Rising temperature alone caused significant increase (p < 0.05) in FDA hydrolysis 

activity for soil with RLCS 01, RLCS 07 and RLCS 08, which is consistent with the WSA 

data. Microfiber alone led to higher FDA in soil with RLCS 01 while causing lower FDA in 

soil with RLCS 06 and RLCS 08 (Figure 2.2).  

2.5 Discussion 

We here present data from a laboratory study investigating for the first time the impact of 

plastic microfibers and temperature increase on fungal effects on soil aggregation. We find 

that effects were dependent on the fungal species, and that microfibers and temperature 

interacted in complex ways. In the following, we discuss results in a progression from main 

effects to their interaction. 

We found the ability to form stable aggregates at ambient temperature varies among fungi. 

Previous work demonstrated that traits of fungi have different roles in formation, stabilization 

and disintegration of aggregation (Lehmann and Rillig, 2015), and thus fungi that vary in 

traits are expected to differently affect WSA.  Basically, fungal strains of the Ascomycota 

could form aggregates efficiently while strains belonged to the Mucoromycota are poor 

aggregate formers (Lynch and Elliott, 1983; Tisdall et al., 2012). According to our previous 

study, the traits of fungi contribute to the aggregate formation include high biomass density, 

large hyphal diameters, low leucine aminopeptidase activity, et al. (Lehmann et al., 2019b). 

The increase in WSA due to increasing temperature might be attributed to enhanced hyphal 

growth and higher levels of secretion of bindings agents; however, warming also accelerates 

decomposition of such binding agents, which are important for forming stable soil aggregates 

(Tisdall and Oades, 1982), resulting in breakdown of aggregates. Given these different 

mechanisms, the overall effects might be species-specific. RLCS 06 (Chaetomium 

angustispirale) as a cellulolytic fungus has a strong ability to degrade cellulose(Sahab Yadav 

and Bagool, 2015), and thus it is possible that RLCS 06 accelerated decomposition of soil 

organic matter under gradually increased temperature, resulting in less WSA. 

Even though we hypothesized that gradually increased temperature would lead to milder 

effects on WSA, changes in the percentage of WSA caused by gradually rising temperature 
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were still substantial in some cases, which probably is due to the rate of change being 

relatively high (0.15 ℃ day-1), thus potentially not permitting fungi to adjust to the warming. 

However, the significant difference (p < 0.05) in the percentage of WSA between 

temperature change patterns, for soil with RLCS 01 and RLCS 06 , still underscored that 

gradually rising temperature should be explored more in laboratory warming experiments to 

assess differential effects.  

Decreases in WSA due to microfiber addition were observed in previous studies (de Souza 

Machado et al., 2018c; Zhang and Liu, 2018). Polyacrylic fibers significantly decreased the 

amount of water stable aggregates (de Souza Machado et al., 2018c). Possible reasons include 

plastic fibers preventing microaggregates from effectively being integrated into 

macroaggregates (Zhang and Liu, 2018), and the inclusion of microfibers within 

macroaggregates (Bläsing and Amelung, 2018), finally leading to less stable 

macroaggregates. However, RLCS 01 led to higher WSA when microfibers were added, a 

response for which an explanation is not clear. Microfiber increased FDA in soil with RLCS 

01, therefore this strain was likely able to maintain or even have higher activity in the 

presence of microfiber, which may partially explain the observed effect. Previous studies 

found some fungal species could degrade plastic (Cappitelli and Sorlini, 2008; Moharir and 

Kumar, 2019). The polyacrylic polymers used here were found to be mineralized by white- 

rot fungi (Sutherland et al., 1997) which are capable of degrading the most recalcitrant 

biological polymers (i.e., lignin) (Kirk et al., 1978). Nevertheless, for our experimental setup, 

we do not use white- rot fungi, and we also do not see a confounding effect by the potential 

carbon utilization from polyacrylic fibers by our fungi. We provided sufficient, easily 

available organic C for the fungi here, such that any utilization of C from the fibers should 

have played a minor role.  

Microfiber addition alone, in the absence of fungi, had no significant effect (p > 0.05) on the 

percentage of WSA. This suggests that effects of microfibers on soil aggregation require the 

presence of soil biota (Lehmann et al., 2019a); the latter are necessary to build soil 

aggregates, in our experiment fungi, but incubating soil with just the microfibers evidently 

had no deleterious direct (physical) effects on WSA.   

Microfiber addition negated the positive effect of rising temperature on WSA in the case 

RLCS 01, RLCS 07 and RLCS 08. Nonetheless, the effects of these two factors were not 

additive. Regarding RLCS 07 and RLCS 08, effects of rising temperature even turned out to 

be negative in the presence of microfibers, leading to greater loss in the percentage of WSA 

than microfiber alone. We currently do not know what caused this effect. This was most 
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likely because rising temperature led to faster fungal growth together with faster 

decomposition of soil organic matter increasing the production of binding agents for soil 

aggregates, thus resulting in more aggregate disintegration (Rillig et al., 2002) and formation 

under rising temperature, in other words a greater turnover of macroaggregates. Microfibers 

can be entrapped within macroaggregates (Bläsing and Amelung, 2018), perhaps leading to 

less stable macroaggregates. Thereby, when higher temperatures benefited WSA, microfiber 

fibers might be incorporated into newly forming macroaggregates, resulting in less stable 

aggregates. Moreover, for soil with RLCS 06, the negative effects of rising temperature 

disappeared in the presence of microfibers, it is possible that RLCS 06 accelerated 

decomposition of soil organic matter under gradually elevated temperature, thus fewer 

microfibers became incorporated into aggregates when the effect of gradually elevated 

temperature on WSA was negative; this could explain why the negative effect of gradually 

elevated temperature on WSA disappeared in the presence of microfiber. 

In our study, the effect of microfibers also depended on temperature change patterns. We 

hypothesized that the effect of microfibers on WSA depended on how WSA responded to the 

temperature increase pattern. 

An increase in FDA hydrolysis activity caused by rising temperature was shown previously 

(Sinsabaugh et al., 2008; Baldrian et al., 2013), indicating that warming increased fungal 

activity. Nevertheless, the differences of FDA between rising temperature and ambient 

temperature are not statistically clear except for soil with RLCS 08. We suggest that even 

small changes in FDA might cause large changes in the percentage of WSA, or that fungal 

effects not captured by FDA are important. The rising temperature might enhance the 

expression of traits that benefit formation and stabilization of aggregates by certain fungi: 

RLCS 01, RLCS 07 and RLCS 08. Such traits include the stability and longevity of hyphae, 

entanglement potential of soil particles (Lehmann and Rillig, 2015; Rillig et al., 2015) and 

also higher secretion rate of protein and metabolic products in warmer conditions 

(Papagianni, 2004).  

Further research is needed to measure fungi-caused decomposition and fungal biomass 

density, in order to decouple the negative effect and positive effect of fungi on soil 

aggregation formation. Therefore, we should develop the method which could distinguish the 

plastic C from soil C, such as using 13C- labeled microplastic (Zumstein et al., 2018). 
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2.6 Conclusion 

In our study, plastic microfibers might eliminate the positive effect of temperature on soil 

aggregation, and could even lead to greater losses in the percentage of WSA. Thus, we 

emphasize the importance of considering the potentially strong decrease due to interactive 

effects between microplastics and global warming. Our study lends further support to general 

findings of prior research on the interactive effects of environmental factors on soil function 

(García et al., 2018; Tekin et al., 2018), suggesting strongly that global change effects should 

be analyzed not only as single factors but also in combination. 

We found that sensitivities to the environmental factors differed among fungal species, and 

thus our study opens the door to the examination of the behavior of fungal communities when 

exposed to this combination of environmental factors. 
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3.1 Abstract 

Microplastic as an anthropogenic pollutant accumulates in terrestrial ecosystems over time, 

threatening soil quality and health, for example by decreasing aggregate stability. Organic 

matter addition is an efficient approach to promote aggregate stability, yet little is known 

about whether microplastic can reduce the beneficial effect of organic matter on aggregate 

stability. We investigated the impacts of microplastic fibers in the presence or absence of 

different organic materials by carrying out a soil incubation experiment. This experiment was 

set up as a fully factorial design containing all combinations of microplastic fibers (no 

microplastic fiber addition, two different types of polyester fibers, and polyacrylic) and 

organic matter (no organic matter addition, Medicago lupulina leaves, Plantago lanceolata 

leaves, wheat straw, and hemp stems). We evaluated the percentage of water-stable 

aggregates (WSA) and activities of four soil enzymes (β-glucosidase, β-D-celluliosidase, N-

acetyl-b-glucosaminidase, phosphatase). Organic matter addition increased WSA and enzyme 

activities, as expected. In particular, Plantago or wheat straw addition increased WSA and 

enzyme activities by 224.77% or 281.65 % and 298.51% or 55.45%, respectively. 

Microplastic fibers had no effect on WSA and enzyme activities in the soil without organic 

matter addition, but decreased WSA and enzyme activities by 26.20% or 37.57 % and 

23.85% or 26.11%, respectively, in the presence of Plantago or wheat straw. Our study shows 

that the effects of microplastic fibers on soil aggregation and enzyme activities are organic 

matter dependent. A possible reason is that Plantago and wheat straw addition stimulated soil 

aggregation to a greater degree, resulting in more newly formed aggregates containing 

microplastic, the incorporated microplastic fibers led to less stable aggregates, and decrease 

in enzyme activities. This highlights an important aspect of the context dependency of 

microplastic effects in soil and on soil health. Our results also suggest risks for soil stability 

associated with organic matter additions, such as is common in agroecosystems, when 

microplastics are present. 

3.2 Introduction 

Microplastics as a group of anthropogenic contaminants are pervasive and persistent. 

Microplastic is widely studied in marine ecosystems (Eriksen et al., 2014; Bergmann et al., 
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2015; Jambeck et al., 2015), and only in recent years has attention shifted to terrestrial 

ecosystems (Rillig, 2012; Bläsing and Amelung, 2018; de Souza Machado et al., 2018a; 

Lozano and Rillig, 2020; Zhou et al., 2020). In fact, microplastic has been proposed as a new 

global change factor (Rillig and Lehmann, 2020). We adopted the definition that m 

icroplastics are plastics with size smaller than 5 mm (Moore, 2008; Barnes et al., 2009), with 

various shapes (e.g., fiber, fragment, film) and polymer types (e.g., polyester, polyethylene, 

polyacrylic, polypropylene), which are intentionally produced (e.g., microplastic beads in 

cosmetics) or fragmented into micro-sized plastics by natural or anthropogenic factors, such 

as photooxidation (Yakimets et al., 2004; Gewert et al., 2015), microbial degradation (Zettler 

et al., 2013; Moharir and Kumar, 2019) or ploughing (Hann et al., 2016). 

In microplastic polluted soil, microplastic fibers are a dominant shape (Singh et al., 2020; 

Zhou et al., 2020). Microplastic fibers derived from textiles are commonly discovered in 

wastewater (Pirc et al., 2016; Athey et al., 2020), they can span a length range of 0.3- 25.0 

mm. These microplastic fibers derived from textiles are therefore present in sludge and 

biosolids, which are applied on agricultural fields as fertilizer (Henry et al., 2019; Crossman 

et al., 2020; Zhang et al., 2020), likely leading to the accumulation of microplastic fibers in 

agricultural soils (Corradini et al., 2019; van den Berg et al., 2020). It is estimated that 

1.56 × 1014 microplastic particles could enter the soil and other natural environments through 

sludge per year in China alone (Li et al., 2018). The majority of those fibers are made of 

polyester and polyacrylic. Moreover, atmospheric deposition of microplastic fibers is an 

important source of soil contamination, as hundreds of particles are deposited from the 

atmosphere per square meter per day (Cai et al., 2017; Dris et al., 2017; Brahney et al., 2020). 

Further anthropogenic activities, such as tillage, and also movement by soil animals can 

accelerate the incorporation of microplastic fibers into the soil (Huerta Lwanga et al., 2017; 

Rillig et al., 2017). 

Microplastic fibers have been shown to influence soil quality and health by being detrimental 

to soil aggregate stability (de Souza Machado et al., 2018b; Lehmann et al., 2019a) and 

altering microbial activity (Liu et al., 2017; de Souza Machado et al., 2018b; Huang et al., 

2019). Stability of soil aggregates, a fundamental soil physical property, is crucial to resist 

erosion, support water infiltration, water retention, aeration, and fertility (Bryan, 1968; 

Tisdall and Oades, 1982; Boix-Fayos et al., 2001; Li et al., 2016). Soil is a dynamic and 

complex system, and in particular the stability of soil aggregates is influenced by many 

factors including organic matter input, soil texture, clay mineralogy, and microbial 
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populations (Seta and Karathanasis, 1996; Bossuyt et al., 2001; Wagner et al., 2007). Among 

these, organic matter is one of the most important factors determining aggregation (Abiven et 

al., 2008). The addition of organic matter promotes stable aggregation for example by 

stimulating microbial growth and metabolism, leading to increases in microbially derived 

metabolites such as polysaccharides and proteins, which, together with  plant-derived 

polysaccharides act as glueing agents that facilitate aggregate stabilization (Tisdall, 1994; 

Wright and Upadhyaya, 1998; Caesar-Tonthat, 2002). The degradability of organic matter / 

litter is an inherent property of the material, leading to different breakdown products being 

released. Therefore, the effects of organic matter on aggregation varied among different types 

of organic matter (Abiven et al., 2008). We have previously shown that under soil conditions 

favorable to the formation of aggregates, microplastic fiber addition could reduce the stability 

of aggregates (Liang et al., 2019), because newly formed aggregates are likely to have 

incorporated microplastic fibers which can reduce stability of aggregates, likely by 

introducing fracture points. Given that organic matter addition facilitates the formation of 

aggregates, we assume that microplastic fibers have a more detrimental effect on WSA when 

organic matter is added, and that the magnitude of the effect depends on the type of organic 

matter.  

Soil enzyme activity is key to biological processes, driving nutrient cycles in terrestrial 

ecosystems. Enzyme activity as an important indicator of microbial activity is frequently 

altered by microplastics (de Souza Machado et al., 2018b; Liang et al., 2019). As 

microplastic fibers tend to reduce bulk density and increase soil porosity (de Souza Machado 

et al., 2018b; Zhang et al., 2019a), microplastic fibers are expected to improve aeration, and 

thus increase enzyme activity. Moreover, microplastics themselves as organic carbon might 

introduce an artificial carbon source (Rillig, 2018), possibly influencing enzyme activity by 

being a potential substrate. However, the overall outcome of the interactive effects of 

microplastic fibers and organic matter on aggregates and enzyme activity remains unknown, 

and is the subject of our investigation here. 

We carried out a soil incubation experiment with all combinations of 3 types of microplastic 

fibers and 4 types of organic matter. We hypothesize: 1) soil aggregation will be decreased by 

microplastic fiber, but effects will depend on the type of organic matter; 2) microplastic 

fibers will increase soil enzymatic activities. 
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3.3 Materials and methods 

3.3.1 Microplastic fiber 

Two polyester products (polyester1, PE1: Rope Paraloc 137 Mamutec polyester white, item 

number, 8442172, Hornbach.de, diameter: 0.03mm, density: 1.45 g cm-3; polyester 2, PE2: 

Dolphin Fine 5 x 100 g Himalaya Knitting Wool, Baby Wool, 500 g Super Bulky Wool, 

diameter: 0.008mm, density: 1.37 g cm-3) and one polyacrylic, PA (100% acrylic “Bravo” 

yarn, (schachenmayr.com), diameter: 0.026mm, density: 1.31 g cm-3) product were used in 

this study (Appendix Figure A3.1). These types of plastics are widely used in textiles (Carney 

Almroth et al., 2018), and have previously been shown to decrease soil aggregation (de Souza 

Machado et al., 2018b).We produced microplastic fibers by manually cutting them into 

fragments of approximately 5 mm in length, the average lengths of PE1, PE2, and PA are 

4.56±0.94 mm, 4.20±1.37 mm, 4.05±0.1.14mm, respectively, the size distributions are given 

in Appendix Figure A3.2. The estimated particle numbers of PE1, PE2, and PA are 193, 2.9 

× 104, 2.87 × 103 items g-1 dry soil, respectively  These lengths were chosen to match the 

criteria of microplastic upper limit and the general size range of secondary microplastic fibers 

produced by washing of clothes made from synthetic fibers (Pirc et al. 2016). We rinsed the 

fibers with tap water for 5min to remove soluble chemicals, then dried them at 60 ℃ for 24 h, 

and subsequently microwaved them for 3 min to reduce any microbial populations adhering 

to the material. The microwaving does not alter the physical appearance of the treated 

microplastic products (de Souza Machado et al. 2018b). The microplastic fibers were mixed 

into the soil at a concentration of 0.3% (w/w), towards the upper limit of concentrations used 

in a previous study (de Souza Machado et al., 2018b), such concentration was also applied in 

other study (Zhang et al., 2019b). The concentration 0.3% we used is within the 

contamination range in a plastic industrial area, the soil in which contained 0.03% to 6.7% of 

microplastic (Fuller and Gautam, 2016). 

