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Abstract

Within the first three months after stroke onset up to 95% of stroke patients experience at least
one relevant complication which has an important impact on survival. Infection is the most
relevant complication with frequencies between 21 — 65%. Among infections, stroke-associated
pneumonia has the highest attributable mortality in stroke patients and is considered as the most
common serious medical complication in stroke care. Moreover, infection has a tremendous
negative impact on the neurological outcome after stroke, and prevention of infection might
improve functional recovery.

The first aim of this PhD thesis was to establish a suitable tool to assess long-term functional
outcome after experimental stroke in mice. As patients might suffer from severe motor deficits
after stroke, and as automated gait analysis is a reliable tool to measure motor function in small
rodents, mice were tested before and after experimental stroke for gait deficits. Ten days after 60
min Middle Cerebral Artery occlusion, the use of hind limbs was impaired. Additionally,
interlimb coordination was disturbed.

The second study aims to investigate whether preventive antibiotic treatment inhibits stroke-
associated pneumonia and improves long-term outcome after stroke. Whereas preclinical
research uses placebo as control, and clinical studies compare against standard antibiotic
treatment after diagnosis of pneumonia, in this study current stroke care was modeled in mice,
applying lung MRI and clinical scores to diagnose murine pneumonia. Standard antibiotic
treatment reduced the post-stroke mortality as well as the preventive treatment approach,
however at the cost of a worse neurological outcome in gait analysis compared to the preventive
approach.

In the third part, the reason for the increased risk for infection after stroke was examined. In
addition to the sympathetic nervous system and the HPA axis, the parasympathetic nervous
system is a major contributor in the intense bidirectional brain-immune communication.
Applying heart rate variability as an indicator for parasympathetic activity, an increased
parasympathetic activity within the first days after stroke was observed. After experimental
stroke, vagotomised mice and mice deficient for a7 nicotinic acetylcholine (ACh) receptor did
not develop pneumonia as shown by a lower bacterial burden in the lung. Parasympathetic
signaling impairs both macrophages and alveolar epithelium cells after stroke.

In summary, this thesis adds a small piece to the puzzle of disturbed brain-immune
communication after stroke. I established a new method to assess long-term functional outcome
in mice with stroke, tested the influnces of infection on functional outcome in a mouse model of
standard stroke care and examined the influence of the parasympathetic nervous system on post-
stroke infections.



Zusammenfassung

Innerhalb der ersten drei Monate nach einem Schlaganfall erleiden bis zu 95% der Patienten
mindestens eine relevante Komplikation, die einen Einfluss auf die Uberlebensrate hat.
Infektionen sind die relevantesten Komplikationen mit einer Prédvalenz zwischen 21 und 65%.
Aus der Gruppe der Infektionen ist die Schlaganfall assoziierte Pneumonie die hiufigste
Todesursache von Schlaganfall-Patienten und wird als hdufigste schwere medizinische
Komplikation in der Schlaganfallversorgung angesehen. Dariiber hinaus haben Infektionen einen
grof3en Einfluss auf die neurologische Prognose nach Schlaganfall, und die Prdvention von
Infektionen konnte die funktionelle Genesung verbessern.

Das erste Ziel dieser Dissertation ist die Etablierung einer geeigneten Untersuchung des
funktionellen Defizits nach experimentellem Schlaganfall in Mdusen. Da Schlaganfall-Patienten
mitunter an schweren motorischen Stérungen leiden, und da automatisierte Ganganalyse in
kleinen Nagetieren schon erfolgreich eingesetzt wird, wurde das Gangbild von Méusen vor und
nach experimentellem Schlaganfall untersucht. Zehn Tage nach 60-miniitigem Verschluss der
Arteria cerebri media war die Nutzung der Hinterbeine eingeschrénkt und die Koordination
zwischen den Beinen gestort.

Die zweite Studie untersucht ob die praventive Gabe von Antibiotika durch die Verhinderung
von Infektionen einen positiven Einfluss auf die Langzeit-Prognose nach Schlaganfall hat.
Gegenwartig gibt es nur priklinische Studien mit Modellen, die Placebo-kontrolliert sind, oder
klinische Studien, in denen in der Kontrollgruppe nach der Diagnose einer Infektion antibiotisch
behandelt wurde. Daher modellierten wir die Standard-Pflege fiir Schlaganfall in Méusen, in
dem wir Lungen-MRTs und klinische Scores zur Diagnose der murinen Pneumonie nutzten. Die
Standard-Therapie mit Antibiotika nach Diagnose reduzierte die Mortalitét im gleichen Maf3e
wie die priaventive Gabe, allerdings auf Kosten eines schlechteren neurologischen Ergebnisses
verglichen mit der priventiven Gabe.

