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Abstract

Background: Expensive optoelectronic systems, considered the gold standard, require a laboratory environment and the
attachment of markers, and they are therefore rarely used in everyday clinical practice. Two-dimensional (2D) human pose
estimations for clinical purposes allow kinematic analyses to be carried out via a camera-based smartphone app. Since clinical
specialists highly depend on the validity of information, there is a need to evaluate the accuracy of 2D pose estimation apps.

Objective: The aim of the study was to investigate the accuracy of the 2D pose estimation of a mobility analysis app (Lindera-v2),
using the PanopticStudio Toolbox data set as a reference standard. The study aimed to assess the differences in joint angles
obtained by 2D video information generated with the Lindera-v2 algorithm and the reference standard. The results can provide
an important assessment of the adequacy of the app for clinical use.

Methods: To evaluate the accuracy of the Lindera-v2 algorithm, 10 video sequences were analyzed. Accuracy was evaluated
by assessing a total of 30,000 data pairs for each joint (10 joints in total), comparing the angle data obtained from the Lindera-v2
algorithm with those of the reference standard. The mean differences of the angles were calculated for each joint, and a comparison
was made between the estimated values and the reference standard values. Furthermore, the mean absolute error (MAE), root
mean square error, and symmetric mean absolute percentage error of the 2D angles were calculated. Agreement between the 2
measurement methods was calculated using the intraclass correlation coefficient (ICC[A,2]). A cross-correlation was calculated
for the time series to verify whether there was a temporal shift in the data.

Results: The mean difference of the Lindera-v2 data in the right hip was the closest to the reference standard, with a mean value
difference of –0.05° (SD 6.06°). The greatest difference in comparison with the baseline was found in the neck, with a measurement
of –3.07° (SD 6.43°). The MAE of the angle measurement closest to the baseline was observed in the pelvis (1.40°, SD 1.48°).
In contrast, the largest MAE was observed in the right shoulder (6.48°, SD 8.43°). The medians of all acquired joints ranged in
difference from 0.19° to 3.17° compared with the reference standard. The ICC values ranged from 0.951 (95% CI 0.914-0.969)
in the neck to 0.997 (95% CI 0.997-0.997) in the left elbow joint. The cross-correlation showed that the Lindera-v2 algorithm
had no temporal lag.

Conclusions: The results of the study indicate that a 2D pose estimation by means of a smartphone app can have excellent
agreement compared with a validated reference standard. An assessment of kinematic variables can be performed with the analyzed
algorithm, showing only minimal deviations compared with data from a massive multiview system.

(JMIR Mhealth Uhealth 2020;8(12):e19608) doi: 10.2196/19608

KEYWORDS

2D human pose estimation; motion capturing; kinematics; clinical practice; mobility; smartphone app; analysis

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 12 | e19608 | p. 1http://mhealth.jmir.org/2020/12/e19608/
(page number not for citation purposes)

Stamm & Heimann-SteinertJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

mailto:oskar.stamm@charite.de
http://dx.doi.org/10.2196/19608
http://www.w3.org/Style/XSL
http://www.renderx.com/


Introduction

Traditional movement assessments, although carried out by
experienced physicians, physiotherapists, and occupational
therapists, can contain inaccuracies due to subjectivity, despite
the clinicians’ expertise. In contrast, quantitative motion
measurements by motion capture systems are a valuable tool
in scientific and clinical motion analysis and offer a highly
accurate and reliable way of capturing kinematic data.
Quantitative analyses can be used, for example, to monitor the
progress of therapies and objectively evaluate the effectiveness
of specific interventions. Motion capture systems are used in
sports, biomechanics, and rehabilitation, and they focus on gait
analysis, injury prevention, and performance improvement [1].
However, these systems are rarely used in everyday clinical
practice.

There are many optoelectronic motion capture systems based
on markers (eg, Vicon [Vicon Motion Systems], Motion
Analysis [Motion Analysis Corp], Optitrack [NaturalPoint Inc],
and Qualisys [Qualisys AB]). These systems are often regarded
in the literature as the gold standard for motion capture [2].
Today, low- to high-speed experiments show that positioning
errors can even be assumed in the case of measurements less
than 2 mm [3]. Nevertheless, optoelectronic systems require a
restricted area, such as a laboratory environment, and the
attachment of markers [4], which can also be a potential source
of measurement error in these systems due to skin movement
artifacts [5]. Furthermore, these systems are proving to be very
costly. The aforementioned factors are detrimental to the
systems’ practicability and everyday use in a clinical context.

