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Abstract
In 2011, Beeler and Hoilman generalized the game of peg solitaire to arbitrary

connected graphs. In the same article, the authors proved some results on the

solvability of Cartesian products, given solvable or distance 2-solvable graphs. We

extend these results to Cartesian products of certain unsolvable graphs. In particular,

we prove that ladders and grid graphs are solvable and, further, even the Cartesian

product of two stars, which in a sense are the ‘‘most’’ unsolvable graphs.

Keywords Peg solitaire � Cartesian product � Star graph � Ladder graph � Grid

graph

Mathematics Subject Classification 05C57 � 05C76 � 91A43

1 Introduction

In [3], Beeler and Hoilman introduced the game of peg solitaire on graphs as a

generalization of the classical peg solitaire game:

For a connected, undirected graph G ¼ ðV ;EÞ, we put pegs in some of the

vertices of G. Given three vertices u, v, w with pegs in u and v and a hole in w such

that uv; vw 2 E, we can jump with the peg from u over v into w, removing the peg in

v (see Fig. 1). This jump will be denoted as u � v � w.

In general, we begin with a starting state S � V of vertices that are empty (i.e.,

without pegs). A terminal state T � V is a set of vertices that have pegs at the end of
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the game such that no more jumps are possible. A terminal state T is associated to a

starting state S if T can be obtained from S by a series of jumps. We will always

assume that the starting state S consists of a single vertex.

The goal of the original game is to remove all pegs but one. This is not possible

for every graph. Therefore, we use the following notation. A graph G ¼ ðV ;EÞ is

called

– solvable, if there is some v 2 V such that the starting state S ¼ fvg has an

associated terminal state consisting of a single vertex.

– freely solvable, if for all v 2 V the starting state S ¼ fvg has an associated

terminal state consisting of a single vertex.

– k-solvable, if there is some v 2 V such that the starting state S ¼ fvg has an

associated terminal state consisting of k vertices.

– strictly k-solvable, if G is k-solvable but not l-solvable for any l\k. In that case

G has solitaire number PsðGÞ ¼ k.

Peg solitaire has been considered for quite a few classes of graphs, including paths,

complete graphs, stars, double stars and caterpillars (for more results and variants

see [1–9]).

In this article we will consider the Cartesian product of two graphs. For graphs G
and H, we denote the Cartesian product of G and H by GhH and use the (common)

notation ðg; hÞ 2 VðGhHÞ for the vertex induced by g 2 VðGÞ and h 2 VðHÞ.
In [3], Beeler and Hoilman gave some results about Cartesian products of graphs,

that are either solvable or distance 2-solvable (meaning that they are strictly

2-solvable such that the pegs in the terminal state have distance 2). We will extend

these results to Cartesian products of an arbitrary graph and a solvable graph (with

an extra condition). We also consider Cartesian products of stars (i.e., graphs that

are furthest away from being solvable) and show that these Cartesian products are

solvable, too. This gives rise to the conjecture, that all (non trivial) connected

Cartesian products are solvable.

2 Ladders and Grids

In this section we will derive some general results. Our main result is the solvability

of the Cartesian product of an even Hamiltonian graph and an arbitrary graph.

To deal with Cartesian products, we need the following new concept. A graph G
is called super freely solvable if, for any (not necessarily distinct) v;w 2 V , terminal

state fwg is reachable from starting state fvg.

The following (well known) lemma is easy to prove.

Fig. 1 A jump in peg solitaire

123

908 Graphs and Combinatorics (2021) 37:907–917



Lemma 1 The cycle C4 is freely solvable. Moreover, for any distinct vertices v, w,

we can end with a peg in w when starting with a hole in v. On the other hand, C4 is
not super freely solvable.

For m; n� 2, we call Pn hP2 a ladder and Pm hPn a grid. In particular, C4 is

both, a ladder and a grid. We will show that, apart from C4, all ladders and grids are

super freely solvable.

Theorem 1 If n� 3, the ladder Pn hP2 is super freely solvable. Moreover, for each
i 2 f2; . . .; n� 1g, at some point in the solving process the subgraph fvighP2

contains exactly one peg and one hole.

