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1.1 Summary 
Since the dawn of time, multicellular life has been exposed to a wide range of microbes. A 

share of them will not interfere with the host development or daily homeostasis, some might 

even contribute to it and potentially become essential, such as gut microbiota. However, a 

smaller, but significant, fraction of them will threaten the correct livelihood of their host, often 

defined as parasites or pathogens, depending on their properties or the scientific school that is 

addressing them. Hosts face this kind of organisms on a daily basis. Most parasites we face 

every day present low virulence and frequently their menace happens by chance, commonly 

referred as opportunistic pathogens, as is the case of microbiota that following a given stress 

might grow uncontrollably. On the other side of the spectrum, we have parasites that under 

normal conditions hosts might be exposed much less often but exhibit a higher level of 

virulence and pathogenicity, the so-called pathogens. Therefore, just by focusing on a parasite 

virulence we observe a wide range of threats to the host. Nevertheless, there are an immense 

range of properties intrinsic to the parasite that might influence the outcome of a host-parasite, 

or better a host-pathogen, interaction. These properties can include infection site, transmission 

rate and which resources they hitchhike. In face of these threats, hosts were selected to develop 

an equivalent wide set of immune responses with different costs and benefits to themselves. 

Immunity can be further divided into innate and adaptive. The latter is a complex branch only 

found in vertebrates, and therefore, I will focus on the most universal branch of the immune 

system throughout this thesis, the innate immune responses. Hosts evolved resistance and 

tolerance strategies, two disparate sets of mechanisms that in a stricto sensu aim to clear or 

cope with the infection. Naturally, these strategies will have very distinct consequences for the 

ecology and evolution of a host-parasite interaction and each of the populations' evolutionary 

history. Moreover, in the current medicine state and health crisis, the study of these strategies 

offers new insights and solutions for immunology and epidemiology. Up to now, when we 

address an infection, fighting and hopefully clearing the parasite burden is the first solution 

that comes to mind. We define the latter as resistance, particularly quantitative resistance as it 

reduces the parasite number. Nevertheless, resistance comes with a number of cons. Resistance 

mechanisms are usually very costly, either by the effectors induction or the collateral damage 

caused by these (e.g. oxidative stress and consequent inflammation). Furthermore, resistance 

acts on the parasite number and therefore selects for increased virulence alleles on the parasite 

side that will in turn select for further host increased resistance and so forth. This antagonistic 

coevolution between the host and parasite is often referred as Red Queen dynamics and it is 
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one of the major selective forces in nature. On the other hand, tolerance acts by reducing or 

controlling the damage employed by either the parasite itself or by the immune response. 

Hence, this strategy does not affect the parasite burden and consequently, it is not expected to 

select for higher virulence. Experimentally, we quantify tolerance as the reduction of a given 

infection cost in fitness measures, such as fecundity-tolerance for reproductive fitness or 

mortality tolerance for survival. Unfortunately, tolerance studies are scarce and often reflect 

theoretical predictions from modelling or studies from plant biology, where most of our 

understanding comes from.  

 

In this thesis, we started by investigating how different pathogens shape infection dynamics 

outcome in an outbred population of Drosophila melanogaster and second, how does a host 

population respond to the exposure to different pathogens in the short and long-term. In 

Chapter 3, we exposed a D. melanogaster population to a variety of parasites from low to high 

virulence and low to high inoculum size. This allowed us to characterize bacterial infections 

during the host lifetime. From the host side, we focused on common points such as clearance 

ability, while on the parasite side we turned to its aptitude to persist within the host. 

Furthermore, we decompose parasitic virulence into smaller factors, such as host exploitation 

or per-parasite pathogenicity, i.e. how well the bacterial species survive and replicate within 

the host, and the amount of damage they inflict. In Chapter 4, we turn our focus to the host and 

addressed how the variation in parasite burden at given time-points during infection reflects 

variation in the immune strategies. Here we showed that throughout a bacterial infection with 

Lactococcus lactis, individuals become less tolerant and less resistant across the two time-

points measured, potentially indicating immunity costs. Curiously, we also observed that 

individuals unable to control parasite burden in the acute phase are particularly less tolerant 

than their counterparts. Lastly, in Chapter 5 we examined what are the evolutionary 

implications of selection for host resistance and fecundity-tolerance in a specific host-parasite 

interaction, D. melanogaster and L. lactis. Interestingly, our results show that after eight 

generations of selection, tolerance seems to be the favoured immune strategy to evolve in both 

resistance and tolerance selection regimes. This result suggests tolerance mechanisms might 

offer less costs or be more promptly available under the settings of this study. Altogether, our 

results help to clarify some of the implications and properties of these strategies on the 

dynamics of host-parasite interactions, as well as bring to light a new set of questions regarding 

tolerance and all its underpinnings.  
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1.2 Zusammenfassung 
 

Tiere sind täglich einer Vielzahl von Mikroorganismen ausgesetzt. Die Wechselwirkung 

zwischen ihnen kann von positiv bis negativ reichen. Letztere Art von Mikroorganismen 

werden je nach ihren Eigenschaften als Parasiten oder Krankheitserreger bezeichnet. Wirte 

reagieren auf eine Infektion mit verschiedenen Strategien, nämlich mit Resistenz oder 

Toleranz. Resistenz zielt darauf ab, die Anzahl der Parasiten zu reduzieren oder eine Infektion 

vollständig zu beseitigen. Auf der anderen Seite erlaubt Toleranz dem Wirt, mit den 

Auswirkungen einer Infektion und der Immunantwort zurechtzukommen. Natürlich führen 

diese beiden Strategien zu sehr unterschiedlichen Ergebnissen sowohl in der Evolution, als 

auch in der Ökologie der Wirt-Parasit-Interaktion, aber auch zu unterschiedlichen 

Implikationen für Medizin, Immunologie und Epidemiologie. Resistenz wirkt sich auf die 

Parasitenzahl aus und selektiert daher auf erhöhte Virulenz. Auf der anderen Seite beeinflusst 

Toleranz nicht die Parasitenlast und sollte daher laut Studien einen neutralen bis positiven 

Effekt auf die Parasitenprävalenz und die Evolution haben. 

 

In dieser Arbeit untersuchten wir: i) wie verschiedene Parasiten die Infektionsdynamik und 

deren Ergebnis in einer Population von Drosophila melanogaster beeinflussen; ii) wie ein Wirt 

kurzfristig auf eine Infektion mit einem bestimmten Parasiten reagiert; iii) ob der Wirt 

langfristig eine Resistenz oder Toleranz entwickeln kann. In Kapitel 3 wurde unsere Population 

von D. melanogaster mit verschiedenen Krankheitserregern in unterschiedlichen 

Inokulationsdosen infiziert. Die Infektionsdynamik wurde über die gesamte Lebensdauer des 

Wirts verfolgt. Auf der Seite des Wirts konzentrierten wir uns auf die Clearance-Fähigkeit. Auf 

der Seite der Parasiten analysierten wir deren Persistenz im Wirt. Wir zerlegten die Virulenz 

der Parasiten weiter in kleinere Faktoren. In Kapitel 4 konzentrierten wir uns auf die Dynamik 

der Wirtsresistenz und -toleranz während verschiedener Phasen der Infektion. Unsere 

Ergebnisse zeigen, dass bei einer Infektion mit Lactococcus lactis der Wirt mit der Zeit weniger 

tolerant und weniger resistent wird. Darüber hinaus sind Individuen, die in der akuten Phase 

nicht in der Lage sind, die Parasitenzahl zu kontrollieren, weniger tolerant als ihre 

Gegenspieler. In Kapitel 5 haben wir bei D. melanogaster, die mit L. lactis infiziert wurde, auf 

Wirtsresistenz und Fruchtbarkeitstoleranz selektiert. Unsere Ergebnisse zeigen, dass sich nach 

acht Generationen der Selektion die Toleranz sowohl bei der Resistenz-, als auch bei der 

Toleranzselektion entwickelt. Dieses Ergebnis deutet darauf hin, dass Toleranz unter den 

Bedingungen dieser Studie weniger Energie verbraucht und für den Wirt schneller verfügbar 
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ist. Insgesamt zeigen unsere Ergebnisse die Auswirkungen und Eigenschaften dieser 

Immunstrategien auf die Dynamik von Wirt-Parasit-Interaktionen und bringen eine Reihe 

neuer Fragen zur Toleranz und ihren Grundlagen ans Licht.  



 
 
 
 
 
 
 
 

 
 
 
 
 

Chapter 2 
______________________________ 
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2.1 - Immunity and host-microbe interactions 

Classically, the perceived immune system sole function was to detect and destroy any invading 

microbes (Burnet 1961). This view underwent a radical set of shifts throughout the decades to 

come with the surfacing of layers of complexity the original model did not take in 

consideration. The first big turn encompassed microbe recognition. The immune system was 

formerly expected to only differentiate between self and non-self, however, today we are aware 

the immune system carefully regulates the microbes by ranking them from beneficial to 

dangerous (Matzinger 2002). Contrarily to previously thought, most microbes have a neutral 

or beneficial interaction to the host (Lee and Mazmanian 2010). The mechanisms through 

which the host is able to differentiate between different types of interactions remains unclear 

however the most currently accepted hypothesis states a parasite would not only exhibit 

microbe-associated molecular patterns (MAMPs) but also induce the release of danger-

associated molecular patterns (DAMPs) from the infected tissue (Lazzaro and Rolff 2011). On 

the other extreme, a symbiont would release MAMPs but not induce the release of DAMPs. 

 

With the growing literature on beneficial microbes came the establishment of the microbiota 

field and the successful characterization of the microbiome of a series of organisms, namely in 

humans (Turnbaugh et al. 2007). Microbiota comprises all microorganisms that live inside or 

on a host, including protozoa, bacteria, viruses or fungi. Although most of the microbiota is 

environmentally acquired either through diet or vertical transmission (Chandler et al. 2011; 

Engel and Moran 2013), its composition does not reflect the microbial intake. Instead, we 

observe a strong host regulation and at least a fraction of the microorganisms are potentially 

population/species-specific and in some developmental stage-specific. For instance, studies in 

Hydra showed that the host shapes its microbial composition through differential antimicrobial 

peptides (AMPs) expression across different species (Fraune and Bosch 2007; Franzenburg et 

al. 2013). This specific fraction of the microbiota has been referred to core microbiota and has 

also been found in several organisms across a range of phyla (Thongaram et al. 2005; Ochman 

et al. 2010; Brucker and Bordenstein 2012; Dishaw et al. 2014; Pais et al. 2018). A reason for 

this strong link between specific host and microbe populations is potentially their 

coevolutionary history. Growing evidence has shown that microbiota is essential for the correct 

tissue development (Sommer and Bäckhed 2013; Mazmanian et al. 2005; Koropatnick et al. 

2004), immune maturation/response (Futo, Armitage, and Kurtz 2015; Chung et al. 2012; 

Leger et al. 2017) and often a protective effect against parasites (Herren et al. 2020), as is the 
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case of the highly popularized Wolbachia (Teixeira, Ferreira, and Ashburner 2008; Martinez 

et al. 2014). Host-microbiota-parasite interactions have received special attention as potential 

routes for controlling vector-borne diseases such as dengue or malaria (Herren et al. 2020; 

Hoffmann et al. 2011). The strong interaction between host and microbiota led to the 

development of the holobiont concept, where microbiota is treated as an extension of the host 

which is potentially under the same selection (Rosenberg and Zilber-Rosenberg 2014; Catania 

et al. 2017). Nevertheless, in most cases it might be difficult to draw the line between a neutral 

and a positive/negative interaction and this can evolve to either a mutualistic or pathogenic 

scenario (Hooper and Gordon 2001).  

 

On the other side of the microbial spectrum, we have the parasites that can either be obligatory 

or opportunistic. Either per chance or evolutionary history, the agonistic pressure is ubiquitous 

and one of the strongest and most decisive evolutionary driving-force (Woolhouse et al. 2002; 

Obbard et al. 2009). Hosts which are able to adapt to the parasite can exert similar levels of 

selection on it, leading to a coevolutionary arms race know as Red queen dynamics (Van Valen 

1973; Lively and Apanius 1995). This coadaptation has been shown to occur rapidly (Routtu 

and Ebert 2015; Papkou et al. 2019) and select for a broad range of responses and the evolution 

of the immune system (Dybdahl and Lively 1998; Kaufman 2010; Obbard et al. 2009). 

 

2.1.1 Insect immunity 

Insects have evolved an array of recognition and sophisticated defence mechanisms against 

different types of parasites. As invertebrates, they lack the adaptive (acquired) immunity, 

therefore these mechanisms are part of the innate (inborn) immune response which are in 

common with vertebrates (Schmid-Hempel 2005). To successfully establish an infection, a 

parasite faces the following lines of host defence: i) behavioural mechanisms, such as pathogen 

avoidance; ii) physical barriers, namely the chitin exoskeleton; iii) a large set of immune 

responses (Siva-Jothy, Moret, and Rolff 2005). 

 

Once the outer barriers are surpassed, the immune system will be activated. The innate immune 

system mainly relies on the cellular and humoral mechanisms that are strictly coordinated and 

often act in synergy. Moreover, cellular immunity is based on haemocytes, the blood cells of 

invertebrates. In Drosophila, this branch has been fairly studied and based on their function, 

haemocytes can be divided into three different types: plasmatocytes, crystal cells and 
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lamellocytes (Lemaitre and Hoffmann 2007). Plasmatocytes are responsible for the 

phagocytosis of microorganisms, apoptotic cells and their constituents whereas crystal cells are 

larval gut-specific nonphagocytic cells involved in oxidoreductases reservoirs which is 

essential for phenol oxidase activity during melanization  (Rizki, Rizki, and Grell 1980; 

Lebestky et al. 2000; Meister 2004). In the presence of big intruders, such as parasitoid wasp 

eggs, lamellocytes differentiation is induced by circulating plasmatocytes. Therefore, the cell 

layers around the invader forming a capsule. The capsule goes then through melanogenesis, 

where reactive oxygen species (ROS) and other cytotoxic products are released, killing the 

internal parasite (Nappi et al. 1995; Lavine and Strand 2002; Marmaras and Lampropoulou 

2009). 

 

The encapsulation process is a neat example of the interplay between cellular and humoral 

responses. ROS are a hallmark of the humoral response. In Drosophila, ROS can be expressed 

within haemocytes or in specific regions of the gut. As early as one hour into the infection, 

nonphagocytic cells will generate a strong ROS response, while after ninety minutes we will 

have a response by phagocytic cells that engulfed the parasite (Myers et al. 2018). In the gut 

epithelium, specifically foregut and hindgut, there is a basal level of ROS produced by the 

membrane-associated dual oxidase (DUOX), a NADPH oxidase enzyme (Buchon, Broderick, 

and Lemaitre 2013; Ha, Oh, Bae, et al. 2005). Upon infection, there is an increase in its 

production and induction of proinflammatory compounds. Inflammation is a local response 

that aims to limit the damage self-inflicted by ROS. Due to the high volatile properties of ROS, 

the host not only strictly limits the circulating ROS precursors but also expresses redox 

enzymes such as an extracellular immune-regulated catalase to regulate the excessive 

respiratory burst levels (Ha, Oh, Ryu, et al. 2005). In a similar manner, parasites evolved ways 

to dodge ROS (Imlay 2008) and manipulate the host detoxification system (Bahia et al. 2013). 

The other fundamental element of the humoral response is the antimicrobial peptides (AMPs) 

production (Zasloff 2002). These small cationic peptides can either be inducible or 

constitutively expressed (Tzou et al. 2000). In Drosophila, different bacterial species activate 

different pathways through pattern recognition receptors (PRRs) binding (Lemaitre and 

Hoffmann 2007; Hanson et al. 2019). Toll and Immune deficiency (Imd) pathways are known 

to differentially regulate AMP synthesis in response to Gram-positive bacteria and fungi in the 

former case , and Gram-negative bacteria for the latter (Hillyer 2016; Lemaitre and Hoffmann 

2007). In Drosophila, there is evidence for seven AMP families that totalize in a 21 AMPs and 

AMP-like genes (Hanson and Lemaitre 2020). These act by destabilizing parasite's anionic cell 
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membranes, for instance, through pore formation (Brown and Hancock 2006; Joo, Fu, and Otto 

2016). Depending on the host species, antimicrobial expression might be active for a long 

period of time after infection (Makarova et al. 2016), although there is evidence for a short 

half-life for some AMPs given their unstable nature (Knappe et al. 2014). In the last years, a 

number of AMPs has been proposed as an alternative for reviving the lost killing ability of the 

conventional antibiotics. The diversity of eukaryotic AMPs which are naturally synthesised in 

synergistic cocktails limits the possibility of evolutionary bacterial resistance leading to 

successful translation of them into medical applications of drug combinations (Lazzaro, 

Zasloff, and Rolff 2020). 

 

2.1.2 Infection dynamics 

Infection is an intrinsically dynamic process sectioned in different phases, each affected by 

host and parasite properties. Although, different authors set the border between acute and 

chronic phase in distinct time-points, reflecting the variable nature of the  respective 

experimetnal model, in this study we follow Howick and Lazzaro definition (Howick and 

Lazzaro 2014). According to the authors, the acute phase is characterized by high host mortality 

and peak pathogen intensity (e.g. 1-3 days post infection in their case), while chronic phase of 

infection still presents a negative impact of infection but less strong and often a number of 

persisting parasite population. In the last decades, acute phase has been shown to be decisive 

to infection outcome. During this phase, and within only the first hour of infection, inducible 

immunity is activated and heavily expressed (Haine et al. 2008; Myers et al. 2018). Some 

individuals will be able to control the infection within a certain time-frame, while other will 

succumb to infection. A study from Duneau and colleagues has proposed there is a set of 

variables found across infections and timely specific to different pathogens (Duneau et al. 

2017) and that often infections should follow one of two paths: i) pathogen growth and eventual 

host death; ii) pathogen control and host survival. For instance, for a given pathogen, a host 

will have a time to control its burden, if not the parasite will grow until it reaches a plateau 

load, designated bacterial load upon death, named after this individual's destiny. Opposed to 

this, individuals that are able to control the infection, will still carry a low pathogen number 

that might persist throughout their lifetime (Duneau et al. 2017), named as set-point bacterial 

load. Both set-point bacterial load and bacterial load upon death are supposedly universal 

within a host-parasite species infection. However, other authors have observed that pathogen 

load can actually continue to decrease (Kutzer and Armitage 2016b; Haine et al. 2008; Zanchi, 

Johnston, and Rolff 2017), potentially even reaching clearance (Duneau et al. 2017) or even 
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increase later into infection (C. V. L. Miller and Cotter 2017). Altogether, it is fair to say there 

is a lot of contradictory evidence regarding infection dynamics and what exactly goes on within 

each phase. Both hosts are parasites are highly diverse and we are aware that both the host and 

the parasite can switch their strategies during the course of infection, either due to 

environmental cues, such as diet, or to their genetic programme (Duneau et al. 2017; Howick 

and Lazzaro 2014; Lough et al. 2015; Ganeshan et al. 2019).  

 

2.1.3 Immune strategies: resistance and tolerance 

Although parasite clearance mechanisms are undoubtedly crucial and a great fraction of the 

immune response, they are not always the optimal investment in terms of host fitness. 

Mechanisms that aim to clear or limit parasite growth are classified as resistance strategies. 

These strategies can be further classified in qualitative or quantitative resistance. The first 

englobes avoidance and/or clearance of the parasite, while the second regards reduction/control 

of the parasite burden (Råberg, Graham, and Read 2009; Restif and Koella 2004). A classic 

example of a resistance mechanism is ROS release. Both ROS and the consequent 

inflammation process are rather costly both energetically and in tissue damage. In extreme 

scenarios the cost might be great enough that the individual might succumbs to death by the 

self-inflicted damage of the immune response, named immunopathology, instead of the one 

inflicted by the parasite. At a population level, we might observe trade-offs with other life-

history-traits (Boots and Begon 1993) and ultimately population divergence (Maan et al. 2008; 

MacColl and Chapman 2010). Therefore, in some occasions might be more beneficial to reduce 

the detrimental effects of an infection, what is defined as tolerance (Kutzer and Armitage 

2016a). A rather well-studied example of tolerant hosts advantage in the wild is in regard to 

heme oxygenase, reviewed in (Silva et al. 2020). Heme is a fundamental precursor of oxygen 

transporters, namely haemoglobin, because of its high affinity to oxygen. Nevertheless, the 

latter also confers it highly prooxidant and proinflammatory properties, reason why it is mainly 

buffered intracellularly within haemoproteins (e.g. haemoglobin, myoglobin). Upon infection 

with Plasmodium, replication within red blood cells leads to a massive release of heme. In 

many cases this heme unleash explains on its own disease severity and Plasmodium 

pathogenicity (Ferreira et al., 2008). Heme oxygenase is a naturally occurring enzyme that 

catalases the degradation of heme. Curiously, some individuals exhibit an overexpression of a 

form of heme oxygenase, HO-1, and are found to have higher survival comparatively to control 

individuals carrying the same parasite burden (Seixas et al., 2009). Hence, these individuals 
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maximize their fitness by reducing the circulating heme and therefore infection damage by 

infection in opposition to parasite load. This example shows that evolution might favour 

tolerance phenotypes in particular disease conditions and this strategy potential applications in 

biomedicine (Schofield et al., 2002). 

 

Although tolerance has only been studied more recently in animals (Råberg, Sim, and Read 

2007), its role in plant defences against herbivores has been exhaustively studied and a 

significant number of the theoretical assumptions come from these systems (Simms and 

Triplett 1994; Herms and Mattson 1992). Tolerance has been defined as the ability to limit the 

negative consequences of a parasite load on fitness/health (Kutzer and Armitage 2016a). It can 

be measured as range-tolerance or point-tolerance. While in the first we perform a reaction 

norm between individual fitness and parasite load, in the second we average the fitness of a 

population/genotype and plot it against one parasite load value. Due to the different nature of 

the measures, different inferences can be made from the same dataset as it has been shown in 

a house finches study (Adelman et al. 2013). Distinct studies have assessed range-tolerance 

from a linear to a four-parameter regression (Louie et al. 2016; Simms 2000). A key factor in 

a tolerance measure is its dependent variable, the fitness measure. This will depend on the 

model and question constrains (Rohr, Raffel, and Hall 2010). For instance, in long-lived model 

such as a mouse infected with Plasmodium, both weight loss and red blood cell counts might 

represent a better assessment of the infection cost on health, as it is less laborious and more 

relevant for the disease pathogenesis in question. On the other hand, when handling short-lived 

models such as insects, might be more appropriate to use reproductive or survival fitness, as 

repeated measures are often not possible because of destructive nature of the bacterial load 

assessment in these models. Thereupon, I will mainly focus on the latter in this thesis, to which 

we refer as fecundity-tolerance and mortality-tolerance, respectively. These are expected to 

exhibit very different outcomes in both pathogen prevalence and host population adaptation.  

 

As a result of their properties, one immune strategy might be more advantageous than the other 

under certain conditions. When facing a parasite with high transmission rate and low virulence, 

tolerance is likely to be the more favourable. Under opposite conditions, resistance would be 

selected and in an intermediate scenario both could be evolve depending on their associated 

costs or if they are linked to each other (Restif and Koella 2003). Moreover, host damage is 

likely to play a part in the decision between resistance and tolerance, as suggested by Moreno-

Garcia and colleagues on what was proposed as damage threshold hypothesis (Moreno-García 
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et al. 2014). To date,  there are several examples in literature of positive (Zeller and Koella 

2016; Howick and Lazzaro 2017), negative (Råberg, Sim, and Read 2007; Vincent and Sharp 

2014) and even no correlation (Sternberg et al. 2012; Mazé-Guilmo et al. 2014; Lefèvre, 

Williams, and de Roode 2010; Decker, de Roode, and Hunter 2018) between both immune 

strategies suggesting this relationship might be infection model specific and dependent on the 

underlining immune mechanisms.  

 

Resistance mechanisms usually present a regulatory cost as they are often based on inducible 

components of immune response (Schmid-Hempel 2005; Moret and Schmid-Hempel 2000; 

Alves et al. 2019; I. F. Miller and Metcalf 2019) (Table 1). These costs are evident in frequent 

trade-offs with other life-history traits, such as fecundity (Simms and Triplett 1994; Brandt and 

Schneider 2007; Partridge, Gems, and Withers 2005; Lawniczak et al. 2007). A  classic 

example of the latter is a study from Kraaijeveld and colleagues where they conducted 

experimental evolution for host resistance in Drosophila melanogaster infected with the 

parasitoid wasp Asobara tabida (Kraaijeveld and Godfray 1997). This species is an 

endoparasitoid in which parasite larvae feed within the host larvae leading to its death before 

pupation. Some fruit flies are able to mount an early immune response to the parasitoid wasp, 

including encapsulation and melanization, and successfully develop to pupae and later to adult. 

Therefore, this particular parasite imposes a very strong selective pressure as for host survival 

a strong and time-strict immune response is fundamental. Within this, the authors in this study 

artificially selected for higher encapsulation rate for nine generations in four different fly food 

volumes. Probably due to the high selective pressure, resistance evolved quite quickly with a 

plateau around 5 generations after the start of selection. More interestingly, individuals grown 

in different food volumes differed in their larval competitive ability. Selected larvae performed 

worse in low food volumes, exhibiting a trade-off between resistance and larval competition 

ability, but not in high food volumes. This study clearly showed that resistance evolution is 

often coupled with life-history costs that might not be always evident in rich laboratory 

conditions (McKean et al. 2008). 
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Table 1 - Studies that performed experimental evolution for host resistance. Studies that might have evolved a form of tolerance are marked with (T). For 

further information on experimental evolution, see section 1.2 below. 

Host Parasite Selection Selected trait Number of 
generations 

Selection outcome Trade-offs Reference 

Aedes aegypti 
Plasmodium 
gallinaceum 

- Susceptibility 4 Plasmodium refractoriness - 

(Thathy, 
Severson, and 
Christensen 

1994) 

Biomphalaria 
glabrata 

Schistosoma 
mansoni 

(flatworm) 
 

Artificial 
Resistance / 
susceptibility 

5 Increased qualitative resistance 
Reduced fecundity and 
survival compared to 

control lines 

(Webster and 
Woolhouse 1998) 

Drosophila 
melanogaster 

Asobara tabida 
(Parasitoid wasp) 

 

Natural 
Encapsulation 

ability 19 Higher encapsulation rate - 
(Hughes and 
Sokolowski 

1996) 

Artificial 
Encapsulation 

ability 8 Higher encapsulation rate 
Reduced larval competitive 

ability 
(Kraaijeveld and 
Godfray 1997) 

Artificial 
Encapsulation 

ability 
5 

Higher encapsulation rate; 
genomic changes 

- 
(Jalvingh et al. 

2014) 

Leptolina boulardi 
(Parasitoid wasp) 

Artificial 
Encapsulation 

ability 9 Higher encapsulation rate 
Reduced larval competitive 

ability 

(Fellowes, 
Kraaijeveld, and 
Godfray 1998) 

Artificial 
Encapsulation 

ability 33 

Higher encapsulation rate; 
Immune-induced genes were 

constitutively expressed dependent 
on lamellocyte differentiation 

- 
(Leitao et al. 

2020) 

Tubulinosema kingi 
(microsporidian) Natural Survival 73 weeks 

Early life fecundity and increased 
longevity when infected (T) 

Reduced fecundity and 
larval competitive ability 

in the absence of infection 

(Vijendravarma, 
Kraaijeveld, and 
Godfray 2009) 

Beauvaria 
bassiana (fungi) Artificial Survival 15 

No increased resistance; Higher 
late fecundity (T) 

Reduced early and lifetime 
fecundity 

(Kraaijeveld and 
Godfray 2008) 
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Drosophila 
melanogaster 

Bacillus cereus 
(bacteria) 

Artificial Survival 18-24 Increased egg production (T) 
Delayed developmental 

time 
(Ma et al. 2012) 

Pseudomonas 
aeruginosa 
(bacteria) 

Natural Survival 10 
Higher survival; Rapid 

development; Toll-Imd synergy 

Reduced longevity and 
larval viability; Rapid trait 

loss 

(Ye, Chenoweth, 
and McGraw 

2009) 

Pseudomonas 
entomophila 

(bacteria) 

Natural Survival 24/34 
Distinct infection route genetic 

basis 
Susceptibility to viral 

infections 
(Martins et al. 

2013) 

Natural Survival 45 High survival - 
(Gupta et al. 

2016) 
Drosophila C Virus 

(Virus) 
Natural Survival 20 Higher survival; Cross-resistance 

to other viruses; 3 genes involved 
- (Martins et al. 

