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1 Zusammenfassung 

Die humane Listeriose ist eine vergleichsweise seltene, aber schwerwiegende Infektionserkrankung. Die 

hohe Hospitalisierungs- und Sterblichkeitsrate machen sie weltweit zu einem großen Problem für die 

öffentliche Gesundheit. Ältere, Schwangere und Immungeschwächte haben ein erhöhtes 

Infektionsrisiko. Verursacht wird die Listeriose durch den Verzehr von Lebensmitteln, die mit dem 

Bakterium Listeria (L.) monocytogenes kontaminiert sind. Listeria monocytogenes ist weit verbreitet in 

der Umwelt und Tierwelt. In die Lebensmittelkette gelangt es entweder über kontaminierte rohe 

tierische oder pflanzliche Produkte oder über Kreuzkontaminationen während der Verarbeitung von 

Lebensmitteln. Das übergeordnete Ziel der vorliegenden Arbeit war es, mittels modernster 

molekularepidemiologischer Methoden und genetischem Profiling von Bakterienisolaten Listeriosefälle 

beim Menschen zu verhindern. 

Neben der klassischen Epidemiologie werden molekulare Typisierungsmethoden angewendet, um den 

Eintrag und die Verbreitung von L. monocytogenes entlang der Lebensmittelkette bis hin zum 

Verbraucher aufzudecken. In den letzten Jahren wurde die molekulare Typisierung durch die 

Möglichkeit zur Gesamtgenomsequenzierung (WGS, whole genome sequencing) bakterieller Isolate 

revolutioniert. Anhand der in der vorliegenden Promotionsarbeit gewonnenen Erkenntnisse konnte der 

bisherige Goldstandard zur Feintypisierung, die Pulsed-Field-Gelektrophorese, im Nationalen 

Referenzlabor (NRL) für L. monocytogenes in 2018 komplett durch die WGS abgelöst werden. Der 

Wert der WGS als hochauflösendes, molekulares Überwachungstool für L. monocytogenes wurde im 

Rahmen des Promotionsprojekts umfassend an die Stakeholder entlang der Lebensmittelkette 

kommuniziert. Auf der Basis der im Zuge des Promotionsprojekts im NRL etablierten Protokolle steht 

das Tool den nationalen Überwachungsbehörden nun zur Verfügung. 

Innerhalb des Promotionsvorhabens wurde die bioinformatische Analyse von WGS-Daten von L. 

monocytogenes für den Datenaustausch optimiert, beispielhaft ein Listerioseausbruch und die 

Verbreitung von Listeria spp. in einem lebensmittelverarbeitenden Betrieb untersucht, sowie die 

Bedeutung des europäischen Schnellwarnsystems für lebensmittelbedingte Krankheitsausbrüche 

evaluiert. 

Mittels WGS lassen sich Kontaminations- und Infektionsketten mit beispielloser Genauigkeit 

nachvollziehen und so unterbrechen. Die Verfahren zur Analyse von WGS-Daten sind jedoch vielfältig 

und noch nicht umfassend harmonisiert, was den Datenaustausch erschwert. In der vorliegenden Arbeit 

wurde gezeigt, dass mit verschiedenen WGS-Analysemethoden für L. monocytogenes größtenteils 

vergleichbare Ergebnisse generiert werden können. Ein innerhalb der Promotionsarbeit entwickelter 

Übersetzungscode ermöglicht es, Informationen zu Clustern auch ohne harmonisierte Methoden 

zwischen Sektoren (z.B. Lebensmittelsicherheit, Öffentliches Gesundheitswesen) und Ländern 
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auszutauschen. Dieses Vorgehen bietet einen großen Vorteil, indem es gerade in zeitkritischen 

Situationen wie Listerioseausbrüchen eine schnelle Kommunikation zwischen den Stakeholdern erlaubt. 

Eine wichtige Voraussetzung, um Listerioseinfektionen zu verhindern, ist ein stärkerer Fokus auf die 

Betriebshygiene in der Lebensmittelverarbeitung. Deutlich wurde dies am Beispiel einer im Rahmen 

der Promotionsarbeit durchgeführten Studie einer Geflügelverarbeitungskette. Mittels WGS-

Typisierung konnte gezeigt werden, dass Listeria spp. vom Tier und aus der Umwelt bis in das fertige 

Lebensmittelprodukt übertragen werden. Zusätzlich zeigte sich eine Ausbreitung auf Oberflächen in der 

Produktionsumgebung, wodurch gefährliche Kreuzkontaminationen begünstigt werden. 

Seit der Einführung der WGS für die Typisierung von L. monocytogenes in Deutschland konnte in 

sektorübergreifender Zusammenarbeit eine Vielzahl von Listerioseausbrüchen aufgeklärt und beendet 

werden. Die vorliegende Arbeit gibt Einblick in einen großen, über mehrere Jahre anhaltenden, 

nationalen Listeriseausbruch, der im Rahmen des Promotionsvorhabens federführend untersucht wurde. 

Mittels WGS-Typisierung konnte der Ausbruch auf verzehrfertige Fleischprodukte und deren 

Herstellerbetrieb zurückverfolgt werden. Durch eine vorwärts gerichtete Überprüfung (forward 

checking) als Ergänzung zu der in Ausbruchsuntersuchungen üblichen Rückverfolgung (backtracking), 

konnten zwei verschiedene Cluster von Listeriosefällen demselben Betrieb zugeordnet werden. Nur 

durch solch eine zweiseitige Kontrollstrategie, bei der backtracking und forward checking kombiniert 

werden, können Listerioseausbrüche in Zukunft wesentlich minimiert werden. Als Resultat der 

intensiven Beprobung des Herstellerbetriebs zeigte sich eine sehr diverse L. monocytogenes-Population 

mit teils über mehrere Jahre persistierenden Stämmen. Listeria monocytogenes wurde insbesondere in 

für Reinigung und Desinfektion schwer zu erreichenden Nischen gefunden. Diese Studie deutete auf 

Schwachpunkte in der Betriebshygiene hin, die die Produktion kontaminierter Lebensmittel nach sich 

zogen und so Auslöser des Listerioseausbruchs waren. 

Wird L. monocytogenes in einem Lebensmittel gefunden, ermöglicht das europäische 

Schnellwarnsystem für Lebensmittel und Futtermittel (RASFF, Rapid Alert System for Food and Feed) 

eine internationale Kommunikation dieses Risikos und beispielsweise umgehende Produktrückrufe. Auf 

diese Weise trägt es essenziell dazu bei, Verbraucher vor lebensmittelbedingten Infektionen zu schützen. 

Die Analyse von RASFF-Meldungen bezüglich L. monocytogenes im Rahmen der vorliegenden Arbeit 

verdeutlichte die Komplexität internationaler Verarbeitungs- und Vertriebswege. Dies unterstreicht, wie 

wichtig auch die internationale Zusammenarbeit im Hinblick auf die Lebensmittelsicherheit ist. Die 

Tatsache, dass einzelne lebensmittelverarbeitende Betriebe in zahlreiche RASFF-Meldungen in 

unterschiedlichen Jahren involviert waren, zeigte erneut den Einfluss unzureichender Betriebshygiene 

und Persistenz auf die Ausbreitung von L. monocytogenes. Zudem verdeutlichten die Studienergebnisse 

den Bedarf einer stärkeren Eigenverantwortung lebensmittelverarbeitender Betriebe. 
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Schon während der Laufzeit zeigte sich der Erfolg der im Rahmen des Promotionsprojekts etablierten 

und im Projektverlauf stetig optimierten WGS-basierten Überwachungsstrategie von L. monocytogenes. 

Die Zahl gemeldeter Listeriosefälle in Deutschland war in 2018 erstmals nicht mehr ansteigend, sondern 

rückläufig, und sank in 2019 weiter. Das Promotionsvorhaben hat damit entscheidend dazu beigetragen, 

die Ausbreitung von L. monocytogenes entlang der Nahrungskette zu kontrollieren und so die Zahl der 

Listerioseerkrankungen in Deutschland zu reduzieren. 
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2 Summary 

Human listeriosis is a comparatively rare but serious infectious disease. The high hospitalisation and 

mortality rate make it a major public health concern worldwide. Elderly and immunocompromised 

people as well as pregnant women are at increased risk of infection. Listeriosis is caused by consumption 

of food contaminated with the bacterium Listeria (L.) monocytogenes. Listeria monocytogenes is 

widespread in the environment and in animals. It enters the food chain either via contaminated raw 

animal or plant products or via cross-contamination during food processing. The overall aim of the 

present dissertation was to prevent cases of listeriosis in humans using state-of-the-art molecular 

epidemiological methods and genetic profiling of bacterial isolates. 

As a support to classical epidemiology, molecular typing methods are used to monitor the entry and 

spread of L. monocytogenes along the food chain up to the consumer. In recent years, the possibility of 

whole genome sequencing (WGS) has revolutionised the molecular typing of bacterial isolates. Based 

on the knowledge gained in the present doctoral project, the previous gold standard for fine typing, 

pulsed-field electrophoresis, was completely replaced by WGS in the National Reference Laboratory 

(NRL) for L. monocytogenes in 2018. As part of the present project, the value of WGS as a high-

resolution molecular surveillance tool for L. monocytogenes has been widely communicated to 

stakeholders along the food chain. Based on the protocols established in the NRL during the doctoral 

project, the tool is now available to the national monitoring authorities. 

Within the dissertation project, the bioinformatic analysis of WGS data of L. monocytogenes was 

optimised for data exchange, a listeriosis outbreak and the spread of Listeria spp. in a food processing 

plant were investigated, and the significance of the European Rapid Alert System for Food and Feed 

(RASFF) for foodborne outbreaks was evaluated. 

Using WGS, contamination and infection chains can be traced with unprecedented precision and thus 

be stopped. However, the methods for analysing WGS data are diverse and not yet fully harmonised, 

which hinders data sharing. In the present work, it was shown that different WGS analysis methods for 

L. monocytogenes generate largely comparable results. A translation code developed within this doctoral 

project allows information on clusters to be exchanged between sectors (e.g. food safety, public health) 

and countries even without harmonised methods. This approach offers a major advantage as it allows 

rapid communication between stakeholders, especially in time-critical situations such as listeriosis 

outbreaks. 

An important prerequisite for the prevention of listeriosis infections is a stronger focus on industrial 

hygiene in food processing. This became clear in the example of a study of a poultry processing chain 

carried out as part of this doctoral project. By means of WGS typing, it could be shown that Listeria 

spp. are transferred from the animal and from the environment to the finished food product. In addition, 



5 

 

bacteria were shown to spread to surfaces in the production environment, favouring dangerous cross-

contamination. 

Since the introduction of WGS for typing L. monocytogenes in Germany, in cross-sectoral collaboration, 

a large number of listeriosis outbreaks could be clarified and stopped. This work provides insight into a 

large national listeriosis outbreak lasting several years, which was lead investigated in the present 

doctoral project. Using WGS typing, the outbreak was traced back to ready-to-eat meat products and 

their producer. By using forward checking as a supplement to the usual backtracking in outbreak 

investigations, two different clusters of listeriosis cases could be assigned to the same producer. Only 

through such a two-sided control strategy, combining backtracking and forward checking, can listeriosis 

outbreaks be significantly minimised in the future. As a result of the intensive sampling at the producer, 

a very diverse L. monocytogenes population was found, with some strains persisting for several years. 

Listeria monocytogenes was found especially in niches of the food processing environment, difficult to 

reach for cleaning and disinfection. This study pointed to weaknesses in industrial hygiene that resulted 

in the production of contaminated food and thus triggered the listeriosis outbreak. 

If L. monocytogenes is found in a food product, the European RASFF enables international 

communication of this risk and, for example, immediate product recalls. In this way, it makes an 

essential contribution to protecting consumers from foodborne infections. An analysis of the RASFF 

notifications concerning L. monocytogenes as part of this doctoral project highlighted the complexity of 

international processing and distribution channels. This underlines how important international 

cooperation is with regard to food safety. The fact that individual producers were involved in many 

RASFF notifications in different years again showed the influence of inadequate industrial hygiene and 

persistence on the spread of L. monocytogenes. In addition, the results of the study highlighted the need 

for food processing companies to take greater responsibility for their own operations.  

The success of the WGS-based surveillance strategy for L. monocytogenes, which was established as 

part of this doctoral project and continuously optimised over its course, was already evident during the 

project term. For the first time, the number of reported cases of listeriosis in Germany no longer 

increased in 2018, but decreased, and continued to decrease in 2019. The dissertation project has thus 

made a decisive contribution to controlling the spread of L. monocytogenes along the food chain and 

thus reducing the number of listeriosis cases in Germany. 
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3 About Listeria monocytogenes and listeriosis 

Listeria (L.) monocytogenes is a gram-positive, motile, non-spore-forming, facultative anaerobe 

bacterium [1]. It is ubiquitous in nature and can be found in soil, sewage, plants and livestock [2]. As a 

facultative intracellular pathogen, it can switch between saprophytic and host-associated lifestyle [3]. 

Listeria monocytogenes belongs to the genus Listeria, which currently comprises 21 species. Of those, 

the six species L. innocua, L. ivanovii, L. marthii, L. monocytogenes, L. seeligeri and L. welshimeri are 

recognised as Listeria sensu stricto due to their common genetic and phenotypic characteristics [4]. 

Among them, L. ivanovii and L. monocytogenes are considered the only pathogenic species, leading to 

the disease listeriosis. The main route of infection is the ingestion of contaminated food. While L. 

monocytogenes can infect humans and ruminants, L. ivanovii infection is generally restricted to 

ruminants [5]. However, also for L. ivanovii, rare cases of human infection have been described [6] as 

well as for the primarily non-pathogenic species L. innocua [7, 8]. The 15 species described as Listeria 

sensu lato are L. aquatica, L. booriae, L. cornellensis, L. costaricensis, L. fleischmannii, L. floridensis, 

L. goaensis, L. grandensis, L. grayi, L. newyorkensis, L. riparia, L. rocourtiae, L. thailandensis, L. 

valentina and L. weihenstephanensis [4, 9-12]. 

3.1 Listeriosis in livestock 

In 1924, a bacterium named Bacterium monocytogenes was first isolated from livers of sick rabbits and 

guinea pigs [13]. The later renaming of this genus to Listeria [14] makes this the first description of L. 

monocytogenes. 

Listeria monocytogenes can infect a variety of different animal hosts, but ruminants like cattle, goats 

and sheep are most affected [15]. Typical clinical manifestations are neurological disorders caused 

through encephalitis, and spontaneous abortion. However, complete absence of clinical symptoms is 

also possible despite bacterial shedding [16, 17]. Generally, diseased as well as asymptomatic carrier 

animals can contribute to the distribution of L. monocytogenes in the environment through saliva, faeces, 

nasal secretions or aborted material [1, 18]. Listeriosis case numbers in livestock often accumulate in 

winter and early spring, probably due to the ingestion of contaminated silage during these seasons [19]. 

Infection of pigs with L. monocytogenes is rare, possibly because silage is not a common type of feed 

for them. Nevertheless, colonisation of the intestine in healthy pigs can lead to the distribution of L. 

monocytogenes through their faeces [20, 21]. Birds are also rarely infected with L. monocytogenes, but 

the pathogen has been isolated from a range of domestic and wild avian species like chicken, goose, 

duck, turkey or pigeon [22]. Also aquatic animals like fish or shellfish can be carriers of L. 

monocytogenes, presumably as a result of contact with contaminated water [23]. 
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Direct contact transmission from animals to humans is seen very rarely and occurs mainly in 

veterinarians and farmer, who develop a cutaneous listeriosis without systemic involvement [24]. The 

vast majority (99%) of human infections are foodborne and due to the consumption of contaminated 

raw animal-derived products (e.g. meat or milk), raw products of plant origin, which are contaminated 

by the environment (e.g. soil, water, organic fertilisers) or food products that have been cross-

contaminated during processing [25, 26]. 

3.2 Human listeriosis 

Although listeriosis is rare compared to other bacterial zoonoses, the hospitalisation rate and the case 

fatality rate are remarkably high (Table 1), thus rendering the disease a serious public health concern. 

 

Table 1: Key figures of bacterial zoonotic diseases in Germany 2019 [27]. 

Disease Number of 

cases 

Number of 

fatal cases 

Case fatality 

rate (in %) 

Hospitalisation 

rate (in %) 

Listeriosis 591 40 6.77 95 

Salmonellosis 13,693 18 0.13 37 

EHEC disease 1,877 1 0.05 28 

Campylobacter enteritis 61,526 4 0.01 23 

 

After uptake of contaminated food, L. monocytogenes enters the intestinal epithelium of the 

gastrointestinal tract and crosses it to reach the lamina propria. From there, it goes into lymph and blood 

and is carried to mesenteric lymph nodes, liver and spleen where it starts to multiply [5]. If the infection 

cannot be cleared through the immune response at this stage, L. monocytogenes reaches the bloodstream 

and can infect various other tissues [5, 28]. In immunocompromised humans, the pathogen can cross the 

blood-brain barrier [29] and in pregnant women the placental barrier [30]. Elderly or 

immunocompromised people and pregnant women therefore have an increased risk of developing 

invasive listeriosis. Then, clinical presentation is associated with life-threatening symptoms such as 

septicaemia, encephalitis or meningitis [5]. Pregnant women usually show no or only slight flu-like 

symptoms, but transmission to the unborn child often leads to sepsis and multiple organ manifestations, 

which can result in premature birth, miscarriage or stillbirth. New-borns with listeriosis have a high risk 

of mortality due to multi-organ failure and/or insufficient lung maturity [31]. In healthy people who do 

not belong to a risk group for listeriosis, the infection usually remains enteric and leads to febrile 
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gastroenteritis, which is usually mild and self-limiting [32]. The incubation time varies and depends 

strongly on the clinical manifestation of the disease. It can be 1 to 67 days for invasive listeriosis (longest 

incubation period in pregnancy-related cases) and six hours to four days for non-invasive listeriosis [33]. 

The infection dose is unclear, but likely depends on the immune status of the patient, the virulence of 

the infecting strain and the food matrix, which influences how well the pathogen can survive the stomach 

passage [34, 35]. 

In Germany, the recommended antibiotic therapy for listeriosis is based on amoxicillin or ampicillin in 

high doses, in combination with an aminoglycoside (usually gentamicin) for at least three weeks, unless 

the patient is pregnant [36]. Cotrimoxazole is recommended in the second place. Although no resistance 

to those antibiotics has been found in German L. monocytogenes isolates [37-39], the antibiotic therapy 

is not always effective. Reasons can be the intracellular lifestyle of the pathogen, immunosuppression 

of the patient or a late stage of disease. 

Human listeriosis is a notifiable disease since 2001 in accordance with §7 of the German infection 

protection law. Conditions for reporting are isolation of L. monocytogenes from normally sterile sites 

like blood or liquor or in swabs from new-borns or maternal tissue (e.g. placenta), or clinical-

epidemiological confirmation of a case [36]. The binational consultant laboratory for L. monocytogenes 

at the German Robert Koch Institute (RKI) and the Austrian Agency for Health and Food Safety Ltd. 

(AGES) collects L. monocytogenes strains isolated from human infections in Germany and Austria. 

During the last years, approximately 450 German isolates were collected annually, corresponding to 

approximately two thirds of all notified German listeriosis cases [40]. 

In Germany, numbers of listeriosis infections continuously increased from 2011 (337 cases) to 2017 

(770 cases), corresponding to an incidence increase from 0.4 to 0.9 cases per 100,000 population (Figure 

1) [41, 42]. In 2018, the number of listeriosis cases decreased by 9% to 701 reported cases compared to 

the previous year (incidence of 0.8 cases per 100,000 population) and further decreased to 591 cases in 

2019 (incidence of 0.8 cases per 100,000 population) [27, 43]. 
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Figure 1: Number of reported listeriosis cases in Germany from 2001 to 2019 [27, 41-58]. 

 

A rising trend in listeriosis cases was also observed in the European Union (EU) and the European 

Economic Area (EEA). More specifically, in the years 2008 to 2015, there was a significant increase of 

listeriosis cases in the group of 25 to 44 year old women (probably pregnancy-related listeriosis) and in 

the group of women and men over 75 years of age [59]. In 2018, a total of 2549 cases were reported 

[60]. The case fatality rate was substantially higher than in Germany in the same year (15.6% versus 

4.4%)[43]. 

3.3 Listeria monocytogenes in food industry 

Listeria monocytogenes is non-fastidious. It is resilient to salt (up to 10% w/v NaCl) and can grow at a 

broad temperature (0 to 45°C) and pH range (4.1 to 9.6) [61-64]. Even freezing at -20°C does not 

significantly reduce the number of live bacteria [65]. In this way, L. monocytogenes is well adapted to 

survival and even growth in preserved and chilled food products and food processing environments, 

properties that make the pathogen a serious problem for food industry [25]. Typical categories of 

affected foods are milk, meat or fish products and vegetables [25]. Especially contaminated ready-to-

eat (RTE) products that are not subjected to bactericidal treatment (e.g. heating) directly prior to eating 

pose a risk of infection to the consumer. According to European regulation (EC) No 2073/2005 (Figure 

2), absence of L. monocytogenes in 25 g RTE food during the entire shelf life is required if intended for 

infants or special medical purposes [66]. Otherwise, contamination must not exceed 100 CFU/g. In the 

latter case, an additional rule applies when the food matrix supports growth of L. monocytogenes. Then, 

absence in 25 g is required before the product has left the direct control of the food business operator 

who produced it [66]. An exemption may be granted if the operator can prove (e.g. by shelf life studies) 

0
100
200
300
400
500
600
700
800

N
um

be
r 

of
 li

st
er

io
si

s 
ca

se
s

Reporting year



10 

 

that the threshold of 100 CFU/g is not exceeded during shelf life. Then the limit of 100 CFU/g until the 

end of shelf life also applies before leaving direct control. 

 

 

Figure 2: Overview of the food safety criteria for L. monocytogenes in ready-to-eat foods laid down in 

European Regulation (EC) No 2073/2005. 

 

Either a pH > 4.4 and water activity > 0.92 or a combination of pH > 5.0, water activity > 0.94 and NaCl 

< 16% are generally considered as intrinsic food conditions that support growth of L. monocytogenes 

[34]. The regulations concerning the maximum permissible levels of the pathogen in foodstuffs are not 

uniform worldwide [23]. A zero tolerance (absence in 25 g sample) for example applies in all cases in 

the United States. Whether this approach is of advantage over the EU-wide 100 CFU/g limit is 

controversially discussed, for instance due to the large economic losses caused through product recalls 

[67, 68]. 

Listeria monocytogenes can enter and settle in food processing plants (e.g. in niches that are difficult to 

reach) via contaminated raw products or contamination from the environment. This creates the risk of 

cross-contamination during food production. Persistent L. monocytogenes strains in food processing 

plants have been identified as the most common post processing contaminants [68]. Persistence may be 

caused by a complex interplay of different insufficiently applied hygiene measures, e.g. no strict 

separation between clean and dirty areas, use of sub-lethal biocide concentrations or incomplete cleaning 

[69-72]. This may favour establishment of tolerance to biocides, biofilm formation or persistence in 

niches. Listeria monocytogenes itself is mostly a weak biofilm former, but it can take advantage of 

multispecies biofilms [73-75]. Biofilms are on the one hand hard to remove and on the other hand 
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impede the accessibility of the bacteria by biocides [76, 77]. Persisting L. monocytogenes strains may 

contaminate food products during processing, explaining the recurring entry of certain strains into the 

food chain [72]. If no measures are taken, persistence can last for decades [76, 78]. 

The National Reference Laboratory for L. monocytogenes at the German Federal Institute for Risk 

Assessment (BfR) receives more than 1000 L. monocytogenes isolates per year from food and the 

production environment, which have been tested positive as planned, suspect, trace or zoonoses 

monitoring samples in the official food monitoring throughout Germany. They allow insight into the 

exposure of the consumer to L. monocytogenes via both RTE and non-RTE foods of animal and plant 

origin in Germany. In Germany, high prevalence of L. monocytogenes is found in cold-smoked and 

graved fish (7 to 18%), hot-smoked fish (3 to 9%), differently preserved fish (4 to 10%) and differently 

stabilised meat products (10 to 17%) [79-87]. In all these product groups, quantitative tests have shown 

that the safety criteria for L. monocytogenes laid down in Regulation (EC) No 2073/2005 were regularly 

not met. High prevalence of L. monocytogenes was also found in minced meat (7 to 22%) and minced 

meat preparations, which are offered to the consumer for raw consumption (15 to 24%). Numerous other 

RTE food products such as cheese made from raw or pasteurised milk, heat-treated meat products (e.g. 

sausages), delicacy salads, sliced lettuce and raw vegetables may also be contaminated with L. 

monocytogenes. 
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4 Objectives and structure of the work 

The overall goal of the present work was to reduce and to prevent human listeriosis cases. However, 

there is no simple solution for how to reach this goal. Instead, it requires an interaction of many different, 

closely interconnected and interdependent factors. Starting points lie on three different levels within the 

food chain from stable to table (Figure 3).  

 

 

Figure 3: Levels at which L. monocytogenes should be controlled. From left to right: food processing, 

food product, human patient. 

 

On the first level, contamination has to be prevented during food processing. Listeria monocytogenes is 

ubiquitous in nature and this cannot be stopped. Nevertheless, entry into and consolidation in processing 

plants as well as transfer during food processing can be avoided. The application of hazard analysis and 

critical control point (HACCP) principles is mandatory to food business operators according to 

Regulation (EC) No 852/2004. On the second level, contamination of final food products has to be 

identified in order to prevent infection of consumers. This should happen at the earliest possible time so 

that ideally contaminated products are not placed on the market. Otherwise, at least rapid communication 

through alarm systems can help to quickly take a contaminated product off the market again. On the 

third level, human infections have to be traced back to eliminate their source and thus prevent further 

infections. 

Above all, molecular typing of bacterial strains is the key to understand dissemination paths inside the 

levels and across them. The higher the resolution of a typing method, the more details become visible. 

However, it is not only important to use the most powerful method. It is also essential to ensure that data 

can be shared across sectors (e.g. food safety, public health) and countries in order to do justice to the 

different stakeholders in food production along global supply chains. 

 

The following articles published as a result of this work describe various aspects of the multifactorial 

process needed to control L. monocytogenes. Contents of the publications will be presented in context 

and not in chronological sequence: 
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(1) Review Article: Whole genome sequencing as a typing tool for foodborne pathogens like Listeria 

monocytogenes – The way towards global harmonisation and data exchange [88] 

 Overview on whole genome sequencing (WGS) methods (wet lab and dry lab) 

 Status quo and challenges for standardisation and data sharing 

 

(2) Research Article: Translatability of WGS typing results can simplify data exchange for surveillance 

and control of Listeria monocytogenes [89] 

 Comparison of different WGS-based typing methods (focus on dry lab) 

 Proposal of an alternative approach to data exchange without complete method standardisation 

 

(3) Research Article: Contamination pathways can be traced along the poultry processing chain by 

whole genome sequencing of Listeria innocua [90] 

 WGS-based tracking of contamination along the farm-to-fork continuum (using L. innocua as a 

model for L. monocytogenes) 

 Identification of entry points and transmission routes during food processing 

 

(4) Research Article: Backtracking and forward checking of human listeriosis clusters identified a 

multiclonal outbreak linked to Listeria monocytogenes in meat products of a single producer [91] 

 WGS-based outbreak clarification 

 Importance of industrial hygiene for sustainable prevention of listeriosis infections 

 Assessment of resistance and virulence potential of L. monocytogenes strains 

 

(5) Research Article: Analysis of RASFF notifications on food products contaminated with Listeria 

monocytogenes reveals options for improvement in the rapid alert system for food and feed [92] 

 Analysis of the EU-wide reporting system for food contamination (independent of typing) 

 Derivation of starting points for improving food safety 
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5 Results and discussion covering the major findings published within the 

thesis 

5.1 Molecular typing methods for Listeria monocytogenes 

Trace-back of human cases to contaminated food products is one of the key requirements for the control 

of foodborne pathogens. However, especially in the case of listeriosis, classical epidemiology has its 

limitations. First, the incubation period of listeriosis infections is highly variable and can be lengthy 

[33]. This fact together with the severity of disease complicates patient interviews on food consumption 

history, which would be important to narrow down the list of possible causative food vehicles. Second, 

especially during the last years, food vehicles apart from the classical hazards have been found as source 

of listeriosis infections, further broadening the range of potential candidates [93-95]. Third, listeriosis 

outbreaks are rarely fulminant events, but rather characterised by intermittent cases of disease over years 

(e.g. [91, 96, 97], also see section 5.2.2). In order to support classical epidemiology, molecular 

epidemiology using molecular typing methods has been established in L. monocytogenes surveillance 

and outbreak investigations. 

One possibility for sub-typing of L. monocytogenes strains is phenotyping. Laboratory methods include 

classical serotyping [98], phage typing [99] or multilocus enzyme electrophoresis [100]. However, these 

methods are subject to natural variability due to stress factors or growth phase [101]. As a result, 

genotypic typing methods have been introduced as a more robust approach [102]. Classical serotyping, 

for instance, has been mostly replaced by PCR that separates the strains into four major serovars [103]. 

The L. monocytogenes genome consists of a single, circular chromosome with a size of 2.9 mega base 

pairs and an average G+C content of 39% [104]. For a long time, the gold standard for outbreak 

investigations was pulsed-field gel electrophoresis (PFGE) due to its high discriminatory power 

compared to serotyping. The bacterial genome is digested using two restriction enzymes, AscI and ApaI, 

and the resulting DNA fragments are separated according to size in a periodically changing electric field 

(Figure 4). The resulting band pattern corresponds to the fingerprint of a specific strain and forms the 

basis for assessment of the degree of relatedness over several strains.  
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Figure 4: Principle of PFGE. 

 

The advantage of PFGE is the availability of uniform standards for laboratory methods, data analysis 

and evaluation of results as well as a common database infrastructure on food and human side [105-

108]. However, the disadvantages are the very high workload and the limited resolving power. Since 

genetic changes will be only detected if they fall by chance into the recognition sites of the restriction 

enzymes used, the genetic relationship of strains is easily over- or underestimated [97]. This makes the 

results not always reliable. 

Besides PFGE, sequence-based typing has also played an important role. One of the most common tools 

is multi locus sequence typing (MLST) [109], based on sequence variability of seven housekeeping 

genes. MLST is preferably used to roughly study population structures and was traditionally performed 

by Sanger sequencing [110]. With the introduction of Next Generation Sequencing (NGS) in 2005 [111], 

completely new possibilities opened up. WGS is now providing a typing method that allows to dissolve 

the boundaries of PFGE and MLST and to obtain maximum information about an isolate on the genomic 

level. The sequencing reads resulting from WGS can be used to reconstruct entire bacterial genomes, to 

infer phylogenies and to identify genetic markers (e.g. virulence and resistance genes). Thus, WGS has 

the potential to replace several of its predecessor methods simultaneously. An extensive overview on 

methods used in the field of WGS data generation and analysis in general discussing progress but also 

challenges in the worldwide application and harmonisation is provided in the review article published 

as part of this thesis [88]. 
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5.1.1 WGS as a typing tool 

The introduction of NGS has revolutionised the field of bacterial typing by enabling WGS of strains. 

Various devices, based on different sequencing technologies (e.g. detection of light or voltage changes), 

can be used to perform NGS. In principle, the procedure is always the same. Starting from genomic 

bacterial DNA, a genomic library is prepared and used for sequencing. The result is sequencing reads 

that contain the genetic information at nucleotide level (Figure 5). The read length depends on the 

sequencing platform and mode used and ranges between 36 and 300 base pairs. 

 

Publication: Whole genome sequencing as a typing tool for foodborne pathogens like Listeria 

monocytogenes – The way towards global harmonisation and data exchange 

 

Article type: Review article 

Journal: Trends in Food Science & Technology 

Impact Factor: 11.08 

Authors: Stefanie Lüth, Sylvia Kleta, Sascha Al Dahouk 

DOI: https://doi.org/10.1016/j.tifs.2018.01.008 

 

Contributions Stefanie Lüth: 

I searched the literature and developed the concept of the article, created the illustrations and wrote 

the first draft. As first and corresponding author, I submitted the article and considered and responded 

to the reviewer comments on behalf of all co-authors. 
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Figure 5: Principle of NGS. 

 

Before the sequencing data is further processed, its quality has to be checked. In NGS, every nucleotide 

is sequenced multiple times to cover the entire genome and to make the base calls more reliable. The 

frequency with which a single nucleotide was sequenced on average is described by the coverage value 

(product of read length and number of reads divided by the haploid genome length). However, not only 

the value itself, also the evenness of coverage across the sequenced genome is an important quality 

criterion [112]. The Phred Quality or Q-score gives the quality of reads [113]. It indicates the logarithmic 

probability of an incorrect base with, for instance, Q30 specifying the probability of one incorrect base 

in 1000, Q20 one incorrect base in 100 etc. A consistently high coverage together with a high Q-score 

implies a reliable sequencing result. 

The sequencing reads can be further processed in two different ways. They can be compared directly 

with a genome by aligning/mapping them to it, or they can be used to de novo reconstruct a genome by 

assembly. Due to the shortness of the reads from NGS, it is usually not possible to reconstruct a complete 

genome through assembly. Instead, shorter, coherent sequences are created, the so-called contigs. Such 

an assembly of several contigs with gaps in between is called a draft genome. The quality of such a draft 

genome can be determined by the number of contigs and the N50 value, which is a measure for the 

weighted median contig size [114]. The lower the number of contigs and the higher the N50 value, the 

more continuous and better an assembly is. 

In order to assess the relationship between bacterial sequences, there are again two different approaches: 

the allele-based approach, where sequences are compared gene-by-gene, or the Single Nucleotide 

Polymorphism (SNP)-based approach, where sequences are compared nucleotide-by-nucleotide (Figure 

6). 
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Figure 6: Approaches for WGS-based typing. Red: allele, blue arrow: nucleotide change. Modified from 

[88]. 

 

In the allele-based approach, only the entire allele is considered, no matter how many individual 

mutations are present inside. The advantage of this method is that the allele type can be easily expressed 

by a number. In case of a unified nomenclature, simple data exchange is possible through a table 

containing those numbers. For the classical MLST based on the seven housekeeping genes [109], such 

a system is already in use (https://bigsdb.pasteur.fr/listeria). By combining allele numbers, an MLST 

sequence type (ST) can be determined. MLST STs that only differ by one of the seven allele numbers 

are further combined to MLST clonal complexes (CCs). The classical MLST can be extended to the 

core genome (cgMLST), defined as the set of genes that is shared among the members of a certain 

species, and the whole genome (wgMLST), additionally considering genes from the accessory genome 

(Figure 6). In the SNP-based approach, every single nucleotide change is counted. Although the method 

has a higher resolution than the allele-based approaches, its data are not as easy to exchange. 

5.1.2 The challenges for WGS data sharing 

The resolution of WGS clearly exceeds that of its predecessor methods [115, 116], making it the top 

candidate for gaining detailed insights into the genetic relationship of strains. The challenge in using 

WGS for typing is that the methods for data generation as well as for their evaluation are extremely 

diverse. This is problematic particularly in the case of foodborne diseases such as listeriosis, because 

different sectors (e.g. food safety, public health) have to exchange typing information with each other. 