Im dritten Teil soll der Grund fiir das erhohte Infektionsrisiko nach Schlaganfall ndher untersucht
werden. Zusitzlich zum Sympathischen Nervensystem und der Hypothalamus-Hypophysen-
Nebennieren-Achse spielt das parasympathische Nervensystem eine wichtige Rolle in der
intensiven wechselseitigen Kommunikation zwischen Gehirn und Immunsystem. Mittels
Herzfrequenzvariabilititsmessungen als Indikator fiir parasympathische Aktivitit konnte eine
erhohte parasympathische Aktivitdt in den ersten Tagen nach experimentellem Schlaganfall
beobachtet werden. Méuse mit Vagotomie und transgene Méuse ohne a7 Acetylcholin (ACh)
Rezeptor entwickeltem nach experimentellem Schlaganfall keine Pneumonie, wie sich an der
geringeren Keimlast in der Lunge zeigte. Es zeigte sich, dass der Parasympatikus nach
Schlaganfall sowohl Makrophagen als auch alveoldre Epithelzellen in ihrer Funktion hemmt.

Zusammenfassend fiigt diese Dissertation ein kleines Puzzleteil zu der nach Schlaganfall
gestorten Kommunikation zwischen Gehirn und Immunsystem hinzu. Ich habe eine Methode
etabliert, die in ldngeren Zeitrdumen die Messung der neurologischen Funktion von Miusen mit
Schlaganfall erlaubt, habe den Einfluss von Infektionen auf die neurologische Funktion von
Maiusen mit Schlaganfall gestestet und den Einfluss des parasympathischen Nervensystems auf
Infektionen nach Schlaganfall charakterisiert.
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Introduction

Neurological outcome of stroke and its implication for research models

Stroke is one of the most important diseases in industrialised countries, associated with high
morbidity and mortality [1]. In Germany, with 250 000 cases and a mortality of about 30%,
stroke is the third leading cause of death. Additionally stroke is the leading cause for adult
disability[2]. Despite the medical need, therapeutic options are limited to thrombolysis with
tissue plasminogen activator, which can only be used in 5-10% of patients due to the narrow time
window of 4.5 hours [3], and specialized care in dedicated stroke units [4]. In addition, a small

proportion of patients could also benefit from endovascular thrombectomy [5]. .

Three months after stroke, half of the surviving stroke patients have still not gained full recovery
and 25 % of survivors are unable to master their daily life without professional care [2]. To
allow translation of experimental findings to the clinics, effective functional tests for
experimental stroke outcome are desperately needed [6]. While proper tests in patients for
evaluating motor as well as cortical impairment are widely available, animal behaviour after
cerebral ischemia remains to be difficult to assess in particular in mouse models of stroke. One
of the most obvious reasons is the ecological niche as prey animal, implying compensatory
mechanisms for hiding sickness symptoms as a key factor for survival [7]. Different behavioural
tests have been proposed in relation to experimental stroke in mice, among them many for
locomotion such as rope walk [8], grid walk [9], ladder rung test [10] and foot print analysis [11].
As stroke patients show impaired swing initiation [12], inadequate leg propulsion and subsequent
compensatory mechanisms [13, 14], gait analysis might be also a promising tool to examine
functional deficits in mice. With the development of suitable equipment, gait analysis has

become a promising option in research.

Stroke associated infections

In addition to the neurological consequences, patient suffering from stroke regularly develop
fever and subsequently have a high risk to die, as being described for the first time by Christoph
Wilhelm Hufeland, the first dean of the Charité [15]. In spite of this early observation, medical
complications after stroke remained a neglected field in stroke research. According to recent data
between 60 and 85 % of stroke patients experience medical complications [16-18]. In line with
Dr. Hufeland’s description, fever is one of the most common symptoms [19] occurring in up to
61% of stroke patients [20] and worsening neurological outcome [16, 21, 22]. One of the most

important reasons for developing fever is infection, and stroke associated infection is a common



complication in stroke care. With frequencies between 21 and 65% [19, 22-24], the incidence of
infectious complications is significantly higher than the general prevalence of hospital acquired
infections, ranging from 6 to 9 % [25]. Among those, bacterial pneumonia with an incidence of 5
— 22 % and urinary tract infections (UTI) with an incidence of 6 — 27% are the most common
complications after stroke [19]. By comparison, non-stroke patients in a geriatric hospital have
an average incidence of pneumonia of 3.5% [26]. Being the reason for about one third of the
attributable mortality [27], pneumonia is the most common cause of death both in the acute

phase after stroke [28-30] and after hospital discharge [31].