2014) 

Galleria 
mellonella 

Beauvaria 
bassiana (bacteria) Artificial Survival 25 

Increased resistance and cuticle 
phenol oxidase activity 

Reduced haemolymph PO 
activity upon infection 

with the fungi Metarhizium 
anisopliae 

(Dubovskiy et al. 
2013) 

Plodia 
interpunctella 

Granulosis virus 
(virus) 

Natural Survival 24 months Higher survival and pupal weight 

Delayed developmental 
time; Reduction egg 

viability; Reproductive 
cost in the absence of 

infection 

(Boots and 
Begon 1993) 

Natural Survival 14 
Different genetic architecture of 
resistance mechanisms between 
different nutrition environments 

Reduced growth rate in 
low resistance-selected 

lines grown in low-
nutrition 

(Roberts et al. 
2020) 
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On the other hand, there are very few examples of tolerance mechanisms (Seixas et al. 2009; 

Troha et al. 2018; Huen et al. 2020; Soares, Gozzelino, and Weis 2014; Mace, Pearson, and 

McGinnis 2005; Ganeshan et al. 2019; Clark et al. 2013; Ayres and Schneider 2009; Shinzawa 

et al. 2009) and these mechanisms strongly differ between host-parasite species and types of 

infection. As infection scenarios can greatly vary, encompassing different tissue sites and 

physiological processes, mechanisms that aim to reduce infection damages are expected to be 

equally diverse (Medzhitov, Schneider, and Soares 2012). Nevertheless, the general consensus 

is that tolerance strategy should be energetically less costly than resistance (M. R. Miller, 

White, and Boots 2006) and its cost be mostly adaptive/functional, as in dependent on the 

presence of host elements that can be co-opted when faced with a given infection (Huen et al. 

2020). Regarding costs on intrinsic growth rate, there is contrasting theories. Some authors 

argue tolerance might be the predominant defence strategy during energy-restricted 

developmental stages, such as infancy where resources are fulcrum for the correct tissue 

development/growth (Harbeson et al. 2018), whereas others argue that during early and late 

stages of development, tolerance might actually be compromised because of development 

constrains and impaired tissue repair capacity, respectively (M. R. Miller, White, and Boots 

2006; Medzhitov, Schneider, and Soares 2012; Sheffield et al. 2020). 

 

A considerable appeal for tolerance studies in biomedicine and pest control for the past years 

has been due to its predicted effect on pathogen evolution (Rausher 2001; Vale, Fenton, and 

Brown 2014). Currently, we are quite aware of parasite resistance evolution in face of 

resistance mechanisms, either natural or artificial (e.g. antibiotics). Since resistance acts on the 

pathogen number, increased virulence is selected. The alarmingly increasing abuse  of 

antibiotics and the growing concern regarding parasites' resistance throughout the world 

prompted us to explore new defence pathways (May 2014). Within this framework, tolerance 

has been proposed as a silver bullet as it does not have a negative impact on parasite burden 

and therefore arguably should not select for higher virulence (Schneider and Ayres 2008; Vale, 

Fenton, and Brown 2014). An example of an artificial tolerance mechanism is the anti- 

Glycosylphosphatidylinositol (GPI) vaccine for malaria developed by Schofield and 

collaborators (Schofield et al. 2002). In the latter, immunized mice infected with Plasmodium 

berghei exhibited higher survival and delayed disease severity under the same parasite burden 

as sham-immunized controls. Unfortunately, they did not assess the vaccine effect on the 

parasite population, this marks a potential shift in the current medical strategies. Nevertheless, 

some authors fairly argue that virulence should still slowly evolve in a tolerance scenario, as 
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in the absence of parasite control there is still intra-competition and likely high 

replication/transmission evolution (Little et al. 2010). 

 

2.2 Experimental evolution 

Experimental evolution has been an increasingly used tool to test evolutionary questions often 

in a controlled laboratory environment. An exception to the typical experimental evolution 

studies is the work from Reznick performed in the wild (Reznick, Bryga, and Endler 1990). 

These tools have been further reviewed by Kawecki and colleagues (Kawecki et al. 2012), but 

the workflow is the following: i) a population is exposed to a novel environment or stressor 

with most of the environmental settings under control by the experimenter; ii) changes in the 

different treatment populations, often referred to as selection lines, are tracked during and after 

selection; iii) depending on the question and traits under selection, experiments are conducted 

on the evolved populations, ranging from life history traits, physiological, morphological and, 

nowadays often performed, resequencing of the populations (Jha et al. 2015; Kelly and Hughes 

2018; Turner et al. 2011; Barghi et al. 2017; Baldwin-Brown, Long, and Thornton 2014; Long 

et al. 2015; Kofler and Schlötterer 2013). Each experimental evolution assay is specific to the 

question and working model (e.g. selective pressure, number of generations and populations' 

sample size) (Fuller et al. 2005). Selection can be employed by the setting itself, defined as 

natural selection experiment (e.g. selection for survival to infection), or employed by the 

experimenter depending on the quantification of a specific trait, so-called artificial selection 

(e.g. dot size in butterflies' wings) (Hill, Caballero, and Systematics 1992; Jeffrey 2003). The 

key take-home message from this experimental tool is that by selecting a trait under laboratory 

conditions, we are able to see and quantify gradual changes and populational evolution over a 

few generations that can range from weeks to years, from bacteria to insects, respectively. 

Experimental evolution has exhaustedly been used in regard to immunity to quantify changes 

in host defences in face of parasites (Ebert 1998).  

 

2.3 The aims of this thesis 

This thesis is comprised of three different studies covering bacterial infection dynamics and 

host immune strategies role and evolution in a fruit fly-bacteria model. 

 

In Chapter 3, we studied how is infection outcome and its parameters affected by bacterial 

species and inoculum size. For this, we infected female D. melanogaster with a range of 
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bacterial species at different injection doses and measure survival and bacterial load across 

lifetime infection. Some of the parameters we measured include bacterial clearance during life 

and upon death, set-point bacterial load and persistence, and per-parasite pathogenicity. 

 

In Chapter 4, we characterized the temporal dynamics of both resistance and fecundity-

tolerance to two bacterial species: Lactococcus lactis and Providencia burhodogranariea. 

Given the debate around immune strategies variation across infection, we assessed daily 

fecundity and bacterial load across different time-points during acute and chronic phase for 

each of the infections. Based on individual bacterial load, we categorized flies in "likely to die" 

and "likely to survive" subgroups and subsequently assessed each subgroup changes in 

quantitative resistance and fecundity-tolerance after two and four days post-infection. 

 

In Chapter 5, we focused on the evolutionary implications of resistance and tolerance. For 

this, we evolved an outbred population of D. melanogaster for high quantitative resistance or 

high fecundity-tolerance to a L. lactis infection for eight generations. We assessed their 

changes in immune and reproductive parameters during and after selection. L. lactis was 

incubated inside evolved individuals and later retrieved for re-infection experiments to measure 

virulence/persistence evolution for each of the immune strategy’s selection regime. In sum, we 

evaluated how resistance and tolerance affect both sides of a host-parasite interaction. 
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Abstract 
 
Hosts are not always successful at controlling and eliminating a pathogen. Insects can sustain 

persistent bacterial infections, but the conditions under which clearance occurs are not well 

understood. Here we asked what role pathogen virulence and infection dose play in bacterial 

persistence and clearance in both live and dead flies. We then sought to understand the basis 

of variation in virulence, by asking if it is due to differences in bacterial load sustained within 

the host or due to differences in damage, i.e., per-parasite pathogenicity. We injected 

Drosophila melanogaster with one of four bacterial species, which we hypothesised should 

cover a spectrum of virulence: Enterobacter cloacae, Providencia burhodogranariea, 

Lactococcus lactis and Pseudomonas entomophila. The injection doses spanned four orders of 

magnitude, and survival was followed to estimate virulence. Bacterial load was quantified in 

live flies during the acute (1-4 days) and chronic (7-35 days) phases of infection and in flies 

that had died up to ~10 weeks post infection. We show that sustained chronic infection and 

clearance are both possible outcomes for bacterial species showing a range of virulence. Lower 

injection doses of E. cloacae could be cleared more quickly than higher doses, but bacteria of 

all species could persist inside the host for at least 75 days. Furthermore, we show that bacterial 

virulence differences can be explained by a combination of variation in host exploitation, i.e., 

how well the bacteria can survive and replicate inside the host, and per-parasite pathogenicity, 

i.e., the amount of damage per-parasite that is inflicted on the host, and that these factors relate 

to the proportion of flies with persistent infections of each bacterial species. Separating the 

contributions of both actors in the dynamics of infection will help us to gain insight into the 

intricacies of host-pathogen interactions. 
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1. Introduction 
Once a host has become infected, the immune system will potentially limit pathogen growth, a 

response termed host resistance (Best, White, and Boots 2008; Råberg, Graham, and Read 

2009; Schmid-Hempel 2011). Resistance can therefore be quantified as the inverse of pathogen 

load (Råberg, Graham, and Read 2009). Although there are clear benefits to the host of being 

able to mount an immune response that suppresses pathogen growth, resistance can come with 

evolutionary and usage costs for the host (Boots and Begon 1993; Kraaijeveld and Godfray 

1997; Armitage et al. 2003; Schmid-Hempel 2003). During infection, hosts may re-allocate 

resources from other life history traits, such as reproduction (Nystrand and Dowling 2020) or 

development (Bajgar et al. 2015), into mounting an immune response. Furthermore, immune 

responses can lead to self-inflicted damage to the host, namely immunopathology (Graham, 

Allen, and Read 2005; Sadd and Siva-Jothy 2006; Khan, Agashe, and Rolff 2017). Therefore, 

whether a pathogen is eliminated or not, i.e., persists, is likely to depend upon the costs of 

infection versus the costs and effectiveness of the immune response against the infection, in 

addition to how well the pathogen can survive and replicate in the host environment. 

 

Across host taxa, there is ample evidence of persistent chronic bacterial infections. For example 

bacterial infections caused by Escherichia coli and Staphylococcus aureus can evade the 

human immune system and persist inside the host (Grant and Hung 2013). After injection with 

bacteria, insects have also been shown to sustain chronic systemic infections, for example in 

the mosquito Anopheles gambiae (Gorman and Paskewitz 2000), the fruit fly D. melanogaster 

(Boman, Ingrid, and Bertil 1972; Hotson and Schneider 2015) and the yellow mealworm beetle 

Tenebrio molitor (Haine et al. 2008). These experimentally-induced infections can persist for 

at least 28 days in both T. molitor (Haine et al. 2008) and D. melanogaster (Kutzer, Kurtz, and 

Armitage 2019), although longer term estimates are lacking. 

 

Disparate bacterial species have been shown to be able to chronically infect (here defined as a 

minimum of seven days) the host species used in this study, D. melanogaster (Boman, Ingrid, 

and Bertil 1972; Chambers et al. 2019; Kutzer and Armitage 2016; Kutzer, Kurtz, and 

Armitage 2019; Duneau et al. 2017; Hotson and Schneider 2015; Dionne et al. 2006; Brandt et 

al. 2004). Persistent infections could be influential because the inability to clear an infection 

will result in more infected individuals in a population, and may thereby potentially increase 

pathogen transmission rate. In the chronic infection phase in D. melanogaster, the bacterial 
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load has been shown to stabilise around a relatively constant pathogen load over time (Duneau 

et al. 2017; Hotson and Schneider 2015), which has been termed the set point bacterial load 

(SPBL; Duneau et al. 2017), after the set point viral load (e.g., Regoes et al. 2014). However a 

stable infection load over time is not necessarily always the case, as the load for some bacterial 

species can gradually reduce in the days following infection, for example, D. melanogaster 

injected with E. coli (Kutzer and Armitage 2016) and T. molitor injected with S. aureus (Haine 

et al. 2008; Zanchi, Johnston, and Rolff 2017). Alternatively, after an initial decline the 

infection load can start to increase again, as seen in the burying beetle, Nicrophorus 

vespilloides, injected with Photorhabdus luminescens (Miller and Cotter 2017). 

 

Bacterial clearance during the chronic infection phase is relatively uncommon in insects and 

may be related to the costs and benefits of immune system activation, and the costs of virulence. 

Virulence can be defined as disease severity, given as the decrease in host fitness caused by a 

pathogen (Read 1994), and which we here measure as reduced host survival. On the one hand, 

if the damage caused by an infection is low, and the costs of mounting an immune response 

exceed the benefit of clearing the infection, one might predict a host to manage a persistent 

infection (Lazzaro and Rolff 2011). On the other hand, if the damage or virulence is low and 

the clearance costs are low, then the pathogen might be cleared in some instances. For example 

E. coli and Erwinia carotovora, species that did not lead to death in D. melanogaster, were 

cleared in 22 % and 8 % of flies, respectively (Duneau et al. 2017). Furthermore, E. coli 

infections of the mosquito, Aedes aegypti, were cleared in 2 % of cases (Hillyer et al. 2005). 

Micrococcus luteus infections of Anopheles gambiae were all cleared, although A. gambiae 

was not able to clear E. coli (Gorman and Paskewitz 2000). In contrast, Duneau et al (2017) 

found that infections with bacteria of intermediate virulence, Providencia rettgeri and 

Enterococcus faecalis, were never cleared. For bacteria of high virulence, one might predict 

selection for a fast and efficient early clearance of the infection: Individuals who do not clear 

the infection will die in the acute phase because even a low dose of the pathogen can be deadly, 

and longer-term survivors will have cleared the infection early on and thus will be uninfected. 

Tentative support for this hypothesis comes from Pseudomonas entomophila infections of D. 

melanogaster, where the few individuals surviving until 28 days post injection were all 

uninfected (Kutzer, Kurtz, and Armitage 2019). 

 

The initial exposure dose will also determine the outcome of infection, partly because microbe 

density at the beginning of an infection can determine the strength of the immune response 
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(Jent et al. 2019). Not only is dose-dependent survival frequently reported in response to 

bacterial infections (Louie et al. 2016; Miller and Cotter 2017; Chambers et al. 2019), but 

bacterial load later in the infection has been demonstrated to correlate with the initial 

inoculation dose (Duneau et al. 2017; Chambers et al. 2019). One could predict that lower 

inoculation doses are more likely to be cleared, because a smaller bacterial population is likely 

to be more susceptible to the host immune defences, but the extent to which this kind of pattern 

is generalizable is unknown. 

 

Virulence will be influenced by both host and parasite traits, i.e., it depends on defence from 

the host side, and the ability of the parasite to replicate and cause damage to the host (Råberg 

and Stjernman 2012). From the pathogen perspective, variation in virulence across parasite 

strains could be due to differences in host exploitation, that is an increase in virulence is a side 

effect of an increase in pathogen load (Råberg 2014; Råberg and Stjernman 2012). However, 

variation in virulence could also be due to differences in per-parasite pathogenicity, whereby 

the slopes of the reaction norms linking infection intensity (pathogen load) and host fitness 

differ across parasite strains (Råberg 2014; Råberg and Stjernman 2012). A parasite genotype 

causing a steeper negative slope across a range of infection intensities, suggests higher per-

parasite pathogenicity compared to a parasite genotype infection resulting in a shallower slope. 

Here we use the concepts of host exploitation and per-parasite pathogenicity to disentangle the 

causes of variation in virulence caused by infection with different bacterial species. 

 

Here we first injected flies with four candidate bacterial species at a range of infection doses 

to test whether they varied in virulence, which was measured as survival after bacterial 

injection. We then asked whether all four bacterial species establish a persistent infection by 

assessing chronic infection status up to 35 days post injection, d. Third, given evidence from 

different studies that both low and more virulent bacteria can be cleared but to a limited degree, 

we set out to assess whether clearance in living flies is affected by bacterial virulence, whether 

there is a dose threshold below which the host can clear the infection, and if time post infection 

affects the infection outcome. Fourth, by assessing the infection status of flies that had died up 

to two and a half months post-infection, it allowed us to test whether flies clear the infection 

before death, and if not, to give a long-term assessment of the duration of persistent bacterial 

infections in an insect. Lastly, we asked whether differences in bacterial virulence are due to 

variation in parasite exploitation (infection intensity) or due to variation in per-parasite 

pathogenicity. 
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2. Materials and Methods 
2.1.  Fly population and maintenance  

We used an outbred population of Drosophila melanogaster established from 160 Wolbachia-

infected fertilised females collected in Azeitão, Portugal (Martins et al. 2013), and given to us 

by Élio Sucena. For at least 13 generations prior to the start of the experiments the flies were 

maintained on standard sugar yeast agar medium (SYA medium: 970 ml water, 100 g brewer’s 

yeast, 50 g sugar, 15 g agar, 30 ml 10 % Nipagin solution and 3 ml propionic acid; Bass et al. 

2007), in a population cage containing at least 5,000 flies, with non-overlapping generations 

of 15 days. They were maintained at 24.3 ± 0.2°C, on a 12:12 hours light-dark cycle, at 60-80 

% relative humidity. The experimental flies were kept under the same conditions. 

 

2.2.  Bacterial species  

We used the Gram-positive Lactococcus lactis (gift from Brian Lazzaro), Gram negative 

Enterobacter cloacae subsp. dissolvens (hereafter called E. cloacae; German collection of 

microorganisms and cell cultures, DSMZ; type strain: DSM-16657), Providencia 

burhodogranaria strain B (gift from Brian Lazzaro, DSMZ; type strain: DSM-19968) and 

Pseudomonas entomophila (gift from Bruno Lemaitre). L. lactis (Lazzaro 2002), Pr. 

burhodogranariea (Juneja and Lazzaro 2009) and Ps. entomophila (Vodovar et al. 2005) were 

isolated from wild-collected D. melanogaster and can be considered as opportunistic 

pathogens. E. cloacae was isolated from a maize plant, but has been detected in the microbiota 

of D. melanogaster (Cox and Gilmore 2007). These bacterial species were chosen based on 

various studies, which together suggest that they may be expected to show a range of virulence 

(Galac and Lazzaro 2011; Kutzer and Armitage 2016; Kutzer, Kurtz, and Armitage 2018, 2019; 

Duneau et al. 2017; Hanson et al. 2019). 

 

2.3.  Experimental design 

For each bacterial species, flies were exposed to one of seven treatments: no injection (naïve), 

injection with Drosophila Ringer’s (injection control) or injection with one of five 

concentrations of bacteria ranging from 5 x 106 to 5 x 109 colony forming units (CFUs)/mL, 

corresponding to doses of approximately 92, 920, 1,840, 9200 and 92,000 CFUs per fly. The 

injections were done in a randomised block design by two people. Each bacterial species was 

tested in three independent experimental replicates. Per experimental replicate we treated 252 
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flies, giving a total of 756 flies per bacterium (including naïve and Ringer’s injection control 

flies). Per experimental replicate and treatment, 36 flies were checked daily for survival until 

all of the flies were dead. A sub-set of the dead flies were homogenised upon death to test 

whether the infection had been cleared before death or not. To evaluate bacterial load in living 

flies, per experimental replicate, four of the flies were homogenised per treatment, for each of 

nine time points: one, two, three, four, seven, 14, 21, 28- and 35-days post-injection.  

 

2.4.  Infection assay 

Bacterial preparation was performed as in Kutzer et al. (Kutzer, Kurtz, and Armitage 2019), 

except that we grew two overnight liquid cultures of bacteria per species, which were incubated 

overnight for approximately 15 hours at 30 ºC and 200 rpm. The overnight cultures were 

centrifuged at 2880 rcf at 4 ºC for 10 minutes and the supernatant removed. The bacteria were 

washed twice in 45 mL sterile Drosophila Ringer’s solution (182 mmol·L-1 KCl; 46 mol·L-1 

NaCl; 3 mmol·L-1 CaCl2; 10 mmol·L-1 Tris·HCl; Werner et al. 2000) by centrifugation at 

2880 rcf at 4°C for 10 minutes. The cultures from the two flasks were combined into a single 

bacterial solution and the optical density (OD) of 500 µL of the solution was measured in a 

Ultrospec 10 classic (Amersham) at 600 nm. The concentration of the solution was adjusted to 

that required for each injection dose, based on preliminary experiments where a range of ODs 

between 0.1 and 0.7 were serially diluted and plated to estimate the number of CFUs. 

Additionally, to confirm post hoc the concentration estimated by the OD, we serially diluted to 

1:107 and plated the bacterial solution three times and counted the number of colony forming 

units (CFUs).  

 

The experimental flies were reared at constant larval density for 1 generation prior to the start 

of the experiments. Grape juice agar plates (50 g agar, 600 mL red grape juice, 42 mL Nipagin 

[10 % w/v solution] and 1.1 L water) were smeared with a thin layer of active yeast paste and 

placed inside the population cage for egg laying and removed 24 hours later. The plates were 

incubated overnight then first instar larvae were collected and placed into plastic vials (95 x 25 

mm) containing 7 ml of SYA medium. Each vial contained 100 larvae to maintain a constant 

density during development. One day after the start of adult eclosion, the flies were placed in 

fresh food vials in groups of five males and five females, after four days the females were 

randomly allocated to treatment groups.  
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Before injection, females were anesthetised with CO2 for a maximum of five minutes and 

injected in the lateral side of the thorax using a fine glass capillary (Ø 0.5 mm, Drummond), 

pulled to a fine tip with a Narishige PC-10, and then connected to a Nanoject II™ injector 

(Drummond). A volume of 18.4 nl of bacterial solution, or Drosophila Ringer’s solution as a 

control, was injected into each fly. Full controls, i.e. naïve flies, underwent the same procedure 

but without any injection. After being treated, flies were placed in groups of six into new vials 

containing SYA medium, and transferred into new vials every 2-5 days. At the end of each 

experimental replicate, 50 µL of the aliquots of bacteria that had been used for injections were 

plated on LB agar to check for potential contamination. No bacteria grew from the Ringer’s 

solution and there was no evidence of contamination in any of the bacterial replicates. In 

addition, to confirm the concentration of the injected bacteria, serial dilutions were prepared 

and plated before and after the injections for each experimental replicate, and CFUs counted 

the following day.  

 

2.5.  Bacterial load of living flies 

Flies were randomly allocated to the day at which they would be homogenised. Prior to 

homogenisation, the flies were briefly anesthetised with CO2 and removed from their vial. Each 

individual was placed in a 1.5 mL microcentrifuge tube containing 100 µl of pre-chilled LB 

media and one stainless steel bead (Ø 3 mm, Retsch) on ice. The microcentrifuge tubes were 

placed in a holder that had previously been chilled in the fridge at 4 °C for at least 30 minutes 

to reduce further growth of the bacteria. The holders were placed in a Retsch Mill (MM300) 

and the flies homogenised at a frequency of 20 Hz for 45 seconds. Then, the tubes were 

centrifuged at 420 rcf for one minute at 4 ºC. After resuspending the solution, 80 microliters 

of the homogenate from each fly was pipetted into a 96-well plate and then serially diluted 1:10 

until 1:105. Per fly, three droplets of 5 µL of every dilution were plated onto LB agar. 

Preliminary tests showed that three droplets gave a similar mean value to counting eight 

droplets per fly (25,333 ± 390 CFUs per fly for eight droplets and 27,000 ± 1053 CFUs per fly 

for three droplets; n = 12). Additional tests on the detection of bacteria in homogenised flies, 

we found that our lower detection limit was five colony-forming units per fly. The plates were 

incubated at 30 ºC and the numbers of CFUs were counted after ~20 hours. Individual bacterial 

loads per fly were back-calculated using the average of the three droplets from the lowest 

countable dilution in the plate, which was usually between 10 and 60 CFUs per droplet.  
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We did not use bacteria with antibiotic resistance, and consequently selective medium for 

bacterial growth. Therefore, in theory, bacteria other than the infecting species could grow on 

the plates that we use to incubate the fly homogenate. However, by homogenizing control flies 

(Ringer’s injected and naïve) we showed that foreign CFUs grew infrequently. We rarely 

retrieved foreign CFUs after homogenising Ringer’s injected or naïve flies (23 out of 642 cases, 

i.e., 3.6 %). We also rarely observed contamination in the bacteria-injected flies: except for 

homogenates from 27 out of 1223 flies (2.2 %), colony morphology and colour were always 

consistent with the injected bacteria (see methods of Lazzaro, Sackton, and Clark 2006). 

Twenty one of these 27 flies were excluded from further analyses given that the contamination 

made counts of the injected bacteria unreliable; the remaining six flies had only one or two 

foreign CFUs in the most concentrated homogenate dilution, therefore these flies were included 

in further analyses. For L. lactis (70 out of 321 flies), P. burhodogranariea (7 out of 381 flies) 

and Ps. entomophila (1 out of 71 flies) there were too many CFUs to count at the highest 

dilution. In these cases, we denoted these flies as having the highest countable number of CFUs 

found in any fly for that bacterium and at the highest dilution. This will lead to an underestimate 

of the bacterial load in these flies.  

 

2.6.  Bacterial load of dead flies 

For two periods of time in the chronic infection phase, i.e. between 14 and 35 days and 56 to 

78 days post injection, dead flies were retrieved from their vial at the daily survival checks and 

homogenised in order to test whether they died whilst being infected, or had cleared the 

infection before death. The fly homogenate was produced in the same way as for live flies, but 

we increased the dilution of the homogenate (1:1 to 1:1012) because we anticipated higher 

bacterial loads in the dead compared to the live flies. The higher dilution allowed us more 

easily to determine whether there was any obvious contamination from foreign CFUs or not. 

Because the flies may have died at any point in the 24 hours preceding the survival check, and 

the bacteria can potentially continue replicating after host death, we evaluated the infection 

status (yes/no) of dead flies instead of the number of CFUs. Dead flies were evaluated for two 

experimental replicates per bacteria, and 160 flies across the whole experiment. Similarly, to 

homogenisation of live flies, we rarely observed contamination from foreign CFUs in the 

homogenate of dead bacteria-injected flies (3 out of 160; 1.9 %); of these three flies, one fly 

had only one foreign CFU so it was included in the analyses. Dead Ringer’s injected and naïve 

flies were also homogenised and plated as controls, with 6 out of 68 flies (8.8 %) resulting in 

the growth of unidentified CFUs.  
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2.7.  Statistical analyses 

Statistical analyses were performed in RStudio version 1.3.1073 (R Core Team 2020). The 

following packages were used for plotting the data: “grid”, “gridExtra” (Baptiste 2017), 

“ggplot2” (Wickham 2016), “scales” (Wickham and Seidel 2020) and “survival” (Therneau 

2020; Therneau and Grambsch 2000). To include a factor as a random factor in a model it has 

been suggested that there should be more than five to six random-effect levels per random 

effect (Bolker et al. 2008), so that there are sufficient levels to base an estimate of the variance 

of the population of effects (Crawley 2007). In our experimental designs, the low numbers of 

levels within the factors ‘experimental replicate’ (two to three levels) and ‘person’ (two levels), 

meant that we therefore fitted them as fixed, rather than random factors (Crawley 2007). 

 

2.7.1.  How does infection dose affect survival, and do the bacteria vary in virulence? 

To analyse survival after injection, fly survival until death was analysed using day of death as 

the response variable. All flies were followed until death, therefore we have no censored cases. 

In Model 1A, we tested whether bacterial injection had a negative effect on survival compared 

to injection with the Ringer’s injection control alone, and whether the Ringer’s differed 

significantly from the survival of the naïve group; this analysis was done using all treatment 

groups (naïve, Ringer’s and all bacterial doses). In Model 1B, we tested whether bacterial 

injection dose affected survival in a dataset where we excluded the two control groups. We 

then compared the survival of all bacterial doses against each other to test whether survival 

responds to dose. To account for the increased likelihood of type I errors due to multiple testing, 

we corrected the p-values with the Benjamini and Hochberg (1995) method in R using p.adjust 

and the false discovery rate (“fdr”). We also noted the scale parameters from Model 1B, which 

indicate whether the risk of death (hazard) decreases or increases with age (Crawley 2007). 

Treatment, person and experimental replicate were included as factors in both models. We first 

used Cox proportional hazard models and the “survival” package (Therneau 2020; Therneau 

and Grambsch 2000), but for all bacteria, neither Model 1A nor Model 1B fulfilled the 

assumptions of proportional hazards over time when tested using cox.zph. We therefore 

stratified the factor that least well fulfilled the assumptions of proportional hazards, which 

allows for a different baseline hazard function for each level of that factor. However, after 

stratification, the assumptions of proportional hazards over time were still not met for one or 

both of the models. Therefore, we used accelerated failure-time models using survreg and with 
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an extreme error distribution for E. cloacae, a lognormal error distribution for Pr. 

burhodogranariea and a loglogistic error distribution for L. lactis and Ps. entomophila.  

 

Model 1A, B: day of death ~ treatment + person + replicate 

 

2.7.2.  Is there a set point bacterial load for each bacterium? 

To be able to test whether there is a set point bacterial load across different bacterial species, 

we generated datasets for each infection species that contained the same doses and days post 

injection, and where there was a minimum of four flies for each dose/day post injection 

combination (fly mortality led to lower sample sizes for later time points). This allowed us to 

examine days 1 to 14 and injection doses 1840 and 9200 CFU for E. cloacae, Pr. 

burhodogranariea and L. lactis. We removed all flies that had 0 CFU as they are not 

informative for this analysis. To allow us to compare our findings to Duneau et al (2017), 

similarly to their analyses, we carried out linear regressions. The response variable was natural 

log transformed bacterial load and separate models were carried out for each bacterial species. 

Days post injection at which the fly was homogenised was included as a covariate, and injection 

dose, replicate and person were fitted as fixed factors. We also fitted the interaction between 

injection dose and days post injection.  

