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Abstract
The development of scientific reasoning competencies is a key goal of science education.
To better understand the complex construct of scientific reasoning, which includes
modeling as one style of reasoning, thorough investigations of the underlying processes
are needed. Therefore, in this study, a typology of preservice science teachers’ modeling
strategies was developed. Thirty-two preservice science teachers were videotaped while
engaging in the modeling task of investigating a black box. Following a qualitative
content analysis, sequences of modeling activities were identified. By transforming these
sequences of modeling activities into state transition graphs, six types of modeling
strategies were derived, differing in the homogeneity and complexity of their modeling
processes. The preservice science teachers engaged in activities of (1) exploration only;
(2a) exploration and development with a focus on development; (2b) exploration and
development with a focus on exploration; (2c) exploration and development, balanced;
(3a) exploration, development, and drawing predictions from a model once; or (3b)
exploration, development, and repeatedly drawing predictions from a model. Finally, this
typology is discussed regarding the process of its development and its potential to inform
and guide further research as well as the development of interventions aiming to foster
competencies in scientific modeling.

Keywords Scientific reasoning .Modeling . Preservice science teachers . Typology .Modeling
strategies . Qualitative content analysis

Introduction

The development of scientific reasoning competencies is considered a key goal of twenty-first
century education (Osborne 2013), as those competencies are required for active participation
in science- and technology-centered societies. Consequently, scientific reasoning
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competencies are highlighted in curricular documents worldwide (e.g., BCMOE 2019; KMK
2005; NGSS Lead States 2013; VCAA 2016). To support the development of students’
competencies, preservice science teachers need to obtain scientific reasoning competencies
as part of their professional competencies (Khan and Krell 2009; Mathesius et al. 2016). These
scientific reasoning competencies can be defined as “a complex construct, which encom-
pass[es] the abilities needed for scientific problem solving as well as to reflect on this process
at a meta-level” (Krell et al. 2018, p. 2; cf. Morris et al. 2012), including generic cognitive
abilities, such as the use of analogies and decision making (Nersessian 2002), and the ability to
apply content, procedural, and epistemic knowledge for problem solving (Kind and Osborne
2017). In line with this definition, research on scientific reasoning competencies is a similarly
complex matter, leading to a high diversity of studies concentrating on different contexts and
foci and, consequently, using different theoretical frameworks and methodical approaches
(Koslowski 2013; Rönnebeck et al. 2016). Additionally, it is argued that there is no single
form of scientific reasoning; Kind and Osborne (2017), for example, have recently proposed
six different styles of scientific reasoning, which include mathematical deduction, experimen-
tal evaluation, hypothetical modeling, categorization and classification, probabilistic reason-
ing, and historical-based evolutionary reasoning. For some styles of scientific reasoning,
especially experimental evaluation (Hammann et al. 2008; Schauble et al. 1991a), individuals’
processes, strategies, and understandings have been broadly investigated and described in
science education research, but others, like hypothetical modeling, lack detailed research
(Nicolaou and Constantinou 2014). Hence, a thorough investigation of the processes involved
in different styles of scientific reasoning, and their comparison could lead to deeper insights
into the structure of the complex construct of scientific reasoning and would help develop a
“big picture of what [scientific reasoning] might be” (Kind and Osborne 2017, p. 27). The
present study focuses on the style of hypothetical modeling and adds to the research on
scientific reasoning, by presenting a process-oriented analysis of preservice science teachers’
strategies in the process of scientific modeling.

Analyzing Scientific Reasoning Processes

Research on the dynamic and process-oriented aspects of behavior often relies on the
systematic observation of predefined behavior codes (Bakeman and Gottman 1997), which
are used as the fundamental elements of analysis. In research regarding scientific reasoning,
the term “activities” is most commonly used to describe these elements of analysis (e.g., Khan
and Krell 20019; Krell et al. 2019). Thus, different frameworks with specific sets of activities
can be flexibly utilized to account for varying settings, samples or goals (cf. Rönnebeck et al.
2016), levels of detail (e.g., Chinn and Malhotra 2002; Fischer et al. 2014; Lawson 2004), or
theoretical emphases on specific styles of reasoning (e.g., on modeling; Giere et al. 2006). By
observing and identifying the different epistemic activities of individuals in their respective
order, the sequences of activities can be extracted, which simplify the complex process of
scientific reasoning to a level where patterns can be made visible. To date, empirical studies
have shown that the activities of scientific reasoning do not follow a strictly predetermined
order (e.g., Harwood 2004; Klahr and Dunbar 1988; Reiff et al. 2002), so scientific reasoning
can be considered a creative problem-solving process (Zimmerman 2005). However, system-
atic differences in the reasoning processes of novices and experts have been found (e.g.,
Čančula et al. 2015; Klahr 2002).
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How Typologies of Scientific Reasoning Can Be Beneficial for Science Education

