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Cell specific quantitative iron mapping 
on brain slices by immuno‑µPIXE in healthy 
elderly and Parkinson’s disease
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Abstract 

Iron is essential for neurons and glial cells, playing key roles in neurotransmitter synthesis, energy production and myeli-
nation. In contrast, high concentrations of free iron can be detrimental and contribute to neurodegeneration, through 
promotion of oxidative stress. Particularly in Parkinson’s disease (PD) changes in iron concentrations in the substantia nigra 
(SN) was suggested to play a key role in degeneration of dopaminergic neurons in nigrosome 1. However, the cellular 
iron pathways and the mechanisms of the pathogenic role of iron in PD are not well understood, mainly due to the lack 
of quantitative analytical techniques for iron quantification with subcellular resolution. Here, we quantified cellular iron 
concentrations and subcellular iron distributions in dopaminergic neurons and different types of glial cells in the SN both 
in brains of PD patients and in non-neurodegenerative control brains (Co). To this end, we combined spatially resolved 
quantitative element mapping using micro particle induced X-ray emission (µPIXE) with nickel-enhanced immunocyto-
chemical detection of cell type-specific antigens allowing to allocate element-related signals to specific cell types. Distinct 
patterns of iron accumulation were observed across different cell populations. In the control (Co) SNc, oligodendroglial and 
astroglial cells hold the highest cellular iron concentration whereas in PD, the iron concentration was increased in most cell 
types in the substantia nigra except for astroglial cells and ferritin-positive oligodendroglial cells. While iron levels in astroglial 
cells remain unchanged, ferritin in oligodendroglial cells seems to be depleted by almost half in PD. The highest cellular iron 
levels in neurons were located in the cytoplasm, which might increase the source of non-chelated Fe3+, implicating a criti-
cal increase in the labile iron pool. Indeed, neuromelanin is characterised by a significantly higher loading of iron including 
most probable the occupancy of low-affinity iron binding sites. Quantitative trace element analysis is essential to character-
ise iron in oxidative processes in PD. The quantification of iron provides deeper insights into changes of cellular iron levels in 
PD and may contribute to the research in iron-chelating disease-modifying drugs.
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Introduction
Iron is essential for a proper CNS function. It plays an 
important role as cofactor of numerous enzymes and is 
involved in ATP production, myelination and synthesis of 
DNA, RNA, proteins, and neurotransmitters.

In the brain, variations in iron levels correlate with 
its structural integrity [42], and there is no other organ 
but the CNS that is in such a constant need for read-
ily available iron [85]. Any mismatch in the demand 
and regional-temporal distribution of iron may result 
in neurological and/or mental dysfunction. Iron defi-
ciency, for example, is a well-established cause for 
impaired motor and cognitive development [2, 70, 83, 
95, 101]. On the other hand, increased levels of iron are 
harmful and iron accumulations are typical hallmarks 
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of brain ageing and several neurodegenerative disorders 
particularly PD [34, 37, 38, 44, 72, 85, 91, 98]. Various 
factors have been suggested to account for increased 
iron accumulation in the SN of patients with PD such 
as, for example, dysfunction of the blood–brain bar-
rier, altered cellular iron transport, an increased pro-
inflammatory state and mutations in genes of iron 
transport, storage and binding [10, 13, 27, 53]. How-
ever, all these processes will differently affect different 
cell populations.

Still, the local accumulation of iron in the SN in 
patients with PD remains a controversial issue. Numer-
ous studies on post mortem tissue report on an increased 
amount of total iron in the SN [22, 26, 51, 84] also sup-
ported by large body of in  vivo findings from Magnetic 
Resonance Imaging (MRI) [9, 16, 46–48, 69, 82]. The 
increasing importance and approaches for in  vivo brain 
iron assessment using multiparametric MRI is featured 
in a review by Moeller et al. [58]. Quantitative MRI may 
provide useful biomarkers for brain integrity assessment 
in iron-related neurodegeneration. Particularly, a promi-
nent change in iron-sensitive T2* MRI contrast within 
the sub areas of the SN overlapping with nigrosome 1 
were shown to be a hallmark of PD with high diagnostic 
power. Other studies failed to detect any disease-related 
differences [33, 49, 87]. Of note, more in-depth knowl-
edge on whether changes in intracellular iron pools pref-
erentially affect neurons or glial cells is limited by the 

lack of quantitative analytical techniques with sufficient 
spatial resolution for in-situ cellular analysis.

To glean much needed information about cellular 
and subcellular compartmentalisation of iron in health 
and disease, we have developed a powerful analytical 
approach, which we call immuno-micro particle induced 
X-ray emission (µPIXE). It allows for quantitative deter-
mining the iron concentrations of specific target struc-
tures in tissue sections with a spatial resolution in the µm 
range. To this end, quantitative element mapping using 
µPIXE was combined with nickel-enhanced immunocy-
tochemical detection of cell type-specific antigens to spe-
cifically allocate element-related signals to specific cell 
types. In the present study, this method was applied to 
quantify the cell specific iron concentrations in SN nigro-
some 1 in controls and PD.