 

Model 2: log(bacterial load) ~ days post injection + injection dose + days post injection × 

injection dose + replicate + person 

 

2.7.3.  Does injection dose correlate with the bacterial load at four- or seven-days post 

injection?   

We tested whether initial injection dose is a predictor of the bacterial load for the bacterial 

species that we tested, at both four- and seven-days post injection. Similarly, to the set point 

bacterial load analysis, we removed all flies that had 0 CFU as they are not informative for this 

analysis. The response variable was natural log transformed bacterial load at either four- or 

seven-days post-injection and the covariate was natural log transformed injection dose. 

Separate models were carried out for each bacterial species. Experimental replicate and person 

were fitted as fixed factors. By day seven none of the flies injected with 92,000 CFU of L. 

lactis were alive. The analysis was not possible for Ps. entomophila infected flies because only 

two flies survived to day four and all flies were dead by seven days post injection. 
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Model 3: log(day 4 or 7 bacterial load) ~ log(injection dose) + replicate + person 

 

2.7.4.  Is the ability of living flies to clear an infection affected by injection dose or time post 

injection? 

Using a binomial logistic regression, we tested whether initial injection dose or time post 

injection affected the propensity for flies to clear an infection with E. cloacae (note that this is 

indistinguishable from an infection that is below our detection limit). The response variable 

was binary whereby 0 denoted that no CFUs grew from the homogenate and 1 denoted that 

CFUs did grow from the homogenate. Natural log transformed injection dose was included as 

a covariate, and days post injection at which the fly was homogenised, replicate and person 

were fitted as fixed factors. We also fitted the interaction between injection dose and days post 

injection. L. lactis injected flies were not analysed because only 11 out of 301 (3.7 %) cleared 

the infection. Although more Pr. burhodogranariea injected flies cleared the infection (45 out 

of 381 [11.8 %]) compared to L. lactis, a number of doses/days had zero clearance so these 

flies were not statistically analysed. Ps. entomophila infected flies were not statistically 

analysed because of 100 % mortality by day seven post-injection.  

 

Model 4: CFU presence/absencelive ~ days post injection + log(injection dose) + days post 

injection × log(injection dose) + replicate + person 

 

2.7.5.  Is the infection cleared before death, and is clearance dependent upon the injection 

dose? 

Using binomial logistic regressions, we tested whether initial injection dose affected the 

propensity for flies to clear an infection with E. cloacae or Pr. burhodogranariea before they 

died. The response variable was binary whereby 0 denoted that no CFUs grew from the 

homogenate and 1 denoted that CFUs did grow from the homogenate. Natural log transformed 

injection dose was included as a covariate, and person was fitted as a fixed factor. Replicate 

was included in the Pr. burhodogranariea analysis only, because of unequal sampling across 

replicates for E. cloacae. We did not fit dpi as a factor because of the unequal samplings across 

days. L. lactis injected flies were not analysed because only 4 out of 39 (10.3 %) cleared the 

infection. Ps. entomophila infected flies were not statistically analysed because of a low sample 

size (n = 12).  

 

Model 5: CFU presence/absencedead ~ log(injection dose) + replicate + person 
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2.7.6.  Do the proportions of dead and live uninfected flies correlate with each other? 

To test whether the proportion of live uninfected flies was a predictor of the proportion of dead 

uninfected flies, we separately summed up the numbers of uninfected and infected flies for 

each bacterial species and dose, giving us a total sample size of n = 20 (four species × five 

doses). For live and for dead homogenised flies we had a two-vector (proportion infected and 

proportion uninfected) response variable, which was bound into a single object using cbind. 

The predictor was live flies and the response variable was dead flies, and it was analysed using 

a generalized linear model with family=quasibinomial. 

 

Model 6: cbind(dead uninfected, dead infected)  ~ cbind(live uninfected, live infected) 

 

2.7.7.  Are virulence differences due to variation in parasite exploitation or per-parasite 

pathogenicity? 

To test whether the bacterial species vary in per-parasite pathogenicity, we performed a linear 

model with the natural log of the maximum hazard as the dependent variable, bacterial species 

as a factor, and the natural log of infection intensity as a covariate. We also included the 

interaction between bacterial species and infection intensity: a significant interaction would 

indicate variation in the reaction norms, i.e. variation in per-parasite pathogenicity. The 

package “emmeans” (Lenth 2020) was used to test which of the reaction norms differed 

significantly from each other. The hazard function in survival analyses gives the instantaneous 

failure rate, and the maximum hazard gives the point at which this rate is highest. We extracted 

maximum hazard values from time of death data for each bacterial species/dose/replicate. We 

also calculated the maximum hazard for the Ringer’s control groups, which gives the maximum 

hazard in the absence of infection (the y-intercept). Each maximum hazard per 

species/dose/replicate was estimated from an average of 33 flies (a few flies were lost whilst 

being moved between vials etc). To extract maximum hazard values we defined a function that 

uses the “muhaz” package (S original by Kenneth Hess and R port by R. Gentleman 2019) to 

generate a smooth hazard function and then output the maximum hazard in a defined time 

window, as well as the time at which this maximum is reached. To assess the appropriate 

amount of smoothing, we tested and visualised four values (1, 2, 3 and 5) for the smoothing 

parameter, b, which was specified using “bw.grid” (Moore 2016). We present the results from 

bw.grid=2, but all of the other values gave qualitatively similar results (see results). We used 

“bw.method=“global”” to allow a constant smoothing parameter across all times. The defined 
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time window was zero to 20 days post injection. We wanted to infer the causal effect of 

bacterial load upon host survival (and not the reverse), therefore we reasoned that the bacterial 

load measures should derive from flies homogenised before the maximum hazard had been 

reached. For E. cloacae, L. lactis, and Pr. burhodogranariea, for all smoothing parameter 

values, the maximum hazard was reached after two days post injection, although for smoothing 

parameter value 1, there were four incidences where it was reached between 1.8 and 2 days 

post injection. Per species/dose/replicate we therefore calculated the geometric mean of 

infection intensity combined for days 1 and 2 post injection. This was done using the R 

packages “dplyr” (Wickham et al. 2020), “plyr” (Wickham 2011) and “psych” (Revelle 2020). 

Each mean was calculated from the bacterial load of eight flies, except for four mean values 

for E. cloacae, which derived from four flies each. 

 

For Ps. entomophila the maximum hazard was consistently reached at around day one post 

injection, meaning that bacterial sampling happened at around the time of the maximum 

hazard, and we therefore excluded this bacterial species from the analysis. We removed two 

replicates (Ringer’s and 92 CFU for E. cloacae infection) because there was no mortality in 

the first 20 days and therefore the maximum hazard could not be estimated. One replicate was 

removed because the maximum hazard occurred before day 1 for all bw.grid values (92,000 

CFU for E. cloacae) and six replicates were removed because there were no bacterial load data 

available for day one (experimental replicate three of L. lactis). This gave final sample sizes of 

n = 15 for E. cloacae and n = 12 for L. lactis, and n = 18 for Pr. burhodogranariea.  

 

Model 7: log(maximum hazard)  ~ log(geometric mean bacterial load) × bacterial species 

 

To test whether there is variation in parasite exploitation (infection intensity measured as 

bacterial load), we performed a linear model with the natural log of infection intensity as the 

dependent variable and bacterial species as a factor. Similarly, to the previous model, we used 

the geometric mean of infection intensity combined for days 1 and 2 post injection, for each 

bacterial species/dose/replicate. The uninfected Ringer’s replicates were not included in this 

model. Post-hoc multiple comparisons were performed using “emmeans”. Ps. entomophila was 

excluded for the reason given above. The sample sizes per bacterial species were: n = 13 for E. 

cloacae, n = 10 for L. lactis and n = 15 for Pr. burhodogranariea. 

 

Model 8: log(geometric mean bacterial load)  ~ bacterial species 
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Results 
3.1. Bacterial species vary in virulence and dose can affect survival 

As predicted, the bacterial species chosen for infection showed a range of virulence (Figure 1), 

with E. cloacae being the least virulent and Ps. entomophila being the most virulent bacterium. 

Pr. burhodogranariea and L. lactis were intermediate, with the former being less virulent than 

the latter. In all figures, the bacterial species are thus presented in order of virulence. 

 

There was a significant effect of treatment on E. cloacae injected and control flies (Table 1; 

Figure 1A). Ringer’s injected flies had higher survival than the 920 and 92000 CFU doses 

(Table S1), and there was no significant survival difference between the Ringer’s injected flies 

and the naïve group or the remaining three bacterial doses (Table S1). In the analysis where 

the two controls were excluded, there was no significant effect of treatment (Table 1), 

indicating that survival was not dependent upon E. cloacae injection dose. The scale parameter 

of the analysis containing only the bacterially-injected flies was 16.3, indicating that the risk 

of death increased with age. 

 

There was a significant effect of treatment on Pr. burhodogranariea injected and control flies 

(Table 1; Figure 1B). Ringer’s injected flies had a higher survival than all bacterially-injected 

flies (Table S1). There was no significant survival difference between the Ringer’s injected 

and naïve flies (Table S1). In the analysis where the two control groups were excluded, survival 

was dependent upon injection dose (Table 1). After correcting for multiple testing, comparisons 

of all injection doses with each other, showed that 92 CFU had higher survival than all doses 

except 920 CFU, and that 920 CFU had higher survival than 9200 and 92000 CFU (Table S2). 

The scale parameter of the analysis containing only the bacterially-injected flies was 1.49, 

which being more than one, indicates that the risk of death increased with age. 

 

There was a significant effect of treatment on L. lactis injected and control flies (Table 1; Figure 

1C). Ringer’s injected flies had a higher survival than all bacterially-injected flies (Table S1). 

There was no significant survival difference between the Ringer’s injected and naïve flies 

(Table S1). In the analysis where the two control groups were excluded, survival was dependent 

upon injection dose (Table 1). After correcting for multiple testing, comparisons of all injection  
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doses with each other, showed that apart from comparisons between 1840 and one dose either 

side of it, all survival curves differed significantly from each other (Table S3). The scale 

parameter of the analysis containing only the bacterially-injected flies was 0.543, which being 

less than one, indicates that the risk of death decreased with age. 

 

There was a significant effect of treatment on Ps. entomophila injected and control flies (Table 

1; Figure 1D). Ringer’s injected flies had a higher survival than all bacterially-injected flies 

(Table S1). There was no significant survival difference between the Ringer’s injected and 

naïve flies (Table S1). In the analysis where the two controls were excluded, survival was partly 

dependent upon injection dose (Table 1). After correcting for multiple testing, comparisons of 

all injection doses with each other showed that 92 CFU had significantly higher survival than 

all other doses except for 1840 CFU (Table S4). None of the other doses differed significantly 

from each other (Table S4). The scale parameter of the analysis containing only the bacterially-

injected flies was 0.285, indicating that the risk of death decreased with age. 

 

3.2. All bacterial species established persistent infections  

By homogenising living flies we found that the two bacterial species with lower virulence, E. 

cloacae (Figure 2A) and Pr. burhodogranariea (Figure 2B) were able to persist inside the fly 

until at least 35 days post injection. The persistence estimates for L. lactis (28 days; Figure 2C) 

and Ps. entomophila (four days; Figure 2D) were both shorter, because the high mortality 

caused by these bacterial species meant that we could not test later time points. However, by 

testing for the presence or absence of bacteria in homogenised dead flies, we found that 

infections could persist for considerably longer, i.e., around two and a half months: E. cloacae 

= 77 days, Pr. burhodogranariea = 78 days, L. lactis = 76 days and Ps. entomophila = 75 days 

(data not shown). 

 

3.3.  Not all bacteria establish a set point bacterial load 

There was a relatively stable bacterial load across for time for infections with E. cloacae and 

L. lactis (Table 2, non-significant effect of time post injection; Figure 3), suggesting that these 

species show evidence of a set point bacterial load when injected at a dose of 1840 or 9200 

CFUs. In contrast, Pr. burhodogranariea bacterial load tended to decrease over time (Table 2; 

Figure 3), suggesting that there was no strict set point bacterial load under these conditions. E. 

cloacae was the only species to show a significant effect of injection dose, where an initial 

dose of 9200 resulted in a higher load than an initial dose of 1840 (Table 2; Figure 3). 
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3.4. Injection dose correlates with the bacterial load at four- and seven-days post injection 

At four- and seven-days post injection, E. cloacae (Figure 4A & B) and Pr. burhodogranariea 

(Figure 4C & D) loads were significantly positively correlated with the initial injection dose 

(Table 3). L. lactis loads showed no significant correlation with the initial injection dose 

(Figure 4E & F), but there was a significant effect of replicate on L. lactis load at day four 

(Table 3). We hypothesised that the lack of significant relationship between L. lactis load and 

injection dose might be due to our underestimation of the load of some flies injected with this 

bacterial species: this is because some flies had too many CFUs to count even at the lowest 

dilution, and they were therefore assigned a maximum bacterial load value (see methods), 

which was necessarily lower than their actual load. When we excluded the four flies at day four 

and the two flies at day seven that had been assigned the maximum value, the relationship 

became significant for both days (Day 4: F1,42 = 5.61; p = 0.023; Day 7: F1,35 = 4.59; p = 0.039). 

 

3.5. Infections in living flies can be cleared, and lower doses of E. cloacae are cleared more 

quickly than higher doses 

The rate at which E. cloacae infections were cleared depended upon the initial injection dose 

(day post injection × injection dose: Table 4), whereby lower injection doses were cleared more 

quickly than higher doses (Figure 5A). Although we note that we cannot discriminate between 

flies that had cleared the infection and those where the infection was below our detection limit. 

In addition, there was dose-dependent clearance whereby lower doses were more likely to be 

cleared (Table 4). The other three bacterial species could not be statistically analysed (see 

methods), but for all species and all doses, there was at least one fly that cleared the infection 

(Figure 5B-D). Summing up across all doses and days, 39.4 % (177 of 449) of E. cloacae-

injected flies, 11.8 % (45 of 381) of Pr. burhodogranariea-injected flies, 3.7 % (11 of 301) of 

L. lactis-injected flies, and 21.4 % (15 of 70) of Ps. entomophila-injected flies cleared the 

infections. 

 

3.6. Bacterial clearance before death is dose dependent  

We homogenised flies that died during the chronic phase of the infection (between 14 and 35 

days and between 56 and 78 days post injection) to test whether they died whilst being infected, 

or were able to clear the infection before death. Flies were indeed able to clear the infection 

before death, but the degree to which this occurred varied across bacterial species (Figure 5E-

H). Furthermore, for all bacterial species in both homogenisation phases there were flies where 
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the infection persisted until death, and flies that were uninfected at death (data not shown). For 

the two injected bacterial species that we were able to statistically analyse, E. cloacae and Pr. 

burhodogranariea, lower initial injection doses were more likely to be cleared before death 

than higher injection doses (Figure 5E & F; Table 5). Summing up across all doses and days, 

29.8 % (14 out of 47) of E. cloacae-injected flies, 33.3 % (20 out of 60) of Pr. 

burhodogranariea-injected flies, 10.3 % (4 out of 39) of L. lactis-injected flies, and 66.7 % (8 

out of 12) of Ps. entomophila-injected flies cleared the infection before death. 

 

3.7. A similar proportion of live and dead flies are uninfected  

Despite variation in the time post infection at which live and dead flies were sampled, across 

bacterial species and doses, the proportion of living flies that cleared an infection was a 

predictor for the proportion of dead flies that cleared an infection (Figure S1; LR = 7.11, df = 

2,17, p = 0.0285). 

 

3.8. Differences in virulence are due to variation in parasite exploitation and per-parasite 

pathogenicity 

Bacterial species varied significantly in exploitation of their hosts (F2,35 = 35.90; p < 0.0001; 

Figure 6A). The least virulent bacterium, E. cloacae, had a significantly lower infection 

intensity, and thereby lower host exploitation, compared to either of the other species (Tukey 

contrasts: E. cloacae vs. Pr. burhodogranariea: t = -5.24, p < 0.0001; E. cloacae vs. L. lactis: 

t = -8.36, p < 0.0001). The more virulent bacterium, L. lactis, had the highest infection intensity, 

and differed significantly compared to the less virulent Pr. burhodogranariea (L. lactis vs. Pr. 

burhodogranariea: t = 3.50, p = 0.0018). 

 

The slopes of the relationship between infection intensity and maximum hazard differed 

significantly across bacterial species, suggesting that the bacterial species differ in their per-

parasite pathogenicity (infection intensity × bacterial species: F2,39 = 7.35, p = 0.0020; Figure 

6B). E. cloacae had a relatively flat reaction norm, indicating a minimal increase in hazard 

with an increase in bacterial load, and thus a significantly lower per-parasite pathogenicity 

compared to both Pr. burhodogranariea (Tukey contrast: t = -3.74; p = 0.0017) and L. lactis (t 

= -3.34; p = 0.0052). In contrast, the latter two species had similar per-parasite pathogenicity 

to each other (t = -0.68; p = 0.78); both species had negative reaction norms, indicating an 

increase in hazard with an increase in bacterial load. There was no significant effect of bacterial 

load (F1,39 = 0.19, p = 0.67) or bacterial species F2,39 = 0.50, p = 0.61) on the maximum hazard. 
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Qualitatively similar results were obtained using the three alternative smoothing parameters 

(Figure S2). 

 

 

Discussion 
In this study we demonstrate that sustained chronic infection and clearance are both possible 

outcomes for bacteria showing a range of virulence when they infect female D. melanogaster. 

We show that lower injection doses could be cleared more quickly than higher doses, but that 

bacteria of all species could persist inside the host for at least 75 days. Furthermore, we show 

that bacterial virulence differences can be explained by a combination of variation in host 

exploitation and per-parasite pathogenicity. 

 

4.1. Bacterial species vary in virulence and dose can affect survival 

In line with our predictions, the four bacterial species used in this study covered a broad 

spectrum of virulence, where virulence is defined as a reduction in host survival. The virulence 

gradient – from low to high – E. cloacae, Pr. burhodogranariea, L. lactis and Ps. entomophila, 

is complemented by the scale parameter of the survival analyses, which was highest in E. 

cloacae, indicating that death increased with age, and lowest in Ps. entomophila, indicating 

death decreased with age. Survival was not dose-dependent for the least virulent bacterium, E. 

cloacae. Chambers et al. (2019) showed similar results for D. melanogaster injected with 

Enterococcus faecalis, where there was little mortality over a similar injection dose range to 

the one used in this study. Survival was only partly dose-dependent for the most virulent 

pathogen, Ps. entomophila, likely due to swift killing of the host. However, the bacteria of 

intermediate virulence, Pr. burhodogranariea and L. lactis, had stronger dose-dependency 

over the injected range. Dose-dependent survival is in accordance with numerous studies across 

host-pathogen systems (e.g., Louie et al. 2016; Miller and Cotter 2017; Chambers et al. 2019). 

 

4.2 All bacterial species established persistent infections 

All four bacterial species were able to establish persistent infections in D. melanogaster. E. 

cloacae and Pr. burhodogranariea could be retrieved from live homogenised flies up to 35 

days, L. lactis up to 28 days, and Ps. entomophila up to four days post injection. The reduced 

estimates for the latter two species are due to higher mortality, meaning that no flies were alive 

to test at later time points. However, by homogenising flies that had died, we show that all 
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bacterial species can persist inside the host for at least 75 days. To the best of our knowledge 

these estimates are far beyond the currently known length of persistent infections in insects (28 

days: Haine et al. 2008; Kutzer, Kurtz, and Armitage 2019).  

 

It is unclear how the bacteria are able to persist for so long inside the host. One hypothesis is 

that the bacteria may be able to survive inside the insect haemocytes, as has been demonstrated 

for Salmonella typhimurium (Shinzawa et al. 2009) and S. aureaus (McGonigle, Purves, and 

Rolff 2016). The bacteria may also be able to persist in biofilms, i.e., multicellular 

aggregations, where the bacteria are embedded in a self-produced matrix of extracellular 

polymeric substances, such as polysaccharides, proteins and nucleic acids (Flemming and 

Wingender 2010). Biofilms can cause chronic infections such as Pseudomonas aeruginosa in 

cystic fibrosis patients (Høiby et al. 2010), and oral infection of D. melanogaster with Ps. 

aeruginosa resulted in biofilm production in the crop (Mulcahy et al. 2011). Both E. cloacae 

and L. lactis are able to produce biofilms in vitro (Nyenje, Green, and Ndip 2013; Chodorski 

et al. 2020, respectively). It is unknown whether Pr. burhodogranariea produces biofilms, but 

there is evidence that Providencia stuartii can form biofilms in vitro and in humans (El Khatib 

et al. 2017), and it is unknown whether Ps. entomophila forms biofilms. 

 

4.3 Not all bacteria establish a set point bacterial load   

D. melanogaster that are able to control a bacterial infection during the acute infection phase 

have been shown to have a relatively constant bacterial load in the chronic infection phase, 

which Duneau et al. (2017) found remains stable until at least ten days post injection for Pr. 

rettgeri. Two of the species that we tested, E. cloacae and L. lactis, showed relatively stable 

loads across the first 14 days post infection for inoculation doses of 1840 and 9200 CFUs, 

which lends support to the SPBL concept. In addition, Duneau et al. (2017) observed that, per 

host, bacteria with low virulence had a SPBL of a few hundred bacteria, whereas bacteria of 

intermediate virulence had a SPBL of a few thousand bacteria. Our data also lend support to 

the idea that virulence relates to SPBL, given that low virulence E. cloacae had a SPBL of tens 

to hundreds of bacteria, and high virulence L. lactis had a SPBL of tens of thousands of 

bacteria. This finding is supported by the virulence decomposition analysis (see section 4.6), 

which shows that as virulence increases, so does host exploitation of the host over the first 

couple of days post infection. Therefore, more virulent bacteria have higher initial proliferation 

rates as shown by host exploitation, and given that the infection load stays relatively constant 
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in the longer term (SPBL), the initial proliferation differences explain the relationship between 

SPBL and virulence.   

  

In contrast to the aforementioned two bacterial species, Pr. burhodogranariea load showed a 

shallow but significant decline over time. A significant reduction in bacterial load over time 

has been documented for S. aureaus infections of T. molitor (Haine et al. 2008; Zanchi, 

Johnston, and Rolff 2017). Duneau et al. (2017) hypothesised that different dynamics after 

infection in D. melanogaster and T. molitor could be due to the two host species utilising the 

different arms of the immune response, i.e. humoral and cellular defences, to differing degrees. 

However, L. lactis infections in a different D. melanogaster host population to the one used in 

the current study also declined over the course of a week post-injection (Kutzer and Armitage 

2016), and we note the caveat that L. lactis loads in the current study were in some cases too 

numerous to count for days two to four post-injection, therefore these days will be 

underestimated and may hide a negative relationship. Further work is necessary to uncover the 

factors influencing the stability of bacterial loads.  

 

4.4. Injection dose correlates with the bacterial load at four and seven days post injection 

The bacterial load at days four and seven post injection, positively correlated with the initial 

injection dose for E. cloacae, Pr. burhodogranariea and L. lactis (but see results section for 

the latter). Our results expand the known bacterial species for which this relationship exists, 

and lend weight to the idea that this may be a more general phenomenon in D. melanogaster 

bacterial infections. Previous studies found that this relationship held for bacterial load at seven 

and fourteen days post injection (Pr. rettgeri: Duneau et al. 2017; E. faecalis, Pr. rettgeri and 

S. marcescens: Chambers et al. 2019). It has been suggested that the SPBL will remain at 

around the bacterial load at which the infection was controlled (Chambers et al. 2019; Duneau 

et al. 2017). Given that insects can show dose dependent inducible immune activation (Jent et 

al. 2019), and given that the antimicrobial peptide Drosocin has been shown to control E. 

cloacae infections and that a combination of Drosocin, Attacins and Diptericins control Pr. 

burhodogranariea infections (Hanson et al. 2019), one could hypothesise that these AMPs are 

to some degree involved. However, the mechanisms that allow a dose-dependent persistent 

infection have yet to be uncovered. Unfortunately, it was not possible to test Ps. entomophila 

given its high mortality during the acute infection phase.  

 

4.5 Bacterial infections with different levels of virulence can be cleared  
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At least two predictions can be made concerning the clearance of low virulence bacteria: if the 

damage that they cause is low and the clearance costs are low then the pathogen may be cleared, 

but if the damage is low and the costs of clearing the infection are greater than the benefits, 

then a persistent infection might ensue. Similarly, to other studies on low virulence infections 

(Hillyer et al. 2005; Gorman and Paskewitz 2000; Duneau et al. 2017), some individuals (~39 

%) were able to clear an E. cloacae infection whilst others remained infected. Although we 

note that our lower detection limit is ~7 CFUs per fly, therefore we cannot discriminate 

between clearance of the bacteria and a load that is below our detection limit. As we had 

predicted, the likelihood of clearing E. cloacae was dose dependent, but interestingly it also 

depended upon the time after the initial injection: lower doses were cleared more quickly than 

higher doses. This finding of dose-dependent clearance, whilst it may not be surprising, could 

explain some discrepancies across studies in terms of whether evidence of persistent infections 

is found. Just as stochastic variation explains variation in the outcome of the early infection 

phase (Duneau et al. 2017), perhaps stochasticity plays a role in the clearance of bacteria, 

particularly where infection loads are low such as in E. cloacae, for example through variation 

in expression of Drosocin.   

 

The clearance of intermediate and high virulence pathogens in D. melanogaster has been 

described as being rare, because no bacteria were cleared from any of the previously infected 

hosts over the seven days post injection (Duneau et al. 2017). Our data challenge this finding, 

given that the three more virulent bacteria all appear to be clearable to differing degrees, 

including within the first seven days of infection. The combined effects of dose and time after 

infection could not be statistically analysed for Pr. burhodogranariea, L. lactis and Ps. 

entomophila, because the number of flies that cleared their infection were relatively low (see 

results section 3.5), nonetheless our results indicate that a persistent infection is not inevitable. 

These findings are supported by the observation that seven to ten days post injection, a “small 

number” of D. melanogaster had cleared infections with Pr. burhodogranariea (Galac and 

Lazzaro 2011), although Duneau et al. (2017) did not find clearance of the same bacterium. 

Similarly to E. cloacae, inoculation dose may play a role in clearance given that we 

predominantly observed clearance in the lowest inoculation dose. Duneau et al. (2017) injected 

around 30,000 Pr. burhodogranariea CFUs per fly, which lies between our two highest doses, 

for which we saw clearance in just three flies. It is also worth noting that our study used 

females, whereas Duneau et al. (2017) used males. Similarly to the current study, Kutzer & 
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Armitage (2016) also found that a few female flies, inoculated with a dose of L. lactis in 

common with this study (1,840 CFU), cleared the infection (3 out of 141; 2.1 %). 

 

Lastly, we predicted that there may be selection for a fast and efficient early clearance of 

infection by the bacterium with high virulence, Ps. entomophila. The high level of pathogenesis 

caused by this bacterium is explained by the production of a pore-forming toxin called 

Monalysin (Opota et al. 2011) in association with activation of stress-induced pathways and an 

increase in oxidative stress (Chakrabarti et al. 2012). Ultimately this leads to a lack of tissue 

repair in the gut, and in most cases fly death (reviewed in Buchon, Broderick, and Lemaitre 

2013). If similar pathologies are induced in the haemocoel after infection, contrarily to other 

bacterial species, sustaining a chronic bacterial load might not be a viable option in the face of 

high levels of tissue damage. Instead the fly host might activate a stronger immune response 

that ideally clears the infection (Lazzaro and Rolff 2011; Moreno-García et al. 2014). Liehl et 

al. (2006) demonstrated the immune response to Ps. entomophila is mostly local, suggesting 

that the fly might invest in a stronger and targeted response, but also try to limit the 

immunopathology to the smallest area possible. Although clearance of this bacterium was 

possible, the majority of survivors remained infected (just under 80 %), and mortality was too 

high to assess clearance for longer than four days post injection. Interestingly, selected 

individuals from the ancestral population to the one used in this study, also showed clearance 

of Ps. entomophila five days after infection (Martins et al. 2013). The ability to resist Ps. 

entomophila infection showed genotypic variation (Kutzer, Kurtz, and Armitage 2018), and so 

may the ability to clear infections: for example, individuals from one outbred, and three out of 

nine inbred, fly lines contained a proportion of flies that cleared a Ps. entomophila infection 

one day post injection, whereas none of the remaining six inbred lines had flies with zero 

infection load (Kutzer, Kurtz, and Armitage 2018). 