Inertial sensor measurement systems can be used as a low-cost
alternative. However, an inertial sensor measurement system
cannot determine global position when used as a stand-alone
system (by itself), although as a fusion system, in combination
with a rigid body model such as the Perception Neuron (Noitom
Ltd), a position in space can still be identified [2]. Nevertheless,
a major disadvantage remains in clinical practice, as users must
attach numerous sensors to a patient’s body. Since clinical
processes are usually efficiency driven and the application of
several sensors is too time-consuming in most cases due to time
constraints during treatment, this also contributes to the low
frequency of use. Recently, studies have examined markerless
and body sensor–less image-processing systems. Depth-sensing
camera systems, such as the Kinect (Microsoft Corp), Intel
RealSense (Intel Corp), or Zed (Stereolabs Inc) sensors, have
proven to be a cost-effective solution with acceptable accuracy
for some use cases [6-11]. Another low-cost motion capture
method in image processing is pose estimation, which involves
transformation of two-dimensional (2D) images into
three-dimensional (3D) objects, for example, by using deep
convolutional neural networks of monocular images [12-15],
such as images on a mobile device [16]. Research into depth
estimation from a monocular image is still in its infancy in the
field of computer vision and is proving to be difficult in some
cases, as slight inaccuracies in estimation can lead to very
different depth estimates [17,18]. Major limitations include
false pose estimates due to the target person moving outside the

image boundaries [19] or the pose being disturbed by objects
such as shadows [15].

A 2D skeleton detector enables calculation of specific joint
angles for assessment and feedback in sport and rehabilitation
settings. The use of 2D human pose estimations for clinical
purposes, such as the Lindera-v2 app or the motion-tracking
coach on the Kaia health app [20], allows mobility analyses to
be carried out using, for example, a mobile device. Pose and
movement analyses via a smartphone save time for medical
staff, who can use the time gained as treatment time or for
patient consultations. Furthermore, such a measurement of
mobility represents a more objective method of measurement
compared with traditional assessments, which are based on a
subjective assessment. Since in clinical practice, specialist staff
highly depend on the validity of information, there is a need to
validate the methodology of the Lindera-v2 measuring method.
In order to achieve a performance level comparable with the
gold standard motion capture systems, this study aimed to
evaluate the accuracy of the Lindera-v2 2D pose estimation
algorithm, using the PanopticStudio Toolbox (Carnegie Mellon
University) [21,22] as a reference standard.

Methods

Data Collection
For the accuracy evaluation, 10 video sequences were generated
from Panoptic Studio 3D PointCloud (data set 171204_pose1-6)
[21,22]. Data shared for research purposes from Carnegie
Mellon University were used as the reference standard. The
data set included video sequences from 480 video graphics array
(VGA) cameras, 31 high-definition (HD) cameras, and 10 Kinect
cameras, as well as arrays of 2D poses of key points of body
part locations, showing the range of motion of the joints. The
videos were split so that only one actor appeared in each video.
Subsequently, 10 videos were selected that matched the
requirement for all key joint points to be visible during the
movements in each frame. Within the video clips, no changes
or cuts were made. The total duration of the videos selected for
analysis was 24 minutes 9 seconds, with an average duration
of 2 minutes 25 seconds per video. The movements were
categorized by the PanopticStudio Toolbox as a range of motion.

Lindera Pose Estimation
The Lindera-v2 algorithm is a combination of a 2D and 3D
skeleton-based pose estimation. For this study, we needed the
output of the 2D skeleton estimator to calculate 2D joint angles
[23,24]. The 2D skeleton detector module of the Lindera-v2
algorithm is based on the tf-pose-estimation repository [25].
This repository is a TensorFlow implementation of various deep
learning models [13] that represent human pose estimation
models based on convolutional pose machines [26]. The original
repository also provides some model variants that run on mobile
devices. The short version of the repository used with the
Lindera-v2 algorithm has also implemented the additional
Openpose Body25 model, which provides 25 body joint
coordinates for each input image (x in the direction of the image
width and y in the direction of the image height) instead of 18
body joint coordinates, as was the case in the original repository
model variants (Figure 1). The 2D module of the Lindera-v2
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algorithm produced a coordinate-time list for each joint and
each frame. These time series data were then used to
geometrically calculate the corresponding 2D joint angles for

each frame of the processed input video. To smooth the
angle-time series data, we used digital filtering with a size 11
Bartlett window.