3.3.2 Organic matter 

We chose four different types of organic matter: Medicago lupulina leaves, Plantago 

lanceolata leaves, wheat straw (MultiFit, Item no.: 1008159, Krefeld, Germany), and hemp 

stems (REAL NATURE, Item no.: 1259176, Krefeld, Germany) (Appendix Figure A3.3). 

Medicago lupulina and Plantago lanceolata leaf material were chosen as typical species from 

the local grassland, which were collected from plants previously grown in our greenhouse, 
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wheat straw was chosen as the type of organic matter widely applied in agriculture for soil 

amendments, hemp was used to represent woody plant litter. Medicago, Plantago, straw and 

hemp formed a gradient of litter quality with C:N ratios as 12.85±0.11%, 14.76±0.29%, 

133.03±2.18%, 153.04±0.70, respectively; the decomposition of Medicago was the fastest, 

followed by Plantago, and straw, with hemp being the slowest to decompose (Appendix 

Figure A3.4). Before adding organic matter to our experiment, we ground the material using 

a blender (Philips Pro Blend 6 RD, Germany) and sieved to keep size between 0.5 mm and 2 

mm. We added organic matter with a concentration of 0.8% (w/w) to our test systems. The 

concentration of 0.8% was below the saturation level of organic matter addition in our test 

soil (Appendix Figure A3.5). 

3.3.3 Experimental design 

This experiment was set up as a fully factorial design and contained all combinations of 

microplastic fibers (no microplastic fiber addition (No mf), PE1, PE2, PA) and organic 

matters (no organic matter addition (No OM), Medicago, Plantago, wheat straw, hemp 

stems), resulting in 20 treatments including the controls. Each treatment had 8 replicates for a 

total of 160 experimental units.  

3.3.4 Soil incubation 

Fresh soil was collected from a local grassland (Berlin, Germany) with a sandy loam texture, 

an Albic Luvisol (Rillig et al., 2010). Soil was sieved < 0.5 mm in order to reduce the amount 

of larger soil aggregates, thus intensifying the effect of organic matter addition on aggregate 

formation. Reducing aggregates beforehand is commonly used to measure macroaggregate 

formation in laboratory incubations (De Gryze et al., 2005). We mixed 20 g of the dry soil 

with 60 mg of microplastic fibers by steel spoon for 3 minutes, achieving a homogeneous 

distribution of fibers as no obvious fiber clusters could be observed by eye, then we mixed 

the prepared soil with 160 mg of organic matter of the different types for 30s which is 

sufficient time to achieve an even distribution of organic matter. We applied the 3.5 minutes 

of mixing time to the soil without microplastic or organic matter addition aiming for the same 

level of disturbance. The soil mixture was transferred to a 50 ml falcon tube by using a steel 

spoon, the soil mixture was placed into the tube carefully in order to maintain the distribution 

of microplastic fiber in soil we achieved after mixing. Then we slowly wetted soil with 

distilled water by injecting water into soil by using a syringe, the water passively spread 
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throughout our test system. We kept water content at 60% water holding capacity. Tubes 

were then closed with a hydrophobic vented cap to allow gas exchange. We centrifuged all 

tubes with soils at 100 rpm/s for 1 min to minimize any cracks in the soil (Brackin et al., 

2013), and then incubated them at 25 ℃ in the dark for 42 days, we assumed organic matter 

might achieve an intensive effect on aggregate stability after 42 days (Abiven et al., 2008). 

3.3.5 Aggregate stability measurement 

To measure soil aggregate stability, we followed the protocol by Kemper and Rosenau 

(2018): the air-dried soils were sieved through a 2 mm sieve and 4.0 g of soils were placed 

into sieves for capillary rewetting in deionized water for 5 min. We used 0.25 mm sieves to 

test the stability of the soil fraction > 0.25 mm (macroaggregates) against water as a 

disintegrating force. For the test, sieves carrying the soil samples were placed in a wet-

sieving machine (Eijkelkamp, Netherlands) and moved vertically (stroke = 1.3 cm, 34 times 

min-1 for 3 min. The fractions left on the sieves were dried at 60 °C for 24 h. After weighing 

the dry fractions, sand particles and organic debris larger than 0.25 mm were extracted from 

the fractions as coarse matter. The calculation of percent water-stable aggregates (WSA) 

was: % WSA= （water stable aggregates - coarse matter) / (4.0 g - coarse matter).  

3.3.6 Enzyme activity measurement 

To assess the ability of the microbial community to acquire nutrients, we measured activities 

of β-glucosidase (cellulose degradation), β-D-celluliosidase (cellulose degradation), N-acetyl-

b-glucosaminidase (chitin degradation), and phosphatase (organic phosphorus mineralisation) 

(Delgado-Baquerizo et al., 2017). These enzymes are key for microbes to acquire C, N and P, 

and are thus at least partially indicative of the function of the microbial community in terms 

of organic matter processing and decomposition (Waldrop et al., 2000). Soil enzymatic 

activity was determined using a high throughput microplate assay, according to Jackson et al. 

(2013). Activities of above enzymes were measured using p-nitrophenyl (pNP) -linked model 

substrates : pNP-β-D-glucopyranoside (Sigma no. N7006), pNP-β-D-cellobioside (Sigma no. 

N5759), pNP-N-acetyl-β-D-glucosaminide (Sigma no. N9376), pNP- phosphate disodium 

salt hexahydrate (Sigma no. 71768), respectively. Briefly, 3.5 g of frozen stored (-20℃) soil 

of each sample was placed in a sterile 50 ml centrifuge tube and mixed with 10 ml of 50 mM 

acetate buffer, and then the mixture was vortexed for 30s to produce a soil slurry. After 

vortexing, the soil slurry was transferred to 96-well microplates. Reaction mixtures in each 
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cell contained 0.150 mL soil slurry and 0.150 mL substrate dissolved in 50 mM sodium 

acetate buffer (pH 5.0). Reaction mixtures were incubated at 25℃ for 2 - 4 h. After 

incubation, microplates were centrifuged at 3000 rpm for 5min, then 0.100 ml of suspension 

was transferred into a new microplate and mixed with 0.200 mL 0.1 M NaOH to stop the 

reaction. Absorbances were determined spectrophotometrically at 410 nm using a microplate 

reader (BioRad, Benchmark Plus, Japan). Enzyme activity was defined as the amount of 

released μmol of p-nitrophenol per gram of dry soil per hour.   

3.3.7 Statistical analysis 

All statistics were conducted in R 3.5.3 (R Core Team, 2017). We analysed the effect size of 

microplastic fibers on WSA and enzyme activity using the package “dabestr” (Ho et al., 

2019) to generate unpaired mean differences and 95% confidence interval (CI) by a 

bootstrapping approach (5000 iterations). This type of analysis estimates the magnitude and 

precision of an effect. To support our findings, we additionally applied two-way ANOVA by 

using generalized least square models in the “nlme” package (Pinheiro et al., 2020). The plots 

were created with the graphic package ‘ggplot2’ (Wickham, 2016).  

3.4 Results 

3.4.1 Stability of soil aggregates 

All types of organic matter increased WSA substantially compared to the control, with wheat 

straw having the most positive effect on WSA [30.7% (95%-CI: 26-35.1)], followed by 

Plantago [24.4% (95%-CI: 20.6-29.1)], hemp stems [24.2% (95%-CI: 19-28.4)], and 

Medicago [16.4% (95%-CI: 11-22.8)].  

The effects of microplastic fibers on WSA strongly depended on the type of added organic 

matter (Figure 3.1, Table 3.1). Microplastic fibers had neutral effects on WSA in soil without 

organic matter addition and soil with Medicago addition. By contrast, all types of 

microplastic fibers exerted negative effects on WSA in soil with Plantago and wheat straw; 

PE2 had negative effects in soil with hemp stem. The most negative effect of microplastic 

fibers on WSA was found in soil with PE1 and Plantago [-13.3%, (95%-CI: -18.7 to -6.55)], 

followed by PE1 and wheat straw [-10.9%, (95%-CI: -16.2 to -6.43)]. Generally, microplastic 

fibers were more detrimental for WSA in soils with added organic matter, while organic 

matter addition was more beneficial to WSA (Figure 3.2). 
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Table 3.1 ANOVA results for the effects of organic matter, microplastic fibers and the 

interaction of these factors on the stability of soil aggregates (WSA), β-Glucosidase (BG) 

activity, cellobiohydrolase (CB) activity,  phosphatase (Phos) activity and N-acetyl-

glucosaminidase (NAG) activity. 

Treatment DF WSA   BG activity   CB activity   Phos activity   NAG activity 

  
F p   F  p   F p   F p   F p 

Organic matter 4 141.29 <.0001   74.83 <.0001   95.98 <.0001   71.84 <.0001   584.18 <.0001 

Microplastic fiber 3 11.38 <.0001   4.78 <.01   3.20 <0.05   2.88 <0.05   1.82 0.15 

Microplastic fiber: 

Organic matter 

12 2.55 <.01   0.61 0.83   0.93 0.52   0.60 0.84   0.98 0.47 

p < 0.05 was considered significant and marked in bold. Degrees of freedom (DF), F- and p-

value for each variable are presented. 
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Figure 3.1. Effects of microplastic fibers on soil water stable aggregates (WSA in %) with the 

addition of different types of organic matter. The upper panel shows the raw data of water 

stable aggregates, data distributions are aligned with corresponding mean and standard 

deviation (n = 8 for each treatment).  The lower panel shows the unpaired mean differences 

of the microplastic fiber addition and control under different organic matter addition. Circles 

and triangles represent the effect size mean (unpaired mean; effect magnitude) and the 

vertical lines the corresponding confidence intervals (effect precision). Negative (arrow head 

down) effect sizes and corresponding CIs of treatment compared to control are depicted in 

black while neutral effects (circle) are colored in gray; neutral effects occur when the CIs 

overlap the dashed zero line (line of no effect). “No OM” represents no organic matter 

addition, “No mf” represents no microplastic fiber addition. 
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Figure 3.2. The heatmap of the effect sizes of microplastic fiber and organic matter on WSA. 

The effect sizes of organic matter on WSA were the unpaired mean differences of organic 

matter addition alone and control (WSAorganic matter – WSANo OM). The effect sizes of 

microplastic fiber are the unpaired mean differences of the microplastic fiber addition and 

control with the addition of the different types of organic matter.(WSAorganic matter_microplastic fiber 

– WSAorganic matter_No mf) The blue text represents the statistically significant negative effect of 

microplastic fiber on WSA, the red text represents the statistically significant positive effect 

on WSA. “No OM” represents no organic matter addition, “No mf” represents no 

microplastic fiber addition. 

 

3.4.2 Enzyme activities 

Organic matter addition stimulated enzyme activities, while microplastic fibers decreased 

enzyme activities in some cases. The effects of microplastic fibers on enzyme activities were 

neutral in soil without organic matter addition, while with organic matter addition, negative 

effects of microplastic fibers appeared (Figure 3.3, Table 3.1). We found the highest loss of 

β-Glucosidase activity in soil with PE1 and Plantago [-1.64 μmol pNP g-1 h-1(95%-CI: -0.03 

to -3.27)], cellobiohydrolase activity in soil with PE2 and hemp stem [-0.19 μmol pNP g-1 h-

1(95%-CI: -0.07 to -0.35)], phosphatase in soil with PE2 and wheat straw [-1.22 μmol pNP g-

1 h-1(95%-CI: -0.47 to -1.96)], N-acetyl-glucosaminidase in soil with PA and wheat straw [-

0.65 μmol pNP g-1 h-1(95%-CI: -0.07 to -1.24)]. 
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We found a similar relationship between effects of microplastic fibers in the presence of 

different types of organic matter and effects of organic matter on β-Glucosidase activity as 

we found in WSA; meaning, the more positive an effect a specific organic material, the more 

detrimental was the impact of added microplastic fibers (Figure 3.4). 

 

Figure 3.3. Effects of microplastic fibers on β-Glucosidase activity (a), cellobiohydrolase 

activity (b), phosphatase activity (c) and N-acetyl-glucosaminidase activity (d) in the 

presence of different types of organic matter. The upper panel shows the raw data of enzyme 

activity, data distributions are aligned with corresponding mean and standard deviation (n = 8 

for each treatment).  The lower panel shows the unpaired mean differences of the 
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microplastic fiber addition and control with different types of organic matter addition. Circles 

and triangles represent the effect size mean (unpaired mean; effect magnitude) and the 

vertical lines the corresponding confidence intervals (effect precision). Negative (arrow head 

down) effect sizes and corresponding CIs of treatment compared to control are depicted in 

black while neutral effects (circle) are shown in gray; neutral effects occur when the CIs 

overlap the dashed zero line (line of no effect). “No OM” represents no organic matter 

addition, “No mf” represents no microplastic fiber addition. 

 
Figure 3.4. The heatmap of the effect sizes of microplastic fiber and organic matter on β-

Glucosidase activity. The effect sizes of organic matter on β-Glucosidase activity were the 

unpaired mean differences of organic matter addition alone and control (β-Glucosidase activityorganic 

matter - β-Glucosidase activityNo OM). The effect sizes of microplastic fiber are the unpaired 

mean differences of the microplastic fiber addition and control with the addition of the 

different types of organic matter (β-Glucosidase activityorganic matter_microplastic fiber - β-

Glucosidase activityorganic matter_No mf). The blue text represents the statistically significant 

negative effect of microplastic fiber on β-Glucosidase activity, the red text represents the 

statistically significant positive effect on β-Glucosidase activity. “No OM” represents no 

organic matter addition, “No mf'' represents no microplastic fiber addition. 

3.5 Discussion 

3.5.1 Effects of microplastic fibers on the stability of soil aggregates (WSA) 
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As we hypothesized, microplastic fibers reduced the stability of aggregates in the presence of 

specific types of organic matter, with the magnitude of the microplastic fiber effects 

dependent on the type of organic matter. This was likely because the addition and subsequent 

microbial processing of organic matter accelerated aggregation, which in turn led to more 

microplastic fibers being incorporated into newly formed aggregates. The concentration of 

microplastic fibers in aggregates was previously observed to have increased with the addition 

of one type of organic matter addition (Zhang and Zhang, 2020). In addition, the increased 

incorporation of microplastic fibers into soil aggregates might produce fracture points, 

therefore reducing the stability of the coarse, sandy soil that we used here. Given that the 

effects of organic matter on aggregation varied among different types of organic matter, the 

amount of increased incorporation of fibers into aggregates might depend on the type of 

added organic matter; this helps explain the phenomenon that microplastic fibers generally 

exerted more negative effects on WSA in soil to which a type of organic matter was added 

that favored soil aggregation. 

In our study, microplastic fibers had no effects on WSA in soil without added organic matter. 