Many studies aim to generalize patterns in scientific reasoning processes by proposing types or
classes of reasoning strategies, which can then be used for diagnostic purposes or in targeted
interventions (Klahr et al. 1993; Schauble et al. 1991b). One example of an analysis of
scientific reasoning processes that can be seen as a central framework in science education
research is the work of Klahr and Dunbar (1988), which has been used and adapted in
numerous further studies (e.g., Aizpurua et al. 2018; Hammann et al. 2008; Krell 2018;
Neumann et al. 2019). Based on case studies, Klahr and Dunbar (1988) developed the
Scientific Discovery as Dual Search (SDDS) model. They argue that scientific reasoning is
a problem-solving task taking place in two problem spaces: the hypothesis space and the
experiment space. They distinguish two strategies based on the occurrence of an experimental
activity at a specific moment in the scientific reasoning process, classifying subjects into
“experimenters” and “theorists.” They further describe the differences regarding the occur-
rence and frequency of activities assigned to one space or the other between these two classes.
When given a scientific problem, “theorists” search for new hypotheses in the hypothesis
space, while “experimenters” rely on experimentation to induce regularities without explicitly
stating other hypotheses. Studies have indicated that experts rather behave like “theorists” and
tend to search the hypothesis space, which could result from differences in prior knowledge
(e.g., Rasmussen 1981), allowing them to solve scientific problems more efficiently (Klahr
2002). Based on the SDDS model, Klahr et al. (1993) described commonly found differences
in reasoning processes of adults and children. They identified different problems children
encounter in the development of scientific reasoning skills. For example, children often have
problems constraining their search in the hypothesis or experiment space, leading to the testing
of inappropriate hypothesis or design of inappropriate experiments. These findings, which
were based on the application of the SDDS model and their typology of “experimenters” and
“theorists,” allowed them to draw implications for educational settings (e.g., should educa-
tional settings by design be more constrained in regard to the amount of hypotheses and
possible experiments if they target children), which were later incorporated into further studies
(Klahr and Nigam 2004).

Another study combining the identification of experimentation activities with the general-
ization of these patterns was implemented by Schauble et al. (1991a). They investigated
strategy differences in good and poor learners in an experimental setting, focusing on five
“classes of student behavior.” These classes include the general activity level and the four
activities of planning, evidence generation, data management, and evidence interpretation. The
authors distinguish between an “engineering” and a more advanced “scientific” model of
investigating scientific phenomena. Subjects utilizing the engineering model carry out an
investigation until a specific effect is reached and then stop, while subjects utilizing the
scientific model examine all variables and their influence on a given system. Additionally,
good learners use a control of variables strategy more frequently, generate more hypotheses,
keep more systematic records, and develop more goal-oriented plans than poor learners. The
authors further used the distinction between an engineering and a scientific model of exper-
imentation to develop a learning progression in which students were able to stepwise develop
their individual experimentation processes to increasingly resemble the latter (Schauble et al.
1991b). This effect was observed to be stronger if the problems to be solved were introduced in
an order of increasing analytical complexity.
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Both examples illustrate the fruitfulness of typologies of scientific reasoning for science
education; typologies might guide further research and contribute to theory development (e.g.,
Klahr and Dunbar 1988) as well as be used to develop specific educational settings and
interventions (Schauble et al. 1991a, b; Klahr et al. 1993; Klahr and Nigam 2004). However,
while different strategies (and related typologies) have been proposed for scientific experi-
mentation, such findings are widely missing for scientific modeling.

Scientific Modeling as One Style of Scientific Reasoning

The relationship between scientific modeling and scientific reasoning is extensively discussed
in science education research. As introduced above, six styles of scientific reasoning have been
proposed (Kind and Osborne 2017), with each style having a specific set of ontological,
procedural, and epistemic resources needed for reasoning. Kind and Osborne (2017) further
argue that the six styles of scientific reasoning offer a comprehensive schema for the construct
of scientific reasoning. The focus of this study is on one style that is quite established in
science education research: scientific modeling (e.g., Clement 2000; Gilbert 2004; Windschitl
et al. 2008). Although described as one of the six styles by Kind and Osborne (2017), various
other authors specifically emphasize the importance of modeling for reasoning in science;
Giere (1999), for example, claims that “scientific reasoning is to a large extent model-based
reasoning” (p. 56). Similarly, Lehrer and Schauble (2015) describe scientific reasoning (or
scientific thinking, respectively) as a modeling process that encompasses various other
practices. Thus, modeling can also be seen as an overarching ability, needed for all processes
of scientific reasoning. For this study, however, the specific relationship between modeling
and other styles of reasoning in science (i.e., whether modeling is one of various styles or an
overarching style encompassing the others) is not of central importance. Therefore, in the
present article, scientific modeling will be considered as one style of scientific reasoning and
thus needs to be specifically investigated in science education.

