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Heart failure (HF) affects at least 26 million people worldwide, so predicting adverse

events in HF patients represents a major target of clinical data science. However,

achieving large sample sizes sometimes represents a challenge due to difficulties in

patient recruiting and long follow-up times, increasing the problem of missing data. To

overcome the issue of a narrow dataset cardinality (in a clinical dataset, the cardinality

is the number of patients in that dataset), population-enhancing algorithms are therefore

crucial. The aim of this study was to design a random shuffle method to enhance the

cardinality of an HF dataset while it is statistically legitimate, without the need of specific

hypotheses and regression models. The cardinality enhancement was validated against

an established random repeated-measures method with regard to the correctness

in predicting clinical conditions and endpoints. In particular, machine learning and

regression models were employed to highlight the benefits of the enhanced datasets.

The proposed random shuffle method was able to enhance the HF dataset cardinality

(711 patients before dataset preprocessing) circa 10 times and circa 21 times when

followed by a random repeated-measures approach. We believe that the random shuffle

method could be used in the cardiovascular field and in other data science problems

when missing data and the narrow dataset cardinality represent an issue.

Keywords: random shuffle, missing data, narrow dataset cardinality, data science, heart failure

INTRODUCTION

Heart failure (HF) affects at least 26 million people worldwide (1), so predicting adverse events in
HF patients represents a major target of clinical data science. Common challenges in clinical studies
and trials are as follows (2, 3): (i) troubles in finding patients fitting the eligibility criteria (e.g.,
rare disease); (ii) difficulties in the enrollment because of a poorly formulated informed consent;
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(iii) data collection problems; (iv) time delays because of
complicated study design or due to unpredictable events; and (v)
financial demands of the clinical practice. All these issues could
be the cause of missing data and datasets with narrow cardinality,
which are relevant challenges in data science (in a clinical dataset,
the cardinality is the number of patients in that dataset).

As a consequence, researchers need to produce novel
hypotheses and methods to deal with these issues, which
are particularly critical when the dataset is used to build
risk models in the field of clinical cardiology. A successful
effort to overcome the abovementioned issues is represented
by the MAGGIC risk score, developed as a tool of risk
stratification for both morbidity and mortality in HF patients
(4, 5). To build MAGGIC, Pocock et al. (5) have combined
30 datasets to enlarge patients’ cardinality, thereby reaching
an astonishing amount of 39,372 patients, and handled the
missing patients’ values via multiple imputations using chained
equations (6, 7). In detail, to deal with missing data, regression
equations are defined; the missing values are initially replaced
by randomly chosen observed values of each variable, and
then the missing values are replaced by a random draw from
the distribution defined by the regression equations, and at
the end of the last iteration, the final value becomes the
chosen imputed value. Hence, we can argue that a random
procedure could be important to overcome not only the issue
of missing data, but also, at the same time, the one of narrow
dataset cardinality.

The conceptual challenge of missing data is dual: 1) missing
patients (i.e., completely missing data but plausible patients,
as discussed later) who cause a narrow cardinality of the
dataset and 2) missing data in patients with a partial list
of needed values. In the current work, we unify the vision
of these two kinds of missing data, searching for them
with a random method, our novel random shuffle method
without the use of specific hypotheses and regression models:
we only need the original data, and we randomly shuffle
them while it is statistically legitimate. “Statistically legitimate”
means that, to validate our random shuffle method, the new
datasets with enhanced cardinality were compared to those
enhanced via an established random repeated-measures method
(8, 9).

Indeed, the aim of this work is not to obtain a
risk score, but to introduce an innovative method to
enlarge the dataset cardinality and boost up the statistical
performance. Our random shuffle method can be applied
in other research fields when both missing data and limited
dataset are issues because of financial, experimental, or
ethical limitations.

DATA AND METHODS

Original Dataset
The clinical dataset is composed of a total of 711 German,
Austrian, and Italian patients suffering from HF in different
stages, in hospital facility due to either an acute hospitalization
or an ambulatory visit, released and followed up for a

period of 6 months. Patients were enrolled in two distinct
clinical studies: (i) the Aldo-DHF trial (10), a multicenter,
randomized, placebo-controlled, double-blind, two-armed,
parallel-group study that enrolled patients from 10 trial
sites in Germany and Austria (data are available in the
Supplementary Materials) and (ii) the STOP-SCO trial, a
prospective, multicenter, observational study that enrolled
patients from 10 hospitals in the Northern Italy (unpublished
data, that are available in the Supplementary Materials). The
protocol and amendments were approved by the institutional
review board at each participating center, and the trials were
conducted in accordance with the principles of the Declaration
of Helsinki, Good Clinical Practice guidelines, and local
and national regulations. Written informed consent was
provided by all patients before any study-related procedures
were performed.