Materials and methods
Tissue preparation
Midbrains comprising the nigrosome 1 of the SNc were 
obtained from individuals of both sexes with no signs of 
neuropathological alterations (8 cases; healthy controls, 
HC; mean age 66 ± 16 years) and from patients who died 
with a clinical diagnosis of idiopathic Parkinson’s disease 
(8 cases; PD; mean age 75 ± 7  years) (for detailed case 
profile see Table 1). The definite diagnosis of PD has been 
verified by neurohistopathological examination based on 
a severe loss of neuromelanin containing neurons in the 
nigrosome 1 of the SNc, the presence of extraneuronal 

Table 1  Case profile of the human subjects

PD Parkinson’s disease, PMD post mortem delay, COD cause of death, Clin clinical diagnosis of PD, path pathological diagnosis of PD, NAD no abnormality detected

Case # PMD (h) Gender Age (years) Neuropathology (PD) COD

CO 1 48 Female 78 control/ NAD Respiratory failure

2 26 Female 71 control/ NAD Peritonitis

3 24 Female 87 control/ NAD Global insufficiency

4 24 Male 75 control/ NAD Bronchopneumonia

5 24 Male 65 control/ NAD Myocardial infarction

6 51 Male 31 control/ NAD Coronary failure

7 48 Male 69 control/ NAD Myocardial infarction

8 72 Male 49 control/ NAD Myocardial infarction

Mean 40 ± 16 3/5 66 ± 16

PD 9 30 Female 67 clin./path Myocardial infarction

10 48 Female 77 clin./path Bronchopneumonia

11 48 Female 77 clin./path Bronchopneumonia

12 26 Male 82 clin./path Renal failure

13 26 Male 62 clin./path Bronchopneumonia

14 24 Male 72 clin./path Myocardial infarction

15 26 Male 88 clin./path Pancreatitis

16 34 Male 73 clin./path Pulmonary embolism

Mean 33 ± 9 3/5 75 ± 7
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melanin and Lewy bodies (Table  2). Although the 
appearance of Lewy bodies might be also a hallmark of 
dementia with Lewy bodies (DLB), a detailed synopsis 
of neuropathological examination and clinical presenta-
tion of the PD individuals included in our experimental 
analysis allowed a strict inclusion of patients that suffered 
exclusively from PD and did not present any comorbidity 
of dementia. Brains were fixed by immersion in 4% for-
maldehyde in 0.1% phosphate buffered saline (PBS, pH 
7.4). Small blocks (25 mm × 25 mm) comprising the sub-
stantia nigra were dissected and embedded in Histowax 
following conventional protocols for paraffin embedding 
and block mounting. Subsequently, the tissue was sec-
tioned (10 µm) and attached to microscope glass slides. 
Transverse sections throughout the midbrain were cut 
using a microtome (Jung Histoslide 2000, Leica).

Brains were provided by the Brain Banking Cen-
tre Leipzig of the German Brain-Net (GZ 01GI9999-
01GI0299), operated by the Paul Flechsig Institute of 
Brain Research. The entire procedure of case recruit-
ment, acquisition of the patients’ personal data, the pro-
tocols and the informed consent forms, performing the 
autopsy and handling the autopsy material have been 
approved by the responsible authorities (Approval # 282-
02 and Approval # 205/17-ek).

Identification of anatomical regions and applied 
nomenclature
Anatomical regions were identified on Nissl- and anti-
HuCD-stained sections using the atlas of the human 
brain by Mai et  al. [50]. Delineations and nomenclature 
of substructures of SN followed the detailed anatomical 
descriptions of the SN given by Braak and Braak [11], 
Fearnley and Lees [49], van Domburg and ten Donkelaar 
[88], McRitchie et al. [54] and Damier et al. [17, 18].

Histochemistry
Histowax sections were deparaffinised, rehydrated in a 
descending alcohol series and incubated for 2 h at 37 °C 
in a mixture of 5% potassium ferrocyanide and 5% hydro-
chloric acid (Perls’ stain). Subsequently, sections were 
rinsed in PBS (pH 7.4) and pre-incubated for 10 min in 
0.5  mg/ml 3,3′-diaminobenzidine (DAB, Sigma) Tris–
HCl. Subsequently, an incubation in DAB for 15 min at 

room temperature (0.5 mg DAB/ml Tris–HCl and 0.05% 
H2O2) was performed (DAB amplification of Perls’ stain). 
After further washing the sections successively in Tris–
HCl (pH 8.0), PBS and purified water, sections were 
dehydrated, incubated in toluol and coverslipped with 
Entellan (Merck Millipore).

Immunohistochemistry
For immunohistochemistry, sections were deparaffinised 
in xylene, rehydrated in a descending alcohol series and 
transferred to PBS (pH 7.4). To block endogenous perox-
idase-activity, samples were incubated in 60% methanol 
containing 2% H2O2 (for 1 h at room temperature). Anti-
gen retrieval pre-treatment prior to the staining process 
was performed as follows. Sections prepared for detec-
tion of CNP, IBA-1 and Olig2 were pre-treated with citric 
acid sodium citrate buffer (pH 6.0) and sections prepared 
for the detection of Hu C/D were pre-treated with Tris–
HCl (pH 8.0), respectively for 20  min at 90  °C. After 
washing, sections were incubated overnight at room tem-
perature in a solution (phosphate-buffered saline with 2% 
BSA, 0.3% milk powder and 0.5% donkey serum) con-
taining the following primary antibodies: (1) mouse anti-
human neuronal protein HuCD (1:400, Thermo Fisher 
Scientific) for neurons, (2) rabbit anti IBA-1 (1:800, 
Wako) for microglial cells, (3) rabbit anti-GFAP (1:500, 
Dako) for astroglial cells, (4) rabbit anti-Olig2 (1:100, 
Immuno Biological Laboratories) for oligodendroglial 
cells, (5) mouse anti-CNP (1:300, BioLegend) for oligo-
dendroglial cells, (6) goat anti-ferritin heavy chain Y-16 
(1:200, Santa Cruz Biotechnology) for ferritin and (7) rat 
anti-myelin basic protein (1:400, abcam) for myelin.