 

Even though dead flies were sampled for a longer period post-inoculation (up to 78 days) 

compared to live flies (up to 35 days), the patterns of bacterial clearance in dead flies largely 

reflected the results for live flies: dead flies showed dose dependency in clearance for those 

species that we could statistically test, whereby lower inoculation doses of E. cloacae and P. 

burhodogranariea were more likely to be cleared before death than higher doses. Once again, 

comparatively few dead individuals had cleared L. lactis infections, whereas proportionally 

more had cleared Ps. entomophila. Because we processed dead flies up to 24 hours post-death 

we did not analyse the number of CFUs, however it would be interesting to test whether the 
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bacterial load upon death (BLUD) remains constant even after many weeks of infection 

(Duneau et al. 2017). The proportion of live flies that cleared a particular species and dose of 

bacteria was a predictor of the proportion of dead flies that did the same; most of the data points 

lie above, rather than on, the diagonal (Figure S1) possibly because the dead flies were on 

average homogenised later on in the infection, therefore allowing for more clearance to take 

place before being sampled. The generalisability of the observation that infection probability 

of dead individuals predicts that of live individuals, needs more investigation, in particular the 

infection status of individuals that died in the acute phase. 

 

4.6. Differences in virulence are due to variation in parasite exploitation and per-parasite 

pathogenicity 

Our survival data show that the infecting bacteria cover a range of virulence, from low to high. 

Therefore, in a final step, we aimed to decompose the causes of variation in virulence. We took 

the perspective of the pathogen, where variation in virulence across different genotypes (in this 

case bacterial species) infecting the same host, can be disentangled into two components: host 

exploitation and per-parasite pathogenicity (Råberg 2014; Råberg and Stjernman 2012).  

 

Host exploitation, given as infection intensity or bacterial load, is the more frequently tested 

explanation for variation in virulence (Råberg and Stjernman 2012). There is ample evidence 

that host exploitation varies across parasite genotypes (de Roode and Altizer 2010; e.g., 

monarch butterflies and their protozoan parasites: de Roode et al. 2008; Daphnia magna 

infected with the bacterium Pasteuria ramosa: Clerc, Ebert, and Hall 2015), and also, 

unsurprisingly, that it varies across parasite species infecting the same host genotype (Kutzer 

and Armitage 2016; Duneau et al. 2017; Chambers et al. 2019). Indeed, in the current study, 

all bacterial species tested showed significant differences in host exploitation, where bacterial 

load increased as virulence increased. Chambers et al (2019) observed that the two bacterial 

species in their study that caused lower mortality showed little initial proliferation inside the 

host, but that the species causing more mortality showed an initial increase in the bacterial 

load: these results support our findings. However, had we only examined host exploitation as 

a source of variation, we might have concluded that load alone explains the differences that we 

found in virulence. 

 

Virulence is not only determined by the load that a pathogen attains: Råberg & Stjernman 

(2012) proposed that pathogen genotypes may also vary in per-parasite pathogenicity i.e., the 
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harm or damage caused per-parasite (Råberg 2014; Råberg and Stjernman 2012). Variation in 

per-parasite pathogenicity can be observed when different parasite genotypes show different 

reaction norms for the relationship between host health and infection intensity, when infecting 

the same host genotype (Råberg 2014). For example, infection of rats with three different 

clones of the rodent malaria Plasmodium chabaudi uncovered variation in per-parasite 

pathogenicity (Råberg and Stjernman 2012), and De Roode & Altizer (2010) found that 

protozoan parasite strains infecting monarch butterflies, differed in per-parasite pathogenicity. 

Here we found a significant overall effect of per-parasite pathogenicity, whereby Pr. 

burhodogranariea and L. lactis had significantly more negative slopes compared to E. cloacae. 

This finding, combined with the host exploitation results, implies that E. cloacae is less virulent 

towards its host because of a combination of lower per-parasite pathogenicity and less 

exploitation. On the other hand, given that Pr. burhodogranariea and L. lactis showed similarly 

negative slopes for the relationship between parasite load and maximum hazard (our survival-

related measure of the impact of the parasite on host health), it suggests that the variation in 

virulence between these two species is due to higher exploitation by L. lactis, rather than 

differences in per-parasite pathogenicity. These two sources of variation, host exploitation and 

per-parasite pathogenicity, have not frequently been explored in the same study, so it is 

generally difficult to ascertain the relative importance of the two sources of genetic variation. 

However, variation in per-parasite pathogenicity was demonstrated to explain more of the 

variance in virulence across HIV genotypes than did set point viral load (Bertels et al. 2018). 

Ours, and the results of others, suggest that per-parasite pathogenicity is an important 

component driving variation in virulence, and that disentangling its contribution towards 

virulence, in combination with the contribution of host exploitation, will undoubtedly help our 

mechanistic and evolutionary understanding of host-pathogen interactions. Future research will 

be needed to test the generality of our observation that the bacterium that had a higher 

prevalence of persistence (L. lactis), had higher virulence, higher PPP and higher host 

exploitation, whereas the bacterium that had lower persistence (E. cloacae) showed the 

opposite pattern. 
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Tables and figures 
Table 1. The effect of bacterial injection on survival. Model 1A includes all treatment groups 

and Model 1B includes only the flies injected with one of the 5 doses of bacteria. The person 

performing the injection and the experimental replicate were included as factors in the models. 

Statistically significant factors are in bold. 

 

Injected bacterium Model Tested effect df Chisq p 

E. cloacae 

 Treatment (with controls) 6 26.51 0.00018 

1A Person 1 1.89 0.17 

 Replicate 2 32.60 < 0.0001 

 Treatment (without controls) 4 9.25 0.055 

1B Person 1 1.38 0.24 

 Replicate 2 21.88 < 0.0001 

Pr. 

burhodogranariea 

 Treatment (with controls) 6 227.55 < 0.0001 

1A Person 1 7.64 0.0057 

 Replicate 2 11.31 0.0035 

 Treatment (without controls) 4 27.50 < 0.0001 

1B Person 1 8.66 0.0033 

 Replicate 2 8.12 0.017 

L. lactis 

 Treatment (with controls) 6 726.14 < 0.0001 

1A Person 1 3.98 0.046 

 Replicate 2 0.21 0.90 

 Treatment (without controls) 4 100.51 < 0.0001 

1B Person 1 5.76 0.016 

 Replicate 2 0.41 0.81 

Ps. entomophila 

 Treatment (with controls) 6 1687.8

8 

< 0.0001 

1A Person 1 6.65 0.0099 

 Replicate 2 11.37 0.0034 

 Treatment (without controls) 4 19.24 0.00071 

1B Person 1 5.09 0.024 

 Replicate 2 13.54 0.0012 
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Table 2. Tests for whether there is a set point bacterial load. The effects of day post injection 

and injection doses 1840 and 9200 on bacterial load up to 14 days post injection were tested 

(Model 2). Experimental replicate and the person performing the injection were also included 

as factors in the models. Ps. entomophila was not analysed because it caused high fly mortality. 

Statistically significant factors are in bold. 

 

Injected bacterium Tested effect df F P 

E. cloacae 

DPI 1,90 3.08 0.083 

Injection dose 1,90 4.68 0.033 

DPI × Injection dose 1,90 0.13 0.72 

Person 1,90 0.13 0.72 

Replicate  2,90 2.99 0.055 

Pr. burhodogranariea 

DPI 1,132 9.22 0.0029 

Injection dose 1,132 2.18 0.14 

DPI × Injection dose 1,132 0.030 0.86 

Person 1,132 0.015 0.90 

Replicate  2,132 0.065 0.94 

L. lactis 

DPI 1,106 1.71 0.19 

Injection dose 1,106 0.23 0.63 

DPI × Injection dose 1,106 2.02 0.16 

Person 1,106 1.04 0.31 

Replicate  2,106 4.69 0.011 
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Table 3. The effect of initial injection dose on bacterial load at four and seven days post 

injection (Model 3). Experimental replicate and the person performing the injection were also 

included as factors in the models. Ps. entomophila was not analysed because it caused high fly 

mortality. Statistically significant factors are in bold. 

 

  Day 4 Day 7  

Injected bacterium Tested effect df F p df F p 

E. cloacae 

Log(Injection dose) 1,28 27.08 <0.0001 1,25 26.41 <0.0001 

Person 1,28 0.85 0.36 1,25 0.16 0.69 

Replicate 2,28 2.70 0.085 2,25 1.78 0.19 

 Log(Injection dose) 1,50 39.24 <0.0001 1,47 37.33 <0.0001 

Pr. burhodogranariea Person 1,50 1.64 0.21 1,47 0.23 0.63 

 Replicate 2,50 0.45 0.64 2,47 2.11 0.13 

L. lactis 

Log(Injection dose) 1,46 3.94 0.053 1,37 3.81 0.058 

Person 1,46 0.42 0.52 1,37 0.71 0.40 

Replicate  2,46 5.65 0.0064 2,37 1.98 0.15 
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Table 4. The effect of day post injection (DPI) and injection dose on presence/absence of E. 

cloacae in live flies (Model 4). Experimental replicate and person performing the injection 

were also included as factors in the models. Statistically significant factors are in bold. 

 

Tested effect df Chisq P 

DPI 8 15.26 0.054 

Injection dose 1 5.00 0.025 

DPI × Injection dose 8 18.45 0.018 

Person 1 1.34 0.25 

Replicate 2 14.14 0.00085 
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Table 5. The effect of injection dose on presence/absence of infection in dead flies (Model 5). 

Person performing the injection was also included as a factor in the models, and replicate was 

included for the analysis for Pr. burhodogranariea infections. Statistically significant factors 

are in bold. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Injected bacterium Tested effect df LR Chisq P 

E. cloacae 
Log(Injection dose) 1 3.86 0.049 

Person 1 1.21 0.27 

 Log(Injection dose) 1 16.73 <0.0001 

Pr. burhodogranariea Person 1 2.18 0.14 

 Replicate 1 0.030 0.86 
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Figure 1. Fly survival after injection with one of four bacterial species (A – D). Controls were 

either injected with Ringer’s solution, or received no injection (naïve). Each survival curve is 

from n = 79 to 108 flies. The injection dose legend for all panels is shown in A.  
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Figure 2. Bacterial load per living fly, after injection with one of four bacterial species (A – 

D). Flies were homogenized at between 1 and 35 days post-injection. The injection dose legend 

for all panels is shown in D. The arrows on the y-axis indicate the approximate injection doses. 

Missing data are due to increasing fly death over time. Black lines show medians. 
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Figure 3. The relationship between bacterial load and day post injection for two injection doses 

(1840 and 9200 CFU) for three bacterial species (A – C). The injection dose legend for all 

panels is shown in A. Each circle is the bacterial load of one fly, and they are jittered along the 

x-axis to aid visualisation of overlapping data points. Flies with zero bacterial load are not 

shown (see methods). Linear regression lines are shown with 95 % confidence intervals.  
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Figure 4. The relationship between bacterial load and the initial injection doses for three of the 

four injected bacterial species. Each row shows data from one bacterial species. The left- and 

right-hand columns show the bacterial load at four, and seven, days post injection, respectively. 

Panel B contains no flies injected with 92 CFUs because all flies had a bacterial load of zero 

at day seven; F contains no flies injected with 92,000 CFUs because all flies had died by this 

time point. Each circle is the bacterial load of one fly, they are jittered along the x-axis to aid 

visualisation of overlapping data points, and they are coloured according to the injection dose. 

Flies with zero bacterial load are not shown (see methods). Linear regression lines are shown 

in black with 95 % confidence intervals.  
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Figure 5. Bacterial clearance by living and dead flies. Each row shows flies that had been 

injected with one of four bacterial species. A-D The proportion of live flies that were 

uninfected. Each column shows a different injection dose. E-H The proportion of dead flies 

that were uninfected. The injection doses follow the same colours as shown in A-D. Dead flies 

were homogenised at between 14 and 35, and 56 and 78, days post injection. Numbers above 

the bars indicate the total numbers of flies from which the proportions were calculated, i.e. the 

total numbers of flies homogenised. Note that we cannot distinguish between flies that had 

cleared the infection and those where the bacterial load was below our detection limit. 
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Figure 6. Virulence decomposition. A. Parasite exploitation given as infection 

intensity/bacteria load across bacterial species. Each data point is from one injection dose per 

bacteria, per experimental replicate, and gives the geometric mean of bacterial load for days 1 

and 2 post injection. The circles are jittered along the x-axis to aid visualisation of overlapping 

data points. Black lines show medians. B. Per-parasite pathogenicity given as the relationship 

between bacterial load and maximum hazard. The bacterial load data is the same as that given 

in A but with the addition of the Ringer’s control group. To allow inclusion of the uninfected 

Ringer’s control group to the figure we added one CFU to all mean bacterial load values. The 

maximum hazard data is estimated from survival data for the corresponding injection doses 

and experimental replicates. Maximum hazard is plotted as the inverse, such that the hazard 

(virulence) increases with proximity to the x-axis. Lines show linear regressions. 
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Supporting information 
 

Table S1. The effect of bacterial injection on survival. Comparisons are shown between the 

Ringer’s injected flies and all other treatment groups (Model 1A). Statistically significant 

comparisons are in bold. 

Injected bacterium Treatment z P 

E. cloacae 

Naïve 0.57 0.57 

92 CFU -1.72 0.086 

920 CFU -2.63 0.0086 

1840 CFU -0.60 0.55 

9200 CFU -1.75 0.081 

92000 CFU -3.58 0.00035 

Pr. burhodogranariea 

Naïve 0.2 0.84 

92 CFU -6.14 < 0.0001 

920 CFU -7.13 < 0.0001 

1840 CFU -9.7 < 0.0001 

9200 CFU -9.96 < 0.0001 

92000 CFU -11.35 < 0.0001 

L. lactis 

Naïve 0.41 0.68 

92 CFU -11.6 < 0.0001 

920 CFU -19.31 < 0.0001 

1840 CFU -22.06 < 0.0001 

9200 CFU -23.94 < 0.0001 

92000 CFU -28.55 < 0.0001 

Ps. entomophila 

Naïve -0.45 0.65 

92 CFU -60.21 < 0.0001 

920 CFU -69.20 < 0.0001 

1840 CFU -64.92 < 0.0001 

9200 CFU -67.42 < 0.0001 

92000 CFU -70.60 < 0.0001 
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Table S2. The effect of Pr. burhodogranariea injection on survival. P-values are given from 

statistical comparisons between all bacteria-injected treatment groups. The top half of the table 

shows the original p-values, and the bottom half of the table shows the p-values after correcting 

for multiple testing using the false discovery rate (fdr). Statistically significant comparisons 

are in bold. 

 

P-values  92 920 1840 9200 

 92     

 920 0.277    

Original p-values 1840 1.48 × 10-3 0.048    

 9200 5.80 × 10-4 0.025  0.779  

 92000 2.40 × 10-6 5.20 × 10-4 0.117 0.200 

fdr-corrected p-values 

92     

920 0.308    

1840 3.70 × 10-3 0.080   

9200 1.93 × 10-3 0.050 0.779  

92000 2.40 × 10-5 1.93 × 10-3 0.167 0.250 
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Table S3. The effect of L. lactis injection on survival. P-values are given from statistical 

comparisons between all bacteria-injected treatment groups. The top half of the table shows 

the original p-values, and the bottom half of the table shows the p-values after correcting for 

multiple testing using the false discovery rate (fdr). Statistically significant comparisons are in 

bold. 

 

P-values  92 920 1840 9200 

 92     

 920 1.10 × 10-5    

Original p-values 1840 3.50 × 10-9 0.118   

 9200 1.30 × 10-12 4.10 × 10-3 0.179  

 92000 < 2 × 10-16 6.9 × 10-9 1.40 × 10-5 2.90 × 10-3 

fdr-corrected p-values 

92     

920 2.20 × 10-5    

1840 1.17 × 10-8 0.131   

9200 6.50 × 10-12 5.13 × 10-3 0.179  

92000 < 2 × 10-16 1.73 × 10-8 2.33 × 10-5 4.14 × 10-3 
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Table S4. The effect of Ps. entomophila injection on survival. P-values are given from 

statistical comparisons between all bacteria-injected treatment groups. The top half of the table 

shows the original p-values, and the bottom half of the table shows the p-values after correcting 

for multiple testing using the false discovery rate (fdr). Statistically significant comparisons 

are in bold. 

 

P-values  92 920 1840 9200 

 92     

 920 1.15 × 10-3    

Original p-values 1840 0.0721 0.147    

 9200 4.31 × 10-3 0.711  0.285  

 92000 4.90 × 10-5 0.388 0.0222 0.223 

fdr-corrected p-values 

92     

920 5.75 × 10-3    

1840 0.144 0.245    

9200 0.0144 0.711  0.356  

92000 4.90 × 10-4 0.431 0.0554 0.318 
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Figure S1.  Proportion of live and dead flies that were uninfected across bacterial species 

and doses. Each data point is the proportion for one bacterial species and dose. Darker circles 

are due to overlapping data points. The black line shows the linear regression. 
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Figure S2. Per-parasite pathogenicity using different smoothing parameter values to 

estimate the maximum hazard. Per-parasite pathogenicity is given as the relationship 

between bacterial load and maximum hazard. The bacterial load data is the same as that given 

in Figure 6A, with the addition of the Ringer's treatment control. The maximum hazard data is 

estimated from survival data for the corresponding injection doses and experimental replicates. 

Maximum hazard is plotted as the inverse, such that the hazard (virulence) increases with 

proximity to the x-axis. The maximum hazard was estimated from time to death data using four 

different values for the smoothing parameter (1, 2, 3 and 5) as specified using"bw.grid". Shown 

above are A. bw.grid=1, B. bw.grid=3, C. bw.grid=5. Grey and black lines show the linear 

regressions. The corresponding statistical results are shown below each panel, where maximum 

hazard was the dependent variable. 
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Abstract 
Both resistance and tolerance contribute to the host health improvement through parasite 

reduction and damage control, respectively. Although the population interchange between the 

two strategies has been shown, how this kinetics affects the likelihood of the host to survive is 

poorly understood. Here, adapting a predictive model of infection outcome, we assessed how 

resistance and fecundity-tolerance differ across Drosophila melanogaster throughout infection 

phases and bacterial burden levels when infected with Providencia burhodogranariea or 

Lactococcus lactis. Our results indicate that resistance differs from acute to chronic phase of 

infection with P. burhodogranariea but not with L. lactis. In contrast, in L. lactis there is 

evidence for changes in tolerance across time and/or bacterial burden level. Moreover, for this 

bacterial species we have indication for a positive correlation between resistance and tolerance 

during the first days of infection. Hence, at a populational level we demonstrate differences in 

immune strategies, and particularly tolerance, might explain why some individuals succumb to 

infection, while others manage to persist or clear it. These observations emphasize the need for 

a multi-level analysis approach to infection dynamics and the danger of universality when 

inferring from distinct and variable host populational responses. 
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1. Introduction 
A host can handle an infection by either limiting parasite burden, classified as resistance, or 

reduce its direct or indirect detrimental effects, named tolerance (Kutzer and Armitage 2016a; 

Råberg, Sim, and Read 2007). Resistance encompasses avoidance and reduction of the parasite 

burden (Restif and Koella 2004; Råberg, Graham, and Read 2009). Throughout the last decade, 

understanding the dynamics of these immune strategies has become of being importance. 

Resistance mechanisms present a production cost as they are often based on inducible 

components of the immune system (Moret and Schmid-Hempel 2000; Schmid-Hempel 2005; 

Alves et al. 2019; I. F. Miller and Metcalf 2019). These costs are recurrently evident in trade-

offs with other life-history traits (Lawniczak et al. 2007), such as reproductive fitness (Short 

and Lazzaro 2010; Fedorka et al. 2007; Naim et al. 2020; Gwynn et al. 2005). Differently from 

resistance, tolerance is expected to be energetically less costly because it carries instead 

functional costs, as the evolution of tolerance mechanisms is often dependent on pre-existent 

elements that can be co-opted for a given infection (Huen et al. 2020; M. R. Miller, White, and 

Boots 2006). Therefore the host with the strongest immune response is not necessarily the fittest 

(Ayres and Schneider 2012; M Boots and Begon 1993). Examples in literature have shown that 

in some cases disease severity can be buffered and survival increased through tolerance 

mechanisms (Seixas et al. 2009; Silva et al. 2020; Schofield et al. 2002). Moreover, tolerance 

might impose more relaxed constraints than resistance on parasite growth (Roy and Kirchner 

2000; Michael Boots and Bowers 1999; M. R. Miller, White, and Boots 2006). Research into 

this immune strategy might bear great implications for biomedicine, namely on the upraise of 

antibiotic-resistance crisis and persistent infections (Medzhitov, Schneider, and Soares 2012; 

Soares, Teixeira, and Moita 2017; Mok et al. 2020; Vale et al. 2016).  

 

Nevertheless, what we observe in nature is rather a mosaic of resistance and tolerance 

mechanisms within an individual (Hayward et al. 2014). In literature, these immune strategies 

can be found positively (Zeller and Koella 2016; Howick and Lazzaro 2014), negatively 

(Råberg, Sim, and Read 2007; Vincent and Sharp 2014; Balard et al. 2020) or not even 

correlated (Lefèvre, Williams, and de Roode 2010; Sternberg et al. 2012; Mazé-Guilmo et al. 

2014; Decker, de Roode, and Hunter 2018), suggesting their relationship might be infection 

model specific and dependent on the underlining immune mechanisms. For instance, resistance 

and tolerance mechanisms that hypothetically depend on the same pathway would be expected 

to be jointly selected and thus, positively correlated.   
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Infection is intrinsically a dynamic process with distinct phases of infection and thus, host 

immune strategies should vary accordingly to which is more beneficial in a given context 

(Howick and Lazzaro 2014; Kutzer and Armitage 2016b; Hayward et al. 2014; Lough et al. 

2015). For instance, a study from Lough et al. (Lough et al. 2015) has shown that individual 

mice that survive or not survive infection differ in their resistance and tolerance, depending on 

their genotype. Moreover, Howick and Lazzaro (2014), the acute phase is characterized by a 

high mortality, high bacterial burden and low fecundity, whereas chronic phase exhibits 

constant levels of bacteria, mortality and fecundity. Considering the latter, we hereby classify 

acute phase from one to three days post infection and chronic phase the following ones. 

Furthermore, they unveiled that in flies infected with Providencia rettgeri different forms of 

tolerance (i.e. mortality-tolerance and fecundity-tolerance) are only present in the acute phase 

of infection, opposed to resistance that prevails throughout the beginning of the chronic phase 

(Howick and Lazzaro 2014). However, both previous studies (Howick and Lazzaro 2014; 

Lough et al. 2015) assessed point-tolerance, opposed to range-tolerance in which we focus in 

this study. While in the former host tolerance is based on one parasite load, in the latter it is 

based on the parasite load of a group of individuals (Kutzer and Armitage 2016a). Therefore, 

our conclusions on tolerance will greatly differ between using one point or a population reaction 

norm, as it has been discussed by Little et al. (Little et al. 2010) and shown in a study with 

house finches infected with a bacterial parasite (Adelman et al. 2013). Kutzer & Armitage 

(2016b) analysed how immune strategies vary at a population level across time. Their results 

showed that host tolerance already differs within acute phase and that, in agreement with the 

study from Howick and Lazzaro, diet strongly affects tolerance but not resistance (Kutzer and 

Armitage 2016b). However, none of the studies focused on how subpopulations differ in 

resistance or tolerance through infection kinetics. 

 

Parasite load in the early stages of infection has been shown to bifurcate, meaning that 

infections can result in a bimodal outcome (Duneau et al. 2017). In a model by Duneau and 

colleagues, individuals could fall within one of these populations: i) host death due to bacterial 

proliferation until a host-bacteria specific burden, coined bacterial load upon death (BLUD); ii) 

host survival with a persisting infection at a set-point bacterial load (SPBL). The likelihood of 

falling into one of these populations can be estimated by the individual bacterial burden after a 

given time interval, designated the time to control (tc). According to the authors, each bacterial 

species has a time interval until which an infection can be controlled, small variations in this 

time can predict if the individuals are fated to survive or die. While in general the bacterial 
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within-host growth during the first hours is a strong indicator of bacterial virulence and survival 

of an infection (Faucher et al. 2020), if it is an intermediate virulence infection the host tc is the 

solo main predictor (Duneau et al. 2017). Given the distinct outcomes from each of the 

populations, it is expectable individuals between each of the populations might differ between 

in how they respond to the infection. For instance, individuals in the higher burden population 

might not be as resistant or tolerant to the infection and consequently succumb to the infection. 

 

In the present study we examined how resistance and fecundity-tolerance are expressed during 

infection and, taking a novel approach, how does categorization into high load, individuals 

assumable fated to die, and low load, individuals fated to survive, explain the population 

response. We predict individuals fated to survive might exhibit distinct resistance and tolerance 

signatures comparatively to the ones fated to die. In order to assess if these signatures are 

parasite-specific, we infected mated female D. melanogaster with one of two opportunistic 

bacteria species extracted from wild-caught flies, P. burhodogranariea and L. lactis. We chose 

these species due to: i) their ability to persist within the fly for at least the duration of this 

experiment; ii) their intermediate degree of virulence with L. lactis being more virulent than P. 

burhodogranariea in this specific fly population due to its host exploitation (Acuña-Hidalgo et 

al., n.d.). At an intermediate level of virulence, as the one in this study, the host tc is expected 

to dictate infection outcome (Duneau et al. 2017). Taking into account the higher host 

exploitation in L. lactis infection and if this fallouts in reproductive resources drainage we 

would expect a higher investment in tolerance opposed to resistance strategies, as the costs of 

the latter would tend to infinite (Restif and Koella 2004, 2003). We measured the dynamics of 

resistance and fecundity-tolerance during acute and early chronic phase of infection. Resistance 

was measure as the inverse of the bacterial load at each time-point, while fecundity-tolerance 

was measured as the slope of the relationship between bacterial load and fecundity. Our 

measures estimated variation within an outbred population of fruit flies (Martins et al. 2013), 

through the measurement of individual bacterial load and reproductive fitness for each of the 

treatment groups as in (Råberg, Graham, and Read 2009; Råberg, Sim, and Read 2007; Kutzer 

and Armitage 2016b; Graham et al. 2011; Sternberg et al. 2012; Kutzer, Kurtz, and Armitage 

2019). 

 

 

2. Materials and Methods 
2.1 Fly maintenance and production of experimental animals 
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We used an outbred population of D. melanogaster established from 160 fertilised females 

collected in Azeitão, Portugal (Martins et al. 2013). The population is naturally infected with 

Wolbachia and was gifted to us by Élio Sucena. Flies were maintained at a minimum population 

density of 5,000 flies on standard sugar yeast agar medium (SYA medium: 970 ml water, 100 

g brewer’s yeast, 50 g sugar, 15 g agar, 30 ml 10 % Nipagin solution and 3 ml propionic acid; 

Bass et al. 2007) with non-overlapping generations of 15 days. Individuals were stored at 24.3 

± 0.2°C, on a 12:12 hours light-dark cycle, at 60-80 % relative humidity. The experimental flies 

were kept under the same conditions. 

 

Experimental flies were reared at constant larval density: grape juice agar plates (50 g agar, 600 

mL red grape juice, 42 mL Nipagin (10 % w/v solution) and 1.1 L water) were smeared with a 

thin layer of active yeast paste and placed inside the population cage for egg laying and removed 

24 hours later. The plates were incubated overnight then first instar larvae were collected and 

placed into plastic vials (95 x 25 mm) containing 7 ml of SYA medium. Each vial contained 

100 larvae to control for density during development. One day after the start of adult eclosion, 

the flies were placed in fresh food vials in groups of five males and five females and allowed 

to mate for four days when the females were allocated to treatment groups.  

 

2.2. Bacterial culturing and preparation 

We used the Gram-positive Lactococcus lactis (gift from Brian Lazzaro) and Gram-negative 

Providencia burhodogranariea strain B (gift from Brian Lazzaro, DSMZ; type strain: DSM-

19968). Both were isolated from wild-collected D. melanogaster and can be considered as 

opportunistic pathogens. Bacterial preparation was performed as in Kutzer and Armitage 

(2016). In brief, bacterial aliquots were stored in 34.4 % glycerol at -80 ºC. First, the species 

were plated on lysogeny broth (LB) agar and incubated for 24 hours at 30 ºC. Per bacterial 

species, four colony forming units (CFUs) were added to 100 ml of sterile LB medium for each 

of two 500 ml Erlenmeyer flasks and incubated overnight (approximately 15 hours) at 30 ºC 

and 200 rpm. The two liquid cultures were centrifuged at 2880 rcf at 4 ºC for 10 minutes and 

the supernatant removed. The bacteria were washed twice in 45 mL sterile Drosophila Ringer’s 

solution (182 mmol·L-1 KCl; 46 mol·L-1 NaCl; 3 mmol·L-1 CaCl2; 10 mmol·L-1 Tris·HCl; 

Werner et al. 2000) by centrifugation at 2880 rcf at 4°C for 10 minutes. Then, the liquid cultures 

from the two flasks were combined into a single bacterial solution and the optical density (OD) 

of 500 µL of the solution was measured in a Ultrospec 10 classic (Amersham) at 600 nm. The 

concentration of the bacterial solution was adjusted to 5x107 CFU/ml. To confirm post hoc the 
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concentration estimated by the OD, we serially diluted the solution to 1:107 and plated eight 

droplets of 5 µl of the bacterial solution on three LB agar plates, and counted the number of 

colony forming units (CFUs).  