From an educational perspective, modeling has the potential to contribute to three of the
main objectives of science education (cf. Hodson 2014): learning science by learning major
models as products of science; learning to do science by developing practices to create and
evaluate models; and learning about science by appreciating the role of models as hypothetical
entities and epistemic tools in science (Justi and Gilbert 2003). Consequently, modeling is also
highlighted in recent curricular documents as a core scientific practice (e.g., NGSS Lead States
2013), and it has been widely acknowledged that research-based learning essentially consists
of the construction, testing, revision, and application of models (e.g., Schwarz et al. 2017;
Windschitl et al. 2008). Therefore, scientific modeling has been identified as a potentially
useful and relevant example of scientific reasoning and will be the focus of the present article.

Towards a Typology of Modeling Strategies in Science Education

To identify modeling strategies, the present study can build on an extensive body of research
on models and modeling in science education, whereby a lot of studies were published already
during the 1980s (e.g., Brown and Clement 1989; Gilbert and Osborne 1980; Nersessian 1992)
or more recently (e.g., Clement and Rea-Ramirez 2008; Krell et al. 2019; Passmore et al.
2014). In these studies, different facets of knowledge and abilities related to models and
modeling of various sample groups have been investigated, such as those of students (e.g.,
Grosslight et al. 1991; Krell et al. 2014a, b), teachers (van Driel and Verloop 1999; Windschitl
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et al. 2008), and experts (e.g., Bailer-Jones 2002; Clement 2008). Other studies have focused
on model-based learning and teaching, that is, how to use modeling approaches to enable
students to better understand scientific concepts (e.g., Acher et al. 2007; Passmore et al. 2009).

In all these studies, one common finding is that most sample groups seem to have
difficulties in understanding the predictive power of models and their role as epistemic tools
for scientific reasoning (Krell and Krüger 2016; Passmore et al. 2014). Additionally, even
when models are used and understood as epistemic tools, multiple models representing
alternative hypotheses are rarely considered (Grosslight et al. 1991). However, it is precisely
this characteristic of models as epistemic tools for prediction that is emphasized in science
education curricula and standard documents worldwide (e.g., BCMOE 2019; KMK 2005;
NGSS Lead States 2013; VCAA 2016). Moreover, reviews propose that research regarding
models and modeling in science education mostly focuses on cognitive and metacognitive
aspects, so that “meta-modeling knowledge is overevaluated” (Nicolaou and Constantinou
2014, p. 72); detailed and process-oriented analyses of modeling strategies, which could be
used for diagnostic purposes or interventions (cf. Klahr et al. 1993; Schauble et al. 1991b), are
mostly missing in science education research (Louca and Zacharia 2012; Nicolaou and
Constantinou 2014). One exception is the study by Sins et al. (2005), who investigated the
types of reasoning, foci of conversation, and types of argumentation used by novices during
computer-based modeling. The authors found that more successful students tended to justify
their reasoning with prior knowledge and viewed the model as a whole, while the less
successful students showed model-fitting behavior (cf. engineering model of
experimentation; Schauble et al. 1991a). While the study of Sins et al. (2005) shows how
the analysis of sequential activities can be further quantified by using, for example, z-scores,
they did not distinguish between different strategies or types of modeling processes, which
could potentially provide further insights into the nature of different modeling strategies
applied by, for example, preservice science teachers.

The present article aims to fill this gap by developing a typology of modeling strategies of
preservice science teachers, which can then be further used in science education to distinguish
individual modeling processes and enable researchers and teachers to identify points of
leverage for interventions on an individual level.

Methodological Frame of the Study and Research Questions

To ensure the quality of the analysis and enable comparisons between the present study and the
processes and strategies of reasoning involved in other styles of reasoning, the methods of
analysis and the development of the typology and its interpretation must be made as transpar-
ent as possible. Therefore, different evaluation criteria for the classification and development
of typologies are considered. The analysis is evaluated by the appropriateness of the consid-
ered attributes, the minimization of within-group variance, and the maximization of between-
group variance (Bailey 1994). The model of empirically grounded type construction (Kluge
2000) is applied during the analysis to maintain methodical flexibility, while achieving a
systematic and transparent development process for the typologies. The model describes four
steps in the type construction process (Fig. 1). The first three steps can be repeated multiple
times to evaluate the appropriateness of possible (combinations of) attributes.

Hence, in the present study, relevant analysis dimensions will be identified (step 1),
grouped, and investigated in terms of the empirical regularities (step 2) and meaningful
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relationships (step 3) within modeling processes to identify different types that can be
characterized as modeling strategies (step 4). More specifically, the following four research
questions will be discussed, whereby each question relates to one step of the model of
empirically grounded type construction (Fig. 1):

1) Which attributes are appropriate for developing an empirically grounded typology of
preservice science teachers’ modeling strategies (cf. Fig. 1, step 1)?