The studied endpoints at 6 months were a composite
endpoint (all-cause hospitalization plus all-cause mortality) and
all-cause hospitalization.

The dataset is organized in rows (patients) and columns
(clinical parameters or features). The features are of two types:

i) 13 binary features that show the presence (value = 1) or the
absence (value = 0) of the following conditions: peripheral
edema, composite endpoint, age >75 years, angiotensin
receptor blockers intake, β-blockers intake, left ventricular
ejection fraction at admission >50%, nt-proBNP >1,000
pg/mL, diabetes, chronic kidney disease with glomerular
filtration rate <50 mL/min, heart rate at release ≥90
bpm, anemia (hemoglobin concentration <12 g/dL for
women, <13 g/dL for men), all-cause hospitalization
endpoint, more than 2 hospitalizations in the last
year; and

ii) 6 numerical features: age, heart rate at release, body
weight at release, systolic aortic pressure at release, diastolic
aortic pressure at release, left ventricular ejection fraction
at admission.

To preprocess the clinical dataset for the removal of patients
with missing values, two exclusion criteria were sequentially set:
1) at least an endpoint lacking (composite endpoint, all-cause
hospitalization endpoint) and 2) at least a feature lacking (other
than endpoints).

After the preceding data cleaning, the 13 binary features
were used as dummy variables (11) to group the patients
into classes, where the number of classes could be, at
maximum, 213. In particular, a self-balancing (12) (also
called height-balancing) was applied to the tree of the
binary features obtaining a new sorting of the dataset. In
summary, the ordered list of the first 13 columns is the i)
list above.

Moreover, because an intraclass-intrafeature random
shuffling is possible if and only if the class cardinality is
>1, the monoexample classes (i.e., with a lone patient)
were excluded.

After preprocessing, the dataset is composed of 385
patients grouped into 61 classes. Conceptually, each class
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represents a particular clinical condition; in other words,
the class label delimits a dataset subset inside which the
shuffling is legitimate and not tautologic [as we show below,
in statistical manner, via the comparison to a MATLAB-
implemented repeated-measures fitting followed by its
“random” method (8, 9); MATLAB R©, The MathWorks,
Inc., Natick, MA].

In Figure 1A, for demonstration purposes, we show a
simplified representation of the original dataset with four patients
analyzed with 3 features and grouped into 2 classes.

In Figure 2A, for sake of example and comparison with
enhancing methods (Figures 2B,C), we plot two original
numerical features for two classes (e.g., the 1st and the 3rd of
61 classes). The following sections will describe how to obtain
variants of the original dataset.

Repeated-Measure Variant
In MATLAB R© (Statistics and Machine Learning ToolboxTM),
there are already implemented functions as the “fitrm” (acronym
for “fit repeated-measures model”) with the associated “random”
method permitting to generate new random response values
given predictor values (8, 9).

In particular, in the fitrm function, the measurements (the
6 numerical features above listed) are the responses, and
the class column (with the aforementioned 61 classes) is the
predictor variable. The fitrm function produces a repeated-
measures model onto which we can apply the randommethod to
randomly generate new response values, that is, new numerical
measurements for our 6 numerical features. We called this
random generation as “repeated-measures” variant (Figure 1B),
and we added it to the original dataset (Figure 1A) obtaining an
enhanced dataset (Figure 2B).

Theoretically, it is possible to generate at will without
outputting replicated values, but we have introduced a calculus
checkpoint to delete eventually replicated patients in the
enhanced dataset.

Shuffle Variant
In MATLAB R©, we have implemented an intraclass random
exchange/shuffle of values inside each feature (i.e., each feature
is independently shuffled in random and intraclass manner).
We called this random exchange/shuffle as “shuffle” variant
(Figure 1C), and we added it to the original dataset (Figure 1A)
obtaining an enhanced dataset (Figure 2C).

It is likely to shuffle with outputting replicated patients
(especially inside low-cardinality classes), so we have introduced
a calculus checkpoint to delete replicated patients in the
enhanced dataset.

Hotelling t2 Statistic
Hotelling T2 distribution is a multivariate distribution
proportional to the F distribution; in particular, it is a
generalization of the Student t distribution for multivariate
purposes. Hotelling t2 statistic is a generalization of Student t
statistic used in multivariate hypothesis testing (13, 14).