Alongside the medical relevance of stroke associated infection, an American study estimated the
mean adjusted costs for hospitalisation of patients with stroke-associated pneumonia more than
three times higher than for patients without pneumonia ($21,043 vs. $ 6209) [32]. Hence the
authors calculated the annual costs of stroke-associated pneumonia in the US at up to US$ 459

million.

Stroke associated infection is not only a medical problem affecting mortality, it has also a
tremendous impact on neurological outcome. [33-35] Stroke patients suffering from pneumonia
were over 70% more likely to require extended care after discharge and hence to have a lower
quality in daily life [32]. Patients experiencing infections after stroke have a much higher risk for

unfavourable outcome compared to patients with infections present at hospital admission [36].

Even in specialized stroke units pneumonia remains a common and severe clinical challenge [34,
37] and thus alternative treatment strategies are of urgent need. Despite successful prevention of
infection by preventive antibiotic treatment (PAT) in an experimental stroke model [38],
randomized controlled phase IIb trials on PAT after stroke did not reveal a clear result [39-41]. A
meta-analysis on these trials suggests that PAT reduces the occurrence of post-stroke infections,

but remains ineffective in terms of outcome [42].

Stroke models have to reflect the clinical situation and care aspects [43]. In terms of neurological
outcome, the discrepancy between preclinical success [38] and failure in clinical studies [42]
might be explained by the fact that mice were treated either with preventive antibiotics or
placebo in study. In the clinical studies, preventive antibiotic treatment was compared to the
current guidelines, recommending antibiotic treatment directly after diagnosis of pneumonia.
The challenge in modelling the clinical situation is to reliably diagnose pneumonia in living mice

to start antibiotic treatment. In patients diagnosis of chest infection is based on the CDC criteria



[44] including radiological, clinical and laboratory findings, whereas in the mouse established

criteria do not exist.

Stroke induced immune-depression syndrome

Cerebral ischemia leads to a number of predisposing factors for infections, among them
aspiration, bedridden state, impairment of protective reflexes, decreased level of consciousness
and mechanical ventilation. [45-49] However, they cannot explain the increased risk for
infection alone. Several distinct small brain areas account for impairment of swallowing, but
infectious complications are correlated with larger insular location of the insult. [50, 51] And
with respect to the observation, that approximately 50% of healthy subjects aspirate pharyngeal
fluid during sleep in similar amounts than stroke patients [52-54], there is strong evidence for

additional mechanisms beside aspiration.

To react appropriately to challenges from the environment, the nervous and immune systems are
closely interconnected in an intense bidirectional communication. [55-58] Receptors in the
peripheral nervous system register the status of the immune system to higher centers of the CNS.
After processing these signals the immune system is influenced by homeostatic signals mainly
via three important pathways: the hypothalamo-pituitary-adrenal axis (HPA), the sympathetic
nervous system and the parasympathetic nervous system [55, 57, 59]. With a plethora of studies
reporting impaired immune responses after stroke and other diseases of the CNS [60-65], a
secondary CNS-injury induced immunodepression is currently regarded as the cause for the
increased risk for infections [23, 66-68]. In light of experimental and clinical observations CNS
injury likely disturbs the normally well-balanced interplay between these two supersystems
resulting in a profound and long-lasting immunodepression [23], as described in stroke [69],

traumatic brain injury [70] and spinal cord injury [71, 72]

After stroke, well known communication pathways such as sympathetic nervous system and
hypothalamus-pituitary-adrenal axis have been shown to play an important role in stroke induced
immunodepression [69], acting mainly on the adaptive immune system [73, 74] and especially

on iNK-T cells [75].

On the other hand the innate immune system is regulated by the parasympathetic nervous system
acting via the vagus nerve and the neurotransmitter acetylcholine [76, 77]. In models of sepsis,
experimental activation of the vagus nerve, either by electrical stimulation [78, 79] or by
pharmacological activation via nicotine [80], led to a significant reduction in production of pro-

inflammatory cytokine TNF-a, the most important cytokine of macrophages, and other pro-



inflammatory cytokines. The molecular basis is a nicotinic, a-Bungarotoxin sensitive
acetylcholine receptor, the a7 nAChR, as demonstrated in knockout animals [81, 82]. Although
the a7 nAChR being expressed on a variety of cells including macrophages, T-cells, neurons and
glial cells, only a7nAChR expression on bone marrow-derived non—T cells is required for the

integrity of the inflammatory reflex [83].