Proof We divide the proof into several cases, depending on the location of the

starting hole and the terminal vertex. In each case it will be clear from the jumps

that the second statement in the theorem is fulfilled.

1. Suppose that s ¼ ð1; 1Þ and t ¼ ðn; iÞ. We start with the following jumps:

ð2; 2Þ � ð2; 1
�!Þ � ð1; 1Þ; ð1; 1Þ � ð1; 2

�!Þ � ð2; 2Þ: ð1Þ

This produces a ladder with holes in (1, 1), (1, 2) and (2, 1) and pegs

everywhere else. Now we can jump up the ladder in the same fashion until we

are left with a ladder with pegs only in ðn� 1; 2Þ; ðn; 1Þ and (n, 2). Executing

the jumps ðn; 2Þ � ðn; 1
�!Þ � ðn� 1; 1Þ and ðn� 1; 1Þ � ðn� 1; 2

����!Þ � ðn; 2Þ or ðn�
1; 2Þ � ðn� 1; 1

����!Þ � ðn; 1Þ solves the graph with the desired terminal state.

2. Suppose that s ¼ ð1; 1Þ and t ¼ ð1; iÞ. We start with the jump

ð2; 2Þ � ð2; 1
�!Þ � ð1; 1Þ. If t ¼ ð1; 1Þ, we execute the jumps

ð2jþ 1; 2Þ � ð2jþ 1; 1
�����!Þ � ð2j; 1Þ; ð2jþ 2; 1Þ � ð2jþ 2; 2

�����!Þ � ð2jþ 1; 2Þ ð2Þ

for 1� j�bn
2
c � 1. If n is odd, we further jump ðn; 2Þ � ðn; 1

�!Þ � ðn� 1; 1Þ. This

sequence of jumps will result in a state where we have pegs in

(1, 1), (1, 2), (2j, 1) and ð2jþ 1; 2Þ for 1� j�bn
2
c � 1 and, if n is odd, also

in ðn� 1; 1Þ. Every other vertex is empty. Starting with the jump

ð1; 1Þ � ð1; 2
�!Þ � ð2; 2Þ, we go up on the second component of the ladder and go

down on the other side. This will end with a peg in (1, 1). If t ¼ ð1; 2Þ, we

interchange every second component in the jumps above after the first jump.

3. Suppose s ¼ ð1; 1Þ and t ¼ ðk; iÞ with 1\k\n. Consider the ladder up to height

k. We solve this using Case 1 with a peg in (k, i) (this is also possible if this

ladder is a C4). Now we are left with a ladder of height n� k þ 1 where

t ¼ ð1; iÞ. If this is the C4, we can solve it since we have a peg in (k, i). If the

remaining ladder is not the C4, solve it using Case 2.

4. Suppose that s ¼ ðk; 1Þ where 1\k\n and let t ¼ ðj; iÞ. W.l.o.g. assume j� k.

Divide the ladder in L1 and L2 where L1 contains the vertices (l, r) with l� k
and let L2 be the ladder containing the vertices (l, r) with l� k. Solve ladder L1,

ending in ðk; i0Þ where i0 6¼ i. This is possible if L1 6¼ C4. Now solve L2 ending

in t. This is also possible if L2 6¼ C4. The only cases left to consider are the cases
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L ¼ P3 hP2 and s ¼ ð2; 1Þ and t ¼ ð2; iÞ. It is easy to check that these are

solvable. h

Theorem 2 If n� 3 or m� 3, the grid Pm hPn is super freely solvable.

Proof We prove the theorem by induction. If m ¼ 2 or n ¼ 2, the statement follows

from Theorem 1. Hence, suppose that both m and n are at least 3. If G ¼ P3 hP3,

we find a ladder P2 hP3 in G containing a hole. Since this ladder is super freely

solvable, it is easy to see that we can solve it and get a terminal peg (of the ladder) in

a vertex such that we can solve the remaining grid with a peg in an arbitrary vertex t.
Now, let m; n� 3 be arbitrary with maxfm; ng� 4 and let s ¼ ðj; kÞ be the

starting hole.