In the age of globalised food trade, international communication is also necessary. Therefore, different 

concepts for data sharing have been proposed (Figure 7).  
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Figure 7: Concepts for WGS data sharing and analysis. 

 

Although the concepts are already used in various forms, none of them has yet been accepted and 

implemented worldwide. Reservations are to be found at organisational, technical, cultural and scientific 

level [117]. A centralised concept is in use for example in the United States [118]. This automatically 

ensures that there are no compatibility problems between typing results from different analytical 

methods. Only a sufficient quality of the raw data must be guaranteed. The main reservations on this 

approach concern data protection. In addition, the sequencing laboratory itself cannot influence the 

analysis, which can particularly become a problem in time-critical situations like outbreaks. Another 

concept uses local data storage but a uniform analytical method. In this way, intermediate results can be 

exchanged or uploaded to a central database. The data sovereignty remains with the sequencing 

laboratory while the analytical results can be easily put into a broader context. However, similar to the 

centralised approach, it is necessary to agree on a specific method for data analysis in order to be able 

to exchange the intermediate results seamlessly. This can also be problematic because different 

laboratories have developed and prefer different procedures, which can lead to uptake challenges of a 

prescribed method. The widespread status quo at present is therefore that data is stored locally and 

analysed locally using various methods. Selected raw data is then exchanged on a per-event basis and, 

if necessary, re-analysed elsewhere. Although the most flexible approach, it is also the only one not 

supporting real-time monitoring. 

Apart from the discussions about sharing WGS-based typing information, it is even more difficult to 

agree on a concept for sharing accompanying metadata. Genomic data alone is not critical, but 

publication of accompanying metadata is [119]. Only by combining sequence data with the appropriate 

metadata can the full data potential be exploited. More than just for the WGS data alone, this has the 

potential for conflicts with economic or scientific interests. Particularly with regard to cases of illness, 

the protection of personal data is also an important topic of dispute. Limiting access rights for individual 

groups of people could help to ensure that sensitive information is only in the hands of those authorised. 

However, it is difficult to reach agreement on which data are considered sensitive. Further discussions 

are therefore needed to find widely acceptable solutions in this area. 
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5.1.3 Comparison of WGS methods 

One of the most important applications of WGS-based typing data is molecular/genomic epidemiology. 

The basic idea behind it is: if isolates are genetically closely related, there is a high probability that there 

is also an epidemiological link (e.g. strains are part of the same outbreak) [120]. In this way, correlations 

between L. monocytogenes isolates from food and/or production environments and from listeriosis 

patients can be identified. Clustering based on WGS typing (Figure 8) depends on the methods and the 

threshold value used. 

 

 

Figure 8: Clustering as the basis for genomic epidemiology. Example of a Minimum Spanning Tree: 

each circle represents an isolate or a group of identical isolates (individual isolates separated by 

horizontal and vertical lines), and clusters are marked by a grey background colour. 

 

How can the same results be achieved between laboratories in the food sector and the public health 

sector or in different countries? As described in 5.1.2, the first option is to use exactly the same analytical 

method to yield exactly the same clusters. However, the use of such a uniform method does not (yet) fit 

current reality. The second option is to ensure results are comparable between different analytical 

methods. A detailed study of this second option together with the proposal of an alternative approach to 

data exchange without complete method standardisation was published as part of this thesis [89]. 
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Publication: Translatability of WGS typing results can simplify data exchange for surveillance 

and control of Listeria monocytogenes 

 

Article type: Research article 

Journal: Microbial Genomics 

Impact Factor: 5.52 

Authors: Stefanie Lüth†, Carlus Deneke†, Sylvia Kleta, Sascha Al Dahouk 

† - Co-First authors 

DOI: https://doi.org/10.1099/mgen.0.000491  

 

Contributions Stefanie Lüth: 

I have grown and sequenced the vast majority of L. monocytogenes strains. Based on literature 

research, I developed the concept for the study and took care of the involvement of a bioinformatician 

(C. Deneke) for the implementation. Except for the cgMLST analysis with chewBBACA, I performed 

all analyses of the sequencing data. I also took care of making the sequence data available in public 

repositories. I developed the concept for the statistical analysis of the data, applied most of it myself 

and created the illustrations from it. I wrote the first draft except for a few small sections. As first and 

corresponding author, I submitted the article and considered and responded to the reviewer comments 

on behalf of all co-authors. 

 

The basis for assessing the degree of relationship between bacterial strains is the determination of 

differences between their genomes. In the case of allele-based approaches, the number of allele 

differences is used; in the case of SNP-based approaches, the number of nucleotide differences is used. 

If more than two strains are compared with each other, the distance values are combined in a distance 

matrix. To determine clusters and also to visualise them, different clustering algorithms can be applied. 

Common algorithms are hierarchical clustering (single-, complete- or average-linkage), UPGMA 

(Unweighted Pair Group Method with Arithmetic Mean) or Neighbour Joining [121]. 

To determine the distances between isolates at all, there are commercial and free and open-source 

software solutions. Commercial tools are designed to be user-friendly and thus equipped with a graphical 

user interface or pre-set workflows. Even for users without bioinformatics knowledge, such solutions 

are usually easy to use. Disadvantages are license fees and the black-box character of the analyses. Free 

and open-source software solutions can be used independently of licence fees and provide full 
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transparency, but are partly command line based, which requires basic programming skills. 

Additionally, as the tools are sometimes the output of temporary scientific research projects, support is 

not always guaranteed in the long term. 

Two commonly used commercial tools for L. monocytogenes typing are Ridom SeqSphere+ (Ridom 

GmbH) and BioNumerics (Applied Maths). Both contain their own cgMLST and wgMLST scheme by 

default. Ridom SeqSphere+ uses a cgMLST scheme containing 1701 genes [122], whereas BioNumerics 

uses a scheme containing 1748 genes [115]. An open-source alternative is chewBBACA (Blast-score-

ratio-Based Allele Calling Algorithm) [123], into which a scheme can be fed at will. Besides the 

cgMLST analysis, BioNumerics can also be used for SNP analysis. An open-source alternative for SNP 

analysis, which is considered to be very reliable, is Snippy [124, 125]. There are also approaches for 

SNP analysis that do not require a reference genome [126], but the use of a reference genome is more 

common. Sequencing reads are mapped against this reference to identify SNPs. Both closed (complete) 

and draft genomes (assemblies) can be used as reference, but the degree of relationship of the reference 

genome to the strains under investigation makes a difference [127, 128]. The more similar two sequences 

are, the more reads can be mapped and the more nucleotides can be compared with each other. This 

increases the resolving power. Since strains are genetically very similar within an MLST CC, an MLST 

CC-specific reference genome can be used as a closely related reference genome for SNP analysis [127]. 

In our study [89], we compared commercial and non-commercial software solutions for cgMLST and 

SNP analysis using two different cgMLST schemes and three different kinds of reference genomes 

(Figure 9). 

 

 

Figure 9: Comparison/Benchmarking of WGS-based typing methods. Dark blue: commercial software, 

light blue: non-commercial software. EGDe: general reference genome. 
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The distances between isolates were well matched in the different methods. The exception was the SNP 

analysis in BioNumerics with the general reference genome of the strain EGDe, whose distance values 

only showed a correlation of 0.77 to 0.85 to all other methods. Apart from this, the correlations of the 

distance values among tested methods were between 0.96 and 1 and as such near perfect. While it turned 

out that closed and draft genomes could be used equally as reference genomes in SNP analysis, it made 

a big difference whether a general or specific reference genome was used. With a specific reference 

genome, up to four times more SNPs could be found as with a general one. Additionally, using a specific 

reference genome, the differences between different software could be minimised. Not only for a higher 

accuracy, but also for a better method comparability it makes sense to use closely related rather than 

general reference genomes in SNP analysis. 

Based on the good agreement between the distances, we were interested in finding out whether a 

clustering from the methods would also match well. This could serve as evidence that clustering 

information from different methods is interchangeable. The two cgMLST schemes were each published 

with an epidemiologically well-defined threshold value [115, 122]. Isolates falling within a cluster of 

such pre-defined thresholds are not beyond doubt, but likely linked epidemiologically [129]. The 

threshold published for the Ruppitsch scheme is ten allele differences between neighbouring isolates, 

the threshold for the Moura scheme is seven allele differences [115, 122]. In our study, clustering from 

the cgMLST methods with the different schemes was more consistent when using the same threshold 

than when using the scheme-specific values. 

The different cgMLST approaches shown in Figure 9 at the two thresholds were used to establish a 

translation code with the other methods. This corresponds to the scenario where a particular laboratory 

sends a request related to a cluster that has been found with a particular method, in our case a cgMLST 

method. Now the primary laboratory would like to know if other laboratories using other methods 

(cgMLST or SNP) find more isolates that belong to the same cluster. This procedure is common practice 

for example in international listeriosis outbreak situations where one country needs to know whether 

outbreak-related strains are found in more countries. The other laboratories can then look up, at which 

threshold value of a comparison method (= their in-house method) the best possible cluster agreement 

to the reference method at the reference threshold can be achieved. Depending on the percentage of 

cluster agreement, clusters can then be communicated more or less seamlessly between reference and 

comparison method. With a threshold of seven allele differences as reference, achievable cluster 

agreement between the different combinations of our tested methods was between 90.9 and 100%, with 

threshold of ten allele differences as reference between 77.9 and 100%. Of course, the percentage of 

cluster match must always be kept in mind to evaluate the probability that two clusters from two methods 

really do match. Nevertheless, overall high agreement between the different combinations of methods 

tested opens up the possibility of exchanging cluster information without harmonisation of methods. 
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5.2 Applications of WGS-based typing 

With WGS, a typing method has been found that allows bacterial transmission chains to be traced with 

unprecedented precision. In principle, there are two approaches how to use this information. One 

approach is backward looking and aims at tracing reported listeriosis cases to their source of infection. 

The other approach aims at preventing listeriosis cases before they even occur. Especially for the latter 

approach, hygiene measures during food processing are of fundamental importance. 

5.2.1 WGS typing helps to improve process hygiene 

A proof of how much WGS-based typing can help to identify entry points and transmission routes in 

food processing environments has been published as part of this work [90]. Such knowledge forms the 

basis for improving hygiene measures to such an extent that Listeria spp. cannot contaminate food and 

reach the consumer. 
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Listeria innocua is highly similar to the pathogenic species L. monocytogenes, it only lacks the typical 

virulence genes [130]. We used the non-pathogenic species L. innocua as an indicator organism 

simulating persistence and transmission of the pathogen L. monocytogenes. Due to the high similarity 

of Listeria spp. in terms of distribution and adaptability, the presence of the non-pathogenic L. innocua 

in processing lines and foodstuffs indicates poor hygiene conditions that favour the occurrence of the 

pathogen L. monocytogenes. Using the example of a poultry processing chain, we demonstrated the 

transmission of L. innocua from the farm level to the final food, proven by very small SNP distances 

between bacterial isolates. Positive cloacal swabs identified chickens as a natural reservoir. Listeria 

innocua was also found in the surrounding environment, especially on the walls of the farm and in soiled 

litter of the stables. Entry points to the slaughterhouse therefore appeared to be animal raw material and 

environmental contamination. WGS does not provide information about the direction of the 

contamination, but the fact that the same strain (less than 10 SNPs) originating from the farm was also 

found on a table in the slaughterhouse as well as in the finished chicken filet, speaks for cross-

contamination during processing. It is a sanitary problem if Listeria spp. are found on surfaces in the 

food processing industry, since cross-contamination during processing is an important risk factor for 

food safety [131]. To prevent transmission of Listeria spp. to a germ-free food, contamination and 

persistence in the processing environment must be prevented. The other way around, when dealing with 

contaminated raw material, it is important to ensure that the contamination does not spread within the 

production environment and is eliminated from the food before consumption. 

Listeria monocytogenes contamination can be controlled at two different levels in food industry: in the 

production facility or in the final food product. Good hygienic practices including regular cleaning and 

disinfection allow for the production of safe foods. Apart from classical biocides, a variety of different 

approaches can be applied for this purpose. Biological disinfectants like lytic bacteriophages (for 

example ListexTM) cannot only be used in final foodstuffs, but also for elimination of biofilms in food 

processing environments. Their advantage is that, in contrast to classical biocides, which can pose a 

chemical risk, no food safety concerns are related to their use during processing [132]. However, bacteria 

may develop resistances, which impede the effectiveness of these measures [133]. Physical disinfection 

of processing environments and food can be achieved through the application of cold plasma, UV light 

or ozone fumigation [134-136]. Measures to eliminate contamination in the final food product include 

in-package thermal pasteurisation, irradiation, food preservatives (either synthetic antimicrobials or 

biopreservatives like lactic acid bacteria, bacteriocins or plant extracts) and high-pressure processing 

[137]. However, some of those treatments might negatively affect texture and taste and are therefore not 

applicable to every food product. Additionally, with the exception of pasteurisation, none of the methods 

is capable of eliminating L. monocytogenes; the pathogen can only be reduced to a lower level. In 

practice, often a combination of preservative factors is applied to ensure microbial food safety [138]. 
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Viable bacteria may still remain in the food matrix and can multiply during shelf life, exceeding the 

limits set in Regulation (EC) No 2073/2005. 

5.2.2 WGS in outbreak clarifications 

When it is too late and listeriosis cases have already been reported, one of the most important actions is 

to trace these infections to their source. This is the only way to eliminate the cause to prevent further 

cases. 

Listeriosis outbreaks are often protracted, geographically and temporally spread and mostly cases appear 

without obvious epidemiological link (e.g. [91, 96, 97]). This combination makes them difficult to detect 

for public health authorities. The typing of L. monocytogenes isolates from patients is therefore essential 

for the detection of outbreaks. In this ways, seemingly sporadic cases that might be widely distributed 

over time and space can be linked. The genetic relationship between clinical isolates consequently 

should lead to the search for a common food source. In the example of an epidemiological curve shown 

in Figure 10, listeriosis cases of a single outbreak were spread over six years and 12 German federal 

states. Without molecular typing, it would have been difficult to link these cases. 

 

 

Figure 10: Epidemiological curve of a listeriosis outbreak coloured by the German federal states that 

notified the cases. Each box represents an individual case. Modified from [91]. 

 

Since the introduction of WGS, more and smaller listeriosis outbreaks have been clarified in the United 

States [139]. In line with this, the numbers of listeriosis cases that could be linked to a food source have 

risen sharply [118]. In Germany, the use of WGS also enabled the clarification of previously 

unexplained outbreaks, some of which were very prolonged or particularly large [91, 97, 140, 141]. 

An example of one of the largest listeriosis outbreaks described since the introduction of WGS-based 

typing in Germany was published as part of this thesis, showing the course of an outbreak investigation 

[91]. Only through a finely tuned interaction between molecular typing, classical epidemiology and 

operational testing together with intersectoral collaboration, the outbreak source could be identified. 
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Close collaboration between public health and the food sector is necessary to investigate a foodborne 

disease outbreak (Figure 11). In Germany, the common procedure for clarifying a listeriosis outbreak 

starts with the detection of a cluster of clinical cases by the public health authorities [40]. This is 

followed by a request to the food control authorities to find matching isolates from food and/or food 

processing environments. 
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Figure 11: Overview of the concerted interaction between the public health and the food sector for 

listeriosis outbreak investigations. 

 

The kick-off for the clarification of the exemplary outbreak [91] was a cgMLST-based match between 

a clinical isolate from a listeriosis cluster and a L. monocytogenes food isolate. Another isolate, from the 

same type of food but sampled in an earlier year, also matched. The fact that both food isolates came 

from the same manufacturer was the first epidemiological confirmation of the typing results. To obtain 

further epidemiological evidence, patient interviews about their consumption habits were conducted. 

The results further confirmed the suspicion that the consumption of contaminated RTE meat products 

was indeed the cause of listeriosis cases. The fact that one of the matching food isolates could be dated 

back to 2014 and the other one to 2016 indicated that the outbreak strain had been in the production 

facility for several years. In order to find out whether the strain was still present there and, above all, 

where exactly, extensive sampling of the manufacturing plant was carried out. From 2017 to 2018, over 

200 L. monocytogenes isolates were obtained from the production environment and from food. Based 

on their typing results, an interesting situation arose. Usually, public health authorities search for 

causative food based on human disease cases (backtracking). However, when looking for matches of 

the newly sampled and typed isolates from the producer to previously unsolved human clusters, a match 

with a second cluster of clinical isolates was found. Forward checking therefore proved to be extremely 

useful. Only through such a two-sided control strategy combining backtracking and forward checking, 

outbreaks can not only be clarified, but essentially minimised. The two clusters of clinical isolates were 

genetically distant from each other and, without the epidemiological evidence, would have probably 

never been assigned to the same outbreak. This underlines the necessity to combine genomic and 

classical epidemiology. This example proves that it is not sufficient to selectively remove the source of 

a specific outbreak. The entire company hygiene has to be rethought to sustainably prevent further 

listeriosis cases. The fact that the listeriosis cases originating from a single food processing plant were 

distributed throughout Germany (cases in 12 of 16 federal states) clearly shows the extent to which such 

measures can have a positive influence on overall national health. 
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For the first outbreak cluster, the entire transmission chain could be traced from the processing 

environment over the food product to the diseased consumer. For the second cluster, the food product 

was missing in the chain. Both transmission paths show that cross-contamination between food and 

production environment must have played a fundamental role in this outbreak. Indeed, isolates of the 

same cluster were detected over four years, which proves the persistence of strains at the production site 

and explains why it is possible that an outbreak of listeriosis can spread over such a long time. The L. 

monocytogenes isolates sampled at the producer appeared susceptible to the biocides that were used to 

clean and disinfect the processing environment, but were mostly hidden in hard-to-clean niches/areas 

like conveyor belts, pulleys, freezers, accompanying parts like condensate lines or cable ducts or gullies. 

If a RTE food product comes into direct or indirect contact with such contaminated sites after the 

bactericidal processing step (e.g. heating), there is a high probability that this contamination will reach 

the consumer. It is therefore essential to avoid cross-contamination at this point more than at any other 

stage of the manufacturing process. In addition to pure industrial hygiene, the design of a processing 

plant also plays a decisive role in the production of safe food. For example, hard-to-clean spots should 

be avoided when planning workflows and equipment. 

Besides the two outbreak-associated clusters, there were 17 other cgMLST genotypes of isolates in the 

manufacturing plant. The high diversity shows the extent of the contamination problem. Twelve 

cgMLST genotypes were found only once and did not fall into a cluster with other isolates. The reason 

for this could be that a sample is only a snapshot and represents a small section of the entire food 

processing environment. On the other hand, this could also indicate the sporadic introduction of new 

strains from outside into the processing plant, for instance via raw materials. This is exactly what we 

observed in our other study along the farm-to-fork continuum [90]. In fact, outbreak investigation must 

not end at the production level. The entire food chain needs to be considered so that the problem can be 

tackled at its roots and its outgrowths. Software has been developed to reconstruct food distribution 

networks [142]. However, compiling the relevant data for this purpose remains a challenge. The 

distribution channels are superregional and often international. In addition to economic interests, 

national data protection regulations can conflict with data aggregation. 

5.2.3 WGS for risk assessment 

Besides the determination of relationships, WGS is also very useful for the characterisation of bacterial 

isolates. It is possible to investigate the presence and absence of certain genes but also mutations within 

them. The most common applications are the detection of antimicrobial resistance (AMR) and virulence 

genes. The presence of specific AMR genes can be an indication of a reduced susceptibility of a bacterial 

isolate to antibiotics or disinfectants. This is an important aspect in the selection of appropriate control 

measures, whether for the treatment of sick patients or for the effective elimination of L. monocytogenes 
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from production environments. However, there may be discrepancies between genotype and phenotype 

due to expression patterns, functionally similar genes etc. [143]. One example for such a scenario is the 

fosfomycin resistance gene fosX, which all L. monocytogenes strains naturally carry [144, 145]. 

Although the gene is present and leads to resistance against fosfomycin in vitro, the situation in vivo is 

different. Inside the human host, the bacterial sugar phosphate permease Hpt is activated through the 

bacterial regulator PrfA, which leads to uptake and hence susceptibility to fosfomycin regardless of the 

presence of the fosX gene [146, 147]. This example shows how important it is to know regulatory 

pathways and molecular mechanisms in detail in order to draw conclusions about phenotypic effects 

based on the presence or absence of individual genes. There are various resistance gene databases 

available for screening of bacterial sequences, for example CARD [148], ResFinder [149] or the NCBI 

resistance database [150]. Of course, genes in a query genome can only be found if they are deposited 

in the database and are available for matching. Therefore, the choice of database alone can influence the 

result. Additionally, there are no clear rules like the minimum inhibitory concentration (MIC) or the 

epidemiological cut-off value (ECOFF) for the phenotypic classification as susceptible or resistant based 

on pure gene presence or absence [151]. As a consequence, a combination of genotypic and phenotypic 

methods is regularly used to evaluate AMR. This approach was also chosen in the outbreak investigation 

described in section 5.2.2 [91]. Draft genomes of all study strains were screened for AMR genes. As 

expected, they all carried the genes fosX and lin, conferring resistance to fosfomycin and lincomycin, 

respectively, and naturally present in the species L. monocytogenes [145]. No additional resistance genes 

to antibiotics were found, which implies that the standard antibiotics used to treat listeriosis should be 

effective. However, in about 20% of the isolates, the benzalkonium chloride (BAC) tolerance genes 

bcrB and bcrC [152] were identified. BAC is a broad-range biocide used as disinfectant or preservative 

[153]. The bcrB-bcrC-positive isolates were phenotypically tested [38] and could be confirmed as 

reduced susceptible to BAC by an increased MIC value. In this case, genotypic and phenotypic data 

matched. As none of the detergents or disinfectants used in the processing plant were based on BAC, 

this did not seem to have any practical implications on the persistence of L. monocytogenes in the 

production environment [91]. Nevertheless, such a procedure for AMR screening is important to allow 

for critical evaluation of existing industrial hygiene measures. 

Another important issue is the evaluation of the virulence potential of Listeria spp. circulating within 

the food chain. To date, four different Listeria pathogenicity islands (LIPI) have been described, but 

only LIPI-1, -3 and -4 are found in the species L. monocytogenes. LIPI-2 is only present in L. ivanovii 

and thought to be involved into the pathogenic tropism of this species for ruminants [154]. LIPI-1 is 

composed of the six genes prfA, plcA, hly, mpl, actA, plcB that are essential for the intracellular life 

cycle of L. monocytogenes [5]. The prfA gene product is the master regulator of virulence-associated 

gene transcription and assumed to substantially control the switch between saprophytic and pathogenic 

lifestyle of L. monocytogenes [3, 155]. The gene products of plcA and hly are required for the escape 
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from vacuolar compartments, actA is needed for actin-based intracellular motility and mpl and plcB are 

necessary for cell-to-cell spread. Either LIPI-1 or the bacterial internalin gene inlA are found in atypical 

haemolytic L. innocua [156], suggesting that these genes fundamentally account for the pathogenicity 

of a strain or even species. In the L. innocua isolates of the above-mentioned study [90], no such 

virulence genes were found, indicating that they were indeed non-pathogenic. LIPI-3 describes the gene 

cluster of llsAGHXBYDP that encodes the cytolytic peptide listeriolysin S [157]. The release of this 

bacteriocin leads to modifications of the host microbiota during infection [158]. LlsA is the actual 

peptide, which is modified through the enzymes LlsB, Y and D, transported through LlsGH and cleaved 

by the protease LlsP. The function of LlsX is unknown. LIPI-4 contains six genes that encode a sugar 

transport system involved in neural and placental infection [159]. All three pathogenicity islands have 

been associated with hypervirulence of L. monocytogenes strains [159, 160]. In addition to those 

pathogenicity islands, a large number of individual other genes involved in the virulence of a strain have 

been described. An overview can be found in the virulence factor database, the VFDB [161]. An 

indication of virulence can also be obtained by the affiliation to a particular MLST CC [159]. Based on 

epidemiological data and demonstrated by infection experiments in a mouse model, MLST CC1, 2, 4 

and 6 were classified as hypervirulent and infection-associated, whereas MLST CC9 and 121 were 

classified as hypovirulent and food-associated. It is to note that all this information provides indications, 

but does not allow for a yes or no decision on pathogenicity. The absence of pathogenicity islands or 

virulence factors by no means excludes the possibility that the pathogen causes listeriosis, like we have 

seen in the outbreak under investigation [91]. Although the outbreak strains were from neither an 

infection-associated MLST CC nor harboured LIPI-3 or LIPI-4, they had still caused a considerable 

number of disease cases. Conversely, a probably hypervirulent isolate according to molecular typing 

results does not necessarily have to be found in humans. Accordingly, strains were found in the 

production environment that belonged to infection-associated MLST CCs or contained LIPI-3, but could 

not be linked to a listeriosis case [91]. Therefore, risk assessment based on these characteristics was not 

possible and all strains of L. monocytogenes should be considered as posing a public health hazard.  

5.3 Tools for risk communication 

Due to the fact that food contamination is not a “one country” problem, communication tools for 

countries maintaining close trade relations are of crucial importance to allow for a coordinated response 

to emerging threats and for effective consumer protection. Where there is an interconnectedness of trade, 

interconnected food safety measures are needed. One valuable system for that purpose is the EU-wide 

Rapid Alert System for Food and Feed (RASFF). This reporting system is independent of isolate typing 

and instead focuses on the detection of contamination events in food products and their international 

distribution channels. The RASFF is based on Regulation (EC) 178/2002 and Regulation (EC) 16/2011 

and operates as follows: a national food safety authority reports a food-related, serious, direct or indirect 
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risk for human health to the European Commission as the manager of the system. After verification, the 

information is distributed to all the other national contact points via different kinds of notifications 

(Figure 12). Depending on the type of notification and the distribution of a food product, immediate 

action (e.g. product recall) may also need to be taken in other countries.  

 

 

Figure 12: Procedure of a notification via the RASFF (from left to right). 

 

The alert notification and information notification for follow-up are similar, but differ in the speed and 

kind of reaction that is needed. In the case of an alert notification, an immediate action is required while 

the information notification for follow-up does not require rapid action. An information notification for 

attention is released if a product is only present in the notifying country, no longer on the market or has 

not even been placed on the market. Nevertheless, it informs the other members that there was a risk 

posed by a contaminated food. A border rejection notification concerns a product that has been rejected 

at the external borders of the EU and EEA. 

The study published as part of this thesis [92] is based on the analysis of RASFF notifications on 

pathogenic microorganisms in food products with a special focus on L. monocytogenes. It assesses trends 

in the reports available, identifies shortcomings in the current notification system and proposes options 

for improvement. Although a solid basis for the surveillance of L. monocytogenes, optimisations in the 

RASFF could help to identify food safety risks much faster, improve the quality of food products that 

enter the market and thus prevent foodborne infections more effectively. 
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From 2001 to 2015, 226 RASFF notifications (between 4 and 29 per year, median 16) on food products 

contaminated with L. monocytogenes that affected Germany were released. The products concerned 

came from 15 different EU member states and five non-European countries. This shows the close 

international interdependence of food trade and underlines the need for a common alert system like the 

RASFF. Furthermore, some of the products concerned in the notifications had more than one country of 

origin, reflecting the complexity of the tracking of commodity chains. The proportions of notifications 

relating to milk and milk products, fish and fish products and meat and meat products other than poultry 

were generally highest, although the exact percentages varied from year to year. For half of the 

notifications concerning milk and milk products, France was the country of origin and most of the time 

also France reported these products. For just over a third of the notifications concerning fish and fish 

products, Poland was the country of origin, although Germany reported the majority of them. The 

country of origin for the meat and meat products was diverse. Notifications concerning milk and milk 

products were mainly a result of company’s own checks and for fish and fish products mainly a result 
of official controls. Both for the reporting country and for the reporting system, the principle of "The 

sooner, the better" applies. First, notifying country should match the country of origin of a product to 

the largest possible extent, since this can prevent contaminated products from entering international 

distribution in the first place. Second, company’s own checks have a clear advantage over official 

controls because they are more often carried out before the products are placed on the market and 

potentially come into contact with consumers. In response to several pre-millennial food safety crises, 
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a White Paper on Food Safety was published [162], which aims at giving more responsibility to food 

producers to guarantee effective controls right at the beginning of the food chain. An increasing number 

of RASFF notifications and an increasing trend of company’s own checks rather than official controls 

can be seen as a result of this White Paper, increasing awareness and expanded efforts. In addition to 

official controls, it is essential that food business operators implement appropriate measures (such as 

self-monitoring) on their own responsibility to ensure compliance with food safety. In the case of the 

outbreak described above [91], for instance, a very large number of samples were collected in company’s 

own checks after a first match between a clinical and a food L. monocytogenes isolate sampled in an 

official control. This thorough sampling activity has played a major role to fully clarify the outbreak. 

The analysis of RASFF notifications also reflects the importance of industrial hygiene in controlling the 

spread of L. monocytogenes. Some companies were involved in notifications in different years. This is 

an indication either of persistence within the production environment or recurring re-entries. Especially 

in the case of fish and fish products, only few companies were involved in many RASFF notifications. 

This demonstrates how a point source, with large-scale distribution channels, can affect overall 

international food safety. On a small scale (on a national level), this effect was also observed in the 

outbreak described in section 5.2.2. Contaminated products from a single manufacturing plant had 

caused listeriosis cases throughout Germany. 

As with the typing/sequence databases, the usefulness of the RASFF could be enhanced by making more 

detailed metadata available. It is already possible to provide information about the processing state, 

packaging, slicing category, etc. together with the notification of a product. Such information could feed 

into improved risk assessment by answering questions such as "Which type of cutting is most commonly 

reported by RASFF notifications?" or similar. This would enable food safety authorities to identify and 

eliminate risk factors. Since there is no obligation to register this information, only few reports have 

been provided with a complete metadata set so far. The major reason for this is that the information is 

simply not always available and an obligation to complete metadata would hinder reporting activity. 

However, introduction of an explicit "Unspecified" statement could possibly increase the motivation to 

enter the data, if available. 
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6 Conclusions and future perspectives 

The overall aim of this research work was to create the basis for an effective surveillance and control of 

L. monocytogenes in Germany together with the identification of starting points for the prevention and 

sustainable reduction of listeriosis cases. 

The molecular typing of L. monocytogenes isolates from humans, food and production environments 

helps to better understand contamination and infection pathways. In 2016, WGS was introduced for 

typing of L. monocytogenes at BfR and since mid-2018, the former method for fine typing, PFGE, has 

been completely switched to WGS. In combination with the introduction of WGS-based surveillance in 

the public health sector [40], this was the cornerstone for the start of a success story in the clarification 

of listeriosis outbreaks in Germany. Previously unexplained outbreaks, some of them very long lasting 

and with large numbers of cases, have since been clarified and stopped [91, 97, 140, 141]. Within food 

processing plants, niches and hotspots of Listeria could be identified and effectiveness of corrective 

measures could be evaluated. Thus, WGS also makes a valuable contribution to improving industrial 

hygiene, which will prevent food contamination and subsequently foodborne diseases. For the first time 

since 2011, the numbers of listeriosis cases in Germany did not further increase in 2018 and 2019, but 

actually decreased. This may already be an effect of the improved molecular surveillance and control 

strategy established within this thesis and now more and more applied by food control authorities in 

Germany. 

A very important aspect for the use of WGS in official monitoring is the existence of validated methods. 

In addition, there needs to be a way to share data between different laboratories that may use validated, 

but different methods. Through assessing the degree of comparability between most commonly used 

WGS approaches, we have found a workable interim solution to facilitate communication between 

sectors and countries even without having completed method standardisation [89]. Nevertheless, in the 

long run, harmonisation will be inevitable to increase efficiency and achieve a higher level of automation 

to deal with the ever-increasing amounts of sequencing data. First, a comprehensive national WGS 

database for L. monocytogenes from humans, food and food processing plants is needed. For this 

purpose, harmonisation of methods as well as the agreement on uniform evaluation criteria have to be 

established. This would then enable real-time surveillance instead of event-driven investigations. 

Matches between clinical and non-clinical isolates would become apparent from the moment the 

sequence of an isolate is fed into the database, which would automate and speed up the backtracking 

and forward checking strategy described within this thesis. In addition to the real-time sequencing of 

isolates required for this purpose, however, retrospective sequencing should not be disregarded in order 

to do justice to long-lasting outbreaks. Such a strategy might link sporadic cases of listeriosis to a food 

product before an outbreak occurs and could thus make an important contribution to reducing cases of 

listeriosis. 
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Based on WGS typing, a national distribution of L. monocytogenes strains became obvious and based 

on RASFF notifications affecting Germany, an international distribution pattern of contaminated food 

emerged [91, 92, 140]. This makes it quite clear that L. monocytogenes control is not a local problem 

but requires a national and international strategy. One market requires one database. National databases 

should finally be combined into an international one. In principle, such a database already exists in the 

form of the RASFF. However, the existing data do not comprise typing results. On the public health 

side, there is an analogous typing-independent system, the EU-wide Epidemic Intelligence Information 

System (EPIS) to exchange information on emerging public health threats. The interaction of all those 

partial solutions works, but is much more cumbersome than necessary and slows down the tracing of 

infections to their sources. The ideal case would be to merge the data from these more metadata-focused 

databases with the typing data. Due to data protection regulations, however, this will probably remain a 

pipe dream for the time being. Nevertheless, just an international database solution with a minimal set 

of metadata will be the first step in the right direction. Several initiatives have already started to establish 

and use such solutions, such as GenomeTrakr [163] or PulseNet [164]. However, there is still a long 

way to go to speak of comprehensive, global systems [165]. 

Any database solution assumes that cases of listeriosis have already occurred and must be linked to a 

food source, so the principle is looking backwards. Although this also plays a crucial role to reduce 

disease burden, an additional forward-looking strategy would prevent cases of listeriosis before they 

even occur. The basis for such an approach is a combination of risk assessment and risk management. 

As has been shown in this work, industrial hygiene plays a crucial role in the spread of Listeria spp. [90, 

91]. Here, linking typing data and metadata as completely as possible would also be of great advantage. 

In a combined effort of extensive sampling and typing, L. monocytogenes hotspots in the processing 

chains can be identified and eliminated. A prerequisite for this is that results from company’s own 

checks are also included in molecular surveillance, i.e. that companies also include their data in 

databases. This would avoid recurring contamination of food and thereby protect consumers. In addition 

to the identification of risk factors at the process level, attention should also be paid to the identification 

of risk factors at the molecular level. One means to gain deeper insights into foodborne zoonotic hazards 

could be genome-wide association studies that identify differences in the gene profiles of different 

groups of isolates. This may identify further genes that are crucial for causing especially serious human 

infections. Using genetic data, it is also possible to perform source attribution modelling, where human 

cases of disease are attributed to different food sources [166]. In this way, it is possible to break down 

exactly which food categories carry which risk potential. This will help to focus risk management even 

more effectively. Finally yet importantly, risk communication towards risk groups should also be 

optimised to increase the awareness in vulnerable population and those who provide food for them (e.g. 

hospitals, nursing homes, nursing relatives). For example, better education about the disease listeriosis 

and high-risk foods could help reduce consumption and thus the risk of infection. Only through the 
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interaction of all these factors, food and public health authorities will not only control but also 

sustainably combat listeriosis. 