The sandy loam soil we used had limited intrinsic potential to form aggregates, thus there 

must have been only relatively few microplastic fibers that were incorporated into aggregates, 

resulting in no effects of microplastic fibers in soil without added organic matter. We 

assumed organic matter stimulated microbial activity, accelerating the formation of 

aggregates and the integration of fibers into those aggregates. A similar result was found in a 

previous study (Lehmann et al., 2019b): microplastic fiber had no effects on aggregate 

stability in sterile soil, while decreased aggregate stability in soil with a microbial 

community, indicating that microorganisms mediate effects of microplastic fibers on soil 

aggregate stability (Forster, 1990; Lehmann et al., 2017). A contrary result was found in a 

study using clayey non-sterile soil, in which polyester fiber increased macroaggregates 

(Zhang et al., 2019b). Soil mineralogy and clay content play important roles in the formation 

and stability of aggregates (Seta and Karathanasis, 1996), microplastic fibers may have 

different effects on soil aggregates in soils with different textures. Further studies are needed 

to explore the interaction between microplastic and soil minerals. 

Our WSA results also reveal that predictions based on just the type of microplastic fibers 

alone would have failed: effects are dependent on the type of organic matter available for 

microbial processing - and thus on the rate of soil aggregate formation -, and as such our 

study has uncovered an important aspect of context dependency of microplastic effects in 
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soils. However, there is a limitation to our study. The temporal effects of organic matter input 

on soil aggregation are not covered in our study design. Medicago had the lowest C:N ratio, 

thus had the fastest decomposition rate. Therefore, we expected the greatest increase of WSA 

in soil amended with Medicago alone, and also the greatest loss in WSA caused by 

microplastic fibers in soil amended with Medicago. Nevertheless, neither was observed in our 

study. We assumed the Medicago as a rapidly degraded organic matter exhibited the 

maximum aggregate stability before we harvested the experiment, then the aggregate began 

to break down as the binding agents were decomposed (Abiven et al., 2008). Our findings 

could be relevant for agroecosystems: wheat straw is widely used as an organic amendment 

in agriculture due to the benefits it offers, such as increasing sequestration of soil organic 

carbon and improving soil structure (Han et al., 2018; Zhao et al., 2019). However, as 

agricultural fields are prone to microplastic contamination, our study suggests that this can 

lead to unforeseen effects of straw additions on soil properties; an assertion that should now 

be explicitly tested in the field.   

3.5.2 Effects of microplastic fibers on enzymatic activities 

Contrary to our hypothesis, microplastic fibers did not increase enzyme activities, but had 

even negative effects on enzyme activities with the addition of specific types of organic 

matter. The results depended on the microplastic type, but the pattern was not consistent 

across the organic matter treatments. PE2 decreased enzyme activities more frequently than 

PE1 and PAN, which might be attributed to the highest particle numbers of PE2 in each 

experimental unit. Moreover, those negative effects were more likely to appear in the 

presence of straw. This again emphasizes the context dependency of microplastic impacts on 

the soil environment.  Such negative effects of microplastics are also found in other studies, 

as microplastics reduce soil nutrient levels (Yu et al., 2020). We do not know what caused 

this negative response in our study, but microplastic fibers might have caused shifts in the 

microbial community via changing soil physical properties(de Souza Machado et al., 2018b), 

releasing additives (Widén * et al., 2004; Hahladakis et al., 2018) that were not water-soluble 

(fibers were washed before being mixed in the soil) that migrated into the soil (Kim et al., 

2020), or serving as microbial habitats (Huang et al., 2019; Zhang et al., 2019c); the 

enzymatic activities could have changed as a consequence of such community shifts.  

Microplastic fibers had negative effects on enzyme activities in the presence of organic 

matter, which could lead to decreased nutrient uptake into microbes and mineralization rates. 
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The restricted nutrient transfer from organic matter to microbes could change the microbial 

community in the long term, potentially resulting in altered soil functions and processes 

(Waldrop et al., 2000) . Additionally, assuming an accumulation of microplastic fibers in the 

future, decreased enzyme activities could lead to a reduction of plant available nutrients and 

thus ultimately diminish agricultural productivity or crop quality (Paz-Ferreiro et al., 2014).  

Moreover, the decreased nutrient uptake could lead to decreased microbial biomass and 

metabolites, which are important for accumulating stabilized C in soil (Cotrufo et al., 2013; 

Cenini et al., 2015). Nevertheless, decreased enzyme activities accompanied by decreased 

transformation of organic matter could also lead to less C loss, the eventual fate of added C 

could not be predicted from our study due to the scope of our work here. Further studies 

should target long-term C dynamics of added organic matter, to enable prediction of the 

potential effects of microplastic fibers on C sequestration.  

Though soils received different types of microplastic fibers, which varied in diameters, 

particle numbers per experimental unit, and probably varied in their additives, we did not find 

a consistent pattern of the different microplastic fibers across our response variables. In terms 

of WSA, as a previous study found microplastic fibers decreased WSA with increasing 

concentrations of microplastic fibers (de Souza Machado et al., 2018b), we assume the 

decreases in WSA already reached the upper limit response of soil to microplastic fibers in 

our study, resulting in no obvious different effects on WSA among the types of microplastic 

fibers.  

In terms of enzyme activities, we found the decrease in enzyme activities appeared randomly 

among microplastic fibers. We assumed microplastics needed a longer time to reveal their 

effects on the microbial community and thus on microbial function, such as accumulation of 

additives released from aged plastic over time (Bandow et al., 2017). 

Microplastic fibers we produced had higher average length than that microplastic fibers found 

in the environment, with most studies finding fibers of shorter than 1mm(Cai et al., 2017; 

Zhou et al., 2018; Corradini et al., 2019). For our experimental work, it was impractical to 

manually cut fibers that small (but see Schmiedgruber et al., 2019; Frehland et al., 2020).   

3.6 Conclusions 

In our study, microplastic fibers affected soil aggregation by interfering with the formation of 

stable aggregates, with effects dependent on the type of added organic matter. It seems that 
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greater soil aggregation activity leads to increased opportunities for microplastic to interact 

with this biological process; this is very likely due to microplastic fibers becoming integrated 

into aggregates to an increasing degree, leading to subsequent destabilization of these 

structures by as yet unknown mechanisms. Effects of microplastic additions on soil processes 

have been variable, in part likely due to the plastic material itself, but our study points to soil 

properties, in particular soil organic matter, as another important variable contributing to the 

context dependency of such effects in terrestrial ecosystems.  
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4. SOIL CARBON PROTECTION BY AGGREGATES IS INFLUENCED BY 

TEMPERATURE AND MICROBIAL DIVERSITY 

Yun Liang, Eva F. Leifheit, Anika, Lehmann, Matthias C. Rillig 

4.1 Abstract 

The occlusion of litter-derived organic carbon in soil aggregates is a crucial aspect of soil 

organic carbon (SOC) protection. This complex process is influenced by soil microbes and 

environmental factors, among which temperature is a key factor affecting SOC 

decomposition. We investigated the impacts of temperature (ambient temperature of 25°C or 

temperature increased by 2.5°C) and microbial diversity (low, medium and high) on the 

formation of aggregate-protected C by performing a soil incubation experiment. We 

evaluated the percentage of water stable aggregates, C loss, respiration and SOC in different 

soil fractions. Elevated temperature decreased the concentration of which in aggregates; 

microbial diversity was the most important for mineralization: low diversity had the highest 

C loss and the lowest amount of free light fraction (fLF). Though we found increased 

macroaggregates and amounts of macroaggregate-associated C in soil with low microbial 

diversity,  the C concentration in macroaggregates was not increased. Our findings showed 

that decomposition was significantly influenced by microbial diversity in soil, which could be 

important in ecosystems with strong anthropogenic influence. We found that temperature 

mainly affected the formation of aggregate-protected C, which is important for predicting the 

stabilization of SOC in the long term under scenarios of global warming. 

 

Figure 4.1 conceptual figure 
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4.2 Introduction 

Litter input is the dominant source of soil organic carbon (SOC) in most ecosystems. During 

the process of litter decomposition, microbes take up nutrients and carbon compounds for 

growth and metabolism. Microbes secrete proteins and polysaccharides as metabolic by-

products that can attach to mineral surfaces (Tisdall, 1994; Rillig et al., 2007). The adsorption 

of microbial detritus to mineral surfaces seems to be crucial in the formation of stable 

organo-mineral compounds (Kleber et al., 2007). Furthermore, organo-mineral associations 

facilitate soil aggregation, which is a key mechanism of SOC protection (Six et al., 2002; 

Von Lützow et al., 2008). The incorporation of the plant detritus, microbial-derived C and 

necromass into aggregates physically protects those against desiccation or predation, thus 

increasing stable SOC (Elliott et al., 1980; Six et al., 2006). Though macroaggregate 

occluded C will be quickly decomposed (Six et al., 2004; Six and Paustian, 2014), 

macroaggregates still play a crucial role in the occlusion of microaggregates and minerals 

(Six et al., 2004; King et al., 2019). The carbon in microaggregates or associated to minerals 

that is occluded, and thus protected inside macroaggregates, likely is the dominant stable 

SOC pool in most soils (Cotrufo et al., 2019). Therefore, macroaggregates are as important 

for C protection as are microaggregates.  

Microbial diversity is vital in soil carbon cycling functions (Tardy et al., 2015). Many studies 

found positive relationships between microbial diversity and decomposition (Thormann, 

2006; Baumann et al., 2013; Delgado-Baquerizo et al., 2016, 2020). Diverse microbial 

communities contribute to decomposition complementarity, leading to rapid decomposition 

and finally resulting in a higher production of gluing agents or proliferation of fungal hyphae 

that benefit soil aggregation (Tisdall et al., 1978). However, there are also diverging results 

showing a negative relationship between microbial diversity and decomposition (Griffiths et 

al., 2001; Deacon et al., 2006). The relationship between microbial diversity and 

decomposition has been studied for many years, but there is still a knowledge gap concerning 

how microbial diversity affects stable SOC formation, which is important for understanding 

SOC storage.  

Temperature is the dominant factor that influences microbial SOC processing by stimulating 

microbial enzyme activity, leading to increased rates of decomposition, resulting in more CO2 

released by respiration (Hyvonen et al., 2007; Arora et al., 2013). Climate models predict that 

the mean annual global surface temperature will increase by 1- 3.5 °C until 2100 (Beckage et 
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al., 2018), while a global database of soil stock responses to warming suggests that one 

degree of warming could lead to 30-203 petagrams of C loss in the upper soil horizons 

(Crowther et al., 2016). However, decomposition stimulated by elevated temperature is 

restricted by substrate accessibility (Zimmermann et al., 2012; Fissore et al., 2013; Moinet et 

al., 2020). There is increasing consensus that physical protection of carbon compounds 

primarily drives the persistence of soil organic matter rather than the chemical recalcitrance 

of litter inputs (Kleber et al., 2011; Lehmann and Kleber, 2015; Moinet et al., 2020). 

Nevertheless, data on the influence of temperature on the stability or protection of SOC are 

limited. The available results suggest that aggregate-associated C may decrease due to 

warming (Poeplau et al., 2017; Guan et al., 2018).  

We therefore performed an experiment with elevated temperature and microbial diversity 

levels as factors, to explore the effects of these factors on the formation of protected SOC. 

We used initially microbe- and carbon-free artificial soil to quantitatively assess the C 

distribution in different aggregate fractions after the decomposition of litter. We 

hypothesized: 1. Higher microbial diversity results in an increase in litter decomposition, 

accompanied by increased formation of microbial exudates that promote the formation of 

stable SOC compounds. We expected that higher microbial diversity will also lead to 

increased soil aggregate formation through the formation of microbially derived organic 

matter, organic polymers and fungal hyphae. 2. Increased temperature will increase litter 

decomposition, while it will also cause a loss in aggregate-protected SOC.  

4.3 Materials and Methods 

4.3.1 Experimental design 

The experiment had a fully factorial design, with 6 unique combinations of the following 

treatments: 3 microbial diversity levels (low, medium, high), crossed with 2 temperature 

patterns (ambient and elevated temperature). Each treatment had 10 replicates for a total of 60 

tubes.  

4.3.2 Artificial soil 

The artificial soils consisted of 7% kaolin clay, 5% quartz silt (< 250µm, carbonate free), 

85.4% quartz sand (20-250µm, carbonate free) and 2.6% litter expressed as percentage of 

weight. We used finely ground leaves of Acer platanoides (C: 42.61%, N: 0.67%) as litter to 
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represent organic matter. The artificial soil had no invertebrates, which play a key role in 

processing detritus and infuse the soil with physically smaller and chemically decomposed 

resources. We therefore mill grinded the litter (Retsch MM 400; 30 Hz for 30 s) and sieved it 

to < 250µm. Subsequently, the litter was mixed thoroughly with the artificial soil. Following 

the method by Caesar-TonThat  (2002). The mixture was thoroughly wetted with ultrapure 

water, dried at 60°C for 48h and the resulting soil cake was ground and sieved through 2 mm 

sieves; i.e. the artificial soil comprised primary particles, litter fragments not exceeding 

0.25mm, and artificial aggregates of various sizes not exceeding 2mm. Subsequently, this 

mixture was autoclaved twice on two consecutive days. 

4.3.3 Soil microbial inoculation (different diversity levels) 

The soil inoculum was obtained from a previous experiment from our lab (Yang et al., 2020). 

Soil was collected from an experimental field of Freie Universitaet Berlin (Berlin, Germany,) 

characterized as a sandy loam soil texture (for more soil properties see Leifheit et al. (2015)), 

and used as soil inoculum. 6 serial dilution steps (through 10-6) were performed in autoclaved 

soil, each of these different dilutions were subsequently used as inoculum for the next 

dilution step (Franklin et al., 2001). Soil inoculums were incubated at room temperature for 2 

months to achieve equivalent microbial biomass before use. 100(undiluted), 103diluted and 

106diluted soil inoculums were used in our experiment.  We air dried the inoculum soil in a 

sterile hood and sieved it through a 250µm mesh. We then added 1g of dry soil inoculum to 

30g of sterile artificial soil, mixed carefully until the inoculum was homogeneously 

distributed in the artificial soil, to establish the respective diversity levels.  

4.3.4 Incubation 

We used 50ml centrifugation tubes containing the 30 (+1) g of soil, with hydrophobic vented 

caps to allow gas exchange. The water content was adjusted to 60% water holding capacity. 

We replenished water loss in a sterile hood by injecting water with a syringe twice a week. The 

incubation lasted 75 days.  

4.3.5 Temperature treatment 

The ambient temperature was set at 25℃. We started the experiment with all treatments at 

25°C and incubated the tubes for 30 days, to allow full recovery of the microbial communities. 

After these 30 days the treatment with the elevated temperature was applied to half of the tubes. 
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This was done by increasing the temperature by 2.5℃ from 25 to 27.5℃ and keeping the 

temperature constant at 27.5 °C for the remaining duration of the experiment, which was 45 

days. Total incubation time was 75 days (30+45 days). The 10 replicates of one factor 

combination were split into 3 groups and incubated in 3 individual incubators (temperature 

treatment: n=3). 

4.3.6 Harvest/destructive sampling and Sample preparation 

Soil samples were homogenized by spatula in a plastic bag, then dried at 40℃ for 48h in a 

drying oven and subsequently stored at room temperature until the analysis of water stable 

aggregates and total C (TC).  

4.3.7 Respiration and C loss 

We measured soil respiration as CO2 production rate (ppm h-1) on day 75 of the incubation. 

Before the measurement, we flushed each of the tubes with CO2-free air for five minutes to 

standardize among experimental units (Rillig et al., 2019). After 5.5 hours (preliminary 

measurements showed that after this time readouts were within the range of the calibration 

curve), we sampled 1 ml of air from the headspace of each tube and subsequently injected 

this sample into an infrared gas analyser (LiCOR 6400xt).  

The total C loss was calculated by the difference in total C (TC) before and after the 

incubation of 75 days. 