Figure 1. Two-dimensional pose estimation by skeleton fitting, based on 25 body joint coordinates.

Reference Standard
The Panoptic Studio data set from Carnegie Mellon University
[21,22] is a data set shared for research purposes. Unlike the
Lindera app, the PanopticStudio Toolbox is not a monocular
2D estimator but rather a massive multiview system consisting
of the following: (1) 480 VGA cameras with a resolution of 640
× 480 pixels and 25 frames per second (fps); (2) 31 HD cameras
with a resolution of 1920 × 1080 pixels and 30 fps; (3) 10 Kinect
Ⅱ sensors of 1920 × 1080 pixels (RGB), 512 × 424 pixels
(depth), and 30 fps; and (4) 5 digital light processing projectors.

The 2D skeleton of the 2D Panoptic Studio pose detector has
15 anatomical landmarks. The 2D detector uses appearance
information in the interpretation and includes connectivity
information.

Statistical Analysis
The value tables for the respective joint angles were clustered,
and missing values were imputed using a simple moving
average. The mean difference (bias) between the Lindera-v2
algorithm estimates and the reference standard values was
calculated for each joint. Furthermore, the mean absolute error,
the root mean squared error, and the symmetric mean absolute
percent error of the 2D angles were used. The intraclass
correlation coefficient (ICC[A,2]) was calculated for the data
using the 2-way mixed-effects model as a measure of agreement
between the 2 measurement methods. An ICC in the range of

0 indicates random evaluation behavior, and a value of 1 is
regarded as an ideal reliable feature evaluation by the evaluators.
We used the definition in which values greater than 0.7 are
generally regarded as indicators of good agreement [27]. Values
up to approximately 0.3 are regarded as a low correlation, and
those of approximately 0.5 or more are regarded as a medium
correlation. A further classification according to Fleiss [28] was
used to assesses the ICC classification, with 0.00 to 0.40
indicating poor agreement, 0.40 to 0.75 indicating fair to good
agreement, and 0.75 to 1.00 indicating excellent agreement.

A cross-correlation was calculated for the time series to verify
whether there was a temporal shift in the data. To verify the
stationarity of the data, which is a prerequisite for
cross-correlation testing, we used the augmented Dickey-Fuller
test. The data were first evaluated in IBM SPSS Statistics
(version 25.0; IBM Corp) and then in the programming language
R in RStudio (version 3.5.1; RStudio Inc).

Results

In order to evaluate the accuracy of the movement signals
recorded, we analyzed a total of 30,000 data pairs for each joint,
comparing the joint angles obtained using the Lindera-v2
algorithm with those of the PanopticStudio Toolbox data set
(the reference standard). Table 1 displays the 10 joints analyzed;
the key points used for calculating the joint angles; the average
difference (bias) between the estimated values of the Lindera-v2
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algorithm and the reference standard; and the mean absolute
error (MAE), mean absolute deviation, root mean square error
(RMSE), symmetric mean absolute percentage error (sMAPE),

and ICC. The angles used were determined trigonometrically
for both measuring methods.

Table 1. Mean angle difference and ICC of Lindera-v2 and the Panoptic Studio data set for the joints analyzed.

SE of mean
difference

ICCf (95% CI)sMAPEe

(%)
RMSEd of 2D
angles (°)

MADc (°)MAEb of 2D
angles (°)

Difference in 2D an-
gles (°), mean (SD);
95% CI

2Da key points
used

Joint

0.060.978

(0.973 to 0.981)

23.3310.634.106.482.71 (10.28);

2.59 to 2.83

Right hip,
shoulder, and
elbow

Right shoulder

0.070.951

(0.950 to 0.952)

10.7112.123.203.98–0.07 (12.11);

–0.21 to 0.07

Left hip, shoul-
der, and elbow

Left shoulder

0.070.983

(0.983 to 0.984)