Probably the most obvious solution would be to prohibit any L. monocytogenes contamination in food. 

Such a zero-tolerance strategy as used in the United States is, however, controversial. In a risk 

modelling, Chen and colleagues [67] found that a 100 CFU/g limit, like applied in the EU, could already 

reduce the number of listeriosis infections in the United States by 99.5%. They therefore question the 

cost-benefit ratio of a zero-tolerance strategy, which is undoubtedly associated with enormous efforts in 

the food industry sector. The bottom line is to decide whether L. monocytogenes contamination is 

considered unavoidable (not added) or human added [167]; a question made almost impossible to answer 

by the ubiquitous nature of L. monocytogenes. What is certain is that everything must be done to ensure 

that contamination of food on the table is as low as possible, in order to protect consumers and thus 

human health in the best possible way. 
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A B S T R A C T

Background: Various molecular typing methods are used for the surveillance of foodborne pathogens and out-

break investigations, differing widely in information content and discriminatory power. Presently, not least

because of the rapid technological development, the focus is shifting to whole genome sequencing (WGS) as an

analytical tool. As a result of globalisation of food trade, a comprehensive understanding of the association

between the occurrence of human infections and causative pathogens has to be established to monitor and to

prevent their spread. In this respect, the accuracy of WGS clearly supersedes that of previous tools.

Scope and approach: Our review describes the status quo of WGS in surveillance and outbreak investigations of

foodborne pathogens through the example of Listeria monocytogenes. It highlights the value of WGS in trace-back

of infections to food sources and provides an overview of methods used for data generation (wet lab) and

analysis (dry lab). Altogether, progress but also challenges in the worldwide practical application of WGS for

bacterial typing are described.

Key findings and conclusions: The current status of WGS differs widely between countries and even laboratory

sites. A consensus has to be found concerning methods, quality measures, thresholds for data generation and

analysis as well as rules for data sharing. International harmonisation is going to be indispensable on the way to

data exchangeability which will finally support global control of foodborne pathogens.

1. Introduction

The gram positive bacterium Listeria monocytogenes (L. mono-

cytogenes) is the causative agent of the infectious disease listeriosis in

humans. Although it is widely distributed in the environment, trans-

mission of L. monocytogenes to humans mainly occurs via consumption

of contaminated food, especially pre-packaged ready-to-eat products.

Its ability to form biofilms paired with its resilience to salt, low tem-

peratures and acidic environments enables survival or growth even in

preserved and chilled food products rendering L. monocytogenes a ser-

ious foodborne pathogen (Swaminathan & Gerner-Smidt, 2007).

In 2015, a total of 2,206 human listeriosis cases were reported in the

EU, corresponding to an incidence rate of 0.46 per 100,000 population

(EFSA & ECDC, 2016). In spite of the low incidence of listeriosis, hos-

pitalisation rates above 90% and mortalities of 20–30% make the dis-

ease a serious public health concern. Infection of otherwise healthy

adults is rare, mostly leading to non-invasive, mild listeriosis (febrile

gastroenteritis) or even absence of symptoms (Aureli et al., 2000).

However, cases may accumulate in risk groups, including elderly,

pregnant or immunocompromised patients. Then listeriosis can be an

invasive disease associated with septicaemia or focal complications

such as encephalitis and meningitis (Vázquez-Boland et al., 2001).

Globalisation of food trade, changing consumption habits towards

highly processed foods and demographic changes with increase of

susceptible populations have augmented risk of foodborne illnesses

(Wang et al., 2016). As a result from the high case fatality rate, lister-

iosis is a notifiable disease in the vast majority of EU member states and

associated countries. Occurrence of disease can either be sporadic or

outbreak-related. Since foodborne outbreaks are of public health re-

levance and also cause tremendous economic losses e.g. due to product

recall, internationally cross-linked surveillance of L. monocytogenes in

humans and food is of crucial importance to identify clusters, trace the

sources of infections and control outbreaks.

In order to identify epidemiologically linked isolates and thus be
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able to determine outbreak strains, differentiation of L. monocytogenes

beyond the species level is indispensable. Consequently, several mole-

cular typing methods have been established that are able to char-

acterise, discriminate and index subtypes of microorganisms (ECDC,

2013). The first subtyping method applied to L. monocytogenes was

serotyping (Seeliger & Höhne, 1979). Allocation to serotypes is still the

initial step to roughly classify L. monocytogenes strains, although

nowadays implemented by identification of serotype-specific genes

through multiplex PCR assay rather than by agglutination (Doumith,

Buchrieser, Glaser, Jacquet, & Martin, 2004). In the meantime, a great

variety of typing methods have been developed, differing widely ac-

cording to their discriminatory power, reproducibility, hands-on time

and cost. In general, two different typing approaches exist, based either

on phenotypic or on genotypic characteristics. Typing and identifica-

tion methods based on the phenotype include e.g. classical serotyping

with antisera, phage typing, multi-locus enzyme electrophoresis or es-

terase typing. A major weakness of these phenotypic methods is that

some captured properties may vary in response to external stress or in

dependence of the bacterial growth phase (Liu, 2006). To overcome

these difficulties, several DNA-based methods have been established

(Brosch, Buchrieser, & Rocourt, 1991). These genotypic methods aim to

investigate DNA fragment length polymorphisms of restriction frag-

ments (e.g. by ribotyping, pulsed-field gel electrophoresis), amplified

DNA fragments (e.g. by random amplification of polymorphic DNA,

repetitive element-PCR) or both (e.g. by amplified fragment length

polymorphism), or polymorphisms that are directly found in the nu-

cleotide sequence (e.g. by multi-locus sequence typing, multiple-locus

variable number tandem repeat analysis, DNA microarray, whole

genome sequencing). Among these techniques, due to its high dis-

criminatory power, a good database and high level of standardisation,

pulsed-field gel electrophoresis (PFGE) is often considered as gold

standard for subtyping of L. monocytogenes. PFGE relies on the analysis

of fragments generated by DNA digest with rarely cutting restriction

enzymes, in the case of L. monocytogenes with AscI and ApaI, and their

separation on an agarose gel applying a periodically changing electrical

field. Comparison of restriction patterns provides information on the

relatedness of different isolates. Harmonisation of experimental proce-

dures and data analysis through the European Union Reference La-

boratory for L. monocytogenes (EURL Lm) and the PulseNet International

Network USA as well as set-up of centralised databases like the EURL

Lm database emphasise the fundamental importance of PFGE for rou-

tine surveillance of L. monocytogenes (Félix, Danan, Van Walle, et al.,

2014; Félix et al., 2013; Graves & Swaminathan, 2001). However, PFGE

is a rather time-consuming and labour-intensive technique. Further-

more, discriminatory power of PFGE profiles is limited as only nu-

cleotide changes in the restriction enzyme recognition sites are de-

tected. Consequently, relatedness of strains may be over- or

underestimated and epidemiologically unrelated isolates may be

assigned to one ‘pseudo’-cluster whereas even highly related strains fall

into distinct clusters.

Thanks to recent developments in next generation sequencing

technologies (NGS), whole-genome sequencing (WGS) as a typing tool

for L. monocytogenes and other foodborne pathogens is gaining in im-

portance (Deng, den Bakker & Hendriksen, 2016; Gilchrist, Turner,

Riley, Petri, & Hewlett, 2015). Sequencing of entire bacterial genomes

provides an unparalleled depth of information. Base-by-base compar-

isons of entire genomes are possible as well as retrieval of additional

information such as virulence or antimicrobial resistance markers. As

opposed to traditional molecular methods like PFGE, WGS provides

comprehensive insight into evolution of bacterial strains.

Comparing Simpson's Indices of molecular typing methods, dis-

criminatory power of WGS-based typing clearly exceeds that of PFGE.

The Simpson's Index is used to quantify the probability that two un-

related strains are assigned to different typing groups (Hunter & Gaston,

1988). Although the Simpson's Index only yields study-specific values

as it depends on the number of identified types and of the isolates that

fall into these types, it is a valuable tool for a relative, quantitative

evaluation of the discriminatory power of typing methods (Fig. 1). In a

study including 188 L. monocytogenes isolates from 30 retail delis in

three U.S. states over 2 years, Simpson's Index for WGS-based single

nucleotide polymorphism (SNP)-based subtyping was 0.95, compared

to 0.91 for PFGE (Stasiewicz, Oliver, Wiedmann, & den Bakker, 2015).

In a comparison between WGS-based core genome multi-locus sequence

typing (cgMLST) and PFGE, Simpson's Indices of 0.987 and 0.944 were

calculated based on the analysis of 100 isolates (Moura et al., 2016). In

both cases unprecedented precision of outbreak investigations became

possible using WGS.

Our reviews aims to demonstrate the value of WGS especially

compared to PFGE in the field of foodborne pathogen surveillance

through introduction into methodical aspects and presentation of ap-

plication examples. We intend to provide an application-oriented

overview on different approaches towards global data exchangeability

and challenges involved, considering differences between the EU, the

USA but also international initiatives.

2. Outbreak investigations using WGS for typing

In the USA, WGS was set up for L. monocytogenes outbreak in-

vestigations by the Centers for Disease Control and Prevention (CDC) in

cooperation with the Food and Drug Administration (FDA), the

National Institutes of Health (NIH) and the United States Department of

Agriculture (USDA) in September 2013 with the long-term aim to

completely supersede the pool of other typing techniques including

PFGE (Jackson et al., 2016). Several independent studies have provided

evidence of the usefulness and value of WGS in outbreak investigations

compared to other molecular typing methods (see below).
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Fig. 1. Comparison of Simpson's indices of WGS-based

cgMLST and SNP analysis, and PFGE.

Discriminatory power of WGS-based typing methods

exceeds that of PFGE typing as shown by comparison

of Simpson's indices. Studies were conducted analysing

100 L. monocytogenes isolates (Moura et al., 2016) and

188 L. monocytogenes isolates (Stasiewicz et al., 2015),

respectively.
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In an outbreak related to contaminated ice cream, listeriosis cases

first accumulated in a single hospital in Kansas from 2014 to 2015

(CDC., 2015a). Although isolates from two of the affected patients

shared a common PFGE pattern, patterns for three other patients did

not, suggesting independence of cases. However, this assumption was

rejected when cgMLST based on WGS data identified four of the five

isolates as highly related and thus allowed their link to the outbreak.

SNP-based analysis of the WGS data confirmed this attribution by

proving a difference of 1–19 SNPs between clinical isolates (Chen et al.,

2017). In another outbreak in 2015, WGS analysis did not only allow

cluster identification that was not possible via PFGE typing, but also

enabled retrospective inclusion of a previously unsolved cluster from

2013 into the outbreak and trace-back to contaminated soft cheese

(CDC., 2015c). Overall, routine use of WGS for typing of L. mono-

cytogenes isolates from clinical and food samples in the USA has proven

undoubtedly successful. The resolution of WGS exceeds the dis-

criminatory power of PFGE and provides more precise and reliable

data. As a result, smaller outbreaks can be recognised that would have

otherwise been considered as sporadic cases. Furthermore, retro-

spective analysis allows grouping of individual sporadic cases over a

longer period of time to one single outbreak and enables to link out-

break strains to a common source. Consecutive regulatory steps like

product recalls or controlled sanitation of production plants can then

prevent further listeriosis cases. Since its implementation for routine

surveillance in the USA in 2013, WGS typing helped solving a variety of

food-related listeriosis outbreaks and also to identify uncommon

sources in a listeriosis outbreak, 2014–2015, linked to pre-packaged

caramel apples (CDC., 2015b). Overall, identification of more outbreaks

with fewer cases per outbreak becomes possible using WGS-based

typing (CDC., 2016).

In the EU and associated countries, as opposed to the USA, WGS has

not yet entered the status of a comprehensive routine typing method for

L. monocytogenes. Between 2013 and 2015, twelve to fifteen outbreaks

of listeriosis per year have been reported in the EU (EFSA & ECDC,

2016). The vast majority of them were resolved using traditional typing

techniques like PFGE in combination with epidemiological evidence.

However, to date, several exemplary studies investigating foodborne

outbreaks by NGS techniques have been performed and published

(Gillesberg Lassen et al., 2016; Kleta et al., 2017; Kvistholm Jensen

et al., 2016; Ruppitsch, Prager, et al., 2015; Schmid et al., 2014).

In 2014, within an international collaboration of public health in-

stitutes and food authorities, a cluster of seven human listeriosis cases

in Germany and Austria that emerged between April 2011 and July

2013 could be identified (Schmid et al., 2014). Initially, the respective

outbreak strains were typed with PFGE and fluorescent amplified

fragment length polymorphism (fAFLP) where they appeared indis-

tinguishable and were assigned to one cluster. CgMLST based on WGS

data, however, was capable to distinguish a cluster of four outbreak

strains (≤6 allelic differences) isolated in 2012–2013 from the other

three strains isolated in 2011 (≥48 allelic differences) that could sub-

sequently be excluded from the outbreak. In addition, the four con-

firmed outbreak cases could be traced back to two different Austrian

food products, an unaged soft cheese (food isolates differing ≤19 al-

leles from the human cluster) and a deli-meat (food isolates differing

≤8 alleles from the human cluster). However, no final attribution could

be made because thresholds for strain differentiation have not yet been

defined. Recently, a genetic distance of ≤10 alleles between human

and food isolates has been proposed for unambiguous source attribution

which would exclude the soft cheese as a possible source (Ruppitsch,

Pietzka, et al., 2015).

During a long-term outbreak of listeriosis in Southern Germany

from 2012 to 2015, WGS and cgMLST were used to confirm clustering

of human isolates with an unusual PFGE pattern into one outbreak

group (Ruppitsch, Prager, et al., 2015). Although six food-related iso-

lates from Austria and Germany showed PFGE patterns identical to the

human isolates, WGS revealed their belonging to independent cluster

types. Thus, faulty source attribution could be averted. Later, the

human cases could be traced back to a contaminated batch of smoked

pork belly (Kleta et al., 2017). This observation underlines the im-

portance of WGS for successful and reliable trace-back of listeriosis

cases to a food source. Nonetheless, although PFGE cannot keep pace

with the discriminatory power of WGS data based analysis, it might still

be a suitable alternative in countries or regions where NGS is not es-

tablished because of economic reasons.

Among European countries, Denmark has officially initiated na-

tionwide real-time WGS typing of human L. monocytogenes isolates for

routine surveillance in September 2013 (Kvistholm Jensen et al., 2016).

In addition, interviews exploring consumption habits of listeriosis pa-

tients have been implemented and added to the typing data since June

2014. So far, these combined databases have proven successful in two

different outbreak investigations. In 2014, 41 listeriosis cases in Den-

mark were assigned to one outbreak cluster through WGS-based SNP

analysis with genetic differences between the isolates not exceeding 3

SNPs (Kvistholm Jensen et al., 2016). In cooperation with the Danish

Veterinary and Food Administration (DVFA) who provided data on

routinely collected food samples, human strains could be traced back to

a common source, a ready-to-eat delicatessen meat which was subse-

quently recalled from the national market. In this way, the outbreak

could be terminated. Similarly, a total of twenty listeriosis cases noti-

fied between 2013 and 2015 in Denmark could be assigned to two

distinct outbreaks, each comprising ten cases (Gillesberg Lassen et al.,

2016). Both clusters could be traced back to smoked salmon or smoked

halibut and trout. Again, WGS typing of human clinical isolates and

routinely collected food isolates allowed reliable source attribution,

enabled to impose legal measures and thereby saved lives.

3. Wet lab standardisation of NGS methods for foodborne

pathogen typing

International collaboration on the control of foodborne pathogens

like L. monocytogenes has more than ever become indispensable to

guarantee food safety. For that purpose, harmonisation and standardi-

sation of WGS-based typing methods across countries and sectors

(human, animal, food) need to be established to ensure comparability

of typing results and to allow data exchange. To date, a variety of

protocols have been developed for typing of L. monocytogenes and other

foodborne pathogens using NGS technologies. The current challenge

lies in identification of differences and definition of generally valid

quality metrics to produce consistent results.

Four main factors allow a statement on the quality of sequencing

results: coverage or sequencing depth, evenness of coverage, read

length and read quality (Loman, Misra, et al., 2012). Coverage describes

the average number of times a genome has been sequenced. It is equal

to the product of read length and number of reads divided by the

haploid genome length (Lander & Waterman, 1988). Bases are usually

sequenced multiple times to increase the probability that all genomic

regions are covered and to compensate for possible sequencing errors in

order to increase confidence in sequencing results. High coverage but

also evenness of coverage is essential to be able to consider a sequen-

cing run successful. Read quality can be assessed through Phred Quality

or Q-scores. This score gives the logarithmic probability of an incorrect

base (Richterich, 1998). For example Q30 represents the probability of

one incorrect base in 1000. Its determination is based on the compar-

ison of measurement parameters during base detection (e.g intensity

profile, signal-to-noise ratio) with empirically determined reference

parameters that are linked to known quality scores. It is to note that Q-

scores are hence specific for a platform and even for new hardware,

software or chemistry within a platform and are dependent on algo-

rithms used to predict them. One major step towards global harmoni-

sation would be the definition of general quality metrics.

Sequencing technologies have massively evolved during the last

decades and are still in a process of continuous development and
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improvement, accompanied by a substantial cost reduction. Following

the ‘First Generation’ Sanger sequencing (Sanger, Nicklen, & Coulson,

1977), introduction of massively parallel NGS or ‘Second Generation’

sequencing (SGS) in 2005 (Margulies et al., 2005) revolutionised

genomics. Independent of the platform, SGS methods share three main

steps to obtain raw sequence data: isolation of DNA, preparation of a

sequencing library and sequencing. Methods used for the individual

steps, however, differ a lot between platforms and laboratories. Pre-

paration of the library involves fragmentation of DNA and tagging with

specific adaptor sequences. These templates are then amplified during

sequencing. Two different technologies are used, emulsion PCR and

enrichment like in the 454 GS Junior (Roche) or the Ion Torrent PGM

(Life Technologies) or solid-phase bridge amplification like in Illumina's

MiSeq (Loman, Constantinidou, et al., 2012). One advantage of the

MiSeq is that no pre-amplification step is needed which shortens the

hands-on time. Although these three benchtop sequencing platforms all

rely on the principle of sequencing-by-synthesis, differences lie in the

details of sequencing chemistry and sequence reading (Table 1). SGS

technologies in general are characterised by a high accuracy and

throughput but short read lengths. As a result, single reads can often not

be assembled to an entirely closed genome but rather yield a ‘draft’

genome with unfilled gaps between the reads (Loman, Misra, et al.,

2012). Still, this is often sufficient for the purpose of comparative

genomics of different highly related strains by mapping the reads to a

reference genome (Loman, Constantinidou, et al., 2012; Ronholm,

Nasheri, Petronella, & Pagotto, 2016). This so-called reference guided

assembly is a valuable tool in phylogenetic and epidemiological in-

vestigations.

As an alternative to SGS, in 2011, the first single-molecule, real-

time, long-read sequencer, PacBio RS II (Pacific Biosciences) has been

put on the market. In this ‘Third Generation’ sequencer (TGS), the

amplification step is omitted and sequencing is based directly on a

single DNA molecule. It thereby yields much longer reads than SGS for

which fragmented DNA is used (Table 1). High error rates, lower

throughput and higher costs per base are disadvantages of this platform

(Rhoads & Au, 2015). Nevertheless, this approach is useful in de novo

assembly of genomes as the long reads help to close gaps between

shorter reads. Advantages of second and third generation sequencing

can be combined in a complementary approach called ‘hybrid sequen-

cing’. Through combination of the high accuracy of SGS and the long

reads produced by TGS, a reliable, closed reference genome can be

created which can subsequently be used for example for reference

guided assembly.

Currently for sequencing of bacterial genomes almost exclusively

SGS is used, with a main focus on Illumina sequencers (Schürch &

Schaik, 2017). Although general accuracy of SGS systems is high

through redundancy of reads, different sequencing technologies exhibit

different error characteristics (Junemann et al., 2013; Loman, Misra,

et al., 2012). Among benchtop sequencers, the Illumina MiSeq revealed

the lowest error rate (rate of< 0.001 indels per 100 bases). It also had

the highest throughput per run (1.6 Giga bases of data per run and

60Mb per hour) and the shortest hands-on time as the amplification

step is performed on the sequencer (Junemann et al., 2013; Loman,

Misra, et al., 2012). However, selection of the most suitable sequencer

heavily depends on the application and specific needs. In clinical con-

text and outbreak investigations, especially high throughput and user

convenience are needed at a reasonable price. Besides the technical

facts, also subjective preferences play an important role. Exemplary

studies comparing different sequencers have shown that results from a

single laboratory are neither significantly affected by the sequencing

machine nor by the sequencing chemistry (Harris et al., 2013; Kaas,

Leekitcharoenphon, Aarestrup, & Lund, 2014). However, detailed and

extensive analysis and inter-laboratory evaluation of sequencing prac-

tices in use remains to be performed in order to assess minor differences

and to establish robustness of results and global comparability.

Global Microbial Identifier (GMI) is an international initiative with

the aim of real-time aggregating, sharing, mining and using microbial

WGS data (Rindom, 2013). Currently, more than 200 experts from 43

countries are involved. Inclusion of intergovernmental organisations

like the World Health Organization (WHO) and the World Organization

for Animal Health (OIE) as well as a collaboration with the EU project

COMPARE, a multidisciplinary research network establishing a globally

linked data information sharing platform system for the control of

emerging infectious diseases and foodborne outbreaks (Skiby, 2015),

are expected to support international crosstalk and to strengthen the

impact of the initiative. One main objective of GMI is the development

and realisation of inter-laboratory proficiency testing (PT) to identify

steps where quality assurance, control measures or methodological

unification are essential to produce standardised high quality sequen-

cing results. In 2014, a pilot PT with only six participants was per-

formed to gain first experience in documentation and practical proce-

dures for this kind of study (Hendriksen et al., 2016). Furthermore, for

an optimal adjustment of testing conditions and focus areas prior to a

large-scale study, requirements for a general PT among GMI members

were interrogated by a survey. Of the 42 respondents, 31% were from

the USA, 8.9% and 2.2% from Canada and Australia, respectively, and

51.2% from EU and associated countries (Moran-Gilad et al., 2015).

The three most accessible sequencing platforms were MiSeq (23.7%),

Ion Torrent PGM (15%) and HiSeq (10.5%), two benchtop and one

production-scale sequencer (Table 1). While the benchtop solutions

were mostly internally accessible, accessibility to HiSeq was pre-

dominantly external. Enquiry of sequencing priorities revealed that

foodborne pathogens were the most frequently sequenced pathogens

(75%) with high resolution outbreak analysis being the leading appli-

cation. Among the priority pathogens, L. monocytogenes was on the

fourth place behind Escherichia coli, Salmonella and Campylobacter spp.

Although the majority of survey respondents agreed that quality fil-

tering and criteria would be important, values specified varied that

much that no conclusion could be drawn. For example especially cov-

erage was mentioned as an important quality criterion by 90.9% of

Table 1

Overview of sequencers most frequently used for WGS of bacterial pathogens.

Sequencer Provider Scale Technology Data collection Read length Run timea

Second Generation Sequencers

MiSeq Illumina benchtop sequencing by synthesis optical signal 1× 36 bp - 2× 300 bp 4 h - 56 hb

Ion Torrent PGM Life Technologies benchtop semiconductor sequencing pH change 200 - 400 bp 2 h - 7 h

HiSeq 2500 Illumina production-scale sequencing by synthesis optical signal 1× 36 bp - 2× 250 bp 7 h (rapid run mode) - 11d b

Third Generation Sequencer

PacBio RS Pacific Biosciences benchtop single molecule real-time sequencing fluorescence pulse > 20 kb 0.5 h - 10 h

a Manufacturer specifications; depending on run mode, kit and read length.
b Includes time for cluster generation.
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respondents, but values ranged from 11-30x (21.6%) over 31-60x

(51.3%) to over 60x (18.9%). Apart from the quality criteria, also la-

boratory methods reported to be used for sample preparation were

highly diverse e.g. for DNA or library preparation.

PT based on survey results was performed in 2016 by GMI sup-

ported by the U.S. FDA. Campylobacter coli and C. jejuni, L. mono-

cytogenes and Klebsiella pneumoniae were selected for analysis. The PT

was designed to address three topics: DNA preparation and sequencing

procedures, sequencing output, and variant calling of WGS data and

cluster analysis. With submission deadline being the 13 January 2017,

results remain to be published. Identification of differences and their

impact on the sequencing and also analysis results represent an im-

portant step towards global harmonisation which would then open the

door for international exchange of standardised WGS data.

In general, there are two possible approaches towards global har-

monisation of WGS for bacterial typing. The first one is to validate

whether different ways are able to yield equivalent results. GMI, for

instance, focuses on comparable results among different laboratory

practices, sequencing platforms and quality criteria, thereby con-

sidering already established local standards. However, this is an orga-

nisational and analytical challenge. The second approach is hence the

setup of a standard protocol. An exemplary multi-center ring trial was

successful in showing that accuracy and reproducibility of NGS based

bacterial typing (in this case of Staphylococcus aureus) is very high if

prescribed methods are applied (Mellmann et al., 2017).

PulseNet USA has developed a Standard Operating Procedure (SOP),

PNL32, as a standardised laboratory protocol for WGS of bacterial or-

ganisms on the Illumina MiSeq benchtop sequencer (PulseNet, 2015,

2016). PulseNet has been established as a collaboration of CDC, state

and local health departments in the USA for real-time comparison of

human bacterial pathogens in order to define disease clusters. First

initiated for comparison of PFGE profiles, its transition to WGS data is

in full progress. With respect to isolates from food and the environment,

FDA has launched the GenomeTrakr network. It collaborates with CDC

allowing public health authorities to share data from patient and food

isolates while investigating foodborne outbreaks and thus ameliorates

food safety in the USA. The PulseNet protocol provides standardised

and highly detailed methods for DNA isolation and quality control, li-

brary preparation and run setup for the sequencer. For example, it

stipulates a quality check prior to library preparation where DNA-

concentration should at least be 10 ng/μl and meet a 260/280 ratio

between 1.75 and 2.05 measured by a Thermo Scientific™ NanoDrop™

spectrophotometer. Furthermore, quality benchmarks for sequence raw

data have been specified, more precisely Q-scores and coverage. Q-

score has to be Q30 for> 75% of the bases when using a 500 cycle kit

and>85% of bases for a 300 cycle kit and coverage for L. mono-

cytogenes needs to be≥ 20x before upload to PulseNet Central.

Although feasible for laboratories that newly establish WGS, for

laboratories that already use WGS, implementation of a standardised

protocol could suffer from low compliance as transition would need to

be accompanied by investment and change of workflows. Furthermore,

as a result of the constant evolution of NGS, continuous adaptation of

the standardised procedure is necessary. Newly evolving techniques

have to be validated before their inclusion into the SOP which could

lead to a delay in their use. For an approach leaving methodical details

to individual laboratories and in return defining quality parameters and

general thresholds, the use of new techniques would not be a problem

as long as final sequence data meet the set criteria. However, such

universal quality criteria are very hard to define and are going to re-

quire further in-depth analyses and validations until applicable to WGS

typing of pathogens in the field of public health and food safety.

4. Dry lab standardisation of NGS methods for foodborne

pathogen typing

Through extensive development in NGS technologies, massive

amounts of sequence information can be produced within a relatively

short period of time. However, bioinformatics tools for the analysis and

interpretation of big data struggle to keep pace. In the present time, the

bottleneck for integration of NGS-based genome analysis into routine

use in disease surveillance is shifting from sequencing to the bio-

computational analysis and data storage (Wyres et al., 2014). Currently,

no stand-alone tool is able to meet all requirements for a reliable,

straightforward and automated analysis of the sequence reads.

For sequencing of bacterial genomes mainly SGS is applied, pro-

ducing overlapping, short reads. As a result from the high coverage, a

high accuracy is achieved. This makes the technology more feasible for

variant analyses like SNP detection than the more inaccurate TGS

technologies. Still, reads generated by SGS are significantly shorter than

those produced by TGS. There are two strategies to deal with this

problem: de novo assembly of sequence reads to reconstruct a genome

or reference-based mapping where single reads are aligned to an al-

ready existing, closely related reference genome. For both methods, a

variety of different bioinformatics solutions and programs exists (for

examples see Table 2).

Algorithms for de novo assembly can be grouped into three main

categories, all based on graphs: Overlap/Layout/Consensus (OLC)-

methods using overlap graphs, de Bruijn Graph (DBG)-methods using k-

mer graphs or greedy graph algorithms. Graphs are abstract structures

of nodes connected by edges which are used to present relationships. In

an overlap graph, the graph represents the sequencing reads (nodes)

and their overlaps (edges) of varying length whereas k-mer graphs use

subsequences and overlaps of fixed length of k nucleotides (Miller,

Koren, & Sutton, 2010). Greedy graphs make use of either the one or the

other. Differences lie in the details of graph construction and resulting

definition of contiguous sequences of concatenated reads named con-

tigs. Choice of assembler depends on the properties of the sequence data

to be used; some assemblers are even specific for a certain sequencing

platform. When using DBG assemblers for example, k-mer length has to

be adjusted to the read-length while finding a trade-off between sen-

sitivity of smaller and the specificity of longer k-mers (Compeau,

Pevzner, & Tesler, 2011). Commercial as well as open-source solutions

are available for de novo assembly. In a survey among 42 GMI members

in 2014, 75% declared using Velvet, freely available software based on

DBG and one of the most popular assemblers (Moran-Gilad et al., 2015).

Other common assembly software according to the survey was Newbler

(46.9%), CLC Genomics (46.9%) and SOAPdenovo (25%). The com-

mercial software Newbler was implemented specifically for 454 GS se-

quencing platforms and uses OLC whereas the other two programs CLC

Genomics (commercial) and SOAPdenovo (freeware), are based on DBG

algorithms. It is to note that this survey represents only a relatively

small number of software solutions. In practice, a variety of other tools

is used as well. Because of the speed of development of software and

algorithms, it is difficult to provide a comprehensive and up-to-date

ranking. Also changes in the prevalence of use of different sequencing

systems influence the popularity of assembly software. For most re-

searchers, commercial software is not a feasible solution. Instead, open-

Table 2

Overview of assembly algorithms most frequently used for WGS data.

Assembler Algorithm Availability

De novo assembly

Velvet De Bruijn Graph free

Newbler Overlap/Layout/Consensus commercial

CLC Genomic De Bruijn Graph commercial

SOAPdenovo De Bruijn Graph free

Reference-based mapping

BWA FM-index free

Bowtie 2 FM-index free
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source software is far more popular. Besides Velvet, SPAdes is a fre-

quently used freeware assembler. In a comparison of seven different

assemblers using the quality assessment tool QUAST, it was able to

reach the highest amount of mapped genes, the largest N50 value (a

measure for the weighted median contig size) and the highest number

of complete genes (Gurevich, Saveliev, Vyahhi, & Tesler, 2013). An-

other example for a freeware assembler is IDBA which in the same study

showed its strength in the longest and lowest number of contigs.

Generally, it is difficult to define quality metrics for an assembly as

usually the correct answer is not known and assembly errors are very

hard to differentiate from biologically relevant SNPs or other genetic

changes (Nagarajan & Pop, 2013). Commonly used parameters are

hence limited to the assessment of contiguity of the assembly unless an

already closed reference genome exists for comparison. Contiguity

measures include total size and number of contigs and the N50 value.

As a part of the Genome Assembly Gold-standard Evaluations (GAGE)

study, eight popular assemblers were compared (Salzberg et al., 2012).

One key finding of the study was that the degree of contiguity of an

assembly heavily depended on the assembler and the genome to be

assembled. Furthermore, quality of the raw data had a considerable

impact on the overall quality of the assembly. In general, the correct-

ness of an assembly was found to vary, albeit independently of statistics

on contiguity. Consistent with these findings, in another extensive

comparison of assemblers, the Assemblathon, significant differences

between assemblies from different assembly strategies were revealed

(Bradnam et al., 2013; Earl et al., 2011). As a result, it becomes clear

that no generic answer can be given to the question of which assembler

is the most appropriate for a given dataset. It is rather a case-by-case

decision, highly depending on specific requirements.

For detection of variants, in most cases, reference-based mapping as

a less computationally intensive method is used. First of all, single se-

quence reads need to be aligned to a closely related reference genome.

There are three categories of alignment algorithms for that purpose:

algorithms based on hash tables, based on suffix/prefix tries (i.e. suffix

tree, enhanced suffix array or FM-index) or based on merge sorting (Li

& Homer, 2010). The latter one is very rarely used, though. According

to a survey among GMI members conducted in 2014, most used soft-

ware solutions were the Burrow Wheeler Aligner (BWA) and Bowtie 2

with 66.7 and 53.3% respectively (Moran-Gilad et al., 2015). Both of

them use the FM-index for alignment, the most memory saving and thus

most common implementation (Li & Homer, 2010). Other software like

e.g. Novoalign, SMALT, MAQ or SHRiMP was only used by 10% of users

(Moran-Gilad et al., 2015).

De novo assembly as well as reference-based alignment is only the

first step in a series of analytical steps needed for variant detection and

in the end clustering of sequences into phylogenetic groups. In general,

variants can be called on the basis of SNP detection or gene-by-gene

comparison (i.e. cgMLST or wgMLST). Computing efforts in this context

are mainly influenced by the decision whether read mapping (less

computationally expensive) or a de novo assembly (more computa-

tionally expensive) is used as starting point for analysis. Although SNP

detection provides the highest accuracy, it is often more complex to

evaluate. WgMLST and cgMLST serve as a less burdensome alternative

providing similar discriminatory power by putting the focus on allelic

changes regardless of the number of SNPs involved (Fig. 2). As an ex-

tension of the classical MLST which is limited to the analysis of only few

housekeeping genes (e.g. 7 for L. monocytogenes) (Maiden et al., 1998;

Salcedo, Arreaza, Alcala, De La Fuente, & Vazquez, 2003), in cgMLST

most genes of the core genome and in wgMLST even the entirety of

genes are taken into account. The core genome is defined as the set of

genes present in all strains of the same bacterial species whereas the

whole genome also comprises accessory genes. One key advantage over

SNP detection is that the nomenclature scheme from classical MLST can

simply be extended, facilitating consistent classification according to a

standardised subtype nomenclature. For L. monocytogenes, a core

genome scheme has been proposed by Ruppitsch and colleagues in

2015 (Ruppitsch, Pietzka, et al., 2015). Alternatively, a bioinformatics

pipeline was designed for cgMLST of L. monocytogenes, taking raw se-

quence reads as input and calculating a core genome profile by com-

paring it to an expandable database to compile a phylogeny (Pightling,

Petronella, & Pagotto, 2015b).

For both, SNP- and allele-based variation detection, different steps

and programs have to be combined to receive an informative result.