 

2.3. Infection assays 

The experiment had four treatments: 1) injection with L. lactis; 2) injection with P. 

burhodogranariea; 3) injection control inoculated with Ringer's solution; 4) Naive, or non-

injected treatment. This was executed in two replicates in two different days. In each 

replicate/day, injections were split into two blocks with equal representation of treatments. 

Injections were performed by two different experimenters. In total, 321 female flies were 

processed for L. lactis, 324 for P. burhodogranariea, 55 for Ringer's and 57 for Naive. A 

fraction of the flies were sacrificed for bacterial load estimation at day two (L. lactis: 69, P. 

burhodogranariea: 69, Ringer's: 6, Naive: 8) and day four (L. lactis: 69, P. burhodogranariea: 

71, Ringer's: 8, Naive: 8), whereas the remaining ones had their fecundity assessed for the 

following days (See section 2.4 below) and the survival flies by day ten then also sacrificed (L. 

lactis: 17, P. burhodogranariea: 49). The injections were performed on four to five day old 

female flies randomly allocated throughout the treatments. Females were anesthetized with CO2 

for a maximum of five minutes in groups of 8 or 9 flies. Flies were injected in the lateral side 

of the thorax using a fine glass capillary (Ø 0.5 mm, Drummond), pulled to a fine tip with a 

Narishige PC-10, and then connected to a Nanoject II™ injector (Drummond). A volume of 

18.4 nl of bacterial solution, or Ringer’s solution as a control, was injected into each fly. For 

the bacterial solutions, this inoculates each fly with approximately 920 CFU. For each group of 

8 or 9 flies, we used an individual aliquot containing Ringer’s or the bacterial solution. At the 

end of the injections, 50 µL of these aliquots were plated on LB agar to check for potential 

contamination. No bacteria grew from the Ringer’s solution and there was no obvious evidence 

of contamination in any of the bacterial replicates. In addition, serial dilutions up to 1:105 were 

prepared and plated before and after the injections for each experimental replicate to assure 

there was no discrepancies in the concentration of the inoculum from beginning to end of the 

experimental day. Full controls, i.e. naïve flies, underwent the same procedure but without any 

injection. After being treated, flies were maintained individually in plastic vials containing 7 

ml of SYA medium and transferred into a new vial for the duration of their experimental 

treatment.  
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2.4. Fecundity assay 

All the flies were placed into new food vials every 24 ± 0.5 hours for ten days in the same order 

as they were processed on injection day. Fecundity was assayed as the number of adult offspring 

at day 12 post oviposition. The vials were frozen upside down at this time-point and later 

counted. Due to a technical error, we do not possess fecundity data for day six and ten post 

injection. Therefore, in our daily fecundity analysis we only considered flies that survived until 

day nine (L. lactis: 18, P. burhodogranariea: 52, Ringer's: 32, Naive: 32). 

 

2.5. Bacterial load assay 

Resistance, measured as the inverse of bacterial load, was assayed in separate cohorts of flies 

at two, four and ten days post injection. For days two and four 69-71 flies were assayed per 

treatment group and for day ten 17-49 flies. In a randomized manner, surviving flies from each 

treatment were selected to be sacrificed at each infection time-point. Flies were first lightly 

anesthetized with CO2, removed from their vial, and placed in a 1.5 mL microcentrifuge tube 

containing 100 µl of pre-chilled LB media and one stainless steel bead (Ø 3 mm, Retsch) on 

ice. The flies were homogenised in a Retsch Mill (MM300) at a frequency of 20 Hz for 45 

seconds, following which, the tubes were centrifuged at 420 rcf for one minute at 4 ºC. After 

resuspending the solution, 80 microliters of the homogenate from each fly was pipetted into a 

96-well plate and then serially diluted from 1:1 to 1:105. Per fly, three droplets of 5 µL of every 

dilution were plated onto LB agar. Preliminary tests showed that three droplets gave a similar 

mean value to eight droplets per fly. Additional tests on the detection of bacteria in 

homogenised flies, we found that our lower detection limit was of 5 colony-forming units per 

fly. The plates were incubated at 30 ºC and the number of CFUs were counted after ~20 hours. 

Individual bacterial loads per fly were back-calculated using the average of the three droplets 

from the lowest countable dilution in the plate. We hardly retrieved foreign CFUs after 

homogenising flies injected with Ringer's solution (n = 0 cases out of 47 flies) or non-injected 

(n = 1 cases out of 48 flies) and only 3 out of 338 bacteria-injected flies had what appeared to 

be one foreign CFU per droplet in the 1:1 dilution.  

 

2.6. Statistical analyses 

All statistical analyses were performed in RStudio version 1.3.1073 (R Core Team 2019). 

Figures were produced using RStudio and Prism 7.0a. We used the following packages in our 

statistical analyses “lme4” (Bates et al. 2014) , “glmmTMB” (Brooks et al. 2017), “car” (Fox 

and Weisberg 2018) and the following for plotting our data: “ggplot2” (Wickham 2016). To 
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include a factor as a random effect in a model it has been suggested that there should be more 

than five to six random-effect levels per random effect (Bolker et al 2008), so that there are 

sufficient levels to base an estimate of the variance of the population of effects (Crawley 2007). 

In our experimental designs, the low numbers of levels within the factors ‘experimental 

replicate’ (two levels) and ‘person’ (two levels), meant that we fitted them as fixed effect, rather 

than random effect, factors (Crawley 2007). 

 

2.6.1 Fecundity  

We tested whether fecundity, measured as the number of adult offspring produced by each 

female in a 24-hour period, was affected by treatment (i.e. "Naive", "Ringer's ", "L. lactis" and 

"P. burhodogranariea"), replicate or person. Due a technical issue, we were not able to measure 

fecundity for days six and ten post injection. We only considered flies that survived until day 

nine to assure the same flies are represented across all days.  Each day (i.e. one, two, three, four, 

five, seven, eight and nine) was tested individually using generalized linear models using the 

package "lme4" with Quasi-Poisson error structure. The resulting p-values were adjusted using 

the Benjamini-Hochberg (1995) correction for multiple testing.  

 

2.6.2 Resistance 

To analyse the data on bacterial load we aimed for an approach that was able to appropriately 

account for the bimodal pattern of the load distributions. For a similar kind of data Duneau et 

al. (Duneau et al. 2017) applied a mixture model, which accounts for a branching in bacterial 

loads during the first hours after infection. We adapted this approach to our data and our specific 

research question related to the longer-term dynamics in bacterial loads. Because our data 

collection started after two days past infection, we were not able to capture the initial branching 

in loads. Instead, we assumed that after these two days the main part of the branching process 

was already completed. Accordingly, we followed the idea of Duneau et al. that in the upper 

load category a state is reached in which loads are constant over time, which captures the 

BLUD. For the lower load category, we allowed the bacterial load to change linearly over time, 

which we assumed would indicate changes in host resistance. 

 

Following Duneau et al. (Duneau et al. 2017) we fitted a model with a log-normal error 

distribution. In addition, we included for both load categories the predictors ‘person’ and 

‘experimental replicate’. For each species we ran a separate model that simultaneously captures 

the dynamics in the lower and upper load category, as follows:  
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𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙	𝑙𝑜𝑎𝑑~ -𝐷𝑃𝐼 + 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒 + 𝑃𝑒𝑟𝑠𝑜𝑛									, 𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑝								𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒 + 𝑃𝑒𝑟𝑠𝑜𝑛																						, 𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	1 − 𝑝	= 

 

We implemented this model in R and estimated the parameters using the ‘optim’ function. To 

assess the statistical significance of DPI in the lower load category we used a likelihood ratio 

test that compares the full model to the reduced model without DPI. 

 

Finally, based on the estimated model, we calculated for each data point the probability of 

belonging to the lower burden category. This information was then used to categorise each data 

point as belonging either to the lower or upper category (based on a 50% cut-off). We later used 

this ‘category’ variable as a predictor in the tolerance analysis. 

 

2.6.3 Tolerance 

Here we asked whether fecundity-tolerance differed (1) between subpopulations/categories of 

flies having either a high or a low load (see previous section) and (2) between different days 

post infection (i.e. day two and four). We fitted a generalized linear model with negative 

binomial error structure using the "glmmTMB" package. As response variable we used the 

number of adult offspring produced by each individual female over an egg-laying period of 48 

hours before bacterial load estimation (e.g. day one and two fecundity for tolerance at day two). 

We used a longer egg-laying period to reduce inter-day variation. As predictors we included 

individual log10-transformed bacterial load, day post-infection (DPI, i.e. two or four), burden 

category (i.e. high or low, see previous section), ‘person’ and ‘experimental replicate’. In 

addition, we included all pairwise interactions among bacterial load, DPI and burden and their 

three-way interaction. A separate model was run for each of the two bacterial species, as 

follows:  

 

FecundityInfected ~ Bacterial load * DPI * Burden + Replicate + Person 

 

To test for statistical significance we employed a Wald  χ2 test (Bolker et al. 2009) using the 

Anova function in "car" package. More specifically, for the main effects we used a type II and 

in the presence of at least one interaction we used a type III Anova.  In data set of L. lactis, an 

influential data point belonging to DPI two and the lower load category was detected based on 

Cook's distance and was removed from the analysis.  
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3. Results 
3.1. Infection does not affect fecundity 

After p-value adjustment, there was no significant effect of infection on fecundity for the flies 

that survived to ten days post treatment (Table S1). There was a gradual decline in fecundity 

over time (Figure 1), although this relationship was not tested statistically. 

 

3.2. Reduction in resistance for L. lactis 

The bacterial load after infection with both bacterial species resolved into a lower and upper 

category, i.e. flies that were more and less resistant, respectively. Based on the rationale that 

flies with a higher load will shortly succumb to infection, we fixed this category so that it was 

not allowed to vary over time, and tested for changes in the low load group only (Figure 2). In 

this lower group, flies infected with L. lactis showed a significant increase in bacterial load over 

time (Figure 2A), i.e., decrease in resistance from two to four days post-infection. Under similar 

conditions, P. burhodogranariea infected flies did not exhibit any change in bacterial load 

(Figure 2B). 

 

In agreement with our previous result, when we allowed the upper group to vary with time, 

there was a similar result with an increase in bacterial load with time for L. lactis (Figure S1A), 

meaning reduction in resistance within this time interval. Similarly, there was no change for P. 

burhodogranariea between these two time-points (Figure S1B) 

  

These results remain qualitatively the same when allowing the upper category to change over 

time, but results change a lot when including data points of day 10 (Figure S2 and S3). However, 

the latter results have to be interpreted cautiously due to the limited number of data points. 

  

3.3. Reduction in tolerance by day and burden for L. lactis 

Although there was no cost of infection on fecundity (Table S1), L. lactis infections showed 

evidence for variation in fecundity tolerance (Table 1, Figure 3D-F): there was a significant 

reduction in fecundity tolerance with time post infection, i.e., day two versus day four 

(significant interaction between bacterial load and day post infection, Table 1; Figure 3E). 

Furthermore, fecundity-tolerance varied significantly by burden category, whereby the hosts 

categorised with higher loads were significantly less fecundity tolerant, than the hosts with 

lower loads (significant interaction between bacterial load and category; Table 1; Figure 3F). 
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Contrary to L. lactis, P. burhodogranariea infected flies did not show variation for fecundity-

tolerance. Instead, fecundity varied significantly by the burden category, whereby flies from 

the lower category were less fecund than the high load counterparts (Table 1). There was also 

a significant effect of the experimenter (Table 1).   

 

Unfortunately, a three-way interaction between CFU, DPI and burden category was not 

observed and thus we must only look at difference in average slopes within DPI or burden 

category separately (Figure 3E, F). Despite the fact P. burhodogranariea infection did not lead 

to the same significant interactions, the average slopes, per DPI and burden category, still 

follow the same trend (Figure 3B, C). 

 

 

4. Discussion 
Here we show a  novel multi-level approach to infection dynamic studies through the inclusion 

of a binary outcome mixture model proposed by Duneau and colleagues (Duneau et al. 2017). 

Our results show that both immune strategies can differ throughout a temporal scale but also 

between subgroups within a burden category based on their likelihood of survival. We also 

show evidence for terminal investment in individuals expected to survive or die, suggesting it 

might be a common response within a specific host-parasite interaction and not a consequence 

of disease severity.  Altogether, we emphasize the need to consider population structure and 

infection stage when processing parasite dynamics and immune response within an infection 

model. 

   

4.1. No cost of infection for daily fecundity 

Infections can be costly for a host, for instance due to induction of immune effectors or direct 

tissue damage (Moret and Schmid-Hempel 2000), and infections have been shown to be costly 

in terms of reduce fecundity (Gwynn et al. 2005). Given that infection with L. lactis and P. 

burhodogranariea results in reduced survival over a four-day window, infection with these 

species have negative fitness consequences, and we predicted there to be a cost in terms of 

reduced fecundity. We assayed fecundity into the chronic infection phase in case fecundity 

costs were expressed later during the infection,  considerable energetic costs to trade-off with 

other physiological and reproductive fitness elements, as shown in literature (Lawniczak et al. 

2007; Fedorka et al. 2007; Naim et al. 2020; Gwynn et al. 2005; Short and Lazzaro 2010). 

Moreover, if we consider virulence a function of disease severity (Read 1994) and host 
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exploitation (Råberg and Stjernman 2012; Acuña-Hidalgo et al., n.d.), then we would classify 

L. lactis as more virulent than P. burhodogranariea and potentially carrying a heavier cost. 

However, we did not observe any clear cost of infection on our reproductive fitness measure, 

daily fecundity during the first nine days of infection (Table S1). This is not entirely atypical 

as studies with bacterial infections in D. melanogaster have previously reported this result for 

L. lactis and Escherichia coli species during the first three days of infection (Kutzer and 

Armitage 2016b). As trade-offs between immunity and life-history traits is not one of the 

focuses of this study we did not use any other measures. Additionally, our daily fecundity  

measure was assessed using only flies that survive until day nine post infection and therefore 

might be inadvertently selecting for a response from a more robust group of flies. Nonetheless, 

we still believe there are costs outside the scope of this study, namely on tissue damage. 

 

4.2. Resistance and fecundity-tolerance to infection 

Immune strategies can fluctuate throughout infection (Kutzer and Armitage 2016b; Howick and 

Lazzaro 2014). Based on Duneau et al. model (Duneau et al. 2017), we can anticipate if 

individual flies will succumb or survive an infection given their high or low bacterial load after 

a given time, defined by the authors as tc (e.g. approximately 2 hours post infection for P. 

burhodogranariea ). In here we focused on post-branching variations in immune strategies. 

Flies in the upper category have assumedly reached a plateau burden that eventually will lead 

to host death, defined BLUD. For this reason, we mainly measured changes in tolerance for this 

category and not resistance, as it should be linear and therefore constant. However, because 

there is no evidence BLUD remains constant after 48 hours, we also presented the results with 

the possibility of variation within this high burden category. The reasoning behind the latter is 

that flies that survive later in infection might die with a lower bacterial load than the one 

described as BLUD and potentially less tolerant as well. Tolerance depends on a fitness measure 

besides the bacterial burden, therefore changes in this category would still be possible within 

this framework. Therefore, we also analysed the upper category resistance and can be found in 

the supplementary information (Figure S1 and S3).  

 

In L. lactis infected flies we observed an increased bacterial load from day two to four post 

infection (Figure 2), showing a reduction in resistance. Complementary, average tolerance does 

also decrease with time (Figure 3E). This fecundity shift between day two and four might 

support terminal investment hypothesis (Williams 1966; Clutton-Brock 1984). When infected
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with L. lactis, female flies increase their investment towards early reproduction (first 48 hours) 

to potentially maximize their reproductive success. This resource allocation towards fecundity 

is particularly relevant for the high load category of flies, as they are unlikely to mitigate this 

cost of infection during their short lifetime. On the other hand, flies in the low burden category 

bear a strong early immune response that successfully allows them to control infection, as well 

as a considerable high reproductive effort. These accumulated costs are likely to drive the 

reduction in resistance and fecundity-tolerance between day 2 and 4 post infection in flies fated 

to survive. To date, there are a few examples in literature of positive correlation between these 

immune strategies (Howick and Lazzaro 2014; Zeller and Koella 2016). In our system there is 

indication for a positive correlation between resistance and fecundity-tolerance, at least, during 

the acute phase of infection with L. lactis. This result suggests these immune mechanisms might 

be interlinked or even dependent on each other and the absence of strong resistance response 

might lead to an uncontrollable infection as seen in the high burden category. As this bacterial 

species is known to persist at least until day 10 (Acuña-Hidalgo et al., n.d.), we measured the 

bacterial load at this point. In a long-term window, survivors seem to have their bacterial burden 

persist (Figure S1A) by day 10 post infection, in agreement with the SPBL hypothesis (Duneau 

et al. 2017) and previous data from our group (Acuña-Hidalgo et al., n.d.). In contradiction to 

the BLUD hypothesis, we observe a reduction in the bacterial load with time when we allow 

the high burden category is able to vary with time (Figure S3). This suggests that either the flies 

in the high burden category are able to control the infection later on or flies in the low burden 

category are unable to do so probably due to accumulated costs of infection and 

immunopathology. In either of the scenarios, there is an indication that these categories might 

not be restricted and flies might interchange between them according to individual infection 

dynamics, specially later on into the infection. 

 

For P. burhodogranariea we note an overall different pattern (Figure 2B and 3D-F). We do not 

observe any difference between day two and four either on resistance (Figure 2B and S1B) or 

fecundity-tolerance (Figure 3D-F). Despite this, (Figure 3), we do have a significant difference 

in fecundity between high and low categories (Table 1). This result suggests flies fated to die 

might have too much of a burden compromising fly homeostasis and possibly leading to a cut 

in reproduction. Similarly to L. lactis, P. burhodogranariea also persists for at least 10 days of 

infection. In this time-scale we do observe a decreased bacterial load in the low burden category 

for this bacterial specie, indicating an increased resistance in the long term (Figure S2). More 

interestingly, flies in the low burden category, likely to survive, do not seem to pay a price in 
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reproductive fitness for their long-term increase in resistance, comparatively to flies in the high 

burden category, likely to die. Taking in account the early branching between survivors and 

succumbers (Duneau et al. 2017; Acuña-Hidalgo et al., n.d.), it is possible that for this species 

we are in the presence of a different infection dynamics and what we observe is already the 

chronic phase of infection. If that would be the case, we might not be able to observe changes 

in immune strategies like we did in L. lactis infection flies, seemingly more frequent in the very 

early stages of infection. In agreement with Howick and Lazzaro, during chronic phases of 

infection there is not a clear mark of fecundity-tolerance (Howick and Lazzaro 2014). 

Nevertheless, we have to be careful with our assumptions due to the limited sample size in the 

high burden category and day 4 post infection. This increased resistance is also present if we 

allow the high burden category to vary (Figure S3). Interestingly, in the latter we now see a 

significant increase in resistance in the high burden category as well. Unfortunately, we have 

very few flies at this time-point and this might be dragging this result. 

 

Moreover, our data proposes the hypothetical low survival ability of the high burden category 

individuals might be due to a reduced average tolerance comparatively to their low load 

counterparts (Figure 3F), in agreement with a study performed in mice (Lough et al. 2015). In 

the latter authors observed surviving mice would exhibit less tolerance or resistance 

comparatively to surviving mice. This result suggest surviving flies might handle better this 

infection through and early and bolder investment in tolerance. The underlying cause for this 

disparity is unknown to us. Although Duneau et al. (Duneau et al. 2017) has hypothesized tc is 

the most decisive host parameter to explain the binary outcome and disease severity, given the 

outbred nature of the categories tested we cannot discard genotype differences. This natural 

variation might confer different opportunity for host mechanism co-option or higher resilience. 

Unpublished data suggests P. burhodogranariea has an earlier tc than L. lactis. Therefore, it is 

possible we do not have an optimal time-window to detect strong changes in P. 

burhodogranariea, as they might have happened earlier than for L. lactis. The latter reinforces 

the need to study infection host-parasite model dynamics and the danger of universality in 

temporal dynamic studies. 
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Tables and figures 
Table 1. The effects of bacterial load, day post infection (DPI), burden, experimental replicate 

and person on the response variable fecundity, measured as the number of adult offspring. Each 

bacterial species was analysed separately. Statistically significant values are shown in bold. 

 

 

 

 

 

 P. burhodogranariea  L. lactis 

Tested effect df χ2 p  df χ2 p 

Bacterial load 1 1.10 0.293  1 0.29 0.593 

DPI 1 6.38 0.080  1 5.48 0.019 

Burden 1 3.06 0.012  1 3.43 0.064 

Replicate 1 2.18 0.140  1 1.30 0.253 

Person 1 5.84 0.016  1 0.18 0.675 

Bacterial load x DPI 1 0.41 0.523  1 7.39 0.007 

Bacterial load x Burden 1 0.00 0.962  1 5.53 0.019 

Burden x DPI 1 0.35 0.553  1 3.32 0.069 

Bacterial load x DPI x Burden 1 0.30 0.583  1 1.62 0.203 
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Figure 1. Mean fecundity of female flies that survived to ten days post-treatment. Flies were 

injected with one of two bacterial species, a control injection with Ringer's, or received no 

injection (naive). The sample sizes are the following: Naive n = 32, Ringer's n = 32, L. lactis n 

= 18, P. burhodogranariea n = 52 . For statistics see Table S1. 
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Figure 2.  Bacterial load per living fly after injection with the respective bacterial species. Only 

flies homogenized at 2, 4 were analysed. Flies were assigned to higher or lower burden category 

and only the linear relationship of the latter was allowed to vary. The lighter the colour tone of 

a given individual datapoint, the higher the likelihood of belonging to the high burden category.  

The * asterisk symbol shows a significant increase in bacterial load across time for lower burden 

category of L. lactis (p-value = 0.0098).  
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Figure 3. Fecundity-tolerance reaction norms are plotted for each bacterial species across 

different days post injection and burden categories. (A) L. lactis and (D) P. burhodogranariea 

show fecundity-tolerance with symbols and lines denoting days two and four. (B) and (E) 

illustrate the average slope for each of the days, while (C) and (F) represent the average for 

each burden category. The asterisks show a significant difference in the slopes. For statistics, 

see Table 1. 
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Supplementary information 
Table S1. The effects of treatment (L. lactis, P. burhodogranariea, Ringer's and naive), 

experimental replicate, and person on the response variable fecundity. pBH indicates the p-

values after adjustment for multiple testing using the Benjamini–Hochberg correction. 

Statistically significant factors are shown in bold. 

 Effects on fecundity 
Tested effect df χ2 p pBH 
Day 1     
Treatment 3 95.90 0.117 0.350 
Replicate 1 7.50 0.497 0.636 
Person 1 3.64 0.636 0.636 
Day 2     
Treatment 3 99.17 0.049 0.098 
Replicate 1 71.58 0.017 0.069 
Person 1 26.42 0.148 0.160 
Day 3     
Treatment 3 15.66 0.683 0.975 
Replicate 1 0.01 0.975 0.975 
Person 1 3.37 0.570 0.975 
Day 4     
Treatment 3 9.01 0.830 0.910 
Replicate 1 36.69 0.058 0.172 
Person 1 0.13 0.910 0.910 
Day 5     
Treatment 3 9.89 0.734 0.734 
Replicate 1 2.41 0.577 0.734 
Person 1 1.04 0.714 0.734 
Day 7     
Treatment 3 1.44 0.978 0.978 
Replicate 1 34.76 0.030 0.090 
Person 1 18.92 0.109 0.164 
Day 8     
Treatment 3 19.11 0.376 0.563 
Replicate 1 1.87 0.581 0.581 
Person 1 12.91 0.147 0.442 
Day 9     
Treatment 3 25.71 0.304 0.455 
Replicate 1 0.62 0.768 0.768 
Person 1 11.51 0.202 0.455 
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Figure S1.  Bacterial load per living fly after injection with the respective bacterial species. 

Only flies homogenized at 2, 4 were analysed. Flies were assigned to higher or lower burden 

category and the linear relationship of the both categories were allowed to vary. The lighter the 

colour tone of a given individual datapoint, the higher the likelihood of belonging to the high 

burden category. The * asterisk symbol shows a significant increase in bacterial load across 

time for lower burden category of L. lactis (p-value = 0.0109).  
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Figure S2.  Bacterial load per individual fly after injection with the respective bacterial species. 

Flies were homogenised at two, four and ten days post injection. The bacterial loads were then 

statistically assigned to a higher (empty circles) or lower (filled circles) burden category, and 

only in the latter was the linear relationship allowed to vary with time. The lighter the colour 

tone of a given individual datapoint, the higher the likelihood of belonging to the high burden 

category.  The ** asterisks indicate a significant decrease in bacterial load across time (p-value 

= 0.0065).
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Figure S3.  Bacterial load per living fly after injection with the respective bacterial species. 

Flies were homogenized at 2, 4 and 10 days post injection. Flies were then assigned to higher 

or lower burden category in the both the linear relationship was allowed to vary. The lighter 

the colour tone of a given individual datapoint, the higher the likelihood of belonging to the 

high burden category. The * asterisk symbol shows a significant difference in bacterial load 

across time. The p-values are the following: P. burhodogranariea, higher burden category p-

value < 0.001, lower burden category p-value = 0.0065; L. lactis, higher burden category p-

value = 0.0028. 
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Abstract 
Hosts can defend themselves by either limiting parasite burden, defined as resistance, or reduce 

the fitness costs due to infection or host immune response, named tolerance. Besides the clear 

ecological properties between the two strategies, important evolutionary predictions have been 

proposed. Unfortunately, few studies aimed to provide empirical proof or support to these 

hypotheses. Here, using Drosophila melanogaster as a host and Lactococcus lactis as an 

opportunistic pathogen, we selected flies for increased fecundity-tolerance (i.e. reduction of 

infection cost in reproductive fitness) or quantitative resistance for eight generations. L. lactis 

exhibited costs in reproductive fitness in both acute and chronic phase of the infection. In this 

study we present on-going, mid- and post-selection readouts. Our results indicate tolerance 

might be a preferential immune strategy under this setting and for this host-parasite interaction, 

as it was selected in both Resistance and Tolerance-selection regimes. In contrast, there was 

no change in resistance across any of the selection regimes. Furthermore, after evolving L. 

lactis within the different experimentally evolved hosts, we did not an exhibit any selection 

regime difference effect on the intra-host evolved bacteria but we note an overall increase in 

virulence, early growth and persistence in bacteria that underwent the fly’s immune system, 

comparatively to the ones that did not. Altogether, out studies places tolerance as a major 

immune mechanism with critical evolutionary implications in only a few generations of 

exposure to a parasite. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Chapter 5: Selection for host tolerance and resistance 
  

 112 

1. Introduction 
When threatened with an infection, a host can elicit an immune response. The latter can be 

based on either resistance or tolerance mechanisms. Resistance acts by controlling or clearing 

the parasite load, subclassified into quantitative and qualitative resistance respectively (Restif 

and Koella 2004; de Roode and Lefèvre 2012; Råberg, Graham, and Read 2009; Graham et al. 

2011). Alternatively, tolerance does not affect the parasite load but instead reduces the 

detrimental effects of infection (e.g. tissue damage) (Kutzer and Armitage 2016a). Although 

both defence categories lead to an increased host fitness, their intrinsic properties have very 

distinct implications on the physiology, ecology and evolution of host-parasite interactions. 

 

First off, resistance mechanisms are often based in induction immunity with heavy and, 

frequently, long-lasting costs to the host (Moret and Schmid-Hempel 2000; Alves et al. 2019; 

I. F. Miller and Metcalf 2019). These costs might become apparent as trade-offs with some 

life-history traits (Lawniczak et al. 2007), namely reproductive fitness (Short and Lazzaro 

2010; Fedorka et al. 2007; Naim et al. 2020; Gwynn et al. 2005). Although few studies have 

addressed the same in regard of tolerance, they do show diet and resource availability distinctly 

favour resistance and tolerance (Kutzer and Armitage 2016b; Zeller and Koella 2017). In this 

matter, tolerance is commonly seen as low-cost option for the host to handle an infection. 