1. If s ¼ ð1; 1Þ, let w.l.o.g. m� 4 and divide the grid into the two graphs G1 ffi
P2 hPn and G2 ffi Pm�2 hPn. If t 2 G2, solve the ladder G1 with terminal peg

next to G2. After two more jumps, we are left with the graph G2 with exactly

one hole. By induction hypothesis this is solvable with peg in t. If t 2 G1, start

with the jump ð3; 1Þ � ð2; 1
�!Þ � ð1; 1Þ. Then, by induction hypothesis, we can solve

G2, which is solvable with terminal peg in t.
2. If s ¼ ð1; kÞ with k 6¼ 1, we can proceed the same way, provided that m� 4. If

m ¼ 3, consider the two graphs G1 and G2, where G1 contains all vertices (r, s)
such that s� k and G2 contains all vertices (r, s) with s� k. Let w.l.o.g. t 2 G1.

If G1 is a ladder, we can proceed analogously to the case when G ¼ P3 hP3,

solving G2 first and dealing with the remaining 4 pegs later. If G1 is not a ladder,

solve G2 with terminal peg in ð1; k þ 1Þ. Next do the jumps ð1; k � 2Þ �
ð1; k � 1
����!Þ � ð1; kÞ and ð1; k þ 1Þ � ð1; k

�!Þ � ð1; k � 1Þ. We are left with the grid G1

which is freely solvable by induction hypothesis.

3. If s ¼ ðj; kÞ with 1\j\m and 1\k\n, divide the grid into two grids G1 and G2

that form a partition of G. Let w.l.o.g. s 2 G1. This can always be done in a way

such that G1 and G2 are grids, neither of them is the grid C4, and s has distance 1

from its nearest vertex in G2. If t 2 G2 we can proceed analogously to case 1. If

t 2 G1, there exist v 2 G1;w 2 G2 such that the jump w � v!� s is possible. After

this jump, we solve G2 with terminal peg in the unique vertex u 2 G2 such that

the subgraph induced by the vertices s, u, v, w is C4. After jumping u � s!� v, we

can finally solve G1 with terminal peg in t.

Due to symmetry, this covers all cases. h

Using the super free solvability of ladders, we can prove a fairly general result

about Cartesian products. The first step in doing this is to show that Cartesian

products are solvable if one of the components is the path P2.

Theorem 3 P2 hG is freely solvable for any connected graph G.

Proof Let T be a spanning tree of G. It suffices to show that P2 h T is solvable. If T
is a path this follows from Theorem 1. So suppose that T is not a path. Choose a root
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vertex v0 and do a depth-first-search, enumerating the vertices in the order they

occur. Use this to decompose T into paths Q1; . . .;Qm. (cf. Fig. 2).

Start with a hole in v0. Begin to solve P2 hQ1 using Theorem 1 or Lemma 1. Let

vk 2 Q1 be the vertex with largest index such that vk lies in another path. A soon as

the subgraph P2 h fvkg contains exactly one peg and one hole, stop solving Q1 and

start solving Q2. Let vl 6¼ vk be the vertex with largest index such that vk lies in

another path (if such a vertex exists). Then continue in this manner (stop solving Q2

and start solving Q3). Keep going with this process until no such vertex vl exists. If

no such vl exists in Qi, solve Qi completely, ending with a hole in the subgraph

P2 h fvkg where we started with a hole (this can be done because of Lemma 1 and

Theorem 1). If vk is contained in another path Qj that has not been considered yet,

continue with this path in the same way. If this is not the case, go all the way back

and solve the ladders that have not been completely solved yet, always ending with

a hole in the same subgraph in which we started with a hole. This process solves

P2 h T . Since v0 was arbitrary, we have free solvability. h

Theorem 4 Let G be a graph that has an even Hamiltonian path. Then for any
connected graph H, GhH is solvable.

Proof If H ¼ K1, this is obviously true. So suppose that H has at least two vertices.