Recent research revealed at least for sepsis a much more elaborate way of communication,
passing from the brain stem to the celiac ganglion as origin of the splenic nerve. From there
signals via the adrenergic splenic nerve terminate at specialized T cells in the spleen, that

deliberate Acetylcholine to influence macrophages [84].

Importantly, the vagus nerve also provides information on the peripheral immune status to the
CNS. Peripheral receptors detect inflammatory mediators and relay this information via the
vagus nerve to higher centers of the brain, among those the dorsal vagal complex and the nucleus
tractus solitarius [85]. Under physiological conditions, this so-called “cholinergic anti-
inflammatory pathway” acts as a feedback loop preventing a potentially noxious overreaction of
the immune system [86-88]. The hypothesis of this work is that after stroke this feedback
mechanism is activated without prior stimulation, hence leaving the patient without proper

immune response after stroke.

Aims

The first aim of the first study was to investigate the influence of a common model of severe
stroke, 60 min Middle Cerebral Artery occlusion, on mid- to long-term gait impairments. Further,
the second aim was to investigate the applicability of gait analysis for experimental stroke

studies with respect to effect sizes and required sample size.

The aim of the second study was to investigate the impact of preventive antibiotic treatment on
long-term functional outcome in comparison to the current “gold standard” for treating post-
stroke infections and to placebo. Current guidelines recommend an immediate treatment after
diagnosis, hence we developed diagnostic criteria for murine pneumonia, similar to the CDC

criteria for human [44].

Finally, the third study will focused on the underlying mechanisms of stroke-induced
immunodepression and the subsequent high risk for infectious complications. I investigated to

what extent the parasympathetic nervous system plays a role in the pathophysiology of post-



stroke infections. Special emphasis will be put on the question of the target cells of

parasympathetic signalling in the lung.

Materials and Methods
Due to the variety of methods, only key methods are described here in brief. All details are

described in the three publications listed in the appendix.
Animals and Housing

Experiments were performed in accordance with the European directive on the protection of
animals used for scientific purposes and the respective German legislation after approval by the
relevant authority, Landesamt fiir Gesundheit und Soziales, Berlin, Germany (registration
numbers G0253/08, G0467/09, G0107/12). Experimental design followed the recommendations
of the ARRIVE guidelines [89].

Male SPF C57Bl16/J mice (Charles River Laboratories, Sulzfeld, Germany), gender mixed a7
nicotinic acetylcholine receptor (a7 nAChR) knockout (ko) mice [90] and wild type (WT)
littermates respectively (B6.129S7-Chrna7"™'®*/J; JAX-stock 003232; The Jackson Laboratory,
Bar Harbour, USA) were housed in groups of 5 - 8 in cages lined with chip bedding and
environmental enrichment (mouse tunnel and igloo, running wheel until experimental stroke;
Plexx B.V., Elst, The Netherlands) on a 12 h light/dark cycle (change 7 0’ clock) with ad libitum
access to food (standard chow) and water. At the time of the experiment, mice were 11 — 14

weeks old.

Bone-marrow chimeric mice were generated as described previously [91]. We reconstituted 6 to
8 week old a7 nAChR ko or WT recipient mice with bone marrow derived from the tibias and
femurs of adult WT or a7 nAChR ko mice, in all four feasible combinations. Reconstitution was

assessed 8 weeks after transplantation by PCR analysis of peripheral blood.
Experimental stroke

The surgical procedure of middle cerebral artery occlusion (MCAo) was performed as described
elsewhere in detail [92] according to the standard operating procedures of our lab [93]. In brief,
after a ventral cervical midline incision a small silicon-coated filament was introduced over the
common carotid artery and the internal carotid artery into the circle of Willis blocking the origin

of the Middle Cerebral Artery. The filament was left in place for 60 min. Body temperature was



controlled throughout the whole procedure and isoflurane (Abott, Wiesbaden, Germany) in a 1:2

mixture oxygen/nitrous oxide was used for anaesthesia.
Gait Analysis

Gait analysis in mice was performed with an automated computer assisted method (CatWalk™,
Noldus Information Technology, Wageningen, The Netherlands) according to manufactures
instructions and published procedures [94]. In brief, in a dark and silent room mice passed an
elevated 1.3 meter long glass plate with the home cage used as bait at the end of the walkway.

They were trained three times before the first measurement to get familiar with the setup.