However, this is not necessarily, and universally, true. Each parasite invades a specific set of 

tissues that consequently will possess distinct regeneration abilities, as well as different effects 

on host fitness (Medzhitov, Schneider, and Soares 2012). Therefore, each infection scenario 

will favour a particular toolset of tolerance mechanisms with contingent costs. Hosts naturally 

exhibit a mixture of both immune strategies to a given parasite infection and all of the above 

singular costs are only expected to be presented as such if the strategies are independent from 

each other. Interestingly, in literature this strategies can be positively (Howick and Lazzaro 

2014; Zeller and Koella 2017), negatively (Råberg, Sim, and Read 2007; Vincent and Sharp 

2014; Balard et al. 2020) and even not correlated (Lefèvre, Williams, and de Roode 2010; 

Sternberg et al. 2012; Mazé-Guilmo et al. 2014a; Decker, de Roode, and Hunter 2018). If both 

strategies assent on the same pathways then selection will likely favour evolution of both and 

their addictive costs will be smaller than the sum of the singular costs. Contrarily, if tolerance 

mechanisms use the same resources as resistance mechanisms we might see the increase of one 

with the reduction of the other through time (Restif and Koella 2004).  
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On the other side of the interaction, resistance and tolerance evolution do also have distinct 

effects on parasite dynamics and evolution (Roy and Kirchner 2000). In a resistance scenario, 

we observe an antagonistic coevolution between host and parasite, often referred to as Red 

Queen dynamics (Van Valen 1973; Lively and Apanius 1995). Within this evolutionary arms 

race, host alleles that favour resistance against the parasite are selected and increase in the 

population, leading to their fixation. Given the negative effect of parasite number, we observe 

negative frequency dependent selection acting on the parasite genetic pool and eventually 

leading to selection of alleles that favour infection to the new host. In the end, this series of 

selective sweeps from both host and parasite will lead to oscillations in host and parasite 

genotypes through evolutionary time (Roy and Kirchner 2000; Woolhouse et al. 2002; Restif 

and Koella 2004). However, it is important to note the latter is a classic an ideal example where 

both host and parasite are constantly exposed to each other and their coevolution is inevitable 

and stronger than other selective forces, such as intra-specific selection within the host and 

parasite population. Both host resistance and parasite virulence come at costs. Often these costs 

might be extinguished with time (Lenski 1988a, 1988b; McKenzie, Whitten, and Adena 1982), 

but in the short term both host and parasite need to balance the benefit and costs of their 

increased resistance/virulence. More often, what we observe is a mixture of resistant/virulent 

and susceptible/mildly-virulent parasites in each of the populations (Roy and Kirchner 2000; 

Woolhouse et al. 2002). Tolerance on the other hand does not lead to an antagonistic interaction 

between host and parasite since it does not act on the parasite load (Kutzer and Armitage 

2016a). Instead, depending on which fitness measure tolerance is acting on, we expect it to 

have a neutral, or even positive, effect on the parasite prevalence (Restif and Koella 2003, 

2004; Best, White, and Boots 2008). Curiously, tolerance has even been proposed as a possible 

evolutionary bridge between pathogenicity and commensalism for some host-parasite 

interactions (Little et al. 2010). In the host population, studies have hypothesized fixation 

should occur quite quickly as a higher fixation of tolerance in a population will lead to a high 

prevalence of the parasite and, therefore, a very high cost to non-tolerant or migrant individuals 

(Roy and Kirchner 2000). Nevertheless, further studies in the topic have shown that this is 

mostly true for mortality-tolerance, i.e. the ability to reduce the negative impact of infection on 

survival, and not necessarily in other forms of tolerance (Best, White, and Boots 2008; M. R. 

Miller, White, and Boots 2006). One of these forms of tolerance is fecundity-tolerance, i.e. the 

ability to reduce the negative impact of infection on reproductive fitness. Although, very few 

is known about the latter, models have predicted the evolution of this form can lead to 

branching of the population due to increasing costs with other traits, such as survival (Best, 
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White, and Boots 2008). In this model, fecundity-tolerance is supposed to evolve until a certain 

extent when further increase will present a strong cost against survival. At this point, the 

population is expected to branch into two subpopulations, one with high fecundity-tolerance 

and one with low fecundity-tolerance (Best, White, and Boots 2008).  

 

The implications of resistance and tolerance have become increasingly relevant with the 

growing literature into them. Particularly tolerance, it has been proposed as a key factor in 

evolution and ecology, as well as a solution for many of the medical crisis we face nowadays 

and hence, contribute for the advance of immunology and epidemiology (Vale, Fenton, and 

Brown 2014; M. R. Miller, White, and Boots 2006; Soares, Gozzelino, and Weis 2014; Vale 

2018; Ayres and Schneider 2012). Unfortunately, as previously mentioned most of the 

contrasting inferences made regarding ecology and evolution of tolerance come from 

theoretical models and not from experimental studies. Hence, in this study we aimed to provide 

experimental information regarding tolerance and resistance evolution. Here, we exposed an 

outbred population of Drosophila melanogaster to an infection with the opportunistic pathogen 

found in wild fruit flies, Lactococcus lactis. Prior studies have shown this pathogen 

successfully infects this host population resulting in an infection with intermediate virulence 

(Acuña-Hidalgo et al., n.d.). Moreover, this population is known to vary in fecundity-tolerance 

through time to this infection (Silva et al., n.d.) and therefore, we predict it to be likely to 

respond to selection for this trait. Artificial selection was performed on this model, selecting 

for fecundity-tolerance and quantitative resistance over eight generations. With this approach 

we aimed to answer a set of questions: (i) Does infection come with a fitness cost? (ii) Are 

resistance and tolerance evolvable in this model? (iii) How do they relate to each other? (iv) 

How do L. lactis evolved within different selection regimes hosts differ between them and to 

an ancestral state? In sum, with this set of questions we aimed to better understand the part of 

resistance and tolerance in a host-parasite interaction. 

 

 

2. Materials and Methods 
2.1 Fly maintenance and production of experimental animals 

We used an outbred population of Drosophila melanogaster established from 160 fertilised 

females collected in Azeitão, Portugal (Martins et al. 2013). The population is naturally 

infected with Wolbachia and was gifted to us by Élio Sucena. For at least 30 generations prior 
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to the start of the experiments the flies were maintained on standard sugar yeast agar medium 

(SYA medium: 970 ml water, 100 g brewer’s yeast, 50 g sugar, 15 g agar, 30 ml 10 % Nipagin 

solution and 3 ml propionic acid) (Bass et al. 2007). To avoid inbreeding, flies were kept in 

population cage with at least 5,000 flies and non-overlapping generations of 15 days. Both 

mother population and experimental flies were maintained at 24.3 ± 0.2°C, on a 12:12 hours 

light-dark cycle, at 60-80 % relative humidity. All the lines originated from the same mother 

population (three replicate lines per treatment). Prior to the beginning of the selection 

experiment, we created three subpopulations. Each subpopulation was kept in a cage with a 

controlled density of 4800 larvae (1 larva per 0,21 ml of food) and a generation time of 14 

days. After at least two generations of density control, each subpopulation established one 

replicate of all treatments, founding in total nine lines (three treatments x three replicates 

explained below).  

 

2.2 Bacterial culturing and preparation 

All experiments were performed using the Gram-positive Lactococcus lactis (gift from Brian 

Lazzaro). This strain was isolated from a wild-collected D. melanogaster (Lazzaro 2002) and 

we consider it an opportunistic entomopathogen. Bacterial preparation was adapted from 

(Kutzer and Armitage 2016b; Acuña-Hidalgo et al., n.d.). In short, bacterial aliquots were 

stored in 34.4 % glycerol at -80 ºC. Prior to infection day, L. lactis aliquots were plated on 

lysogeny broth (LB) agar and incubated for 24 hours at 30 ºC. From the latter, four colony 

forming units (CFUs) were added to 100 ml of sterile LB medium for each of two 500 ml 

Erlenmeyer flasks and incubated overnight (approximately 15 hours) at 30 ºC and 200 rpm. 

The two liquid cultures were centrifuged at 2880 rcf at 4 ºC for 10 minutes and the supernatant 

removed. The bacteria were washed in 40 ml sterile Drosophila Ringer's solution (182 

mmol·L-1 KCl; 46 382 mol·L-1 NaCl; 3 mmol·L-1 CaCl2; 10 mmol·L-1 Tris·HCl) (Werner 

et al. 2000) through centrifugation at 2880 rcf at 4 ºC for 10 minutes. The liquid cultures from 

the two flasks were combined into a single bacterial solution and the optical density (OD) of 

500 µL of the solution was measured in a Ultrospec 10 classic (Amersham) at 600 nm. The 

concentration of the solution was adjusted to that required for each dose, based on preliminary 

experiments where a range of ODs between 0.1 and 0.7 were serially diluted and plated to 

estimate the number of CFUs. Additionally, to confirm post hoc the concentration estimated 

by the OD, we serially diluted to 1:106 and plated the bacterial solution two times and counted 

the number of CFUs. 
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2.3 Experimental evolution lines 

The three selection regimes were the following: Resistance, Tolerance and Control. In 

Resistance and Tolerance regimes, flies were pricked in the lateral side of the thorax with L. 

lactis, while in the Control they were pricked with Ringer's solution. Flies were anesthetized 

with CO2 for a maximum of 2 minutes in groups of 10 flies. Prior to injections, the needles 

were bent approximately 0,4 mm from the end, adapted from (Longdon et al. 2013), in order 

to reduce potential variation from the pricking methodology. A preliminary assay (Figure S1) 

compared the variation produced by this pricking method and different inoculum volumes 

using Nanoject II™ injector (Drummond).  The dose of L. lactis was determined to cause an 

average mortality of 40 % at day 4 in the mother population (Figure S2), which corresponds to 

a concentration of 1x109 CFU/ml (OD600 of the 1:10 dilution = 0.16±1). Given the high 

mortality across all bacteria-pricked lines upon generation F5, this dose was changed to 1x108 

CFU/ml in the next generations (OD600 = 0.16±1).  At the end of each injection day all the 

remaining volume from all the L. lactis and Ringer's solution aliquots were plated to assure 

there was no contaminations. There were no signs of contamination in any of the solutions. 

After injection, flies were kept individually in vials with 7 ml of fly medium. At day two, all 

the alive flies were flipped and kept for two more days. In the Resistance and Tolerance 

regimes, all the flies that survived till day four post injection were sacrificed and their bacterial 

load was estimated (see below). We chose this time-point to assess the bacterial load because 

it is directly after the resolution phase (Duneau et al. 2017) and therefore allowed us to select 

on flies' bacterial control mechanisms. In the Tolerance regime we additionally measured the 

number of pupae each fly produced during day three and four post injection. The pupae counts 

were performed eight days after the end of the oviposition period since a preliminary assay 

showed that at this time-point 99 % of the larvae have pupated (Figure S3A). Resistance can 

be defined as the inverse of the bacterial load, therefore, the fewer the CFUs (including zero), 

the higher the resistance value. In the Tolerance regime, we calculated the residuals from the 

linear regression between pupae counts from day three and four post injection (fecundity as 

our fitness measure) and the bacterial load at day four. The higher the residual value for a given 

fly, the higher the deviation of that individual from the average fecundity-tolerance of the 

respective Tolerance line, and therefore the higher the Tolerance value. This concept was 

adapted from (Howick and Lazzaro 2017). At each generation, 200 four-to-five days old female 

flies were processed per selection regime and replicate. Flies were ranked according to the 

highest trait value in Resistance and Tolerance regimes, and randomly in the Control regime. 

From these 200 flies, only 100 with the highest ranking found the next generation. The flies 
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that formed the following generation were the flies produced during day three or four post 

injection. Since, we are artificially selecting at individual level, all the flies that did not produce 

offspring during this interval were replaced by the next one in the ranking, assuring every 

generation is formed by the genetic contribution of 100 females. Moreover, to assure few 

genotypes would not overtake the population we also controlled for every female’s 

contribution. Every selected female was allowed to contribute a maximum of three males and 

three females. The offspring was collected once during the first 24 hours emergence period, 

approximately 10 to 11 days after oviposition, since our data shows that only a maximum of 

12 % of total flies would mate before that (Figure S3B). For each line, we had six big vials, 

each with 50 males and 50 females, with 40 ml of fly medium. Flies were orderly split between 

the vials in a manner that avoids brother-sister mating, promoting genetic recombination and 

avoid inbreeding. Flies were allowed to mate for four days until injection day, where they were 

removed and processed according to their regime. The experiment ran for 8 generations with 

only one generation without selection (F6). At every generation we measured all lines' survival 

at day two and four post injection. As a consequence of the selection protocol, in Resistance 

and Tolerance regimes we also assessed qualitative/quantitative resistance and fecundity-

tolerance, respectively. Ongoing and final response to selection readouts are described in the 

respective section below. 

 

2.4 Bacterial load assay 

L. lactis quantification was adapted from (Acuña-Hidalgo et al., n.d.). Flies were anesthetized 

with CO2 and removed from their vial. Each individual was placed in a 1.5 ml microcentrifuge 

tube containing 100 µl of pre-chilled LB media and one stainless steel bead (Ø 3 mm, Retsch) 

on ice. The microcentrifuge tubes were placed in a holder previously chilled at 4 ºC for at least 

30 minutes to reduce further growth of the bacteria. The holders were placed in a Retsch Mill 

(MM300) and the flies homogenized at a frequency of 20 Hz for 45 seconds. Then, the tubes 

were centrifuged at 420 rcf for one minute at 4 ºC.  After resuspending the solution, 80 

microliters of the homogenate from each fly were pipetted into a 96-well plate and then serially 

diluted from 1:1 to 1:106. Per fly, two droplets of 5 µL of 1:1, 1:102, 1:104 and 1:106 dilutions 

were plated onto LB agar. Preliminary in silico test showed that two droplets gave a similar 

mean value to higher numbers of droplets per fly (Figure S4). The lower detection limit of this 

protocol is 5 CFUs per fly, tested in (Acuña-Hidalgo et al., n.d.). The plates were incubated at 

30ºC and the number of CFUs were counted after ~20 hours. Individual bacterial loads per fly 
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were back-calculated using the average of two droplets from the lowest countable dilution in 

the plate.  

 

2.5 On-going and final response to selection readouts 

Upon generation F5, an additional subset of 100 flies per regime and replicate (nine lines) were 

processed to monitor changes in resistance and fecundity-tolerance across all the regimes. All 

of the flies in these subsets were pricked with a concentration of 1x109 CFU/ml of L. lactis in 

parallel with the selection lines' flies and processed as described above.  

 

Regarding the final readouts, these were performed after three generations without selection to 

reduce potential maternal effects. Due to technical issues we lost the third replicate of the 

experiment during generation F9 and, therefore, these final readouts were only conducted in 

the first two replicates. This experiment was conducted in a full combinatorial setup with all 

the replicates and regimes with infected and Ringer-injected treatments, totalizing in 12 

combinatorial treatments (3 regimes x 2 replicates x 2 infection treatments). Injection days 

were performed as described previously. In each combinatorial treatment we processed a subset 

for survival and fecundity assessment and a subset sacrificed at day four post infection to assess 

resistance, fecundity-tolerance, proteomics and CFUs extraction. In the first, we followed 

survival for 16 days post injection for 80 flies per combinatorial treatment and assessed their 

fecundity by counting the pupae produced in the following 48 hours oviposition periods: days 

0-2, 2-4, 8-10 and 14-16 post injection. In the second, we measured fecundity during day 2-4 

and quantified bacterial load at day four post injection. For every bacteria-injected 

combinatorial treatment we had 120 flies, while for Ringer-injected treatments we had 40 flies. 

All the alive flies at day four were plated regardless of the treatment. Fecundity and bacteria 

quantification were performed as described above. Additionally, we also extracted individual 

host and bacterial samples for proteomics and in the latter, also for re-infection purposes. Both 

methodologies and respective experiments are described below in their respective sections. 

 

2.6 Bacterial re-infection experiment 

Following incubation in LB agar plates, entire droplets of the lowest countable dilution in the 

LB agar plate were extracted with the help of a 1000 µL with the extremity cut. Each droplet 

was pipetted into a 1.5 ml centrifuge tube containing 1 ml 10% Ringer's-trehalose mixture. The 

tubes were then vortexed for approximately 1 minute to detach the bacteria from the agar and 

into the solution. Then, the supernatant was transferred to a second empty tube in dry ice until 
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storage at -80ºC. Here, we used trehalose as a cryopreserving agent because it is a disaccharide 

known to protect cells from freezing and it is commonly present in Drosophila haemolymph 

(Chapman 1998).  

 

Prior to the experiment, flies were reared at controlled larval density: (50 g agar, 600 mL red 

grape juice, 42 mL Nipagin (10 % w/v solution) and 1.1 L water) were smeared with a thin 

layer of active yeast paste and placed inside the mother population cage for egg laying and 

removed 24 hours later. The plates were incubated overnight then first instar larvae were 

collected and placed into plastic vials (95 x 25 mm) containing 7 ml of SYA medium. Each 

vial contained 100 larvae to control for density during development. This was performed for 

two generations. One day after the start of adult eclosion, the flies were placed in fresh food 

big vials in groups of fifty males and fifty females and allowed to mate for four days. Upon 

injection day, female flies were separated and processed depending on their treatment. In this 

experiment we had: L. lactis retrieved from flies from each of the six combinatorial treatments 

(3 regimes x 2 replicates); stock L. lactis also retrieved from the agar plate and frozen at -80 

ºC in Ringer's-trehalose mixture but without passing by the fly environment; and an empty agar 

droplet processed in a similar manner but without bacteria as a negative control. Therefore, it 

totalizes in eight bacterial treatments. For each bacterial treatment, a set of bacteria retrieved 

from 24 distinct flies were defrosted in a 37º C water bath for 90 seconds and then left at room 

temperature for one hour for a slow acclimatization. The samples were then pooled according 

to treatment. Each resulting mix was then washed three times through centrifugation at 2880 

rcf for 10 minutes and replacing the supernatant by 100 µL of Ringer's solution. Lastly, the 

bacterial concentration was adjusted to 1x108 CFU/ml in all treatments through OD. Two serial 

dilutions from each mix were prepared and the following ones were plated: 1:104, 1:105.  

 

The experiment was split into two replicates separated by two days. For each treatment we had 

the following subsets: an acute phase subset, where 60 flies were pricked with the respective 

solution and the alive flies by day one post injection were sacrificed to assess bacterial growth 

during this phase of infection; and a chronic phase subset, in which 120 flies were pricked, 

their survival was tracked for two weeks and at the 14th day of infection they were sacrificed 

to assess the set-point bacterial load for each treatment, discussed in (Duneau et al. 2017). Flies 

from the last subset were flipped to new vials every four days. Bacterial load was quantified 

through the protocol measured above but this time we platted all the dilutions from 1:1 to 1:1011 

in case there was an increase in bacterial load due to the treatment.  
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2.7 Statistical analysis 

Statistical analyses and figures were performed in RStudio version 1.3.1073 (R Core Team, 

2019). We used the following packages in our statistical analyses “lme4” (Bates et al. 2014) , 

“glmmTMB” (Brooks et al. 2017), “car” (Fox and Weisberg 2018), “pscl” (Jackman et al. 

2015), "lawstat" (Hui, Gel, and Gastwirth 2008), "survival" (T. M. Therneau and Lumley 2014) 

and the following for plotting our data: “ggplot2” (Wickham 2016). To include a factor as a 

random effect in a model it has been suggested that there should be more than five to six 

random-effect levels per random effect (Bolker et al 2008), so that there are sufficient levels to 

base an estimate of the variance of the population of effects (Crawley 2007). In our 

experimental designs, the low numbers of levels within the factors ‘experimental replicate’ 

(two levels) and ‘person’ (two levels), meant that we fitted them as fixed effect, rather than 

random effect, factors (Crawley 2007). In general, we employed a Wald  χ2 test (Bolker et al. 

2009) to test for statistical significance, either by using the Anova function in "car" package or 

anova function in "stats" package, accordingly. Moreover, for the main effects we used a type 

II and for the interactions a type III Anova. 

 

2.8.1 On-going and F5 response to selection readouts 

During selection we obtained the following readouts: i) survival for all the regimes; ii) 

resistance for Tolerance and Resistance regimes; iii) fecundity for Tolerance regime; iv) 

fecundity-tolerance for Tolerance regime. Therefore, we tested for effect of generation, regime 

and replicate on survival and resistance readouts, whereas for fecundity and fecundity-

tolerance we only tested for generation and replicate. Survival was measured as the proportion 

of flies alive by day four in each generation x regime x replicate. Individual resistance was 

estimated as the inverse of the median bacterial load at day four post infection for each fly. For 

changes in reproductive dynamics we measured the average and maximum population 

fecundity for each generation x replicate. Fecundity-tolerance was assessed as the population 

slope between the fecundity (i.e. pupae counts for day three and four post infection for each 

mother) and bacterial load (i.e. individual CFU counts four days post infection).  On the other 

hand, for F5 generation only resistance, average fecundity and fecundity-tolerance were 

measured but across all regimes. In both on-going and F5 response to selection tests we 

analysed the readouts fitting a generalized linear model using the package "lme4" with a Quasi-

Poisson error structure. 
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2.8.2 Post-selection readouts 

In this experiment we assessed resistance, fecundity, fecundity-tolerance, survival in the 

presence and absence of infection with L. lactis across different selection regimes. To start 

with, we used bacterial load at day four post infection as a proxy for resistance, our dependent 

variable. As predictors we included regime (i.e. Control, Resistance or Tolerance) and replicate 

(i.e. one or two). Given the proportion of zeros (≥ 25%), we applied a Hurdle model with a 

truncated probability distribution for zero and non-zero values using "hurdle" function in "pscl" 

package. For values of zero CFU we used a binomial with logit link, whereas for non-zero 

values we used a negative binomial with log link function. The latter was decided based on the 

output from likelihood ratio and Akaike information criterion tests.  

 

As a proxy for the response variable fecundity we used the number of pupae offspring produced 

by each individual female during day three and four post injection. We fitted distinct 

generalized linear model with a Quasi-Poisson error structure to test for: a) cost of infection, 

as the effect of injection treatment with Ringer's solution or L. lactis on fecundity; b) 

differences in fecundity across regimes infected with L. lactis; c) changes in fecundity across 

regimes injected with Ringer's solution. The different models are described below: 

 

a) Fecundity ~ Infected/non-infected * Regime * Replicate 

b) Fecundity Ringer's ~ Regime * Replicate 

c) Fecundity L. lactis ~ Regime * Replicate 

 

In the case of fecundity-tolerance, we fitted a generalized linear model with negative binomial 

error structure using the "glmmTMB" package. Our previous models shown evidence of a cost 

of infection on fecundity, our response variable. For this reason, we adjusted the fecundity of 

individual infected fly to the average fecundity of non-infected flies, as in (Kutzer and 

Armitage 2016b; Graham et al. 2011). In detail, adjusted fecundity was calculated by 

subtracting pupae offspring counts from infected flies (infected fecundity, ωi) from mean pupae 

offspring counts in our Ringer's control (uninfected fecundity, ωo), for each regime x replicate, 

and dividing the resulting value by ωo and multiplying by 100. As predictors we included 

individual log10-transformed bacterial load, regime and replicate. The resulting model is the 

following:  
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Adjusted fecundity ~ Bacterial load * Regime + Bacterial load * Replicate + Regime * 

Replicate 

 

Lastly, 16-day survival was analysed using a Cox model with the four fecundity time windows 

as a time dependent covariate (Fisher and Lin 1999; T. Therneau, Crowson, and Atkinson 2017; 

Murphy and Sen 1991) using the function "coxph" of the package "survival" (T. M. Therneau 

and Lumley 2014). Only flies that survived past the fecundity time-window would contribute 

with their fecundity for the survival analysis. For instance, if a fly would die would die during 

day two post infection would not be contributed its fecundity for the analysis, but a fly dying 

on day three would as the latter was alive through the whole fecundity window measured. We 

selected this model based on the cox proportional hazards. The model used is the following: 

 

Survival ~ Regime * Infected/non-infected * Replicate 

 

Moreover, the fecundity windows were also individually analysed using generalized linear 

models with a Quasi-Poisson error structure using the package "lme4".  The resulting p-values 

were adjusted using the Benjamini-Hochberg (1995) correction for multiple testing. For each 

of the fecundity windows we used the following model: 

 

Fecundity ~ Regime * Infected/non-infected * Replicate 

 

2.8.3 Parasite evolution 

In this experiment we considered bacterial load at time-points 1- and 14-days post infection, as 

well as 14-days survival, as data output. Both bacterial load days were firstly analysed using a 

Levene test to assess the equal variance across treatments using the function "levene.test" in 

the package "lawstat" (Hui, Gel, and Gastwirth 2008). Later, we used a Hurdle model, as 

described above (Section 2.8.2 of Materials and Methods) given the high proportion of zeros, 

with regime, selection replicate and experimental replicate as predictors. 

 

Survival was analysed with cox proportional hazard using the function "coxph" in the package 

"survival" (T. M. Therneau and Lumley 2014) with treatmente (i.e. regime and selection 

replicate, Ringer's or ancestral stock of L. lactis), and experimental regime as predictors. We 

ran the model including and excluding Ringer's treatment. The model fulfilled all the 

proportional hazard assumptions.  
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3. Results 
3.1 On-going and F5 response to selection readouts 

Survival at day four post injection differed according to regime and generation (Table S1) 

throughout the selection lines experiment (Figure S5). Bacterial load, as proxy for resistance, 

was not affected by neither of the infected evolved regimes (i.e. Resistance and Tolerance), 

replicate or generation (Table S2, Figure S6). Both maximum and average fecundity of 

tolerance regime lines exhibit a significant effect of generation (Table S3, Figure S7). Lastly, 

the slope of the regression line between fecundity and bacterial load, indicator of tolerance, did 

not significantly vary according to generation within the Tolerance regime (Table S4, Figure 

S8). 

 

Upon F5 generation, a set of readouts were measured across all regimes, as mentioned above 

(Section 2.8.1 Materials and Methods). Populations fecundity was strongly affected by 

bacterial load and replicate but there was no evidence for an interaction between bacterial load 

and regime, meaning the different lines did not differ in fecundity-tolerance at this point (Table 

S5, Figure S9). A similar result was observed for resistance with no significant effect of either 

regime or replicate on bacterial load (Table S6, Figure S10). In the case of average line 

fecundity there was a significantly effect of replicate but not regime (Table S7, Figure S11). 

 

3.2 Post-selection readouts 

After three generations without a selection pressure, we measured the readouts described above 

(Section 2.8.2. Materials and Methods). As expected, flies injected with Ringer's solution had 

a higher survival than ones infected with L. lactis independently of their selection regime 

(Table 1, Figure 1A). Similarly, the time-dependent variable fecundity seems to have an effect 

on flies' survival, with an overall higher survival and fecundity for Ringer's injected flies, as 

indicated by an interaction between infection treatment and fecundity. An interaction between 

regime and replicate was also observed, with replicate 1 of the Tolerance and replicate 2 of the 

Control regimes exhibiting higher survival than their counterparts. 

 

Fecundity exhibits a complex dynamic throughout the first 16 days post injection. During the 

first two days of infection there is only a marginal interaction between regime and replicate, 
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whereas during day 3 to 4 we observe an effect of infection treatment with Ringer's injected 

flies having higher offspring counts than bacteria infected ones (Table 2, Figure 1B). Into the 

chronic phase of infection, on day 8 and 10 there is no difference in fecundity. However, later 

on we do observe an effect of infection treatment, replicate and regime on day 14 to 16 after 

injection. The latter reflects a higher offspring counts for Ringer's injected flies, replicate 1, 

and Resistance regime overall (Table 2, Figure 1B). 

 

In regard to fecundity-tolerance and resistance we see an interesting pattern. Our data indicates 

Resistance and Tolerance regimes both differ in tolerance comparatively to Control (Table 3) 

but not in qualitative resistance or clearance (Table 4). Due to the fact we observed a cost of 

infection in fecundity for these flies (Table S8) and for the subset we measured survival and 

fecundity (Table 2), we normalized infected flies' fecundity with the respective Ringer's 

injected ones, as described above.  While for Control regime we spot a negative slope, 

representing a decreased fecundity with the increased bacterial burden, for Resistance and 

Tolerance regimes we have a highly positive slope, meaning that with the increase in bacterial 

load there is an increase in fecundity, comparatively to the respective Ringer's injected flies 

(Figure 1C). Although not tested, Resistance and Tolerance do not seem to differ in their slope 

but rather in their vigour, or fecundity baseline in the absence of infection. Flies from different 

regimes do not differ in either qualitative resistance or clearance at day four post infection 

(Table 4, Figure 1D and E). In sum, selection for fecundity-tolerance and resistance seem to 

have favoured the evolution of tolerance in opposition to resistance. 

 

3.3 Parasite evolution 

Bacterial parameters of L. lactis that underwent differently selected hosts immune systems 

were assessed during the first fourteenth days of infection and their response compared to the 

ancestral bacterial stock or absence of infection, Ringer's injected flies. Virulence has been 

described as a function of survival, the higher the virulence the lower the survival (Read 1994; 

Schmid-Hempel and Ebert 2011). Within this framework, we observed an effect of treatment, 

when including or excluding Ringer's (Table 5, Figure 2A). These results mean that first, as 

expected flies injected with L. lactis lead to a higher mortality than the saline independently of 

the source of the bacteria, and second, bacteria that were exposed to the inner fly environment 

are selected to kill more and therefore, are more virulent. However, regime does not seem to 

have an effect on the virulence evolution.  
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After 24h within a naive host, we observe a higher bacterial burden within evolved treatments 

of L. lactis, comparatively with the ancestral stock (Table 6 and S9, Figure 2B). Interestingly, 

this result is in part due to the increased number of successful infections established at day one 

in evolved treatments comparatively to the ancestral stock (Table S8). This result agrees with 

Levene's test that indicated a high variance for evolved bacteria, comparatively to ancestral 

stock (df = 3, F-value = 3.29, p-value = 0.021). Despite this difference, within evolved 

treatments there is no difference in the bacterial load either in median burden or variance (df = 

2, F-value = 1.96, p-value = 0.143). Notably, there is also an effect of experimental replicate 

across this day (Table 6 and S8).  