Furthermore, there might be the need for repetitive or consecutive steps

within one piece of software. For example a reference-based assembly

has to be followed by analysis through a SNP caller to identify muta-

tions. Then, for creation of a phylogenetic tree, another program is

usually needed. Likewise, the general analytical process for cgMLST and

wgMLST includes assembly, annotation of genes and comparison to a

reference. Instead of a user-specific, stepwise analysis, often involving

combinations of available programs and custom scripts, the establish-

ment of a generalised and standardised analysis pipeline would be

helpful in order to generate a universally valid output.

For isolates of L. monocytogenes, different combinations of assembly

tools and SNP callers were tested with the result that they varied

heavily in the number of true and false positively called SNPs and in

accuracy (Pightling, Petronella, & Pagotto, 2015a). Altogether, no

general statement on the influence of different parameters could be

made as different combinations behaved differently and sometimes

even opposed to one another. For example for some combinations,

higher coverage led to more true positive identifications of variant sites

but in some cases also produced more false positive hits. Besides, read

quality trimming and filtering impacted the quality of results either

positively or even negatively depending on the software combinations

used. This underlines the drastic effect of the variety of methodical

implementations on the analysis of NGS data.

Nevertheless, in a proficiency testing for the dry lab part of WGS in

2015 by GMI with more than 40 participants, > 93% of the samples

clustered correctly using various analytical approaches (Pettengill

et al., 2015). However, number of variants and branch lengths differed

considerably indicating that thresholds that led to clustering varied

markedly. This shows how difficult it would be to standardise thresh-

olds for different methods. Another study comparing typing capabilities

of five different laboratories showed that if methods are prescribed in

great detail, a unified output can be reached, underlining the usefulness

of a standardised analytical approach (Mellmann et al., 2017). The

easiest way for standardisation would probably be the implementation

of an analytical pipeline as an aggregation of individually operating

segments. This could simplify the transfer of intermediate results be-

tween single analytical steps to the level of a single input and output.

Current pipelines link individual software pieces for an overarching

analysis. Interoperability of components needs to be assured by com-

patible data formats of program in- and outputs. Furthermore, record-

keeping should be included for transparency and reproducibility of

1 allelic difference

A

1 SNP difference

3 SNP differences

B
Fig. 2. Detection of differences in cgMLST (A) and SNP analysis (B).

In cgMLST analysis, only allelic changes are considered, no matter

how many nucleotide changes are found within one allele. In con-

trast to that, in SNP analysis, every single difference between nu-

cleotide sequences is taken into account.
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analysis which is not only crucial for standardisation but ultimately also

to secure legal evidence of data (Wyres et al., 2014). In the ideal case, a

pipeline should be oriented to the needs of non-specialist, non-bioin-

formatician users enabling an intuitive and automated analysis.

The American Center for Food Safety and Applied Nutrition

(CFSAN), a branch of the FDA, has developed a pipeline for construc-

tion of SNP matrices from NGS data (Davis et al., 2015). It combines the

following steps: mapping of reads to a reference genome with Bowtie 2,

processing of the mapping files with SAMtools, identification of variant

sites using VarScan and finally production of a SNP matrix using a

custom Python script. The steps are run automatically, converting the

input FASTQ data from sequencing reads into a SNP matrix in FASTA

format. Still, some points are left to the hands of the user. For example

no quality filtering is included. The reason is most likely the number

and complexity of possible steps for that purpose and the considerable

variations between platforms that make it almost impossible to find a

general solution (Edwards & Holt, 2013). Furthermore, the created SNP

matrix only serves as an input for the construction of a phylogeny. As a

result, despite the robustness and accurateness of the pipeline within

the scope of its implementation, it is still no complete solution. Besides

the CFSAN pipeline, numerous other, often custom and facility-specific

analytical approaches are used and their detailed description would go

beyond the scope of this article.

Standardisation for the dry lab analytical part of WGS appears to be

even more difficult to achieve than for the wet lab. The easiest way

would probably be the establishment of a universal analytical pipeline,

in the ideal case directly linked to the sequencer itself and outputting

desired results. Although this would hamper flexibility, it would likely

be the least complicated and least labour-intensive solution to produce

consistent and globally interchangeable data indispensable for mole-

cular surveillance of bacterial infections.

5. Metadata and databases for global sharing of WGS data

On the way to a global sharing of bacterial WGS data, several ob-

stacles remain to be overcome. Besides standardisation of data gen-

eration and analysis, international structures and standards for data

sharing need to be established.

There are three main databases for the storage of WGS data which

together form the International Sequence Database Collaboration

(INSDC): the National Center for Biotechnology (NCBI), the European

Nucleotide Archive (ENA) and the DNA Data Bank of Japan (DDBJ).

GMI as well as the FDA network GenomeTrakr's database use the

publicly accessible data layer of parts of the INSDC. GenomeTrakr for

example submits data to the NCBI under a single BioProject (Jackson

et al., 2016). In Europe, EFSA and ECDC have established a joint da-

tabase for foodborne pathogens of human and non-human origin. Al-

though not yet used for collection of WGS data but for management of

PFGE typing data, it is built to be extended. The ECDC-EFSA database is

independent of such public data layers as from the INSDC. It is physi-

cally hosted at the TESSy database, the ECDC's database for human

strains.

One fundamental issue is the question on the metadata that can be

made available together with the WGS data in an open-access database.

Metadata is described as “information that is held as a description of

stored data” (Dictionary.com), such as isolate specific details like iso-

lation date or source. It is indisputable that such additional information

about a bacterial strain provided together with the sequence data

greatly increases its utility (Allard et al., 2016). However, national

legislation and data protection acts may restrict data sharing and thus

limit free data exchange. As a result, there is no consensus about the

level of metadata that should be made publicly available. Although

different initiatives started collecting bacterial typing data, different

concepts of metadata-linkage are proposed. GenomeTrakr includes a

minimum set of metadata fields that need to be filled when submitting

sequence data to the database. They comprise the collector of the

isolate (i.e. the submitting lab), its taxonomic name, sample date and

site, the isolation source and sequencing parameters (Allard et al.,

2016). GMI expands this list by information on pathogen-associated

attributes like specific host or host disease (GMI., 2013). Compared to

the GenomeTrakr or the GMI database, for the ECDC-EFSA database, a

more restrictive approach is pursued according to EU legislation on

data protection. Additional information is restricted to the source of the

sample (food, animal, feed, human), typing data and date of sampling

whereas for example information related to the origin (country) is

considered as potentially sensitive (Rizzi et al., 2017). Identification of

the submitting laboratory is also not considered admissible. Further-

more, differentiated access rights for different user groups and stake-

holders are incorporated for sensitive data as a compromise between

data accessibility and protection. It is to note that the current EU wide

Data Protection Basic Regulation including the Data Protection Direc-

tive 95/46/EG is about to be changed. However, key principles will

remain valid only some aspects have been changed or added. The

amendment will become active in May 2018.

Apart from strict legal regulations, there are further reservations

regarding free publication of genomic data and metadata (Aarestrup,

2012). As a result of concerns about the ultimate use and possibly the

fear of unauthorised application, researchers may not be willing to

share their data in public databases before publication. For govern-

ments and institutions, competing interests in trade or tourism could be

a problem as especially data on foodborne pathogens, the detection of

food contamination or even related outbreaks can have far-reaching

consequences. Also patenting and intellectual property issues might

arise from a free information exchange. Another major challenge is to

reconcile protection of confidential patient information and the pa-

tients' privacy rights and provision of information needed for epide-

miological investigations. These reservations have to be considered

when developing a legal framework for public information accessibility.

For the EURL Lm DB as part of the joint EFSA-ECDC database, com-

pliance with a memorandum of understanding is a prerequisite for

participation (Félix, Danan, Makela, et al., 2014). Among others, it

regulates data ownership and publication.

An example how well a thought-out and user-oriented database

system can work, as among others shown by an almost exponential

growth of available genomes, is the Pathosystems Resource Integration

Center (PATRIC) (Gillespie et al., 2011; Wattam et al., 2017). PATRIC

represents a database coupled with an analysis resource center. Initially

designed for the integration of research data and metadata for various

pathogens, it now aims to also adapt to the needs of clinical application.

Genomic information is linked to metadata including information on

organism, isolate, host, sequence, phenotype and project. However, not

all fields need to be filled. Although all entries of the database and also

information on metadata are publicly available, privacy of data can be

maintained by analysing own sequences in a private space without

disclosing the information. Still, comparison with public database en-

tries remains possible. On the one hand, this one-way data exchange

guarantees protection of possibly sensitive data while allowing re-

conciliation with already existing data. On the other hand, if all new

sequences remain private, progress and timeliness will probably be

obstructed. Hence, although technical basis is provided, again a com-

promise and consensus on the side of the user needs to be found in order

to allow for efficient global data sharing.

6. Conclusion

During the last years, WGS has proven its value in the surveillance

of L. monocytogenes and related outbreak investigations, enabling fast

and precise identification of coherent clusters of infection cases, their

trace back to food-sources and ultimately elimination of the infection

root. So far, several initiatives have been launched to promote WGS

based subtyping of L. monocytogenes and other foodborne pathogens.

However, transition to an international standard remains to be
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established.

The One Health strategy makes information exchange between

public health, food safety and veterinary authorities indispensable.

Hence, a globally accessible sequence database of foodborne pathogens

linked with a minimum set of metadata would bring major benefits. The

separation of laboratory data and epidemiological or clinical data as

well as restricted access to these databases could be an approach to

meet data protection criteria. However, more detailed information

should be available on demand to effectively protect public health. If an

agreement on data format and quality parameters of raw sequence data

could be made, direct upload into a centralised analysis pipeline linked

to the central database might help to yield standardised and thus

comparable sequence information. Still, necessary IT infrastructure has

to be established to cope with the problem of data transfer.

The benefits of global data sharing are clear. It helps to provide a

comprehensive picture of the appearance and spread of pathogens as-

sociated with public health concerns and economic losses around the

world. Global data accessibility and exchange is resource-saving as fi-

nancial burden and workload can be reduced by preventing un-

necessary duplication. In addition, it gives the opportunity for a global

view and thus improved scientific quality and effective risk manage-

ment.
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Abstract

Where classical epidemiology has proven to be inadequate for surveillance and control of foodborne pathogens, molecular 

epidemiology, using genomic typing methods, can add value. However, the analysis of whole genome sequencing (WGS) data 

varies widely and is not yet fully harmonised. We used genomic data on 494 Listeria monocytogenes isolates from ready- to- eat 

food products and food processing environments deposited in the strain collection of the German National Reference Labora-

tory to compare various procedures for WGS data analysis and to evaluate compatibility of results. Two different core genome 

multilocus sequence typing (cgMLST) schemes, different reference genomes in single nucleotide polymorphism (SNP) analysis 

and commercial as well as open- source software were compared. Correlation of allele distances from the different cgMLST 

approaches was high, ranging from 0.97 to 1, and unified thresholds yielded higher clustering concordance than scheme- 

specific thresholds. The number of detected SNP differences could be increased up to a factor of 3.9 using a specific reference 

genome compared with a general one. Additionally, specific reference genomes improved comparability of SNP analysis results 

obtained using different software tools. The use of a closed or a draft specific reference genome did not make a difference. 

The harmonisation of WGS data analysis will finally guarantee seamless data exchange, but, in the meantime, knowledge on 

threshold values that lead to comparable clustering of isolates by different methods may improve communication between 

laboratories. We therefore established a translation code between commonly applied cgMLST and SNP methods based on 

optimised clustering concordances. This code can work as a first filter to identify WGS- based typing matches resulting from 

different methods, which opens up a new perspective for data exchange and thereby accelerates time- critical analyses, such 

as in outbreak investigations.

DATA SUMMARY

The authors confirm all supporting data, codes and protocols 

have been provided within the article or through supplemen-

tary data files.

Sequencing data have been deposited in the European 

Nucleotide Archive (ENA) at EMBL–EBI under the acces-

sion number PRJEB38495, except for isolate 16- LI00360-0, 

which is available under the accession number ERS4418852 

(SAMEA6659390).

INTRODUCTION

Listeria monocytogenes is the causative agent of the infectious 
disease listeriosis. While infections may be asymptomatic in 
otherwise healthy individuals, vulnerable population groups, 
like immunocompromised or elderly people, pregnant women 
and newborns, are likely to suffer from severe clinical symp-
toms, sometimes with a fatal outcome [1]. Although listeriosis 
is comparatively rare, a hospitalisation rate of 98.6 % and a 
case fatality rate of 13.8 % in the European Union (EU) in 
2017 clearly show the serious public health hazards [2]. The 
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vast majority of L. monocytogenes infections are foodborne 
[3]. Consequently, tracing back clinical cases to contaminated 
food products is one of the key requirements for disease 
control. However, classical epidemiology alone has proven 
to be inappropriate for that purpose. The main reasons for this 
are the very broad range of potentially affected food vehicles 
and the long incubation period and severity of disease, which 
complicate patient interviews on food consumption [4–7]. As 
a result, molecular typing methods have long been applied in 
L. monocytogenes surveillance and outbreak investigations. 
During recent years, whole genome sequencing (WGS) has 
revolutionised this field through its unprecedented resolution 
[8–11].

There are basically two different approaches for WGS- based 
typing. The first approach is a gene- by- gene comparison 
where the analysis focuses on allele differences. An example 
of this approach is core genome multilocus sequence typing 
(cgMLST), an extension of classical MLST to a larger set of 
genes that is shared among members of a single species. In 
the case of L. monocytogenes, two main cgMLST schemes 
are currently in use. One comprises 1701 loci and is built 
into the software Ridom SeqSphere+ [12], whereas the 
other one comprises 1748 loci and is built into the software 
BioNumerics [13]. This incorporation of cgMLST schemes 
into commercial tools with a graphic user interface has the 
great advantage of a straightforward operation, including for 
users lacking bioinformatics skills. However, cost- intensive 
software licenses might not be affordable for all users. In 
these cases, it is helpful that both cgMLST schemes are also 
publicly available and can be used within open- source tools 
such as the Blast- score- ratio- Based Allele Calling Algorithm 
(chewBBACA [14]). Although a little bioinformatics training 
is required, tools like this provide a low- cost alternative. 
The second approach for WGS- based typing is the single 
nucleotide polymorphism (SNP) analysis. In this case, single 
nucleotide variations are used as a distance measure between 
bacterial sequences. Both, commercial (e.g. BioNumerics) 
and open- source (e.g. Snippy [15]) solutions are available for 
analysis. SNP analysis is commonly based on a comparison 
against a selected reference genome. However, the genome 
chosen as reference can affect analysis results [16, 17].

For effective surveillance and control of human listeriosis, not 
only comprehensive molecular typing of L. monocytogenes 
isolates from food, food processing environments and clinical 
cases, but also communication of results between different 
sectors (food safety, public health) and countries is needed. 
However, procedures for WGS- based typing are diverse 
and not yet fully harmonised. Starting from the sequencing 
protocol through quality filtering (e.g. read trimming) to algo-
rithms for assembly, mapping or variant calling and finally 
distance assessment, there is considerable space for variation. 
The ideal way to go for the future will be the harmonisation 
of all these methods between different laboratories to enable 
the seamless exchange of analysis results. To date, several 
international initiatives have been commenced to deal with 
this issue [18–20]. However, until a generally accepted solu-
tion has been found, an interim solution is urgently needed.

In order to assess the transferability of results, we compared 
the most commonly used WGS- based typing methods for 
L. monocytogenes. Our aim was to provide a translation 
code as a first filter for the identification of typing matches 
resulting from the different methods. In addition, we describe 
a procedure that can also be applied to the comparison of 
other methods.

METHODS

Study dataset

A total of 494 isolates from ready- to- eat food products and 
food processing environments sampled in official controls in 
2016 were selected from the strain collection of the German 
National Reference Laboratory for L. monocytogenes as 
a representative dataset for the population structure of  
L. monocytogenes in the food chain in Germany.

Bacterial strain cultivation

Pure cultures of L. monocytogenes isolates were routinely 
stored at −80 °C in brain heart infusion medium with 20 v/v 
% glycerol. Prior to downstream analysis, bacteria were plated 
onto Sheep Blood Agar and incubated overnight at 37 °C.

Genomic DNA extraction and whole genome 
sequencing (WGS)

Overnight cultures of L. monocytogenes strains were 
harvested and lysed following the PulseNet standardised 
laboratory protocol for WGS of Gram- positive bacteria 
(https://www. cdc. gov/ pulsenet/ pdf/ pnl32- miseq- nextera- 
xt. pdf). For DNA extraction, the QIAamp DNA Mini Kit 
(Qiagen) was used following the manufacturer’s instruc-
tions. Purity of extracted DNA (OD

260:280
 and OD

260:230
 ratio) 

was measured with the NanoDrop spectrophotometer  
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(Thermo Fisher Scientific) and extracted DNA was quantified 
using the Qubit dsDNA BR Assay Kit with a Qubit 2.0 fluo-
rometer (Invitrogen). Sequencing libraries were constructed 
with the Nextera XT Sample Preparation Kit (Illumina) for 
sequencing in paired- end mode with 2×300 bp reads on an 
Illumina MiSeq sequencer using the MiSeq Reagent v3 600- 
cycle Kit (Illumina).

Sequencing quality control and genome assembly

Raw sequencing reads were quality checked using FastQC 
version (v) 0.11.5 [21] and trimmed using Trimmomatic v 
0.36 [22]. Subsequently, trimmed reads were assembled and 
analysed using the pipeline Assembly- based QUality Assess-
ment for Microbial Isolate Sequencing (AQUAMIS) v 0.9.0 
at default parameters [23]. This pipeline includes the tools 
unicycler v 0.4.4 for assembly and assembly polishing, mash v 
2.1 for reference search, and quast v 4.6.3 for assembly quality 
control. Genome assemblies obtained from the AQUAMIS 
pipeline served as a starting point for cgMLST- based typing, 
whereas trimmed reads were used as the basis for SNP 
analysis. Detailed information on tools and parameters can 
be found in Supplementary File S1 (available in the online 
version of this article).

Classical multilocus sequence typing (MLST)

Classical seven- gene MLST sequence types (STs) and corre-
sponding MLST clonal complexes (CCs) were determined 
from assembled draft genomes according to the scheme avail-
able at https:// bigsdb. pasteur. fr/ listeria/ listeria. html using 
Ridom SeqSphere+ (Ridom).

Closed genomes of L. monocytogenes available at NCBI were 
analysed with the software mlst [24] and a reference genome 
was chosen for each MLST CC (https:// github. com/ crarlus/ 
refseq- MLST/).

Core genome (cg) MLST analysis

Ridom SeqSphere+

Assembled draft genomes were analysed in Ridom 
SeqSphere+with the ‘Process assembled genome data’ 
function at default parameters for L. monocytogenes. The 
integrated 1701 loci scheme was used [12]. A cgMLST 
allele coverage of at least 98 % was set as quality threshold, 
assuming that this value is representative of the entire 
genome quality [25]. If the threshold was not reached, 
sequencing was repeated. Resulting allele profiles were 
exported in tsv format. This method will be referred to as 
Ridom_Ruppitsch.

BioNumerics

The WGS tools plugin of BioNumerics v 7.6.3 (Applied 
Maths) was used for analysis with the integrated 1748 loci 
cgMLST scheme [13]. Resulting cgMLST allele profiles were 
exported in tsv format. This method will be referred to as 
BioNumerics_Moura.

chewBBACA

chewBBACA is a freely available software suite that allows 
scheme creation, allele calling and scheme evaluation [14]. 
Allele calling starts with the identification of coding sequences 
(CDS) using prodigal [26]. If an exact match to the allele data-
base is found, the corresponding allele number is assigned. 
Otherwise, a blastp score ratio (BSR) approach evaluates 
whether a novel allele is present, or no allele can be inferred. 
Newly inferred alleles are updated in a local allele database.

Here, we used the pipeline chewieSnake [27] that calls alleles 
for a set of samples using chewBBACA v 2.0.12, combines 
their allele profiles and infers an allele distance matrix as well 
as a minimum spanning tree using GrapeTree v 1.4.1 [28]. 
Subsequently, samples can be hierarchically clustered and a 
cgMLST report is compiled. As we used chewieSnake with the 
cgMLST scheme developed by Ruppitsch and colleagues [12], 
this method will be referred to as chewBBACA_Ruppitsch.

SNP analysis

Reference genomes

The application of three different kinds of reference genomes 
was compared: 1) general, species- specific, closed; 2) 
subgroup- specific, closed; 3) subgroup- specific, draft. The 
genome of the L. monocytogenes reference strain EGDe 
(NC_003210.1) was used as general reference. Isolates were 
assigned to subgroups according to MLST CCs. As far as 
possible, MLST CC- specific closed reference genomes were 
selected as described by the European Food Safety Authority 
[16]. To identify reference genomes for those MLST CCs for 
which the European Food Safety Authority had not specified 
one, closed genomes of L. monocytogenes available at NCBI 
were subjected to MLST CC determination. In the case of 
more than one closed genome per MLST CC, the reference 
genome was selected randomly. For MLST CC- specific draft 
reference genomes, draft genomes with the best assembly 
quality (highest N50, lowest number of contigs) per MLST CC 
were selected from our dataset. Only MLST CCs containing 
more than five isolates and with a closed reference genome 
available in NCBI were included in MLST CC- specific 
analyses.

BioNumerics

For SNP analysis in BioNumerics, the basic version of BioNu-
merics v 7.6.3 without the WGS tools plugin was used. Strict 
filtering of SNPs at software default settings was applied. This 
method will be referred to as SNP_BioNumerics.

Snippy

Snippy was chosen as a representative open- source SNP 
pipeline since it is recognised as one of the most reliable SNP 
pipelines [29].

SNPs were detected with the variant calling pipeline snippy- 
snake [30]. In short, SNPs were called with snippy v 4.0 [15], 
the core alignment was determined using snippy- core and the 
SNP distance matrix using snp- dists [31]. Subsequently, the 
pipeline clustered all samples into cluster types for a range of 
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thresholds using hierarchical clustering and generated a SNP 
report. This method will be referred to as SNP_Snippy.

Filtering of isolates for MLST CC-specific analyses

While generally applicable typing methods may give an 
adequate overview, it can be useful to repeat certain analyses 
only for a subgroup of isolates to gain deeper insights. We used 
MLST CC- specific analysis for this purpose. However, isolates 
belonging to different MLST CCs may vary in diversity, for 
example depending on the number of individual STs within 
the CC. This can result in exceptionally large SNP distances, 
which will distort the results. Actually, the establishment of 
the largest core genome is required for detailed SNP analysis. 
Therefore, after initial SNP analysis, very distantly related 
isolates within each MLST CC were identified (>800 SNPs 
in SNP_BioNumerics and >18 000 SNPs in SNP_Snippy) and 
excluded from further MLST CC- specific analyses.

Properties and correlations of distance matrices

For all selected cgMLST methods, distance matrices were 
calculated with GrapeTree v 1.4.1 [28] (using the option 
‘--missing 0’ to deal with missing loci) based on allele profiles. 
Distance matrices for SNP analyses were used as yielded from 
primary analysis.

All downstream analyses from distance matrices were 
performed in R using the packages plyr, reshape2 and ggplot2. 
Distance matrices were linearized and sorted to compare pair-
wise distances. For MLST CC- specific analyses, the resulting 
sub- settings of distance matrices per MLST CC were merged 
to one. Boxplots were generated to visualise the magnitude 
of detected distances and Spearman correlation was used to 
quantify the similarity of pairwise distances between different 
methods. Correlations were visualised using the package 
corrplot.

Concordance of clustering

Distance matrices were used for single linkage clustering 
at different threshold values in R. The clustering results 
dependent on methods and thresholds served as inputs for 
the Comparing Partitions online tool available at http://www. 
comparingpartitions. info [32]. The adjusted Wallace coeffi-
cient was selected as pairwise agreement measure because 
it directly indicates the concordance between clusters. The 
coefficient can be regarded as the probability that a cluster 
calculated by method 1 matched that calculated by method 
2, and vice versa. Always two adjusted Wallace coefficients 
deriving from two comparison directions were determined.

Establishment of a translation code between methods

We assessed the degree of concordance between three different 
cgMLST methods (comprising three software solutions and 
two cgMLST schemes) and six different SNP methods (two 
software solutions with three types of reference genomes 
each). Our aim was to define threshold values that can be 
communicated for a comparable interpretation of clustering 
results. As they are epidemiologically well defined, we chose 
two published allele distance thresholds for the cgMLST 

schemes (seven and ten allele differences, referred to in 
previous work [12, 13]) as references to establish our transla-
tion code. More precisely, the clustering information derived 
from one of the three cgMLST methods with one of the two 
threshold values was set as a reference and was compared with 
the clustering at various threshold values in a comparison 
method (other cgMLST method or SNP method) using the 
Comparing Partitions online tool as described above. The 
threshold value of the comparison method, at which the sum 
of the two adjusted Wallace coefficients reached a maximum, 
was defined as the ‘adjusted threshold’.

Practical test of the translation code

The translation code was tested with the cgMLST dataset 
retrieved from BioNumerics_Moura at an allele threshold of 
seven as reference method. The five largest clusters, for which 
also MLST CC- specific analyses had been performed, were 
selected. Thus, one cgMLST cluster each from MLST CC9, 
CC121, CC3, CC8 and CC2 was included in our analysis. One 
isolate per cgMLST cluster was randomly selected and used 
for cluster search at adjusted threshold values in the other 
methods. This approach reflects the generally valid workflows 
during international disease outbreaks, when the sequence of 
an individual reference isolate is shared between laboratories 
as the basis for local cluster identification.

RESULTS

Quality control

All 494 isolates were sequenced with coverage between 32 
and 231 (median 99). Raw reads could be assembled into 15 
to 72 contigs (median 29) with an N50 between 9.6×104 and 
1.5×106 (median 3.6×105). Median cgMLST allele coverage 
using Ridom SeqSphere+was 99.8 %.

Comparison based on distance matrices

Generally applicable methods

In cgMLST analysis, pairwise allele distance between isolates 
ranged from 0 to 1687 (median 1347) using Ridom_Ruppitsch, 
from 0 to 1687 (median 1351) using chewBBACA_Ruppitsch 
and from 0 to 1740 (median 1409) using BioNumerics_Moura. 
The differences in pairwise distances resulting from Ridom_
Ruppitsch and BioNumerics_Moura varied between −89 and 
24 (median −55), from chewBBACA_Ruppitsch and BioNu-
merics_Moura between −87 and 27 (median −54), and from 
Ridom_Ruppitsch and chewBBACA_Ruppitsch between −12 
and 4 (median −1). Method correlations were 0.97 and 0.98 
using different cgMLST schemes and 1 with the same scheme 
(Fig. 1). A visual comparison between distances derived from 
different methods can be found in Supplementary file 2.

Pairwise SNP distance between isolates with EGDe as the 
reference genome ranged from 0 to 12 694 (median 3504) 
using SNP_BioNumerics and from 0 to 107 646 (median 
26 884) using SNP_Snippy. Method correlation was 0.89.

Correlations of cgMLST_Ridom_Ruppitsch and 
cgMLST_chewBACCA_Ruppitsch were 0.89 and 0.88 to 
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SNP_Snippy_EGDe and 0.91 and 0.9 to SNP_BioNumerics_
EGDe, respectively (Fig. 1). Correlation of cgMLST_BioNu-
merics_Moura was 0.85 to SNP_Snippy_EGDe and 0.9 to 
SNP_BioNumerics_EGDe.

Subgroup (MLST CC)-specific methods

The 494 isolates belonged to 39 different MLST CCs (Tables 
S1 and S2), out of which 19 MLST CCs contained at least 
five isolates, but a closed reference genome was only avail-
able for 16 of them at NCBI. Accordingly, 409 isolates were 

selected for initial MLST CC- specific analyses. After filtering 
out those isolates with too large SNP distances within an 
MLST CC, 394 isolates from 15 different MLST CCs were 
left (Table 1). Filtered isolates came from CC8 (n=3), CC4 
(n=1) and CC14 (n=9). As for CC14, only two isolates were 
left after filtering, the entire MLST CC was excluded from 
further analyses.

In SNP_BioNumerics, use of an MLST CC- specific closed 
reference genome led to pairwise SNP distances between 0 
and 292 (median 68), whereas use of a specific draft reference 
genome yielded 0 to 290 (median 70) pairwise SNP distances 
(Fig. 2). Applying SNP_Snippy, SNP distances with a specific 
closed reference genome ranged between 0 and 622 (median 
68) and between 0 and 714 (median 69) with a specific draft 
reference genome. In the MLST CC- specific analyses with 
EGDe as a reference, SNP distances were 0 to 64 (median 
17) using SNP_BioNumerics and 0 to 240 (median 59) using 
SNP_Snippy.

The median ratio of pairwise distances resulting from SNP 
analysis with the same software but with a closed or draft 
specific reference genome was 1. The median ratio between 
a closed or a draft specific reference and EGDe was 3.8 and 
3.9, respectively, using SNP_BioNumerics, and 1.2 using 
SNP_Snippy. When EGDe was used as reference genome, the 
median ratio of pairwise distances between SNP_Snippy and 
SNP_BioNumerics was 3.1.

Overall, there was near perfect (0.99) to perfect (1) correla-
tion between different software and closed or draft specific 
reference genome usage in SNP analysis. Lowest method 
correlations were found with SNP_BioNumerics when using 

Fig. 1. Correlations of generally applicable typing methods, based on 

linearized distance matrices. Colour scale indicates the strength of 

correlation.

Table 1. MLST CCs and references used for MLST CC- specific analyses (sorted by frequency in our dataset)

MLST CC Closed reference (GenBank Accession) Draft reference Coverage Contigs

CC121 HG813249 16- LI01132-0 91 21

CC9 FR733649 16- LI00873-0 77 17

CC8 CP006862 16- LI00415-0 84 19

CC2 CP006046 16- LI01038-0 119 25

CC3 CP006594 16- LI00227-0 148 27

CC1 AE017262 16- LI00258-0 61 19

CC37 CP011397 16- LI00295-0 113 20

CC6 CP006047 16- LI00782-0 85 16

CC5 CP006592 16- LI00750-0 133 21

CC101 CP025221 16- LI00284-0 117 20

CC18 CP020830 16- LI00319-0 119 15

CC155 CP002004 16- LI00862-0 90 25

CC224 CP016629 16- LI00391-0 91 24

CC7 CP002002 17- LI00007-0 112 21

CC4 FM242711 16- LI00480-0 93 27
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EGDe as reference (0.77 to 0.85). All other correlations were 
larger than 0.96 (Fig. 3).

Distances to the reference and size of the core genome

When having a more detailed look into the results from 
SNP_Snippy (Table S3), isolates had a smaller SNP 
distance to the draft than to the closed MLST CC- specific 
reference genomes. On the one hand, more SNP positions 
were missing when the isolate reads were mapped to the 
closed references. On the other hand, however, the size of 
the closed reference genomes tended to be larger than that 
of the draft ones (by 26 kbp on average). Altogether, the 
core genome size (defined as the number of positions in 
the reference that are neither missing nor masked in any 
of the isolate’s mapping to the reference) was in the end 
very similar between draft (median size 2 809 303 bp) and 
closed reference (median size 2 802 508 bp) genomes. In 
SNP_Snippy, the isolates had a distance of 25 000 SNPs to 
the EGDe reference on average. Furthermore, we observed 
a substantial increase in the number of missing as well as 
masked positions compared with the specific reference 

Fig. 2. Boxplot of SNP distances from BioNumerics and Snippy using 

different reference genomes for SNP analysis (applied to a subset of 

394 isolates of 15 different MLST CCs), based on linearized distance 

matrices.

Fig. 3. Correlations of MLST CC- specific typing methods (applied to a subset of 394 isolates of 15 different MLST CCs), based on linearized 

distance matrices. Colour scale indicates the strength of correlation.
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genomes. Therefore, the core genome size when using EGDe 
as reference was only 2 281 008 bp.

Comparison of clustering

cgMLST methods

To compare the clustering of isolates, threshold values 
published for the two cgMLST schemes were applied to the 
different cgMLST approaches. For the Ruppitsch scheme this 
is ten alleles [12], and for the Moura scheme seven alleles [13] 
between neighbouring isolates. Agreement was perfect when 
comparing clusters at a seven- allele threshold with clusters 
at a ten- allele threshold (adjusted Wallace coefficient 100 %). 
The other way around (from ten to seven), however, concord-
ance was only between 70.4 and 86.5 % (Fig. 4). When using 
the same threshold values for different methods, overall 
concordance was higher than with different thresholds. 
At a threshold of seven alleles, concordance was 97.6 and 
100 % when using the same cgMLST scheme in different 
software and between 90.6 and 92.8 and 99.3 % (depending 
on the direction) for different schemes. At a threshold of ten 
alleles, concordance was 99.8 and 100 % when using the same 
cgMLST scheme in different software and between 89.2 and 
89.4 and 99.9 % (depending on the direction) for different 
schemes.

Optimisation of clustering and translation code between 

cgMLST and SNP methods

The cgMLST clustering at described threshold values 
[12, 13] was set as the reference for the adjustment of clus-
tering thresholds for other methods. Our idea was to define 
threshold values, which allow for the communication of clus-
tering information between laboratories. Table 2 displays the 
resulting translation code, which can be applied as follows: 
in a case in which Laboratory A uses cgMLST analysis with 
BioNumerics_Moura at the published allele threshold of 
seven, an allele threshold of eight in cgMLST analysis with 
Ridom_Ruppitsch used in Laboratory B would result in the 
best cluster agreement. The corresponding adjusted Wallace 
coefficients, 97.3 and 98.2 %, can be found in Fig. 5a. If Labo-
ratory C uses SNP analysis with Snippy_EGDe, a threshold 
of 13 SNPs should be applied to yield comparable clustering 
to Laboratory A. If Laboratory C, however, uses a different 
reference genome in SNP analysis, for example a draft MLST 
CC- specific one (Snippy_draft), a threshold of 12 SNPs will 
be best suited to fit the clustering from Laboratory A.

Although use of identical thresholds in different cgMLST 
methods already led to higher concordance of clustering 
than use of different cgMLST scheme- specific thresholds, 
slight adjustment of thresholds (±1 allele) could increase 

Fig. 4. Matrix of adjusted Wallace coefficients (direction- dependent values) for cgMLST methods at common thresholds (seven and ten 

alleles). Colour scale indicates percentage of concordance.
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concordance even more (Table 2, Fig. 5). For example, clus-
tering at an allele threshold of seven in BioNumerics_Moura, 
compared with Ridom_Ruppitsch setting a threshold of eight 
instead of seven alleles, led to a method concordance of at 
least 97.3 % (Fig. 5a) instead of only 90.6 % (Fig. 4).

Overall, at an allele threshold of seven, achievable method 
concordance with cgMLST and SNP methods was at least 
90.9 % (Fig. 5a) and at a threshold of ten alleles in cgMLST at 
least 77.9 % (Fig. 5b).