6.6412.164.306.18–1.01 (12.12);

–1.15 to –0.87

Right shoulder,
elbow, and
wrist

Right elbow

0.040.997

(0.997 to 0.997)

9.176.212.843.150.24 (6.20);

0.17 to 0.31

Left shoulder,
elbow, and
wrist

Left elbow

0.040.983

(0.983 to 0.983)

3.016.064.684.45–0.05 (6.06);

–0.12 to 0.02

Right shoulder,
hip, and knee

Right hip

0.020.992

(0.992 to 0.993)

1.743.902.292.29–0.61 (3.85);

–0.66 to –0.57

Left shoulder,
hip, and knee

Left hip

0.020.985

(0.974 to 0.990)

1.563.272.932.58–1.37 (2.97);

–1.40 to –1.34

Right hip, knee,
and ankle

Right knee

0.030.971

(0.968 to 0.974)

1.394.442.452.280.84 (4.31);

0.79 to 0.89

Left hip, knee,
and ankle

Left knee

0.040.951

(0.914 to 0.969)

3.207.133.634.47–3.07 (6.43);

–3.14 to –2.99

Pelvis, neck,
and head

Neck

0.010.996

(0.996 to 0.996)

5.422.041.641.400.15 (2.03);

0.14 to 0.18

Left knee,
pelvis, and right
knee

Pelvis

a2D: two-dimensional.
bMAE: mean absolute error.
cMAD: mean absolute deviation.
dRMSE: root mean square error.
esMAPE: symmetric mean absolute percentage error.
fICC: intraclass correlation coefficient ICC(A,2).

The data collected indicated both a negative and a positive bias.
The mean difference of the joint angles that was nearest to the
baseline was identified in the right hip (–0.05°, SD 6.06°). The
joint with the highest mean difference (ie, with the greatest
difference from 0) was the neck (–3.07°, SD 6.43°). The mean
joint angle accuracy was used to show the average magnitude
of the errors. The mean absolute error of the angle measurement
closest to the baseline was observed in the pelvis (1.40°, SD
1.48°). In contrast, the highest mean absolute error was observed
in the right shoulder (6.48°, SD 8.43°). The standard deviation
was also lowest in the pelvis (SD 3.36°), and the highest
standard deviation was found to be in the left shoulder (SD
11.45°). The root mean square error was also applied, although
this tends to give weight to large errors. The RMSE indicated
low accuracy in the right elbow (12.16°) and high accuracy in
the pelvis (2.04°). Since the mean absolute percentage error

cannot be used when values are 0 (as this would result in
division by 0), we used the sMAPE, which was lowest in the
left knee (1.39%) and highest in the right shoulder (23.33%).

The intraclass correlation coefficient for the joint angles is also
shown in Table 1 and represents agreement between the 2
measurement methods (Lindera-v2 vs the PanopticStudio
Toolbox). In accordance with the McGraw and Wong
convention [29], the intraclass correlation coefficient ICC(A,2)
was used (ie, a 2-way mixed type with average measures and
absolute agreement). The highest ICC value was found in the
left elbow joint (average measure of 0.997, 95% CI
0.997-0.997). In contrast, the lowest ICC values were in the
neck (average measure of 0.951, 95% CI 0.914-0.969).

Interpretation of the measurement values based on mean values
can lead to biased findings (eg, in the case of extreme outliers).
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Since the median is less affected by outliers, we used box plots
for the differences in joint angle values measured with the
Lindera-v2 and the reference standard. Figure 2 shows a
box-and-whisker plot without outliers to facilitate closer
examination of the boxes. The ends of the whiskers represent
1.5 × IQR. The median with the greatest difference in
comparison with the 0 value was detected in the right shoulder
(3.17°), and the joint angle median nearest to the baseline was
the pelvis joint (0.19°). Figure 3 shows the box-and-whisker

plot with outliers. The third quartile of the right shoulder was
the farthest from the baseline of all the joints, with a value of
5.87°. The lowest first quartile was in the neck, measuring
–5.34°. The smallest IQR, ranging from –0.81° to 1.27°, was
in the pelvis. The most extreme outliers in this plot were found
in the right elbow, where the minimum was –106.00° and the
maximum was 125.71°. However, the outlier with the greatest
difference in comparison to 0 was in the left shoulder, with a
difference of 157.10°.