 
Into the chronic phase, 14 days post infection, we observe a similar pattern to the 24h with 

most evolved treatments presenting a higher number of persisting bacteria (Table 7, Figure 

2C), except for Control 1 and Tolerance 1. The level of clearance at this stage is also variable 

only Control 2 and Tolerance 2 differing from the ancestral stock (Table S10). Both these 

results are shown by the strong effect from the interaction between treatment and replicate 

(Table 7). Furthermore, they do not differ in variance at this stage, either when including (df = 

3, F-value = 0.97, p-value = 0.409) or excluding the ancestral stock in the analysis (df = 2, F-

value = 0.52, p-value = 0.598). 

 

 

4. Discussion 
Here, we report the first study using experimental evolution to select for increased tolerance to 

infection. Altogether, our results exhibit fecundity-tolerance to L. lactis is evolvable within 

eight generations of exposure and selection. Moreover, we emphasize the importance of taking 

in consideration tolerance evolution when selecting for resistance, largely overlooked in the 

past decades, as we show selection for resistance can also collaterally select for fecundity-

tolerance. Lastly, we show four-days intra-host pathogen evolution selects for higher virulence 

and infection success independently of the host selection regime. In sum, our study sets 

tolerance as a fundamental immune strategy that needs to be included in upcoming eco-evo-

immunology studies.  

selection.  

 

4.1 Increase in fecundity throughout selection  
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During the eight generations of selection we observed a clear difference between non-infected 

(i.e. Control) and infected regimes (i.e. Resistance and Tolerance) in survival (Table S1, Figure 

S5). There was also a statistical effect of generation due to the steady decrease in survival along 

the first five generations and later increase in survival during generation seven and eight for 

infected regimes (Table S1, Figure S5). This result is likely due to an excessive cost of infection 

at this inoculation concentration (1x109 CFU/ml) that was passed into following generations. 

After a generation without selection and a reduction in the concentration (1x108 CFU/ml) we 

observe a quick increase in the survival (Figure S5) presumably because of the lightening of 

the costs, allowing the population to evolve and supporting the previous assumption.  

 
 
In regard to resistance, although we do not observe differences between regimes at F5 

generation (Table S6, Figure S10), we do detect an overall significant effect of regime 

throughout selection generations (Table S2). Nevertheless, generation is a stronger predictor 

of resistance and it seems to interact with regime, indicating resistance differs between 

generations and each of the regimes (i.e. Resistance and Tolerance) behave distinctively (Table 

S2, Figure S6). F5 response to selection only reflects changes up to this point and therefore 

does not consider changes under a lighter selective pressure during generations six and seven. 

Moreover, a prior study from Martins and colleagues in this fly population has shown can take 

up to 12 generations of selection to evolve resistance from systemic infection with 

Pseudomonas entomophila (Martins et al. 2013), implying the number of generations in this 

study might not be enough. 

 

For fecundity-tolerance, we do not observe any change in the slope of the reaction norm 

between fecundity and bacterial load, our proxy for tolerance, across the different generations 

of selection (Table S4, Figure S8) or between regimes upon F5 generation response to selection 

(Table S5, Figure S9). In the latter, we observed a strong effect of bacterial load and replicate 

on fecundity, indicating individual fecundity varies according to flies' bacterial burden and that 

replicates might be starting to diverge in tolerance at this point. 

 

Interestingly, we spot a striking effect of selection on fecundity. Upon F5 generation we only 

note a difference between replicate in fecundity, in agreement with the previous results for 

fecundity-tolerance. Intriguingly, during selection we observe an increase in both maximum 

and average fecundity for each of the Tolerance replicate lines, prominently during generation 
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six and seven (Figure S7), supported up by a statistically significant effect of generation for 

both measures (Table S3). Altogether, this result provides more support to our hypothesis that 

selective pressure was too high during the first five generations, not allowing population to 

evolve. Moreover, this fecundity increase during day three and four post infection might be a 

result of selection for early fecundity and therefore a fitness shift for this populations. 

 

4.2 Selection for higher tolerance in both infection regimes 

After three generations without selection, we assessed the response to selection throughout the 

different regimes and replicates in the presence and absence of infection. Contrarily to what 

previously observed from our group, when using the same host-parasite model (Silva et al., 

n.d.), we observed a cost of infection on fecundity during day three and four (Table 2, Figure 

1B). As evidently indicated in Figure 3, but not statistically tested, there is a dramatic decrease 

in offspring number between the first days and sixteen days post infection (Figure 1B). The 

selection protocol seems to have shifted reproduction to first days after injection, regardless of 

the injection treatment or regime. This shift led to higher offspring counts during the first four 

days after infection and, potentially, explains why we observe a cost of infection during the 

third and fourth day. Curiously, this cost is also found during day 14 and 16 post injection, 

indicated by a marginally significant effect of infection treatment on fecundity (Table 2).  

 

As is well-known, life history traits are often entangled with each other, such is the case of 

survival, fecundity and immunity in this study. Fecundity seems to be a strong predictor of the 

regimes' survival, together and in mixture with infection treatment (Table 1). In this particular 

case, Ringer's injected flies both present a higher survival and fecundity across the sixteen days 

assessed (Figure 1A-B), comparatively to the flies inoculated with L. lactis. The latter treatment 

presents both costs in survival and fecundity due to immunity against infection, as it has been 

widely shown and discussed in literature (Flatt and Heyland 2011). More interestingly, we 

observe an effect of regime in survival (Table 1), as resistance regime seems to poorly handle 

the infection and therefore have lower resistance compared to its counterparts (Figure 1A). A 

potential explanation for this phenomenon is the deployment of tolerance mechanisms outside 

of the scope of our study that allow Control and Tolerance regimes to sustain a higher survival 

comparatively to Resistance one. This effect of regime also has an interaction with replicate, 

as both replicates of Control and Tolerance regimes behave differently within the regime (i.e. 

Control replicate 2 and Tolerance replicate 1 have higher survival). Together with the divergent 

fecundity between replicates observed during the on-going selection readouts (Figure S7), this 
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result might indicate different replicates have unique evolutionary history despite the same 

selection regime. Although we meticulously uniformized the selection protocol, we cannot 

discard genetic drift associated to the selection protocol or, an unlikely but possible, different 

standing genetic variation present in each of the replicates at the start of the selection lines that 

might be amplified into distinct evolutionary trajectories by the selection protocol. Moreover, 

due to our small number of generations and our large selective sieve (50% of the population 

selected at each generation) it is likely there is a lot of variation within the different lines and 

a few more generations of selection would trim this variation. 

 

Despite the variation in survival across replicates of the same regime, the same was not found 

in resistance or fecundity-tolerance readouts (Table 3 and 4, Figure 1C-E). Higher tolerance 

was uniformly selected in both Resistance and Tolerance regimes in comparison to Control 

(Table 3, Figure 1C). On the other hand, the three regimes do not differ in quantitative 

resistance or proportion of clearance, suggesting there is no evolution for resistance after eight 

generations of selection (Table 4, Figure 1D and E). An important consideration is that to our 

knowledge, all the studies with D. melanogaster and bacterial species classify resistance 

evolution as an increase in survival after selection (Ma et al. 2012; Ye, Chenoweth, and 

McGraw 2009; Martins et al. 2013; Gupta et al. 2016). On the other hand, we classify resistance 

evolution as a reduction in the bacterial load (i.e. quantitative resistance) or increased infection 

clearance after selection. We argue that survival to infection reflects a combination of many 

immune and non-immune factors and, therefore, is an oversimplified measure of resistance. In 

this study we consider resistance as the inverse of bacterial load and within the fruit fly and 

within this framework only a study from Martins and colleagues have measured changes in 

bacterial load after selection for resistance (Martins et al. 2013). In this study, the same fly 

population and P. entomophila, as a pathogen, showed that although there is an increase 

survival after selection for resistance, differences in how the Control and Resistance-selected 

lines handle infection are only visible during at 14h and not at five days post infection (Martins 

et al. 2013). Taking this into account, we assessed bacterial load at day four post infection and 

it is conceivable that at this point we do not detect the fine differences in resistance between 

selected and non-selected regimes. Nevertheless, within the same time-window we observe a 

clear increase in fecundity-tolerance for both Resistance and Tolerance regimes (Figure 1C). 

This outcome suggests tolerance might be a faster, or even preferential, immune strategy to 

evolve, as it has been hypothesized (Roy and Kirchner 2000; Best, White, and Boots 2008). 

Moreover, the fact only one of these immune strategies evolved might represent in this host-
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parasite interaction resistance and tolerance mechanisms might be independent and the 

evolution of one of them does not depend, in any way, on the other, as has been shown in a few 

cases throughout literature (Lefèvre, Williams, and de Roode 2010; Sternberg et al. 2012; 

Mazé-Guilmo et al. 2014b; Decker, de Roode, and Hunter 2018).  

 

Nonetheless, there are caveats to the latter conclusions taken in this study. The first is the 

limited number of replicates in the post-selection readouts comparatively to the on-going and 

F5 generation ones. As in post-selection readouts we only possess two out of the three 

replicates, it is likely we do not observe a direct translation of the results prior to this time-

point. Second, we focused on a set of fundamental readouts and therefore we do not address a 

wide range of physiological, developmental and other life history aspects that might being 

taking place in evolved populations, due to technical and model limitations. Within these 

readouts, an important consideration is the fact both resistance and tolerance are conceptually 

two distinct set of defence mechanisms that are based on the same individual bacterial load 

data.  Therefore, it is possible resistance affects tolerance in our model. Lastly, as it has been 

shown (Howick and Lazzaro 2014; Lough et al. 2015; Kutzer and Armitage 2016b; Silva et 

al., n.d.), resistance and tolerance are intrinsically dynamic strategies that interchange and often 

throughout the course of infection. Our study aimed to select and detect changes in a small 

time-frame of the long infection process, therefore it is plausible variation in these, and other, 

immune strategies (e.g. immune priming) might be found outside of the time-frame studied. 

 

Nevertheless, to our knowledge, only Zeller and Koella (Zeller and Koella 2017) have 

empirically measure both resistance and tolerance after experimental evolution, in this case for 

different infection and dietary settings. Although, several studies have hypothesized or 

presented signs of tolerance evolution (Vijendravarma, Kraaijeveld, and Godfray 2009; Ma et 

al. 2012; Martins et al. 2013; Kraaijeveld and Godfray 2008) after immune system evolution 

to pathogens we present the first evidence of active selection for tolerance in a host organism 

due to pathogen exposure. It is possible that we are able to observe this outcome because of 

the affinity of the host to this particular parasite. L. lactis used in this study was extracted from 

wild-caught D. melanogaster (Lazzaro 2002) and therefore it is likely they share a pre-existing 

coevolutionary history if not even part of this host microbiota. In this scenario, tolerance could 

be a strategy already in use by the host and easier to evolve compared to other ones. 

 

4.3 Higher infection success after intra-host bacterial evolution 
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Heretofore, we analysed the different regimes as separate populations, but from in this section 

we will address every replicate of every regime as a separate population due to their distinct 

evolutionary outcomes discussed in the former sections. Here, we evolved a stock culture of L. 

lactis within six populations of hosts for four days before inoculating them into naive hosts. 

The six populations are a full factorial combination of three selection regimes and two selection 

replicates.  

 

After inoculation with the different treatments, we observed all the bacterial treatments had a 

significant reduction in survival compared to the Ringer's control (Table 5), as expected. 

Across evolved and non-evolved L. lactis treatments, we measured virulence as a function of 

host survival. Hence, we observe that bacteria that underwent flies' immune system exhibit a 

higher virulence comparatively to the ancestral stock (Table 5), illustrated by the reduced host 

survival in these treatments (Figure 2A). However, there was no statistical effect of the 

different host evolved treatments (i.e. selection regime and replicate) on the bacterial virulence 

evolution. Our study falls in agreement with a study from Duneau and colleagues that has 

shown an increased virulence evolution of bacteria when previously exposed to the inner host 

environment for as few as 12h  (Duneau et al. 2017).  

 

In regard to early growth, measured as the bacterial burden at one day post infection, we 

observe that evolved treatments exhibit higher average and variance in bacterial load compared 

to the ancestral stock (Table 6 and S8, Figure 2B). This increased growth after intra-host 

parasite evolution has been observed by Haine and colleagues at different time intervals of 

incubation (Haine et al. 2008). To our surprise, we did not observe any difference between 

evolved treatments (Table 6 and S8, Figure 2B).  

 

On the other hand, persistence, assessed as the bacterial load at 14 days post infection, exhibits 

a more distinct and complex pattern. First, the number of persistent infections is significantly 

higher in Control 2 and Tolerance 2 but rather similar to the ancestral stock for the other 

evolved treatments (Table 7 and S9, Figure 2C) reinforcing the idea that different selection 

replicates within each regime might have different starting points and/or evolutionary histories 

and consequently, selected different traits. Second, the persisting infections do vary in load 

across treatments (Table 7 and S9, Figure 2C), as Control 1 and Tolerance 1 do not differ from 

the ancestral stock. This result emphasizes the need to track several time-points during 

infection to understand the parasites dynamics and adaptation to the host immune system. 
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All in all, our intra-host evolution results seem to point out four days is enough to select for 

higher virulence and adaptation to the insect host but potentially not long enough to select a 

bacterial population for specific resistance or, more importantly, tolerance mechanisms. 

Particularly in the presence of tolerance, we would expect bacteria to require a longer time-

period within a host to select for persistence, as this is likely to be a sum of adaptation to the 

host and clonal interference between different bacterial genotypes (Little et al. 2010).  

 

Hence, our study has proposed tolerance as a potentially preferable immune strategy in this 

specific host-parasite interaction and experimental settings. Tolerance has long been found 

across different animal species and populations but our studies emphasizes that its evolvability 

might be possible. Moreover, we show short intra-host evolution does not select against 

immune strategies but does select for a better survival within a new host, both by increased 

early growth, increased persistence and overall higher parasite virulence. We hope with this 

study to shed a light on the importance of tolerance when studying immune responses 

evolution. 
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Tables and figures 
Table 1. The effect of regime, infection treatment (i.e. infected with L. lactis or injected with 

Ringer's), fecundity during the four time-windows and replicate. Statistically significant 

values are shown in bold. 

Tested effect df χ2 p 

Regime  2 9.71 0.008 

Infection treatment 1 458.24 < 0.001 

Fecundity 1 498.97 < 0.001 

Replicate 1 3.21 0.073 

Regime x Infection treatment 2 1.30 0.523 

Regime x Fecundity 2 0.13 0.936 

Infection treatment x Fecundity 1 20.43 < 0.001 

Regime x Replicate 2 29.13 < 0.001 

Infection treatment x Replicate 1 1.62 0.203 

Fecundity x Replicate 1 0.10 0.753 

Regime x Infection treatment x Fecundity 2 1.35 0.509 

Regime x Infection treatment x Replicate 2 1.85 0.396 

Regime x Fecundity x Replicate 2 3.13 0.209 

Infection treatment x Fecundity x Replicate 1 2.33 0.127 

Regime x Infection treatment x Fecundity x Replicate 2 1.01 0.604 
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Table 2. Effect of regime, infection treatment and replicate on fecundity for each of the time-

windows measured. pBH indicates the p-values after adjustment for multiple testing using the 

Benjamini–Hochberg correction. Statistically significant factors are shown in bold. 

 

 Effects on fecundity 

Tested effect df χ2 p pBH 

0 - 2 DPI      

Regime 2 7.71 0.021 0.074 

Infection treatment 1 3.07 0.080 0.139 

Replicate 1 4.46 0.035 0.081 

Regime x Infection treatment 2 1.79 0.409 0.440 

Regime x Replicate 2 11.83 0.003 0.019 

Infection treatment x Replicate 1 0.60 0.440 0.440 

Regime x Infection treatment x Replicate 2 4.44 0.108 0.152 

2 - 4 DPI     

Regime 2 1.36 0.507 0.576 

Infection treatment 1 15.46 < 0.001 < 0.001 

Replicate 1 2.44 0.119 0.342 

Regime x Infection treatment 2 2.48 0.290 0.406 

Regime x Replicate 2 3.26 0.196 0.342 

Infection treatment x Replicate 1 0.31 0.576 0.576 

Regime x Infection treatment x Replicate 2 3.66 0.160 0.342 

8 - 10 DPI     

Regime 2 4.14 0.126 0.220 

Infection treatment 1 3.35 0.067 0.217 

Replicate 1 7.09 0.008 0.054 

Regime x Infection treatment 2 0.10 0.949 0.949 

Regime x Replicate 2 1.45 0.484 0.564 

Infection treatment x Replicate 1 0.58 0.446 0.564 

Regime x Infection treatment x Replicate 2 4.75 0.093 
0.217 
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14 - 16 DPI     

Regime 2 18.36 > 0.001 > 0.001 

Infection treatment 1 5.92 0.015 0.035 

Replicate 1 7.02 > 0.001 0.028 

Regime x Infection treatment 2 1.11 0.573 0.801 

Regime x Replicate 2 0.26 0.876 0.876 

Infection treatment x Replicate 1 0.34 0.563 0.802 

Regime x Infection treatment x Replicate 2 0.32 0.851 0.876 
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Table 3. The effects of bacterial load, regime and replicate on the response variable fecundity, 

measured as percentage difference in offspring counts. Statistically significant values are 

shown in bold. 

Tested effect df χ2 p 

Bacterial load 1 0.51 0.475 

Regime 2 5.89 0.054 

Replicate 1 0.00 0.944 

Bacterial load x Regime 2 10.65 0.005 

Bacterial load x Replicate 1 0.79 0.375 

Regime x Replicate 2 2.39 0.302 



 Chapter 5: Selection for host tolerance and resistance 
  

 142 

Table 4. The effect of regime and replicate on bacterial load (i.e. zero and non-zero CFU 

counts). 

Tested effect df χ2 p 

Regime 2 2.09 0.351 

Replicate 1 0.40 0.525 

Regime x Replicate 2 0.07 0.965 
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Table 5. The effect of combinatorial treatment (e.g. regime x replicate), and replicate on 

survival. First, we compared to the Ringer's and secondly, to the ancestral stock. Statistically 

significant values are shown in bold. 

Tested effect df χ2 p 

Compared to Ringer's    

Treatment 7 92.92 < 0.001 

Replicate 1 1.04 0.307 

Treatment x Replicate 7 13.67 0.057 

Compared to Ancestral stock 

Treatment 6 25.04 < 0.001 

Replicate 1 1.03 0.246 

Treatment x Replicate 6 12.68 0.048 
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Table 6. The effect of combinatorial treatment (e.g. regime x replicate), and replicate on 

bacterial load (i.e. zero and non-zero values). Statistically significant values are shown in bold. 

For the full model and respective coefficients, see Table S9. 

 

 
 
 

Tested effect df χ2 p 

Treatment 6 267.49 < 0.001 

Replicate 1 8.65 0.003 

Treatment x Replicate 6 13.78 0.032 
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Table 7. The effect of combinatorial treatment (e.g. regime x replicate), and replicate on 

bacterial load. Statistically significant values are shown in bold. For the full model and 

respective coefficients, see Table S10. 

 

 Tested effect df χ2 p 

Treatment 6 75.03 < 0.001 

Replicate 1 0.11 0.745 

Treatment x Replicate 6 119.81 < 0.001 
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Figure 1. Response to selection for each of the evolving regimes and the respective injected 

control. (A) Survival of flies from each selection regime when infected with L. lactis or pricked 

with saline until day 16 post injection. There is a significant difference between infected and 

pricked with saline across regimes (Table 1) (B) Average fecundity for each regime when 

infected or pricked with saline for the four-fecundity time-windows post injection. (C) 

Fecundity-tolerance to infection with L. lactis for each of the evolved regimes at day four post 

infection. There is a significant difference of resistance and tolerance regimes comparatively 

to the control one (Table 3). (D) Quantitative resistance, as the median bacterial load for each 

regime for flies that did not clear infection. There is no evidence for a difference in bacterial 

load counts between regimes, meaning they share a similar level of resistance at this time-point 

(Table 4) (E) Bacterial clearance, as the proportion of flies with or without CFUs at day four 

post injection for each the regimes. Each regime is comprised of two replicates. Sample size 

for (A) and (B) is from 149 to 159 flies per combinatorial treatment, while (C), (D) and (E) 

ranges from 202 to 236 flies per infected regime. For statistics, see Table 1, 2, 3 and 4.
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Figure 2. Bacterial virulence, exploitation and persistence after evolving inside different hosts. 

L. lactis was evolved within flies from different evolved regimes and replicates, in a 

combinatorial design and then injected in naive flies. As controls we have both flies injected 

with Ringer's or non-evolved stock of L. lactis. (A) Survival of flies from each selection regime 

and replicate when infected with the respective treatment until day 14 post injection. There is 

a significant difference between infected and pricked with saline across regimes (Table 5). (B) 

Bacterial growth in the first 24h as individual CFU counts for each evolved regime and stock 

control. There is a statistically significant difference between culture stock of L. lactis and 

evolved ones (Table 6). (C) Bacterial persistence in the chronic phase of infection, at day 14 

post infection for each evolved regime and stock control. There is a statistically significant 

difference between stock L. lactis and previously evolved within hosts, as well as (Table 7). In 

(A) the sample size ranged from 116 to 121 flies per treatment, whereas in (B) from 55 to 60 

flies and (C) 48 to 82 flies.  For statistics, see Table 5, 6 and 7. 
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Supplementary information 
Table S1. The effect of regime (i.e. Control, Resistance or Tolerance) and replicate (i.e. one, 

two or three) and generation on each line's survival. Survival was measured as the proportion 

of flies alive at day four at each generation. Statistically significant values are shown in bold. 

 

 

 

Tested effect df χ2 p 

Regime 2 271.86 < 0.001 

Replicate 2 0.17 0.9196 

Generation 7 41.82 < 0.001 

Regime x Generation 4 1.74 0.7841 
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Table S2. The effect of regime (i.e. Resistance or Tolerance) and replicate (i.e. one, two or 

three) and generation on each line's resistance. Resistance was measured as the inverse of the 

median bacterial load of flies alive at day four at each generation. Statistically significant values 

are shown in bold. 

 

 
Tested effect df χ2 p 

Regime 1 7.19 0.007 

Generation 6 0.17 < 0.001 

Replicate 1 41.82 0.951 

Regime x Generation 6 1.74 0.027 
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Table S3. Effect of generation and replicate (i.e. one, two or three) on both average and 

maximum fecundity for each of the replicate tolerance lines. Fecundity was measured as the 

number of pupae from egg laying during third- and fourth-day post-infection. Statistically 

significant values are shown in bold. 

 

  

 

 Average fecundity  Maximum fecundity 

Tested effect df F p  df F p 

Generation 1 10.54 0.004  1 4.68 0.043 

Replicate 2 0.19 0.823  2 0.74 0.492 
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Table S4. Effect of generation and replicate on fecundity-tolerance for the Tolerance-selected 

lines. Fecundity-tolerance was measured as the slope of the regression line between day three 

and four fecundity, and bacterial load at day four.  

 

Tested effect df F p 

Generation 1 3.41 0.082 

Replicate 2 1.28 0.302 

Generation x Replicate 2 2.15 0.147 



 Chapter 5: Selection for host tolerance and resistance 
  

 153 

Table S5. The effect of bacterial load, regime and replicate on the response variable fecundity 

at generation F5, measured as offspring counts of egg laying at third and fourth day after 

infection. Statistically significant values are shown in bold. 

 

 

 
Tested effect df χ2 p 

Bacterial load 1 35.52 < 0.001 

Regime 2 1.43 0.490 

Replicate 2 57.61 < 0.001 

Bacterial load x Regime 2 0.84 0.660 
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Table S6.  The effect of regime and replicate on the response variable bacterial load at day 

four after infection during generation F5.  

Tested effect df χ2 p 

Regime 2 4.25 0.120 

Replicate 2 1.51 0.470 
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Table S7. The effect of regime and replicate on the response variable fecundity during 

generation F5. The latter was measured as the average population fecundity during day three 

and four post infection. 

Tested effect df χ2 p 

Regime 2 1.31 0.520 

Replicate 2 65.59 < 0.001 

Regime x Replicate 4 4.54 0.338 
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Table S8. Full model and coefficients representing the difference in zero and non-zero bacterial 

load across combinatorial treatments (e.g. regime x replicate) and replicate, when compared to 

the L. lactis stock one day post infection. Statistically significant values are shown in bold. For 

main effects, see Table 6. 
Tested variable Estimate Std. error z p 

Non-zero model coefficients (truncated negative binomial with log link)  

Control 1 11.445 1.165 9.823 < 0.001 

Control 2 13.687 1.126 12.153 < 0.001 

Resistance 1 13.814 1.106 10.681 < 0.001 

Resistance 2 12.155 1.099 11.063 < 0.001 

Tolerance 1 13.208 1.118 11.817 < 0.001 

Tolerance 2 12.759 1.084 11.772 < 0.001 

Experimental replicate 2 3.157 1.073 2.942 0.003 

Control 1 x Experimental replicate 2 -1.608 1.721 -0.934 0.350 

Control 2 x Experimental replicate 2 -4.789 1.623 -2.951 0.003 

Resistance 1 x Experimental replicate 2 -3.775 1.645 -2.295 0.021 

Resistance 2 x Experimental replicate 2 -3.366 1.611 -2.090 0.037 

Tolerance 1 x Experimental replicate 2 -4.875 1.646 -2.963 0.003 

Tolerance 2 x Experimental replicate 2 2.874 1.614 -1.781 0.075 

Zero model coefficients (binomial with logit link) 

Control 1 0.868 0.547 1.586 0.113 

Control 2 1.578 0.615 2.730 0.006 

Resistance 1 2.554 0.824 3.098 0.002 

Resistance 2 2.189 0.715 3.061 0.002 

Tolerance 1 1.678 0.615 2.730 0.006 

Tolerance 2 2.266 0.713 3.178 0.001 

Experimental replicate 2 0.069 0.530 0.130 0.896 

Control 1 x Experimental replicate 2 0.568 0.830 0.683 0.494 

Control 2 x Experimental replicate 2 0.519 0.944 0.550 0.583 

Resistance 1 x Experimental replicate 2 -1.409 1.005 -1.401 0.161 

Resistance 2 x Experimental replicate 2 -0.030 1.013 -0.029 0.977 

Tolerance 1 x Experimental replicate 2 -0.335 0.855 -0.391 0.695 

Tolerance 2 x Experimental replicate 2 0.299 1.090 0.274 0.784 
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Table S9. Full model and coefficients representing the difference in zero and non-zero bacterial 

load across combinatorial treatments (e.g. regime x replicate) and replicate, when compared to 

the L. lactis stock 14 days post infection. For main effects, see Table 7. 

Tested variable Estimate Std. error z p 

Non-zero model coefficients (truncated negative binomial with log link)  

Control 1 1.057 1.451 0.729 0.466 

Control 2 3.499 1.158 3.022 0.003 

Resistance 1 5.987 1.337 4.477 < 0.001 

Resistance 2 -2.244 1.140 -1.969 0.049 

Tolerance 1 1.674 1.204 1.391 0.164 

Tolerance 2 5.528 1.197 4.617 < 0.001 

Experimental replicate 2 -0.4705 1.446 -0.325 0.745 

Control 1 x Experimental replicate 2 5.035 2.077 2.425 0.015 

Control 2 x Experimental replicate 2 -1.887 1.869 -1.010 0.313 

Resistance 1 x Experimental replicate 2 -8.005 1.859 -4.307 < 0.001 

Resistance 2 x Experimental replicate 2 7.523 1.800 4.180 < 0.001 

Tolerance 1 x Experimental replicate 2 4.500 1.880 2.392 0.017 

Tolerance 2 x Experimental replicate 2 -0.238 1.890 -0.126 0.900 

Zero model coefficients (binomial with logit link) 

Control 1 0.013 0.524 0.025 0.980 

Control 2 1.390 0.510 2.723 0.006 

Resistance 1 0.647 0.494 1.310 0.190 

Resistance 2 0.947 0.509 1.862 0.063 

Tolerance 1 0.793 0.486 1.631 0.103 

Tolerance 2 2.334 0.685 3.407 < 0.001 

Experimental replicate 2 -1.063 0.481 -2.209 0.027 

Control 1 x Experimental replicate 2 3.592 0.974 3.687 < 0.001 

Control 2 x Experimental replicate 2 0.322 0.731 0.440 0.660 

Resistance 1 x Experimental replicate 2 2.336 0.754 3.097 0.002 

Resistance 2 x Experimental replicate 2 1.484 0.730 2.034 0.042 

Tolerance 1 x Experimental replicate 2 2.280 0.810 2.817 0.005 

Tolerance 2 x Experimental replicate 2 0.621 0.945 0.658 0.511 
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Figure S1. Comparison between variation produced by different bacterial injection methods. 