Subsequently, sections were rinsed in PBS-Tween (pH 
7.4) and incubated in biotinylated secondary antibody 
solution (containing a mixture of PBS-T and phosphate-
buffered saline with 2% BSA, 0.3% milk powder and 
0.5% donkey serum, 2:1, for 1  h at room temperature) 
using donkey anti-mouse IgG, donkey anti-rat IgG, don-
key anti-rabbit IgG and donkey anti-goat IgG (1:1000, 
Dianova, Germany). Binding sides were revealed by 
incubation for 1  h with peroxidase-labeled streptavidin 
(Extravidin®, 1:2000, Sigma Aldrich). Further, sections 
were rinsed in PBS-T and Tris–HCl (pH 8.0). Following 
treatment with peroxidase complex, the colour reaction 
was developed using DAB and nickel-ammonium sul-
phate (Sigma Aldrich, 99.999% purity grade). Finally, sec-
tions were rinsed in Tris–HCL and PBS-T, dehydrated in 
an ascending alcohol series, incubated in toluol and cov-
erslipped with Entellan (Merck Millipore).

Fluorescent immunohistochemistry
Histowax sections were deparaffinised, rehydrated and 
incubated in 60% methanol containing 2% H2O2 (for 

Table 2  Neuron count (mean ± SD) in the substantia nigra 
nigrosome 1

PD Parkinson’s disease, Co Healthy control, TH+ Tyrosine hydroxylase

SN Nissl+/mm2 TH+/mm2 Extraneuronal 
neuromelanin

Lewy bodies

Co 41 ± 12 14 ± 8 Negative Negative

PD 15 ± 4 2.5 ± 1.5 Positive Positive
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1  h at room temperature), washed in PBS-T (pH 7.4) 
and incubated for 48 h at 4 °C in a solution (phosphate-
buffered saline with 2% BSA, 0.3% milk powder and 
0.5% donkey serum) with one of the following combina-
tions of primary antibodies: (1) rabbit anti-IBA-1 (1:800, 
Wako) and goat anti-ferritin heavy chain Y-16 (1:200, 
Santa Cruz Biotechnology), (2) rabbit anti-GFAP (1:500, 
Dako) and goat anti-ferritin heavy chain Y-16 (1:200, 
Santa Cruz Biotechnology), (3) rabbit anti-Olig2 (1:100, 
Immuno Biological Laboratories) and goat anti-ferritin 
heavy chain Y-16 (1:200, Santa Cruz Biotechnology). Any 
pre-treatment of sections was performed corresponding 
to immunohistochemically procedures. Subsequently, 
brain sections were washed and incubated in a combina-
tion of fluorochrome-conjugated secondary antibodies 
(for 90  min at room temperature) using donkey anti-
rabbit IgG (Dianova; Cy3, Cy5) and donkey anti-goat IgG 
(Dianova; Cy3, Cy5) for detection. Sections were washed 
and treated for 1  min with Sudan black B (Merck Mil-
lipore) dissolved in 70% EtOH to suppress auto-fluores-
cence and then differentiated in 70% EtOH for another 
3  min. After rinsing in purified water, sections were 
coverslipped using aqua poly/mount mounting medium 
(Polysciences).

Light microscopy: image acquisition and processing
Stacked brightfield and fluorescence overview images 
were collected with 10 × , 40 × or 63 × Plan-Apochromat 
objectives using an automated slide scanner microscope 
(Zeiss AxioScan Z1) or a fluorescence-phase contrast 
microscope (Keyence BZ 9000). Stacks were collected at 
1–5 µm intervals, merged and post-processed using the 
corresponding software (ZEN 2.3 or BZ-Analyzer). Shad-
ing correction and white balance were carried out. High 
magnification fluorescence images were obtained with a 
63 × Plan-Apochromat (1.2 numerical aperture) objective 
using a confocal laser scanning microscope (Zeiss LSM 
510 Meta or LSM 880 fast Airyscan) with lasers excita-
tion at 543 and 633 nm and emission was detected using 
a BP 565–615 and a BP 650–710 filter.

Quantification of neuronal loss in the substantia nigra 
[stereological analysis]
The staging of PD according to Braak [11] and the com-
partmental organisation of the SN into matrix and 
nigrosomes according to Damier [17, 18] were the neu-
roanatomical basis of the experimental analysis. All PD 
cases could be assigned to Braak stages 3 to 6 with two 
PD brains characterized by an almost complete loss of 
dopaminergic neurons. In all Parkinsonian brains, high-
est neuronal cell loss was consistently observed within 
nigrosome 1.

Stereological analysis was performed using the opti-
cal fractionator method according to West et  al. [92] as 
described by Morawski et  al. [62]. Numerical densities 
of TH-positive neurons were determined using a Zeiss 
(Jena, Germany) Axioskop 2 plus microscope equipped 
with a motorised stage (Märzhäuser, Wetzlar, Germany), 
a Ludl MAC 5000 (LEP, Hawthorne, NY, USA) and a digi-
tal camera CX 9000 (MicroBrightField, Williston, VT, 
USA). Stereo Investigator software 7 (MicroBrightField, 
Williston, VT, USA) was used to analyse serial Sects. (10–
12 µm thick) cut frontally through the midbrain encom-
passing the SN on the level of red nucleus, oculomotor 
nucleus and superior colliculus. A final section thickness 
of 10 ± 2 µm was received on average. This permitted for 
a dissector height of 10 µm using a guard zone of 2 µm on 
either side of the section. The contour of the SN/nigro-
some 1 was outlined in a Stereo Investigator programme 
using a 5 × lens and the number of cells marked with the 
primary antibody was counted using an oil-immersion 
63 × lens (1.4 numerical aperture). All neurons explicitly 
stained with at least fifty percent of their soma and one 
dendritic branch visible within the counting frame were 
considered. Neurons, which did not fulfil these criteria, 
were excluded. The coefficient of error (CE) was esti-
mated with a one-stage systematic sampling procedure 
that has been described by Schaeffer et  al. [80]. In par-
allel, the total number of neurons was determined on 
Nissl-stained sections by counting all neurons with vis-
ible nucleus. All cell counting and density measurements 
were performed blind to diagnosis by one rater. Statistical 
analysis by F-test and Student’s t-test was performed on 
absolute cell numbers (p < 0.05 significance threshold).