When using a general reference genome (EGDe) in SNP anal-
ysis, threshold values for optimised clustering concordance 
with cgMLST were lower than with an MLST CC- specific 
reference. Additionally, thresholds differed between SNP_
Snippy_EGDe and SNP_BioNumerics_EGDe, but threshold 
values were similar for MLST CC- specific approaches irre-
spective of whether closed or draft references or the two 
different software tools were applied (Table 2).

Practical test of the translation code

For the cgMLST cluster from CC121 retrieved from BioNu-
merics_Moura at an allele threshold of seven (16 isolates), 
clustering differed by one to six isolates (median 3.5) when 
using other methods (Fig. 6).

In contrast, for the cgMLST clusters from CC3 (15 isolates) 
and CC2 (seven isolates), agreement was perfect, apart from 
a single isolate that was missing in the clustering results from 
SNP_Snippy_EGDe. For the clusters from CC9 (26 isolates) 
and CC8 (eight isolates), exactly the same isolates were 
found to form a cluster at the adjusted threshold values in 
all methods.

DISCUSSION

cgMLST

Use of the Moura cgMLST scheme mostly resulted in higher 
allele distances than the Ruppitsch scheme. Given that the 
number of loci included in the two schemes differs by 47, 
this was to be expected. Overall correlation of the different 
cgMLST approaches was high, probably due to the 1261 loci 
overlap between the two schemes [13]. However, use of the 
Ruppitsch scheme either in Ridom SeqSphere+or in chewB-
BACA resulted in slightly different allele distances. This can 
be attributed to differences in the way the two algorithms 
work. While the query sequence is compared to the loci via a 
nucleotide blast (BLASTn) in Ridom SeqSphere+, chewB-
BACA is centred on the prediction of CDS and a subsequent 
protein blast (BLASTp). The idea behind making a blastp 
instead of a blastn is that silent mutations are ignored 
because they are biologically irrelevant [14]. However, a major 
problem with blastp arises from frameshifts – either biologi-
cally present or due to assembly errors – which can change 
an entire protein (all amino acids). In a blastn approach, a 
frameshift is perceived as a single nucleotide change.

Apart from the pure distances between isolates, in outbreak 
investigations especially, clustering of isolates is important to T
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provide enough evidence for potential epidemiological links. 
Due to its ease of use and the possibility of a unified nomen-
clature, gene- by- gene approaches are recommended for that 
purpose by the PulseNet International global consortium 

[20, 25]. We, therefore, applied cgMLST together with 
epidemiologically well- defined clustering threshold values 
to establish a translation code between different WGS typing 
approaches (Table 2). It is important to note that the idea 

Fig. 5. Adjusted Wallace coefficients (direction- dependent values) at optimised clustering thresholds. (a) Threshold seven alleles, (b) 

Threshold ten alleles. Grey text colour indicates that the method was used as the reference for threshold adjustment. Percentage values 

of concordance are presented. Each method has a specific colour and rows and columns of the same colour represent the two directions 

of cluster comparison. adj.: adjusted threshold from Table 2.
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of fixed clustering thresholds is controversial, as has been 
discussed previously [33, 34]. WGS trace- back analysis always 
has to be used in combination with epidemiological evidence 
and published thresholds should be seen more as guidelines 
than as absolute rules [35]. Isolates that fall into a cluster at 
a certain threshold do not necessarily have to be epidemio-
logically linked [33]. Nevertheless, threshold values can be a 
valuable tool for a first delimitation of possibly linked isolates.

Despite the different numbers of loci in the different cgMLST 
schemes, application of unified thresholds yielded higher 
clustering concordance than application of scheme- specific 
thresholds. Slight adjustment of the thresholds could further 
increase concordance and led to identical clustering in four 
out of five tests of the translation code. However, method 
concordance did not reach 100%, even when using the same 
cgMLST scheme. This shows that not only the agreement on 
a specific scheme but also on specific software is important 
to achieve unambiguous comparability of clustering results.

SNP

While generally applicable typing methods may provide a 
valuable overview, further analyses on a subgroup of isolates 
will help to gain deeper insights. A potential outbreak cluster, 
for instance, can be initially identified by using cgMLST or 
SNP analysis with a general reference genome. A higher reso-
lution of the closely related isolates within the cluster can be 
achieved by subsequent SNP analysis with a specific reference 
genome. To this end, the use of MLST CC- specific references 
has been proposed [16].

SNP analysis, limited to closely related isolates (in our case 
isolates of a specific MLST CC) using a closely related reference 

genome, reduced differences between the tools Snippy and 
BioNumerics when compared with analysis with a general 
reference. This indicates that such a restriction to closely 
related genomes improves method robustness. Additionally, 
in agreement with results from previous studies [17], using 
a closed or a draft specific reference genome did not have a 
decisive effect (neither on distance matrix nor on clustering). 
Both approaches have advantages and disadvantages. While 
a closed genome resolves repetitive regions, those will most 
probably not be present in a draft assembly. This phenomenon 
could decrease the number of detected SNPs actually present 
in unresolved regions and close to contig borders in a draft 
reference genome. Conversely, a draft genome from a certain 
study population is likely to have a higher degree of similarity 
to the rest of the isolates than a closed genome from a public 
repository, which may increase the core genome size and thus 
potentially the number of detected SNPs. As we have shown 
above (similar size of core genomes in SNP_Snippy with draft 
and closed reference genomes), the two effects (closeness and 
completeness) appeared to offset each other in our dataset. 
Therefore, if closed reference genomes specific for MLST 
CCs are not available, draft genomes from the dataset to be 
analysed can be used equivalently as references without losing 
analytical accuracy.

As an alternative to reference- based SNP calling, also 
reference- free, k- mer based approaches exist [36, 37]. They 
may have the advantage that no bias is introduced due to 
the selection of a certain reference. However, results are 
thereby highly dependent on the dataset and more difficult to 
compare than results derived from standardised, pre- defined 
references. Therefore, reference- based SNP calling using 

Fig. 6. Practical test of the translation code taking a cgMLST cluster of 16 isolates belonging to MLST CC121 as an example. The 

cgMLST dataset retrieved from BioNumerics_Moura at an allele threshold of seven (grey text colour) was used as reference method 

for clustering. Labelling on the right, ‘method_threshold’. Upper labels: isolate identifiers. An asterisk indicates the isolate that was 

used for cluster search in the different methods. Members of a cluster are coloured. Corresponding distance matrices can be found in 

Supplementary file S3.
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pre- defined references in the form of MLST CC- specific refer-
ence genomes will lead to more standardised results when 
different datasets are compared.

While there was no difference between different software 
when using a specific reference genome, differences were 
large between Snippy and BioNumerics when using a general 
reference genome. The clustering threshold in the transla-
tion code for SNP_BioNumerics, in turn, was generally lower 
than for SNP_Snippy. As filter settings were similar in the 
two tools, the reasons for this effect remain unclear. Differ-
ences in the size of the core genome used in SNP analysis 
might have played a role. At this point, a major disadvantage 
of commercial over open- source tools becomes obvious. 
Although a closed- source software solution may be easier to 
use, open- source tools offer higher transparency since they 
allow for full comprehension of all steps in the analysis and 
provide intermediate and final results in standardised bioin-
formatics file formats.

CONCLUSIONS

In case of international disease outbreaks, for instance, one 
country needs to know whether related strains are found in 
other countries so that appropriate measures can be taken 
to prevent human infections. However, different laboratories 
frequently have different preferences for WGS data analysis. 
Such missing standards might hamper collaboration between 
sectors and countries [38]. Although web servers can be used 
for shared data analysis, the great advantage of local data anal-
ysis over submitting results to a web server is that the period 
between sequencing experiment and analysis results can be 
influenced. Of course, time also depends on the computa-
tional infrastructure at a certain institute. However, especially 
in time- critical applications like outbreak investigations, this 
could be a limiting factor. Even when primary analysis is 
performed locally, use of harmonised methods would open 
the opportunity to exchange intermediate results, like allele 
profiles in the case of cgMLST or variant files in the case of 
SNP analysis. These could then be used for global clustering 
with little computational effort.

Until harmonisation of methods is achieved, a translation 
code based on method concordances can work as a first 
filter to identify typing matches resulting from the different 
WGS analysis methods. This gives a new perspective for data 
exchange. The main advantage of our approach is the free 
choice of analysis tools, provided that there is good concord-
ance with comparison methods. In this way, methods already 
established in a laboratory can be applied and uptake chal-
lenges of a method prescribed by another party are avoided.

Our translation code represents an average over the popu-
lation structure of L. monocytogenes in the food chain in 
Germany. Despite the predominantly encouraging results 
from our practical test, we have seen that the WGS analysis 
methods may show better or worse agreement for individual 
clusters and different combinations of methods. This is 
also reflected in the range of adjusted Wallace coefficients 

achievable (Fig. 5). These coefficients must always be kept 
in mind when using the translation code, since they provide 
information about the probability of exact cluster matches 
between two methods of analysis. If these values are too 
low, the use of an alternative method on either side should 
be considered in order to improve adjusted Wallace coef-
ficients before exchanging cluster information. However, 
good translatability (high clustering concordances at adjusted 
threshold values) between the majority of tested methods 
offers the valuable opportunity to minimise the amount of 
sequence data that needs to be exchanged and individually 
re- analysed. In this way, processes can be accelerated, which 
is an enormous advantage, especially in time- critical analyses 
of supraregional outbreaks.
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Supplement 1: Tools and parameters 

 
 

Tool Version Parameters 

Trimmomatic 0.36 ILLUMINACLIP:NexteraPE-PE.fa:2:30:10  
SLIDINGWINDOW:4:20  
MINLEN:50 
 

unicycler 0.4.4 --mode conservative  
--min_fasta_length 300 
 

chewBBACA 2.0.12 --bsr: 0.6  # BLAST score ratio (BSR) threshold 
--ptf Listeria_monocytogenes.trn # prodigal training file 
 

GrapeTree 1.4.1 --method distance 
--missing 0 # (Number of different alleles)/(Number of loci that      
present in both genomes)*(Total number of loci) 
 

Snippy 4.0 mapqual: 60 # Minimum read mapping quality to consider  
basequal: 13 # Minimum base quality to consider   
mincov: 10 # Minimum site depth to for calling alleles   
minfrac: 0 # Minumum proportion for variant evidence 
(0=AUTO)   
minqual: 100 # Minumum QUALITY in VCF column 6   
maxsoft: 10 # Maximum soft clipping to allow (default '10') 
 

 
  



Supplement 2: Distance comparison 

 
Visual comparison of the distances derived from different methods. 
Each point represents a pairwise difference, with the point’s x-value being the distance in 
method 1 (marked on the x-axis) and the y-value being the distance in method 2 (marked on 
the y-axis). If the points are found on the diagonal regression line (grey), this indicates a high 
degree of agreement between the methods (also reflected in a high correlation value). 
To highlight how many isolates are clustered differently by different tools, exemplary cluster 
thresholds for the individual methods are included in the figures, represented by a horizontal 
or vertical line (red). All points located in the lower left quadrant are assigned to the same 
cluster by both methods at the thresholds applied. If a point is either above this quadrant or to 
the right of it, this is a case where the clustering does not match. All points in the upper right 
quadrant are correctly assigned to no cluster. 
 
 
1. cgMLST versus cgMLST 
 
 

cgMLST_Ridom_Ruppitsch versus 
cgMLST_chewBBACA_Ruppitsch 

 

cgMLST_Ridom_Ruppitsch versus 
cgMLST_BioNumerics_Moura 

 

  
 
 

 

cgMLST_chewBBACA_Ruppitsch versus 
cgMLST_BioNumerics_Moura 

 

 

 

 

 
  



2. SNP versus SNP 
 
2.1. Software-wise 
 
 

SNP_Snippy_spec._closed versus 
SNP_BioNumerics_spec._closed 

 

SNP_Snippy_spec._draft versus 
SNP_BioNumerics_spec._draft 
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SNP_BioNumerics_EGDe 

 

 

 

 

 
  



2.2. Reference genome-wise 
 
 

SNP_Snippy_spec._closed versus 
SNP_Snippy_spec._draft 

 

SNP_Snippy_spec._closed versus 
SNP_Snippy_EGDe 

  
 
 
 

SNP_BioNumerics_spec._closed versus 
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SNP_BioNumerics_spec._closed versus 
SNP_BioNumerics_EGDe 

 

  
 
 
  



Supplement 3: Distance matrices for the translation code test on MLST CC121 isolates 
 
Allele distances and SNP distances were compared for all applied methods. 
Distances are coloured according to the method-specific (translational) threshold. White: 
distance value within threshold; red: above threshold; orange: borderline case where actual 
cgMLST distances are above thresholds (e.g. 7.2) but distances were rounded for better 
visibility. 
 
The reference method was cgMLST_BioNumerics_Moura with an allele threshold of seven. 
Correct and wrong clustering of the different test methods is indicated through the colour code 
of isolate identifiers. Blue: correctly identified as a member of the cluster (compared to the 
reference method); black: incorrectly not assigned to cluster; red: correctly not assigned to 
cluster; pink: incorrectly assigned to cluster.  
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Supplementary Table 1

MLST clonal complex Number of isolates
CC121 74
CC9 57
CC2 54
CC3 50
CC8 44
CC451 29
CC1 21
CC37 20
CC6 18
CC5 16
CC101 12
CC14 11
CC59 10
CC18 9
CC155 7
CC224 6
CC7 5
CC21 5
CC4 5
CC199 4
CC20 4
CC204 4
CC87 3
CC475 3
CC321 3
CC29 2
CC403 2
CC217 2
CC26 2
CC288 2
CC31 2
ST631 1
New 1
CC193 1
CC689 1
ST213 1
CC19 1
CC412 1
CC426 1
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Supplementary Table 2

Sample ID MLST ST MLST CC
16-LI00231-0 8 CC8
16-LI00232-0 9 CC9
16-LI00402-0 8 CC8
16-LI00415-0 8 CC8
16-LI00437-0 8 CC8
16-LI00508-0 29 CC29
16-LI00542-0 8 CC8
16-LI00583-0 8 CC8
16-LI00762-0 580 CC9
16-LI00781-0 8 CC8
16-LI00794-0 189 CC29
16-LI00851-0 8 CC8
16-LI00918-1 8 CC8
16-LI00962-0 9 CC9
16-LI00968-0 8 CC8
16-LI01044-0 8 CC8
16-LI01044-2 8 CC8
16-LI01091-0 8 CC8
16-LI01172-0 2117 CC8
16-LI01175-0 16 CC8
16-LI00843-0 8 CC8
16-LI00880-0 8 CC8
16-LI01065-0 451 CC451
16-LI01010-0 18 CC18
16-LI00820-0 37 CC37
16-LI00390-0 new ?
16-LI00254-0 2 CC2
16-LI00537-0 7 CC7
16-LI00248-0 18 CC18
16-LI00258-0 1 CC1
16-LI00280-0 101 CC101
16-LI00281-0 101 CC101
16-LI00538-0 1 CC1
16-LI00539-0 1 CC1
16-LI00540-0 1 CC1
16-LI00809-0 ? CC1
16-LI00991-0 18 CC18
16-LI01182-0 1 CC1
17-LI00032-0 26 CC26
16-LI00878-0 7 CC7
16-LI00287-0 1 CC1
16-LI00293-0 3 CC3
16-LI00315-0 4 CC4
16-LI00317-0 3 CC3
16-LI00356-0 87 CC87
16-LI00370-0 3 CC3
16-LI00377-0 1 CC1
16-LI00383-0 1 CC1
16-LI00411-0 1 CC1
16-LI00434-0 1 CC1
16-LI00434-1 1 CC1
16-LI00439-0 330 CC288
16-LI00466-0 2 CC2
16-LI00543-0 399 CC14
16-LI00600-0 3 CC3
16-LI00613-0 3 CC3
16-LI00632-0 5 CC5
16-LI00703-0 3 CC3
16-LI00706-0 3 CC3
16-LI00723-0 3 CC3
16-LI00792-0 ? CC288
16-LI00840-0 2 CC2
16-LI00859-0 3 CC3
16-LI00881-0 3 CC3
16-LI00908-0 3 CC3
16-LI00959-0 87 CC87
16-LI00979-0 2 CC2
16-LI00990-0 3 CC3
16-LI00996-0 1 CC1
16-LI01037-0 193 CC193
16-LI01043-3 2 CC2
16-LI01059-0 3 CC3
16-LI01073-0 8 CC8
16-LI01079-0 1 CC1
16-LI01081-0 87 CC87



16-LI01088-0 20 CC20
16-LI01098-0 3 CC3
16-LI01137-0 1 CC1
16-LI01141-0 5 CC5
16-LI01154-0 3 CC3
16-LI01159-0 3 CC3
16-LI01167-0 3 CC3
16-LI01173-0 1 CC1
16-LI01198-0 3 CC3
17-LI00005-0 3 CC3
17-LI00010-0 3 CC3
17-LI00024-0 2 CC2
17-LI00031-0 9 CC9
17-LI00068-0 3 CC3
16-LI00876-0 9 CC9
16-LI00897-0 ? CC2
16-LI00898-0 2 CC2
16-LI00884-0 2 CC2
16-LI00227-0 3 CC3
16-LI00220-0 3 CC3
16-LI00245-0 3 CC3
16-LI00253-0 2 CC2
16-LI00259-0 1 CC1
16-LI00279-0 101 CC101
16-LI00270-0 5 CC5
16-LI00282-0 101 CC101
16-LI00283-0 101 CC101
16-LI00284-0 101 CC101
16-LI00285-0 101 CC101
16-LI00300-0 3 CC3
16-LI00314-0 2 CC2
16-LI00322-0 2 CC2
16-LI00330-0 5 CC5
16-LI00332-0 5 CC5
16-LI00333-0 5 CC5
16-LI00334-0 5 CC5
16-LI00335-0 5 CC5
16-LI00336-0 5 CC5
16-LI00337-0 5 CC5
16-LI00338-0 5 CC5
16-LI00341-0 1 CC1
16-LI00347-0 3 CC3
16-LI00352-0 1 CC1
16-LI00354-0 3 CC3
16-LI00355-0 59 CC59
16-LI00298-0 3 CC3
16-LI00360-0 5 CC5
16-LI00366-0 1 CC1
16-LI00369-0 3 CC3
16-LI00386-0 3 CC3
16-LI00399-0 3 CC3
16-LI00412-1 4 CC4
16-LI00418-0 2 CC2
16-LI00428-0 3 CC3
16-LI00442-0 2 CC2
16-LI00455-0 224 CC224
16-LI00456-0 224 CC224
16-LI00457-0 3 CC3
16-LI00545-0 2 CC2
16-LI00565-0 2 CC2
16-LI00601-0 2 CC2
16-LI00632-1 5 CC5
16-LI00684-0 3 CC3
16-LI00691-0 59 CC59
16-LI00705-0 2 CC2
16-LI00707-0 2 CC2
16-LI00708-0 2 CC2
16-LI00726-0 2 CC2
16-LI00750-0 5 CC5
16-LI00775-0 2 CC2
16-LI00784-0 3 CC3
16-LI00788-0 2 CC2
16-LI00861-0 9 CC9
16-LI00864-0 2 CC2
16-LI00926-0 224 CC224
16-LI00938-0 2 CC2
16-LI00955-0 224 CC224
16-LI00957-0 31 CC31



16-LI00961-0 2 CC2
16-LI00966-0 9 CC9
16-LI00969-0 2 CC2
16-LI00972-0 145 CC2
16-LI00982-0 3 CC3
16-LI00985-0 3 CC3
16-LI01014-0 2 CC2
16-LI01025-0 2 CC2
16-LI01032-0 2 CC2
16-LI01038-0 2 CC2
16-LI01043-0 2 CC2
16-LI01043-1 2 CC2
16-LI01043-2 2 CC2
16-LI01075-0 9 CC9
16-LI01080-0 3 CC3
16-LI01096-0 2 CC2
16-LI01103-0 426 CC426
16-LI01109-0 3 CC3
16-LI01125-0 3 CC3
16-LI01138-0 9 CC9
16-LI01139-0 3 CC3
16-LI01142-0 2 CC2
16-LI01165-0 9 CC9
16-LI01168-0 2 CC2
16-LI01169-0 3 CC3
16-LI01179-0 2 CC2
16-LI01183-0 631 ST631
16-LI01185-0 2 CC2
16-LI01189-0 3 CC3
16-LI01195-0 3 CC3
16-LI01199-0 3 CC3
16-LI01211-0 2 CC2
16-LI01213-0 219 CC4
17-LI00001-0 3 CC3
17-LI00003-0 3 CC3
17-LI00004-0 3 CC3
17-LI00026-0 1 CC1
17-LI00049-0 2 CC2
16-LI00956-0 31 CC31
16-LI00863-0 9 CC9
16-LI00867-0 2 CC2
16-LI00868-0 2 CC2
16-LI00872-0 2 CC2
16-LI00882-0 2 CC2
16-LI00883-0 2 CC2
16-LI00909-0 3 CC3
17-LI00002-0 3 CC3
16-LI00222-0 59 CC59
16-LI00244-0 59 CC59
16-LI00262-0 2 CC2
16-LI00223-0 59 CC59
16-LI00288-0 2 CC2
16-LI00303-0 6 CC6
16-LI00312-0 6 CC6
16-LI00358-0 101 CC101
16-LI00363-0 ? CC2
16-LI00367-0 6 CC6
16-LI00391-0 224 CC224
16-LI00423-0 2 CC2
16-LI00426-0 6 CC6
16-LI00427-0 6 CC6
16-LI00438-0 6 CC6
16-LI00480-0 4 CC4
16-LI00494-0 6 CC6
16-LI00495-0 6 CC6
16-LI00498-0 59 CC59
16-LI00578-0 504 CC475
16-LI00584-0 59 CC59
16-LI00685-0 6 CC6
16-LI00689-0 101 CC101
16-LI00701-0 5 CC5
16-LI00702-0 5 CC5
16-LI00704-0 122 CC9
16-LI00749-0 155 CC155
16-LI00751-0 6 CC6
16-LI00778-0 6 CC6
16-LI00780-0 6 CC6
16-LI00782-0 6 CC6



16-LI00786-0 155 CC155
16-LI00847-0 451 CC451
16-LI00849-0 6 CC6
16-LI00850-0 101 CC101
16-LI00853-0 101 CC101
16-LI00862-0 155 CC155
16-LI00925-0 6 CC6
16-LI00963-0 504 CC475
16-LI00971-0 59 CC59
16-LI00983-0 504 CC475
16-LI00993-0 217 CC217
16-LI01013-0 217 CC217
16-LI01035-0 2 CC2
16-LI01036-0 59 CC59
16-LI01078-0 7 CC7
16-LI01104-0 6 CC6
16-LI01126-0 6 CC6
16-LI01140-0 224 CC224
16-LI01156-0 2 CC2
16-LI01157-0 4 CC4
16-LI01162-0 155 CC155
16-LI01204-0 6 CC6
16-LI01209-0 689 CC689
17-LI00028-0 213 ST213
17-LI00029-0 26 CC26
17-LI00030-0 101 CC101
16-LI00899-0 59 CC59
16-LI00900-0 2 CC2
16-LI00216-0 91 CC14
16-LI00353-0 155 CC155
16-LI00778-1 321 CC321
16-LI00858-0 37 CC37
16-LI01099-0 155 CC155
16-LI01105-0 2079 CC199
16-LI01106-0 121 CC121
17-LI00050-0 121 CC121
16-LI00911-0 155 CC155
16-LI00292-0 321 CC321
16-LI00304-0 321 CC321
16-LI00309-0 18 CC18
16-LI00319-0 18 CC18
16-LI00359-0 121 CC121
16-LI00361-0 204 CC204
16-LI00368-0 121 CC121
16-LI00385-0 173 CC19
16-LI00400-0 199 CC199
16-LI00401-0 199 CC199
16-LI00500-0 18 CC18
16-LI00502-0 199 CC199
16-LI00544-0 21 CC21
16-LI00563-0 ? CC121
16-LI00569-0 121 CC121
16-LI00621-0 18 CC18
16-LI00654-0 9 CC9
16-LI00710-0 9 CC9
16-LI00725-0 20 CC20
16-LI00778-3 451 CC451
16-LI00795-0 451 CC451
16-LI00797-0 121 CC121
16-LI00812-0 403 CC403
16-LI00838-0 451 CC451
16-LI00848-0 91 CC14
16-LI00922-0 204 CC204
16-LI00943-0 9 CC9
16-LI00992-0 18 CC18
16-LI01005-0 14 CC14
16-LI01042-0 18 CC18
16-LI01072-0 121 CC121
16-LI01094-0 8 CC8
16-LI01100-0 121 CC121
16-LI01110-0 91 CC14
16-LI01135-0 121 CC121
16-LI01155-0 412 CC412
16-LI01161-0 14 CC14
16-LI01180-0 121 CC121
17-LI00006-0 7 CC7
17-LI00007-0 7 CC7
17-LI00051-0 9 CC9



17-LI00056-0 451 CC451
16-LI00926-1 451 CC451
16-LI00865-1 37 CC37
16-LI00912-0 9 CC9
16-LI00226-0 9 CC9
16-LI00289-0 9 CC9
16-LI00228-0 37 CC37
16-LI00246-0 121 CC121
16-LI00263-0 37 CC37
16-LI00264-0 9 CC9
16-LI00200-0 451 CC451
16-LI00294-0 37 CC37
16-LI00295-0 37 CC37
16-LI00296-0 9 CC9
16-LI00306-0 20 CC20
16-LI00307-0 451 CC451
16-LI00308-0 9 CC9
16-LI00318-0 121 CC121
16-LI00325-0 121 CC121
16-LI00326-0 121 CC121
16-LI00328-0 8 CC8
16-LI00339-0 9 CC9
16-LI00340-0 8 CC8
16-LI00345-0 9 CC9
16-LI00346-0 9 CC9
16-LI00350-0 451 CC451
16-LI00362-0 204 CC204
16-LI00365-0 204 CC204
16-LI00375-0 121 CC121
16-LI00384-0 121 CC121
16-LI00395-0 ? CC37
16-LI00406-0 121 CC121
16-LI00407-0 9 CC9
16-LI00408-0 37 CC37
16-LI00410-1 121 CC121
16-LI00412-0 9 CC9
16-LI00464-0 451 CC451
16-LI00465-0 121 CC121
16-LI00499-0 121 CC121
16-LI00501-0 9 CC9
16-LI00503-0 8 CC8
16-LI00504-0 8 CC8
16-LI00506-0 8 CC8
16-LI00507-0 8 CC8
16-LI00541-0 121 CC121
16-LI00564-0 451 CC451
16-LI00571-0 451 CC451
16-LI00572-0 9 CC9
16-LI00582-0 121 CC121
16-LI00625-0 121 CC121
16-LI00639-0 14 CC14
16-LI00651-0 121 CC121
16-LI00652-0 121 CC121
16-LI00667-0 120 CC8
16-LI00686-0 121 CC121
16-LI00687-0 121 CC121
16-LI00687-1 121 CC121
16-LI00688-0 121 CC121
16-LI00690-0 8 CC8
16-LI00695-0 121 CC121
16-LI00695-1 121 CC121
16-LI00696-0 121 CC121
16-LI00698-0 121 CC121
16-LI00699-0 121 CC121
16-LI00716-0 121 CC121
16-LI00717-0 121 CC121
16-LI00730-0 451 CC451
16-LI00732-0 9 CC9
16-LI00733-0 9 CC9
16-LI00734-0 121 CC121
16-LI00738-0 451 CC451
16-LI00739-0 451 CC451
16-LI00740-0 451 CC451
16-LI00741-0 451 CC451
16-LI00742-0 451 CC451
16-LI00748-0 8 CC8
16-LI00752-0 121 CC121
16-LI00759-0 451 CC451



16-LI00778-2 37 CC37
16-LI00780-1 236 CC121
16-LI00783-0 37 CC37
16-LI00785-0 9 CC9
16-LI00798-0 121 CC121
16-LI00801-0 121 CC121
16-LI00802-0 16 CC8
16-LI00803-0 121 CC121
16-LI00804-0 14 CC14
16-LI00808-0 14 CC14
16-LI00810-0 9 CC9
16-LI00813-0 121 CC121
16-LI00814-0 121 CC121
16-LI00821-0 9 CC9
16-LI00822-0 451 CC451
16-LI00836-0 399 CC14
16-LI00837-0 451 CC451
16-LI00839-0 451 CC451
16-LI00841-0 9 CC9
16-LI00842-0 9 CC9
16-LI00857-0 8 CC8
16-LI00860-0 8 CC8
16-LI00904-0 236 CC121
16-LI00905-0 121 CC121
16-LI00906-0 37 CC37
16-LI00915-0 121 CC121
16-LI00916-0 9 CC9
16-LI00917-0 121 CC121
16-LI00918-0 9 CC9
16-LI00919-0 9 CC9
16-LI00920-0 9 CC9
16-LI00921-0 121 CC121
16-LI00923-0 121 CC121
16-LI00939-0 121 CC121
16-LI00942-0 9 CC9
16-LI00944-0 9 CC9
16-LI00950-0 37 CC37
16-LI00951-0 121 CC121
16-LI00952-0 121 CC121
16-LI00953-0 121 CC121
16-LI00954-0 21 CC21
16-LI00958-0 121 CC121
16-LI00960-0 9 CC9
16-LI00962-1 121 CC121
16-LI00964-0 121 CC121
16-LI00965-0 20 CC20
16-LI00969-1 9 CC9
16-LI00975-0 8 CC8
16-LI00976-0 451 CC451
16-LI00977-0 451 CC451
16-LI00978-0 8 CC8
16-LI00984-0 9 CC9
16-LI00986-0 9 CC9
16-LI00994-0 403 CC403
16-LI01004-0 121 CC121
16-LI01034-0 451 CC451
16-LI01044-1 8 CC8
16-LI01045-0 21 CC21
16-LI01054-0 8 CC8
16-LI01055-0 8 CC8
16-LI01056-0 8 CC8
16-LI01061-0 121 CC121
16-LI01062-0 121 CC121
16-LI01064-0 9 CC9
16-LI01066-0 37 CC37
16-LI01066-1 9 CC9
16-LI01067-0 121 CC121
16-LI01068-0 8 CC8
16-LI01069-0 121 CC121
16-LI01074-0 9 CC9
16-LI01075-1 14 CC14
16-LI01076-0 9 CC9
16-LI01077-0 9 CC9
16-LI01090-0 8 CC8
16-LI01095-0 451 CC451
16-LI01107-0 121 CC121
16-LI01108-0 121 CC121
16-LI01127-0 451 CC451



16-LI01131-0 121 CC121
16-LI01132-0 121 CC121
16-LI01134-0 9 CC9
16-LI01145-0 16 CC8
16-LI01153-0 8 CC8
16-LI01158-0 9 CC9
16-LI01163-0 121 CC121
16-LI01164-0 121 CC121
16-LI01178-0 121 CC121
16-LI01193-0 121 CC121
16-LI01194-0 ? CC37
16-LI01201-0 9 CC9
16-LI01206-0 37 CC37
16-LI01212-0 21 CC21
17-LI00008-0 9 CC9
17-LI00009-0 121 CC121
17-LI00012-0 8 CC8
17-LI00025-0 8 CC8
17-LI00027-0 8 CC8
16-LI00844-0 121 CC121
16-LI00865-0 37 CC37
16-LI00865-2 37 CC37
16-LI00865-3 37 CC37
16-LI00865-4 37 CC37
16-LI00869-0 451 CC451
16-LI00873-0 9 CC9
16-LI00888-0 21 CC21
16-LI00910-0 9 CC9
16-LI00913-0 121 CC121



Supplementary Table 3

MLST clonal complex Reference_type Reference accesion Reference_length Sample_number_in_group Number_maskedPositions Number_missingPositions Number_missingmaskedPositions CoreGenomeSize RelativeCoreGenomeSize
all EGDe NC003210 2,944,528 495 536,844 449,218 663,520 2,281,008 0.77
CC1 closed AE017262 2,905,187 22 65,267 36,827 99,343 2,805,844 0.97
CC101 closed CP025221 2,987,434 13 95,162 112,440 184,926 2,802,508 0.94
CC121 closed HG13249 3,010,620 75 136,427 162,971 249,064 2,761,556 0.92
CC155 closed CP002004 2,874,431 8 23,392 32,334 53,941 2,820,490 0.98
CC18 closed CP020830 2,905,907 10 47,871 69,242 110,415 2,795,492 0.96
CC2 closed CP006046 3,032,269 55 133,886 160,311 254,033 2,778,236 0.92
CC224 closed CP016629 2,935,033 7 34,722 62,397 94,941 2,840,092 0.97
CC3 closed CP006594 3,034,043 51 126,010 162,536 240,248 2,793,795 0.92
CC37 closed CP011397 2,918,170 21 52,551 51,570 97,265 2,820,905 0.97
CC4 closed FM242711 2,912,690 5 32,108 29,556 60,360 2,852,330 0.98
CC5 closed CP006592 2,943,218 17 59,489 67,821 121,211 2,822,007 0.96
CC6 closed CP006047 2,947,460 19 40,018 72,254 98,902 2,848,558 0.97
CC7 closed CP002002 2,903,106 6 46,455 70,094 112,138 2,790,968 0.96
CC8 closed CP006862 2,994,351 42 103,811 161,739 227,003 2,767,348 0.92
CC9 closed FR733649 2,972,172 58 96,248 127,109 189,525 2,782,647 0.94
CC1 draft 16-LI00258-0 2,870,559 22 66,919 2,694 67,645 2,802,914 0.98
CC101 draft 16-LI00284-0 2,912,769 13 82,122 38,248 111,209 2,801,560 0.96
CC121 draft 16-LI01132-0 2,986,125 75 106,012 68,601 160,351 2,825,774 0.95
CC155 draft 16-LI00862-0 3,042,694 8 34,411 199,376 221,871 2,820,823 0.93
CC18 draft 16-LI00319-0 2,922,840 10 51,935 70,677 113,537 2,809,303 0.96
CC2 draft 16-LI01038-0 2,956,695 55 117,839 84,401 178,962 2,777,733 0.94
CC224 draft 16-LI00391-0 2,875,971 7 33,304 1,344 33,882 2,842,089 0.99
CC3 draft 16-LI00227-0 2,931,884 51 94,262 62,323 141,858 2,790,026 0.95
CC37 draft 16-LI00295-0 2,887,752 21 51,130 19,649 66,222 2,821,530 0.98
CC4 draft 16-LI00480-0 2,914,700 5 33,718 41,217 73,849 2,840,851 0.97
CC5 draft 16-LI00750-0 2,916,879 17 60,558 44,813 100,589 2,816,290 0.97
CC6 draft 16-LI00782-0 2,918,716 19 38,476 41,902 69,617 2,849,099 0.98
CC7 draft 17-LI00007-0 2,911,815 6 47,096 79,094 121,689 2,790,126 0.96
CC8 draft 16-LI00415-0 3,005,032 42 106,469 169,227 233,389 2,771,643 0.92
CC9 draft 16-LI00873-0 2,962,301 58 93,688 116,649 179,581 2,782,720 0.94
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Abstract: Foodborne infection with Listeria causes potentially life-threatening disease listeriosis.
Listeria monocytogenes is widely recognized as the only species of public health concern, and the closely
related species Listeria innocua is commonly used by the food industry as an indicator to identify
environmental conditions that allow for presence, growth, and persistence of Listeria spp. in general.
In our study, we analyze the occurrence of Listeria spp. in a farm-to-fork approach in a poultry
production chain in Egypt and identify bacterial entry gates and transmission systems. Prevalence of
Listeria innocua at the three production stages (farm, slaughterhouse, food products) ranged from 11%
to 28%. The pathogenic species Listeria monocytogenes was not detected, and Listeria innocua strains
under study did not show genetic virulence determinants. However, the close genetic relatedness of
Listeria innocua isolates (maximum 63 SNP differences) indicated cross-contamination between all
stages from farm to final food product. Based on these results, chicken can be seen as a natural source
of Listeria. Last but not least, sanitary measures during production should be reassessed to prevent
bacterial contamination from entering the food chain and to consequently prevent human listeriosis
infections. For this purpose, surveillance must not be restricted to pathogenic species.