Let P ¼ fv1; . . .; v2mg be a Hamiltonian path in G. Start with a hole in ðv1;wÞ for

some w 2 H. Due to Theorem 3, fv1; v2ghH is freely solvable. Let fðvi;w0Þg be a

terminal state. If i ¼ 1, jump ðv4;w
0Þ � ðv3;w

0���!
Þ � ðv2;w

0Þ; ðv1;w
0Þ � ðv2;w

0���!
Þ � ðv3;w

0Þ.
If i ¼ 2, jump ðv3;w

0Þ � ðv2;w
0���!
Þ � ðv2; zÞ; ðv2; zÞ � ðv3; z

��!Þ � ðv3;w
0Þ for some neighbour

z of w0. In both cases, we have a hole in the subgraph induced by fv3; v4ghH and

we can use this process inductively to solve GhH. h

Fig. 2 A tree T with
decomposition into paths
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3 Cartesian products of stars

Keeping in mind the results from the last section, it seems natural to take a look at

Cartesian products of unsolvable graphs. Since they are particularly far away from

being solvable, we consider star graphs.

Let K1;n denote the star (graph) on nþ 1 vertices, where we denote the central

vertex by 0 and the pendant vertices by 1; 2; . . .; n.

It is known that stars K1;n are not solvable for n� 3 [3]. However, the Cartesian

product of any two stars on at least 2 vertices is solvable. We will prove several

lemmas before turning our attention to this statement.

In Fig. 3, seven graphs (in the following often used as substructures in larger

graphs) with a given (starting) state and a corresponding reachable (terminal) state

are displayed. The notation EPi denotes the (so called) reduction (or elimination)

process that is performed by several jumps to get from the left hand state to the right

hand one. The reader is invited to check that all of these reductions are in fact

possible.

Fig. 3 Several intermediate states with corresponding reduced states
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For the remainder of this chapter, we consider the Cartesian product K1;n hK1;m

with n�m� 1. For even m (we will reduce everything to this case), we define

A ¼ fðg; hÞ : g; h 2 ½m�g1 and

Ai ¼ fðg; hÞ 2 A : g� h 2 f�2i;�2iþ 1;m� 2i;m� 2iþ 1gg

for i 2 1; m
2
� 1

� �

as well as

A0 ¼ fðg; hÞ 2 A : g� h 2 f1 � m; 0; 1gg:

Since all possible differences are considered and appear in exactly one Ai, we

immediately get the following result.

Lemma 2 The sets A0;A1; . . .;Am
2
�1 form a partition of A.

This partition of A has two important properties.

Lemma 3 Let i 2 ½0; m
2
� 1� and Ai defined as before.

(i) For every j 2 ½m�, the set Ai contains exactly two elements of the form ðj; �Þ
and two elements of the form ð�; jÞ.

(ii) The elements of Ai can be generated, starting with

x
ðiÞ
0 ¼ x

ðiÞ
0;1; x

ðiÞ
0;2

� �

¼ ð1; 2iþ 1Þ, using the following procedure:

x
ðiÞ
kþ1 ¼

x
ðiÞ
k;1 þ 1; x

ðiÞ
k;2

� �

if 2 j k;

x
ðiÞ
k;1; x

ðiÞ
k;2 þ 1

� �

if 2 - k;

8

>

<

>

:

ð3Þ

where calculations are done modulo m with residue system [m].

Proof For i ¼ 0 exactly two of the equations j� y ¼ a with a 2 f1 � m; 0; 1g have

a solution in [m], to be specific, y ¼ j; a ¼ 0 and either y ¼ j� 1; a ¼ 1 (if j[ 1) or

y ¼ m; a ¼ 1 � m (if j ¼ 1). For i 2 ½m
2
� 1�, exactly two of the equations j� y ¼ a

with a 2 f�2i; 1 � 2i;m� 2i;m� 2iþ 1g have a solution. We show this exem-

plarily for j\m� 2i, the other (three) cases follow in the same fashion. For a 2
fm� 2i;m� 2iþ 1g apparently no solution can be found since y is positive. The

other two equations have the solutions jþ 2i and jþ 2i� 1, which lie in [m] since

j\m� 2i. The arguments are similar for ð�; jÞ, therefore, part (i) is true.

