
& Iridium(III) Complexes | Hot Paper |

Dipyrrinato-Iridium(III) Complexes for Application in
Photodynamic Therapy and Antimicrobial Photodynamic
Inactivation

Benjamin F. Hohlfeld,[a, b] Burkhard Gitter,[b] Christopher J. Kingsbury,[c] Keith J. Flanagan,[c]

Dorika Steen,[b] Gerhard D. Wieland,[b] Nora Kulak,[a, d] Mathias O. Senge,*[c, e] and
Arno Wiehe*[a, b]

Dedicated to Professor Peter J. Sadler

Abstract: The generation of bio-targetable photosensitizers

is of utmost importance to the emerging field of photody-
namic therapy and antimicrobial (photo-)therapy. A synthetic

strategy is presented in which chelating dipyrrin moieties
are used to enhance the known photoactivity of iridium(III)

metal complexes. Formed complexes can thus be functional-

ized in a facile manner with a range of targeting groups at
their chemically active reaction sites. Dipyrrins with N- and

O-substituents afforded (dipy)iridium(III) complexes via com-
plexation with the respective Cp*-iridium(III) and ppy-iridiu-

m(III) precursors (dipy = dipyrrinato, Cp* = pentamethyl-h5-

cyclopentadienyl, ppy = 2-phenylpyridyl). Similarly, electron-
deficient [IrIII(dipy)(ppy)2] complexes could be used for post-

functionalization, forming alkenyl, alkynyl and glyco-append-
ed iridium(III) complexes. The phototoxic activity of these

complexes has been assessed in cellular and bacterial assays

with and without light; the [IrIII(Cl)(Cp*)(dipy)] complexes
and the glyco-substituted iridium(III) complexes showing

particular promise as photomedicine candidates. Representa-
tive crystal structures of the complexes are also presented.

Introduction

Metal complexes are widely used as catalysts in diverse chemi-

cal reactions, e.g. , cross-coupling reactions,[1] oxidation reac-
tions,[2] alkylation,[3] olefination or in olefin metathesis.[4] Beside

the catalytic application, metal complexes are currently inten-
sively investigated as therapeutically active compounds. Specif-
ically, metal complexes are well established for chemothera-

peutic treatments,[5] as contrast agents in medical imaging,[6] or
as antibacterial agents.[7] In this context, iridium(III) complexes

have also found interest as chemotherapeutic agents.[8] It has
been shown that iridium(III) complexes can interact with spe-

cific cellular targets, for example, mitochondria, DNA, proteins,
and lysosome structures.[9] Currently, metal complexes are also

showing increasing promise for an application as photosensi-
tizers in photodynamic therapy (PDT).[10] PDT is a medical treat-
ment of cancer and other, non-malignant diseases and can

serve as an alternative to classical treatments, such as surgery,
chemotherapy or radiotherapy.[11] PDT uses light sensitive dyes

(photosensitizers) for the destruction of cancer cells. The pho-
tosensitizer is activated by light of an appropriate wavelength

in the presence of oxygen, and cytotoxic reactive oxygen spe-

cies (ROS) are generated, which results in oxidative cellular
damage and destruction.[11a–c, 12] In comparison to traditional

chemotherapy or surgery, PDT has a number of advantages,
chiefly that the specific irradiation limits the effect to the

target tissue and side-effects are lessened due to weak dark
toxicity of the photosensitizers and short half-life time of ROS.
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Moreover, this modality can be used when other therapeutic
options are exhausted or in case of specific contraindications

to chemotherapy or surgery in vulnerable patient
groups.[11b,c, 13] In addition, antimicrobial photodynamic inactiva-

tion (aPDI) has significant potential for an effective inactivation
of bacteria,[14] as well as viruses[15] and fungi[16] and other mi-
crobiota in vitro and in vivo.[17] In this context, iridium com-
plexes have also been evaluated as photosensitizers for aPDI
against Gram-positive and Gram-negative bacteria,[18, 19] and

have been found to effectively generate ROS.[18] Specifically for
metal complexes, however, other phototoxic mechanisms, for
example, photoinduced ligand exchange, may play an addi-
tional role.[20]

As well, in recent years, dipyrrins (dipyrromethenes) have
caught attention as organic ligands for metal complexes. Di-

pyrrins are known to coordinate various metals, e.g. , zinc,

copper, gallium, platinum, palladium, iridium, and rutheni-
um.[21] Such complexes can exclusively consist of dipyrrins (ho-

moleptic complexes) ;[22] as well, metal complexes are reported,
containing a combination of dipyrrins and other organic li-

gands (heteroleptic complexes). Typically, p-cymene, h5-cyclo-
pentadienyl, 2-phenylpyridyl, or 2,2-bipyridyl ligands are moiet-

ies employed as capping in heteroleptic dipyrrinato complexes

(Figure 1).[21b, d, 23]

Dipyrrinato ligands have found interest as components for

the formation of coordination polymers and supramolecular
assemblies,[24] or light harvesting structures in dye-sensitized

solar cells.[25] Furthermore, dipyrrinato-iridium and -ruthenium
complexes show high potential for an application as chemo-

therapeutic agents. Specifically, ferrocene-appended (dipyrrina-

to)(pentamethylcyclopentadienyl)iridium(III) and (dipyrrina-
to)(p-cymene)ruthenium(II) complexes have been reported to

exhibit an increased binding affinity to DNA.[23c, 26] Also, dipyrri-
nato complexes of zinc, ruthenium and gallium show promis-

ing potential for PDT.[27]

In this work, the stepwise synthesis of chlorido(dipyrrinato)-

(pentamethyl-h5-cyclopentadienyl)iridium(III) complexes and

(dipyrrinato)bis(2-phenylpyridyl)iridium(III) complexes for use in
PDT and aPDI is presented. meso-Substituted dipyrrins, based
on the pentafluorophenyl- and the 4-fluoro-3-nitrophenyl
moiety, are used for the syntheses of these dipyrrinato iridium

complexes. As shown previously, the pentafluorophenyl and
the 4-fluoro-3-nitrophenyl moiety hold significant potential for

subsequent nucleophilic substitutions on the respective para-
fluorine position.[27a, 28] Hence, the p-fluorine exchange with nu-

merous nucleophiles, for example, amines and thio-carbohy-
drates, is applied to introduce specific functional structures.
Synthesis of cyclometalated iridium complexes is performed
via both the complexation of pre-functionalized dipyrrins and
the post-functionalization of related pentafluorophenyl- and 4-
fluoro-3-nitrophenyl-substituted dipyrrinato complexes. Crys-
tals suitable for X-ray single-crystal structure determination
were obtained for five complexes allowing for analysis of mo-

lecular structure and conformation in the solid state. To pre-
liminarily assess the suitability of the complexes for photother-
apy, the iridium complexes were evaluated for their phototoxic
effect with and without light in assays against several cancer
cell lines. The complexes were as well evaluated for their anti-

bacterial effect (again with and without light) against the
Gram-positive germ S. aureus and the Gram-negative germ P.

aeruginosa. Moreover, instead of testing the substances in

phosphate-buffered saline (PBS) only, all tests against bacteria
were additionally carried out with the addition of serum, to

challenge their activity under more realistic conditions. In
these assays, structures with a high phototoxic potential

against bacteria and cancer cells were identified, pointing at
structural elements that favor an application in PDT and aPDI.