4.3.8 Water-stability of soil aggregates (WSA) 

We followed the protocol by Kemper and Rosenau (2018): the dried soil was sieved through a 

2 mm sieve and we placed 4.0 g of soil into sieves for capillary rewetting in deionized water 

for 5 min. We used 250 μm sieves to test the stability of the soil fraction > 250 μm 

(macroaggregates) against water as disintegrating force. For the test, sieves carrying the wetted 

soil samples were placed in a wet-sieving machine (Eijkelkamp, Netherlands) and moved 

vertically (stroke = 1.3 cm, 34 times min-1) for 3 min. The fraction (< 250 μm) left in the metal 

bin was transferred to a 53 μm sieve to repeat the wet-sieving again in order to obtain 

microaggregates. The fractions left on the sieves were dried at 60 ℃ for 24 h. There was no 

coarse matter (the sizes of sand and original organic matter fraction were smaller than 250 μm) 

in macroaggregates. The calculation of percent water stable aggregates was: %WSA= water 

stable aggregates (g) / 4.0 g.  We stored macroaggregates and microaggregates at room 
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temperature until the analysis of SOC in different soil fractions.  The fraction <53 μm, 

considered as free minerals consisting of free silt and clay, was not collected in our study. 

4.3.9 Soil organic carbon fractions 

For this study, we divided SOC fractions into three groups: 1. free light fraction SOC (fLF-

C); 2. aggregate-associated C, which consists of macro- and microaggregate-associated C; 3. 

free mineral-associated C.  

We wet-sieved the soil with a 250 µm sieve and collected the material that passed through the 

sieve for the determination of microaggregates and fLF. The material that stayed on the sieve 

was collected for the determination of macroaggregate-associated C.  

We followed and modified a protocol by Plaza et al. (2012) to separate microaggregates and 

fLF: To separate free microaggregates and fLF, the microaggregates of two replicates were 

combined due to the limited amount of microaggregates in each replicate, and transferred to a 

15ml tube. We performed a density separation of soil organic carbon with the following 

steps: i) we added 12ml of sodium polytungstate (SPT) solution (Smetu, Germany) at a 

density of 1.85g ml-1 to the sample, ii) rotated the tube at 1 revolution/s for 30s, iii) 

centrifuged it at 2500g for 30min, iv) vacuum-filtered the supernatant (47mm, Glass 

microfiber filters - GF/A Grade 1.6µm pore size, Whatman, UK) and finally v) rinsed the 

material retained on the filter (free particulate OM) with 300ml of distilled water. Steps i) to 

v) of this density separation were repeated in order to more completely capture fLF. The 

remaining soil in the tube was designated as the microaggregates. To clean the SPT, this 

fraction was transferred into a 50ml tube, suspended in 30ml distilled water and centrifuged 

at 3000 g for 5 min; the supernatant was siphoned off and these steps were repeated three 

times.  

All the fractions were dried at 60 ℃ for 24 h, then were ball milled (Retsch MM 400; 30 Hz 

for 3 min) for CN analysis using an Elemental Analyzer (EuroEA, HekaTech, Germany), the 

macroaggregates of two replicates were also combined for C measurement, the free mineral-

associated C was calculated by subtracting macroaggregate-associated C and fLF-C from 

TC.  
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4.3.10 Statistical and data analysis 

We analysed the effects of microbial diversity and elevated temperature by using two-way 

ANOVAs. We used a Shapiro Wilk’s test (Royston, 1995) and Bartlett test (Boos, 2014) to 

check the normality of residuals and the homogeneity of variances, respectively, with a P-

value cutoff of 0.05. We applied generalized least square models in the “nlme” package when 

conditions for homoscedasticity were not met (Pinheiro et al., 2020). All statistics were 

conducted in R 3.5.3 (R Core Team, 2017) with the basic packages, while the plots were 

created with the graphic package ‘ggplot2’ (Hadley and Winston, 2016). 

4.4 Results 

4.4.1 Free light fraction SOC (fLF-C), C loss and respiration rate 

Microbial diversity had significant effects on both fLF-C and C loss (p < 0.05): low diversity 

had lower fLF-C and higher C loss than medium and high diversity (Fig. 4.2). However, 

temperature had no significant effects on fLF and C loss (p = 0.07 and p = 0.91, respectively), 

except soil with medium diversity had higher fLF-C at elevated temperature. The fLF-C in 

soil showed a negative correlation with C loss (r= -0.49, p < 0.05). Both microbial diversity 

and temperature had significant effects on the respiration rate (p = 0.003 and p = 0.03, 

respectively): low diversity had higher respiration than medium and high diversity, elevated 

temperature increased respiration rate. 

 

Figure 4.2 Effects of microbial diversity and temperature on fLF-C (a), C loss (b) and 

respiration rate (c). The points show the raw data of fLF-C (n=5), C loss (n=10) and 

respiration rate (n=10) with corresponding mean and standard deviation. 
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4.4.2 Water-stability of soil aggregates 

The temperature and microbial diversity had significant interactive effects on the percentages 

of macroaggregates and microaggregates (Table 4.1). The percentage of macroaggregates 

decreased with increasing levels of microbial diversity, while at medium diversity 

macroaggregates were still high at ambient temperature (Fig. 4.3a). The percentage of 

macroaggregates in soil with medium diversity at ambient temperature was on average 

19.59% higher than at elevated temperature (Fig. 4.3b). The percentage of microaggregates 

was negatively correlated with the percentage of macroaggregates (r= -0.97, p < 0.0001), 

showing the opposite pattern compared to macroaggregates.  

Only temperature had significant effects on the percentage of total aggregates and free 

minerals (p = 0.02 and p = 0.02, respectively), the soil contains a higher percentage of 

aggregates and a accordingly lower percentage of free minerals at ambient temperature than 

at elevated temperature (Fig. 4.3c, d), as a trade-off between aggregates and free minerals. 

Table 4.1 ANOVA results for the effects of temperature, levels of microbial diversity 

and the interaction of these factors. We applied linear model with function “lm” and 

generalized linear model with function “gls” (Tobergte and Curtis, 2013) whenever 

appropriate. 

Source F value P value  F value P value  F value P value  F value P value 

 fLF  C loss  Respiration rate   Percentage of 

macroaggregates 

Temperature  3.30 0.08  0.030 0.86  4.83 0.03*  5.18 0.03* 

Microbial 

diversity 

3.55 0.04*  14.73 7.85e-06 

*** 

 6.60 3e-03**  14.67 8.16e-06 

*** 

Temperature × 

Microbial 

diversity 

2.97 0.07  0.10 0.91  0.29 0.75  5.49 6.78e-

03** 

 The percentage of 

microaggregates  

 Percentage of 

aggregates  

 

 The percentage of 

minerals 

 Content of 

macroaggregates-

associated C 
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Temperature  7.96 6.70e-

03** 

 5.67 0.02*  5.67 0.02*  4.83 0.03* 

Microbial 

diversity 

11.39 1e-

04*** 

 2.07 0.14  2.07 0.13  6.60 3e-03** 

Temperature × 

Microbial 

diversity 

7.01 2e-03**  1.64 0.20  1.64 0.20  0.29 0.75 

 Content of 

microaggregates-

associated C  

 Content of 

aggregates-

associated C  

 Content of free 

minerals-associated 

C  

 Concentration of 

macroaggregates-

associated C 

Temperature  0.28 0.60  16.04 5e-

04*** 

 9.59 4.92e-03**  3.48 0.07 

Microbial 

diversity 

3.21 0.06  2.32 0.12  1.60 0.22  2.30 0.12 

Temperature × 

Microbial 

diversity 

3.62 0.04*  1.47 0.25  0.27 0.77  0.05 0.95 

 Concentration of 

microaggregates-

associated C  

 Concentration of 

aggregates-

associated C 

 Concentration of free 

minerals-associated C 

 

Temperature  4.24 0.05  13.56 1.17e-

03** 

 0.04 0.85  

Microbial 

diversity 

0.45 0.64  2.55 0.10  0.89 0.42  

Temperature × 

Microbial 

diversity 

0.53 0.59  1.72 0.20  0.81 0.46  

The asterisks, *, **, *** denote significant differences (p < 0.05, < 0.01 and < 0.001, 

respectively)  
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Figure 4.3 Effects of microbial diversity and temperature on the percentages of soil fractions: 

macroaggregates (a), microaggregates (b), aggregates (combination of macro- and 

microaggregates) (c) and free minerals (d); on fraction-associated C contents in soils (mg C 

kg-1 soil) and C concentrations in fractions (mg C kg-1 fraction): macroaggregate-associated C 

(a, a’), microaggregate-associated C (b, b’), aggregate-associated C (c, c’) and free mineral-

associated C (d, d’). The points show the raw data (n=5) with corresponding mean and 

standard deviation. 
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4.4.3 Aggregate-associated C 

Macroaggregate-associated C 

Both temperature and microbial diversity had significant effects on the content of 

macroaggregate-associated C: the content of macroaggregate-associated C decreased with 

increasing levels of microbial diversity, except medium diversity at ambient temperature, and 

ambient temperature had a higher content of macroaggregate-associated C (Fig. 4.3a’). The 

content of macroaggregate-associated C was positively associated with the percentage of 

macroaggregates (r= 0.74, p < 0.0001).  

There were no statistical effects of elevated temperature on the C concentration in 

macroaggregates, while we observed macroaggregates at ambient temperature had relatively 

higher C concentration than at elevated temperature (Fig. 4.3a’’). 

Microaggregate-associated C 

Temperature and microbial diversity had significant interactive effects (p = 0.04) on the 

content of microaggregate-associated C (Fig. 4.3b’), which was positively associated with the 

percentage of microaggregate (r= 0.51, p = 0.004), showing the similar pattern as the 

percentage of microaggregates.   

There were no statistical effects of microbial diversity and temperature on the C 

concentration in microaggregates, however, we still observed microaggregates at ambient 

temperature had a relatively higher C concentration than at elevated temperature (Fig. 4.3b’’). 

Total aggregate-associated C 

Temperature had significant effects on both the content of aggregate-associated C and the C 

concentration in aggregates (p = 5e-04 and p = 1.17e-03, respectively), which were higher at 

ambient temperature than elevated temperature regardless of microbial diversity levels (Fig. 

4.3c’, 4.3c’’).   

Mineral-associated C 

Elevated temperature significantly elevated the content of free mineral-associated C (Fig. 

4.3d’), while there were no significant effects of temperature and microbial diversity on C 

concentration in free minerals (Fig. 4.3d’’). 



 91 

 

Figure 4.4 Effects of microbial diversity and temperature on SOC distribution in different soil 

fractions: fLF, macroaggregate, microaggregate and minerals. Values shown are means of 

five replicates. 

4.5 Discussion 

Our study findings support our hypothesis that elevated temperature will lead to greater 

decomposition of litter, reflected by CO2 emission (Fig. 4.2c), but decrease the formation of 

aggregate-protected SOC, shown by the decrease in the content of aggregate-associated C 

and the concentration of C in aggregates. However, we observed an enhanced decomposition, 

revealed by increases in C loss, and more macroaggregates in soil with low diversity, which 
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are opposite to our hypothesis; nevertheless, the formation of aggregate-protected SOC was 

not affected by diversity levels.  

4.5.1 Aggregates 

Elevated temperature decreased the formation of total aggregates. One possible reason could 

be that higher temperature accelerated the decomposition of binding agents (Sollins et al., 

1996).  The other possible reason could be that microorganisms involved in aggregation 

might be sensitive to the heat stress and were suppressed (Rillig et al., 2002), resulting in less 

total aggregates at elevated temperature than ambient temperature. Ambient temperature 

especially had a much higher amount of macroaggregates than elevated temperature in soil 

with medium microbial diversity. The medium diversity level probably included highly 

efficient aggregators, causing substantial increased soil stability at ambient temperature. 

Contrary to our expectations, the amount of macroaggregates decreased with increasing 

levels of microbial diversity. The dilution of microbial diversity/richness in the “low 

diversity” level might have selected for microbes that are better aggregators, such as 

saprophytic fungi (Lehmann and Rillig, 2015). Good soil aggregators such as fungi contribute 

to the stabilization of soil particles by entanglement of particles with hyphae or by exuding 

gluing substances (microbial exudates such as polysaccharides). Moreover, decomposition 

was faster in soil with low diversity as indicated by higher C loss, which provided microbes 

with energy and nutrient resources for active metabolism and exudation and the degraded 

organic matter could be bonded to clay particles (forming stable organo-mineral-complexes) 

(Oades, 1967, 1988). We assume that the overall stimulation of microbes at the low diversity 

level caused an increased production of glues, which are transient or temporary binding 

agents that might have contributed to the stabilization of soil aggregates in our short-term 

incubation (Tisdall and Oades, 1982; Pronk et al., 2012; Costa et al., 2018)..  

Soil with medium diversity had a similar amount of water stable macroaggregates compared 

to the low diversity treatment but reserved more SOC. Some microbial communities are more 

likely to produce glue-like agents under a certain temperature, whilst mineralization of 

organic matter is kept low (Gao et al., 2013). Thus, the microbial community in soil with 

medium diversity at ambient temperature could facilitate macroaggregate formation but in 

parallel was not actively decomposing OM and lost less carbon compared to the low 

diversity. This could explain the contradictory results of the relationship between microbial 
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diversity and their function of decomposition: the function might not have a linear 

relationship with microbial diversity (Pennekamp et al., 2018).  

4.5.2 Aggregate-protected SOC 

Temperature changed the distribution of SOC between aggregates and free minerals, that 

ambient temperature led to more SOC allocated in aggregates. One reason for this 

distribution was a higher percentage of aggregates at ambient temperature brought about the 

accumulation of aggregate-associated C, especially the higher percentage of macroaggregates 

at ambient temperature. The aggregate-associated C was mainly contributed by 

macroaggregate-associated C (Fig.3) due to the considerable proportion of macroaggregates 

in soil. The other reason explaining the distribution was a higher C concentration in 

aggregates at ambient temperature. Both microaggregates and macroaggregates had higher C 

concentrations at ambient temperature. This was probably due to elevated temperature had 

accelerated decomposition of SOC in aggregates revealed by the respiration. It might also be 

attributed to that microorganisms produced more microbial-derived C at ambient 

temperature, indicating higher carbon use efficiency (CUE). CUE is another parameter 

influencing the carbon storage in soil (Dignac et al., 2017). It has been reported that CUE can 

be higher at ambient temperature than at elevated temperature (Manzoni et al., 2012; 

Bölscher et al., 2017; Li et al., 2019), which has led to a greater immobilization of C in 

microbial-derived carbon (Kallenbach et al., 2016). Additionally, ambient temperature might 

have slower turnover of microbial-derived carbon (Li et al., 2019). Therefore, more C was 

preserved in aggregates at ambient temperature, which supported our hypothesis that elevated 

temperature attenuated the formation of aggregate protected C.  

The content of aggregate-associated C and the C concentration in aggregates were highest in 

soil with medium microbial diversity at ambient temperature compared to the other 

treatments. We suggest that the unique microbial community composition in this treatment 

facilitated macroaggregate formation and CUE, consequently led to the SOC stabilization 

through aggregate-protection. Therefore, we see the need of further research studying the 

influence of microbial communities and soil aggregation on SOC stabilization.  

Overall, microbial diversity had no influence on aggregate-associated C, except for one 

treatment:  the low microbial diversity increased the macroaggregate-associated C formation, 

which was contrary to our hypothesis. This was attributed to higher percentages of 

macroaggregates in soil with low diversity, however, the concentration of SOC in 
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macroaggregates was no longer higher in soil with low microbial diversity, as enhanced 

decomposition in soil with low diversity also led to more C loss.  

4.5.3 Carbon loss and free light fraction (fLF) 

Opposite to our hypothesis, low microbial diversity caused higher C loss compared to 

medium and high diversity, probably due to enhanced decomposition. fLF-C was the most 

vulnerable SOC fraction to decomposition, the degradation of which mainly contributed to 

total C loss (Zimmermann et al., 2012). At low diversity, fast growing decomposers or 

decomposers using easily available substrates might have outcompeted other groups. It is also 

possible that interspecies competition suppressed decomposition in the soil with medium and 

high diversity (Jayasinghe and Parkinson, 2008). However, we did not find a significant 

difference (p> 0.05) in C loss between medium and high diversity. The diversity effect on 

decomposition might only be significant at the species-poor end of the diversity gradient as 

shown in Mary’s study (2004) and communities might have been at a better functional 

equilibrium at medium and high diversity. Elevated temperature tended to cause slightly 

higher respiration, but this effect was not reflected in the data of C loss. In numerous previous 

studies considerable C loss or augmented soil respiration at elevated temperature was shown 

(Crowther et al., 2016; Wang et al., 2016; Hicks Pries et al., 2017; Melillo et al., 2017; Bond-

Lamberty et al., 2018). In our study the exposure time of the soil was relatively short and 

effects might be stronger after a longer exposure time (the elevated temperature treatment 

was only active for 45 days). Additionally, the temperature increase that we applied was 

comparatively small, only 2.5 °C, where while other studies used larger temperature 

differences (Geraldes et al., 2012; Wang et al., 2016; Hicks Pries et al., 2017; Melillo et al., 

2017). 