Quantitative iron mapping by immuno‑µPIXE 
elemental analysis
Tissue preparation
Sections were treated following the immunohistochemi-
cal protocol for nickel-enhanced colour reaction of the 
target structures with the exception that all buffers and 
reagents were prepared with ultrapure and fresh sub-
stances (to avoid undesired signals in µPIXE), filtered 
using a pressure filtration system (Sarstedt) with a cel-
lulose acetate membrane without surface-active agents 
and a pore size of 0.2  µm to prevent iron contamina-
tion. The colour reaction was performed using DAB and 
nickel (99.999% purity grade nickel ammonium sulphate) 
in Tris–HCl (pH 8.0) (Fig. 1). Sections were dehydrated 
and incubated overnight in xylol, followed by embedding 
in a thin layer of mounting medium DePeX (Serva Elec-
trophoresis). After 4  h of drying at room temperature, 
an area of 15 × 20 mm2 was selected, cut out and pulled 
off the object slide for mounting on an aluminium frame 
using double sided adhesive carbon tape (G3939, Plano 
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GmbH, Germany). Brightfield microscopy (Keyence BZ 
9000) was performed before the µPIXE analysis for ori-
entation, selection and documentation of the regions to 
be examined.

Immuno‑µPIXE quantitative element mapping
Quantitative element mapping using µPIXE was per-
formed at the ion beam laboratory LIPSION at the 
Leipzig University (Germany) [75]. The proton induced 
X-rays were recorded with an energy dispersive high 
purity germanium detector (Canberra GUL0110) that 
allows simultaneous detection of characteristic X-rays 
from all elements above atomic number 11. Since the 
beam position during the scan is known, quantita-
tive element maps can be projected from the data. 
The quantification of absolute element concentrations 
is based on the dynamic analysis method which was 
implemented in the GeoPIXE analysis software pack-
age [79]. It allows spectral deconvolution by fitting 
element peaks and background, yield calculation from 
fundamental parameters for X-ray production, matrix 
effects, geometric parameters and efficiency of the 
detector. While production cross sections and absorp-
tion coefficients for X-rays are precisely known from 
atomic physics, the detector geometry and efficiency 

are set-up-specific and need to be determined. The 
geometric parameters are known from the detector 
data sheet and from the installation geometry. The 
detector efficiency which depends on the X-ray energy, 
is fully described by a model function, based on the 
underlaying physical processes and their parameters. 
For the employed X-ray detector, the parameters were 
calibrated by measuring a set of elements with known 
concentrations within certified reference materials 
(SPEC25-53+FC, Astimex Scientific Ltd., Toronto, 
Canada).

The tissue sections were scanned at 2  µm resolution 
using a focused 2.25  MeV proton beam at a current 
between 200 and 800 pA for about 3 h per scan. Cellular 
iron concentrations were extracted by one rater by encir-
cling the cells manually as a region of interest (Fig.  2) 
using the wide range of graphical tools in GeoPIXE. The 
detection limit for iron in the cellular regions was about 
20 µmol/l [63].

In order to verify that samples were not contaminated 
with iron due to sample preparation and staining proce-
dure, additional sections were deparaffinised and rehy-
drated, again dehydrated and embedded in DePeX and 
analysed. The iron concentrations did not differ signifi-
cantly between stained and unstained sections.

Fig. 1  Sample preparation for proton beam analysis. The antibody (Ab)-complex, bound to a cell-type-specific antigen is enhanced with 
high-purity nickel (violet spheres). Since nickel is specifically identifiable in the PIXE map, it can be used as a marker for any antigen of interest. 
This combination of antigen labelling with subsequent nickel amplification allows for the application of quantitative PIXE analysis to any 
immunocytochemical preparation
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MRI
MRI measurements of human midbrain on two samples 
(one Co and one PD patient from the same pool) were 
carried out on a whole body 7  T MRI scanner (Mag-
netom, Siemens, Erlangen, Germany) using a custom-
made 2-channel radio-frequency (RF) transmit-receive 
coil. The brainstem was fixed for six weeks in phosphate 
buffered 4% formaldehyde solution (pH 7.4). One week 
prior to MR scanning, the brainstem was transferred 
into 0.1  M phosphate buffer solution (PBS, pH 7.4) to 
washout any formaldehyde from the tissue. For scanning 
procedures, the brain tissue was transferred into fomb-
lin (Fomblin® Y, Sigma-Aldrich). High-resolution quanti-
tative maps of effective transverse (R2*) relaxation rates 
were obtained using a 3D multi-echo fast low-angle shot 
(FLASH) acquisition with isotropic resolution of 230 μm, 
matrix size of 128 × 128 × 60, and five equidistant echo 
times with bipolar readout and TE1-TE5 = 7.81  ms, 
18.11 ms, 27.76 ms, 37.41 ms, 47.06 ms, repetition time 
TR = 60 ms, flip angle of 27° and bandwidth of 344 Hz/Px 
Quantitative R2* maps were obtained by a mono-expo-
nential fit of the MR signal decay across different echo 
times (TEs).

Statistical analysis
Statistical analysis was performed using the scientific 
graphic and statistic software SigmaPlot (version 11.0) 
of Systat Software Inc. (San Jose, CA, USA), and values 
with p < 0.05 were regarded as statistically significant 
(Group differences in the Mann–Whitney rank sum 
test). All values are given as the median [1st quartile, 3rd 
quartile]. Iron concentrations were compared between 
controls (Co) and Parkinsonian subjects (PD) and ana-
lysed for neurons (Co n = 175; PD n = 111), microglial 

cells (Co n = 62; PD n = 109), astroglial cells (Co n = 88; 
PD n = 142), oligodendroglial cells (Olig2: Co n = 44; 
PD n = 79), ferritin-rich domains within oligodendro-
glial cells (Co n = 70; PD n = 87) and neuromelanin (Co 
n = 37; PD n = 30). Group differences were assessed by 
a Mann–Whitney rank sum test. Significant differences 
between two groups are marked as follows: *  p < 0.05; 
** p < 0.005; *** p < 0.001.