Results and Discussion

Synthesis of target compounds

Syntheses of heteroleptic metal complexes employing dipyrri-

nato ligands based on late transition metals, e.g. , ruthenium(II),
rhodium(III) and iridium(III), are known in the litera-

ture.[21a, 23a,b, 26a, 29] The synthesis of the dipyrrinato complexes
typically involves reaction of the dipyrrins under basic condi-

tions with a commercially available (dichlorido-bridged) metal-
arene precursor.[2a,b, 23b, 26a, 27a, 28d, 29a,b, 30]

In this work, meso-substituted dipyrrins based on the 5-pen-

tafluorophenyl and the 5-(4-fluoro-3-nitrophenyl) moiety were
tested for the preparation of dipyrrinato iridium(III) complexes.

The pentafluorophenyl group, as well as the 4-fluoro-3-nitro-
phenyl group, enable subsequent nucleophilic aromatic substi-

tution reactions (SNAr), introducing, e.g. , sugar moieties[27a, 28e, 31]

or alkynyl groups, giving access to subsequent 1,3-dipolar cy-
cloaddition reactions for the connection with biomolecules or
polyethylene glycols (“click” chemistry).[32]

In preparation for the following experiments, the meso-sub-
stituted dipyrromethanes 1–15 were synthesized according to
known procedures published by us and others.[28a,b,d,e, 33] Dipyr-

romethanes can then be transformed into the dipyrrins via
oxidation with a suitable oxidation agent.[22b, 27a, 28d, 33, 34] Here,

dipyrromethanes (1–15) served as starting materials for the re-
quired dipyrrins (Scheme 1).

Previously, the oxidation of some pentafluorophenyl-substi-

tuted dipyrromethanes (namely 1, 3, and 5–7) has been de-
scribed in the literature using 2,3-dichloro-5,6-dicyano-1,4-ben-

zoquinone (DDQ).[27a, 34] Analogously, the dipyrromethanes 2
and 4 were oxidized with DDQ. Nevertheless, the observed

yields were quite low (18 % and 40 %, respectively, for details
cf. Supporting Information, S4.3.1 and S4.3.2). To achieve aFigure 1. Examples for homo- and heteroleptic dipyrrinato complexes.
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higher conversion into the desired dipyrrins, DDQ was replaced
by p-chloranil which gave better yields for the oxidation of 2
and 4 (73 % and 45 %, respectively, for details on these reac-
tions and the following discussion cf. Supporting Information,

S4.1, S4.2, and S4.3). The dipyrromethanes 1, 3, 5, and 7 were
successfully oxidized with p-chloranil to their corresponding di-

pyrrins as well, again resulting in higher yields for three of the

compounds compared to the literature.[27a] The exception was
the pentafluorophenyl-substituted dipyrromethane 1, here,

lower yields were observed with p-chloranil compared to
DDQ.[34]

Similarly, the meso-(4-amino-3-nitrophenyl)-substituted di-
pyrrins 24, 25, 27, 29, and 30 were prepared from the corre-
sponding dipyrromethanes by oxidation with p-chloranil as al-

ready described in the literature.[28d] Based on this procedure,
the dipyrrins 26 and 28 were prepared with the same oxida-
tion reagent. Interestingly, a successful oxidation of the unsub-
stituted dipyrromethane 8 to dipyrrin 23 with p-chloranil was

not possible. Here, in analogy to the conversion of 1 to 16,
DDQ was required for a successful oxidation to the desired

product 23. With DDQ as oxidizing agent, dipyrrin 23 was ob-

tained in 81 % yield. In an additional set of experiments, DDQ
was tested as well for the oxidation of the other dipyrrome-

thanes 9–15. While DDQ could be used for this reaction it re-
sulted in significantly lower yields than p-chloranil (see Sup-

porting Information, S4.1, S4.2, and S4.3). Hence, we recom-
mend the use of p-chloranil for this type of dipyrromethanes.

In the next step, the dipyrrins 16–30 were converted to the

corresponding chlorido(dipyrrinato)(pentamethyl-h5-cyclopen-
tadienyl)iridium(III) complexes 31–45 (Table 1 and Table 2). The

synthesis of the dipyrrinato iridium complexes required a base
for the deprotonation of the dipyrrin and a suitable dichlorido-

bridged iridium(III) precursor.[21a,b, 26a] Hence, the pentafluoro-
phenyl-substituted dipyrrin 16 and the pre-functionalized di-

pyrrins (17–22) were reacted with N,N-diisopropylethylamine
(DIPEA) and the di-m-chlorido-bis[chlorido(pentamethyl-h5-cy-

clopentadienyl)iridium(III)] to obtain the desired com-
plexes 31–37 (Table 1). Very high yields were observed with 16
and with the pre-functionalized dipyrrin 20 (91 % and 86 %, re-
spectively) ; dipyrrins 17 and 19 gave the corresponding com-

plexes in moderate yields (Table 1). The lack of formation of

compounds 33, 36, and 37 can be explained in part by the re-
activity of the respective dipyrrins 18, 21, and 22, that is, those
carrying an allyl or a propargyl moiety. We found hints for a
cleavage of the propargyl group, e.g. , in the case of dipyrrins

18 and 22, in NMR and mass spectra, and evidence for the for-
mation of the corresponding 4-amino-2,3,5,6-tetrafluorophen-

yl- and the 4-hydroxy-2,3,5,6-tetrafluorophenyl moieties (see
Supporting Information, S5.4 and S5.8).

Using the same method, the synthesis of chlorido(dipyrrina-

to)(pentamethyl-h5-cyclopentadienyl)iridium(III) complexes,
based on the related 3-nitrophenyl-substituted dipyrrins 23–

30, was performed. Again, the dipyrrins were reacted with
DIPEA and the di-m-chlorido-bis[chlorido(pentamethyl-h5-cyclo-

pentadienyl)iridium(III)] to obtain the corresponding com-

plexes 38–45. (Table 2). For the dipyrrins 23, 24, and 27–30,
the reactions led to the desired complexes (38, 39, and 42–45)

in moderate to good yields (Table 2). With the dipyrrins 40 and
41—functionalized with an allyl group or a propargyl group—

formation of the corresponding metal complexes was not ob-
served; instead inseparable mixtures of multiple products were

Scheme 1. Synthesis of meso-substituted dipyrrins via oxidation of dipyrro-
methanes (dipyrromethanes were synthesized according to the litera-
ture).[28a,b,d,e, 33]

Table 1. Synthesis of chlorido(dipyrrinato)(pentamethyl-h5-cyclopentadi-
enyl)iridium(III) complexes with dipyrrins 16–22.