2) To what extent can modeling processes of preservice science teachers be appropriately
grouped based on the selected attributes and consideration of the criteria of minimizing
within-group heterogeneity and maximizing between-group heterogeneity (cf. Fig. 1, step
2)?

3) To what extent can meaningful relationships be found between cases within the identified
groups as well as between the identified groups (cf. Fig. 1, step 3)?

4) Which types of preservice science teachers’ modeling strategies can be derived from the
type construction process (cf. Fig. 1, step 4)?

Methods

Context

The context of this study is the first phase of science teacher education in Germany, which
takes place at the university. In this first phase, science teachers are requested to develop basic
professional knowledge and competencies that they will need as science teachers (Neumann
et al. 2017), including knowledge and competencies related to inquiry and reasoning in science
(KMK 2019). In Germany, preservice science teachers usually study two subjects (i.e., two
future teaching subjects) within a bachelor’s (six semesters) and a subsequent master’s
program (four semesters) before leaving university and entering the second phase of teacher
education (internship). Existing empirical studies propose a significant positive development
of German preservice science teachers’ scientific reasoning competencies over their course of
studies (e.g., Hartmann et al. 2015; Krüger et al. 2020). Students in later semesters are,
therefore, expected to have advanced competencies related to inquiry and reasoning in science.

Fig. 1 Model of empirically grounded type construction (Kluge 2000)
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Setting

To induce scientific reasoning processes, a black box setting was applied (Lederman and Abd-
El-Khalick 2002). The black box approach is established in science education research to study
processes of scientific thinking and modeling (Khan and Krell 2019; Lederman and Abd-El-
Khalick 2002; Passmore and Svoboda 2012). In such approaches, the black box represents a
natural phenomenon under study, and the exploration of the black box represents the process
of scientific discovery. It was shown that black box approaches are suitable to elicit modeling
processes, with models used as epistemic tools to discover the black box (Krell et al. 2019;
Passmore and Svoboda 2012). In this study, the black box approach was preferably chosen
over an authentic and content-rich scientific problem, in order to reduce the influence of prior
knowledge on the preservice science teachers’ modeling processes. However, it is recognized
that this might be one limitation of the study as some authors emphasize the important role of
content knowledge for scientific modeling (e.g., Ruppert et al. 2019). In the present article, a
water black box was used. It can be explored by filling the black box with water (input), which
then results in measurable outputs of water (see Krell et al. 2019 for a detailed description of
the black box).

Participation in the black box activity was voluntary and not connected to any university
courses or obligatory parts of the curriculum. Researchers and participants had no formal
relationships to one another. Each participant was briefly introduced to the study and signed an
informed consent. To gain additional insights into the scientific reasoning processes, all
participants were asked to concurrently think aloud (Leighton and Gierl 2007), which was
practiced with three short questions. After these preparations, the participants were brought
into a room equipped with three video cameras, the black box, some pre-filled glasses of water,
and a chalkboard. The researcher briefly explained the basic functionality of the black box
using a prepared script and provided the following task: “Draw a model of the inside of the
black box.” Participants were informed that there are no time constraints (mean length of the
activity for all participants: 1 h and 11 min). The first author stayed in the room during the
process of modeling to prevent any technical errors and, if necessary, to remind the participants
to concurrently think aloud; otherwise, he did not intervene.

Sampling

Data from 32 participants were collected and analyzed for the present study. The
participants’ academic progress ranged from first (i.e., bachelor) to tenth semester (i.e.,
master). The participants were aged between 17 and 39 (mean age was 25). To further
maximize the heterogeneity of participants and make the observation of different strat-
egies more likely, theoretical sampling was used. Preservice science teachers were
selected based on two criteria. The first criterion was the preservice science teachers’
achievement in an established multiple-choice test instrument, which has been previously
developed to assess scientific reasoning competencies and encompasses tasks about
scientific investigations and scientific modeling (Krüger et al. 2020). The second crite-
rion was the preservice science teachers’ achievement in the so called I-S-T 2000R
instrument (Liepmann et al. 2007). This paper-pencil instrument assesses general cogni-
tive abilities. It also includes tasks of spatial transformation, which is being argued to be
one ability needed for modeling (Nersessian 2002). Both criteria were assessed before
participants were invited to the black box activity, and only those preservice science
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teachers differing one standard deviation from the tested population’s mean scores on
both tests were asked to participate.