Keywords: Listeria innocua; poultry production; food safety; whole-genome sequencing; single
nucleotide polymorphism; listeriosis; Listeria monocytogenes

1. Introduction

Within the bacterial genus Listeria, Listeria (L.) monocytogenes, the causative agent of listeriosis,
is widely recognized as the only species of public health concern. In humans, the clinical picture
of listeriosis varies from mild to life-threatening illness with a mortality rate of 20% to 30% on
average [1]. Severe cases appear mainly in vulnerable populations like pregnant women, newborns,
immunocompromised, or older people [2]. The majority of listeriosis cases are foodborne [1]. Although
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closely related to L. monocytogenes (perfect synteny of genome organization), the species L. innocua is
considered as non-pathogenic because it lacks the typical virulence genes [3]. However, rare atypical
hemolytic L. innocua strains have been described [4,5] and proven to be virulent in in vivo assays
using mouse or zebrafish models [6]. Furthermore, L. innocua was isolated from two human patients
suffering from fatal sepsis [7] and acute meningitis [8].

Listeria monocytogenes, as well as L. innocua, are widespread in natural environments such as soil,
surface water, sewage, or feces of mammals and birds [9,10]. Livestock animals like poultry can be
asymptomatic carriers of Listeria spp., and thereby lead to the unnoticed entry of the bacteria into
the food chain via contaminated raw animal products [11,12]. Due to its undemanding nature and
high adaptability, Listeria is able to persist in food production plants, which may lead to continuous
contamination of food through contact with previously contaminated surfaces [13]. Raw animal
products are either primarily contaminated or cross-contaminated during food-processing [12]. In this
way, Listeria can finally end up in the food chain, posing a health threat for consumers. Detailed
knowledge of entry gates and transmission routes is, therefore, indispensable to prevent food
contamination and human listeriosis cases.

Because of the high similarity of Listeria species in terms of distribution and adaptability,
the transmission path identified for one species is assumed to be transferable to other species.
Hence, L. innocua is commonly used by the food industry as an indicator to identify environmental
conditions that allow for the presence, growth, and persistence of the relevant human pathogen L.

monocytogenes [9,14]. Using L. innocua as a model for Listeria contamination in general can help to
improve surveillance and hygiene measures, which will consequently prevent human infections.
However, systematic data on the prevalence of Listeria spp. in poultry slaughterhouses are still limited.
In our study, we therefore analyze the occurrence of Listeria spp. in a farm-to-fork approach from the
primary production stage to the final food product to reveal bacterial transmission routes. To trace
Listeria spp. along the food chain, we applied whole-genome sequencing techniques.

2. Materials and Methods

2.1. Sample Collection

In total, 210 samples were collected from a single commercial poultry farm with five chicken flocks
in separate henhouses and an affiliated slaughterhouse in 2017. The farm and slaughterhouse were
located in Dakahlia Governorate, Egypt. The farm owners were asked to sign consent forms after being
informed about the aims and goals of our research project and the potential health risks associated
with the contamination of food products with Listeria spp. The study followed the ethical guidelines of
Mansoura University and was approved by the responsible ethics committee (Code No. R/15).

Samples were collected from three different sources along the food production chain: on the farm,
in the slaughterhouse, and from the final chicken products. Two weeks before slaughtering, 25 samples
were collected on the chicken farm, all on the same day in November 2017. For soiled litter (containing
fresh fecal droppings), poultry feed, drinking water, and the walls of the henhouses, samples were
pooled per sampling site (n = 5) and per flock (n = 5). Five samples (20 g each) were collected from the
top few centimeters of soiled litter in different locations of every henhouse (close to drinking troughs
and feeding stations, from walls and near the center) and then mixed to form a composite sample of
100 g for the specific flock. The poultry feed samples were taken from the five different feeding stations
of each henhouse. The water samples (20 mL each) were collected from five different drinking troughs
of each henhouse and pooled to yield a composite sample of 100 mL. Farm walls were swabbed on
five different sites inside each henhouse using a sterile template of 25 cm2 and samples from workers’
hands were collected from five individual workers. In the slaughterhouse, 13 cloacal swabs were
collected from each of the five flocks just before slaughter (n = 65). The birds were randomly selected.
In addition, 20 surface swabs (10 from slaughterhouse walls, 5 from tables and 5 from knives) were
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taken during processing. Another 100 samples were taken after slaughter, including swabs from 80
whole carcasses, 10 chicken fillets, and 10 livers.

Hand swabs (palm, between fingers, fingertips, and fingernails) were essentially carried out
according to the protocol of Genigeorgis and colleagues [15]. We used buffered peptone water (BPW;
Oxoid, Basingstoke, UK) to moisten the cotton swabs and as enrichment broth. Soiled litter, poultry
feed, and drinking water were sampled following standard procedures using sterilized spatulas or
syringes [16,17]. The samples were homogenized with a stomacher and stored in sterile bags at 4 to
8 ◦C until transport to the laboratory. Swabs from surfaces of walls and tables in the slaughterhouse
were collected according to the guidelines of the American Public Health Association [18]. Briefly,
four 100 cm2 regions of the sampling site were swabbed with sterile sponges moistened with 40 mL
of BPW in several horizontal and vertical movements. The sponges were then transferred to sterile
bags containing 160 mL of BPW to yield a final volume of 200 mL. The farm walls were swabbed
using the same technique. The two sides of the butcher’s knives were swabbed with BPW-moistened
cotton swabs instead of sterile sponges. Cloacal swabs (from the mucosal wall) were collected from
living chicken with sterile cotton-tipped swabs pre-moistened in BPW. Swabs from chicken carcasses
were collected after evisceration using the method described by McEvoy and colleagues [19]. Briefly,
each swab was moistened just before use with 25 mL of BPW and put into a sterile plastic bag after
sampling. Chicken fillet and liver samples (~25 g each) were sliced with a sterile scalpel and put into a
sterile stomacher bag. All samples were processed under aseptic conditions and then directly sent to
the laboratory for further analyses.

2.2. Listeria Isolation and Identification

Listeria spp. were isolated and identified as described in the Bacteriological Analytical Manual
of the U.S. Food and Drug Administration [20]. For solid samples (poultry feed, chicken fillet, and
liver) and water samples, 25 g or ml were added to 225 mL Listeria enrichment broth without antibiotic
supplement, pH 8.6 (Oxoid) and homogenized in a stomacher for two minutes. The swab samples
were transferred to 10 mL Listeria enrichment broth. Homogenates of solid samples, water samples,
and swabs were incubated at 30 ◦C for 4 h. Then, Listeria selective enrichment supplements (Oxoid),
including nalidixic acid, cycloheximide, and acriflavine, were added and the broth cultures were
incubated at the same temperature for another 24 to 48 h. An inoculation loop of the enriched sample
was incubated on Oxford agar (Oxoid) at 35 ◦C for 24 to 48 h. At least five colonies showing a black
halo characteristic for Listeria spp. were picked, transferred onto tryptic soy agar plates with 0.6% yeast
extract and incubated at 30 ◦C for 24 to 48 h. These presumptive Listeria isolates were stored at –80 ◦C
in brain heart infusion with 20% glycerol.

2.3. Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight (MALDI-TOF) Mass Spectrometry

After thawing, the bacteria were plated onto sheep blood agar and incubated overnight at 37 ◦C.
Mass spectrometry samples were prepared using the direct smear method [21]. Species identification
was performed using the MALDI Biotyper® Subtyping Module (Bruker Daltonik, Bremen, Germany)
according to the manufacturer’s instructions.

2.4. Genomic DNA Extraction and Next Generation Sequencing

All strains identified as Listeria spp. by MALDI–TOF MS were again grown on sheep blood agar
overnight at 37 ◦C. Bacterial cells were harvested and lysed following the Pulse Net standardized
laboratory protocol for whole-genome sequencing of Gram-positive bacteria (https://www.cdc.gov/
pulsenet/pdf/pnl32-miseq-nextera-xt.pdf). We extracted DNA with the QIAamp DNA Mini Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions.

Sequencing libraries were constructed using the Nextera XT Sample Preparation Kit (Illumina,
Inc., San Diego, CA, USA). Sequencing was performed in paired-end mode with 2 × 300 bp reads on
the Illumina MiSeq sequencer using the MiSeq Reagent v3 600-cycle Kit (Illumina).
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2.4.1. Multilocus Sequence Typing (MLST)

Multilocus sequences types (ST) and clonal complexes (CC) were determined according to the
scheme available at https://bigsdb.pasteur.fr/listeria/listeria.html.

2.4.2. Single Nucleotide Polymorphism (SNP) Analysis

Sequences were trimmed with Trimmomatic version 0.36 [22] using default parameters. Trimmed
reads were mapped to the closed reference genome of L. innocua (NC_003212.1) in BioNumerics version
7.6 (Applied Maths, Gent, Belgium), followed by SNP calling. Strict SNP filtering with software default
parameters was applied.

2.4.3. In Silico Screening for Virulence Factors

Trimmed reads were de novo assembled with SPAdes version 3.11.1 [23]. Assembled genomes
were used for virulence gene screening with ABRicate version 0.8 [24] using the Virulence Factor
Database (VFDB) (2597 sequences, [25], last updated 9 July 2019). The L. monocytogenes reference
strain EGDe (NC_003210.1) was included in the screening as a representative for a pathogenic strain.
A cut-off of at least 80% gene identity was applied for gene presence.

2.4.4. Data Storage

The data for this study have been deposited in the European Nucleotide Archive (ENA) at
EMBL-EBI under accession number PRJEB36384.

3. Results

3.1. Prevalence of Listeria spp. along the Poultry Production Chain

Listeria innocua was the only Listeria species identified by MALDI–TOF MS and was isolated from
17% (36/210) of the samples along the poultry production chain (Table 1). The prevalence of L. innocua

on the farm level was 28% (7/25). Listeria innocua was found in 100% (5/5) of the swabs from farm
walls and in 20% (1/5) of the samples from soiled litter or poultry feed. Both workers’ hands and
drinking water tested negative for L. innocua. A total of 9 out of 85 samples (11%) collected in the
slaughterhouse revealed L. innocua. Tables and abattoir walls were contaminated, with 40% (2/5) and
20% (2/10) positive swabs, respectively, whereas knives were tested negative. Five out of 85 (7%) cloacal
swabs taken from three of the five chicken flocks tested positive. Finally, L. innocua was identified in
20% (20/100) of the food samples, with 11% (9/80) of the carcasses, 50% (5/10) of raw chicken fillets, and
60% (6/10) of the liver samples being positive.

Table 1. Occurrence of Listeria innocua along the poultry production chain

Source of Sample Number of Samples Tested
Number of Positive

Samples
% of Positive Samples

Chicken farm 25 1 7 28

soiled litter 5 1 20
drinking water 5 0 0

poultry feed 5 1 20
farm wall 5 5 100

workers’ hands 5 2 0 0

Slaughterhouse 85 2 9 11

chicken cloaca 65 5 8
slaughterhouse wall 10 2 20

knife 5 0 0
table 5 2 40
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Table 1. Cont.

Source of Sample Number of Samples Tested
Number of Positive

Samples
% of Positive Samples

Food product 100 2 20 20

carcass 80 9 11
chicken fillet 10 5 50
chicken liver 10 6 60

total 210 36 17

1 pooled samples; 2 individual samples.

3.2. Genomic Analysis

Whole-genome sequencing of the 36 Listeria isolates confirmed the MALDI–TOF MS results
and clearly assigned them to the species L. innocua (94% to 100% of reads mapping to the L. innocua

Clip11262 complete genome, NC_003212.1). All isolates belonged to the same L. innocua-specific MLST
ST 530 (corresponding to CC ST530, Lineage: L. innocua). Sequencing coverage ranged between 43-
and 132-fold (median 78). The 36 isolates showed 0 to 63 SNPs difference (median 41) and formed four
distinct clusters of isolates differing by no more than 0, 3, 5, or 10 SNPs (Figure 1). Clusters were not
restricted to a specific sampling site or sampling stage except for one cluster (no. 4), which included
two isolates from carcasses (Figures 1 and 2).

 

 

Figure 1. Complete linkage tree summarizing SNP analysis results from 36 Listeria innocua isolates.
Node labels indicate the maximum SNP difference in the branch. Isolates fell into four distinct clusters
differing by no more than 5, 3, 10, or 0 SNPs. Clusters were not restricted to a specific sampling site
(first column) or sampling stage (second column) except for Cluster 4.
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Figure 2. Visualization of contaminated sites and presumable transmission routes based on SNP
clusters. Cross-contamination is likely to have happened between all production stages.

The L. innocua isolates under study harbored 12 to 13 L. monocytogenes virulence genes (Figure 3).
However, the Listeria pathogenicity island LIPI-1 and internalins, especially inlA, which are genetic
determinants for virulence in either atypical hemolytic L. innocua strains or in the pathogenic species L.

monocytogenes [6], were only found in the sequence of the L. monocytogenes reference strain EGDe and
were missing in all L. innocua isolates.

 

 

Figure 3. Heatmap of in silico detected virulence genes in the Listeria (L.) innocua study population
(black: gene present; white: gene absent) compared to the L. monocytogenes reference strain EGDe (grey:
gene present). None of the L. innocua study isolates contained virulence factors like inlA or the Listeria

pathogenicity island 1 (LIPI-1; in red) that are found in atypical hemolytic L. innocua [6].
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4. Discussion

At the three stages of the poultry production chain investigated (farm, slaughterhouse, food
products), the prevalence of L. innocua ranged from 11% to 28%.

As we only looked into one specific farm-to-fork continuum (one farm, one slaughterhouse) in
our study, the prevalences found at the various production stages cannot necessarily be generalized.
However, our prevalence rates on farm level were in agreement with a previous study on a poultry
farm in Egypt [26] where L. innocua was found in 20% (4/20) of samples from poultry feed but not
in drinking water (0/20). However, L. innocua was more prevalent in soiled litter than in our study
(35% (28/80) vs. 20% (1/5)). The observed difference could be explained either by the very different
sample sizes or by variable efficiency of biosecurity practices on the farms. In our study, the overall
prevalence of L. innocua on the farm was 28%. The prevalence reported for Listeria spp. (especially
L. monocytogenes and L. innocua) on farms in various countries varied widely, ranging from 1.4% to
53% [9,27–31]. Accordingly, the detection rates for Listeria spp. in soiled litter (10%–53%), poultry feed
(70%), drinking water (10%), soil (30%), and grass (6%–43%) were quite variable. In accordance with
our results, L. innocua was the predominant species, representing up to 78% of the Listeria isolates.

The slaughterhouse prevalence of L. innocua in our study was 11%. The highest rate was found in
swabs collected from tables (40%, 2/5), indicating that hygiene measures were not always properly
applied to remove surface contamination. Lower contamination rates were found on the walls (20%,
2/10) and in cloacal swabs (8%, 5/65). A positive cloacal swab indicates intestinal colonization of the
chicken. Hence, the positive rate of cloacal swabs is actually an indicator of the prevalence of carrier
animals in the livestock population that form the basis for zoonotic entry of Listeria into the food chain.
In our study, according to the microbiological results from cloacal swabs, three of the five chicken
flocks tested were carriers of L. innocua. A lower detection rate (2%, 7/400) for L. innocua in cloacal
swabs from laying hens was reported from Bavaria, Germany [28]. In the suburbs of Tokyo, Listeria

spp. were found in 5% of 150 fresh fecal droppings collected on four chicken farms [32]. In a Danish
study, Listeria spp. could not be isolated at all from 50 cloacal swabs taken at the abattoir of 71 broiler
flocks [27]. Obviously, there are major differences in the Listeria prevalence rates in chicken livestock
among countries.

In our dataset, the overall occurrence of L. innocua in raw poultry meat and chicken products was
20% (20/100). Higher prevalence rates for L. innocua in raw poultry meat were reported from Spain
(66%), Turkey (58%), Italy (40%), Jordan (50%), and Egypt (31%) [26,33–36] while lower rates were
reported from Morocco (14%) and Iran (19%) [37,38]. Contamination of raw animal products may
occur after slaughter or during food processing. Major influencing factors are the primary prevalence
of the pathogen in the livestock population, on the one hand, and hygiene measures such as surface
disinfection during processing, on the other hand.

To get detailed insights into possible transmission routes along the poultry production chain,
we analyzed single nucleotide polymorphisms of L. innocua isolates at various stages of production
(Figure 1). Based on the fact that natural mutation rates in the genus Listeria are low, a very low
number of SNP differences between two or more strains are commonly used as an indicator of their
epidemiological relatedness [39,40]. The guiding assumption is that a small genetic difference between
strains indicates a common origin. In our study, based on the high genetic relatedness of L. innocua

isolates from different sampling sites from farm to final food product, transfer between all stages of
the production chain appears very likely. Although no directional information can be extracted from
the genetic data alone, accompanying metadata can be used to speculate about causal relationships
between contaminated sites and transmission routes (Figure 2). For instance, zero SNP differences
were identified between L. innocua isolates from chicken liver, fillet, carcass, and a slaughterhouse table
(Figure 1; within Cluster 3). Presumably, the same bacterial strain has been transferred between all
these sampling sites, indicating cross-contamination during the processing of the slaughtered chicken.
Of positive note is the fact that all samples from knives and hands were negative for Listeria spp.,
indicating that hygienic measures are already successfully applied to a certain extent, although the
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relatively low number of samples taken from both sites may qualify this statement. However, knowing
that there is likely entry of L. innocua into the food processing plant from the farm, other surfaces should
be under proper internal monitoring as well. For example, the same strain (zero SNPs difference) could
be found on a table in the slaughterhouse and in cloacal swabs, as well as on farm walls and in the
soiled litter (Figure 1; within Cluster 1). Consequently, bacterial contamination on the farm has reached
the processing level, thereby posing a risk for further cross-contamination during processing steps
performed on the table. Since contamination with L. innocua was already present on the farm, the food
operator should reassess the sanitary measures applied and the way how chickens are introduced into
the processing stage to prevent contamination from entering the production chain. If no reasonable
measures are taken, Listeria can establish persistence in food processing plants, which may form the
basis for repeated re-contamination [13,41,42].

Listeria innocua strains isolated in our study did not show any genetic virulence determinants
needed for human or animal infection, as described for L. monocytogenes strains and rare hemolytic
L. innocua strains [6]. In addition, all isolates were non-hemolytic on sheep blood agar. Therefore,
it is highly unlikely that they would have been able to cause human infection. Furthermore, the
pathogenic species L. monocytogenes was not detected. However, as previously mentioned, the Oxford
medium used in our study does not allow for a distinction between colonies of different Listeria

species [43]. A chromogenic agar, as described in ISO 11290:1:2017, would have been able to improve
L. monocytogenes detection but it was not available in Egypt at the time of the study. Therefore,
presumptive Listeria spp. colonies were randomly selected and L. monocytogenes isolates could have
been missed. Additionally, L. innocua can produce a bacteriocin-like substance against L. monocytogenes

and usually grows faster in enrichment broth, leading to an underestimation of the prevalence of L.
monocytogenes [27,43].

While several studies from Egypt have reported frequent contamination of foodstuffs such as meat
and dairy products with different Listeria spp. [26,44–47] such food has not yet been associated with
documented outbreaks of listeriosis. A major reason for this is probably the lack of a surveillance system
for human listeriosis in Egypt and hence underreporting of cases. As a result, the real public health
burden caused by Listeria contamination throughout the food chain is very difficult to assess. Further
close monitoring of slaughtering and company hygiene practices and their continuous adjustment and
improvement will help to gain insights into the risks emerging from different food sources and will
make an essential contribution to prevent listeriosis cases.

5. Conclusions

Our study did not reveal any L. monocytogenes contamination, but L. innocua existed throughout
the entire chicken meat processing chain from stable to table. Given that L. innocua was not only
isolated from environmental samples on the farm and in the slaughterhouse but also from cloacal
swabs, chicken can be seen as a natural source of L. innocua. The presence of any non-pathogenic Listeria

spp. like L. innocua in processing lines and foodstuffs is a good indicator for poor hygienic conditions
and serves as an alarming sign for the need to implement appropriate hygiene practices. Through
knowing and eliminating risk factors, contamination of poultry food products with the pathogenic
species L. monocytogenes can be effectively prevented.
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Backtracking and forward checking of human listeriosis clusters identified a
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Stefanie Lüth a,b, Sven Halbedel c, Bettina Rosnerd, Hendrik Wilkingd, Alexandra Holzerd, Alice Roedela,
Ralf Dieckmanna, Szilvia Vinczea, Rita Pragerc, Antje Fliegerc, Sascha Al Dahouk a,e and Sylvia Kletaa

aDepartment of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany; bDepartment of Biology, Chemistry and
Pharmacy, Freie Universität Berlin, Berlin, Germany; cDepartment of Infectious Diseases, Robert Koch-Institute, Wernigerode, Germany;
dDepartment of Infectious Disease Epidemiology, Robert Koch-Institute, Berlin, Germany; eDepartment of Internal Medicine III, RWTH
Aachen University Hospital, Aachen, Germany

ABSTRACT

Due to its high case fatality rate, foodborne listeriosis is considered a major public health concern worldwide. We
describe one of the largest listeriosis outbreaks in Germany with 83 cases of invasive listeriosis between 2013 and
2018. As part of the outbreak investigation, we identified a highly diverse Listeria monocytogenes population at a
single producer of ready-to-eat meat products. Strikingly, the extensive sampling after identification of a first match
between a cluster of clinical isolates and a food isolate allowed for a linkage between this producer and a second,
previously unmatched cluster of clinical isolates. Bacterial persistence in the processing plant and indications of
cross-contamination events explained long-term contamination of food that led to the protracted outbreak. Based
on screening for virulence factors, a pathogenic phenotype could not be ruled out for other strains circulating in
the plant, suggesting that the outbreak could have been even larger. As most isolates were sensitive to common
biocides used in the plant, hard to clean niches in the production line may have played a major role in the
consolidation of the contamination. Our study demonstrates how important it is to search for the origin of
infection when cases of illness have occurred (backtracking), but also clearly highlights that it is equally important
to check whether a contamination at food or production level has caused disease (forward checking). Only through
this two-sided control strategy, foodborne disease outbreaks such as listeriosis can be minimized, which could be a
real improvement for public health.
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Introduction

The bacterium Listeria (L.) monocytogenes is ubiqui-

tous in nature and the causative agent of human

listeriosis, a comparatively rare but potentially life-

threatening foodborne disease [1]. The pathogen enters

the food chain either through raw products or through

contamination of food during processing [2].

Especially ready-to-eat (RTE) products pose a risk for

infection [3]. Listeriosis may lead to a self-limiting gas-

trointestinal disease, to cerebral and bloodstream infec-

tions in predominantly immunocompromised patients

or to fetal complications in pregnant women [4]. In

Germany, the number of notified cases has been con-

stantly increasing from 337 cases in 2011 to 770 cases

in 2017, corresponding to an incidence increase from

0.4 to 0.9 cases per 100,000 population [5,6]. In 2018,

the number of cases has fallen to 701 again (incidence:

0.8 cases per 100,000 population), with a case fatality

rate of 5% [7]. Within the European Union, case fatal-

ity was even higher with 15.6% in the same year [8].

Thus, listeriosis represents a considerable burden to

society which requires effective surveillance and pre-

vention strategies by close collaboration between public

health and food authorities. In Germany, the binational

consultant laboratory for L. monocytogenes at the Ger-

man Robert Koch-Institute and the Austrian Agency

for Health and Food Safety collects L. monocytogenes

strains isolated from clinical infections. During the

last years, approximately 450 clinical isolates were col-

lected annually, corresponding to approximately two

thirds of all listeriosis cases notified in Germany. The

National Reference Laboratory (NRL) for

L. monocytogenes, hosted at the German Federal Insti-

tute for Risk Assessment, on the other hand, receives

isolates sampled from food and food processing plants.

Molecular surveillance of L. monocytogenes using

whole genome sequencing (WGS), combined with
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epidemiological evidence, has greatly facilitated lister-

iosis outbreak clarification [9–13]. In addition, WGS

analysis enables detailed insights into industrial

hygiene and forms the basis for in-depth root cause

analysis [14].

In our study, we analyzed the diverse

L. monocytogenes population of a German food pro-

cessing plant (isolates from food and environment)

that was linked to a large long-lasting listeriosis out-

break consisting of two distinct clusters. In addition

to backtracking and forward checking, we estimated

the virulence potential of the strains circulating in

the production facility. Last but not least, we

addressed the question of how the contamination

has been persisting for years despite periodic hygiene

measures.

Materials and methods

Bacterial cultivation

L. monocytogenes strains were routinely cultured in

brain heart infusion (BHI) broth, on BHI agar plates

or on sheep blood agar plates at 37°C overnight.

Pulsed-field gel electrophoresis

Pulsed-field gel electrophoresis (PFGE) was performed

according to the PulseNet protocol (https://www.cdc.

gov/pulsenet/pdf/listeria-pfge-protocol-92 508c.pdf).

Restriction patterns were analyzed with BioNumerics,

version 7.1 (Applied Maths, Sint-Martens-Latem,

Belgium).

Whole genome sequencing

Genomic DNA was extracted using the GenElute™

Bacterial Genomic DNA Kit (Sigma-Aldrich,

St. Louis, MO, United States; clinical isolates) or the

QIAamp DNA Mini Kit (Qiagen, Hilden, Germany;

non-clinical isolates) following the PulseNet protocol

for gram-positive bacteria (https://www.cdc.gov/

pulsenet/pdf/pnl32-miseq-nextera-xt.pdf). Extracted

DNA was quantified on a fluorescence microplate

reader using the Quant-iT™ PicoGreen® dsDNA

Assay Kit (Thermo Fisher Scientific, Waltham, MA,

United States; clinical isolates) or using the Qubit

dsDNA BR Assay Kit with a Qubit 2.0 fluorometer

(Invitrogen, Carlsbad, CA, United States; non-clinical

isolates). Sequencing libraries from genomic DNA

were prepared with the Nextera XT DNA Library

Prep Kit (Illumina, San Diego, CA, United States).

Sequencing was performed on the MiSeq sequencer

in paired-end mode with 2 × 300 bp reads or single-

end mode with 1 × 300 bp or 1 × 150 bp reads or on

an Illumina HiSeq 1500 sequencer generating 250 bp

paired-end reads in a dual flow cell run.

Sequencing data analysis

Data preparation

Sequencing reads were trimmed with Trimmomatic

version 0.36 at default parameters [15]. Trimmed

reads were either directly used for single nucleotide

polymorphism (SNP)-mapping or de novo assembled

with SPAdes version 3.11.1 [16].

Multi locus sequence typing and molecular

serogrouping

Multi locus sequence types (MLST STs) as well as cor-

responding MLST clonal complexes (CCs) and PCR-

serogroups were determined from de novo assemblies

according to the seven house-keeping gene MLST

scheme and the PCR-serogrouping scheme, respect-

ively, available at http://bigsdb.pasteur.fr/listeria.

Core genome MLST

Core genome MLST (cgMLST) was performed based

on assembled genomes in the software Ridom Seq-

Sphere+ (Münster, Germany) with the integrated

1701 genes cgMLST scheme [17]. CgMLST allele cov-

erage of at least 98% was set as quality threshold.

CgMLST allelic profiles were imported into BioNu-

merics version 7.6 to perform single linkage clustering.

Isolates with a maximum of ten allele differences from

each other were assigned to the same cluster [17]. Trees

were visualized and annotated in iTOL version 4 [18].

Single nucleotide polymorphism analysis

Trimmed reads were mapped against the sequence of

the L. monocytogenes strain EGDe (NC_003210.1)

using Snippy version 4.0 at default settings [19].

In silico screening for antimicrobial resistance and

virulence genes

Antimicrobial resistance (AMR) and virulence genes

were identified from assembled genomes with ABRi-

cate version 0.8 [20] using the databases ncbi (AMR,

4528 sequences) and vfdb (virulence, 2597 sequences)

[21,22], last updated 9 July 2019. To reduce assembly

bias, gene coverages were summed up when a gene

was split across multiple contigs (visualization with

Geneious Prime 2020.0.3). A cutoff of at least 75%

gene coverage in total was applied for gene presence.

Data availability

The sequence data for this study have been deposited in

the European Nucleotide Archive (ENA) at EMBL-EBI

under accessions listed in Supplementary Table 1.

Biocide susceptibility testing

Except for benzalkonium chloride (BAC), only active

substances of the cleaning agents and disinfectants

used in the food processing plant under investigation
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were tested. BAC was included due to genetically

encoded BAC tolerance mechanisms found in the

study isolates. Minimum inhibitory concentrations

(MICs) of BAC (0.3 to 20 mg/L), sodium hypochlorite

(62.5 to 8000 mg/L), peracetic acid (22.3 to 2850 mg/

L), hydrogen peroxide (7.8 to 999 mg/L) and phospho-

ric acid (444.4 to 28440 mg/L) were determined in tri-

plicates as previously described [23]. Biocide

susceptibility of nine cgMLST cluster 1 outbreak iso-

lates and two cluster 3 non-outbreak isolates were ana-

lyzed exemplarily. Two more isolates were selected for

phenotypic testing of BAC tolerance because of their

AMR genotype (cluster 9 and 15). The MIC breakpoint

≥4 mg/L was used to classify isolates as BAC tolerant

[24,25]. Minimal in-use concentrations of the other

biocides were calculated based on manufacturer spe-

cifications about biocide concentrations in stock sol-

utions and application concentrations specified in the

cleaning and disinfection plan of the processing plant.

Statistical analysis

Statistical analysis was performed in IBM SPSS Stat-

istics version 21 (IBM, Armonk, NY, United States).

Case–control-study was analyzed with Stata 15.0 (Sta-

taCorp LLC, TX, United States). In general, analyses

with p-values lower than 0.05 were considered as stat-

istically significant. In chi-squared tests, p-values were

adjusted using Bonferroni correction. Strength and

direction of a relationship between variables were

measured by Spearman correlation.

Epidemiological analysis

Case definition

Outbreak cases were defined as listeriosis patients

reported to public health authorities with disease

onset in 2013 or later, and isolation of

L. monocytogenes from normally sterile body fluids

revealing either characteristic PFGE profiles (typing

method applied before 2015) or belonging to the

cgMLST clusters 1 and 2 (typing method applied

after 2015, Figure 2). To ensure compatibility of mol-

ecular typing results, selected strains with PFGE

profiles typical for the outbreak were sequenced retro-

spectively. In case of affiliation to cgMLST cluster 1 or

2, other isolates showing the same PFGE profile were

considered as associated as well.

Case–control study

In order to support molecular typing data with epide-

miological evidence, a case–control study was con-

ducted in 2017. Recent outbreak cases were asked

about their diet in the two weeks prior to disease

onset, while earlier cases, from 2016, were asked

about general consumption habits during the time of

infection (total n = 8). Healthy controls from Germany

with a similar age and sex distribution as outbreak

cases were interviewed by a social research institute

using random digit dialling (n = 32). Our hypothesis

was that the outbreak was caused by the consumption

of plastic packaged RTE meatballs. This assumption

was compared to consumption of two foodstuffs

classically considered at risk for L. monocytogenes con-

tamination: plastic-packaged sliced cheese and plastic-

packaged smoked fish from the supermarket [1].

Results

Epidemiological outbreak description

The German surveillance system for L. monocytogenes

identified an outbreak with 83 invasive listeriosis cases

between 2013 and 2018. It consisted of two distinct

cgMLST clusters (cluster 1 and cluster 2) which could

be traced to the same food processing plant. Because

of the common source, both clusters were treated as

one outbreak (Figure 1). Cluster 1 had been communi-

cated to European member states on 29/09/2016 via the

Epidemic Intelligence Information System (EPIS UI-

376), but none of the other participating countries

reported cases.

Cluster 1 comprised 72 cases between 2013 and

2018, spread over 12 out of 16 German federal states.

Median age of cases in this cluster was 69 years

(range 0–96 years) and more male (n = 44) than female

(n = 28) persons were affected. The cluster included six

pregnancy-associated cases (mother and child were

treated as two separate cases). Five (non-pregnancy-

associated) cases died. For three of them, listeriosis

was reported as the major cause. Cluster 2 was smaller,

included 11 cases between 2015 and 2017 and was

reported only from six German federal states. Median

age of cases in this cluster was 70 years (range 16–86

years) and again, more male (n = 8) than female (n =

3) persons were affected. In this cluster, there were

no pregnancy-associated cases and no deaths. Cluster

1 reached a peak in 2016 with 26 cases, whereas most

cases of cluster 2 appeared in 2017 (n = 7) (Figure 1).

From 2013 through 2015, most outbreak cases were

male (26 out of 29 cases, 90%). After that the ratio

between female and male was almost balanced (26

male versus 28 female cases).

Clinical L. monocytogenes isolates linked to the

outbreak

Since clinical L. monocytogenes isolates could not

always be assigned to a notified case [7], the number

of isolates was higher than the number of cases in the

outbreak. Some of the isolates were exclusively typed

with PFGE, but only sequenced clinical isolates (n =

77) were included in our study, with 65 isolates in

cgMLST cluster 1, and 12 isolates in cluster 2.
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Source identification and sampling at a food

producer

During retrospective investigations, an isolate sampled

in 2016 from RTE meatballs was found to match the

clinical isolates of cgMLST cluster 1 (one allele differ-

ence). After checking the NRL database, a second iso-

late from meatballs of the same producer, sampled in

2014, could be assigned to the same cluster. Both iso-

lates were collected in official controls while the

respective product had already been put on the market.

Based on these findings, extensive sampling at the food

producer was initiated, and isolates from the pro-

duction facility subsequently matched a second cluster

of clinical isolates, namely cluster 2 (Figure 2).

Altogether, 235 non-clinical isolates originating

from a single producer were included in our study.

Except for the two initial food isolates from 2014 and

2016, isolates were collected in 2017 and 2018. A

total of 210 originated from the food processing

environment and 25 from food products sampled

either at the retail level (n = 3) or at the producer

level (n = 22). Swabs were taken from conveyor belts,

pulleys, freezers, accompanying parts like condensate

lines or cable ducts, and from gullies. Food isolates ori-

ginated from RTE meat products such as meatballs or

burger patties made from pork, poultry or unknown

type of meat and chicken nuggets. The food samples

were contaminated below 100 CFU/g [3], except for

the one sample from 2014 which contained 3 × 104

CFU/g. Of the 235 non-clinical isolates, 216 (92%)

were sampled within self-controls by the producer

(21 from food, 195 from food processing environment)

and the rest in official controls.