For part (ii), we note, that x
ðiÞ
l;1 � x

ðiÞ
l;2 2 f�2i; 1 � 2ig (where the difference

alternates) holds as long as x
ðiÞ
l;2 �m, i.e. l� 2m� 4i� 1. For l0 ¼ 2m� 4i� 1, we

have x
ðiÞ
l0;1

� x
ðiÞ
l0;2

¼ �2iþ 1, and after changing the first second component to obtain

x
ðiÞ
kþ1, we have x

ðiÞ
l0þ1;1 � x

ðiÞ
l0þ1;2 ¼ m� 2i. Hence, for 2m� 4i� l� 2m� 2, we have

x
ðiÞ
l;1 � x

ðiÞ
l;2 2 fm� 2i;m� 2iþ 1g (again the difference alternates). Since x

ðiÞ
2m�1 ¼

ð1; 2iÞ and x
ðiÞ
2m ¼ x

ðiÞ
0 , the set Xi containing the elements generated via (3) is a subset

1 We use the (often standard) notation ½k; l� ¼ fi 2 Z : k� i� lg and ½l� ¼ ½1; l� for k; l 2 Z.
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of Ai. From (i) we immediately get jAij ¼ 2m. Since the construction procedure of

Xi is periodic of length 2m, we obtain jXij ¼ 2m. Therefore we have Xi ¼ Ai, which

proves statement (ii). h

Let us now consider the vertex set

B ¼ fðg; hÞ : g; h 2 ½0;m�; ðg; hÞ 6¼ ð0; 0Þ; g � h ¼ 0g:

Lemma 4 The set Ai [ B induces a cycle in K1;n hK1;m (with 2 j m) for each

i 2 0; m
2
� 1

� �

. Furthermore, in this cycle an element of B is adjacent to two

elements of Ai and vice versa.

Proof We can order the elements of Ai [ B using (3) and inserting the fitting

elements of B between two consecutive elements of Ai, in the way (again

calculations are done modulo m with residue system [m])

ð1; 0Þ; ð1; 2iþ 1Þ; ð0; 2iþ 1Þ; ð2; 2iþ 1Þ; ð2; 0Þ; ð2; 2iþ 2Þ; . . .; ðm; 2iÞ; ð0; 2iÞ; ð1; 2iÞ;

where consecutive elements are adjacent (note that 2i ¼ m in case of i ¼ 0). There

are no additional edges, hence the statement follows. h

Lemma 5 For even m, we consider the graph induced by A [ B [ fð0; 0Þg. Starting
with holes in (0, 1), (1, 1) and (i, 0), (0, i) for i 2 ½2;m� and pegs in every other
vertex, this graph is solvable with the final peg being in (0, 0).

Proof Using Lemma 4, we eliminate all pegs in Ai (i 2 m
2
� 1

� �

) with jumps along

the cycle induced by Ai [ B starting in (1, 0) and ending with a peg in (1, 0). Next,

we jump along the cycle induced by A0 [ B, starting with ð1; 0Þ � ð1;m��!Þ � ð0;mÞ until

we have only pegs in (0, 0), (2, 1), (2, 0). The final jumps ð2; 0Þ � ð0; 0
�!Þ � ð0; 1Þ and

ð2; 1Þ � ð0; 1
�!Þ � ð0; 0Þ solve the graph with final peg in (0, 0). h

Lemma 6 For even m, we consider the graph induced by A [ B [ fð0; 0Þg. Starting
with holes in (0, i) for i 2 ½2;m� or in (i, 0) for i 2 ½2;m� and pegs in every other
vertex, this graph is solvable with the final peg being in (0, 0).

Proof Due to symmetry it is sufficient to consider the case with holes in (i, 0) for

i 2 ½2;m�. First, we start by removing pegs from (0, i) for i 2 ½m� and most of the

vertices from A0 (except (1, 1)). This can be done by jumping

ð0; iÞ � ð0; 0
�!Þ � ði; 0Þ; ði; 0Þ � ð i; i�!Þ � ð0; iÞ; ðiþ 1; iÞ � ð 0; i

�!Þ � ð0; 0Þ

for every i 2 ½2;m� (where mþ 1 	 1) and ð0; 1Þ � ð0; 0�!Þ � ð2; 0Þ;
ð2; 1Þ � ð2; 0

�!Þ � ð0; 0Þ. Now we can proceed as in the proof of Lemma 5 with the

exception that we do not have to remove the pegs from A0 n fð1; 1Þg. h

The basic idea in proving the following theorem is first eliminating pegs from

(i, 0) and (0, i) for i 2 ½m�. Next, the other pegs in the subgraph K1;m hK1;m will be

removed. The last step is the elimination of the remaining pegs (i, j) for i 2
½mþ 1; n� (if n[m). If at least one of n and m is odd, we have to be particularly
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thorough. The occurring problems will be dealt with by reducing these cases to even

n and m.