A bacterial solution of L. lactis at the concentration of 2x108 CFU/ml was injected into female 

flies either through pricking or injection of 4.6 nl with the help of a Nanoject. Each treatment 

is composed of 25 female flies. After injection, each fly was placed into a pre-prepared 1.5 ml 

tube with LB agar and a steel bead and kept on ice for immediate homogenization. Bacterial 

load quantification was performed as described in the Materials and Methods. There was no 

significant difference in variation between the two injection methods.
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Figure S2. Seven-day survival after pricking with L. lactis at the concentration of 1x109 

CFU/ml. Five days after emergence, 120 female flies per treatment were pricked with L. lactis 

and their survival was followed by seven days after.  At day four post infection, we have 

approximately 40 % mortality in the infected treatment. The two treatments differ significantly 

(Cox proportional-hazard, p-value < 0.001).
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Figure S3. Preliminary assay on time to pupation and sperm prevalence. A group of 40 female 

flies were allowed to mate and to egg lay for 48 hours. (A) The pupation rate for the offspring 

of the latter female flies was followed until day 12 post oviposition. We are only representing 

until day 9 as all the larvae had developed to pupae until this day. (B) Female offspring was 

collected and individualized either only in the morning of the 10th or 11th day post oviposition 

and changed to new vials four days after to simulate selection lines mating protocol. 

Afterwards, vials were followed for offspring and female flies were classified into virgin or 

mated depending on the absence or presence of larval offspring. We illustrated here the 

proportion of mothers that did not mate depending on the time they were collected. As 

expected, emerging flies' collection on day 11 had a higher proportion of mated flies 

comparatively to day 10, 12% and 6%, respectively. 
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Figure S4. In silico test to estimate individual bacterial load with 2 or 3 technical replicate 

droplets. Using the data from Figure S1 we compared the CFU/fly calculation when using three 

droplets and when using only two, by randomly removing one of them. In the horizontal axis 

we have 20 different flies represented. The grey dashed line stands for a ratio of 1, meaning in 

a ratio with this value there is no difference between using either of the technical replicates. 

Apart from some occasional flies, most bacterial load estimates do not differ greatly between 

the two methods (e.g. biggest difference is 1.6x difference for one of the flies). Moreover, this 

plot represents proportional changes and coincidently, the flies with stronger deviations from 

y = 1 have a low bacterial load and therefore small changes in estimation methodology translate 

have a larger impact on their ratio.
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Figure S5. Survival at day four post injection of the flies from each selection regime when 

infected with L. lactis (Resistance and Tolerance) or injected with Ringer's solution (Control). 

Each regime is composed of three replicate lines with 200 female flies each. Generation 6 did 

not undergo selection and therefore there is no data for this time-point. Dashed line at y = 0.5 

represents the selection threshold. There is a significant effect of both regime (p-value < 0.001) 

and generation (p-value < 0.001) on survival. 
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Figure S6. Resistance day four post injection with L. lactis for Resistance and Tolerance 

selection regimes. As a proxy for resistance we calculated the mean of the inverse of the 

bacterial load from each individual and the respective standard error. Each regime is composed 

of three replicate lines. Generation 6 did not undergo selection and therefore there is no data 

for this time-point. There is no significant effect of either regime, replicate or generation.
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Figure S7. Fecundity of tolerance regime across generations. (A) Maximum fecundity 

represents mean of the highest individual offspring pupae count in each of the three replicates 

of this regime for each generation. Similarly (B) average fecundity represents the mean of the 

average offspring pupae counts from each replicate at each generation. Generation 6 did not 

undergo selection and therefore there is no data for this time-point. There is a significant effect 

of generation on both maximum (p-value = 0.0440) and average fecundity (p-value = 0.0075). 
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Figure S8. Fecundity-tolerance for tolerance regime across selection generations. Here we 

used slope of the regression norm between our reproductive fitness measure (i.e. individual 

pupae count during day three and four post infection) against bacterial load (i.e. CFU counts at 

day four post infection). Each time-point is comprised of three replicates to which we present 

the average with the standard error of the mean. Generation 6 did not undergo selection and 

therefore there is no data for this time-point. There is no significant effect of either replicate or 

generation. 
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Figure S9. Fecundity-tolerance across all the regimes at F5 generation as the reaction norm 

between reproductive fitness and bacterial load at day four post infection with L. lactis. Each 

regime is comprised of 102 to 128 individuals split by three replicates. There is a significant 

effect of both bacterial load (p-value < 0.001) and replicate (p-value < 0.001) on our fecundity 

measure but no interaction was observed, meaning the different regimes do not differ in 

fecundity-tolerance between them. 
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Figure S10. Resistance across all the regimes at F5 generation as median bacterial load at day 

four post infection with L. lactis. Each regime is comprised of 102 to 128 individuals split by 

three replicates. There is no significant effect of either regime or replicate. 
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Figure S11. Average fecundity for each regime (i.e. Control, Resistance and Tolerance) at F5 

generation as mean of the individual pupae counts during an overlaying period of 48 hours 

during day three and four post infection with L. lactis. Each regime is comprised of 102 to 128 

individuals split by three replicates. There is a significant effect of replicate (p-value < 0.001) 

but not regime.
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6.1 General discussion and concluding remarks 
In the present thesis, we examined the contributions from the host and the pathogen to the host-

parasite interaction and infection outcome, with main focus on host resistance and tolerance 

strategies. In this section, I will gather all the key points from the different experimental 

chapters and briefly discuss them by parasite and host perspective. 

 

In Chapter 3, we demonstrated infection outcome is not restricted to two possible outcomes, 

survive with a persistent infection or die with a high bacterial burden, as described by Duneau 

and colleagues (Duneau et al. 2017). Certainly, some hosts did not control the infection and 

died within the acute phase presumably due to bacterial overgrow to a potential unsustainable 

bacterial load. This outcome is strongly affected by inoculation dose and bacterial virulence. 

However, distinctly to Duneau and colleagues, we focused on chronic phase, in which there 

was a variety of outcomes. Hosts that were able to control the infection past the acute phase 

did exhibit bacterial persistence up to 75 days of infection. However, bacterial species did not 

persist in all individuals as we observe evidence for bacterial clearance by the host throughout 

all stages of infection independently of bacterial species or inoculation dose. This infection 

outcome is particularly relevant for the most virulent of the bacterial species tested, P. 

entomophila, as the cost of tolerating an infection with high level of virulence could tend to 

infinite (Restif and Koella 2003, 2004). Moreover, bacteria did not necessarily persist at a 

constant bacteria burden. For instance, P. burhodogranariea actually showed evidence for a 

steady decrease throughout the chronic phase. The latter was also observed in the 

supplementary information of Chapter 4, suggesting it is not an universal phenomenon across 

bacterial species. We have evidence that some persistent infections follow individuals 

throughout their lifetime with some being cleared before death, while others not. Although not 

tested, it is possible both these group of flies died earlier due to a cost of a strong unsuccessful 

early immune response, a continuous response, a cost of the infection itself or a combination 

of the different factors. 

 

We further decomposed virulence for three of the bacterial species tested in this thesis (i.e. L. 

lactis, P. burhodogranariea and E. cloacae). L. lactis and P. burhodogranariea seem to be 

more virulent due to their higher host exploitation and per-parasite pathogenicity (Råberg and 

Stjernman 2012).  In particular, L. lactis seems to present the higher host exploitation out of 

the three bacterial species tested.  Based on the latter result, we would expect to observe a 
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higher investment in resistance compared to tolerance. However, in Chapter 5 we did observe 

both strategies contribute to the infection dynamics during the acute phase of infection. 

Particularly fecundity-tolerance seems to be a fundamental strategy in this specific species 

interaction. Adapting Duneau et al. branching framework (Duneau et al. 2017), where flies can 

be split into two groups based on their bacterial load and consequent likelihood of surviving or 

succumbing to death, we assessed their fecundity-tolerance across branching categories and 

time-points. Our results show that flies likely to die show lower values of tolerance compared 

to the flies likely to survive. Moreover, tolerance seems to decrease between acute and early 

chronic phase, in agreement with literature in the field and reinforcing the idea that infection 

is dynamic due to variation within parasite properties but also within the host (Kutzer and 

Armitage 2016; Lough et al. 2015; Howick and Lazzaro 2014). For instance, in this Chapter 

we can hypothesize these reductions in both resistance and tolerance from acute to chronic 

phase might be due to an accumulation of costs from the immune response. Given that for 

tolerance we are using fecundity as a fitness measure, it is possible we are in the presence of 

terminal investment and that early tolerance might actually reflect an early focus in fecundity 

to assure the mother's contribution for next generation. However, we cannot say for sure which 

is the case as neither our experimental design nor questions were performed with that in mind.  

 

Due to the intermediate level of virulence, discussed in Chapter 3, and clear variation and role 

of resistance and tolerance, discussed in Chapter 4, L. lactis represented the most logical 

bacterial species to test for the selection for host resistance and tolerance. In Chapter 5, we 

started by observing that the infection with L. lactis might actually carry heavier costs than 

previously expected. On light of all the data in this thesis, it is possible these costs might reflect 

the intense host exploitation L. lactis was demonstrated to possess, explored in Chapter 3, and 

indicated by the slow but steady reduction in survival during the first five generations of 

selection. Nevertheless, in this Chapter 5 we have evidence for the evolvability of fecundity-

tolerance after either artificially selecting for it or resistance. This surprising result might 

suggest tolerance is more promptly available for selection, while resistance might demand 

more time to be selected in this model. Another interesting outcome of selection was the 

presence of a cost of infection in fecundity, in contradiction with what we observed in Chapter 

4. While in Chapter 4 we assessed daily fecundity of survivors by day 9 post infection, in 

Chapter 5 we measured fecundity per time-window. Therefore, the two comparison are not 

really equivalent and might reinforce the importance of incorporating more complete analysis 

that include all individuals instead of sub-structuring them.  Nevertheless, it is also likely that 
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the selection protocol selected for early fecundity and this shift exhibited a cost that was not 

present before or was too small to be detectable.  

 

In addition to the number of factors that affect infection outcome and parasite success during 

infection addressed in Chapter 3, we demonstrated it is also important to consider previous 

adaptations to host system or their effectors, as shown in Chapter 5. Here, we demonstrated 

previous adaptation to the fly haemocoel for as long as four days is enough to select bacteria 

to be more virulent, grow faster in the acute phase and have a higher success in the chronic 

phase of infection, compared to the non-evolved bacterial counterparts. This result shows 

bacteria adapt very fast to the host environment, as previously shown by some authors. (Haine 

et al. 2008; Duneau et al. 2017). However, adaptation to specific mechanisms/strategies might 

take longer than the ones explored in this study. The latter might in part be due to the host 

dynamics in infection as shown in Chapter 4 in addition to the few time-points explored in 

Chapter 5. In either case, it would be important to address this question with a more extensive 

experiment than the one presented in here. 

 

Altogether, this thesis shows evidence for the complexity of a host-parasite interaction. From 

the variety of factors that influence infection outcome to the temporal dynamics of both sides 

of the interaction, we highlight the need to perform a range of integrative experiments that take 

in consideration different levels of complexity in the infection process. In this study, we mostly 

explored host-parasite interaction from a descriptive broad populational level and therefore, 

our conclusions are in part limited due to it. We recognize the need to go deep into the 

mechanistic underpinnings of all these processes to fully understand its dynamics and that 

would be the next natural step for this project, but also field. In the next section we discuss in 

more detail potential routes for the further study of these questions. 

 

6.2 Future perspectives 
The work performed in this thesis was predominantly a representation of the host populational 

level response and how host tolerance and resistance vary within and across generations inside 

a given host population. Therefore, further steps into this project should take a more 

mechanistic approach. These are described and explored in the following sections. 
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6.2.1 Graphical and physiological bacterial characterization 

In eco-immunology there is a very restricted number of D. melanogaster pathogens (Louie et 

al. 2016; Duneau et al. 2017), of which a fraction was explored in this thesis. From these, to 

our knowledge only P. entomophila has been studied in more detail with the identification of 

a toxin that explains part of its virulence (Opota et al. 2011) and P. burhodogranariea to which 

we have genomic data on the strain used here and a less-virulent one (Galac and Lazzaro 2012). 

In order to understand the infection process, it is important to not only comprehend how the 

host behaves but also what characterizes the pathogen and its pathogenicity, from infection site 

to the weapons in its toolset. For this, we can use both fluorescent microscopy after infection 

for detection of the path bacteria injected into a fly might take. For the second one, there are 

several tools from proteomics and eventual knockouts that would be fruitful to perform.  An 

interesting starting point is a comparison between the two strains of Providencia 

burhodogranariea presently available, first a direct alignment of the two genomes against each 

other, second a knock-down or knock-out of possible virulent effectors in the more virulent 

strain. In addition, further questions can be made, for instance, does priming with a less virulent 

strain of P. burhodogranariea confers protection to challenge with the more virulent strain? 

 

6.2.2 Host-parasite proteomic and metabolomic profiling 

Insects are known to undergo severe metabolic changes during infection (Dionne et al. 2006; 

Schilder and Marden 2006). Based on the growing evidence for differential effectors and 

metabolic profiles for tolerance (Troha et al. 2018; Ganeshan et al. 2019; Wang and Medzhitov 

2019; Mazé-Guilmo et al. 2014; Godwin et al. 2020), one of the clearest routes would be to 

take advantage of the selection lines developed in this study and test for differences in their 

proteomic or metabolomic profile. It has been shown that the expression of tolerance leads to 

change in metabolic profiles across a range of species (Ganeshan et al. 2019; Herms and 

Mattson 1992), namely with changes in glycolysis and, in insulin and insulin-like signalling 

(Cumnock et al. 2018; Flatt et al. 2008).   

 

Although in this thesis we only addressed a few life history traits, there is the possibility that a 

number of other also vary, particularly physiological ones, as discussed above. If the selection 

protocol indeed interfered with some of them, it is possible this is reflected into the hormonal 

programme. If that is the case we would be able to see differences in hormones that balance 

reproductive, survival and physiological fitness, such as juvenile hormone 3 (Flatt and Heyland 

2011; Schmid-Hempel 2005; Rolff and Siva-Jothy 2002; Flatt, Tu, and Tatar 2005). 
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This can be extended into the parasite side by analysing which elements are selected after 

undergoing resistance or tolerance-selected hosts. The results we obtained in Chapter 5 do not 

necessarily reflect the active bacteria within the host, therefore it might be more relevant to 

quantify active and growing bacteria through the measurement of replicating factors. Through 

host-parasite analysis we might uncover the differences in the selection outcome between 

different regimes but also within replicates of the same regime. 

 

6.2.3 Tolerance as a function of age and energy availability 

It has been hypothesized and partially demonstrated that immune strategies are differently 

expressed and/or available throughout a host lifetime (Harbeson, Francis, et al. 2018; Sheffield 

et al. 2020; Medzhitov, Schneider, and Soares 2012; Wang and Medzhitov 2019; Harbeson, 

Ben-Othman, et al. 2018). According to this theory, individuals might differ in their infection 

outcome not necessarily due to an immature or insufficient immunity but rather due to other 

constraints outside of the scope of this field. In this sense, tolerance might be a predominant 

strategy early and late in organisms' development because of the developmental and energetic 

constraints during earlier phases of life, and strong inflammatory responses late in life. 

Unfortunately, our field is biased to assess infection shortly after adult emergence and not 

outside of this time-window. However, a study from Sheffield and colleagues (Sheffield et al. 

2020) has demonstrated that infection in older flies exhibits a lower tolerance than the younger 

counterparts after infection with Flock House Virus. This age-dependent pattern highlights the 

need for the characterization of infection in a further number of time-points throughout a host 

lifetime.  

 

Moreover, one of the premises in which the previous hypothesis was based is the possibility 

that tolerance is a low-cost immune strategy and resources are allocated according to 

availability and host needs (Van Noordwijk and de Jong 1986; Flatt and Promislow 2007). To 

this date, we are aware tolerance is strongly affected by diet, with often an increase in tolerance 

in higher resource availability (Zeller and Koella 2017; Kutzer and Armitage 2016). Hence, 

these results actually suggest tolerance might be costlier than previously predicted and 

therefore, might be necessary to quantify the actual costs of infection. For this, an assessment 

of the individuals' reserves before and after infection would be possible through the 

quantification of lipids, such as triglycerides. This would allow us to quantify resistance, 

tolerance for each individual, or a group of individuals, and their energetic expenses/resource 
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allocation. Due to the destructive nature of the sampling in this host, for energetic, resistance 

and tolerance quantification, the experiment would need to be independently performed before 

and after infection in a high sample size to capture a populational response. Given the fact that 

we possess tolerance-evolved lines within this study, the most intuitive path would be to 

directly compare energetic responses between tolerance-evolved and non-evolved lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Chapter 6: General discussion and future perspectives 
  
 

 176 

References 
Cumnock, Katherine, Avni S Gupta, Michelle Lissner, Victoria Chevee, Nicole M Davis, and 

David S Schneider. 2018. ‘Host Energy Source Is Important for Disease Tolerance to 

Malaria’. Current Biology 28 (10): 1635-1642. e3. 

Dionne, Marc S, Linh N Pham, Mimi Shirasu-Hiza, and David S Schneider. 2006. ‘Akt and 

FOXO Dysregulation Contribute to Infection-Induced Wasting in Drosophila’. Current 

Biology 16 (20): 1977–85. 

Duneau, David, Jean-Baptiste Ferdy, Jonathan Revah, Hannah Kondolf, Gerardo A Ortiz, 

Brian P Lazzaro, and Nicolas Buchon. 2017. ‘Stochastic Variation in the Initial Phase of 

Bacterial Infection Predicts the Probability of Survival in D. Melanogaster’. Elife 6. 

Flatt, Thomas, and Andreas Heyland. 2011. Mechanisms of Life History Evolution: The 

Genetics and Physiology of Life History Traits and Trade-Offs. OUP Oxford. 

Flatt, Thomas, Kyung-Jin Min, Cecilia D’Alterio, Eugenia Villa-Cuesta, John Cumbers, Ruth 

Lehmann, D Leanne Jones, and Marc Tatar. 2008. ‘Drosophila Germ-Line Modulation 

of Insulin Signaling and Lifespan’. Proceedings of the National Academy of Sciences 

105 (17): 6368–73. 

Flatt, Thomas, and Daniel E L Promislow. 2007. ‘Still Pondering an Age-Old Question’. 

Science 318: 1255–56. 

Flatt, Thomas, Meng-Ping Tu, and Marc Tatar. 2005. ‘Hormonal Pleiotropy and the Juvenile 

Hormone Regulation of Drosophila Development and Life History’. Bioessays 27 (10): 

999–1010. 

Galac, Madeline R, and Brian P Lazzaro. 2012. ‘Comparative Genomics of Bacteria in the 

Genus Providencia Isolated from Wild Drosophila Melanogaster’. BMC Genomics 13 

(1): 612. 

Ganeshan, Kirthana, Joni Nikkanen, Kevin Man, Yew Ann Leong, Yoshitaka Sogawa, J Alan 

Maschek, Tyler Van Ry, D Nyasha Chagwedera, James E Cox, and Ajay %J Cell 

Chawla. 2019. ‘Energetic Trade-Offs and Hypometabolic States Promote Disease 

Tolerance’. 

Godwin, Sean C, Mark D Fast, Anna Kuparinen, Kate E Medcalf, and Jeffrey A Hutchings. 

2020. ‘Increasing Temperatures Accentuate Negative Fitness Consequences of a Marine 

Parasite’. Scientific Reports 10 (1): 1–10. 

Haine, Eleanor R, Yannick Moret, Michael T Siva-Jothy, and Jens Rolff. 2008. 

‘Antimicrobial Defense and Persistent Infection in Insects’. Science 322 (5905): 1257–



 Chapter 6: General discussion and future perspectives 
  
 

 177 

59. 

Harbeson, Danny, Rym Ben-Othman, Nelly Amenyogbe, and Tobias R Kollmann. 2018. 

‘Outgrowing the Immaturity Myth: The Cost of Defending from Neonatal Infectious 

Disease’. Frontiers in Immunology 9: 1077. 

Harbeson, Danny, Freddy Francis, Winnie Bao, Nelly Aku Amenyogbe, and Tobias R 

Kollmann. 2018. ‘Energy Demands of Early Life Drive a Disease Tolerant Phenotype 

and Dictate Outcome in Neonatal Bacterial Sepsis’. Frontiers in Immunology 9: 1918. 

Herms, Daniel A, and William J Mattson. 1992. ‘The Dilemma of Plants: To Grow or 

Defend’. The Quarterly Review of Biology 67 (3): 283–335. 

Howick, Virginia M, and Brian P Lazzaro. 2014. ‘Genotype and Diet Shape Resistance and 

Tolerance across Distinct Phases of Bacterial Infection’. BMC Evolutionary Biology 14 

(1): 56. 

Kutzer, Megan A M, and Sophie A O Armitage. 2016. ‘The Effect of Diet and Time after 

Bacterial Infection on Fecundity, Resistance, and Tolerance in Drosophila 

Melanogaster’. Ecology and Evolution 6 (13): 4229–42. 

Lough, Graham, Ilias Kyriazakis, Silke Bergmann, Andreas Lengeling, and Andrea B 

Doeschl-Wilson. 2015. ‘Health Trajectories Reveal the Dynamic Contributions of Host 

Genetic Resistance and Tolerance to Infection Outcome’. Proc. R. Soc. B 282 (1819): 

20152151. 

Louie, Alexander, Kyung Han Song, Alejandra Hotson, Ann Thomas Tate, and David S 

Schneider. 2016. ‘How Many Parameters Does It Take to Describe Disease Tolerance?’ 

PLoS Biology 14 (4): e1002435. 

Mazé-Guilmo, Elise, Géraldine Loot, David J Páez, Thierry Lefèvre, and Simon Blanchet. 

2014. ‘Heritable Variation in Host Tolerance and Resistance Inferred from a Wild Host–

Parasite System’. Proc. R. Soc. B 281 (1779): 20132567. 

Medzhitov, Ruslan, David S Schneider, and Miguel P Soares. 2012. ‘Disease Tolerance as a 

Defense Strategy’. Science 335 (6071): 936–41. 

Noordwijk, Arie J Van, and Gerdien de Jong. 1986. ‘Acquisition and Allocation of 

Resources: Their Influence on Variation in Life History Tactics’. The American 

Naturalist 128 (1): 137–42. 

Opota, Onya, Isabelle Vallet-Gély, Renaud Vincentelli, Christine Kellenberger, Ioan 

Iacovache, Manuel Rodrigo Gonzalez, Alain Roussel, Francoise-Gisou Van Der Goot, 

and Bruno Lemaitre. 2011. ‘Monalysin, a Novel ß-Pore-Forming Toxin from the 

Drosophila Pathogen Pseudomonas Entomophila, Contributes to Host Intestinal Damage 



 Chapter 6: General discussion and future perspectives 
  
 

 178 

and Lethality’. PLoS Pathog 7 (9): e1002259. 

Råberg, Lars, and Martin Stjernman. 2012. ‘The Evolutionary Ecology of Infectious Disease 

Virulence’. Ecoimmunology 548: 78. 

Restif, Olivier, and Jacob C Koella. 2003. ‘Shared Control of Epidemiological Traits in a 

Coevolutionary Model of Host-Parasite Interactions’. The American Naturalist 161 (6): 

827–36. 

———. 2004. ‘Concurrent Evolution of Resistance and Tolerance to Pathogens’. The 

American Naturalist 164 (4): E90–102. 

Rolff, Jens, and Michael T Siva-Jothy. 2002. ‘Copulation Corrupts Immunity: A Mechanism 

for a Cost of Mating in Insects’. Proceedings of the National Academy of Sciences 99 

(15): 9916–18. 

Schilder, Rudolf J, and James H Marden. 2006. ‘Metabolic Syndrome and Obesity in an 

Insect’. Proceedings of the National Academy of Sciences 103 (49): 18805–9. 

Schmid-Hempel, Paul. 2005. ‘Evolutionary Ecology of Insect Immune Defenses’. Annu. Rev. 

Entomol. 50: 529–51. 

Sheffield, Lakbira, Noah Sciambra, Alysa Evans, Eli Hagedorn, Megan Delfeld, Casey Goltz, 

Janna L Fierst, and Stanislava Chtarbanova. 2020. ‘Age-Dependent Impairment of 

Disease Tolerance Is Associated with a Robust Transcriptional Response Following 

RNA Virus Infection in Drosophila’. BioRxiv. 

Troha, Katia, Joo Hyun Im, Jonathan Revah, Brian P Lazzaro, and Nicolas Buchon. 2018. 

‘Comparative Transcriptomics Reveals CrebA as a Novel Regulator of Infection 

Tolerance in D. Melanogaster’. PLoS Pathogens 14 (2): e1006847. 

Wang, Andrew, and Ruslan %J Cell Medzhitov. 2019. ‘Counting Calories: The Cost of 

Inflammation’ 177 (2): 223–24. 

Zeller, Michael, and Jacob C Koella. 2017. ‘The Role of the Environment in the Evolution of 

Tolerance and Resistance to a Pathogen’. The American Naturalist 190 (3): 389–97. 

 



  Author contributions 
  
 

 179 

Author contributions 
 

Chapter 3: Beatriz Acuña Hidalgo, Luís M. Silva, Roland R. Regoes, Mathias Franz, Sophie 

A. O. Armitage, Decomposing virulence in persistent infections. In preparation. 
 

SA conceived the idea; BAH, LS & SA designed the experiments, collected the data, and wrote 

the manuscript. MF, RRR & SA analysed the data. All authors contributed critically to the 

draft. 

 

 

Chapter 4: Luís M. Silva, Beatriz Acuña Hidalgo, Mathias Franz, Sophie A. O. Armitage, 

Host tolerance and resistance dynamics using a branching model. In preparation. 

 

BAH, LS and SA conceived and designed the experiments, BAH and LS collected the data, LS 

and MF performed the analysis and, LS and MF wrote the manuscript. All authors contributed 

critically to the draft. 

 

 

Chapter 5: Luís M. Silva, Sophie A.O. Armitage, Effect of selection for host tolerance and 

resistance on a host-pathogen interaction and infection outcome. In preparation. 

 

LS and SA conceived and designed the experiments, LS collected the data, performed the 

analysis and wrote the draft.  



  Curriculum vitae 
  
 

 180 

Curriculum vitae 
 

Name: Luís Manuel Macedo da Silva 

 

Education 
 

Dr. rer. nat. 

January 2018 - Present 

Free University of Berlin, Germany 

Thesis project: Pathogen infection dynamics and the evolution of host resistance and tolerance 

Supervisor: Sophie Armitage, PhD 

 

MSc in Evolutionary and Developmental Biology 

September 2015 - September 2017 

University of Lisbon, Portugal and University of Münster, Germany 

Thesis project: The role of Down syndrome cell adhesion molecule 1 for the bacterial 

microbiota of Tribolium castaneum 

Supervisor: Professor Joachim Kurtz 

 

BSc in Biology 

September 2012 - July 2015 

University of Lisbon, Portugal 

Thesis project: The influence of acoustic sounds in the reproductive behaviour of the sand 

goby 

Supervisor: Professor Paulo Fonseca 

 

 

Publications in preparation 

 
Silva, Karczewski, Kurtz & Armitage: Role of Dscam1 on bacterial microbiota composition during 

Tribolium castaneum development. 

Acuña-Hidalgo*, Silva*, Regoes, Franz & Armitage: Decomposing virulence in persistent bacterial 

infections. 

 



  Curriculum vitae 
  
 

 181 

Silva, Acuña-Hidalgo, Franz & Armitage: Host tolerance and resistance dynamics using a branching 

model. 

 

Silva, Rodríguez-Rojas, Nath, Kuropka & Armitage: Effect of selection for host tolerance and 

resistance on host-pathogen interaction and infection outcome. 

 

Acuña-Hidalgo, Silva & Armitage: Influence of mating duration and diet on Drosophila melanogaster 

fecundity trajectories. 

 

* joint first co-authorship 

 

 

Relevant meetings and workshops 
 

Presentations 

Silva et al. Effects of selection for host resistance and tolerance on a host-pathogen interaction. Oral 

presentation in the upcoming Ecological Immunology Workshop, Berlin, Germany. August 2020. 

 

Silva, Acuña-Hidalgo & Armitage. Dynamics of insect tolerance to bacterial infections. Oral 

presentation in the AG Kurtz, AG Fricke and AG Armitage group workshop. Klingemühle, Germany. 

June 2019. 

 

Silva, Acuña-Hidalgo & Armitage. Dynamics of insect tolerance to bacterial infections. Oral 

presentation in the Annual Ecology and Evolution PhD meeting, Bayreuth, Germany. March 2019. 

 

Silva & Armitage, Evolving defences: resistance and tolerance. Poster presentation in Workshop on 

Experimental Evolution, Münster, Germany. March 2019. 

 

Silva & Armitage. Evolving defences: resistance and tolerance. Poster presentation in the Annual 

Ecology and Evolution PhD meeting, Prague, Czech Republic. March 2018.  

 

Attendances 

Workshop on Antimicrobial bacterial adaptation, Berlin, Germany. March 2018.  