Case–control study

In order to underpin WGS-based typing results with

epidemiological findings, 8 cases and 32 healthy con-

trols were interviewed in 2016 and 2017 concerning

their consumption of RTE meatballs, sliced cheese or

Figure 1. Epidemiological curve of the listeriosis outbreak under investigation. The outbreak comprised 83 cases between 2013 and
2018 and consisted of two distinct core genome MLST clusters (cluster 1, blue, and cluster 2, orange). During the outbreak, a shift
from mainly male cases (dark shading) to a balanced ratio between male and female cases (light shading) occurred.
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Figure 2. Core genome (cg) MLST-based single linkage clustering of 312 Listeria monocytogenes isolates from clinical cases and a
single food producer. Colored rings indicate clustering results and metadata of isolates. From inside to outside: cgMLST cluster
number, source and sampling year.
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smoked fish (Table 1). One case could not recall the

consumption of plastic packaged RTE meatballs, but

exposure to the unpacked product while eating out

was not entirely excluded. A second case answered

the question on consumption of smoked fish with “I

don’t know”. Both cases were classified as not exposed

to the respective food category in our analysis.

Altogether, six out of eight patients (75%) remembered

eating plastic packaged RTE meatballs from retail

whereas only two of the 32 controls (6%) did. This cor-

responds to an odds ratio of 102.4 at a p-value of 0.001,

indicating a strong association between listeriosis out-

break cases and consumption of plastic-packaged

RTE meatballs. In contrast to that, odds ratios between

cases and controls for consumption of sliced cheese

and smoked fish were 4.4 and 1.3, respectively, and

not statistically significant.

Molecular typing and cluster analysis of strains

The 312 isolates included in our study were assigned to

11 different MLST CCs spanning four serogroups (IIb,

IIa, IVb and IIc, with decreasing prevalence). The

majority (>95%) of isolates fell into CC5 (n = 176),

CC121 (n = 50), CC31 (n = 46) and CC7 (n = 24).

Clinical isolates were either CC5 (n = 65, serogroup

IIb) or CC7 (n = 12, serogroup IIa).

The isolates fell into 7 cgMLST clusters and 12 sin-

gletons (containing only one non-clinical isolate)

(Figure 2). The outbreak-associated cgMLST clusters

1 and 2 contained 176 and 24 isolates, respectively.

Cluster 1 was composed of 65 clinical isolates, 20 iso-

lates from food and 91 isolates from food processing

environment. All isolates in this cluster were closely

related with an overall allelic distance between 0 and

18 (median 7). The close genetic relatedness of isolates

in this cluster could be confirmed by SNP analysis

(overall SNP distance 0–60, median 10). Cluster 2 con-

tained only 24 isolates, 12 of clinical origin and 12 from

food processing environment. Allelic differences ran-

ged between 0 and 8 (median 2). Corresponding SNP

distances were between 0 and 8 with a median of

3. With an allelic distance of 1633, the genetic differ-

ence between cluster 1 and cluster 2 was large. The

two outbreak clusters did not show sub-clustering

according to the source of isolates or the time of

sampling (Figure 2). For the other cgMLST clusters

of the non-clinical isolates, no match to clinical isolates

from Germany could be found.

Four cgMLST clusters (cluster 1, 3, 4 and 19)

contained isolates from RTE food products and

three of those (cluster 1, 3 and 4) also isolates

from food processing environment. In the remaining

15 cgMLST clusters, non-clinical isolates originated

only from the food processing environment. Four

cgMLST clusters (cluster 2–5) contained isolates

which have been sampled over a period of 9–12

months, in 2017 and 2018. Cluster 1 has been

detected over four years.

Virulence genes

A total of 40 different virulence genes could be ident-

ified in the 312 isolates (Figure 3). A single isolate con-

tained 29–39 virulence genes (median 32). Virulence

gene counts were significantly different between out-

break and non-outbreak clusters (Mann–Whitney-U

test, p < 0.001). A set of 26 virulence genes was found

in all isolates.

Genes positively associated with the two outbreak

clusters were aut, inlF, lapB and vip (correlation 0.2,

0.58, 0.56, 0.34, respectively; 1-tailed p < 0.01). LIPI-3

(llsAGHXBYDP, [26]) was only detected in non-out-

break clusters (cluster 6, 7 and 17–19) with a corre-

lation of 0.2 (1-tailed p < 0.01).

Clusters 9, 10, and 12–16 had the same virulence

factor composition as outbreak cluster 1. The virulence

factors of cluster 8 and cluster 11 isolates were identical

to outbreak cluster 2 isolates lacking the vip gene.

Antimicrobial susceptibility

In all 312 isolates, the AMR genes lin, coding for the

lincomycin resistance ABC-F type ribosomal protec-

tion protein, and fosX, coding for the fosfomycin

resistance thiol transferase FosX, were identified

(Figure 4).

In 48 isolates of three different cgMLST clusters (3, 9

and 15), none of them associated with clinical cases, the

BAC tolerance genes bcrB and bcrC were found [27]

(Figure 4). At least one representative isolate per

bcrB-bcrC containing cgMLST cluster was phenotypi-

cally tested and confirmed as BAC tolerant (MIC

values ranging from 5 to 10 mg/L). Representative iso-

lates of the outbreak cluster 1, lacking bcrB and bcrC,

showed a BAC MIC value of 2.5 mg/L and were

classified as susceptible. MIC values of the other bio-

cides tested did not differ between isolates. MIC of

sodium hypochlorite was 500 mg/L, of peracetic acid

356.3 mg/L, of hydrogen peroxide 249.8 mg/L and of

phosphoric acid 3555 mg/L. All MIC values were

below in-use concentrations.

Table 1. Univariate analysis of factors associated with
listeriosis, cgMLST cluster 1, Germany 2017.

Food product
(plastic
packaged, RTE)

Cases
exposed

Controls
exposed

Logistic regression, adjusted
for age and sex

no./total
no. (%)

no./total
no. (%) Odds ratio (95% CIa) p-value

Meatballs 6/8 (75)b 2/32 (6) 102.4 (7.0–1509.6) 0.001
Sliced cheese 6/8 (75) 17/32 (53) 4.4 (0.5–42.0) 0.200
Smoked fish 1/8 (13)b 3/32 (9) 1.3 (0.1–14.7) 0.851
aCI = confidence interval; bA case in this category has been classified as not
exposed due to unclear information.
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Discussion

With 83 confirmed cases, the outbreak described in our

study represents one of the largest listeriosis outbreaks

identified in Germany since cgMLST has been

implemented for molecular surveillance [28]. From

2017 to 2018, for the first time after the introduction

of mandatory reporting of human listeriosis, the num-

ber of notified cases in Germany declined [5,7]. Using

the potential of WGS to resolve and to stop large out-

breaks [13,29] might have already made a decisive con-

tribution towards reducing the burden of listeriosis in

Germany. More males than females were affected

within the outbreak described here. This is in line

with the general trend of a significantly higher inci-

dence rate of listeriosis among men in Germany

[5,7,30–32]. Interestingly, there was a gender shift of

cases during the outbreak. General changes in con-

sumption habits as well as the introduction of novel

food products could have played a role. Both factors

are likely to influence the ingested dose and hence

the relevant dose–response relationship for a consumer

group of interest – in this case women [33]. The age

distribution was typical for a listeriosis outbreak, repre-

senting the population groups at risk: elderly people

(older than 69 years of age), pregnant women

(women of fertile age), and newborns.

In the first outbreak cluster, the entire hypothetical

transmission chain could be traced back from clinical

cases to food product to food processing environment

due to the high genetic relatedness of isolates. Indeed,

the cgMLST-based suspicion that RTE meatballs were

the causative food vehicle for listeriosis infections

could be epidemiologically confirmed by a case–con-

trol study. In the second outbreak cluster, the food pro-

duct was missing in the transmission chain. However,

as soon as the contamination in the food processing

environment was detected and eliminated, further con-

tamination of food products and hence transmission to

consumers was effectively prevented. Consequently,

forward checking, along with backtracking, and the

Figure 3. Heatmap of in silico detected virulence genes. Black: gene present; white: gene absent. Isolates are sorted by source and
by cgMLST cluster number. A set of 26 virulence genes was present in all 312 study isolates. Genes positively associated with the
outbreak clusters are marked by an asterisk. CgMLST clusters 9, 10, and 12–16 had the same virulence factor composition as out-
break cluster 1. Isolates in the clusters 8 and 11 were lacking the vip gene and were hence identical to outbreak cluster 2.

Figure 4. Heatmap of in silico detected antimicrobial resistance genes. Black: gene present; white: gene absent. Isolates are sorted
by source and by cgMLST cluster number (for legend see Figure 3). All 312 study isolates contained the lin gene (lincomycin resist-
ance) and the fosX gene (fosfomycin resistance). Only 48 isolates of three different cgMLST clusters (cluster 3, 9 and 15) additionally
contained the benzalkonium chloride tolerance genes bcrB and bcrC.
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resulting recall of products from the market as well as

stopping of the production, finally terminated the

outbreak.

Because of the great variety of L. monocytogenes

strains at the producer, the question arose as to why

only two of them have caused human infections

although probably more of them had reached consu-

mers. One possible explanation could be that strains

differ in pathogenicity. In line with a recent French

study showing associations of certain MLST CCs

with either infection or food [34], CC121 was the

second most common MLST CC in our non-clinical

isolates. The two outbreak clusters, however, belonged

to CC5 and CC7, which were classified as intermediate

and even rarely responsible for clinical cases, respect-

ively. Analysis of clinical L. monocytogenes isolates

from Germany [28] had confirmed that CC5 and

CC7 have not frequently been associated with listerio-

sis cases so far. To gain a deeper insight into strain

pathogenicity, we screened the genomes of all isolates

for known virulence factors [21]. The genes aut, vip,

inlF and lapB, which are all critical for host cell entry

[35–37], were found to be positively associated with

outbreak isolates and thus appeared to be involved in

a strain’s ability to infect humans. However, those viru-

lence genes were also found in non-outbreak clusters

including infection-associated MLST CCs, such as

CC1 and CC6 [34]. Additionally, LIPI-3 (llsAGHX-

BYDP, [26]) was detected in non-outbreak clusters, a

genetic island which is linked to increased invasiveness

of L. monocytogenes [38]. Last but not least, pathogen-

icity is a multifactorial process, and cannot merely be

derived from the presence or absence of virulence

genes [39]. In summary, the variety of potentially

pathogenic strains circulating at the producer, as

already described in other food processing plants

[40], clearly shows that selectively removing the source

of contamination for one specific outbreak cluster is

neither sufficient nor sustainable. Instead, the entire

L. monocytogenes population in a food processing

plant must be controlled and eliminated to not only

stop present outbreaks but to also prevent future ones.

The high diversity of the L. monocytogenes popu-

lation found in the food processing plant is not necess-

arily due to an extraordinary extent of contamination,

but very likely results from extensive sampling (“Who

seeks shall find”). Nevertheless, it highlights the pro-

blem of recurring L. monocytogenes contamination at

the producer and insufficiently established hygiene

measures. Strains of at least five of the

L. monocytogenes clusters were persistent in the food

processing plant and have been detected for nine

months to four years. This long period of time may

explain the comparatively large allele and SNP distance

[12,41–43] between the epidemiologically linked iso-

lates in our study. Furthermore, in three of those clus-

ters, strains were found in both, food and food

processing environment, verifying cross-contami-

nation events. Detection of twelve cgMLST singletons

showed a snapshot which does not necessarily exclude

persistence of these strains. This observation may also

provide evidence for periodic entry events of

L. monocytogenes into the production line, for example

via raw meat from various suppliers.

To gain a better understanding of the reason for

long-lasting persistence of L. monocytogenes strains in

the food processing plant, we screened for AMR

genes. Inadequate disinfection practices may expose

bacteria to sub-lethal biocide concentrations and thus

select for tolerant strains which may then persist in

niches [44]. As L. monocytogenes is known to be natu-

rally resistant to lincomycin and fosfomycin [45–47],

full length detection of these two AMR genes in all iso-

lates illustrated the effectiveness of our in silico screen-

ing method. Forty-eight out of 235 L. monocytogenes

isolates (20%) from food or food processing environ-

ment, found in cgMLST clusters 3, 9 and 15, carried

the BAC tolerance genes bcrB and bcrC. These figures

are in agreement with a recent study that found a

prevalence rate of BAC tolerance of 16% in 93 isolates

from German food processing environments collected

from 2008 through 2016 [23]. However, since Novem-

ber 2016, BAC has been listed as an unapproved disin-

fectant and preservative in the EU (implementation

decision 2016/1950), and most of our study population

and importantly, all isolates in outbreak clusters, were

susceptible. All tested isolates exhibited MIC values

lower than the in-use concentrations of biocides in

the cleaning agents and disinfectants applied in the

high care area of the food processing plant. We there-

fore assume that all substances were suitable for clean-

ing and disinfection if hygiene measures met the

guidelines. Hence, retention in hard-to-reach and con-

sequently hard-to-clean niches may have played a

major role in the establishment of persistence. Indeed,

L. monocytogenes contamination was found in such

niches along production lines and included surfaces

in high risk areas where previously heat-treated meat

products were chilled before packaging. The knowledge

gained about hotspots of contamination should help to

improve cleaning regimes including periodic disassem-

bly of production lines and/or to redesign the manufac-

turing equipment so that hard-to-clean areas are

minimized.

As observed in other studies [48,49], neither adjust-

ment of the hygiene management concepts, nor infra-

structural changes were successful to get the

L. monocytogenes contamination at the producer

under control. As a result, the entire processing plant

was shut down in autumn 2018. With the last clinical

case in October 2018, the outbreak was considered as

terminated.

In the beginning of 2019, however, an isolate from a

second producer located in another German federal
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state matched outbreak cluster 1 of our study according

to cgMLST. Throughout the year, 16 isolates from this

second producer, 3 from RTE meat products and 13

from the food processing environment, were found to

be highly genetically related to the isolates of the out-

break. Both producers did not have a direct supply

relationship and, in so far as this is known, neither

equipment nor staff has been transferred between

them. However, they shared some of their suppliers,

supporting the hypothesis that the outbreak strain

has been introduced via contaminated raw animal

products in both plants. On the one hand, this

shows that the search for an outbreak source does

not necessarily end at the level of final food proces-

sing but needs to be extended to the level of slaugh-

terhouses and cutting plants to really address the root

of the problem. Ultimately, this means that not only

sharing of sequencing data is needed, but that inte-

gration of information on commodity chains into a

common database would be important as well. On

the other hand, it also shows the need for epidemio-

logical investigations in addition to molecular surveil-

lance. Despite the high genetic relatedness of the new

isolates to the former outbreak, no further clinical

cases related to the outbreak have been reported up

to the date of publication.

Conclusion

In order to prevent listeriosis cases before they occur,

we should not only carry out outbreak detection, but

also set a focus on expansion of the data set available

for WGS-matching. One important approach for that

purpose would be to intensify regular monitoring in

the companies. Preferably, this is largely implemented

in the form of company’s own checks, so that contami-

nated food products are detected early enough and do

not enter the market. Overall, backtracking and for-

ward checking along the entire food chain must go

hand in hand to protect the public from zoonotic

pathogens. These terms are inspired by the area of

artificial intelligence, where forward checking is used

as a look ahead strategy during backtracking [50]. A

common database of molecular typing results may

solve this problem automatically, since it enables

real-time comparison in both directions. Only through

this two-sided control strategy, foodborne disease cases

can be prevented.
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Supplementary Table 1

sample_alias Accession
13-00476 ERS4419154 (SAMEA6659693) 
13-01044 ERS4419155 (SAMEA6659694) 
13-03570 ERS4419156 (SAMEA6659695) 
13-05213 ERS4419157 (SAMEA6659696) 
14-02242 ERS2103036 (SAMEA104485094) 
14-03077 ERS2103039 (SAMEA104485097) 
14-03633 ERS2103040 (SAMEA104485098) 
14-03879 ERS4418847 (SAMEA6659385) 
14-04042 ERS4418848 (SAMEA6659386) 
14-04253 ERS2103045 (SAMEA104485103) 
14-04789 ERS2103047 (SAMEA104485105) 
14-04961 ERS2103049 (SAMEA104485107) 
14-05083 ERS2103050 (SAMEA104485108) 
14-05266 ERS4419158 (SAMEA6659697) 
14-05359 ERS4419159 (SAMEA6659698) 
14-05360 ERS4419160 (SAMEA6659699) 
14-05399 ERS4419161 (SAMEA6659700) 
14-05646 ERS4419162 (SAMEA6659701) 
14-LI00510-0 ERS4418849 (SAMEA6659387) 
15-02696 ERS2103126 (SAMEA104485184) 
15-02726 ERS4419163 (SAMEA6659702) 
15-03239 ERS2103133 (SAMEA104485191) 
15-03310 ERS2103135 (SAMEA104485193) 
16-00477 ERS2103172 (SAMEA104485230) 
16-00805 ERS4419164 (SAMEA6659703) 
16-01265 ERS2103199 (SAMEA104485257) 
16-01571 ERS2103215 (SAMEA104485273) 
16-01618 ERS2103216 (SAMEA104485274) 
16-01908 ERS2103226 (SAMEA104485284) 
16-02525 ERS2103252 (SAMEA104485310) 
16-02555 ERS2103254 (SAMEA104485312) 
16-02585 ERS4418850 (SAMEA6659388) 
16-02586 ERS4418851 (SAMEA6659389) 
16-02725 ERS2103259 (SAMEA104485317) 
16-02841 ERS2103262 (SAMEA104485320) 
16-02862 ERS2103266 (SAMEA104485324) 
16-02902 ERS2103270 (SAMEA104485328) 
16-03056 ERS4419165 (SAMEA6659704) 
16-03062 ERS2103284 (SAMEA104485342) 
16-03341 ERS2103298 (SAMEA104485356) 
16-03643 ERS2103308 (SAMEA104485366) 
16-03665 ERS2103309 (SAMEA104485367) 
16-03703 ERS2103310 (SAMEA104485368) 
16-03780 ERS2103314 (SAMEA104485372) 
16-03868 ERS2103324 (SAMEA104485382) 
16-03885 ERS4419166 (SAMEA6659705) 
16-03886 ERS2103325 (SAMEA104485383) 
16-03934 ERS2103326 (SAMEA104485384) 
16-04180 ERS2103335 (SAMEA104485393) 
16-04181 ERS2103336 (SAMEA104485394) 
16-04235 ERS2103337 (SAMEA104485395) 
16-LI00360-0 ERS4418852 (SAMEA6659390) 
17-00472 ERS2103403 (SAMEA104485461) 
17-01287 ERS4418853 (SAMEA6659391) 
17-01357 ERS4418854 (SAMEA6659392) 
17-01478 ERS4418855 (SAMEA6659393) 
17-01870 ERS4418856 (SAMEA6659394) 
17-02157 ERS4418857 (SAMEA6659395) 
17-02392 ERS4418858 (SAMEA6659396) 
17-02419 ERS4419167 (SAMEA6659706) 
17-02460 ERS4418859 (SAMEA6659397) 
17-02677 ERS4418860 (SAMEA6659398) 
17-02864 ERS4418861 (SAMEA6659399) 



17-03027 ERS4419168 (SAMEA6659707) 
17-03524 ERS4419169 (SAMEA6659708) 
17-03596 ERS4419170 (SAMEA6659709) 
17-03631 ERS4419171 (SAMEA6659710) 
17-05073 ERS4419172 (SAMEA6659711) 
17-05076 ERS4419173 (SAMEA6659712) 
17-05383 ERS4419174 (SAMEA6659713) 
17-05799 ERS4419180 (SAMEA6659719) 
17-05803 ERS4419181 (SAMEA6659720) 
17-06371 ERS4418862 (SAMEA6659400) 
17-LI00727-0 ERS4418863 (SAMEA6659401) 
17-LI00728-0 ERS4418864 (SAMEA6659402) 
17-LI00729-0 ERS4418865 (SAMEA6659403) 
17-LI00730-0 ERS4418866 (SAMEA6659404) 
17-LI00766-0 ERS4418867 (SAMEA6659405) 
17-LI00767-0 ERS4418868 (SAMEA6659406) 
17-LI00811-0 ERS4418869 (SAMEA6659407) 
17-LI00916-0 ERS4418870 (SAMEA6659408) 
17-LI00917-0 ERS4418871 (SAMEA6659409) 
17-LI00969-0 ERS4418872 (SAMEA6659410) 
17-LI00970-0 ERS4418873 (SAMEA6659411) 
17-LI00971-0 ERS4418874 (SAMEA6659412) 
17-LI00972-0 ERS4418875 (SAMEA6659413) 
17-LI00973-0 ERS4418876 (SAMEA6659414) 
17-LI00974-0 ERS4418877 (SAMEA6659415) 
17-LI00975-0 ERS4418878 (SAMEA6659416) 
17-LI00976-0 ERS4418879 (SAMEA6659417) 
17-LI00977-0 ERS4418880 (SAMEA6659418) 
17-LI00978-0 ERS4418881 (SAMEA6659419) 
17-LI00980-0 ERS4418882 (SAMEA6659420) 
17-LI00983-0 ERS4418883 (SAMEA6659421) 
17-LI00984-0 ERS4418884 (SAMEA6659422) 
17-LI00985-0 ERS4418885 (SAMEA6659423) 
17-LI00986-0 ERS4418886 (SAMEA6659424) 
17-LI00987-0 ERS4418887 (SAMEA6659425) 
17-LI00988-0 ERS4418888 (SAMEA6659426) 
17-LI00990-0 ERS4418889 (SAMEA6659427) 
17-LI00991-0 ERS4418890 (SAMEA6659428) 
17-LI00992-0 ERS4418891 (SAMEA6659429) 
17-LI00993-0 ERS4418892 (SAMEA6659430) 
17-LI00994-0 ERS4418893 (SAMEA6659431) 
17-LI00995-0 ERS4418894 (SAMEA6659432) 
17-LI00996-0 ERS4418895 (SAMEA6659433) 
17-LI00997-0 ERS4418896 (SAMEA6659434) 
17-LI00998-0 ERS4418897 (SAMEA6659435) 
17-LI00999-0 ERS4418898 (SAMEA6659436) 
17-LI01000-0 ERS4418899 (SAMEA6659437) 
17-LI01002-0 ERS4418900 (SAMEA6659438) 
17-LI01003-0 ERS4418901 (SAMEA6659439) 
17-LI01005-0 ERS4418902 (SAMEA6659440) 
17-LI01006-0 ERS4418903 (SAMEA6659441) 
17-LI01007-0 ERS4418904 (SAMEA6659442) 
17-LI01008-0 ERS4418905 (SAMEA6659443) 
17-LI01009-0 ERS4418906 (SAMEA6659444) 
17-LI01010-0 ERS4418907 (SAMEA6659445) 
17-LI01011-0 ERS4418908 (SAMEA6659446) 
17-LI01012-0 ERS4418909 (SAMEA6659447) 
17-LI01013-0 ERS4418910 (SAMEA6659448) 
17-LI01014-0 ERS4418911 (SAMEA6659449) 
17-LI01015-0 ERS4418912 (SAMEA6659450) 
17-LI01016-0 ERS4418913 (SAMEA6659451) 
17-LI01017-0 ERS4418914 (SAMEA6659452) 
17-LI01018-0 ERS4418915 (SAMEA6659453) 
17-LI01019-0 ERS4418916 (SAMEA6659454) 
17-LI01020-0 ERS4418917 (SAMEA6659455) 
17-LI01021-0 ERS4418918 (SAMEA6659456) 



17-LI01022-0 ERS4418919 (SAMEA6659457) 
17-LI01023-0 ERS4418920 (SAMEA6659458) 
17-LI01024-0 ERS4418921 (SAMEA6659459) 
17-LI01031-0 ERS4418922 (SAMEA6659460) 
17-LI01032-0 ERS4418923 (SAMEA6659461) 
17-LI01033-0 ERS4418924 (SAMEA6659462) 
18-00200 ERS4419175 (SAMEA6659714) 
18-00305 ERS4418925 (SAMEA6659463) 
18-03370 ERS4419176 (SAMEA6659715) 
18-04057 ERS4419177 (SAMEA6659716) 
18-04187 ERS4419178 (SAMEA6659717) 
18-05769 ERS4419179 (SAMEA6659718) 
18-LI00244-0 ERS4418926 (SAMEA6659464) 
18-LI00245-0 ERS4418927 (SAMEA6659465) 
18-LI00246-0 ERS4418928 (SAMEA6659466) 
18-LI00247-0 ERS4418929 (SAMEA6659467) 
18-LI00248-0 ERS4418930 (SAMEA6659468) 
18-LI00249-0 ERS4418931 (SAMEA6659469) 
18-LI00250-0 ERS4418932 (SAMEA6659470) 
18-LI00251-0 ERS4418933 (SAMEA6659471) 
18-LI00252-0 ERS4418934 (SAMEA6659472) 
18-LI00253-0 ERS4418935 (SAMEA6659473) 
18-LI00254-0 ERS4418936 (SAMEA6659474) 
18-LI00255-0 ERS4418937 (SAMEA6659475) 
18-LI00256-0 ERS4418938 (SAMEA6659476) 
18-LI00257-0 ERS4418939 (SAMEA6659477) 
18-LI00258-0 ERS4418940 (SAMEA6659478) 
18-LI00259-0 ERS4418941 (SAMEA6659479) 
18-LI00260-0 ERS4418942 (SAMEA6659480) 
18-LI00261-0 ERS4418943 (SAMEA6659481) 
18-LI00262-0 ERS4418944 (SAMEA6659482) 
18-LI00263-0 ERS4418945 (SAMEA6659483) 
18-LI00264-0 ERS4418946 (SAMEA6659484) 
18-LI00265-0 ERS4418947 (SAMEA6659485) 
18-LI00266-0 ERS4418948 (SAMEA6659486) 
18-LI00267-0 ERS4418949 (SAMEA6659487) 
18-LI00268-0 ERS4418950 (SAMEA6659488) 
18-LI00269-0 ERS4418951 (SAMEA6659489) 
18-LI00270-0 ERS4418952 (SAMEA6659490) 
18-LI00271-0 ERS4418953 (SAMEA6659491) 
18-LI00272-0 ERS4418954 (SAMEA6659492) 
18-LI00273-0 ERS4418955 (SAMEA6659493) 
18-LI00274-0 ERS4418956 (SAMEA6659494) 
18-LI00275-0 ERS4418957 (SAMEA6659495) 
18-LI00276-0 ERS4418958 (SAMEA6659496) 
18-LI00277-0 ERS4418959 (SAMEA6659497) 
18-LI00278-0 ERS4418960 (SAMEA6659498) 
18-LI00279-0 ERS4418961 (SAMEA6659499) 
18-LI00280-0 ERS4418962 (SAMEA6659500) 
18-LI00281-0 ERS4418963 (SAMEA6659501) 
18-LI00282-0 ERS4418964 (SAMEA6659502) 
18-LI00283-0 ERS4418965 (SAMEA6659503) 
18-LI00284-0 ERS4418966 (SAMEA6659504) 
18-LI00285-0 ERS4418967 (SAMEA6659505) 
18-LI00286-0 ERS4418968 (SAMEA6659506) 
18-LI00287-0 ERS4418969 (SAMEA6659507) 
18-LI00288-0 ERS4418970 (SAMEA6659508) 
18-LI00289-0 ERS4418971 (SAMEA6659509) 
18-LI00290-0 ERS4418972 (SAMEA6659510) 
18-LI00291-0 ERS4418973 (SAMEA6659511) 
18-LI00292-0 ERS4418974 (SAMEA6659512) 
18-LI00293-0 ERS4418975 (SAMEA6659513) 
18-LI00294-0 ERS4418976 (SAMEA6659514) 
18-LI00295-0 ERS4418977 (SAMEA6659515) 
18-LI00296-0 ERS4418978 (SAMEA6659516) 
18-LI00297-0 ERS4418979 (SAMEA6659517) 



18-LI00298-0 ERS4418980 (SAMEA6659518) 
18-LI00300-0 ERS4418981 (SAMEA6659519) 
18-LI00301-0 ERS4418982 (SAMEA6659520) 
18-LI00302-0 ERS4418983 (SAMEA6659521) 
18-LI00303-0 ERS4418984 (SAMEA6659522) 
18-LI00304-0 ERS4418985 (SAMEA6659523) 
18-LI00305-0 ERS4418986 (SAMEA6659524) 
18-LI00306-0 ERS4418987 (SAMEA6659525) 
18-LI00330-0 ERS4418988 (SAMEA6659526) 
18-LI00331-0 ERS4418989 (SAMEA6659527) 
18-LI00332-0 ERS4418990 (SAMEA6659528) 
18-LI00333-0 ERS4418991 (SAMEA6659529) 
18-LI00334-0 ERS4418992 (SAMEA6659530) 
18-LI00335-0 ERS4418993 (SAMEA6659531) 
18-LI00336-0 ERS4418994 (SAMEA6659532) 
18-LI00337-0 ERS4418995 (SAMEA6659533) 
18-LI00338-0 ERS4418996 (SAMEA6659534) 
18-LI00339-0 ERS4418997 (SAMEA6659535) 
18-LI00340-0 ERS4418998 (SAMEA6659536) 
18-LI00341-0 ERS4418999 (SAMEA6659537) 
18-LI00342-0 ERS4419000 (SAMEA6659538) 
18-LI00343-0 ERS4419001 (SAMEA6659539) 
18-LI00344-0 ERS4419002 (SAMEA6659540) 
18-LI00345-0 ERS4419003 (SAMEA6659541) 
18-LI00346-0 ERS4419004 (SAMEA6659542) 
18-LI00347-0 ERS4419005 (SAMEA6659543) 
18-LI00348-0 ERS4419006 (SAMEA6659544) 
18-LI00349-0 ERS4419007 (SAMEA6659545) 
18-LI00350-0 ERS4419008 (SAMEA6659546) 
18-LI00351-0 ERS4419009 (SAMEA6659547) 
18-LI00352-0 ERS4419010 (SAMEA6659548) 
18-LI00353-0 ERS4419011 (SAMEA6659549) 
18-LI00354-0 ERS4419012 (SAMEA6659550) 
18-LI00414-0 ERS4419013 (SAMEA6659551) 
18-LI00415-0 ERS4419014 (SAMEA6659552) 
18-LI00417-0 ERS4419015 (SAMEA6659553) 
18-LI00418-0 ERS4419016 (SAMEA6659554) 
18-LI00419-0 ERS4419017 (SAMEA6659555) 
18-LI00420-0 ERS4419018 (SAMEA6659556) 
18-LI00421-0 ERS4419019 (SAMEA6659557) 
18-LI00422-0 ERS4419020 (SAMEA6659558) 
18-LI00487-0 ERS4419021 (SAMEA6659559) 
18-LI00488-0 ERS4419022 (SAMEA6659560) 
18-LI00491-0 ERS4419023 (SAMEA6659561) 
18-LI00539-0 ERS4419024 (SAMEA6659562) 
18-LI00540-0 ERS4419025 (SAMEA6659563) 
18-LI00541-0 ERS4419026 (SAMEA6659564) 
18-LI00542-0 ERS4419027 (SAMEA6659565) 
18-LI00543-0 ERS4419028 (SAMEA6659566) 
18-LI00635-0 ERS4419029 (SAMEA6659567) 
18-LI00636-0 ERS4419030 (SAMEA6659568) 
18-LI00643-0 ERS4419031 (SAMEA6659569) 
18-LI00714-0 ERS4419032 (SAMEA6659570) 
18-LI00715-0 ERS4419033 (SAMEA6659571) 
18-LI00716-0 ERS4419034 (SAMEA6659572) 
18-LI00717-0 ERS4419035 (SAMEA6659573) 
18-LI00718-0 ERS4419036 (SAMEA6659574) 
18-LI00719-0 ERS4419037 (SAMEA6659575) 
18-LI00720-0 ERS4419038 (SAMEA6659576) 
18-LI00722-0 ERS4419039 (SAMEA6659577) 
18-LI00723-0 ERS4419040 (SAMEA6659578) 
18-LI00724-0 ERS4419041 (SAMEA6659579) 
18-LI00725-0 ERS4419042 (SAMEA6659580) 
18-LI00726-0 ERS4419043 (SAMEA6659581) 
18-LI00727-0 ERS4419044 (SAMEA6659582) 
18-LI00728-0 ERS4419045 (SAMEA6659583) 



18-LI00729-0 ERS4419046 (SAMEA6659584) 
18-LI00730-0 ERS4419047 (SAMEA6659585) 
18-LI00731-0 ERS4419048 (SAMEA6659586) 
18-LI00732-0 ERS4419049 (SAMEA6659587) 
18-LI00733-0 ERS4419050 (SAMEA6659588) 
18-LI00734-0 ERS4419051 (SAMEA6659589) 
18-LI00735-0 ERS4419052 (SAMEA6659590) 
18-LI00736-0 ERS4419053 (SAMEA6659591) 
18-LI00737-0 ERS4419054 (SAMEA6659592) 
18-LI00738-0 ERS4419055 (SAMEA6659593) 
18-LI00739-0 ERS4419056 (SAMEA6659594) 
18-LI00740-0 ERS4419057 (SAMEA6659595) 
18-LI00741-0 ERS4419058 (SAMEA6659596) 
18-LI00742-0 ERS4419059 (SAMEA6659597) 
18-LI00743-0 ERS4419060 (SAMEA6659598) 
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18-LI00752-0 ERS4419069 (SAMEA6659607) 
18-LI00753-0 ERS4419070 (SAMEA6659608) 
18-LI00754-0 ERS4419071 (SAMEA6659609) 
18-LI00755-0 ERS4419072 (SAMEA6659610) 
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18-LI00759-0 ERS4419075 (SAMEA6659613) 
18-LI00760-0 ERS4419076 (SAMEA6659614) 
18-LI00761-0 ERS4419077 (SAMEA6659615) 
18-LI00762-0 ERS4419078 (SAMEA6659616) 
18-LI00766-0 ERS4419079 (SAMEA6659617) 
18-LI00767-0 ERS4419080 (SAMEA6659618) 
18-LI00768-0 ERS4419081 (SAMEA6659619) 
18-LI00769-0 ERS4419082 (SAMEA6659620) 
18-LI00770-0 ERS4419083 (SAMEA6659621) 
18-LI00771-0 ERS4419084 (SAMEA6659622) 
18-LI00772-0 ERS4419085 (SAMEA6659623) 
18-LI00773-0 ERS4419086 (SAMEA6659624) 
18-LI00774-0 ERS4419087 (SAMEA6659625) 
18-LI00775-0 ERS4419088 (SAMEA6659626) 
18-LI00779-0 ERS4419089 (SAMEA6659627) 
18-LI00780-0 ERS4419090 (SAMEA6659628) 
18-LI00781-0 ERS4419091 (SAMEA6659629) 
18-LI00782-0 ERS4419092 (SAMEA6659630) 
18-LI00783-0 ERS4419093 (SAMEA6659631) 
18-LI00784-0 ERS4419094 (SAMEA6659632) 
18-LI00785-0 ERS4419095 (SAMEA6659633) 
18-LI00786-0 ERS4419096 (SAMEA6659634) 
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A B S T R A C T

Tools for supranational communication of food safety risks like the European Rapid Alert System for Food and

Feed (RASFF) play an increasingly important role in consumer protection along global supply chains. They allow

for a coordinated response to emerging public health threats such as Listeria monocytogenes (Lm), the causative

agent of the foodborne disease listeriosis. As a result of disease severity and the rising number of human lis-

teriosis cases in Germany since 2011, an effective reporting system on Lm contamination in food products has

become more crucial than ever to counteract this trend. Therefore, we analysed RASFF notifications on food

products contaminated with Lm and distributed in Germany, 2001 to 2015, assessed trends in the reported data

and addressed options for improvement in the current notification system.