The glass plate is illuminated from the side, and contact of animal paws with the glass plate lead
to a changed refractive index of the internally reflected fluorescent light, which then leaves the
glass plate and is reflected downwards. A high-speed camera underneath the glass plate captures

the images which are subsequently analyzed by the connected computer program.
Diagnosis of infection and quantitative analysis

Infection was either measured by MRI of inflammatory sequelae, or by broncho-alveolar lavage
after intubation. MRI was performed 3 days after MCAo in Isoflurane anaesthesia using a 7
Tesla rodent scanner (Pharmascan 70/ 16, Bruker BioSpin, Ettlingen, Germany) and a |H-RF
volume resonator. Triggered on ECG and respiration to avoid motion artefacts, I examined the
lung using a T1 weighted FLASH sequence. I considered areas with a signal-to-noise ratio larger

than 3.5 as signals of lung inflammation [95] and expressed this as a fraction of whole lung area.

Broncho-alveolar lavage (BAL) was performed after intubating mice under medetomidin/
midazolam anaesthesia with a 22G peripheral venous catheter as described elsewhere [96].
Subsequently, 0.4 ml of saline plus 0.2 ml air were applied over the tubus and immediately
withdrawn. [97] For quantitative analysis (colony forming units — cfu) samples were serially

diluted and grown on LB plates for 18 hours.
Vagotomy

Cervical vagotomy was performed 5 days before experimental stroke at the same side of the neck
as the MCAo surgery. In brief, under isoflurane anaesthesia the left cervical vagus nerve was
carefully and bluntly dissected from the common carotid artery and transected. In sham-operated
mice, the left vagus nerve was exposed and isolated from the surrounding tissue but was not

transected.



Telemetry

Blood pressure (BP) and heart rate (HR) were measured by telemetry combined with fast Fourier
transform analysis of BP and HR as described elsewhere. [98, 99] In brief, telemetric devices
were implanted in a subcutaneous pocket along the right flank in mice. Blood pressure was

measured in the abdominal aorta with catheter access through the right femoral artery.
Statistics

Data were analyzed with SPSS 19.0 for Windows (SPSS Inc., Chicago, IL, USA). Normal
distribution of variables was verified with Kolmogorov-Smirnov test. Parametric and non-
parametric test were applied as indicated in the papers. In all cases, a type I error (o) of 0.05 and
type 1I error () of 0.2 was accepted. P-values of less than 0.05 were considered statistically
significant (*, p < 0.05; ** p < 0.01; *** p < 0.001). Data are expressed as mean + standard
deviation (SD) and represented as Box plots with whiskers Minimum to Maximum, unless
otherwise stated. For calculating effect sizes and a priori sample sizes the program G*Power
3.1.2 [100] was applied. To analyze gait data in study 1 and 2, I used the comparison for effect
sizes described by Matthews and Altman [101] and standard procedures such as the standard

error of differences [102].

Results
Study 1: Gait analysis as a measure for outcome in experimental stroke
We hypothesized that experimental stroke in mice affects the complex coordination of gait and

that these gait abnormalities can be measured even after longer periods of time.

Automated gait analysis provides a sensitive tool to examine locomotion and limb coordination
in small rodents. We compared gait parameters from mice measured before and 10 days after
experimental stroke (60 min MCAo). The approximately 250 parameters can be grouped into
four larger categories: spatial and kinetic characteristics of individual paws, comparative paw

measures and interlimb coordination.

The spatial parameters maximum contact area and maximum intensity were significantly
decreased in both hind paws after stroke (Figure 1), indicating a less powerful use of the
hindlimbs. Again in the hind limbs, individual paw kinetics were altered in terms of a significant
reduction in paw’s swing speed. Comparative paw measures describe measurements that are

related to the whole step cycle. The altered parameters indicated an impaired subtask “swing” in



the hindlimbs and a compensatory use of frontlimbs. Furthermore, mice showed a disturbed

interlimb coordination represented by changes in regularity index and phase dispersion.

Decreased max contact and Front limbs:
intensity in hind limbs increased stand time
=» less powerfull use of hind limbs =» compensation
Hind limbs:
stridelength ¥ | - I (3
swing speed ¥ - .
- Subtask swing | > L
impaired
Duty cycle

(rel. stand phase as part of step cycle)

Decrease in hind limbs,
increase in front limbs

=> less use of hind limbs,
Gait changes 10 days after MCAo (60 min) com pensated by front limbs

Disturbed interlimb coordination
(Phase dispersion, regularity index)

Figure 1 Summary of gait parameters that change 10 days after experimental stroke.