Entry Starting
material

Substituent
(R)

Product Yield
[%]

1 16 31 91

2 17 32 36

3[a,b] 18 33

4 19 34 36

5 20 35 86

6[a] 21 36

7[a,b] 22 37

[a] No product was observed. [b] Evidence for a dealkylation of the prop-
argyl group was found (see Supporting Information, sections S5.4 and
S5.8).
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obtained. Here, no evidence for a dealkylation of the allyl or
the propargyl group could be found. In order to generate the

allyl or propargyl functionalized complexes (namely 33, 36, 37,
40, and 41) the synthetic procedure was modified. The unfunc-

tionalized complexes 31 and 38 were tested for possible sub-

sequent nucleophilic substitutions; complex 31 was reacted
with amines and alcohols, e.g. , propargylamine, propargyl alco-
hol, or allyl alcohol (for details on these reactions and the fol-
lowing discussion cf. the Supporting Information, S6). Similar

reactions were performed with complex 38 except for the reac-
tion with alcohols, infeasible due to known side reactions of

the alkoxide with the nitro group.[28d] Absorption spectra of se-
lected chlorido(dipyrrinato)(pentamethyl-h5-cyclopentadienyl)ir-
idium(III) complexes are presented in the Supporting Informa-

tion, section S13.
A post-functionalization of tris(pentafluorophenyl)dipyrrinato

complexes with amines and alcohols has been described in
the literature.[27a] However, the trial reactions with 31 and 38
were unsuccessful (see Supporting Information, S6), probably

due to ligand exchange reactions. An exception was the sub-
stitution of 38 with n-butylamine, where the desired com-

plex 39 was isolated with 71 % yield. In the case of the post-
functionalization of 31 with allyl alcohol, the NMR spectrum

again provided evidence for the formation of the correspond-
ing 4-hydroxy-2,3,5,6-tetrafluorophenyl moiety.

The complications in the syntheses described above oc-
curred mainly with complexes carrying double and triple

bonds. The observed cleavage of the allyl and propargyl group
might be caused by interactions of the iridium with these mul-

tiple bonds. Such interaction of multiple bonds and metal
complexes typically occurs in metathesis reactions or alkene
and alkyne rearrangements, both reactions where iridium-
based catalysts have been employed.[35, 36]

The introduction of additional functional groups to the pyr-
role units of the dipyrrin chelate is a further means to modu-
late the (photo)chemical characteristics of the resulting metal
complex.[27b, 37] Hence, we investigated the synthesis of chlori-
do(dipyrrinato)(pentamethylcyclopentadienyl)iridium(III) com-

plexes with dipyrrins carrying additional methyl groups at the
1-,3-,7-, and 9-position. For this, the 5-pentafluorophenyl-

1,3,7,9-tetramethyldipyrrin 48 and the 5-(4-fluoro-3-nitrophen-

yl)-1,3,7,9-tetramethyldipyrrin 49 were tested in the synthesis
of cyclometalated iridium complexes. The synthesis of dipyrrin

48 has previously been described in the literature.[38] However,
48 was originally prepared in a one-pot multi-step synthesis

from 2,4-dimethylpyrrole and pentafluorobenzaldehyde. In this
work, we opted for a stepwise synthesis of the corresponding

1,3,7,9-tetramethyl dipyrrins 48 and 49. This would also enable

future nucleophilic substitutions already at the dipyrromethane
stage following on from the previous experiments (see above)

which have shown that the use of pre-substituted dipyrrins is
more effective in the synthesis of chlorido(dipyrrinato)(penta-

methylcyclopentadienyl) complexes.
The 1,3,7,9-tetramethyl substituted dipyrromethanes 46 and

47 were prepared via trifluoroacetic acid-catalyzed condensa-

tion of 2,4-dimethylpyrrole and the corresponding benzalde-
hyde (pentafluorobenzaldehyde or 4-fluoro-3-nitrobenzalde-

hyde). The respective dipyrromethanes were obtained in
almost quantitative yields (Scheme 2). In the next step, the cor-

responding dipyrrins 48 and 49 were formed via oxidation
with DDQ and isolated in 63 % and 90 % yield, respectively

(Scheme 2). Compared to the literature,[38] the stepwise synthe-

sis of dipyrrin 48 provided no significant difference in the over-
all yield.

Table 2. Synthesis of chlorido(dipyrrinato)(pentamethyl-h5-cyclopentadi-
enyl)iridium(III) complexes with dipyrrins 23–30.

Entry Starting
material

Substituent
(R)

Product Yield
[%]

1 23 38 43

2 24 39 46

3[a] 25 40

4[a] 26 41

5 27 42 46

6 28 43 29

7 29 44 29

8 30 45 52

[a] No product was observed.

Scheme 2. Synthesis of chlorido(pentamethylcyclopendadienyl)(1,3,7,9-tetra-
methyldipyrrinato)iridium(III) complexes.
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Finally, the target dipyrrinato iridium complexes 50 and 51
were synthesized, employing the method described for the

preparation of the previous chlorido(dipyrrinato)(pentamethyl-
cyclopentadienyl)iridium(III) complexes that is, deprotonation

with DIPEA, followed by complexation with the corresponding
metal precursor. Complexes 50 and 51 could be obtained in

32 % and 27 % yield, respectively (Scheme 2). The low yields
may be the result of partial decomposition of the starting ma-

terial, as evidenced by the formation of a large amount of a

black precipitate during the reactions.
Another type of heteroleptic dipyrrinato iridium(III) com-

plexes is represented by (dipyrrinato)bis(2-phenylpyridyl)iridiu-
m(III) systems.[23a, 29b, 30] Related bis(2,2’-bipyridyl)(dipyrrinato)ru-

thenium(II) complexes have been synthesized previously via
the ligand exchange of corresponding chlorido(p-cymene)(di-

pyrrinato)ruthenium(II) complexes with 2,2’-bipyridine.[27a, 28d]

Analogously, complexes 31 and 43 were tested in ligand ex-
change reactions with 2-phenylpyridine. Complex 31 was dis-

solved together with 2-phenylpyridine in ethanol and was re-
acted under reflux. Alternatively, the ligand exchange of 43
was performed in a 1-methoxyethanol/water mixture, to in-
crease the reaction temperature. However, in both cases the

desired products (52 and 53) could not be obtained and the

starting materials were recovered (see Supporting Information,
S7.1 and S7.2).

Thus, to obtain the desired (dipyrrinato)bis(2-phenylpyrid-
yl)iridium(III) complexes the synthetic procedure had to be

modified. The synthesis of the target systems was performed
via the complexation of dipyrrins with bis(m-chlorido)tetrakis(2-

phenylpyridyl)diiridium(III).[23a, 29b,c, 30] For this, the dipyrrins (16–

22) were reacted with DIPEA and bis(m-chlorido)tetrakis(2-phe-
nylpyridyl)diiridium(III) in THF to obtain the corresponding

complexes (52, 54–59, Table 3). The highest yield, 65 %, was
achieved with dipyrrin 16. The reactions with pre-functional-

ized dipyrrins (17, 19–21) also gave the desired complexes (52,
54, 56, and 57) in good yields (Table 3). Again, for dipyrrins

with the propargyl moieties (18 and 22) no product was ob-

tained. Also, the allyl-substituted complex 58 could only be
isolated in 8 % yield (Table 3) via the complexation with dipyr-

rin 21. In the case of complex 55, the NMR spectrum provided
evidence for a dealkylation of the propargylamino group (see
Supporting Information, S8.4).

In the next step, the 3-nitrophenyl-substituted dipyrrins 23–

30 were tested in the synthesis of the cyclometalated iridium
complexes (53, 60–66, Table 4). Reactions with the dipyrrins
23, 24 and 27–30 led to the desired complexes (53, 60, 61,
and 64–66) in moderate to good yields (Table 4). Using 25—
the dipyrrin carrying the allyl group—the desired complex 62
was obtained only in low yields (Table 4). In the case of com-
plex 63, formation of the corresponding metal complexes was

not observed instead inseparable mixtures of compounds were
obtained again.