In our multivariate problem, we have 6 numerical features,
and we would enhance the original dataset without generating a

different population (p > 0.05). So, the original dataset gives the
expectedmultivariate mean vector (EMMV), and against EMMV,
we compare the repeated-measures enhancement vs. the shuffle
enhancement at a significance level of 0.05.

In other words, for the same enhanced number of patients,
we are validating the shuffle enhancement using the repeated-
measures enhancement which is an already accepted method: the
shuffle enhancement is validated if and only if the p-value is not
significant (i.e., the enhanced shuffled population is the same as
the original dataset or the enhanced repeated-measures one).

Combined Approach
In a combined approach, an enhanced shuffled population was
subjected to a repeated-measures processing.

Stressing the Enhanced Datasets via
Machine Learning and Regression
In our specific cardiology problem (HF), the main goals of
having enhanced datasets by enlarging their cardinality, while
it is legitimate, are a greater classification/prediction skill (e.g.,
to predict the patient’s class of risk) and a greater regression
skill (e.g., to estimate the likelihood of two endpoints: composite
endpoint, all-cause hospitalization endpoint). In other words, we
are trying to overcome the issues of missing data and datasets
with narrow cardinality, which are typically due to financial,
experimental, or ethical limitations without losing the statistical
nature of the original dataset, boosting its statistical performance
while legitimate (p > 0.05 in t2-test).

To highlight the benefits of the enhanced datasets vs. the
original one, we have compared their classification/prediction
skill and regression skill.

In detail, to stress via machine learning, we have used all
the 19 features (13 binary, 6 numerical) and the column with
the class labels as the response column (the enhanced dataset
had 61 classes as the original one). A 10-fold cross-validation
was applied to calculate the accuracy (%) by the MATLAB R©

Classification Learner application (methods: fine tree, fine KNN,
weighted KNN, linear SVM; all default settings were unchanged).

To stress via regression, we have used 17 features (11 binary,
i.e., excluding the 2 endpoints; 6 numerical) and, as response
column, a column containing a specific endpoint (composite
endpoint or all-cause hospitalization endpoint). A 10-fold cross-
validation was applied to calculate the root mean square error
(RMSE) by the MATLAB R© Regression Learner application
(methods: fine tree, linear, linear SVM; all default settings
were unchanged).

RESULTS

Hotelling t2 Statistic
The two enhanced populations (repeated-measure, shuffle) were
the same as the original one until 20× enlargement; that is, we
arrived up to 7,700 patients (including the 385 original). Further
enhancements were not legitimate (p < 0.05).

In a combined approach, the preceding 20× shuffled
population was subjected to a 2× repeated-measures processing,
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FIGURE 1 | Simplified representation of the original dataset along with its variants. (A) The simplified original dataset showing four patients (P = patient) each

analyzed with three features (F = feature), displayed with different symbols and colors, and grouped into two classes highlighted with the colored boxes. (B)

Representation of the “repeated-measure” variant to expand the cardinality of the original dataset. (C) Same as B, but for our proposed “shuffle” variant.

and we arrived up to 15,199 patients (including the 385 original).
Further enlargements were not legitimate (p < 0.05).

Stressing the Enhanced Datasets via
Machine Learning and Regression
The comprehensive results are presented in the following tables
in terms of accuracy (%) and RMSE.

Accuracy is a metric for evaluating the performance
of machine learning in terms of the fraction of correct
classifications. In this example dataset, high accuracy means that
a sizable portion of patients was grouped into the correct classes
(Table 1).

RMSE is a good estimator for the standard deviation of
prediction errors; it informs about how far off we expect the
regression model to be on its next prediction. If the RMSE is
very small (Tables 2, 3), the predicted value of an endpoint will
practically coincide with the observed binary value in the future.

DISCUSSION

To stratify patients according to their cardiovascular events risk
in a 6-month follow-up after hospital discharge, the appropriate
method of classification needs to be accurately determined
in the case of the original dataset. In our case, the fine
KNN algorithm implemented in MATLAB R© revealed to be
a good choice (accuracy equal to 93.2%, Table 1). However,

the enlargement or enhancement of the cardinality of the
original dataset, while it is legitimate, could possibly enable a
greater classification/prediction skill. In detail, we have designed
and developed a random shuffle method and validated it
against the already used random repeated-measures method:
the validation has given statistical legitimacy to the random
shuffle method (while p > 0.05 via Hotelling t2 statistic),
and we have obtained a performance (accuracy up to 100%,
independently from the classification method) better than that
of the fine KNN dedicated only to the original dataset (Table 1).
These results prove that the strategy with binary features,
used to define the classes, and our random shuffle method to
enhance the dataset can give a particularly good classification
performance (Table 1).