Theorem 5 The Cartesian product K1;n hK1;m is solvable for all n;m 2 Z.

Proof If m ¼ 1 or n ¼ 1, the statement follows from Theorem 3. Thus, without loss

of generality, we may assume m; n� 2 and n�m. Start with a hole in (0, 0). We

distinguish four cases.

Case1 : 2 j n; 2 j m: For i 2 ½2;m�, we eliminate the pegs from (i, 0) and (0, i) via

the jumps

ði; iÞ � ð0; i
�!Þ � ð0; 0Þ; ð0; 0Þ � ð i; 0

�!Þ � ði; iÞ:

After the jump ð1; 1Þ � ð0; 1
�!Þ � ð0; 0Þ, we eliminate all pegs from A and the peg in

(1, 0) using Lemma 5, having pegs exactly in (0, 0) and all vertices (i, j) with

n� i[m� j� 0. To eliminate these, for each i ¼ mþ 1;mþ 3; . . .; n� 1, we

perform the following steps.

– Use EP1 on the subgraph induced by the vertices

ð0; 0Þ; ð0; 1Þ; ði; 0Þ; ðiþ 1; 0Þ; ði; 1Þ; ðiþ 1; 1Þ;

where a hole is in (0, 1) and the final peg is in (i, 0). After this process, the pegs

in ð0; 0Þ; ði; 1Þ; ðiþ 1; 0Þ and ðiþ 1; 1Þ are removed.

– For j 2 ½2;m� 1� use EP5 and EP6 alternatingly on the sugraphs induced by

ð0; jÞ; ði; 0Þ; ðiþ 1; 0Þ; ði; jÞ; ðiþ 1; jÞ;

where the holes are in (0, j) and either in (i, 0) or ðiþ 1; 0Þ (ending with the

final peg in this one). After doing this for all j, together with the first step the

pegs in ð0; 0Þ; ði; 1Þ; ðiþ 1; 0Þ; ðiþ 1; 1Þ and all pegs in (i, j) and ðiþ 1; jÞ for

j 2 ½2;m� 1� are removed.

– Finally, we use one of the elimination procedures EP7 and EP8 on the subgraph

induced by

ð0; 0Þ; ð0;mÞ; ði; 0Þ; ðiþ 1; 0Þ; ði;mÞ; ðiþ 1;mÞ;

where the holes are in (0, 0), (0, m) and either in (i, 0) or ðiþ 1; 0Þ. Afterwards,

all pegs in the vertices (i, j) and ðiþ 1; jÞ for j 2 ½m� are eliminated and we can

proceed with the next index i.

Case 2: 2 - n; 2 j m: We reduce the starting state to an intermediate state of Case 1 by

eliminating all pegs from vertices (n, j) for all j 2 ½0;m� (and some more). This can

be done via jumping

ðn; jÞ � ðn; 0
�!Þ � ð0; 0Þ; ð0; jÞ � ð0; 0

�!Þ � ðn; 0Þ

for j 2 ½2;m� and, finally, do ðn; 1Þ � ðn; 0
�!Þ � ð0; 0Þ. Ignoring the vertices in question, we

now have to solve K1;n�1 hK1;m from a specific starting state. Using Lemma 6, we can

eliminate all pegs from (i, 0) for i 2 ½m� and all pegs fromA, having pegs exactly in (0, 0)

and all vertices (i, j) with n� 1� i[m� j� 0. This situation is the same as in Case 1.
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Case 3: 2 j n; 2 -m:We reduce the starting state to an intermediate state of Case 1 by

eliminating all pegs from vertices (i, m) for all i 2 ½0; n� (and some more). For every