In order to finally generate (dipyrrinato)bis(2-phenylpyrid-

yl)iridium(III) complexes functionalized with an allyl group or a
propargyl group, a post-functionalization approach was investi-

gated (Schemes 3 and 4). Amines and alcohols were tested for
the nucleophilic substitution of 52, e.g. , allylamine, propargyla-

Table 3. Synthesis of (dipyrrinato)bis(2-phenylpyridyl)iridium(III) com-
plexes with dipyrrins 16–22.

Entry Starting
material

Substituent
(R)

Product Yield
[%]

1 16 52 65

2 17 54 33

3[a,b] 18 55

4 19 56 35

5 20 57 48

6 21 58 8

7[a] 22 59

[a] No product was observed. [b] Evidence for a dealkylation of the prop-
argyl group was found (see Supporting Information, section S8.4).

Scheme 3. Nucleophilic substitutions of complex 52 with amines und alco-
hols.
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mine, allyl alcohol, and propargyl alcohol. First, complex 52
was dissolved with the corresponding amine in DMSO and
stirred for 24 h at 80 8C. The desired complexes 56 and 67
could be obtained in 89 % and 64 % yield, respectively

(Scheme 3). Substitution of 52 with allyl alcohol and propargyl
alcohol was possible as well : Compound 52 was reacted with
the corresponding alcohols and potassium hydroxide for the
deprotonation of the alcohol to give the target systems 58
and 59 in high yields (84 % and 87 %, respectively, Scheme 3).

Next, complex 60 was functionalized with allylamine and

propargylamine. This entailed dissolving complex 60 with the

corresponding amine in DCM and gave 62 and 63 in high
yields (Scheme 4). The results clearly show that the synthesis

of the complexes carrying propargyl groups and allyl groups
which was not possible using pre-functionalized ligands or

complexes is easily viable via a post-functionalization of the
unsubstituted complexes 62 and 63. In this case, the metal

center is shielded by the ligand and possible interactions with

the propargyl group and allyl group are suppressed. This post-
functionalization of the metal complex is thus an effective

strategy circumventing the reactivity associated with ligand ex-
change. Absorption spectra of selected (dipyrrinato)bis(2-phe-

nylpyridyl)iridium(III) complexes are presented in the Support-
ing Information, section S13.

Finally, the unsubstituted iridium complexes 52 and 60 were
tested for the glycosylation with thio-carbohydrates. Glycosyla-

tion is a straightforward method to improve solubility, biologi-
cal activity and bioavailability of therapeutically interesting

molecules.[39] Also for iridium(III) complexes certain glycosylat-
ed derivates have been reported.[40] Different concepts for the

introduction of carbohydrates have been described in the liter-

ature. On the one hand, linker groups are often used for cou-
pling carbohydrates with therapeutically interesting molecules,

e.g. , BODIPY-carbohydrate conjugates, glycopeptides, or multi-
valent glycoconjugates.[41] Alternatively, a fast and effective

method for direct glycosylation of porphyrins, corroles, and
metal complexes employs an SNAr strategy.[31, 42] Notably, this

type of glycosylation is feasible with unprotected thio-carbohy-

drates, as shown for porphyrinoids, metal complexes, and
BODIPYs.[27a, 28e, 42a, 43]

In analogy to earlier studies,[14a, 28e, 42a, 43] the glycosylation was
tested directly with unprotected thio-carbohydrates and the

complexes 52 and 60. The respective complex was dissolved in
DMF together with the corresponding sodium 1’-thio-b-d-car-

bohydrate (glucose or galactose). Starting with 52, within a

short reaction time the corresponding glycosylated complexes
(68 and 69) were formed (Scheme 5). The glucosyl conjugate
68 was obtained in almost quantitative and the galactosyl con-
jugate 69 in 92 % yield. Analogous reactions of complex 60
gave the corresponding glycosylated conjugates 70 and 71 in
very high yields of 92 % and 90 %, respectively (Scheme 5).

Conjugates of iridium(III) complexes and BODIPYs with
promising photochemical properties have already been de-
scribed in the literature; in this context, iridium(III)-BODIPY

conjugates exhibited potential for an application as photosen-
sitizers.[44] However, thus far, (dipyrrinato)iridium(III)-BODIPY

conjugates are unknown. Here, a coupling of a BODIPY with a
(dipyrrinato)iridium(III) complex was performed via the copper-

catalyzed 1,3-dipolar cycloaddition. Alkynyl-substituted com-

pounds are suitable building blocks in this reaction, e.g. , for
coupling porphyrins or BODIPYs to other compounds or surfa-

ces.[28a, 32c, 45] Therefore, after finally having alkynyl-substituted
iridium(III) complexes at hand, the 4-propargyloxy-substituted

complex 59 was tested in the copper-catalyzed cycloaddition.
The 4-azido substituted BODIPY 72 and the complex 59 were

Table 4. Synthesis of (dipyrrinato)bis(2-phenylpyridyl)iridium(III) com-
plexes with dipyrrins 23–30.

Entry Starting
material

Substituent
(R)

Product Yield
[%]

1 23 60 29

2 24 61 36

3 25 62 11

4[a] 26 63

5 27 64 44

6 28 53 49

7 29 65 26

8 30 66 43

[a] No product could be observed.

Scheme 4. Nucleophilic substitution of complex 60 with amines.
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dissolved in DMF and reacted with CuSO4 and sodium ascor-
bate and gave the desired (dipyrrinato)iridium(III)-BODIPY con-

jugate 73 in 21 % yield (Scheme 6).

Crystal/molecular structures of dipyrrinato iridium
complexes

Diffraction data for the crystal structure determinations of rep-
resentative compounds of each of the classes of iridium(III)

complexes were collected and refined. Two examples of the
Cp* complexes are demonstrated, compounds 31 and 51, as

well as three examples of the bis(2-phenylpyridinyl) com-
plexes 54, 60 and 66.

Compound 31 crystallized in a triclinic cell setting, and the
solution to the diffraction pattern in P-1 is shown in Figure 2

and S1.2.1. In this complex, a lone iridium(III) metal center is
coordinated by a 5-pentafluorophenyl-2,2’-dipyrrinato (N N)-

chelate, by the Cp* ligand and a single chloride. The coordina-

tion environment is the expected piano-stool geometry,[46] and
approximates the Cl and N,N occupying three adjacent corners
of an octahedron with interior angles of 87.14(8)8, 87.96(8)8
and 85.35(12)8 ; the Cp* occupies the center of the opposing
face.

The measured Ir-Cp* 5-atom centroid distance, at

1.7942(15) a, is typical of iridium(III) compounds with the Cp-

Cl-N2 coordination environment (1.789(17) a, n = 252).[47] The C5

ring atoms within the Cp* ligand have a pattern of alternating

longer and shorter bonds, indicating that the anionic charge is
partially localized to the three carbon atoms sharing the dipyr-

rinato-Ir coordination plane (C17–C19).
The dipyrrin ligand is coordinated in an off-axis manner, as

demonstrated in Figure 2 b, such that the metal center is devi-

ated from the mean plane of the N-C3-N chelate by 0.600(4) a.
Discounting the 5-aryl substituent, the ligand-metal 10-atom

unit has an approximate mirror plane which relates the two
pyrrole subunits, with bond distances indicative of charge de-

localization nearly evenly across these two pyrroles. The tor-
sion angles around the Ca@Cmeso bonds linking these pyrrole

units (i.e. N1-C4-C5-C6 and C4-C5-C6-N2) are @0.8(6)8 and

6.5(6)8, indicating a small rotational perturbation of the individ-

Figure 2. a) View of the structure of the asymmetric unit of compound 31 in
the crystal. H atoms are represented as spheres of fixed radius, thermal ellip-
soids for non-H atoms are presented at 50 % probability. b) A side-on view
of compound 31, showing the off-axis coordination mode.