Figure 2. Box plot showing differences in the Lindera-v2 and reference standard values, measured across all joints tested.

Figure 3. Box plot with outliers showing differences in the Lindera-v2 and reference standard values, measured across all joints tested.

To examine the ICC more closely and analyze the potential
influence of single videos on the ICC values of the joints, our
next step entailed calculating an ICC for each video. Figure 4
shows a dot plot of the ICC for the 10 videos used for the

accuracy measurement in each joint. For the neck joint, 5 videos
had an ICC below 0.75. However, there were no videos in which
all joints had remarkably low ICC values. With the exception
of the neck, all joints in all videos had an ICC value above 0.75.
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The cross-correlation function was applied to the selected time
series in order to examine the temporal lag. The results in Table
2 show that no time delays could be detected in the values
measured. These would have been visible at an increased
correlation at a time outside lag 0. However, all graphs (Figure

5) showed the highest correlation at lag 0. The dotted blue lines
represent the confidence interval of the estimated correlation
values. If a value was outside the range of the interval, the
correlation was considered significant.

Figure 4. Dot plot of the intraclass correlation coefficient comparing Lindera-v2 and reference standard for the 10 single videos used for accuracy
measurement in each joint.
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Figure 5. Cross-correlation graph of Lindera-v2 and Panoptic Studio data set values. One lag represents 1 sample (frame). ACF: autocorrelation
function.
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Table 2. Maximum cross-correlations of Lindera-v2 and reference standard values.

Maximum correlation coefficientLag value with maximum correlationJoint

0.960Right shoulder

0.910Left shoulder

0.970Right elbow

0.990Left elbow

0.970Right hip

0.990Left hip

0.980Right knee

0.950Left knee

0.920Neck

0.990Pelvis

Discussion

Principal Results
The goal of this study was to validate the accuracy of the 2D
pose estimation of joint angles obtained from the Lindera-v2
algorithm, using the PanopticStudio Toolbox, which served as
the reference standard. Therefore, we analyzed 30,000 data pairs
for each joint angle during diverse total body motion activity.
First, the mean difference and error measures were compared
for each joint. Second, the ICC was compared for each joint. In
order to verify agreement between the 2 measurement methods
(the Lindera-v2 and the PanopticStudio Toolbox data set), we
analyzed the ICC values for each of the 10 videos. Finally, we
examined the potential temporal lag through cross-correlation.
The results of the study indicate that the 2D pose estimation
method used had excellent agreement with the reference
standard. Furthermore, the Lindera-v2 algorithm had no
temporal lag.

The mean angle generated for the right hip by the Lindera-v2
algorithm was the closest to the reference standard. Even the
value with the greatest difference from 0 (found in the neck)
was acceptable. However, these values should be treated with
caution because mean values can lead to biased results.
Therefore, we displayed the median values in box plots. The
medians of all joints compared with the reference standard
ranged from a difference of 0.19° (pelvis joint) to 3.17° (right
shoulder). In all joints, the IQR was within 6° and –6°, which
means that 50% of the values were within this range. These
acquired values provide a promising starting point upon which
to base mobility assessments and 3D pose estimation. A further
reason why box plots were used was to identify outliers because
the RMSE used gives greater weight to large errors. Figure 3
shows that in the box-and-whisker plots, the data recording the
difference between the Lindera-v2 algorithm and the reference
standard had few very high outliers. In the right elbow, for
example, the outliers were particularly high compared with the
other joints. Since the RMSE squares the errors before
averaging, the RMSE in this joint was the highest. Since large
outliers can be quickly identified as such by an experienced
user, the weighting of large outliers by the RMSE does not seem
appropriate. Hence, the MAE might be the more appropriate

measure. The sMAPE is more resistant to outliers due to defined
error limits because it gives less weight to outliers than other
measures that have no error limits; it was applied additionally
for this reason [30]. An advantage over the mean absolute
percentage error is that the sMAPE cannot be extremely large
or infinite [30]. The sMAPE in our evaluation was particularly
high in the right shoulder (23.33%). Possible joint “losses”
could be an explanation due to bad visibility of the joints in the
videos, perhaps due to the clothing of the participant or the
lighting used.