4.6 Conclusion 

Both diversity and temperature played important roles in SOC protection, low diversity could 

transfer easily decomposable SOC into macroaggregate-associated C more quickly, while 

ambient temperature could reserve higher concentration of SOC in aggregates. Though low 

microbial diversity caused fast loss in fLF-C, the aggregate-protection of SOC was more 

influenced by temperature, showing that allocation of SOC within aggregates was sensitive to 

temperature. Therefore, elevated temperature could decrease soil carbon storage in the long 

term by attenuating the stabilization of SOC. 
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5. GENERAL DISCUSSION AND CONCLUSIONS 

5.1 Discussion 

The factors influencing aggregates were widely studied, however, the number of global 

change factors are increasing, and as a consequence the influences on aggregation in a future 

world are still unclear. This doctoral study is targeting warming, microplastic and microbial 

diversity loss, aiming to explore their effects on soil aggregation.  

 

Figure 5.1 Conceptual overview of linkages between PhD works 

The different colors represent three chapters (chapter1 = orange, chapter2 = blue, chapter3 = 

green). Arrows represent effects on soil properties. 

Soil aggregation is essential to soil functions, maintains the microbial activity in soil and is 

involved in carbon protection. In chapter 2, we studied interactive effects of microplastic fiber 

and experimental warming on fungi-induced aggregation. We found that microplastic fibers 

only decreased the stability of aggregates in the presence of fungi, suggesting that the effects 

of microplastic fibers on soil aggregation were mediated by soil biota which are important for 

the formation of soil aggregates (Lehmann et al., 2019a). Elevated temperature could increase 

stable aggregates, the possible reason was both hyphal network and secretion of binding agents 

increased at higher temperature, leading to increased stable aggregates. However, microplastic 

fibers caused more negative effects on the stability of aggregates at elevated temperature. This 

phenomenon could be attributed to elevated temperature leading to a greater turnover of 
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macroaggregates, thus microfibers had more interactions with soil particles, likely to be 

entrapped within macroaggregates (Bläsing and Amelung, 2018; Zhang and Liu, 2018). 

Especially when higher temperature is favored by fungi, the formation of fungi-induced 

aggregates was enhanced, microplastic fibers might be incorporated into newly formed 

macroaggregates, leading to more macroaggregates with low stability.  

 
Figure 5.2 Conceptual overview of chapter 2 and chapter 3 

From chapter 2, we found that effects of microplastic on soil aggregation depended on other 

soil conditions, we suggested that microplastic would have more negative effects when the 

conditions favored aggregate formation. To further test this hypothesis, we conducted the 

experiment of chapter 3. We found microplastic fibers had neutral effects on the stability of 

aggregates in soil without added organic matter but decreased the aggregate stability 

substantially in soil with added organic matter; the magnitude of the negative effects 

depended on the type of organic matter. Generally, the more beneficial the added organic 

matter was to the stability of aggregates, the more detrimental the microplastic fibers were to 
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the stability of aggregates. The possible reason was that organic matter addition stimulated 

microbial activity; therefore, the formation of aggregates was accelerated and the 

incorporation of fibers into newly formed aggregates increased as a consequence. This 

finding also holds true for the effects of microplastic fibers on soil enzyme activities: in 

chapter 3, microplastic fibers only had negative effects on enzyme activities in soil with 

organic matter addition; in chapter 2, microplastic fibers had more negative effects on 

enzyme activities at elevated temperature when elevated temperature was beneficial to 

enzyme activities. We assumed the incorporation of microplastic fibers into aggregates 

increased the opportunities for microfibers to interact with microbes, resulting in the decrease 

in enzyme activities. However, what caused this negative response in our study is unknown. 

C storage is a pivotal soil function, which is sensitive to rising temperature (Crowther et al., 

2016), and is mediated by microbial processes acting on soil organic matter (Allison et al., 

2010). In chapter 3, we explored the interactive effects of experimental warming and 

microbial diversity loss on soil carbon protection by aggregates. We found both microbial 

diversity and temperature could influence the protection of soil organic carbon (SOC) by 

aggregates. Soil with low diversity had faster decomposition, leading to a higher formation of 

aggregates, thus more SOC are incorporated into macroaggregate. However, the 

concentration of SOC in macroaggregates was no longer higher in soil with low microbial 

diversity, as enhanced decomposition in soil with low diversity also led to more C loss. We 

found higher temperature led to less SOC allocated in aggregates. One reason was lower 

percentage of aggregates at higher temperature, especially the much lower percentage of 

macroaggregates at elevated temperature; the other reason was a lower C concentration in 

aggregates (both macroaggregates and microaggregates) at elevated temperature. The 

decreased concentration of SOC in aggregates at elevated temperature was attributed to the 

accelerated decomposition of soil organic matter at higher temperature. It might also have 

been due to microorganisms having lower CUE at elevated temperature (Manzoni et al., 

2012; Bölscher et al., 2017). We found the highest percentage of aggregates formed in soil 

with intermediate microbial diversity at ambient temperature; we suggest some microbial 

communities are more likely to produce glue-like agents under a certain temperature (Gao et 

al., 2013), revealing the interactive effects of microbial community and temperature on the 

formation of stable aggregates. 
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5.2 Conclusions  

Formation and stabilization of soil aggregates are dynamic and complex processes, mediated 

by many factors. Our soil is facing increasing threats due to climate change and 

anthropogenic activity. This doctoral work contributes to revealing the effects of elevated 

temperature, microplastics and microbial diversity loss on the stability of aggregates. The 

interactive effects of these factors might cause catastrophic decease in stable aggregates. We 

strongly suggest that global change effects should be analyzed not only as single factors but 

also in combination. In the end, further field and high-order interaction experiments are 

needed to test assertations in this doctoral study.  

  



 106 

REFERENCES 

A’Bear, A. D., Boddy, L., and Hefin Jones, T. (2012). Impacts of elevated temperature on the 

growth and functioning of decomposer fungi are influenced by grazing collembola. 

Glob. Chang. Biol. 18, 1823–1832. doi:10.1111/j.1365-2486.2012.02637.x. 

Abiven, S., Menasseri, S., and Chenu, C. (2008). The effects of organic inputs over time on 

soil aggregate stability – A literature analysis. Soil Biol. Biochem. 41, 1–12. 

doi:10.1016/j.soilbio.2008.09.015. 

Adam, G., and Duncan, H. (2001). Development of a sensitive and rapid method for the 

measurement of total microbial activity using fluorescein diacetate (FDA) in a range of 

soils. Soil Biol. Biochem. 33, 943–951. doi:10.1016/S0038-0717(00)00244-3. 

Alfaro, S. C., Gaudichet, A., Gomes, L., and Maillé, M. (1998). Mineral aerosol production 

by wind erosion: Aerosol particle sizes and binding energies. Geophys. Res. Lett. 25, 

991–994. doi:10.1029/98GL00502. 

Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., et al. (2014a). 

IPCC fifth assessment synthesis report - Climate Change 2014 synthesis report. , eds. P. 

Aldunce, T. Downing, S. Joussaume, Z. Kundzewicz, J. Palutikof, J. Skea, et al. 

Intergovernmental Panel on Climate Change (IPCC). 

Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., et al. (2014b). 

IPCC fifth assessment synthesis report - Climate Change 2014 synthesis report. 116. 

Available at: https://archive.ipcc.ch/pdf/assessment-

report/ar5/syr/SYR_AR5_FINAL_full_wcover.pdf [Accessed February 20, 2019]. 

Allison, S. D., and Treseder, K. K. (2008). Warming and drying suppress microbial activity 

and carbon cycling in boreal forest soils. Glob. Chang. Biol. 14, 2898–2909. 

doi:10.1111/j.1365-2486.2008.01716.x. 

Allison, S. D., Wallenstein, M. D., and Bradford, M. A. (2010). Soil-carbon response to 

warming dependent on microbial physiology. Nat. Geosci. 3, 336–340. 

doi:10.1038/ngeo846. 

Amézketa, E. (1999). Soil aggregate stability: A review. J. Sustain. Agric. 14, 83–151. 

doi:10.1300/J064v14n02_08. 

Andrade-Linares, D. R., Veresoglou, S. D., and Rillig, M. C. (2016). Temperature priming 

and memory in soil filamentous fungi. Fungal Ecol. 21, 10–15. 

doi:10.1016/j.funeco.2016.02.002. 

Angers, D. A., and Caron, J. (1998). Plant-induced Changes in Soil Structure: Processes and 



 107 

Feedbacks. Biogeochemistry 42, 55–72. doi:10.1023/A:1005944025343. 

Athey, S. N., Adams, J. K., Erdle, L. M., Jantunen, L. M., Helm, P. A., Finkelstein, S. A., et 

al. (2020). The Widespread Environmental Footprint of Indigo Denim Microfibers from 

Blue Jeans. Environ. Sci. Technol. Lett. doi:10.1021/acs.estlett.0c00498. 

Baldrian, P., Šnajdr, J., Merhautová, V., Dobiášová, P., Cajthaml, T., and Valášková, V. 

(2013). Responses of the extracellular enzyme activities in hardwood forest to soil 

temperature and seasonality and the potential effects of climate change. Soil Biol. 

Biochem. 56, 60–68. doi:10.1016/J.SOILBIO.2012.01.020. 

Bandow, N., Will, V., Wachtendorf, V., and Simon, F.-G. (2017). Contaminant release from 

aged microplastic. Environ. Chem. 14, 394. doi:10.1071/EN17064. 

Barnes, D. K. A., Galgani, F., Thompson, R. C., and Barlaz, M. (2009). Accumulation and 

fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B Biol. 

Sci. 364, 1985–1998. doi:10.1098/rstb.2008.0205. 

Bartoli, F., Philippy, R., and Burtin, G. (1988). Aggregation in soils with small amounts of 

swelling clays. I. Aggregate stability. J. Soil Sci. 39, 593–616. doi:10.1111/j.1365-

2389.1988.tb01243.x. 

Baumann, K., Dignac, M. F., Rumpel, C., Bardoux, G., Sarr, A., Steffens, M., et al. (2013). 

Soil microbial diversity affects soil organic matter decomposition in a silty grassland 

soil. Biogeochemistry 114, 201–212. doi:10.1007/s10533-012-9800-6. 

Beckage, B., Gross, L. J., Lacasse, K., Carr, E., Metcalf, S. S., Winter, J. M., et al. (2018). 

Linking models of human behaviour and climate alters projected climate change. Nat. 

Clim. Chang. 8, 79–84. doi:10.1038/s41558-017-0031-7. 

Bell, T. H., Klironomos, J. N., and Henry, H. A. L. (2010). Seasonal Responses of 

Extracellular Enzyme Activity and Microbial Biomass to Warming and Nitrogen 

Addition. Soil Sci. Soc. Am. J. 74, 820. doi:10.2136/sssaj2009.0036. 

Benoit, G. R. (1973). Effect of Freeze-Thaw Cycles on Aggregate Stability and Hydraulic 

Conductivity of Three Soil Aggregate Sizes. Soil Sci. Soc. Am. J. 37, 3–5. 

doi:10.2136/sssaj1973.03615995003700010007x. 

Bergmann, M., Gutow, L., and Klages, M. (2015). Marine anthropogenic litter. Springer 

International Publishing doi:10.1007/978-3-319-16510-3. 

Blackwell, P. S., RingroseI-Voase, A. J., Jayawardane, N. S., Olsson, K. A., Mckenzie, D. C., 

and Mason, W. K. (1990). The use of air-filled porosity and intrinsic permeability to air 

to characterize structure of macropore space and saturated hydraulic conductivity of clay 

soils. J. Soil Sci. 41, 215–228. doi:10.1111/j.1365-2389.1990.tb00058.x. 



 108 

Blair, R. M., Waldron, S., and Gauchotte-Lindsay, C. (2019). Average daily flow of 

microplastics through a tertiary wastewater treatment plant over a ten-month period. 

Water Res. 163, 114909. doi:10.1016/j.watres.2019.114909. 

Bläsing, M., and Amelung, W. (2018). Plastics in soil: Analytical methods and possible 

sources. Sci. Total Environ. doi:10.1016/j.scitotenv.2017.08.086. 

Bölscher, T., Paterson, E., Freitag, T., Thornton, B., and Herrmann, A. M. (2017). 

Temperature sensitivity of substrate-use efficiency can result from altered microbial 

physiology without change to community composition. Soil Biol. Biochem. 109, 59–69. 

doi:10.1016/j.soilbio.2017.02.005. 

Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., et al. 

(2017). An assessment of the global impact of 21st century land use change on soil 

erosion. Nat. Commun. 8. doi:10.1038/s41467-017-02142-7. 

Bossuyt, H., Six, J., and Hendrix, P. F. (2005). Protection of soil carbon by microaggregates 

within earthworm casts. Soil Biol. Biochem. 37, 251–258. 

doi:10.1016/j.soilbio.2004.07.035. 

Bossuyt, H., Six, J., and Hendrix, P. F. (2006). Interactive effects of functionally different 

earthworm species on aggregation and incorporation and decomposition of newly added 

residue carbon. Geoderma 130, 14–25. doi:10.1016/j.geoderma.2005.01.005. 

Boswell, G. P., Jacobs, H., Ritz, K., Gadd, G. M., and Davidson, F. A. (2006). The 

Development of Fungal Networks in Complex Environments. Bull. Math. Biol. 69, 605. 

doi:10.1007/s11538-005-9056-6. 

Brahney, J., Hallerud, M., Heim, E., Hahnenberger, M., and Sukumaran, S. (2020). Plastic 

rain in protected areas of the United States. Science (80-. ). 368, 1257–1260. 

doi:10.1126/science.aaz5819. 

Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., et al. (2011). 

Accumulation of microplastic on shorelines woldwide: Sources and sinks. Environ. Sci. 

Technol. 45, 9175–9179. doi:10.1021/es201811s. 

Butchart, S. H. M., Walpole, M., Collen, B., Van Strien, A., Scharlemann, J. P. W., Almond, 

R. E. A., et al. (2010). Global biodiversity: Indicators of recent declines. Science (80-. ). 

328, 1164–1168. doi:10.1126/science.1187512. 

Caesar-Tonthat, T. C. (2002). Soil binding properties of mucilage produced by a 

basidiomycete fungus in a model system. Mycol. Res. 106, 930–937. doi:DOI: 

10.1017/S0953756202006330. 

Cai, L., Wang, J., Peng, J., Tan, Z., Zhan, Z., Tan, X., et al. (2017). Characteristic of 



 109 

microplastics in the atmospheric fallout from Dongguan city, China: preliminary 

research and first evidence. Environ. Sci. Pollut. Res. 24, 24928–24935. 

doi:10.1007/s11356-017-0116-x. 

Cappitelli, F., and Sorlini, C. (2008). Microorganisms Attack Synthetic Polymers in Items 

Representing Our Cultural Heritage. Appl. Environ. Microbiol. 74, 564 LP – 569. 

doi:10.1128/AEM.01768-07. 

Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., et al. 

(2012). Biodiversity loss and its impact on humanity. Nature 486, 59–67. 

doi:10.1038/nature11148. 

Chenu, C. (1989). Influence of a fungal polysaccharide, scleroglucan, on clay 

microstructures. Soil Biol. Biochem. 21, 299–305. doi:10.1016/0038-0717(89)90108-9. 

Chenu, C., Hassink, J., and Bloem, J. (2001). Short-term changes in the spatial distribution of 

microorganisms in soil aggregates as affected by glucose addition. Biol. Fertil. Soils 34, 

349–356. doi:10.1007/s003740100419. 