Data Analysis

The participants’ videos were transcribed verbatim, including all verbalizations as well as
behavioral aspects deemed important for the analysis (these included making an input or
observing an output, going to the board, or cleaning the board). The videos and corresponding
transcripts were analyzed by the first author and one additional rater (trained student assistant)
following a qualitative content analytic approach (Schreier 2012). To improve the compara-
bility of the results and enhance the workflow, the transcripts were coded watching the videos
simultaneously.

Each participant’s modeling process was split into individual activities of scientific model-
ing. For this purpose, a framework consisting of 19 different activities of modeling was
utilized (Table 1, i.e., category system), which was developed in a previous study (Khan
and Krell 2019; Krell et al. 2019) and integrates frameworks used to describe the processes of
analogical reasoning (Brown and Clement 1989) and scientific reasoning through models
(Giere et al. 2006). This framework also allows the assignment of every activity to one of the
three modeling phases of exploration, model development, or making predictions. While this
previously developed category system includes all activities of modeling that have been
identified within the whole sample of the previous study (Khan and Krell 2019; Krell et al.
2019), the present study further applies this category system in order to find patterns and
identify types for individual preservice teachers’ modeling strategies based on the sequence of
these modeling activities. Additionally, it is worth mentioning that analogies (Code 6) can be
activated throughout the whole process wherein participants are able to evaluate their ideas and
mental models verbally; however, the methodical approach in the present study requires an
externalized model in form of a drawing.

Table 1 Category system with 19 modeling activities (Krell et al. 2019)

Number Code Phase

1 Perception of a phenomenon Exploration
2 Exploration of the system: input/output (exploratory)
3 Exploration of the system: summarizing/describing observations
4 Exploration of the system: input/output (pattern detection)
5 Exploration of the system: recognizing patterns
6 Activation of analogies and experiences
7 Development of model: graphically develop model Development
8 Development of model: change model to optimize consistency
9 Development of model: change model to optimize representation
10 Development of model: reject model due to poor consistency/representation
11 Evaluation of consistency and representation: evaluate consistency
12 Evaluation of consistency and representation: evaluate representation
13 Finding of consistency and representation
14 Deduction of predictions Prediction
15 Evaluation of predictions: input/output (to test predictions)
16 Evaluation of predictions: confirmation of prediction
17 Evaluation of predictions: falsification of prediction
18 Modification/rejection of model: change model due to falsified predictions
19 Modification/rejection of model: reject model due to falsified predictions
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Table 2 exemplifies how the transcripts were divided into single activities for a short
transcript excerpt. This excerpt covers minutes 24 to 30 of one respondent’s 66-min-long
modeling process. Hence, the excerpt begins in the middle of the modeling process, after an
initial exploration phase and the development of an initial model.

To ensure the reliability of the analysis (intrarater agreement), every video and correspond-
ing transcript was coded twice by the first author. To ensure the intersubjectivity of the
analysis (interrater agreement), the videos and transcripts were then coded again by the trained
student assistant, followed by a discussion and resolvement of any disagreements, which might
have occurred. Cohen’s Kappa suggests acceptable to high agreements (Table 3). Disagree-
ments were discussed and resolved between both raters. The identified sequences of activities
were then used for further analysis related to the steps of the model of empirically grounded
type construction (Fig. 1). The respective approaches to data analysis are, therefore, explained
in the sections below.

Developing a Typology of Modeling Strategies

In the following, the findings are presented according to the research questions, which relate to
the steps of the model of empirically grounded type construction. Two cycles will be presented

Table 2 An excerpt of the transcript of one participant, exemplarily showing how the transcripts were divided
into single activities

Time
[min:s]

Paragraph Text Code

24:46 29 Let us see how much water I get back. [input and
observing the output] Ok, the missing 100 came
out, after I put in 2900 ml in total

2 exploration of the system:
input/output (exploratory)

25:14 30 Now it should be empty again 3 exploration of the system:
summarizing/describing observa-
tions

25:58 31 [input] I put in 400 again to fill up the first glass
[observes output]

4 exploration of the system:
input/output (pattern detection)

26:19 32 Ok, this could be what happened 5 exploration of the system:
Recognizing patterns

26:43 33 [going to the board] Ok, now I will try to draw this
step by step. At first, there is a chamber
containing 400 ml. [leaves the board]

7 development of model: graphically
develop model

27:11 34 I will put in 100 ml, to see if I can get it to overflow. 14 deduction of predictions
27:53 35 [input of 100 ml] Yes, something is overflowing, let

us see if these are 100 ml. [observing the output]
15 evaluation of predictions:

input/output (to test predictions)
28:24 36 Ok, either the chamber fits 50 more or the 50 ml

went somewhere else
17 evaluation of predictions:

Falsification of prediction
28:52 37 I will try again with the 100, let us see how much

comes out. [input, observing the output] It is 50
again

2 exploration of the system:
input/output (exploratory)

29:13 38 [going to the board] I get nearly half of it back,
which would suggest that the chamber fits 400
and when it overflows one half is going out and
another half in a different chamber. [leaving the
board]

18 modification/rejection of model:
change model due to falsified
predictions

Transcribed behavioral aspects (taken from the video) are added in brackets
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focusing on the occurrence of activities (cycle 1) and the transitions between activities (cycle
2), respectively.