The ICC agreement between the 2 measurement methods can
be interpreted as excellent (according to the classification
presented by Fleiss [28]). All joints had an ICC value of at least
0.951. Furthermore, the 95% confidence interval of the ICC for
all joints can be classified as excellent. Our analysis of the
individual videos showed why the neck had the lowest overall
agreement in comparison with the other joints. In several videos,
the agreement could be interpreted as fair to good. We assume
that this relates to the approximations of neck positions, since
these were calculated from the key point of the nose in the
Lindera algorithm. By applying cross-correlation, angles
estimated through the Lindera-v2 algorithm showed no temporal
lag.

Early research and reviews published in 2016 reported that the
Kinect skeleton-tracking algorithm indicated poor validity and
large errors with respect to most kinematic variables [7]. Clark
et al [10] recommended that the Kinect system be carefully
chosen for specific use cases (eg, trunk angles can be highly
accurate). An extensive recent review by Poitras et al [31] on
the validity and reliability of wearable sensors for joint angle
estimation revealed mixed results. The results presented in this
study are therefore very promising, not only because of the
acceptable accuracy of the angles but also because the usability
of smartphone apps (compared with the Kinect system or
wearable sensors) offers major advantages. Schurr et al [32]
showed a moderate to strong relationship between a 2D video
camera and 3D motion capture analyses. From this point of
view, 2D pose estimations are applicable in clinical practice.
Even though 2D cameras offer clinicians a valuable kinematic
measurement tool, the use of a smartphone would be far less

JMIR Mhealth Uhealth 2020 | vol. 8 | iss. 12 | e19608 | p. 8http://mhealth.jmir.org/2020/12/e19608/
(page number not for citation purposes)

Stamm & Heimann-SteinertJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


complicated and would make the technology available to a wide
user group.

Valid and reliable 2D joint angles are an important first step on
the way to valid and reliable 3D joint angles. Therefore, in the
next step, the 2D data from the evaluation will be transformed
into 3D pose estimation angles using deep convolutional neural
networks. A validation of the 3D joint angle accuracy of the
resulting data will show whether the requirements for clinical
practice are met.

Limitations
Although this study showed excellent agreement to a reference
standard, a validity study using a state-of-the-art marker-based
motion capture system as a ground truth is necessary for a
thorough validation. The comparison to the reference standard
is an important step toward accuracy assurance but does not
replace a proof of validity.

To determine a systematic error in the algorithm by an offset,
a static setup would be needed. From this, a Euclidean distance
could be calculated to identify a precise source of error. The
mean joint position error is the most frequently used method
for verification of the accuracy of a pose estimation. However,
since determination of the coordinates in millimeters in space
was not possible in these data sets, accuracy verification was
carried out for the joint angles. Verification of the precision
showing the repeatability of the data was not planned in this
project, since measurement using the Lindera-v2 was carried
out once and the movements were not repeated in a standardized
manner. However, the precision of the time stamps within the

measurement of the evaluated movements can be seen from the
standard errors of the mean difference. A validation of the
precision will be the subject of further studies.

Perspectives
In geriatrics, orthopedics, and neurology in particular, accurate
and validated mobility analyses such as the Lindera-v2 could
help medical professionals confirm diagnoses and track the
success of treatments. Mobility assessments have very high
relevance for a multitude of clinical uses (eg, older adults and
patients with more severe diseases who have a higher risk of
falling) [33,34]; in this case, fall risk assessments could be of
high value. Assessment of kinematic variables, such as specific
joint angles, can be accessed via 2D skeleton data if viewed
from specific angles, and such data can also be used for
rehabilitative purposes in physical therapy or sports science.
Furthermore, the 2D values analyzed in this study constitute an
encouraging basis for 3D pose estimation, which will be the
next step in accuracy validation.

Conclusions
The results of the study indicate that 2D pose estimation by
means of a camera-based smartphone app can have excellent
agreement with a validated reference standard. Furthermore,
the Lindera-v2 algorithm was found to have no temporal lag.
An assessment of kinematic variables, such as specific joint
angles, can be performed with the algorithm, and these data
showed only minimal deviations compared with data from a
massive multiview system. In future studies, it will be important
to test the app in a clinical context with participants with
physical limitations.
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