To assess whether gait analysis is applicable to assess improvements by neuroprotective
compounds, I applied a model calculation. Here the use of effect size statistics can reduce the
sample size to 16 — 21 animals, if we assume an improvement by 50 — 60 % as a biologically

relevant improvement.

Study 2: Comparison of preventive antibiotic treatment and standard treatment of post-
stroke pneumonia

The hypothesis of the second study was that prevention of post-stroke infection improves
functional outcome compared to placebo and gold standard, i.e. therapeutic antibiotics after

diagnosis of infection.

Our experimental setup included three groups. One group received preventive antibiotic
treatment immediately after experimental stroke, a second group got placebo treatment. The third
group got antibiotic treatment after diagnosis of pneumonia, modelling the current standard

therapy in stroke-associated pneumonia care.




To test this hypothesis, I established a protocol to reliably diagnose pneumonia in mice,
consisting of the Mouse General Health Score and radiological confirmation by MRI. The MRI

protocol was verified against post-mortem bacteriological analysis.

Despite manifest infections in both placebo and standard treatment group, similar survival rates
between 80 and 90 % were observed both after standard and preventive antibiotic treatment. In

contrast, only 55% of placebo treated animals experienced the end of study at day 14.

However, preventively treated mice showed an improved functional outcome in gait analysis 10
days after experimental stroke, both compared to placebo and standard treatment. Interestingly,

worse functional outcome correlated with an increased infiltration of leukocytes into the brain.

Study 3: Stroke induced parasympathetic activation mediates immunodepression in lung
We hypothesized that the parasympathetic nervous system is activated after stroke, hampering a

proper immune response especially of macrophages and alveolar epithelium cells.

A suitable approach to measure the status of the autonomic nervous system is the measurement
of heart rate variability [103, 104], and I used the telemetry approach to obtain measurements in
an undisturbed, quiet environment. To validate the parameters of parasympathetic activity, [ used
atropine and metropolol before start of the experiment. I observed an increase in heart rate
variability (LF-HRV, RMSSD, SD-RRI) and an increase in baroreflex sensitivity on day 1, 3 and
5 after stroke, indicating an increased parasympathetic activity. Baroreflex sensitivity (BRS) is
the ability to adopt the sinus frequency in response to blood pressure changes, also influenced by

parasympathetic activity.

To unravel the effect of this increase parasympathetic activity on the immune system, mice
underwent unilateral cervical vagotomy 5 days before MCAo or sham surgery. Vagotomized
animals showed significant reduction in bacterial burden in the lung, and the effect could be

reversed by nicotine treatment.

Further characterizing the target receptor, I used a7 knock-out mice and wildtype littermates.
Again, a significant reduction in bacterial burden could be observed if no a7 receptor was

present while no differences in heart rate or infarct volume were observed.

To disentangle the impact of bone marrow (BM)-derived pulmonary immune cells, e.g. alveolar
macrophages (AM) and lung epithelial cells on a7 nAChR dependant post-stroke

immunodepression, we generated chimeric mice by transplanting BM from a7nAChR KO mice



or WT littermates into lethally irradiated either a7nAChR KO or WT recipient mice. In
accordance with the knock-out experiment, ko—>ko chimeras had a significantly smaller bacterial
burden compared to WT—=WT animals. Both WT—ko and ko—WT animals had intermediate
values between WT and ko phenotype. A similar picture was observed ex vivo in cytokine

response assays with different stimuli.

Discussion

Study 1: Gait analysis as a measure for outcome in experimental stroke

In summary, we observed deficits in both hind paws 10 days after 60 min MCAo. The reduced
maximum contact area and maximum intensity might be an indicator of reduced propulsion and
weight bearing in both hind paws [105]. We could observe an impaired subtask swing in gait
patterns, being in line with observations in patients [106]. The observed increase in stand and
duty cycle in the front limbs might be explained by compensatory mechanisms taking over the
lack of effective hind limb use. In addition, mice showed an impaired interlimb coordination

shown by more irregular step patterns and altered phase dispersions.

Our results are in line with other publications in the rat [107-109] and could be reproduced in
general by other groups [110-112]. Analyzing the applicability of gait analysis in testing novel
stroke treatments, only a few parameters appear to be suitable to detect gait improvements due to
the limited effect size. However the sample size would be still quite high, as estimated between
15 and 20 animals per group. Nevertheless gait analysis can be regarded as a suitable tool to

analyze long-term functional outcome in experimental stroke models.