Cycle 1, Step 1: Occurrence of Activities as a Relevant Analysis Dimension

Based on the studies described above, the occurrences of activities (Klahr and Dunbar 1988;
Schauble et al. 1991a) were identified as the first relevant dimension of analysis. In the first
cycle of the development of the typology, the sequence of activities conducted by the

Table 3 Overview of Cohen’s Kappa calculations

Min Max Mean

Intrarater-agreement 0.67 0.95 0.84
Interrater-agreement 0.45 0.93 0.77

Fig. 2 Codelines of Angelina (top) and Jonathan (bottom). The conducted activities are shown in chronological
order, whereby the size of each data point corresponds to the time spent on each activity. The dotted lines indicate
the assignment of the activities to the three phases of exploration, model development, and prediction. While both
participants engage in activities of exploration and model development, Angelina mostly focuses on activities of
exploration, with activities of model development at the end. In contrast, Jonathan frequently switches between
activities of exploration and model development. However, both Angelina and Jonathan conduct no activities of
prediction
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participants was visualized as codelines (see, e.g., Fig. 2), which is common practice in science
education research (e.g., Louca and Zacharia 2015).

Cycle 1, Step 2: Grouping the Cases and Analysis of Empirical Regularities Based
on the Occurrence of Activities

Based on the visual assessment of these codelines, three groups of participants can be easily
distinguished:

(1) One single participant conducted only activities of exploration and did not draw a model
at all.

(2) Seventeen participants conducted activities of exploration and model development but
did not derive any predictions from their models (cf. Fig. 2).

(3) Fourteen participants conducted activities of exploration, model development, and
prediction.

As the affiliation of the participants to their group can be directly identified from the
occurrence of activities, no further interpretation was needed, suggesting a sufficient degree
of between-group heterogeneity. Comparing the sequences of activities of participants in the
same group, however, suggests rather low within-group homogeneity, as the participants show
major differences in the proportion of activities conducted as well as their sequential order. For
example, Angelina shows a long sequence of activities of exploration, developing a model in
the very end (Fig. 2 top), while Jonathan shows activities of model development throughout,
alternating with activities of exploration (Fig. 2 bottom). Consequently, a further differentia-
tion of the groups seemed to be needed, and no further analysis of meaningful relationships
and type construction based on the occurrence of activities was conducted (cf. Fig. 1; step 3).

Cycle 2, Step 1: Transitions Between Activities as a Relevant Analysis Dimension

Because a quantitative analysis such as clustering would only account for the amount and time
the activities were conducted, the transitions between single modeling activities were selected
as relevant attributes to take the sequential order of activities into account in a second cycle of
developing the typology (cf. Sins et al. 2005). To visualize the transitions, the codelines
depicting the sequence of activities performed by every participant were transformed into state
transition graphs (Andrienko and Andrienko 2018). These state transition graphs show all
nineteen identified activities as knots that are connected by directed edges of different weights
accounting for the quantity of transitions between these knots. Additionally, two knots for
“start” and “end” are appended. All state transition graphs are automatically laid out in Gephi
(Bastian et al. 2009) using the force-directed graph layout algorithm ForceAtlas2 (Jacomy
et al. 2014).

Cycle 2, Step 2: Grouping the Cases and Analysis of Empirical Regularities Based
on the Transitions Between Activities

The resulting graphs were then grouped by two raters in a first visual analysis. Six groups
could be identified (Table 4), which further differentiate the three initial groups from step 1.
Participants engaged in activities of modeling by the following:
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(1) Exploration only (n = 1)
(2a) Exploration and development with a focus on development (n = 1)
(2b) Exploration and development with a focus on exploration (n = 11)

Table 4 Examples of state transition graphs for each identified group

Modeling strategy Example Pseudonym

(1)

exploration only
Carlo

(2a)

exploration and 

development with a focus 

on development

Kara

(2b)

exploration and 

development with a focus 

on exploration

Angelina

(2c)

exploration and 

development, balanced

Jonathan

(3a)

exploration, development 

and drawing predictions 

from a model once

Ben

(3b)

exploration, development 

and drawing predictions 

from a model repeatedly

Raphael

The numbers in the circles illustrate the respective activities (Table 2), and the numbers on the lines show how
often the activities were done sequentially. Activities of exploration, model development, or prediction are
highlighted in different shades of gray
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(2c) Exploration and development, balanced (n = 5)
(3a) Exploration, development, and drawing predictions from a model once (n = 9)
(3b) Exploration, development, and repeatedly drawing predictions from a model (n = 5)

Discussion of the results between both raters showed an agreement in the grouping of 23
out of 27 cases (85%), suggesting high between-group heterogeneity. Moreover, in the
discussion of the grouping process, both raters considered size, complexity (number of knots
and edges), the homogeneity of the edges, and edge weights in their analysis of the state
transition graphs. Because complexity is mostly represented by the occurrence of the different
activities, which was the attribute of analysis in cycle 1, homogeneity turned out to be the
refining factor in cycle 2, which further differentiated the typology, improving within-group
homogeneity.