To estimate the likelihood of the two endpoints (composite
and all-cause hospitalization), a linear regression is already a
good choice (Tables 2, 3). However, the enlargement of the
cardinality of the original dataset via both the random repeated-
measures method and the random shuffle method or via the
combined approach can give a better performance (RMSE down
to 0), as stressed via the fine tree regression method. For example,
a fatal clinical set is positive for nt-proBNP >1,000 pg/mL and
heart rate ≥90 bpm, whereas a rehospitalization clinical set
is positive for peripheral edema and left ventricular ejection
fraction >50%, where the last parameter lightens the general
health condition.
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FIGURE 2 | Comparison of the simplified original dataset with its enhancements. (A) Plot of two original numerical features for two classes (the 1st and the 3rd of 61

classes). (B) Plot of two numerical features for two classes (the 1st and the 3rd of 61 classes) whose cardinality has been enhanced 2×: original plus one intraclass

random generation of values inside each feature according to a fitted repeated-measures model. (C) Plot of two numerical features for two classes (the 1st and the 3rd

of 61 classes) whose cardinality has been enhanced 2×: original plus one intraclass random exchange/shuffle of values inside each feature (each feature is

independently shuffled in random and intraclass manner).

TABLE 1 | Machine learning with 10-fold cross-validation to calculate the classification accuracy (%).

Accuracy (%) 385 patients 7,700 patients 7,700 patients 15,199 patients

Original dataset 20× Repeated measure 20× Shuffle Combined

Fine tree 86.2 100 100 100

Fine KNN 93.2 100 100 100

Weighted KNN 86.0 100 100 100

Linear SVM 75.3 100 100 100

The names of the classification methods (fine tree, fine KNN, weighted KNN, linear SVM) refer to the preset tools inside the “Model Type” section of the MATLAB® Classification Learner

application (all default settings were unchanged).

Clinicians could certainly claim that the abovementioned
inferences could be easily made also without the use of
mathematical methods or tools of artificial intelligence (e.g.,
classification/prediction or regression as shown in the Tables 1–
3). Indeed, we consider such a provocative observation as a major
strength of this study because we have validated the random

shuffle method not only by statistics, but also, more importantly,
by clinical judgment.

Another clinical strength is that the chosen features are
patients’ event ratios at hospitalization and follow-up. Thus,
by randomly shuffling these features between patients, we are
creating in silico plausible patients with a realistic and likely
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TABLE 2 | Regression with 10-fold cross-validation, endpoint = composite, to calculate the regression RMSE (root mean square error).

RMSE 385 patients 7,700 patients 7,700 patients 15,199 patients

Original dataset 20× Repeated measure 20× Shuffle Combined

Fine tree 0.093 0 0 0

Linear 2.7 × 10−16 3.2 × 10−16 1.7 × 10−15 2.5 × 10−16

Linear SVM 0.108 0.066 0.065 0.065

The names of the regression methods (fine tree, linear, linear SVM) refer to the preset tools inside the “Model Type” section of the MATLAB® Regression Learner application (all default

settings were unchanged).

TABLE 3 | Regression with 10-fold cross-validation, endpoint = all-cause hospitalization, to calculate the regression RMSE (root mean square error).

RMSE 385 patients 7,700 patients 7,700 patients 15,199 patients

Original dataset 20× Repeated measure 20× Shuffle Combined

Fine tree 0.003 0 0 0

Linear 1.9 × 10−16 2.5 × 10−16 6.8 × 10−16 5.5 × 10−16

Linear SVM 0.146 0.065 0.065 0.065

The names of the regression methods (fine tree, linear, linear SVM) refer to the preset tools inside the “Model Type” section of the MATLAB® Regression Learner application (all default

settings were unchanged).

combination of comorbidities and event ratios. Therefore, the
enhancement of the dataset cardinality yields not only statistical
but also clinical worth.

In conclusion, we have shown that our random shufflemethod
is validated not only by statistical comparison to an already
established method (the random repeated-measures method) but
also, more notably, by the clinical knowledge and expertise. In
addition, in comparison with the random repeated-measures
method, a mathematical advantage of the random shufflemethod
is the absence of a fitting procedure. Consequently, we believe
that our random shuffle method can also be applied in other
research fields when missing data and the narrow cardinality
of a dataset are issues because of financial, experimental, or
ethical limitations.