Scheme 5. Glycosylation of 52 and 60.

Scheme 6. Synthesis of the (dipyrrinato)iridium(III)-BODIPY conjugate 73.
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ual pyrrole units towards coplanarity with the Ir center. The
C6F5 ring at the sole meso-position is inclined at 74.13(10)8 to

the mean plane of the ligand—this angle has been shown to
be important in fine-tuning of the related BODIPY photoche-

mistry.[28e, 48]

The crystal structure of the related compound 51 is shown
in Figure 3 and S1.2.2 and shows an iridium(III) metal center in
a similar piano-stool half-sandwich coordination environment
as that for 31. Four methyl groups present on the dipyrrin

moiety can be implicated in an increased distortional profile—
the planar deviation (NC3N···Ir, 0.935(5) a), Ir···Cp* distance
(1.840(2) a) and torsion angles (Ca@Cmeso, 2.6(5)8 and 9.7(7)8)
are exaggerated from the unsubstituted dipyrrin parent, with

the N···N distance of the dipyrrinato chelate reduced to
2.767(5) a, and the N@Ir distances shortened to 2.065(4) and

2.081(4) a. The angle of the dipyrrinato mean plane to the

meso-appended aryl unit is approximately equal to that in 31,
at 74.47(13)8. The increased steric bulk of the tetramethyl

groups is sufficient to explain the distortion patterns—a
pincer-like convergence of the two pyrrole units around the Cm

“pivot” upon increased steric bulk has a direct effect on the co-
ordination environment provided by the ligand. This concerted

movement of the pyrrole units towards each other similarly en-

genders increased non-planar distortion of the dipyrrin at-
tempting to satisfy the idealized coordination environment of

the metal center.
Three previously structurally characterized examples of

IrIII(Cl)(Cp*) dipyrrin complexes have been reported; with a
mononuclear dipyrrin,[49] a dinuclear bis-bidentate dipyrrin[50]

and a macrocyclic tetrakis(perfluorophenyl)rubyrin derivative.[51]

Each of these structures indicated a significant non-planarity of
the iridium(III) to the dipyrrin subunit, localized piano-stool

Cp* ligand atom positions and delocalization of the dipyrrin
ligand electron density, in line with the two structures reported

here. As has been previously reported, the coordination geom-
etry of the iridium(III) center is particularly important for anti-

cancer activity—presence of an exocyclic linkage of the Cp*

ligand led to increased anticancer activity.[52] This ‘tethering’
approach inhibits hydrolysis and induces a strained coordina-
tion environment; steric conflict between a-methyl groups and
the Cp* ligand strains this coordination environment in a simi-

lar manner, and is a useful tool for microstructure manipula-
tion. We can reasonably extrapolate that each of the com-

pounds reported herein for which a crystal structure has not
been reported should adopt a similar geometry, given the lim-
ited electronic or steric influence of alteration of the terminal
aryl C-F unit in each of the examples, and consistency between
examples. Preliminary investigation of a crystal of com-
pound 35 from toluene (oP, a 13.947(6) b 22.654(9) c
16.534(6)) has indicated a similar coordination environment is
present in this example, however, data were not satisfactory

for publication.
Three crystal structure models, 54, 60·1=2(DCM) and

66·1=2(Tol), could be identified containing the second PDT
motif, that of bis(k2-2-phenylpyridinyl)IrIII with a substituted 5-
phenyldipyrrin. Each of these structures shows the iridium(III)

metal center in an octahedral C2N4 coordination environment,
with the C atoms of the coordination environment occupying

the octahedral sites trans to the dipyrrin. These tris-chelate

compounds exhibit the expected D and L stereoisomerism,
however, each was modelled as a racemate in an achiral space-

group; these crystals demonstrate equal appearance of the
two enantiomeric forms, in contrast to the achiral piano-stool

complexes. The exclusive formation of the trans-pyridyl isomer
is as expected for iridium compounds with the (C N)2(N N) coor-

dination geometry, and unaltered from the presumptive geom-

etry of the starting material ;[53] the metal center geometry and
bond distances are approximately equal between each of the

three examples. The dipyrromethene ligand is approximately
coplanar with the iridium(III) metal center in 54, 60 and 66, as

distinct from the off-axis coordination mode observed for the
piano-stool compounds 31 and 51.

Compound 60 is shown in Figure 4 b and S1.2.4; the phenyl-

pyridine ligands and metal center exhibit the expected geome-
try, however, a small deviation from the idealized C2v symmetry

can be observed for the dipyrrin fragment indicative of contri-
bution of partial charge localization. The aryl unit at the 5-posi-

tion of the dipyrrin is inclined at 69.08, in line with unsubstitut-
ed 5-aryl-dipyrromethene chelates (median 62.88, IQR 55–718,

n = 430).

The presence of long-chain alkyl groups at the aryl 4-posi-
tion in compounds 54 and 66 introduces these additional

chemical motifs with retention of the metal chelate structure,
as shown in Figure 4 a,c, S1.2.3 and 1.2.5. The terminal alkyl

chain at the aryl 4-position in 54 has higher thermal displace-
ment as atoms process further from the aryl ring. The 4-alkyl-

amino-substituted compound 66 exhibits an intramolecular hy-
drogen bond between the amine and ortho-nitro unit on the
5-aryl substituent, at 2.642(3) a N···O and 129(3)8 N@H···O, con-

sistent with 2-nitroanilines generally.[54] This H-bond, expected
to be present in each compound with the o-NH moiety is pre-

sumably responsible for the decreased thermal displacement
associated with rotational averaging of the nitro unit in 60.

Previously characterized examples of Ir(ppy)2(5-aryl-dipyrrin)

complexes include aryl = phenyl,[30] 4-pyridyl (and derivatives
thereof),[55] 4-benzoic acid (and derivatives thereof),[56] 4-(3,5-lu-

tidinyl), 4-(N,N-diphenylamino)phenyl[30] and 4-(dimesitylboro-
phenyl).[30, 57] Each exhibited a similar coordination mode and

metal-ligand distances as the structures presented above, un-
perturbed by peripheral modification of the aryl unit.