Study 2: Comparison of preventive antibiotic treatment and standard treatment of post-
stroke pneumonia

Infection is also a major bias in experimental stroke studies [113]. Due to the clinical relevance,
several mouse models of stroke associated infection have been established [114]. In experimental
models, post-stroke infection worsens stroke outcome in terms of mortality, expression of pro-
inflammatory cytokines, infarct volume and short-term behavioural testing [38, 69, 115]. Hence

mouse models are suitable for investigations on stroke-associated pneumonia [114].

Whereas clinical studies demonstrated that antibacterial prophylaxis reduced the occurrence of
post stroke infections, but has no tremendous impact on mortality and functional outcome [42],

studies in mice revealed a clear positive effect on mortality and outcome [38]. However mice
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were treated either with preventive treatment or with placebo, not reflecting the clinical situation

of “treatment after diagnosis” properly.

To address this discrepancy, we established a protocol to diagnose pneumonia in living mice
similar to the CDC criteria in human, including clinical and radiological signs. Both Mouse

General Health Score and lung MRI were effective in detecting mice with pneumonia.

Applying this to our stroke model, we were able to model the clinical situation properly. Similar
to the clinical studies, preventive antibiotic treatment reduced the incidence of infection
significantly. Again resembling the results from clinical studies, treatment with antibiotics
improved survival, independent of whether it was given preventively or immediately after
diagnosis of pneumonia. On the other hand, even a timely treatment after the diagnosis of
pneumonia could not reverse the negative effect on functional outcome, as shown in gait analysis.
Hence we assume that antibiotic treatment after diagnosis might be too late for preventing

negative effects on neurological outcome.

Two recent large randomized clinical trials [116, 117] examined the impact of preventive
antibiotic treatment on stroke outcome. In both trials preventive antibiotics did not result in a
better functional outcome measured by modified ranking scale, and was not able to significantly
reduce the frequency of pneumonia. In contrast to our homogenous mouse population at high
risk for post-MCAo0 infection, the patient population was much more divers and not all patients
had a high risk for pneumonia. Additionally, while antibiotic treatment in mice started
immediately after ischaemia, the treatment start for patients was 24 to 48 hours after the
ischaemic event [118]. In light of the results of the clinical trials, the growing problem of
bacterial resistance [119] and the immanent adverse events of antibiotics [120, 121] in my view

the preventive use of antibiotics cannot be recommended as standard therapy for stroke patients.

While the results of this thesis show in an ideal and surely simplified model that prevention of
infection could be of benefit regarding functional and medical outcome, the translation into the
complex clinical routine is more challenging and requires probably a more targeted approach. A
better understanding of the underlying mechanisms leading to post-stroke immunodepression
could unravel new diagnostic and therapeutic targets. On the one hand, this may help to identify
patients at risk to tailor a suitable preventive treatment. Currently there are different attempts to

identify suitable biomarkers in large clinical trials [122, 123].
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On the other hand, counteracting the underlying mechanisms might be a better strategy to
prevent stroke-associated pneumonia, especially as preventive antibiotics were not as effective as
it was hoped. A lot of basic research on the underlying mechanisms has been done in the past ten
years [51, 69, 74, 75, 124-130], and the third study of this thesis will contribute to that field.

However, translation into therapeutic approaches is still an open task.

Study 3: Stroke induced parasympathetic activation mediates immunodepression in the
lungs

Previous work concerning stroke induced immunodepression focussed on adaptive immunity,
such as CD4 T-cells [69, 131], invariate natural killer T-cells [75] or B-cells [69, 126], mainly
mediated by sympathetic influences [132]. Recently, excessive release of High Mobility Group
B1 (HMGB1) from the ischaemic brain was shown to contribute to the induction of this
immunosuppressive state, and accordingly post-stroke immunodepression appears to be a more

complex phenomenon [130].

In contrast to the adaptive immune system, innate immune system reacts immediately after
exposure to pathogens, hence acting as a first line of defence [133, 134]. Whereas the adaptive
immune system has been in the focus of immunological research and was regarded as the more
important part of immune responses for a long time, the innate immunity is increasingly regarded
as the central defence mechanism [135]. Consequently we hypothesized that stroke-induced
immunodepression also inhibits innate immunity, leading to a breakdown of the immunological
barriers. The parasympathetic nervous system was shown to play a crucial role in controlling

innate immunity, mainly macrophages [77] and eventually also lung epithelium cells [136].