Cycle 2, Step 3: Analysis of Meaningful Relationships and Type Construction Based
on the Transitions Between Activities

To evaluate the visual assessment, various quantifiable graph metrics were considered (cf.
Andrienko and Andrienko 2018), representing the attributes complexity and homogeneity.
State transition graphs with lower complexity show a higher number of communities as
activities not conducted by the participant and, therefore, unconnected to the rest of the graph,
are counted as one community each (Bastian et al. 2009). To represent complexity, the number
of communities was inverted by subtraction with 14 (maximum number of communities—1).
To quantify the homogeneity, the reciprocal centrality of the graph was chosen based on the
sum of three centrality measures (closeness centrality, degree centrality, and betweenness
centrality) to account for structural outliers (Ronqui and Travieso 2015). The mean values of
each group in terms of complexity and homogeneity were consistent with the visual assess-
ment (Table 5).

Participants in groups (3a) and (3b) show higher scores for complexity compared with the
other groups, as they conduct a broader range of different activities because they use their
models to predict the black box behavior. Participants in groups (2c) and (3b) show higher
scores for homogeneity compared with groups (2a), (2b), and (3a), as they tend to conduct the
different activities more equally. The single participants in groups (1) and (2a) show a
complexity score of 0, as they carry out only a few different activities, resulting in the highest
number of distinct communities, which were used to offset all calculations. Together with the

Table 5 Mean values of the calculated complexity and homogeneity metrics for each group

Group n Mean
complexity

Mean
homogeneity

(1) Exploration only 1 0.0 0.81
(2a) Exploration and development with a focus on development 1 0.0 1.39
(2b) Exploration and development with a focus on exploration 11 2.9 1.37
(2c) Exploration and development, balanced 5 4.2 2.08
(3a) Exploration, development, and drawing predictions from a model

once
9 7.0 1.25

(3b) Exploration, development, and repeatedly drawing predictions
from a model

5 8.4 1.67
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participants’ individual scores, defined areas can be observed that support the visual grouping
and that are in line with expectations (Fig. 3).

However, two participants (Sabrina and James) showed a statistically higher homogeneity
in comparison to their assigned groups and were therefore investigated further (cf. Fig. 1, step
3). Both participants invested less time in the investigation of the black box compared with
their respective groups: while Sabrina and James engaged in the black box activity for about
half an hour, the other participants in groups (3a) and (3b) invested an hour more on average.
The shorter time of investigation then leads to less repetitive actions and a higher homogeneity
score than for the other participants.

Discussion and Conclusion

Modeling is seen as a central practice of scientific reasoning (e.g., Clement 2000; Gilbert
2004) and is highlighted in curricular documents as a core scientific practice (e.g., NGSS Lead
States 2013). However, research on scientific modeling widely lacks detailed investigations of
modeling processes (Nicolaou and Constantinou 2014). Therefore, this study aimed to con-
tribute to filling this gap in science education research by developing a typology of preservice
teachers’ modeling strategies. This typology has the potential to inform and guide further
research as well as the development of interventions aiming to foster competencies in scientific
modeling. The proposed typology is based on the homogeneity and complexity of modeling
processes (Fig. 3) and includes the following strategies: (1) exploration only; (2a) exploration
and development with a focus on development; (2b) exploration and development with a focus
on exploration; (2c) exploration and development, balanced; (3a) exploration, development,

Fig. 3 Star plot illustrating the calculated metrics of each participant’s state transition graph in conjunction with
the mean values of his or her respective group (Table 4)
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and drawing predictions from a model once; and (3b) exploration, development, and drawing
predictions from a model repeatedly (Table 4).