Figure 3. A view of the main molecular fragment within the crystal structure
of compound 51; thermal ellipsoids are presented at the 50 % probability
level. H atoms have been omitted for clarity.
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Evaluation in assays against bacteria and human cancer
cells

The biological activity of the chlorido(dipyrrinato)(pentame-

thylcyclopentadienyl) iridium(III) complexes (31, 32, 34, 35, 38,

39, 42–45, 50, and 51) and the (dipyrrinato)bis(2-phenylpyrid-
yl) iridium(III) complexes (52–71) was evaluated with and with-

out illumination in cellular assays in four cancer cell lines. In
the cellular assays the following cell lines were used: human
colorectal adenocarcinoma (HT29), human epidermoid carcino-
ma (A431), submaxillary salivary gland epidermoid carcinoma

(A253), human epithelial tongue squamous cell carcinoma
(CAL27). Results for the A431 and HT29 cell lines can be seen
in Figures 5–7 (for CAL27 and A253, see Supporting Informa-
tion, S3.3, and S3.4). As well, the antimicrobial properties of
the synthesized complexes with and without light were stud-

ied against the Gram-positive germ S. aureus and the Gram-
negative germ P. aeruginosa (Figures 8–10, and Supporting In-

formation, S3.5, S3.6).
In the cancer cell assays, cells were incubated with cell

medium containig 10 % fetal calf serum (FCS) and with 2 or
10 mm of the corresponding iridium complex for 24 h before ir-
ridiation. After exchange of the medium to remove any com-

plex not taken up by the cells, a white light source at a dose
rate of approximately 50 J cm@2 was used for irradiation. After-

wards, cells were incubated in a humidified incubator (5 % CO2

in air at 37 8C) for 24 h until cell viability assay.

As can be seen in Figure 5 (see also Supporting Information,
S3.3) the chlorido(dipyrrinato)(pentamethylcyclopentadienyl)iri-

dium(III) complexes (31, 32, 34, 35, 38, 39, 42–45, 50, and 51)
in general showed no or only a low toxic effect without illumi-

nation, except for 31 and 39 in two cell lines (A431, for A253
see Supporting Information, S3.3). Under irradation with light,

however, several complexes with a signifcant phototoxicity

could be identified. Especially, complexes substituted with a
butylamino, a butyloxy, or the dibutylamino group (32, 35, 39,

and 43) exhibited a high phototoxic effect. Also, the unfunc-
tionalized complex 31 exhibited a high phototoxic effect on

the cells, but also dark toxicity in the highest concentration. In
the case of the 2,3,5,6-tetrafluorophenyl-based complexes 32
and 35, already at a concentration of 2 mm a significant de-

crase of the cell viability was observed.
In comparison, the 3-nitrophenyl-substituted dipyrrinato

complexes 39 and 43 showed a lower phototoxic activity.
However, complex 43 still showed a phototoxic effect against

all cell lines at the highest concentration; while complex 39
only exhibits phototoxicity against the cell line A253 at the

highest concentration. Moreover, complex 39 showed signifi-

cant dark toxicity at 10 mm against the cell line A253 (see Sup-
porting Information, S3.3).

Interestingly, the complexes 32, 42, and 44, functionalized
with polar groups, generally showed only a limited phototoxic

activity. Only complex 42 showed a higher phototoxic effect
on specific cell lines (A431, for CAL27 see S3.3) at the highest

concentration (10 mm). As well, complex 45 exhibited a limited

phototoxicity againt certain cell lines (A431, for A253 and
CAL27 see S3.3). This lower phototoxicity of the complexes

with polar substituents is a little bit counter-intuitive as often
polar substitution, like OH groups, increases the PDT effect, as

it increases the solubility in the cellular surrounding.[31, 58]

The 1,3,7,9-tetramethyl-5-pentafluorophenyl-substituted

complex 50 (substituent in blue color in Figure 5, and S3.3) ex-

hibited a high phototoxic activity against all cell lines at the
concentration of 10 mm. Moreover, complex 50 exhibited a
high phototoxicity already at 2 mm for specific cell lines (A431,
for A253 see S3.3). Whereas the corresponding 1,3,7,9-tetra-

methyl-5-(4-fluoro-3-nitrophenyl)-substituted complex 51 (sub-
stituent in blue color in Figure 5 and S3.3) exhibited no signifi-

cant phototoxicity. There is a tendency for the tetrafluorophen-
yl-substituted complexes to have a higher phototoxic activity
than the corresponding 3-nitrophenyl-substituted compounds.

This has also been observed for boron-dipyrromethene com-
plexes with these substitutions.[28e] In other cases, (pentame-

thylcyclopentadienyl)iridium(III) complexes have also shown a
high potential as anticancer agents.[8b, 59] However, only a limit-

ed number of these (pentamethylcyclopentadienyl)iridium(III)

complexes showed a significant phototoxic activity against cell
lines.[18e, 60]

Next, the (dipyrrinato)bis(2-phenylpyridyl)iridium(III) com-
plexes (52–71) were as well tested against the cell lines

(Figure 6, Figure 7, and S3.4 in the Supporting Information).
Again, the complexes tested showed no significant dark toxici-

Figure 4. The main molecular units of complexes [Ir(ppy)2(R-dipyrrin)] (a) 54,
R = 2,3,5,6-F4-4-NHBu-Ph; (b) 60, R = 4-F-3-NO2-Ph; (c) 66, R = 4-NHPent-
CO2Me-3-NO2-Ph. C-bound H atoms have been omitted, and thermal ellip-
soids are shown at the 50 % probability level.

Chem. Eur. J. 2021, 27, 6440 – 6459 www.chemeurj.org T 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH6448

Chemistry—A European Journal
Full Paper
doi.org/10.1002/chem.202004776

http://www.chemeurj.org


ty, except for the glycosylated conjugates 68–71 in the high

concentration of 10 mm. The (dipyrrinato)bis(2-phenylpyridyl)iri-
dium(III) compounds with polar substituents (56, 64, and 65),
specifically the glycosylated conjugates 68–71 exhibited a very
high phototoxicity even at a concentration of 2 mm.

A high phototoxic activity against cells has also been report-
ed for some other types of (2-phenylpyridyl)iridium(III) com-

plexes.[18d, 61] No significant phototoxic activity was observed
for the unfunctionalized complex 52 and the 3-nitrophenyl-
substituted complexes 61, 53, and 66, the other complexes ex-

hibited a limited phototoxicity in some cell lines. Again, there
is a tendency for the tetrafluorophenyl-substituted complexes

to have a higher phototoxic activity than the corresponding 3-
nitrophenyl-substituted compounds.

In order to evaluate the antimicrobial activity of the synthe-

sized heteroleptic (dipyrrinato)iridium(III) complexes, bacterial
assays against S. aureus and P. aeruginosa were performed with

and without irradiation. The Gram-positive germ S. aureus is an
important target as it is a typical member of the microflora of

chronically infected wounds with a high tendency to develop
antibiotic resistance.[62] Wound healing and treatment are pro-

spective fields where aPDI has already shown potential.[63] The

Gram-negative germ P. aeruginosa also has a high tendency to
develop antibiotic resistance and is a major threat in nosoco-
mial infections.[64] A critical aspect of the use of new antimicro-
bials in the clinical practice is that the drug candidates must

be active in the presence of body fluids in complex biological
environments. In addition, protein-rich environments can sig-

nificantly influence the effectiveness of photosensitizers.[65]

Therefore, to establish a more realistic model of the environ-
ment additional bacterial tests were performed in PBS support-

ed with horse serum (10 %). The bacterial assays included dif-
ferent conditions (blank: no complex and without illumination;

identification of dark toxicity with 100 mm of the complex; and
using different concentrations of 1, 10, and 100 mm, with and

without addition of serum). To study the phototoxic activity

against the bacteria, the corresponding complexes were incu-
bated with cultures of S. aureus and P. aeruginosa (in the three

different concentrations) for 30 min in PBS and in PBS support-
ed with serum. Afterwards, the samples were exposed to white

light with a power density and irradiation time resulting in an
energy fluence of about 100 J cm@2. The control experiment