odd i 2 ½m; n� we use EP4 on the subgraph induced by the vertices

ð0; 0Þ; ði; 0Þ; ðiþ 1; 0Þ; ð0;mÞ; ði;mÞ; ðiþ 1;mÞ;

where a hole is in (0, 0) and the final pegs are in (i, 0) and (0, m) (note that we also

removed pegs from (i, 0) for even i 2 ½m; n�). Now we only need to take care of pegs

in (i, m) for all i 2 ½0;m� 1�. For every i 2 ½2;m� 1� we jump

ði;mÞ � ð0;m��!Þ � ð0; 0Þ; ði; 0Þ � ð0; 0
�!Þ � ð0;mÞ

and, finally, do ð1;mÞ � ð0;m��!Þ � ð0; 0Þ, obtaining a situation where all pegs in question

are removed, but also pegs from (i, 0) for i 2 ½2;m� 1�. This corresponds to the

problem of solving K1;n hK1;m�1 from a specific starting state. Using Lemma 6, we

can eliminate all pegs from (0, i) for i 2 ½m� 1� and all pegs from A, leaving pegs

exactly in (0, 0) and all vertices (i, j) with n� i[m� 1� j� 1 and all vertices (i, 0)

with odd i 2 ½m; n�. This situation is the same as in Case 1 except we have holes in (i, 0)

for even i 2 ½m; n�. This can easily be dealt with by using EP2 instead of EP1.

Case 4: 2 - n; 2 -m:We reduce the starting state to an intermediate state of Case 1 by

eliminating all pegs from vertices (i, m) and (n, j) for all i 2 ½0; n�; j 2 ½0;m� (and some

more). For each j 2 ½m� 1� we carry out the jumps

ðn; jÞ � ðn; 0
�!Þ � ð0; 0Þ; ð0; jÞ � ð0; 0

�!Þ � ðn; 0Þ:

Next, we jump ðn;mÞ � ð0;m��!Þ � ð0; 0Þ. The second step is to remove pegs from (i, m)

for i 2 ½m; n�. This can be done via the jumps

ði; 0Þ � ði;m�!Þ � ð0;mÞ; ð0;mÞ � ð0; 0
�!Þ � ði; 0Þ; ðiþ 1;mÞ � ðiþ 1; 0

����!Þ � ð0; 0Þ

for odd i 2 ½m; n� 1� (note that we also removed pegs from (i, 0) for even

i 2 ½m; n�). We proceed with jumping ðn; 0Þ � ð0; 0�!Þ � ð0;mÞ and

ði;mÞ � ð0;m��!Þ � ð0; 0Þ; ði; 0Þ � ð0; 0
�!Þ � ð0;mÞ

for i 2 ½2;m� 1�. After ð1; 1Þ � ð1; 0
�!Þ � ð0; 0Þ; ð0;mÞ � ð1;m��!Þ � ð1; 0Þ, we basically have

the same situation as in Case 1 for the graph K1;n�1 hK1;m�1 before using Lemma 5

except we have holes in (i, 0) for even i 2 ½m; n�. This is dealt with as in Case 3. h

Remark 1 With the ideas from above it should be possible to show that K1;n hK1;m

is freely solvable. Since the details seem to become rather messy, we leave the

verification of this conjecture as an open problem for interested researchers.

4 Open questions

We have shown that the Cartesian product of a Hamiltonian graph with even

number of vertices and an arbitrary connected graph is solvable. Since Hamiltonian

graphs with even number of vertices are solvable, this raises the question whether
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the Cartesian product of a solvable graph and an unsolvable graph (both connected)

is solvable, which we believe to be true.

Conjecture 1 For any solvable graph G and any non trivial connected graph H,

GhH is (freely) solvable.

In view of Theorem 5, because stars are, in a way, the most unsolvable graphs,

we even believe the following much stronger statement to be true.

Conjecture 2 For any two connected non trivial graphs G and H, GhH is (freely)

solvable.

We believe that this can be proven in a similar fashion as Theorem 3 via

decomposing the graphs G and H into stars and paths and using the results we

obtained about ladders, grids, and Cartesian products of stars. But the technical

details seem very complicated.
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