In RASFF Lm notifications concerning Germany from 2001 to 2015, there was often a discrepancy between

country of origin and notifying country, indicating that the food safety risk was not always recognised at the

earliest possible time point of the product's life span. In addition, in our dataset, most Lm notifications were

driven by official controls when the respective product was already on the market. However, starting in 2005,

there was an increasing trend for company's own checks. This trend of making food manufacturers accountable

for the detection and notification of contaminated products in the production line is a first step into the right

direction as it might help to reduce the number of contaminated food products that enter the market.

Besides its function as a reporting tool, the RASFF may also facilitate the identification of risk factors asso-

ciated with Lm contamination so that the problem can be tackled at its root. Unfortunately, information about

packaging and food processing was only mentioned in a minority of Lm notifications. Hence, risk factors cannot

be easily identified. In the future, a comprehensive database including additional metadata together with the

RASFF notification should be established.

Although a solid basis for the surveillance of Lm, there is still room for improvement in RASFF to speed-up the

flow of information. This might help to identify food safety risks that can be harmful to European consumers

much faster, more effectively prevent the spread of risk bearing food products and consequently reduce the

burden of listeriosis.

1. Introduction

Globalisation of food trade opens the door for the spread of food-

borne infectious diseases. In 2016, a total of 2536 human listeriosis

cases were reported in the European Union (EU), corresponding to an

incidence rate of 0.47 per 100,000 population (EFSA & ECDC, 2017).

Although comparably rare (e. g. incidence rate for salmonellosis 21.2

per 100,000 population), listeriosis has the highest hospitalisation rate

of all foodborne zoonoses under EU surveillance (EFSA & ECDC, 2017).

Together with its high case fatality rate (16.2% in 2016), it is rightly

considered a major EU-wide public health concern (EFSA & ECDC,

2017). The most affected groups are elderly people, im-

munocompromised patients and pregnant women where the disease is

often associated with severe clinical manifestations including
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septicaemia, meningitis and spontaneous abortion (Schlech & Acheson,

2000).

The causative agent of listeriosis is Listeria monocytogenes (Lm). The

saprophytic bacterium is widely distributed in the environment and can

be found in plants, soil, sewage and livestock (Farber & Peterkin, 1991).

It is highly adaptable and able to cope with a wide range of environ-

mental stress factors, including temperatures from 0 to 45 °C, a pH

range from 4.1 to 9.6 and salt concentrations up to 10% w/v NaCl

(Lungu, Ricke, & Johnson, 2009; Milillo et al., 2012). These properties

allow the pathogen to survive even in preserved foodstuffs stored in

cold chains of modern food production and retail systems, thereby

constituting a serious problem in food industry.

The vast majority of human listeriosis cases are supposed to be

foodborne (Swaminathan & Gerner-Smidt, 2007). There are two ways

in which Lm can find its way into the food chain: either via primary

contamination of raw animal products or via cross-contamination

during food processing. In the latter case, niche adaptation of the pa-

thogen, insufficient hygiene measures in food processing plants and as a

consequence persistence of Lm play an important role (Carpentier &

Cerf, 2011). Especially in ready-to-eat (RTE) products, per definition

“food intended […] for direct human consumption without the need for

cooking or other processing effective to eliminate or reduce to an ac-

ceptable level micro-organisms of concern” (European Commission,

2005), Lm contamination poses a risk to human health. Therefore,

Regulation (EC) 2073/2005 was implemented in 2005 to define mi-

crobiological food safety criteria which also apply for Lm in RTE foods

(European Commission, 2005). Typical examples of such RTE products

are deli meat, salads, sandwiches and cheese. If intended for infants or

special medical purposes, Lm has to be absent in 25 g of the RTE pro-

duct placed on the market during its shelf life. For all other target

groups, during shelf life, a limit of 100 CFU/g applies. However, a

further distinction is made between products that are, or are not able to

support growth of Lm. If the RTE product is able to support growth of

Lm, at the time before the food has left the immediate control of the

food business operator who has produced it, absence of Lm in 25 g RTE

product is mandatory as well. An exception only applies when the food

business operator shows that the limit of 100 CFU/g is not exceeded

during shelf life (European Commission, 2005). Despite these well-de-

fined criteria, listeriosis infections still show an alarmingly increasing

trend (ECDC, 2016).

In order to manage interconnected food safety issues arising from

international trade, the Rapid Alert System for Food and Feed (RASFF)

was initiated in 32 countries of the EU and the European Economic Area

(EEA) (European Commission, 2017a). Based on Regulation (EC) 178/

2002 and Regulation (EC) 16/2011, the RASFF is intended to provide

information on food-related, serious, direct or indirect risks to human

health to allow an immediate and coordinated response to emerging

threats (European Commission, 2002, 2011). RASFF notifications re-

ported by a national food safety authority are verified by the European

Commission (EC) as the manager of the system and disseminated to

contact points of network members. Affected products can then be

traced back and measures can be taken. There are three main types of

RASFF notifications: alert, information and border rejection notifica-

tions (European Commission, 2017b). Border rejection notifications

concern products rejected at the external borders of the EU/EEA,

whereas the other two notification types relate to products inside the

EU/EEA. Alert and information notifications mainly differ in the speed

and type of reaction that is necessary after release of the notification:

alert notifications do, whereas information notifications do not require

rapid action in other RASFF member countries. Regardless of the no-

tification type, every notification is based on the identification of a risk

to human health. Since implementation of Regulation (EC) 16/2011 in

2011, a further subdivision of information notifications into “informa-

tion notification for follow-up” and “information notification for at-

tention” was introduced (European Commission, 2011). An “informa-

tion notification for follow-up” is related to a product that is or may be

placed on the market in another country and hence similar to an alert

notification, although not requiring rapid action. An “information no-

tification for attention” is released if the product is only present in the

notifying country, if it is no longer on the market or if it has not even

been placed on the market.

In our study, we analysed RASFF notifications on pathogenic micro-

organisms (PMF) with a special focus on Lm, associated with con-

taminated food products. Based on RASFF Lm notifications affecting

Germany, 2001 to 2015, we assessed trends in the reports available and

tried to identify shortcomings in the current notification system.

Although a solid basis for the surveillance of Lm, there is still room for

improvement in the RASFF to allow for a more detailed risk assessment

and earlier reaction to improve consumer safety and finally reduce the

burden of listeriosis.

2. Methods

Data were extracted from the RASFF portal (European Commission,

2017b). Search criteria for RASFF PMF notifications with involvement

of Germany were “Notified from: 01/01/2001“, “Notified till: 31/12/

2015“, “Product type: food”, “Category: pathogenic micro-organisms”

and “Country: Germany (DE)” (query from 20/06/2016, last update

12/06/2017). Search criteria for RASFF Lm notifications independent

of the country involved were “Notified from: 01/01/2001“, “Notified

till: 31/12/2015“, “Category: pathogenic micro-organisms” and “Ha-

zard: Listeria monocytogenes” (query from 04/04/2016, last update 12/

06/2017). As the years 2001–2003 contained incomplete data on origin

and distribution of the contaminated food products, the whole datasets

for this period were excluded from analysis. Data on RASFF Lm notifi-

cations in Germany (period 2001 to 2015) were extracted from the

German Federal Office of Consumer Protection and Food Safety (BVL)

database using an SQL-based algorithm and completed with informa-

tion from the original RASFF pdf-documents.

Data selected from all three datasets were transferred to Microsoft

Excel 2010 (Microsoft Corp., Redmond, USA) to create descriptive

statistics, including frequency distributions (Pivot tables, with fil-

tering). The main filter categories took into account a country's role in

notification. A country can publish a notification (notifying country), it

can be affected by a notification if the product is distributed in the

country (affected country) or it can be country of origin of a product.

Involvement of a country is stated if at least one of these three condi-

tions is met.

The script for generation of the Chord diagram (Fig. 3) is available

at https://github.com/mattflor/chorddiag.

3. Results

3.1. RASFF PMF notifications, involving Germany

Between 2004 and 2015, 1303 PMF notifications with involvement

of Germany were published. Of these, 71% (n=935) were notified by

four countries: Germany (29%, n=381), Denmark (19%, n= 249),

France (13%, n= 169) and Italy (10%, n=136). A total of 719 noti-

fications (55%) were related to products distributed in Germany, while

455 (35%) were related to products exported from Germany without

being distributed in Germany. The remaining 129 notifications (10%)

were related to products where Germany was involved in the notifi-

cation process, but neither as country of origin nor as affected country.

In 381 PMF notifications (29%) Germany was notifying country,

country of origin in 562 notifications (43%) and affected country in 719

notifications (55%). The number of PMF notifications with Germany as

notifying country or country of origin was fluctuating from 2004 to

2015 (18–48 notifications per year as notifying country, 31 to 74 no-

tifications per year as country of origin), as well as the share of Lm

notifications of all PMF notifications (4–31% per year with Germany as

notifying country, 6–29% per year with Germany as country of origin).
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In contrast to that, PMF notifications affecting Germany have been in-

creasing since 2011 from 54 to 111 per year in 2015. However, the

proportion of Lm notifications in these years remained relatively stable

between 24 and 31%.

3.2. RASFF Lm notifications

Among all European PMF notifications from 2004 to 2015, 968

concerned Lm (Lm notifications). France and Italy were notifying

countries in almost half of these notifications (France 25%, n=242;

Italy 24%, n=235), followed by Germany (6%, n= 62), the

Netherlands (5%, n= 45), Spain (5%, n= 44) and Poland (4%,

n=43). In 27% (n=266) of cases, Italy was affected, in 26%

(n= 254) of cases, it was France. Germany, Belgium and the

Netherlands were among the affected countries in 20% (n= 198), 15%

(n= 146) and 11% (n=106) of notifications, respectively.

3.3. RASFF Lm notifications, involving Germany

From 2001 to 2015, a total of 312 Lm notifications with involve-

ment of Germany were published. The number of Lm notifications with

Germany as country of origin (total n= 98, 31%) ranged between 2

and 15 notifications per year. Out of these notifications, 73 (74.5%)

concerned products of German origin, meant for export only. Products

mentioned in 16 notifications (16.3%) were distributed both in

Germany and abroad, whereas 9 notifications (9%) were related to

Fig. 1. RASFF Listeria monocytogenes notifications for food products affecting Germany (dashed) and human listeriosis cases officially reported in Germany (black),

2001–2015. As a result of the fact that human listeriosis cases cannot be linked to a certain RASFF notification, no reliable causal relationship can be attested. Still, an

increasing trend can be seen in both datasets.

Fig. 2. RASFF Listeria monocytogenes notifications for products affecting Germany (n=226), 2001–2015. Percentages of notifications related to a product category

(simplified categories) per year of notification are shown.
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products of German origin, only distributed in Germany. The propor-

tions per year were variable from year to year, but consistently with a

main focus on exported products.

3.4. RASFF Lm notifications, affecting Germany

At total of 226 Lm notifications were published between 2001 and

2015 for products affecting Germany. For 33% (n= 75) of these noti-

fications, Germany was the notifying country, followed by France (30%,

n=68), Italy (9%, n= 20) and Austria (6%, n=13). In Germany,

notifications were primarily made in two German Federal States:

Baden-Württemberg (33%, n=25) and Hesse (17%, n= 13). Lm no-

tifications affecting Germany have been increasing since 2011, culmi-

nating in 29 notifications in 2015. Likewise, the number of human

listeriosis cases reported has been increasing in Germany since 2011,

reaching a maximum of 662 cases in 2015 (SURVSTAT@RKI 2.0)

(Fig. 1).

Products affecting Germany had their origin in 15 EU member states

and five non-European countries. Eight notifications were related to

multiple countries of origin. Products from four countries accounted for

73% (n= 165) of the notifications: France (34%, n=77), Italy (17%,

n=39), Germany (11%, n= 25) and Poland (11%, n= 24). Lm noti-

fications for products of French origin were mainly notified by France

(61 of 77 notifications, 79%). Italian, Polish and German products were

mainly notified by Germany (21 of 39, 54%; 14 of 24, 58%; 22 of 25,

88%, respectively) (Table 1).

3.4.1. Notification basis

Most of the 226 Lm notifications affecting Germany between 2001

and 2015 were based on official controls on the market (54%, n= 122).

From these, most were notified by Germany (45%, n=55), followed by

France (18%, n=22) and Italy (12%, n=15). For Germany, Italy and

also Austria, the overall percentage of notifications based on official

controls on the market clearly exceeded that of notifications based on

company's own check (55 based on official controls versus 16 based on

company's own check, 15 versus 4 and 10 versus 2, respectively). In

contrast to that, notifications from France were mainly due to findings

in company's own checks (22 based on official controls versus 44 based

Fig. 3. Product categories of RASFF Listeria monocytogenes notifications affecting Germany, by country of origin, 2001–2015. Arc lengths on the outer circle are

proportional to the number of notifications of a product category or to the number of notifications with a specific country of origin.
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on company's own check). Overall, company's own check contributed to

42% (n=95) of all Lm notifications affecting Germany, 2001 to 2015.

While the number of notifications based on official controls on the

market has been fluctuating between 3 and 15 per year from 2001 to

2015, notifications based on company's own check first appeared in

2005 from which on they showed an increasing trend (3 in 2005 to 17

in 2015). In five cases (one per year from 2008 to 2011, and another

one in 2014), food poisoning was mentioned as notification basis. In

three notifications, a RASFF notification was issued as a result of an

official control in a non-EU member state (one in 2011, two in 2012).

3.4.2. Affected food categories

The majority of Lm notifications affecting Germany, 2001 to 2015,

concerned milk and milk products (54%, n= 122), followed by fish and

fish products (23%, n=53) and meat and meat products other than

poultry (12%, n=26). Within the milk and milk products, the majority

of notifications were related to soft cheese (n=82, 67% of milk and

milk products) (Table 2). While notifications based on company's own

check mainly concerned milk and milk products (63%, n=60), a large

number of notifications based on official control on the market were

related to fish and fish products (31%, n= 38). From 2001 to 2015, the

proportion of food categories complained in Lm notifications every year

varied, shifting the main focus between milk and milk products, fish

and fish products and meat and meat products other than poultry

(Fig. 2). In the product category milk and milk products, 54% (n= 66)

of Lm notifications were related to products from France. For 38%

(n=20) of the notifications concerning fish and fish products Poland

was stated as country of origin. For the meat and meat products, the

country of origin was very diverse (Fig. 3).

3.4.3. Involved companies

Products of 30 companies (from a total of 176 companies) were the

cause of two or more notifications between 2001 and 2015. Twelve out

of these companies were mentioned in notifications in two separate

years, two companies caused notifications in three different years and

one company was associated with notifications in six different years.

With respect to milk and milk products, France had the highest number

of companies (n= 10) involved in two or more notifications, totalling

25 notifications. Concerning the category of fish and fish products, 17

notifications were associated with two Polish companies.

3.4.4. Notification types

Lm notifications affecting Germany were classified as “alert notifi-

cation” in 175 of 226 notifications (77%), with the majority of alerts

issued by France (37%, n=65) and Germany (23%, n=41). The re-

maining 51 notifications (23%) were information notifications. Due to a

lack of further subdivision before 2011, 31 of them were only classified

as “information notification”. After the subdivision of the category in

2011, 13 notifications were classified as “information for attention” and

7 “information for follow-up”. Germany was responsible for the ma-

jority of the three kinds of information notifications (between 57 and

71%).

3.4.5. Additional metadata

3.4.5.1. Packaging type and slicing category. Information for example

Table 1

RASFF Listeria monocytogenes notifications affecting Germany, 2001–2015, by country of origin and country of notification.

Note: For eight notifications, there was more than one country of origin (multiple attributions).

Country of origin Country of notification Sum

AT BE CZ DE DK EE ES FR GR IE IT LU NL PL UK NO

AT 6 1 7

BE 6 1 2 1 10

DK 1 5 1 2 1 10

EE 2 2

FR 1 8 61 2 1 1 3 77

DE 1 1 22 1 25

GR 2 1 3

HU 1 1

IE 1 2 3

IT 3 21 1 2 11 2 40

LV 1 1 2

NL 3 1 4 1 1 10

PL 14 1 1 8 24

ES 2 1 3

UK 1 2 1 4

CN 1 1

NZ 1 1

KR 1 4 5

TR 2 4 6

VN 1 1

Sum 14 8 1 80 5 2 1 69 3 2 20 1 12 9 2 6

AT-Austria, BE-Belgium, CZ-Czech Republic, DK-Denmark, EE-Estonia, FR-France, DE-Germany, GR-Greece, HU-Hungary, IE-Ireland, IT-Italy, LU-Luxembourg, LV-

Latvia, NL-Netherlands, NO-Norway, PL-Poland, ES-Spain, UK-United Kingdom, CN-China, NZ-New Zealand, KR-South Korea, TR-Turkey, VN-Vietnam.

Table 2

RASFF Listeria monocytogenes notifications for products affecting Germany,

2001–2015, by food category.

Product category Total

Milk and milk products 122

soft cheese 82

unspecified 12

fresh cheese 10

semi-soft cheese 8

semi-hard cheese 6

hard cheese 2

sour milk cheese 2

Fish and fish products 53

Meat and meat products (other than poultry) 26

Fruits and vegetables 9

Poultry meat and poultry products 6

Prepared dishes and snacks 4

Cereals and bakery products 2

Crustaceans and products thereof 1

Nuts, nut products and seeds 1

Soups, broths, sauces and condiments 1

Other food product/mixed 1
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about packaging or food processing was only provided for a minority of

Lm notifications affecting Germany. Data on packaging type was

available for 16% (n= 37) of notifications, information about the

slicing category in 23% (n=51) of notifications. In the category fish

and fish products at least for 20 of 52 notifications (38%), the

packaging type was specified. Among these, 15 products (75%) were

packaged under vacuum conditions. For the same category, slicing

information was available for 34 (65%) notifications. These products

were mainly filleted (50%, n= 17) or sliced (38%, n= 13). For meat

and meat products other than poultry, information on slicing category

was available for only 5 out of 26 notifications (19%), with four

products sliced (80%) and one cut (20%).

3.4.5.2. Raw/non-raw status and stabilisation category. The majority of

Lm notifications affecting Germany concerned raw products (47%,

n=107), but a large proportion of notifications lacked information

(45%, n= 101) (Table 3). The raw/non-raw status can be differentiated

from the stabilisation category of a product. As in some notifications,

not both of the corresponding metadata fields were filled, information

could not be combined. Lm notifications for milk and milk products

mainly concerned the stabilisation category “from raw milk” (42%,

n=49). However, in 45% (n=55) of notifications in this product

category, the stabilisation method was not specified. Within the fish

and fish products, smoking was the most reported stabilisation category

(73%, n= 38). In this category, only for 14% of notifications (n=7),

no specification was made.

3.4.5.3. Storage temperature, best before date and microbiological threshold

values. The majority of food products for which information on the

storage temperature was available (specifications made in 66% of the

226 Lm notifications, n= 149) were chilled. For about 70% of the

chilled products of each category, additional quantitative information

on Lm contamination was available. Among these, 57–61% exceeded

the microbiological limit value of 100 CFU/g. Only in five products,

sampling was carried out after the best before date whereas 154 (68%)

contaminated products were sampled before. For 73% (n= 113) of the

products sampled before the best before date, quantitative information

on Lm contamination was available. In 83% out of these cases (n=94),

the microbiological threshold value of 100 CFU/g was exceeded. For

those products that were sampled after the best before date,

quantitative information was available for three of the five samples.

Two exceeded the limit, whereas one was below.

4. Discussion

4.1. RASFF notifications - Main players and development over time

Four countries were the main players in releasing PMF notifications

involving Germany between 2004 and 2015: Germany, Denmark,

France and Italy. Germany, France and Italy are among the most po-

pulated EU countries and also among those with the highest gross do-

mestic product at market prices (German Federal Statistical Office,

2017). This could be part of the explanation of their RASFF notification

activities, but trade relations and also country-specific differences in

awareness and resulting efforts in the national food surveillance sys-

tems might play an important role. Furthermore, the market shares of

RTE products for the different countries are likely to influence their

notification rates.

PMF notifications affecting Germany have been increasing since

2011. Interestingly, the proportion of Lm notifications remained rela-

tively stable. Nevertheless, due to the increasing number of PMF noti-

fications, also more Lm notifications affecting Germany were published

from 2011 to 2015. Although possibly caused by a real increase in

microbial food contamination, in times of overall advances in micro-

biological food surveillance, this trend could also be a result of an in-

crease in awareness, efforts and reporting.

4.2. Notifying country versus country of origin - Discrepancies and possible

solutions

Independent of the country affected, France and Italy were the no-

tifying countries in about half of the Lm notifications between 2004 and

2015. France and Germany almost covered the total number of notifi-

cations dealing with products of French and German origin, respec-

tively (France notifying in 61 of 77 notifications, Germany notifying in

22 of 25 notifications; Table 1). For several other countries, a greater

imbalance was observed. Italy and Poland were country of origin in

more notifications than notifying country with respect to all notifica-

tions on products of Italian and Polish origin, respectively (Italy noti-

fying in 10 of 39 notifications, Poland notifying in 8 of 24 notifications;

Table 1). A satisfactory RASFF activity is reflected by the fact that a

country does not only recognise contamination in products produced in

the respective country but also in products shipped from other EU/EEA

countries. If country of origin and notifying country match to a large

extent, hazards could possibly be published at an earlier time of the

product's life-cycle, thereby more effectively preventing the spread of

risk-bearing foodstuffs.

Out of all Lm notifications affecting Germany, 2001 to 2015, only in

33% of notifications, Germany itself was the notifying country. In 30%,

the notification was released by France and in 9% of cases by Italy. This

could be related to the fact that products mentioned in the corre-

sponding Lm notifications in 34% of cases had their origin in France and

in 17% of cases in Italy. In contrast to that, only a small proportion of

Table 3

RASFF Listeria monocytogenes notifications for products affecting Germany,

2001–2015, by food category and stabilisation category or raw/non raw cate-

gory; for other product categories data are missing (unspecified).

Food category Total Metadata category

Milk and milk products 122

raw 49 raw/non-raw

non-raw 12

unspecified 61

from raw milk 49 stabilisation

from pasteurised milk 10

salted 5

from sour milk 2

from raw and pasteurised milk 1

unspecified 55

Fish and fish products 53

raw 48 raw/non-raw

unspecified 5

smoked 39 stabilisation

graved 2

salted 2

graved, marinated 1

marinated 1

smoked, salted 1

unspecified 7

Meat and meat products (other than poultry) 26

raw 9 raw/non-raw

non-raw 3

unspecified 14

cooked 3 stabilisation

smoked 2

dried 1

fermented 1

salted 1

unspecified 18

Poultry meat and poultry products 6

non-raw 1 raw/non-raw

unspecified 5

cooked 1 stabilisation

unspecified 5

Crustaceans and products thereof 1

non-raw 1 raw/non-raw

cooked 1 stabilisation
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notifications (11%) were related to products of German origin. While

Lm notifications for products of French origin were mainly reported by

France; Italian, Polish and German products were mainly notified by

Germany. This probably explains the divergence between the propor-

tion of notifications notified by Germany and the proportion of affected

products of German origin. Again, this shows the interconnectedness of

EU countries in means of food safety issues through trade and under-

lines the value of a comprehensive early-warning system like the

RASFF. However, it also demonstrates that notification activities within

the EU could benefit from harmonisation. According to Regulation (EC)

882/2004, it is up to the EU member states to ensure that official

controls are carried out regularly, on a risk basis and with appropriate

frequency (European Commission, 2004). Hence, surveillance activity

is regulated by individual country legislation and thereby subject to

variations. To achieve higher food safety standards, harmonised and

sometimes enhanced national surveillance activity might be needed.

A further limitation to harmonisation lies in the Regulation (EC)

2073/2005 on microbiological criteria for foodstuffs. This regulation

defines criteria for Lm in RTE food products (European Commission,

2005). These criteria differentiate between food products that are un-

able or able to support growth of Lm. If the food product is unable to

support growth of Lm, bacterial concentration in products placed on the

market must not exceed 100 CFU/g during shelf life. For food products

that are able to support growth, this applies as well. However, in this

latter case, an additional, stricter criterion is also valid, namely absence

of Lm in 25 g before the food product has left the final control of the

food business operator who has produced it. These specifications do not

leave room for interpretation. However, there is no strict consensus on

the classification of foodstuffs as “able to support growth” or “unable to

support growth”. Either a pH < 4.4 and aw<0.92 or a combination of

pH < 5.0, aw<0.94 and NaCl> 16% are generally considered as in-

trinsic food conditions that do not support growth (Buchanan, Gorris,

Hayman, Jackson, & Whiting, 2017). For all other categories, however,

scientific proof is needed to verify that the microbial limit of 100 CFU/g

will not be exceeded during shelf life (European Commission, 2005).

Unfortunately, limited data exist on growth rates of Lm in different

foodstuffs, making it sometimes difficult to provide evidence for a very

specific product without performing a time-consuming shelf life study

(U. S. Food and Drug Administration, 2014). Therefore, in the case of

sufficient justification, data for comparable foodstuffs can be used as a

reference. In this way, however, a little scope for interpretation may be

introduced for the decision whether a very specific product does or does

not enable Lm growth and as a consequence whether contamination is

considered as hazardous or not. Accordingly, different country specific

interpretations may lead to different RASFF notification activities. The

most comprehensive way to deal with this limitation could be an

overall zero tolerance limit in RTE food products like already active in

the USA (Chen, Ross, Scott, & Gombas, 2003). However, this strategy

has its weaknesses as well. Besides the considerable expense associated

with its implementation, its advantages over the EU-wide 100 CFU/g

limit are controversial (Chen et al., 2003; Tompkin, 2002). In a mi-

crobial risk assessment performed by Chen and colleagues for example,

the risk reduction potential of a non-zero strategy outperformed that of

the zero tolerance one (Chen et al., 2003). Overall, a compromise has to

be pursued to further standardise recognition of Lm-related food safety

issues and to achieve the highest possible reduction of foodborne lis-

teriosis infections.

4.3. Notification basis - “The sooner, the better.”

Most of Lm notifications affecting Germany, 2001 to 2015, were

based on official controls on the market, followed by company's own

checks. In our dataset, notifications following company's own checks

did not appear before 2005. This is in line with implementation of

Regulation (EC) 2073/2005 in 2005 as a consequence of the White

Paper on Food Safety published by the European Commission in 2000

(European Commission, 2000, 2005). As a reaction to several food

safety crises in the 1990s, this White Paper aimed to revolutionise food

safety. One key vision was a complete recast of the different control

requirements in order to ensure that all links in the food production

chain are covered by effective controls. As a result, more responsibility

was assigned to food business operators (European Commission, 2005).

Among other things, they were obliged to appropriately test against the

defined microbiological criteria, inducing the sudden appearance of

company's own checks in 2005. Since then, they showed an increasing

trend. This is very laudable as, in contrast to official controls on the

market, company's own checks usually detect a microbiological con-

tamination before the product is sold on the market or even earlier in

the product's life-cycle. As a result, the risk of a consumer to eat

foodstuff concerned is far lower as when a control happens when the

product is already on the market. In many cases where quantitative

information was available on Lm contamination in a RASFF notifica-

tion, the threshold value of 100 CFU/g (European Commission, 2005)

was exceeded even in chilled products and also before the best before

date showing the importance and also the value of the early-warning

system. If timely intervention measures like product recalls are taken,

public health risks can efficiently be decreased. While for example in

Germany, Italy and Austria official controls on the market prevail, the

majority of notifications from France are a result of company's own

checks. Overall, a promising trend can be observed as, since 2013, the

number of company's own check based notifications per year exceeds

that based on official controls on the market. Hopefully, this develop-

ment will help in the long run to ameliorate the quality of food products

that enter the market and thus help to prevent foodborne infections.

4.4. RASFF notifications types for risk assessment

A large majority of Lm notifications affecting Germany between

2001 and 2015 were alert notifications where rapid action by other

RASFF members was required. This highlights the importance of an EU-

wide, fast communication system like the RASFF to quickly and com-

prehensively manage the risk posed by a contaminated food product.

However, information notifications also play an important role.

“Information notifications for follow-up” for example are similar to

alert notifications. The only difference is the status of reaction of all

countries involved at the time of publication of the RASFF notification.

In their case, the report was released after measures had been taken.

Even though not requiring rapid action, they report about a risk for the

consumer that occurred and concerned multiple EU countries, hence

providing valuable information on the overall prevalence of Lm con-

tamination. The same is true for “information notification for atten-

tion”. This type of notification is probably the weakest concerning the

need for rapid action as distribution of the concerned product was re-

stricted to one country, the product is no longer on the market or has

not even been placed on the market. Still, a potential risk for consumers

was identified. In conclusion, although only alert notifications might

use the entire power of the EU-wide communication tool RASFF, also

information notifications essentially contribute to a comprehensive risk

assessment and are therefore an indispensable and valuable part of

RASFF notification activities.

4.5. Identification of risk factors for Lm contamination

The majority of Lm notifications affecting Germany, 2001 to 2015,

concerned milk and milk products followed by fish and fish products

and meat and meat products other than poultry. This goes along with

the fact that products from these three categories were also reported as

causative in 59% of the foodborne outbreaks caused by Lm in the EU/

EEA between 2008 and 2015 (EFSA Panel on Biological Hazards, 2017).

Probably as a result from the risk-based character of the RASFF noti-

fication system, these categories were associated with most of the Lm

notifications.
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In the category of milk and milk products, the majority of notifi-

cations were related to products from France, whereas a large share of

concerned fish and fish products originated from Poland. This is also

reflected in the involvement of specific companies from the two coun-

tries into notifications. Regarding the market shares of France and

Poland for products of these two categories, this is not surprising. While

France had the highest number of companies involved in notifications

for milk and milk products, two Polish companies were involved in 17

notifications in the category of fish and fish products. Together with the

fact that some companies were associated with notifications over sev-

eral years, this proves the stability of Lm contamination in various

production plants. Undetected sources of the bacterium may persist for

years and can consequently lead to repeated re-contamination of

foodstuffs (Carpentier & Cerf, 2011). Although identification and no-

tification of contaminated food products are relevant to take adequate

countermeasures and to protect consumer health, this approach will be

not sufficient to improve food safety in the long run. Reporting alone

will not suffice to contain Lm contamination of foodstuffs and thus

prevent human infections. In order to really address the problem, its

root has to be addressed. On the one hand, this could be achieved

through improved hygiene measures, for example using the seek-and-

destroy strategy (Butts, 2003; Malley, Butts, & Wiedmann, 2015). Per-

sistent Lm strains in food processing plants have been identified as the

most common post processing contaminants (Tompkin, 2002). Hence,

the seek-and-destroy strategy aims to identify harbourage sites and

niche locations, where bacterial strains withstand cleaning and sanita-

tion measures. Shortly, it combines different disassembly stages of

equipment with repeated sampling and sanitation measures (usually

flood or heat) until proven elimination of contamination (for detailed

description see (Malley et al., 2015)). On the other hand, also overall

more strict internal controls could help to tackle the problem of Lm

contamination at its root. In this context, the increasing quality of

company's own checks is a first step in the right direction.

Cross-contamination during the processing is one of the most im-

portant reasons for Lm contamination of foodstuffs. Hence, in order to

identify specific entry routes of Lm into the food chain, additional in-

formation on product properties and additives would be desirable.

Unfortunately, information for example about packaging or food pro-

cessing was only provided for a minority of RASFF notifications. For

instance, the packaging category of a product could be interesting to

know, because different atmospheres (vacuum, modified, normal etc.)

might selectively support bacterial growth thereby giving an advantage

to Lm proliferation (Tsigarida, Skandamis, & Nychas, 2000). Further-

more, the slicing category could be a valuable type of information, as

instruments used in this processing step are suspected to be a common

source of contamination (Lin et al., 2006). In the future, it would thus

be useful to provide as much information concerning a product in the

RASFF notification as possible to establish a more comprehensive da-

tabase and to better identify risk factors.

A first promising step towards simplification and harmonisation of

reporting was made through introduction of the interactive RASFF

(iRASFF) in 2011 which replaced Microsoft Word-templates for notifi-

cation by an online IT application (European Commission, 2015). Drop-

down menus are available in all official EU languages for the key data

(product category etc.) that can later be found in the RASFF portal.

Companies or hazards are stored in a database, but it is still possible to

integrate a free-text description. However, concerning additional me-

tadata, no uniform rule exists. While for example information on sto-

rage temperature can be selected in a dropdown menu, no such possi-

bility exists concerning packaging type, which is a free-text field. In

general, all of these metadata fields are not mandatory which is why

information might not be available in some notifications. On the one

hand, this appears necessary as in the case of missing information, the

notification would otherwise not be publishable. However, an explicit

“not specified” option in a mandatory field could help to handle this

problem and on the other hand promote the provision of crucial

additional information to improve risk assessment and thus European

food safety.

5. Conclusion

The number of RASFF Lm notifications in food products distributed

in Germany and the number of human listeriosis cases reported have

been increasing in parallel from 2011 on. As a result of the fact that

human listeriosis cases can usually not be linked to a certain RASFF

notification, no proven causal relationship can be attested.

Nevertheless, the common trend in both notifications is alarming. Due

to the fact that food contamination is not a “one country” problem,

communication between countries maintaining close trade relations, a

European surveillance system like the RASFF and hence timely reaction

to food safety issues are of crucial importance. Furthermore, EU-wide

identification and communication of potential consumer risks provide a

major contribution to risk assessment. However, improvements in the

current system and better exchanging and linking between food safety

and public health authorities will be indispensable in order to further

promote this development.

First, a key performance indicator could be a largest possible match

between country of origin and notifying country in RASFF notifications,

thus enabling risk communication and interventional measures at a

very early time point of the product's life cycle. This can be achieved by

further extension of company's own checks. However, also overall en-

hanced national surveillance activities would be beneficial. Secondly,

although a powerful tool for communication, reporting alone via the

RASFF system will not be sufficient to contain Lm contamination of

foodstuffs. To be able to address the root of the problem, more meta-

data should be made available together with the RASFF notifications to

allow identification of risk factors. For that purpose, adjustment of the

reporting system setting more value on information about product

properties would be desirable.
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