Results
Stereological quantification of cell loss in the substantia 
nigra
Neuronal loss in the SN of patients with PD was stereo-
logically quantified on Nissl-stained sections as well as on 
immunocytochemical preparations for tyrosine hydroxy-
lase (TH), detecting dopaminergic neurons (Table 2).

In controls, the SN appeared as a region in the mid-
brain with high neuronal density. Out of a total of eight 
cases with PD, we identified three cases with severe [80–
95%] neuronal loss, another three cases with moderate 
neuronal loss (70–80%) and two cases with a mild neu-
ronal loss [50–60%]. Throughout the SN, loss of neurons 
was most pronounced in nigrosome 1 in all cases with 
PD [20, 29] (Fig.  3). Thus, we selected nigrosome 1 as 
defined by Damier [19, 20] for the subsequent more in-
depth analysis.

Macro‑imaging of iron distribution in the substantia nigra 
with MRI and histochemistry
To analyse the iron distribution in the SN and its altera-
tions in PD, we first estimated a semi-quantitative map 
of non-chelated Fe3+ using a DAB-amplified Perls’ stain 
(Fig.  4a, b). We obtained a very dense staining which 
clearly defined the SN as an area with high iron precipi-
tation against a pale background (Fig. 4a). While overall, 

Fig. 2  Selection of regions of interest for cellular iron quantification. In the nickel (Ni) map of the immunocytochemical preparation of Hu C/D, 
the region of interest (ROI) is defined by a spline (in green) marking the cell shape. This ROI applies also to the other element maps from which the 
concentrations can be extracted. HU C/D: neuronal marker, S: sulphur, Fe: iron. Scale bar 20 μm, applies to all images
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colour precipitation within the SN was rather homoge-
neous, a ‘comma’-like shape hypodense area surrounded 
by an upper and lower band of hyperdense staining was 
clearly delineated near nigrosome 1. This typical stain-
ing pattern is also clearly visible on R2* maps of non-
neurodegenerative control (Fig.  4c), where it has been 

described as a typical “swallow tail” shaped sign. It is con-
sidered as a specific marker to identify healthy substan-
tia nigra unaffected by degenerative changes [50]. In PD, 
the typical “swallow tail” sign disappears in R2* images 
(Fig. 4c) and in the Perls’ staining pattern and the distri-
bution of iron becomes more homogeneous throughout 

Fig. 3  Neuronal distribution in the substantia nigra in a control (Co, left) and a patient with PD (right) immunohistochemically detected by an 
anti-Hu C/D antibody. Note the most pronounced loss of neurons in nigrosome 1 (N1) CP: cerebral peduncle, M: matrix, ML: medial lemniscus, N: 
nigrosome, SNpd: dorsal part of SN, SNpl: lateral part of SN, VTA: ventral tegmental area, SCP: superior cerebellar peduncle. Scale bar 500 µm

Fig. 4  Macroscopic distribution of iron in the substantia nigra obtained by Perls ‘ staining and R2* mapping (MRI). In controls (Co), the area near 
nigrosome 1 can be delineated by a comma-like hypodense signal (arrows) in both Perls’ staining (A) and MRI R2* maps (C), surrounded by two 
tails of hyperdense signal, giving rise to the typical “swallow tail” structure. This “swallow tail” pattern disappeared in PD (B, C) because the iron is 
distributed rather homogeneously, where iron distribution obtained by Perls’ staining (B) shows a more homogeneous distribution throughout the 
SN. Scale bar 1000 µm
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the SN (Fig.  4b). The remarkable similarity of the Perls’ 
iron staining pattern and the MRI R2* map, both form-
ing the “swallow tail” sign, which disappeared in PD, adds 
additional support for the diagnostic value of this struc-
tural feature. This observation points towards increase of 
overall iron content in SN of PD patients in areas close to 
nigrosome 1.

Iron rich cellular structures on Perls’ reaction
A higher magnification of DAB-amplified Perls’ stain 
allows for identifying cell types that are characterised 
by a high accumulation of non-chelated Fe3+ (Fig. 5a, d). 
Above all, oligodendroglial cells showed an intense cyto-
solic Perls’ reaction for non-chelated Fe3+ (Fig.  5a, d). 

The surrounding parenchyma appears inhomogeneously 
coloured and shows fibre-like morphological characteris-
tics. Oligodendroglial cells detected with an anti-ferritin 
antibody also showed a higher immunoreactivity in cyto-
solic regions than in the nucleus (Fig. 5b, e). In PD, oli-
godendroglial cells (Fig. 5c, f, red arrow) with a positive 
immunoreaction for ferritin appear tighter in nigrosome 
1 supporting reactive changes potentially leading to oli-
godendrogliosis (Fig. 5b, e).

Cell‑type specific quantitative mapping of iron 
by immuno‑µPIXE
In order to bridge the gap between macro and micro-
imaging in PD and to further specify the iron distribution 

Fig. 5  Perls’ reaction (a, d), anti-ferritin- (b, e) and anti-Olig2- (c, f) immunoreactivity of oligodendroglia cells (arrows) in human SN nigrosome 1 in 
controls (Co, a–c) and patients with PD (d–f). Scale bar 10 µm
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and its disease-associated changes, we applied immuno-
µPIXE. Typical examples of microscopic brightfield 
images of immunocytochemical preparations and corre-
sponding µPIXE element maps are shown in Fig. 6.