Chowdhury, N., Marschner, P., and Burns, R. (2011). Response of microbial activity and 

community structure to decreasing soil osmotic and matric potential. Plant Soil 344, 

241–254. doi:10.1007/s11104-011-0743-9. 

Churchman, G. J., Gates, W. P., Theng, B. K. G., and Yuan, G. (2006). Chapter 11.1 Clays 

and Clay Minerals for Pollution Control. Dev. Clay Sci. 1, 625–675. doi:10.1016/S1572-

4352(05)01020-2. 

Churchman, G. J., Skjemstad, J. O., and Oades, J. M. (1993). Influence of clay minerals and 

organic matter on effects of sodicity on soils. Aust. J. Soil Res. 31, 779–800. 

doi:10.1071/SR9930779. 

Cook, F. J., and Orchard, V. A. (2008). Relationships between soil respiration and soil 

moisture. Soil Biol. Biochem. 40, 1013–1018. doi:10.1016/j.soilbio.2007.12.012. 

Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., and Paul, E. (2013). The 

Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter 

decomposition with soil organic matter stabilization: Do labile plant inputs form stable 

soil organic matter? Glob. Chang. Biol. 19, 988–995. doi:10.1111/gcb.12113. 

Cox, P., Wilkinson, S. P., Anderson, J. M., Cox, P., Wilkinson, S. P., and Anderson, J. M. 

(2001). Effects of fungal inocula on the decomposition of lignin and structural 

polysaccharides in Pinus sylvestris litter. Springer-Verlag. 

Crossman, J., Hurley, R. R., Futter, M., and Nizzetto, L. (2020). Transfer and transport of 

microplastics from biosolids to agricultural soils and the wider environment. Sci. Total 



 110 

Environ. 724, 138334. doi:10.1016/j.scitotenv.2020.138334. 

Crowther, T. W., Todd-Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J. C., 

Machmuller, M. B., et al. (2016). Quantifying global soil carbon losses in response to 

warming. Nature 540, 104–108. doi:10.1038/nature20150. 

Dale A. Gillette (1977). Fine Particulate Emissions Due to Wind Erosion. Trans. ASAE 20, 

0890–0897. doi:10.13031/2013.35670. 

Dang, C. K., Schindler, M., Chauvet, E., and Gessner, M. O. (2009). Temperature oscillation 

coupled with fungal community shifts can modulate warming effects on litter 

decompositi. Ecology 90, 122–131. doi:10.1890/07-1974.1. 

Daynes, C. N., Zhang, N., Saleeba, J. A., and McGee, P. A. (2012a). Soil aggregates formed 

in vitro by saprotrophic Trichocomaceae have transient water-stability. Soil Biol. 

Biochem. 48, 151–161. doi:10.1016/J.SOILBIO.2012.01.010. 

Daynes, C. N., Zhang, N., Saleeba, J. A., and McGee, P. A. (2012b). Soil aggregates formed 

in vitro by saprotrophic Trichocomaceae have transient water-stability. Soil Biol. 

Biochem. 48, 151–161. doi:10.1016/J.SOILBIO.2012.01.010. 

De Gryze, S., Six, J., and Merckx, R. (2006). Quantifying water-stable soil aggregate 

turnover and its implication for soil organic matter dynamics in a model study. Eur. J. 

Soil Sci. 57, 693–707. doi:10.1111/j.1365-2389.2006.00760.x. 

de Souza Machado, A. A., Kloas, W., Zarfl, C., Hempel, S., and Rillig, M. C. (2018a). 

Microplastics as an emerging threat to terrestrial ecosystems. Glob. Chang. Biol. 24, 

1405–1416. doi:10.1111/gcb.14020. 

de Souza Machado, A. A., Lau, C. W., Till, J., Kloas, W., Lehmann, A., Becker, R., et al. 

(2018b). Impacts of Microplastics on the Soil Biophysical Environment. Environ. Sci. 

Technol. 52, 9656–9665. doi:10.1021/acs.est.8b02212. 

de Souza Machado, A. A., Lau, C. W., Till, J., Kloas, W., Lehmann, A., Becker, R., et al. 

(2018c). Impacts of Microplastics on the Soil Biophysical Environment. Environ. Sci. 

Technol. 52, 9656–9665. doi:10.1021/acs.est.8b02212. 

Degens, B. P. (1997a). Macro-aggregation of soils by biological bonding and binding 

mechanisms and the factors affecting these: a review. Soil Res. 35, 431–460. Available 

at: https://doi.org/10.1071/S96016. 

Degens, B. P. (1997b). Macro-aggregation of soils by biological bonding and binding 

mechanisms and the factors affecting these: A review. Aust. J. Soil Res. 35, 431–459. 

doi:10.1071/S96016. 

Delgado-Baquerizo, M., Maestre, F. T., Reich, P. B., Jeffries, T. C., Gaitan, J. J., Encinar, D., 



 111 

et al. (2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. 

Commun. 7, 1–8. doi:10.1038/ncomms10541. 

Dixon, J. B. (1991). Roles of clays in soils. Appl. Clay Sci. 5, 489–503. doi:10.1016/0169-

1317(91)90019-6. 

Dobbie, K. E., and Smith, K. A. (2003). Nitrous oxide emission factors for agricultural soils 

in Great Britain: the impact of soil water-filled pore space and other controlling 

variables. Glob. Chang. Biol. 9, 204–218. doi:10.1046/j.1365-2486.2003.00563.x. 

Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V., et al. (2017). A 

first overview of textile fibers, including microplastics, in indoor and outdoor 

environments. Environ. Pollut. 221, 453–458. doi:10.1016/j.envpol.2016.12.013. 

Dris, R., Gasperi, J., Saad, M., Mirande, C., and Tassin, B. (2016). Synthetic fibers in 

atmospheric fallout: A source of microplastics in the environment? Mar. Pollut. Bull. 

104, 290–293. doi:10.1016/J.MARPOLBUL.2016.01.006. 

Dungait, J. A. J., Hopkins, D. W., Gregory, A. S., and Whitmore, A. P. (2012). Soil organic 

matter turnover is governed by accessibility not recalcitrance. J. Japan Ind. Manag. 

Assoc. 64, 1781–1796. doi:10.1111/j.1365-2486.2012.02665.x. 

Eldridge, D. J., and Leys, J. F. (2003). Exploring some relationships between biological soil 

crusts, soil aggregation and wind erosion. J. Arid Environ. 53, 457–466. 

doi:10.1006/jare.2002.1068. 

Elliott, E. T., Elliott, D. C. C., and Coleman, E. T. (1988). Let the soil work for us. Ecol. Bull. 

39, 23–32. Available at: 

http://www.jstor.org/stable/pdf/20112982.pdf?refreqid=excelsior%3A9b2a7dc06d51cd9

a3ae8734c263878be [Accessed June 1, 2018]. 

Eriksen, M., Lebreton, L. C. M., Carson, H. S., Thiel, M., Moore, C. J., Borerro, J. C., et al. 

(2014). Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces 

Weighing over 250,000 Tons Afloat at Sea. PLoS One 9, e111913. 

doi:10.1371/journal.pone.0111913. 

Fonte, S. J., and Six, J. (2010). Earthworms and litter management contributions to ecosystem 

services in a tropical agroforestry system. Ecol. Appl. 20, 1061–1073. doi:10.1890/09-

0795.1. 

Forster, S. M. (1990). The role of microorganisms in aggregate formation and soil 

stabilization: Types of aggregation. Arid Soil Res. Rehabil. 4, 85–98. 

doi:10.1080/15324989009381236. 

Gao, D. W., Wen, Z. D., Li, B., and Liang, H. (2013). Membrane fouling related to microbial 



 112 

community and extracellular polymeric substances at different temperatures. Bioresour. 

Technol. 143, 172–177. doi:10.1016/j.biortech.2013.05.127. 

Gao, L., Wang, B., Li, S., Wu, H., Wu, X., Liang, G., et al. (2019). Soil wet aggregate 

distribution and pore size distribution under different tillage systems after 16 years in the 

Loess Plateau of China. Catena 173, 38–47. doi:10.1016/j.catena.2018.09.043. 

García, F. C., Bestion, E., Warfield, R., and Yvon-Durocher, G. (2018). Changes in 

temperature alter the relationship between biodiversity and ecosystem functioning. Proc. 

Natl. Acad. Sci., 201805518. doi:10.1073/PNAS.1805518115. 

Gaspar, M. L., Cabello, M. N., Pollero, R., and Aon, M. A. (2001). Fluorescein Diacetate 

Hydrolysis as a Measure of Fungal Biomass in Soil. Curr. Microbiol. 42, 339–344. 

doi:10.1007/s002840010226. 

Geyer, R., Jambeck, J. R., and Law, K. L. (2017). Production, use, and fate of all plastics ever 

made. Available at: http://advances.sciencemag.org/ [Accessed February 18, 2019]. 

Guan, S., An, N., Zong, N., He, Y., Shi, P., Zhang, J., et al. (2018). Climate warming impacts 

on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow. Soil 

Biol. Biochem. 116, 224–236. doi:10.1016/j.soilbio.2017.10.011. 

Gupta, V. V. S. R., and Germida, J. J. (2015). Soil aggregation: Influence on microbial 

biomass and implications for biological processes. Soil Biol. Biochem. 80, A3–A9. 

doi:10.1016/j.soilbio.2014.09.002. 

HADAS, A. (1990). Directional strength in aggregates as affected by aggregate volume and 

by a wet/dry cycle. J. Soil Sci. 41, 85–93. doi:10.1111/j.1365-2389.1990.tb00047.x. 

Hadley, W., and Winston, C. (2016). ggplot2: Create Elegant Data Visualisations Using the 

Grammar of Graphics. Available at: https://cran.r-project.org/package=ggplot2 

[Accessed February 26, 2019]. 

Hardie, M., Clothier, B., Bound, S., Oliver, G., and Close, D. (2014). Does biochar influence 

soil physical properties and soil water availability? Plant Soil 376, 347–361. 

doi:10.1007/s11104-013-1980-x. 

Harris, K., Ritz, K., Gilligan, C. A., Otten, W., and Young, I. M. (2003). Effect of bulk 

density on the spatial organisation of the fungus Rhizoctonia solani in soil. FEMS 

Microbiol. Ecol. 44, 45–56. doi:10.1111/j.1574-6941.2003.tb01089.x. 

Hartmann, N. B., Hu, T., Thompson, R. C., Hassello, M., Verschoor, A., Daugaard, A. E., et 

al. (2019). Are We Speaking the Same Language? Recommendations for a Definition 

and Categorization Framework for Plastic Debris. Environ. Sci. Technol. 53, 1039–1047. 

doi:10.1021/acs.est.8b05297. 



 113 

Hassink, J., Bouwman, L. A., Zwart, K. B., and Brussaard, L. (1993). Relationships between 

habitable pore space, soil biota and mineralization rates in grassland soils. Soil Biol. 

Biochem. 25, 47–55. doi:10.1016/0038-0717(93)90240-C. 

Henry, B., Laitala, K., and Klepp, I. G. (2019). Microfibres from apparel and home textiles: 

Prospects for including microplastics in environmental sustainability assessment. Sci. 

Total Environ. 652, 483–494. doi:10.1016/j.scitotenv.2018.10.166. 

Hevia, G. G., Mendez, M., and Buschiazzo, D. E. (2007). Tillage affects soil aggregation 

parameters linked with wind erosion. Geoderma 140, 90–96. 

doi:10.1016/j.geoderma.2007.03.001. 

Horn, S., Hempel, S., Ristow, M., Rillig, M. C., Kowarik, I., and Caruso, T. (2015). Plant 

community assembly at small scales: Spatial vs. environmental factors in a European 

grassland. Acta Oecologica 63, 56–62. doi:10.1016/J.ACTAO.2015.01.004. 

Huang, Y., Zhao, Y., Wang, J., Zhang, M., Jia, W., and Qin, X. (2019). LDPE microplastic 

films alter microbial community composition and enzymatic activities in soil. Environ. 

Pollut. 254. doi:10.1016/j.envpol.2019.112983. 

Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., van der Ploeg, M., et al. 

(2016). Microplastics in the Terrestrial Ecosystem: Implications for Lumbricus terrestris 

(Oligochaeta, Lumbricidae). Environ. Sci. Technol. 50, 2685–2691. 

doi:10.1021/acs.est.5b05478. 

Huerta Lwanga, E., Gertsen, H., Gooren, H., Peters, P., Salánki, T., van der Ploeg, M., et al. 

(2017). Incorporation of microplastics from litter into burrows of Lumbricus terrestris. 

Environ. Pollut. 220, 523–531. doi:10.1016/j.envpol.2016.09.096. 

Jackson, A. M., Whipps, J. M., and Lynch, J. M. (1991). Effects of temperature, pH and 

water potential on growth of four fungi with disease biocontrol potential. World J. 

Microbiol. Biotechnol. 7, 494–501. doi:10.1007/BF00303376. 

Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., et al. 

(2015). Plastic waste inputs from land into the ocean. Science (80-. ). 347, 768–771. 

doi:10.1126/science.1260352. 

Kaiser, K., Kaupenjohann, M., Zech, W., and Kaiser, K. (2001). Sorption of dissolved 

organic carbon in soils: effects of soil sample storage, soil-to-solution ratio, and 

temperature. Geoderma 99, 317–328. Available at: www.elsevier.nlrlocatergeoderma 

[Accessed March 9, 2018]. 

Killham, K. (1994). Soil ecology. Cambridge University Press. 

Kirk, T. K., Schultz, E., Connors, W. J., Lorenz, L. F., and Zeikus, J. G. (1978). Influence of 



 114 

culture parameters on lignin metabolism byPhanerochaete chrysosporium. Arch. 

Microbiol. 117, 277–285. doi:10.1007/BF00738547. 

Klironomos, J. N., Allen, M. F., Rillig, M. C., Piotrowski, J., Makvandi-Nejad, S., Wolfe, B. 

E., et al. (2005a). Abrupt rise in atmospheric CO2 overestimates community response in 

a model plant–soil system. Nature 433, 621. Available at: 

https://doi.org/10.1038/nature03268. 

Klironomos, J. N., Allen, M. F., Rillig, M. C., Piotrowski, J., Makvandi-Nejad, S., Wolfe, B. 

E., et al. (2005b). Abrupt rise in atmospheric CO2 overestimates community response in 

a model plant–soil system. Nature 433, 621. 

Kong, A. Y. Y., Six, J., Bryant, D. C., Denison, R. F., and van Kessel, C. (2005). The 

Relationship between Carbon Input, Aggregation, and Soil Organic Carbon Stabilization 

in Sustainable Cropping Systems. Soil Sci. Soc. Am. J. 69, 1078–1085. 

doi:10.2136/sssaj2004.0215. 

Kravchenko, A. N., Negassa, W. C., Guber, A. K., and Rivers, M. L. (2015). Protection of 

soil carbon within macro-aggregates depends on intra-aggregate pore characteristics. 

doi:10.1038/srep16261. 

Kuncoro, P. H., Koga, K., Satta, N., and Muto, Y. (2014). A study on the effect of 

compaction on transport properties of soil gas and water. II: Soil pore structure indices. 

Soil Tillage Res. 143, 180–187. doi:10.1016/j.still.2014.01.008. 

Kutílek, M. (2004). Soil hydraulic properties as related to soil structure. in Soil and Tillage 

Research (Elsevier B.V.), 175–184. doi:10.1016/j.still.2004.07.006. 

Lal, R. (1991). Soil Structure and Sustainability. J. Sustain. Agric. 1, 67–92. 

doi:10.1300/J064v01n04_06. 

Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma 123, 1–22. 

doi:10.1016/j.geoderma.2004.01.032. 

Lee, K. E., and Foster, R. C. (1991). Soil fauna and soil structure. Aust. J. Soil Res. 29, 745–

775. doi:10.1071/SR9910745. 

Lehmann, A., Fitschen, K., and Rillig, C. M. (2019a). Abiotic and Biotic Factors Influencing 

the Effect of Microplastic on Soil Aggregation. Soil Syst.  3. 

doi:10.3390/soilsystems3010021. 