Using heart rate variability measurements, we could observe an increased parasympathetic
activity in the first days after experimental stroke, which could not be explained by differences in
activity. Importantly, species specific differences in the interpretation of the parameters have to
be taken into account [99, 104, 137], as for example low frequency HR oscillations are an
indicator for parasympathetic activity in mice and for both sympathetic and parasympathetic
activity in humans [138]. Alterations in heart rate variability have been linked to changes of

peripheral markers of immune function [139-142].

According to our hypothesis, a disruption of the parasympathetic signalling should restore the
body’s ability to fight infections after stroke. Both after vagotomy and knock-out of the target
receptor a7 nAChR mice bacterial burden was significantly reduced and almost as low as in

healthy animals, supporting this hypothesis.
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A recent study reports that knockout of a7nAChR decreases P. aeruginosa induced lung injury
and mortality after stroke [143]. However, this study focuses on the effects of an already
occurring pneumonia, whereas we address the question of the onset of stroke-induced
immunodepression. In contrast to our study they choose an infection model that also causes

severe infection in otherwise healthy mice. [144]

However it remained unknown which are the main target cells of parasympathetic signalling
after stroke. Lung epithelium cells are far more than just a physical barrier [145], as they express
TLR receptors [146] and other receptors to detect pathogens, and as they produce cytokines and
antimicrobial peptides [147-150]. Apart from its physical barrier function, pulmonary epithelium
can kill pathogens directly [148, 151] and is able to trigger innate and adaptive immune
responses [152]. Furthermore, lung epithelial cells play an important role in fighting viral

infections [151]. Other groups showed that lung epithelium expresses a7nAChR [136, 153, 154].

Based on our observations in a7nAChR chimeric mice, both pulmonary macrophages’ and
alveolar epithelium cells’ functions are impaired by cholinergic signaling after stroke and the
function of either of these cell types is required for adequate immune responses. A similar
picture is observed ex vivo, where epithelium cells and macrophages respond to cholinergic

stimuli with a reduction in cytokine production.

Interestingly, especially a7nAChR knock out macrophages also react on nicotine, raising the
question for other receptors involved. Different groups were even unable to detect a7nAChR on
pulmonary macrophages [155-158]. Although a7nAChR play an important role in attenuation of
autoreactive CNS inflammation, also other nAChR are critically involved [159]. A few studies
also report on effects of other nAChRs like a9nAChR or f2nAChR [156, 160, 161] on innate
immune cells, and in a very recent study $2 and a9 nAChRs were involved in nicotine dependant
modulation of immune function in experimental autoimmune encephalitis (EAE) in mice [162].
Also our results in ex vivo stimulation with nicotine and the a7 nAChR-specific PNU282987
support the involvement of other nAChRs in cholinergic immune signaling. Hence a further
characterization of other nicotinic receptors is of critical importance to completely understand

the complex interaction in cholinergic brain immune signaling after stroke.

Considering the anti-inflammatory effect of ACh, it is plausible that Acetylcholinesterase (AChE)
activity is an intrinsic regulator of inflammation [163]. Indeed, peritoneal injection of AChE
inhibitors reduces serum pro-inflammatory cytokine levels and improves survival in a murine

model of sepsis; intravenous AChE inhibitors reduce IL-1p in brain and blood in mice [164]; and

13



ACHhE activity in circulation is inversely related to serum IL-6 levels induced by endotoxin in
humans [165]. Therefore not only increased signaling but also decreased clearance by change of
AChHE expression might contribute to the cholinergic effects on post-stroke immunodepression,
and there are first pieces of evidence in terms of serum cholinesterase activity in patients’ serum

[166].

One might consider stroke-induced immunodepression as a protective mechanism to prevent
auto-aggressive immune responses [167]. Moreover, stimulation of the vagus nerve has recently
been suggested as a potential neuroprotective therapy [168-172]. With respect to the results of
this thesis, we’re facing two sides of a coin, as on the one hand the increased cholinergic status
could be protective for the brain, but on the other hand it may expose the patients to an increased

risk for infections and subsequent higher mortality.

Surgical manipulation and isoflurane anaethesia affect immunological responses after stroke
[173]. To allow conclusions from the available models, appropriate controls that were exposed to
the same surgery and the same anaethesia were used, implying that the observed differences are

independent of the surgery.

In conclusion, based on my results presented here, the protective feedback mechanism of
parasympathetic activation, preventing the body from potentially harmful over-activation of
immune cells, appears to turn into a destructive event after stroke. Here, parasympathetic signals
were shown to disable the innate immunity, namely epithelium cells and macrophages, leaving

the body unprotected against bacterial invasion.
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