The distribution of sulphur in the PIXE map largely 
corresponds to the neuronal pigment neuromelanin, 
which, due to its iron-sulphur-clusters, is enriched in 
sulphur (approx. 10 × 103  µg/g). Extracellular sulphur 
(approx. 2.5 × 103  µg/g) mainly represents chondroitin 
sulphate proteoglycans (CSPG), the main components 
of the extracellular matrix. Iron was found to be con-
centrated in neurons and glial cells, which both showed 
higher cellular cytosolic iron loads than their extracellu-
lar environment (Fig. 6, bottom). Neuronal iron deposits 
typically co-located with neuromelanin which has two 
iron binding sides, with high and low affinity for iron, 
respectively.

PD, as compared to controls was associated with both 
changes in the total content of cellular iron and a shift 
in the cellular distribution of iron (Fig. 7a, b). The aver-
age total cellular iron of cells in nigrosome 1 in healthy 
controls amounts to 2.7  mM  [1.5, 4.6] (n = 369) and to 
4.3 mM [3.2, 6.4] (n = 441) in PD which corresponds to 
an increase by about 62% (Fig.  7a). Of note, total cellu-
lar iron content showed a very large individual variabil-
ity which in healthy controls reached from 0.30  mM to 
29 mM.

The cellular compartmentalisation of iron in the SN 
was altered in PD patients and iron upregulation in PD 
showed differences in the variability for different cell 
types (Fig.  7b). In anti-Hu C/D reactive neurons, iron 
concentration was about doubled in PD compared to 
controls. Glial cells, where iron concentrations in con-
trols tended to be higher than in neurons, showed more 
complex changes in PD with an increase in most cell 
types (Fig. 7b).

In oligodendroglial cells, that were subdivided accord-
ing to the presence of specific antigens into functionally 
different, i.e. myelinating and non-myelinating (satellite) 
subtypes, iron concentrations in anti-Olig2-immunore-
active oligodendroglial cells were increased from 2.8 mM 
[1.9, 4.0] (n = 44) by about 150% up to 6.8 mM [4.7, 8.3] 
(n = 79). In anti-ferritin-immunoreactive oligodendro-
glial cells, that showed the highest iron concentration 
among all cell types in controls, iron concentrations in 
PD cases dropped to 51% (controls: 6.0  mM [2.8, 10.8] 
(n = 70); PD: 3.2  mM [1.8, 5.5] (n = 87)). This reduction 
can be caused by a depletion of ferritin, the main form 
of iron storage in glial cells, or by a reduction in ferritin 
loading. Iron concentrations in PD in anti-IBA-1 reac-
tive microglial cells were increased by about one quarter 
(26%, controls: 3.2  mM [2.2, 4.3] (n = 62); PD: 4.0  mM 
[2.8, 6.0] (n = 109)) but remained unaffected in anti 

GFAP reactive astroglial cells (controls: 4.3 mM [2.0, 6.9] 
(n = 88); PD: 4.1 mM [3.3, 5.4] (n = 142)).

In addition to the specific changes in the cellular com-
partmentalisation of iron in PD, the iron loading of neu-
romelanin as a structure with significant iron binding 
capacity must be considered. Contrary to controls, where 
neuromelanin is restricted to dopaminergic neurons, it is 
found in PD predominantly extracellularly which could 
be due to remains of disintegrated neurons and therefore 
a consequence of neurodegeneration. The iron concen-
tration of neuromelanin in PD was increased by about 
two thirds (62%, controls: 8.7 mM [6.6, 12.1] (n = 37); PD: 
14.2 mM [10.4, 19.0] (n = 30)).

Iron storage proteins, oligodendroglial cells and myelin
To assign the strong ferritin-associated µPIXE iron signal 
to defined cellular structures, we performed double-label 
fluorescent immunohistochemistry with anti-ferritin 
and anti-glial cell markers. As illustrated in Fig. 8, ferri-
tin immunoreactivity both in controls and PD was largely 
restricted to oligodendroglial cells (yellow colour overlap, 
Fig. 8a, d) while astroglial or microglial cells showed no 
co-immunoreaction (Fig. 8b, e and c, f ).

Overall, oligodendroglial cells showed the most pro-
nounced changes in iron compartmentalisation in PD. To 
further characterise pathology related changes in oligo-
dendroglial cells, myelinating and non-myelinating (satel-
lite) subtypes were investigated differentially. To this end, 
sections were immunolabelled with anti-Olig2 and anti-
bodies against myelin basic protein (MBP) (Fig. 9). Mor-
phological appearance and immunoreactivity for both 
antigens differed between controls and PD. While myeli-
nated fibres in controls are more homogeneously distrib-
uted (Fig. 9a), they appeared rarefied, more delicate and 
partially agglomerated in PD (Fig.  9c). Sections labelled 
with an anti-Olig2 antibody show an increase in cell 
density of stained oligodendroglial cells in PD (Fig.  9d). 
Observed reactive morphological changes could be due 
to previous neurodegeneration leading to a secondary 
degenerative shift of myelin or may show direct evidence 
of oligodendrogliosis.

Discussion
Iron is one of the key factors that most likely plays a 
major role in PD although its precise pathogenic role is 
not fully understood [98]. While several studies report on 
increased levels of total iron in the SN [21, 22, 26, 40, 43, 
51, 77, 84], others did not [33, 49, 87]. This increase of 
total nigral iron may reflect an interference of multiple 
pathological processes including inflammation, myelina-
tion, perturbed iron uptake as well as vascular damage, 
each affecting distinct cell populations. In addition, there 
are various pre-analytical and analytical factors of iron 
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Fig. 6  Element maps in human SN nigrosome 1 in controls (Co) and patients with PD, obtained by µPIXE. Brightfield microscope images (top row) 
show the immunocytochemical reaction for cell-type specific antigens providing the basis for definition of regions of interest for the subsequent 
PIXE imaging (below). The ultrapure nickel-enhancement of the immunoreaction allows to allocate the µPIXE element signals to specific cell types. 
The iron map was used to quantify the local concentrations of iron in different cell types (see Fig. 7). Scale bar top left 20 µm applies to all images
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determination including tissue acervation and sample 
preparation that may account for such discrepancies.