Figure 5. Dark and phototoxicity of chlorido(dipyrrinato)(pentamethylcyclopentadienyl)iridium(III) complexes in cellular assays with the A431 cell line (a) and
the cell line HT29 (b). Blue colored structures 50 and 51 represent the two (pentamethylcyclopentadienyl)(1,3,7,9-tetramethyl-dipyrrinato)iridium(III) com-
plexes.* indicates significant values with p<0.005.
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with both bacterial strains treated only with this light dose can
be found in the Supporting Information (S3.7). For the bacteri-
al assays, an incubation time of 30 min was chosen. This short
incubation time—compared to the incubation time for the in-

vestigations of the phototoxicity against the tumor cells
(24 h)—was selected with respect to the specific recommenda-

tions of antibacterial therapy: Typically, bacterial reproduction

is more rapid than that of cells, therefore, activity is needed
after shorter residence times.[66] The antimicrobial activity of

the (dipyrrinato)iridium(III) complexes is presented in Figure 8–
10 (see also Supporting Information, S3.5, and S3.6) and the

bacterial inactivation is given as the logarithm of the number
of colony-forming units, lg (CFU mL@1). In this context it should

be taken into account that only a reduction of bacterial

growth of at least 99.9 % (+3 log stages) is considered relevant
with respect to bactericidal activity and a reduction by 4 and 5

log stages, respectively, is usually required for disinfectants in
standard testing.[66c–f] Results for the series of chlorido(dipyrri-

nato)(pentamethylcyclopentadienyl)iridium(III) against S. aureus
are presented in Figure 8. Almost all tested complexes sup-

pressed bacterial growth below the detection limit at all three
concentrations, that is, the number of bacteria becoming so

low that no colonies were detected after incubation on the
culture plates. Most likely, a light-independent antibacterial

effect contributes to this as all compounds, except 50 and 51,
with the 1,3,7,9-tetramethyl-dipyrrinato ligand, exhibited

strong dark toxicity in the control experiment with incubation

of 100 mm of the complex. Such an antibacterial activity with-
out irradiation, that is, an antibiotic effect, has also been ob-

served for other selected iridium(III) complexes.[67] The com-
plexes tested (31, 32, 34, 35, 38, 39, and 42–45), whether

based on the 2,3,4,5-tetrafluorophenyl or the 3-nitrophenyl
moiety, gave complete inactivation of S. aureus already at a

concentration of 1 mm under light. Compounds 50 and 51
which showed no dark toxicity had nevertheless a strong pho-
totoxic effect. A complete inactivation of bacteria was ob-

served with 50 already at a concentration of 1 mm under light,
while the corresponding complex 51 showed a complete pho-

toinactivation of bacteria at a concentration of 10 mm.

Figure 6. Dark and phototoxicity against the A431 cell line in cellular assay with bis(2-phenypyridyl)(tetrafluorophenyl-dipyrrinato)iridium(III) complexes (a)
and (3-nitrophenyl-dipyrrinato)bis(2-phenypyridyl)iridium(III) complexes (b).* indicates significant values with p<0.005.
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Next, these highly effective complexes were challenged in
antibacterial tests in the presence of 10 % serum (Figure 8 b).
Not unexpectedly, the effectiveness of the tested complexes
decreased in the presence of serum. Nevertheless, in the pres-

ence of serum some complexes still exhibited strong dark and
phototoxic effects against S. aureus. Complexes 31, 32, 35, and

43 showed no change in their dark toxicity. For complexes 32
and 35 no differences in their activity against S. aureus were
found in the presence of serum and in PBS alone, in both

cases a complete inactivation even at the lowest concentration
(1 mm) is observed. Notably, compounds 31 and 45 exhibited a

phototoxic activity at the medium concentration (10 mm). As
well, the 3-nitrophenyl-substituted complexes 39 and 43
showed a complete inactivation of the bacteria at the highest

concentration (100 mm) under irradiation. In the case of the tet-
ramethyldipyrrinato complexes 50 and 51, only 50 still exhibit-

ed its phototoxic activity. Here, an effective inactivation of the
bacteria was observed at 10 mm. This combined cytotoxic and

phototoxic activity against bacteria has also been reported in
some other cases for iridium(III) complexes.[18c, 19] Again, there is

a tendency for the tetrafluorophenyl-substituted complexes to
have a higher phototoxic activity than the corresponding 3-ni-

trophenyl-substituted compounds in the presence of serum, as
it was also observed in the cancer cell assays. Figure 9 shows

the results of the chlorido(dipyrrinato)(pentamethylcyclopenta-
dienyl)iridium(III) complexes against the Gram-negative Germ

P. aeruginosa.

Compared to the results with S. aureus, the phototoxicity is
significantly lower against P. aeruginosa. However, a reduction

of bacterial growth of about 1.5 to 2 log stages was already
achieved without light (100 mm) with the complexes 31, 32, 35,

39, 42, and 45. Such an antibacterial activity without irradia-
tion has as well been observed for some other iridium(III) com-

plexes.[9b, 68] Here, however, a phototoxic reduction of bacterial

growth below the detection limit was achieved with several
complexes. A complete inactivation of P. aeruginosa was ob-

served with the complexes 31, 35, 38, 39, and 45 already at a
concentration of 10 mm under irradiation with light. In addition,

the complexes 32, 42, and 44 showed a complete photoinacti-
vation of P. aeruginosa at the highest concentration (100 mm).

Figure 7. Dark and phototoxicity against the HT29 cell line in cellular assay with bis(2-phenypyridyl)(tetrafluorophenyl-dipyrrinato)iridium(III) complexes (a)
and (3-nitrophenyl-dipyrrinato)bis(2-phenypyridyl)iridium(III) complexes (b).* indicates significant values with p<0.005.
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The 1,3,7,9-tetramethyl-dipyrrinato complexes 50 and 51 ex-
hibited no dark or phototoxicity against P. aeruginosa. The

lower antibacterial activity of the complexes against P. aerugi-
nosa is not unexpected because Gram-negative germs are gen-

erally more difficult to be inactivated than Gram-positive ones.
This is i.a. due to the pronounced differences in their cell wall

composition.[65b, 69] In fact, it is somewhat remarkable that some

of the (dipyrrinato)(pentamethylcyclopentadienyl) complexes
show such a pronounced activity against P. aeruginosa in PBS

though they are not cationic, which is a typical feature found
in photosensitizers active against Gram-negative bacteria.[69, 70]

However, this also gives cationic photosensitizers a higher af-
finity towards DNA rendering some of them potentially muta-

genic.[71] Hence, compounds active against Gram-negative bac-
teria lacking cationic charges are desirable. Similar to the inves-

tigation with S. aureus the (dipyrrinato)(pentamethylcyclopen-
tadienyl) complexes were finally challenged in their antibacteri-

al activity against P. aeruginosa by performing the test in the
presence of serum (Figure 9 b). In many cases this antibacterial

activity greatly decreased or vanished completely in the pres-

ence of serum. However, some complexes still exhibited a pho-
totoxic effect on P. aeruginosa in the presence of serum. Com-

plex 42 still showed a phototoxic effect with a reduction of
about 2 log stages with light. While 31, 35, and 44 reduced

the bacterial growth by about 1 log stage. Nevertheless, the
observed antibacterial activities of the (dipyrrinato)(pentame-

Figure 8. Photoinactivation of S. aureus by chlorido(dipyrrinato)(pentamethylcyclopentadienyl)iridium(III) complexes (30 min incubation and irradiation with
white light) in phosphate-buffered saline (PBS) (a) and in PBS + 10 % serum (b). The antibacterial toxicity is expressed as logarithm of the number of colony-
forming units, lg (CFU mL@1). Arrows indicate a suppression of bacterial growth below the detection limit. Blue colored structures 50 and 51 represent the
two (pentamethylcyclopentadienyl(1,3,7,9-tetramethyl-dipyrrinato)iridium(III) complexes.
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thylcyclopentadienyl) complexes against S. aureus and P. aeru-
ginosa with and without illumination suggest that these com-

pounds are valuable targets for more detailed QSAR studies on
their (photo)antibiotic properties.