Lehmann, A., and Rillig, M. C. (2015). Understanding mechanisms of soil biota involvement 

in soil aggregation: A way forward with saprobic fungi? Soil Biol. Biochem. 88, 298–

302. doi:10.1016/J.SOILBIO.2015.06.006. 

Lehmann, A., Zheng, W., and Rillig, M. C. (2017). Soil biota contributions to soil 



 115 

aggregation. Nat. Ecol. Evol. doi:10.1038/s41559-017-0344-y. 

Lehmann, A., Zheng, W., Ryo, M., Soutschek, K., Rongstock, R., Maass, S., et al. (2019b). 

Fungal traits important for soil aggregation. bioRxiv, 732628. doi:10.1101/732628. 

Lehmann, A., Zheng, W., Ryo, M., Soutschek, K., Roy, J., Rongstock, R., et al. (2020). 

Fungal Traits Important for Soil Aggregation. Front. Microbiol. 10, 2904. 

doi:10.3389/fmicb.2019.02904. 

Li, G. Y., and Fan, H. M. (2014). Effect of Freeze-Thaw on Water Stability of Aggregates in 

a Black Soil of Northeast China. Pedosphere 24, 285–290. doi:10.1016/S1002-

0160(14)60015-1. 

Li, J., Wang, G., Mayes, M. A., Allison, S. D., Frey, S. D., Shi, Z., et al. (2019). Reduced 

carbon use efficiency and increased microbial turnover with soil warming. Glob. Chang. 

Biol. 25, 900–910. doi:10.1111/gcb.14517. 

Liang, C., Amelung, W., Lehmann, J., and Kästner, M. (2019). Quantitative assessment of 

microbial necromass contribution to soil organic matter. Glob. Chang. Biol. 25, 3578–

3590. doi:10.1111/gcb.14781. 

Liang, C., and Balser, T. C. (2012). Warming and nitrogen deposition lessen microbial 

residue contribution to soil carbon pool. Nat. Commun. 3, 1222. 

doi:10.1038/ncomms2224. 

Linn, D. M., and Doran, J. W. (1984). Effect of Water-Filled Pore Space on Carbon Dioxide 

and Nitrous Oxide Production in Tilled and Nontilled Soils. Soil Sci. Soc. Am. J. 48, 

1267–1272. doi:10.2136/sssaj1984.03615995004800060013x. 

Liu, H., Yang, X., Liu, G., Liang, C., Xue, S., Chen, H., et al. (2017). Response of soil 

dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere 

185, 907–917. doi:10.1016/j.chemosphere.2017.07.064. 

Loera, O., Ordaz, A., Favela, E., Meneses, M., and Mendoza, G. (2011).  Hyphal morphology 

modification in thermal adaptation by the white-rot fungus Fomes sp. EUM1 . J. Basic 

Microbiol. 52, 167–174. doi:10.1002/jobm.201000528. 

Lynch, J. M., and Elliott, L. F. (1983). Aggregate Stabilization of Volcanic Ash and Soil 

During Microbial Degradation of Strawt. Available at: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC242469/pdf/aem00173-0242.pdf 

[Accessed June 12, 2019]. 

Ma, R., Cai, C., Li, Z., Wang, J., Xiao, T., Peng, G., et al. (2015). Evaluation of soil 

aggregate microstructure and stability under wetting and drying cycles in two Ultisols 

using synchrotron-based X-ray micro-computed tomography. Soil Tillage Res. 149, 1–



 116 

11. doi:10.1016/j.still.2014.12.016. 

Ma, T., Zhu, S., Wang, Z., Chen, D., Dai, G., Feng, B., et al. (2018). Divergent accumulation 

of microbial necromass and plant lignin components in grassland soils. Nat. Commun. 9, 

1–9. doi:10.1038/s41467-018-05891-1. 

Mangalassery, S., Sjögersten, S., Sparkes, D. L., Sturrock, C. J., and Mooney, S. J. (2013). 

The effect of soil aggregate size on pore structure and its consequence on emission of 

greenhouse gases. Soil Tillage Res. 132, 39–46. doi:10.1016/j.still.2013.05.003. 

Manzoni, S., Taylor, P., Richter, A., Porporato, A., and Gren, G. I. A. ˚ (2012). Research 

review Environmental and stoichiometric controls on microbial carbon-use efficiency in 

soils. New Phytol. 196, 79–91. doi:10.1111/j.1469-8137.2012.04225.x. 

Maron, P. A., Sarr, A., Kaisermann, A., Lévêque, J., Mathieu, O., Guigue, J., et al. (2018). 

High microbial diversity promotes soil ecosystem functioning. Appl. Environ. 

Microbiol. 84. doi:10.1128/AEM.02738-17. 

Mbagwu, J. S. C., and Piccolo, A. (1989). Changes in soil aggregate stability induced by 

amendment with humic substances. Soil Technol. 2, 49–57. doi:10.1016/S0933-

3630(89)80006-6. 

Moharir, R. V., and Kumar, S. (2019). Challenges associated with plastic waste disposal and 

allied microbial routes for its effective degradation: A comprehensive review. J. Clean. 

Prod. 208, 65–76. doi:10.1016/j.jclepro.2018.10.059. 

Monson, R. K., Lipson, D. L., Burns, S. P., Turnipseed, A. A., Delany, A. C., Williams, M. 

W., et al. (2006). Winter forest soil respiration controlled by climate and microbial 

community composition. Nature 439, 711–714. doi:10.1038/nature04555. 

Moore, C. J. (2008). Synthetic polymers in the marine environment: A rapidly increasing, 

long-term threat. Environ. Res. 108, 131–139. doi:10.1016/j.envres.2008.07.025. 

Mummey, D. L., and Stahl, P. D. (2004). Analysis of soil whole- and inner-microaggregate 

bacterial communities. Microb. Ecol. 48, 41–50. doi:10.1007/s00248-003-1000-4. 

Muneer, M., and Oades, J. M. (1989). The role of ca-organic interactions in soil aggregate 

stability. III. mechanisms and models. Aust. J. Soil Res. 27, 411–423. 

doi:10.1071/SR9890411. 

Nachabe, M. H. (1995). Estimating Hydraulic Conductivity for Models of Soils with 

Macropores. J. Irrig. Drain. Eng. 121, 95–102. doi:10.1061/(asce)0733-

9437(1995)121:1(95). 

Negassa, W. C., Guber, A. K., Kravchenko, A. N., Marsh, T. L., Hildebrandt, B., and Rivers, 

M. L. (2015). Properties of Soil Pore Space Regulate Pathways of Plant Residue 



 117 

Decomposition and Community Structure of Associated Bacteria. PLoS One 10, 

e0123999. doi:10.1371/journal.pone.0123999. 

Oades, J. M. (1984). Soil organic matter and structural stability: mechanisms and 

implications for management. Plant Soil 76, 319–337. doi:10.1007/BF02205590. 

Oades, J., and Waters, A. (1991). Aggregate hierarchy in soils. Aust. J. Soil Res. 29, 815. 

doi:10.1071/SR9910815. 

Oelkers, E. H., and Cole, D. R. (2008). Carbon dioxide sequestration: A solution to a global 

problem. Elements 4, 305–310. doi:10.2113/gselements.4.5.305. 

Oztas, T., and Fayetorbay, F. (2003). Effect of freezing and thawing processes on soil 

aggregate stability. Catena 52, 1–8. doi:10.1016/S0341-8162(02)00177-7. 

Papagianni, M. (2004). Fungal morphology and metabolite production in submerged mycelial 

processes. Biotechnol. Adv. 22, 189–259. doi:10.1016/j.biotechadv.2003.09.005. 

Pennekamp, F., Pontarp, M., Tabi, A., Altermatt, F., Alther, R., Choffat, Y., et al. (2018). 

Biodiversity increases and decreases ecosystem stability. Nature. doi:10.1038/s41586-

018-0627-8. 

Pietikäinen, J., Pettersson, M., and Bååth, E. (2005). Comparison of temperature effects on 

soil respiration and bacterial and fungal growth rates. FEMS Microbiol. Ecol. 52, 49–58. 

doi:10.1016/j.femsec.2004.10.002. 

Pirc, U., Vidmar, M., Mozer, A., and Kržan, A. (2016). Emissions of microplastic fibers from 

microfiber fleece during domestic washing. Environ. Sci. Pollut. Res. 23, 22206–22211. 

doi:10.1007/s11356-016-7703-0. 

Poll, C., Ingwersen, J., Stemmer, M., Gerzabek, M. H., and Kandeler, E. (2006). Mechanisms 

of solute transport affect small-scale abundance and function of soil microorganisms in 

the detritusphere. Eur. J. Soil Sci. 57, 583–595. doi:10.1111/j.1365-2389.2006.00835.x. 

Power, J. F. (1994). Understanding the nutrient cycling process. J. Soil Water Conserv. 49, 

S16–S16. Available at: 

https://go.gale.com/ps/i.do?p=AONE&sw=w&issn=00224561&v=2.1&it=r&id=GALE

%7CA15406393&sid=googleScholar&linkaccess=fulltext [Accessed April 7, 2021]. 

Qiu, L., Zhang, Q., Zhu, H., Reich, P. B., Banerjee, S., van der Heijden, M. G. A., et al. 

(2021). Erosion reduces soil microbial diversity, network complexity and 

multifunctionality. ISME J., 1–16. doi:10.1038/s41396-021-00913-1. 

R Core Team (2017). R: A Language and Environment for Statistical Computing. Available 

at: http://www.r-project.org [Accessed February 26, 2019]. 

Rands, M. R. W., Adams, W. M., Bennun, L., Butchart, S. H. M., Clements, A., Coomes, D., 



 118 

et al. (2010). Biodiversity conservation: Challenges beyond 2010. Science (80-. ). 329, 

1298–1303. doi:10.1126/science.1189138. 

Rillig, M. C. (2012). Microplastic in Terrestrial Ecosystems and the Soil? Environ. Sci. 

Technol. 46, 6453–6454. doi:10.1021/es302011r. 

Rillig, M. C., Aguilar‐Trigueros, C. A., Bergmann, J., Verbruggen, E., Veresoglou, S. D., and 

Lehmann, A. (2015). Letters Plant root and mycorrhizal fungal traits for understanding 

soil aggregation. New Phytol., 1385–1388. 

Rillig, M. C., and Lehmann, A. (2020). Microplastic in terrestrial ecosystems. Science (80-. ). 

368, 1430–1431. doi:10.1126/science.abb5979. 

Rillig, M. C., Lehmann, A., Ryo, M., and Bergmann, J. (2019). Shaping up: Toward 

considering the shape and form of pollutants. Environ. Sci. Technol. 53, 7925–7926. 

doi:10.1021/acs.est.9b03520. 

Rillig, M. C., and Mummey, D. L. (2006). Mycorrhizas and soil structure. New Phytol. 171, 

41–53. doi:10.1111/j.1469-8137.2006.01750.x. 

Rillig, M. C., Wright, S. F., Shaw, M. R., Field, C. B., and Artificial, C. B. (2002). Artificial 

climate warming positively affects arbuscular mycorrhizae but decreases soil aggregate 

water stability in an annual grassland. Oikos 97, 52–58. doi:10.1034/j.1600-

0706.2002.970105.x. 

Rillig, M. C., Ziersch, L., and Hempel, S. (2017). Microplastic transport in soil by 

earthworms. Sci. Rep. 7, 1362. doi:10.1038/s41598-017-01594-7. 

Ruamps, L. S., Nunan, N., and Chenu, C. (2011). Microbial biogeography at the soil pore 

scale. Soil Biol. Biochem. 43, 280–286. doi:10.1016/j.soilbio.2010.10.010. 

Rutherford, P. M., and Juma, N. G. (1992). Influence of soil texture on protozoa-induced 

mineralization of bacterial carbon and nitrogen. Can. J. Soil Sci. 72, 183–200. 

doi:10.4141/cjss92-019. 

Sahab Yadav, L., and Bagool, R. (2015). Isolation and Screening of Cellulolytic Chaetomium 

sp. from Deteriorated Paper Samples. Available at: 

https://www.researchgate.net/publication/301754399 [Accessed July 8, 2019]. 

Schon, N. L., Mackay, A. D., Gray, R. A., van Koten, C., and Dodd, M. B. (2017). Influence 

of earthworm abundance and diversity on soil structure and the implications for soil 

services throughout the season. Pedobiologia (Jena). 62, 41–47. 

doi:10.1016/j.pedobi.2017.05.001. 

Shen, W., Reynolds, J. F., and Hui, D. (2009). Responses of dryland soil respiration and soil 

carbon pool size to abrupt vs. gradual and individual vs. combined changes in soil 



 119 

temperature, precipitation, and atmospheric [CO2 ]: A simulation analysis. Glob. Chang. 

Biol. 15, 2274–2294. doi:10.1111/j.1365-2486.2009.01857.x. 

Shukla, P. R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H. O., Roberts, D. 

C., et al. (2019). IPCC, 2019: Climate Change and Land: an IPCC special report on 

climate change, desertification, land degradation, sustainable land management, food 

security, and greenhouse gas fluxes in terrestrial ecosystems. 

Singer, M. J., Southard, R. J., Warrington, D. N., and Janitzky, P. (1992). Stability of 

Synthetic Sand-Clay Aggregates after Wetting and Drying Cycles. Soil Sci. Soc. Am. J. 

56, 1843–1848. doi:10.2136/sssaj1992.03615995005600060032x. 

Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B., Allison, S. D., Crenshaw, C., 

et al. (2008). Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–

1264. doi:10.1111/j.1461-0248.2008.01245.x. 

Six, J., Bossuyt, H., Degryze, S., and Denef, K. (2004). A history of research on the link 

between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage 

Res. 79, 7–31. doi:10.1016/j.still.2004.03.008. 

Six, J., Elliott, E. T., and Paustian, K. (2000). Soil macroaggregate turnover and 

microaggregate formation: A mechanism for C sequestration under no-tillage 

agriculture. Soil Biol. Biochem. 32, 2099–2103. doi:10.1016/S0038-0717(00)00179-6. 

Song, Y., Liu, L., Yan, P., and Cao, T. (2005). A review of soil erodibility in water and wind 

erosion research. J. Geogr. Sci. 15, 167–176. doi:10.1007/bf02872682. 

Stewart, B. A., and Hartge, K. H. (1995). Soil structure: its development and function. CRC 

Press. 

Sun, F., and Lu, S. (2014). Biochars improve aggregate stability, water retention, and pore-

space properties of clayey soil. J. Plant Nutr. Soil Sci. 177, 26–33. 

doi:10.1002/jpln.201200639. 

Sutherland, G. R., Haselbach, J., and Aust, S. D. (1997). Biodegradation of Crosslinked 

Acrylic Polymers by a White-Rot Fungus. Environ. Sci. Pollut. Res. 4, 16–20. Available 

at: https://link.springer.com/content/pdf/10.1007%2FBF02986258.pdf [Accessed June 

10, 2019]. 

Tardy, V., Spor, A., Mathieu, O., Lévèque, J., Terrat, S., Plassart, P., et al. (2015). Shifts in 

microbial diversity through land use intensity as drivers of carbon mineralization in soil. 

Soil Biol. Biochem. 90, 204–213. doi:10.1016/j.soilbio.2015.08.010. 

Tekin, E., White, C., Kang, T. M., Singh, N., Cruz-Loya, M., Damoiseaux, R., et al. (2018). 

Prevalence and patterns of higher-order drug interactions in Escherichia coli. npj Syst. 



 120 

Biol. Appl. 4, 31. doi:10.1038/s41540-018-0069-9. 

Tippkötter, R., Eickhorst, T., Taubner, H., Gredner, B., and Rademaker, G. (2009). Detection 

of soil water in macropores of undisturbed soil using microfocus X-ray tube 

computerized tomography (μCT). Soil Tillage Res. 105, 12–20. 

doi:10.1016/j.still.2009.05.001. 

Tisdall, J. (1991). Fungal hyphae and structural stability of soil. Aust. J. Soil Res. 29, 729. 

doi:10.1071/SR9910729. 