An incubation of brain tissue in formalin for four years 
was shown to decrease iron levels down to 57% compared 
with similar analysed fresh frozen tissue [81]. It is reason-
able to assume that iron leaching depends primarily on 
the fixation time, chemical form and to a minor extend 
on the pathology. Thus, the relative increase or decrease 
in iron concentrations of PD brains compared to control 
brains is only marginally affected in our study. Different 
or larger extends of iron leaching are not expected since 
the sample preparation processes followed the same pro-
tocol with fixation times less than half a year. To test the 
extend of preparatory effects, we have analysed the iron 
concentrations of nine neuromelanin deposits in three 
sections of a cryofixed and unstained substantia nigra 
from control brain. The average iron concentration of 
neuromelanin from the cryofixed tissue was 8.0 mM [6.4, 
11.2] (n = 9), which is in agreement with the results of 
8.7  mM [6.6, 12.1] (n = 37) for neuromelanin of short-
term paraformaldehyde-fixed substantia nigra from con-
trol brains.

Semi-quantitative histochemical methods were able 
to demonstrate that iron deposits were present in both 
neurons and glial cells of the SN, with an increase of fer-
ritin-loaded microglial cells in the SN [43]. Still, precise 
quantitative data on cellular iron compartmentalisation 
in the brain and its changes in PD are still lacking.

Here, we close this gap in knowledge by applying 
immuno-µPIXE to the human brain, a newly developed 
technique which allows a quantitative determination of 

major and trace elements and their assignment to specific 
cell types. In particular it is suitable to analyse iron in 
brain sections with a spatial resolution in the µm-range 
and a detection limit of approximately 10 µM [31, 57, 59–
61, 73, 74, 76].

We determined a tissue concentration of total iron in 
nigrosome 1 in controls of 2.7  mM  [1.5, 4.6] (n = 369) 
and of 4.3 mM [3.2, 6.4] (n = 441) in PD. To convert this 
for comparison into ng/mg wet tissue weight, the values 
amount to 180 ng/mg in control and of 300 ng/mg in PD. 
This in in good agreement with values reported by Fried-
man et al. [32], Dexter et al. [22] and Riederer et al. [77].

In PD, our results show an increase of total iron content 
within the nigrosome 1 as compared to controls by about 
two thirds (62%) which is in line with previous investiga-
tions that reported an increase in total iron in PD [23, 36, 
71, 84]. However, we for the first time demonstrate that 
the increase of total iron differs across cell types in PD.

Most strikingly was the twofold increase (207%) of 
cellular iron within the dopaminergic neurons of nigro-
some 1 in PD, which is in line with previous reports [1, 
60, 65, 66]. This finding may provide an insight in the 
pathological role of iron accumulation in PD. Due to the 
rather unaffected sulphur content, our results confirm 
that neuromelanin is unsaturated with an Fe/S ratio of 10 
at% under physiological conditions. A similar physiologi-
cal Fe/S ratio of 13 at% was obtained with high resolu-
tion analysis directly on single neuromelanin granules 
[7]. Sulphur in the granules originate from pheomelanin, 
which derives from 5-S-cysteinyldopamin. Structur-
ally, pheomelanin seem to favour the formation of the 

Fig. 7  Quantification of iron in nigrosome 1 neurons in controls (Co) and patients with PD (a). The cellular compartmentation of iron in the SN 
nigrosome 1 in controls (Co) and patients with PD for different cells types, ferritin positive cells and in the pigment neuromelanin (b). Cellular 
concentrations of iron were obtained through quantitative element mapping by µPIXE in combination with nickel-enhanced immunocytochemical 
detection of cell type-specific antigens. Data are given as median values ± SD. n: analyzed cell number; Neurons (Hu C/D), Oligodendrocytes (Olig2), 
Microglia (IBA-1), Astroglia (GFAP), Ferritin (Fer) and Neuromelanin (NM)
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low-affinity mononuclear iron centre [30]. Eumelanin, 
the other melanin moiety, forms the high-affinity site 
where iron remains redox-inactive. Thus, neuromela-
nin has physiologically a protective function, since iron, 
bound preferentially to its high-affinity binding sides, 
is segregated from supporting any redox processes [96, 
102]. Under conditions of increasing iron overload, which 
may result from alterations in iron metabolism [5, 6, 45, 
78], high-affinity eumelanin becomes saturated and the 
low-affinity binding sites of pheomelanin are increasingly 

occupied. Then loosely bound iron can be released eas-
ily and trigger further toxic reactions that may lead to 
progressive neurodegeneration [28]. A pathogenic role of 
elevated iron concentrations is also supported by reports 
of direct correlations between the severity of neuronal 
loss in PD and the amount of iron accumulation [52, 93].