MORE TECHNICAL DISCUSSION

Exclusion Criteria
Three exclusion criteria were sequentially set: 1) at least an
endpoint lacking (thus, 116 patients were removed); 2) at
least a feature lacking (other than endpoints) (another 67
patients removed); and 3) the monoexample classes (i.e., with
a lone patient) were excluded (another 143 patients removed).
Because the monoexample classes cannot be shuffled, one could
certainly observe that exclusion criteria 1 and 2 are particularly
selective. For instance, to increase the number of patients after
preprocessing, only one endpoint at a time could be considered
for patient’s exclusion; this choice is certainly possible and
correct, but implies the cutting of an entire feature, that is, the
other endpoint, and as a consequence, we would obtain a reduced
stratification of the patients. In addition, the random repeated-
measures method does not tolerate missing data. Summarizing,
the choice was (i) a lower number of patients but with all features,
all endpoints, and full stratification or, on the contrary, (ii) a

higher number of patients but with a reduced set of features and
endpoints and with a reduced stratification. To stress the random
shuffle method, we have chosen the first possibility, which is the
“worst case” in terms of patients’ number and stratification. In
any case, the meaning of the random shuffle method remains the
same as described above. Moreover, the choice permitted the use
of the same data for both classification and regression.

Cardinality Enhancement
The cardinality of the original dataset could be small because
of two concomitant reasons: (i) a small number of classes (low
stratification) and (ii) a small number of patients inside the
classes. With these traits of the original database, the intraclass-
intrafeature random shuffling has “suffocating borders” in which
to act, and the database enhancement is also subjected to the
deletion of repeated patients: in that case, we can hypothesize
that the times of dataset enhancement is calmed down by the
small cardinality of the original dataset. On the contrary, we see
the maximum possibility of enhancement when the number of
classes and the number of class patients are both high. On the
other hand, we see intermediate possibilities when the classes are
few but with many patients in each and, vice versa, when the
classes are many but with few patients in each. In our original
dataset, the classes were many (61 classes), and some of them had
few patients (e.g., before cardinality enhancement, two or three or
four patients); for additional details, see the following discussion
dedicated to oversampling.

Oversampling
The random shuffle method could also be seen as a new kind of
oversampling dedicated to the classes of both minority (with low
number of patients) andmajority (with high number of patients).
Oversampling is useful when there is an imbalance (related to
the number of patients) between majority and minority classes
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able to downgrade the classification performance (15, 16). The
imbalance can be corrected via oversampling inside minority
classes and undersampling inside majority ones, e.g., via the
SMOTE (Synthetic Minority Oversampling Technique) along
with a randomly reduced number of patients in the majority
classes (15). In a different approach respect to (15), where
the information content is amplified or reduced in minority
or majority classes, respectively, we have oversampled both
minority and majority classes, while it is statistically legitimate;
in other words, we preserve the imbalance (hallmark of a
dataset), and we multiply the information content, while it is
statistically legitimate, obtaining an enhanced classification and
regression performance. We could also hypothesize that the
reinforcement of all classes could improve the “exclusion power”
of classification algorithms permitting them to better predict
patients into reinforced minority classes.

Cross-Validation for Oversampled Datasets
One could certainly observe that the cross-validation, although
a very common and accepted technique to avoid the overfitting
in classification and regression and so to ameliorate their
prediction skill, could be prone to “overoptimism” when applied
to oversampled datasets because similar samples or exact replicas
may appear in both the training and test partitions. This
issue has been clearly discussed by Santos et al. (17), who
found a useful combination of characteristics to obtain a not-
overoptimistic oversampling: (i) use of cleaning procedures,
(ii) cluster-based synthetization of samples, and (iii) adaptive
weighting of minority samples. The last cannot be applied
because of the simple nature of the shuffling, but the other
two have been comprised in the proposed method: the random
shuffle is done in an intraclass manner, and then, we delete
possible patients’ replicas before further analysis; moreover, as
third characteristic, each feature is independently shuffled, so
that plausible patients are synthetized as clinically discussed
above. The combination of these three method’s traits makes us
confident in the cross-validation done.

CLINICAL LIMITATIONS

The clinical timepoint is to be considered approximately in
the middle between those of the two trials used (Aldo-DHF
and STOP-SCO). Even if the two trials were different in terms
of patients’ nationality, we used them together because they
represent a real-life heterogeneous set of HF patients who are
commonly observed in daily clinics. The risk prediction model

at 6 months and an investigation on the differences between the
data of the two trials were not purposes of this study and will be
addressed in another work.
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