Comparing the developed types of modeling strategies with strategies identified in previous
studies of scientific reasoning processes, many parallels can be drawn, indicating that at least
the strategies of modeling and experimental evaluation are quite similar: Participants of type
(2b), who conduct activities of exploration and model development with a focus on explora-
tion, show similarities to the participants of Schauble et al. (1991a), who utilize an engineering
model of scientific investigation when conducting experiments. The participants carry out an
investigation; in this case, the exploration of the black box, until a specific effect, for example,
a repeating pattern, is reached. Then, the participants end the modeling process by following
the initial task, drawing their model of the black box. In contrast, participants of type (2a) and
(2c) perform activities of model development more frequently, expressing behavior similar to
that previously described as model fitting (Sins et al. 2005). Moreover, in contrast to previous
empirical studies suggesting that understanding the predictive use of models is challenging for
most sample groups (Krell and Krüger 2016; Passmore et al. 2014), half of the cases we
observed could be assigned to type (3a) or (3b) and included activities of prediction in their
modeling processes. However, even participants of type (3b), who drew predictions from their
model repeatedly, ended their modeling process when they found a possible solution. Partic-
ipants did not further evaluate the developed models by trying to falsify the model or by
systematically testing alternative hypotheses, although this is suggested in other studies as
being important for scientific modeling (Grosslight et al. 1991; Louca and Zacharia 2015).

Methodologically, the identification of single activities of scientific reasoning, in this case
modeling, built the foundation for a further analysis of scientific reasoning processes. Based on
the occurrence of activities and the transitions between them, a typology of modeling strategies was
successfully derived. The occurrence of activities alone was not regarded as a sufficient attribute,
since the resulting groups did not show a sufficient degree of within-group homogeneity. By
additionally considering the order of the sequence of activities in the form of their transitions, the
typology was further refined, improving within-group homogeneity while maintaining between-
group heterogeneity (Bailey 1994). Visualizing the modeling processes of each participant in
different forms that emphasized the selected attributes, that is, codelines and state transitions graphs,
allowed a fast, visual grouping process, helped reduce the complexity of the rich datasets, and
improved their comparability. Grouping by multiple raters enabled the evaluation of interrater
agreement and a reflection on the grouping process and the decisions involved. This led to the
identification of more abstract attributes, such as the complexity and homogeneity of state transition
graphs, that could be further quantified and that supported the visual assessment. Multiple cycles of
typology development were necessary that were, in the present study, performed iteratively
following the model of empirically grounded type construction (Kluge 2000). This model proved
helpful in evaluating and refining the typology, as well as in avoiding errors in the assignment of a
specific type to an individual case, as the model supported the systematic selection and evaluation of
attributes and the resulting groups. We further argue that explicitly describing the different steps of
empirically grounded type construction greatly improves transparency, as the selection of attributes
and grouping processes have rarely been defined in other studies.

Regarding practical implications, we are aware that the black box setting and the sample
size may limit the generalizability of the results. Also, participants’ mental models (cf.
Johnson-Laird 1983) were not considered in the analysis, as the operationalization of the
present study focused on externalized models. Further research is needed that adopts the
described methods to other settings and contexts to replicate the proposed typology.
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Consequently, at this point, the integration of these findings into teaching environments and
the development of interventions that foster competencies in scientific modeling still seem
beyond reach. However, with the present findings extending the category system of Krell et al.
(2019), preservice science teachers’ individual modeling processes can be rapidly assigned one
of the proposed types, highlighting the differences between preservice science teachers and
reducing the complexity of the analysis. Identifying the type of modeling strategy, a preservice
science teacher uses in a specific setting then might yield potential points of leverage on an
individual level and could be used to guide this preservice science teacher to understand and
use models as epistemic tools for scientific reasoning. Therefore, the proposed typology of
modeling strategies might guide further research and theory development (cf. Klahr and
Dunbar 1988) and potentially contribute to the development of specific educational interven-
tions (cf. Schauble et al. 1991a, b; Klahr et al. 1993; Klahr and Nigam 2004). One example
would be a learning progression similar to Schauble et al. (1991a, b), in which the proposed
typology could be used as levels of the learning progression, which are encouraged through
modeling tasks with increasing degrees of complexity. Herein, the black box setting might be
considered rather complex, since participants are less likely to apply their background
knowledge and the black box is nontransparent and dynamic (Betsch et al. 2011).

Outlook

Our sample will be enlarged, and a possible improvement of within-group homogeneity and
between-group heterogeneity will be further investigated. Also, aiming to automate the type
assignment process, other statistical measures for calculating differences between sequences
will be considered and possibly integrated into the typology as additional dimensions,
including z-scores (cf. Sins et al. 2005) and Yule’s Q (cf. Lämsä et al. 2020). To gain an
understanding of how successful a specific type of modeling strategy is, we plan to investigate
the relationship between a participant’s type of modeling strategy and the quality of the
participant’s modeling product (i.e., the final model or models throughout the process), as
specific strategies are assumed to be used by less successful participants (Schauble et al.
1991a; Sins et al. 2005). Finally, the constructed types will be characterized, including all
assessed background variables and the quality of the developed models. We hope that this will
help to develop an understanding of how preservice science teachers’model and which factors
impact their modeling and, by doing so, provide valuable information for those who are aiming
to develop preservice competencies of scientific modeling.
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