However, despite the high increase in neuronal iron 
concentration, it only contributes little to the overall 
increase of iron in nigrosome 1. Of note, both in the nor-
mal brain and in PD, the major iron pool (about 80%) is 

Fig. 8  Double-label fluorescent immunohistochemistry with anti-ferritin and anti-glial cell markers in nigrosome 1 in controls (Co, a–c) and 
patients with PD (d–f). Anti-ferritin antibody (red) in combination with anti-Olig2 antibody (green) (a, d), anti-ferritin antibody (red) combined with 
anti-GFAP antibody (green) (b, e) and anti-ferritin antibody (red) combined with anti-IBA-1 antibody (green) (c, f) did not show significant spatial 
co-localization whereas immunoreactivity in oligodendrocytes (a, d) could be confirmed. Immunohistochemical observations with anti-ferritin 
antibody show positive reactions in oligodendrocytes. In addition, (e) and (f) show strong activation signs of glial cells including a hypertrophic 
morphology and an increase in cell density. Territories of neurons surrounded by glia cell processes (a) and (d) are labelled with *. Sections were 
treated with Sudan black B to suppress tissue auto fluorescence. Scale bar 50 µm
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localised in glial cells. In the normal brain, the popula-
tion of ferritin-stained oligodendroglial cells contain 
most iron, followed by astroglial cells, microglial cells 
and another population of Olig2-stained oligodendroglial 
cells (ferritin-stained oligodendroglial cells > astroglial 
cells > microglial cells > Olig2-stained oligodendroglial 
cells). This pattern is inverted in PD (Olig2-stained oligo-
dendroglial cells > microglial cells > astroglial cells > ferri-
tin-stained oligodendroglial cells). While the iron content 
of astroglial cells in PD remained unchanged, microglial 
cells showed an iron accumulation of about one quarter 
(26%) and Olig2-stained oligodendroglial cells by about 
150%. Descriptions of the physiological and pathophysi-
ological role of iron need to take into account the iron 
redistribution between neurons and glial cells.

The increase of iron in microglial cells has been attrib-
uted to its activation [6, 86, 99] and might be due to 
phagocytosis of neuromelanin fragments [94, 97, 100, 

102] and increased iron uptake via transferrin-receptor 
[91] or non-transferrin bound iron [8]. Accordingly, to 
our morphological observations, microglial cells have the 
potential to degrade and solubilize neuromelanin that 
is released by degenerating neurons [100]. As a result 
of this, soluble iron is generated that could be internal-
ized in other surrounding cells, promoting neuroinflam-
mation and ultimately neurodegeneration. Extracellular 
neuromelanin goes hand in hand with a release of proin-
flammatory and toxic molecules that can maintain neu-
roinflammation as well as degeneration processes [100]. 
The iron pool of activated microglial cells may again be 
subject to cellular redistribution. Apoptosis of exhausted 
and damaged microglial cells might result in release 
of iron into the extracellular space [12] and circulating 
toxic iron may be taken by neurons or glial cells through 
transferrin-dependent and independent mechanisms [5, 
8, 78, 86]. Activation of microglial cells, furthermore, is 

Fig. 9  Oligodendroglia activation and degenerative change of myelin in nigrosome 1 of controls (Co, a, b) and PD (c, d) patients. Brightfield 
microscopy of myelin basic protein (MBP) shows a dense and rather homogeneous network of myelinated fibres in controls (a). In PD, myelinated 
fibres appear less dense (c). Additionally, in PD an increase of anti-Olig2 positive oligodendrocytes is visible (arrows, d). Scale bar 50 µm
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associated by a reduction of ferritin-de-novo-synthesis 
and H-ferritin levels, which may occur as a consequence 
of increased oxidative stress [55, 56]. Although the con-
centration of L-ferritin in the SN is lower than that of 
H-ferritin, levels of L-ferritin increased as well as H-ferri-
tin levels during the normal ageing process [98]. Instead, 
in PD, decreasing levels of H-ferritin are described by 
Zecca et  al. [98]. In accordance to these investigations, 
we equally observed a reduction of ferritin deposits in 
glial cells in PD down to nearly 50%.

Strikingly, changes of the iron content in PD were most 
pronounced in oligodendroglial cells. Oligodendroglial 
cells may hold one of the highest oxidative metabolism of 
all brain cells [64] and may thus be particularly vulner-
able to sequelae of oxidative stress. Due to their involve-
ment in myelin synthesis, oligodendroglial cells may 
show high concentrations of cellular iron and ferritin [14, 
15, 66]. Since oxidative stress in microglial cells contrib-
utes to a decrease in H-ferritin levels [55, 56], there is 
reason to suppose that cellular stress may be reflected as 
well in a reduction of H-ferritin in oligodendroglial cells. 
The reduction of both neuromelanin-bound iron and fer-
ritin-bound iron might result in an increase of the labile 
iron pool, which will further promote oxidative damage.

Astroglial cells even in the normal brain contain a com-
paratively large cellular iron pool that may play a role in 
neurotransmitter homeostasis [90]. Astrocytic processes 
form parts of the blood brain barrier [4, 25] and regulate 
the uptake and distribution of metal ions within the brain 
[24, 41, 67, 89, 90], which makes them the first parenchy-
mal cell type that will get in contact with iron after having 
crossed the blood brain barrier [41]. Due to their large 
intracellular iron pool together with their close contacts 
to various other brain cell types [3, 35, 39, 67, 89], they 
play a key role in processes of iron distribution within the 
neuropil [68]. The cellular iron concentration in astro-
cytes remains unchanged in PD, which may indicate that 
they are largely able to maintain their homeostatic path-
ways, even under inflammatory conditions.

Taken together, we demonstrated that the total increase 
of iron concentration in PD is a result of multiple physi-
ological processes differentially affecting different cell 
populations.

Since iron is involved in both physiological and patho-
physiological processes, in order to identify potentially 
modifiable therapeutic targets, it is essential to accurately 
determine its cellular compartmentalisation, intercel-
lular re-distribution or differential accumulation both 
under normal and diseased conditions. While, the patho-
genic role of elevated iron in PD remains unquestionable 
in general, more in-depth knowledge on iron pools and 
iron fluxes is still lacking. Our immuno-µPIXE approach 
allows for a highly sensitive quantification of iron at the 

subcellular level in well preserved cellular architectures. 
We believe that this knowledge will eventually contribute 
to the development of disease modifying strategies.
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