Tisdall, J. M. (1994). Possible role of soil microorganisms in aggregation in soils. Available 

at: https://link.springer.com/content/pdf/10.1007%2FBF00000100.pdf [Accessed 

October 2, 2018]. 

Tisdall, J. M., Nelson, S. E., Wilkinson, K. G., Smith, S. E., and McKenzie, B. M. (2012). 

Stabilisation of soil against wind erosion by six saprotrophic fungi. Soil Biol. Biochem. 

50, 134–141. doi:10.1016/J.SOILBIO.2012.02.035. 

Tisdall, J. M., and Oades, J. M. (1982). Organic matter and water‐stable aggregates in soils. 

J. Soil Sci. 33, 141–163. doi:10.1111/j.1365-2389.1982.tb01755.x. 

Tobergte, D. R., and Curtis, S. (2013). Statistics for biology and health. 

doi:10.1017/CBO9781107415324.004. 

Treseder, K. K., Marusenko, Y., Romero-Olivares, A. L., and Maltz, M. R. (2016). 

Experimental warming alters potential function of the fungal community in boreal 

forest. Glob. Chang. Biol. 22, 3395–3404. doi:10.1111/gcb.13238. 

Uwe Totsche, K., Amelung, W., Gerzabek, M. H., Guggenberger, G., Klumpp, E., Knief, C., 

et al. (2018). Microaggregates in soils. J. Plant Nutr. Soil Sci 181, 104–136. 

doi:10.1002/jpln.201600451. 

van den Berg, P., Huerta-Lwanga, E., Corradini, F., and Geissen, V. (2020). Sewage sludge 

application as a vehicle for microplastics in eastern Spanish agricultural soils. Environ. 

Pollut. 261. doi:10.1016/j.envpol.2020.114198. 

van der Weerden, T. J., Kelliher, F. M., and de Klein, C. A. M. (2012). Influence of pore size 

distribution and soil water content on nitrous oxide emissions. Soil Res. 50, 125. 

doi:10.1071/SR11112. 

Van Veen, J. A., and Kuikman, P. J. (1990). Soil structural aspects of decomposition of 

organic matter by micro-organisms. Available at: 

https://link.springer.com/content/pdf/10.1007%2FBF00004497.pdf [Accessed July 8, 

2019]. 

Wang, E., Cruse, R. M., Chen, X., and Daigh, A. (2012a). Effects of moisture condition and 



 121 

freeze/thaw cycles on surface soil aggregate size distribution and stability. Can. J. Soil 

Sci. 92, 529–536. doi:10.4141/CJSS2010-044. 

Wang, R., Dorodnikov, M., Dijkstra, F., Yang, S., Xu, Z., Li, H., et al. (2017). Sensitivities to 

nitrogen and water addition vary among microbial groups within soil aggregates in a 

semiarid grassland. Biol Fertil Soils 53, 129–140. doi:10.1007/s00374-016-1165-x. 

Wang, W., Kravchenko, A. N., Smucker, A. J. M., Liang, W., and Rivers, M. L. (2012b). 

Intra-aggregate Pore Characteristics: X-ray Computed Microtomography Analysis. Soil 

Sci. Soc. Am. J. 76, 1159–1171. doi:10.2136/sssaj2011.0281. 

Wheeler, T., and von Braun, J. (2013). Climate Change Impacts on Global Food Security. 

Science (80-. ). 341, 508 LP – 513. doi:10.1126/science.1239402. 

Wuepper, D., Borrelli, P., and Finger, R. (2020). Countries and the global rate of soil erosion. 

Nat. Sustain. 3, 51–55. doi:10.1038/s41893-019-0438-4. 

Yan, N., and Marschner, P. (2013). Response of soil respiration and microbial biomass to 

changing EC in saline soils. Soil Biol. Biochem. 65, 322–328. 

doi:10.1016/j.soilbio.2013.06.008. 

Yang, G., Roy, J., Veresoglou, S. D., and Rillig, M. C. (2020). Soil biodiversity enhances the 

persistence of legumes under climate change. New Phytol., nph.17065. 

doi:10.1111/nph.17065. 

Yang, G., Ryo, M., Roy, J., Hempel, S., and Rillig, M. (2021). Plant and soil biodiversity 

have non-substitutable stabilizing effects on biomass production. Authorea Prepr. 

doi:10.22541/AU.161044551.17634951/V1. 

Yoo, G., Kim, H., Chen, J., and Kim, Y. (2014). Effects of Biochar Addition on Nitrogen 

Leaching and Soil Structure following Fertilizer Application to Rice Paddy Soil. Soil 

Sci. Soc. Am. J. 78, 852–860. doi:10.2136/sssaj2013.05.0160. 

Zaffar, M., and Lu, S. G. (2015). Pore size distribution of clayey soils and its correlation with 

soil organic matter. Pedosphere 25, 240–249. doi:10.1016/S1002-0160(15)60009-1. 

Zamani, S., and Mahmoodabadi, M. (2013). Effect of particle-size distribution on wind 

erosion rate and soil erodibility. Arch. Agron. Soil Sci. 59, 1743–1753. 

doi:10.1080/03650340.2012.748984. 

Zhang, F. G., and Zhang, Q. G. (2016). Microbial diversity limits soil heterotrophic 

respiration and mitigates the respiration response to moisture increase. Soil Biol. 

Biochem. 98, 180–185. doi:10.1016/j.soilbio.2016.04.017. 

Zhang, G. S., and Liu, Y. F. (2018). Science of the Total Environment The distribution of 

microplastics in soil aggregate fractions in southwestern China. Sci. Total Environ. 642, 



 122 

12–20. doi:10.1016/j.scitotenv.2018.06.004. 

Zhang, M., Zhao, Y., Qin, X., Jia, W., Chai, L., Huang, M., et al. (2019). Microplastics from 

mulching film is a distinct habitat for bacteria in farmland soil. Sci. Total Environ. 688, 

470–478. doi:10.1016/j.scitotenv.2019.06.108. 

Zhang, Y., Dong, S., Gao, Q., Liu, S., Zhou, H., Ganjurjav, H., et al. (2016). Climate change 

and human activities altered the diversity and composition of soil microbial community 

in alpine grasslands of the Qinghai-Tibetan Plateau. Sci. Total Environ. 562, 353–363. 

doi:10.1016/j.scitotenv.2016.03.221. 

Zheng, W., Lehmann, A., Ryo, M., Valyi, K., and Rillig, M. C. (2018). Growth rate trades off 

with enzymatic investment in soil filamentous fungi. bioRxiv, 360511. 

doi:10.1101/360511. 

Zhou, B., Wang, J., Zhang, H., Shi, H., Fei, Y., Huang, S., et al. (2020a). Microplastics in 

agricultural soils on the coastal plain of Hangzhou Bay, east China: Multiple sources 

other than plastic mulching film. J. Hazard. Mater. 388, 121814. 

doi:10.1016/j.jhazmat.2019.121814. 

Zhou, Q., Zhang, H., Fu, C., Zhou, Y., Dai, Z., Li, Y., et al. (2018). The distribution and 

morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow 

Sea. Geoderma 322, 201–208. doi:10.1016/j.geoderma.2018.02.015. 

Zhou, Y., Wang, J., Zou, M., Jia, Z., Zhou, S., and Li, Y. (2020b). Microplastics in soils: A 

review of methods, occurrence, fate, transport, ecological and environmental risks. Sci. 

Total Environ. 748, 141368. doi:10.1016/j.scitotenv.2020.141368. 

Zobeck, T. M., Baddock, M., Scott Van Pelt, R., Tatarko, J., and Acosta-Martinez, V. (2013). 

Soil property effects on wind erosion of organic soils. Aeolian Res. 10, 43–51. 

doi:10.1016/j.aeolia.2012.10.005. 

Zobkov, M., and Esiukova, E. (2017). Microplastics in Baltic bottom sediments: 

Quantification procedures and first results. Mar. Pollut. Bull. 114, 724–732. 

doi:10.1016/j.marpolbul.2016.10.060. 

Zogg, G. P., Zak, D. R., Ringelberg, D. B., White, D. C., MacDonald, N. W., and Pregitzer, 

K. S. (1997). Compositional and Functional Shifts in Microbial Communities Due to 

Soil Warming. Soil Sci. Soc. Am. J. 61, 475. 

doi:10.2136/sssaj1997.03615995006100020015x. 

Zumstein, M. T., Nelson, T. F., Baumgartner, R., McNeill, K., Sander, M., Schintlmeister, 

A., et al. (2018). Biodegradation of synthetic polymers in soils: Tracking carbon into 

CO2 and microbial biomass. Sci. Adv. 4. doi:10.1126/sciadv.aas9024. 



 123 

 

  



 124 

APPENDIX 

APPENDIX A2: CHAPTER 2  

 

Figure A2.1. Microfiber size distribution. Polyacrylic fibers (N= 113) were measured under a 

microscope. 
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Figure A2.2. Depiction of temperature increase patterns. The ambient temperature was set at 

25℃ while the elevated temperature was targeted at 28℃. For temperature elevation, two 

distinct increase patterns (abrupt and gradual) were explored. The two temperature elevation 

patterns started on different days (abrupt pattern: start on day 18; gradual pattern: temperature 

was increased by 0.15℃/day from day 8 to day 27), but both lasted until day 42 Following 

these two patterns, the average temperatures of abrupt and gradual increase are the same.  
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Table A.1. Information about phylum, order and Genbank and Deutsche Sammlung von 

Mikroorganismen und Zellkulturen (German Collection of Microorganisms and Cell Cultures 

GmbH, DSMZ) accession numbers of the five fungal strains used in this study. 

Fungal 

strain  

ID 

Taxonomic 

identification 
Family Order Phylum DSMZ 

Radial 

colony 

growth rate 

(µm/h) 

RLCS 01 Mucor fragilis Mucoraceae Mucorales 
Mucoromyco

tina 

DSM 

100293 
372.7625 

RLCS 05 Fusarium sp. Nectriaceae Hypocreales Ascomycota 
DSM 

100403 
215.1519 

RLCS 06 
Chaetomium 

angustispirale 
Chaetomiaceae Sordariales Ascomycota 

DSM 

100400 
198.463 

RLCS 07  
Amphisphaeriaceae 

strain 1 

Amphisphaeriace

ae 
Xylariales  Ascomycota 

DSM 

100284 
196.82174 

RLCS 08 Gibberella tricincta Nectriaceae Hypocreales Ascomycota 
DSM 

100325 
183.00533 

Fungal isolates were identified based on the complete intergenic transcribed spacer (ITS) and 
a part of the large rRNA subunit (LSU). We used ITSx (Bengtsson-Palme et al., 2013) to split 
the rRNA sequences into the different subregions ITS1, 5.8S, ITS2 and LSU. Each region 
was aligned independently, using AlignSeqs in the R package DECIPHER 2.0 (Wright, 
2015). Aligned subregion sequences were concatenated. Pairwise distances from sequences 
were calculated using the JC69 evolutionary model and used to construct a neighbor-joining 
tree, with the dist.ml and NJ functions respectively, of the R package “phangorn” 2.5.5 
(Schliep, 2010). Root was placed at the midpoint of the longest path between any two tips. 
Taxonomic annotations of the fungal isolates were based on each subregions. We used the 
Naive Bayesian Classifier (Wang et al., 2007) as implemented in the R package “dada2” 
(Callahan et al., 2016) against UNITE database for ITS1 or ITS2 (Nilsson et al., 2018), and 
against the RDP LSU database for LSU (Cole et al., 2011). A confidence threshold was 
calculated with bootstrap analysis and an annotation was deemed valid when supported in 
80% of the bootstraps. The best resolved taxonomic annotation among the regions was 
chosen. In the case of a conflict of taxonomic annotations between regions, priority was given 
to ITS1 or ITS2 because UNITE is more complete than the RDP LSU database. We followed 
the phylum classification by Spatafora et al. (Spatafora et al., 2017) (Table A2.1). 
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Table A2.2. Plate counting of homogenates (replicates= 3, per fungal strain). 

Fungal strain Original numbers of fungal fragments Numbers of fungal fragments after 

dilution 

RLCS 01 ca.100  ca.100 

RLCS 05 400, 500, 400 ca.40 

RLCS 06 35, 44, 46 No dilution 
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RLCS 07 72,71,70 ca.70 

RLCS 08 150, 145, 200 ca.75 
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Table A2.3. Percentage of water stable macroaggregates among different treatments.  

Data are presented as mean and standard deviation. Different uppercase letters indicate 

significant differences (Duncan’s test) among different fungi (p < 0.05). Different lowercase 

letters indicate significant differences (Duncan’s test) among temperature treatments in terms 

of microfiber present or absent (P< 0.05). 

  

Fungal 

species 
Microfiber absent   Microfiber present 

 
Ambient 

temperature 

Gradually 

elevated 

temperature 

Abruptly 

elevated 

temperature 

 
Ambient 

temperature 

Gradually 

elevated 

temperature 

Abruptly 

elevated 

temperature 

Control 
15.46±6.90 

Ca 

18.93±10.49 

Da 

14.00±5.20 

Da 
 

22.36±6.87 

Ba 

20.55±8.09 

Ba 

19.71±8.14 

Ca  

RLCS 01 
16.17±6.12 

Cb 

27.00±3.85 

Ca 

12.03±2.61 

Db 
 

30.13±7.74 

Bab 

34.84±9.42 

Aa 

23.81±10.74 

Cb  

RLCS 05 
37.27±5.46 

Ba 

41.48±7.72 

Ba 

40.30±4.23 

Ca 
 

29.55±8.88 

Ba 

34.09±4.70 

Aa 

29.13±6.36 

Ba  

RLCS 06 
50.63±6.36 

Aa 

36.91±3.78 

Bb 

50.38±6.11 

ABa 
 

25.78±5.89 

Ba 

27.43±5.50 

Ba 

16.98±3.90 

Cb 

RLCS 07 
37.78±2.35 

Bb 

42.16±3.30 

Bab 

45.46±5.99 

BCa 
 

25.43±5.27 

Ba 

26.38±5.36 

Ba 

25.82±7.88 

BCa  

RLCS 08 
49.15±5.55 

Ab 

57.55±2.59 

Aa 

52.71±6.28 

Aab 
 

44.43±8.17 

Aa 

36.84±7.24 

Aa 

42.75±7.46 

Aa  
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APPENDIX A3: CHAPTER 3 

respiration 

We measured soil respiration as CO2 production rate (ppm h-1). Before the measurement, we 

flushed each of the tubes with CO2-free air for five minutes to standardize among 

experimental units (Rillig et al., 2019). After 2 hours (preliminary measurements showed that 

after this time readouts were within the range of the calibration curve), we sampled 1 ml of 

air from the headspace of each tube and injected this sample into an infrared gas analyser 

(LiCOR 6400xt).  
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Figure A3.1.  Three types of microplastic fibers used in our study: polyester1 (a), polyester2 

(b), polyacrylic (c).  

 

 

Figure A3.2.  Size distributions of microplastic fibers (polyester1 (n = 102), polyester2 (n = 

274), polyacrylic (n = 210)) used in our study. The dashed line indicates the mean value of 

fiber length.  
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Figure A3.3. Four types of organic matters used in our study: Medicago leaves (a), Plantago 

leaves (b), wheat straw (c), hemp stem (d), the white bar represents 2mm size.  
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Figure A3.4. The soil respiration rate after the 1st day of incubation. Effects of organic 

matter on soil respiration rate. The upper panel shows the raw data of respiration, data 

distributions are aligned with corresponding mean and standard deviation (n = 8 for each 

treatment).  The lower panel shows the unpaired mean differences of the organic matter 

addition and control. Triangles (arrow head up) represent the positive effect size mean 

(unpaired mean; effect magnitude) and the vertical lines the corresponding 95% confidence 

intervals (effect precision).  
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Figure A3.5. The respiration rates of soil added with different concentrations of Medicago. 

Data distributions are aligned with corresponding mean and standard deviation (n = 5 for 

each concentration). Given Medicago could contain the most content of labile substrates for 

microbes, we used a concentration below the saturation rate of Medicago. The saturation was 

determined as the soil respiration no longer increased with the increasing addition of 

Medicago. 

 

 

 

 

 

 

 