The (dipyrrinato)bis(2-phenylpyridyl)iridium(III) complexes

were also tested against S. aureus and P. aeruginosa (Figure 10
and section S3.5, Supporting Information). The glycosylated

conjugates 68–71 and the polar substituted complexes 56, 64,
and 65 showed a very effective inactivation of S. aureus in PBS

with a suppression of bacterial growth below the detection
limit already at a concentration of 1 mm under light.

However, the tetrafluorophenyl-based complexes 56, 68, and
69 did exhibit a strong dark toxicity with a complete inactiva-
tion of bacteria already at a concentration of 100 mm.

The complexes 57, 60, and 66 exhibited a phototoxic activi-

ty, with complete inactivation of S. aureus at the highest con-
centration (100 mm) under light irradiation. The other 2,3,5,6-
tertrafluorophenyl-based complexes (52, 55, 58, and 59) pro-
vided an inactivation of S. aureus of at least 2 log stages at the
highest concentration. While the other 3-nitrophenyl-based

complexes (53, and 61–63) showed no significant effect on S.
aureus.

Figure 9. Photoinactivation of P. aeruginosa by chlorido(dipyrrinato)(pentamethylcyclopentadienyl)iridium(III) complexes (30 min incubation and irradiation
with white light) in phosphate-buffered saline (PBS) (a) and in PBS + 10 % serum (b). The antibacterial toxicity is expressed as logarithm of the number of
colony-forming units, lg (CFU mL@1). Arrows indicate a suppression of bacterial growth below the detection limit. Blue colored structures 50 and 51 represent
the two (pentamethylcyclopentadienyl) (1,3,7,9-tetramethyl-dipyrrinato)iridium(III) complexes.
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Figure 10. Photoinactivation of S. aureus (30 min incubation and irradiation with white light) by bis(2-phenylpyridyl)(tetrafluorophenyldipyrrinato)iridium(III)
complexes in phosphate-buffered saline (PBS) (a), (3-nitrophenyldipyrrinato)bis(2-phenylpyridyl)iridium(III) complexes in PBS (b), and glycosylated (dipyrrina-
to)bis(2-phenylpyridyl)iridium(III) complexes in PBS + 10 % serum (c). The antibacterial toxicity is expressed as logarithm of the number of colony-forming
units, lg (CFU mL@1). Arrows indicate a suppression of bacterial growth below the detection limit.
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The tests with the (dipyrrinato)bis(2-phenylpyridyl)iridium(III)
complexes on S. aureus were then repeated in the presence of

serum. In most cases the antibacterial activity greatly de-
creased or vanished completely. In the case of the complexes

with ligands carrying polar substituents polar-substituted com-
plexes (56, 64, and 65) and complexes with glycosylated li-

gands (70 and 71), a reduction of bacterial growth of about
one log stage was observed. Only the glycosylated 2,3,5,6-tet-

rafluorophenyl-substituted complexes, 68 and 69, gave a sig-

nificant reduction of the bacterial growth, with 69 being the
most effective compound able to suppress bacterial growth

below the detection limit.
Tests of the (dipyrrinato)bis(2-phenylpyridyl)iridium(III) com-

plexes against P. aeruginosa revealed no significant phototoxic-
ity or dark toxicity (see Supporting Information, S3.6).

Conclusions

In this work, synthetic strategies to (dipyrrinato)iridium(III)
complexes carrying a multitude of functional groups were pre-

sented. Their potential for antitumor and antibacterial photo-

therapy has been preliminarily assessed in assays with four
tumor cell lines, and two bacterial strains known to pose one

major problem in nosocomial infections, the Gram-positive
germ S. aureus and the Gram-negative germ P. aeruginosa.

Starting point for the stepwise synthesis of the chlorido(dipyr-
rinato)(pentamethyl-h5-cyclopentadienyl)iridium(III) complexes

and the (dipyrrinato)bis(2-phenylpyridyl)iridium(III) complexes

were meso-substituted dipyrrins, based on the pentafluoro-
phenyl and the 4-fluoro-3-nitrophenyl moiety. As shown previ-

ously, the pentafluorophenyl and the 4-fluoro-3-nitrophenyl
group can easily be modified by subsequent nucleophilic sub-

stitutions on their respective para-fluorine positions. Hence,
the p-fluorine exchange with amines, alcohols and thio-carbo-

hydrates was used to introduce specific functional structures.

In addition to the synthesis of the cyclometalated iridium com-
plexes via the complexation of pre-functionalized dipyrrins, the

post-functionalization of the related pentafluorophenyl- and 4-
fluoro-3-nitrophenyl-substituted dipyrrinato complexes was

performed as well. This post-functionalization route proved to
be especially suitable for introducing alkenyl and alkynyl as

well as glyco-substituents, which are not accessible using the
pre-functionalized dipyrrins. For several complexes, crystals
suitable for X-ray crystal structure determination were ob-

tained allowing to unequivocally determine their structure.
These studies indicated that the molecular geometry of the di-

pyrrin ligand and immediate metal coordination environment
was consistent between the phenylpyridine examples irrespec-

tive of the modification of the dipyrrin aryl unit. Flexion of the
dipyrrin unit was observed when paired with the Cp* ligand
complex, to accommodate the sterics of this ligand, increasing

with additional steric bulk on the dipyrrin moiety.
In the preliminary assessment of their suitability for tumor

(photo)therapy in assays against four cancer cell lines the non-
functionalized chlorido(dipyrrinato)(pentamethylcyclopentadie-
nyl)iridium(III) and the respective complexes carrying simple
alkyl chains proved to be most effective.

In the tests with the (dipyrrinato)(2-phenylpyridyl)iridium(III)
complexes the compounds having alkenyl, alkynyl, and polar

(hydroxyl) substituents showed the strongest reduction of
tumor cell viability, with the glyco-substituted complexes

being most effective. In the evaluation of their antibacterial
effect with and without light against the Gram-positive germ

S. aureus the chlorido(dipyrrinato)(pentamethylcyclopentadi-
enyl)iridium(III) complexes exhibited an exceptionally high tox-

icity with but also without illumination, regardless of the sub-

stitution.
On repetition of the test in the presence of serum strong

dark and phototoxic effects were found for some compounds,
namely the non-substituted and the simple alkyl-substituted

ones. When testing the (dipyrrinato)(2-phenylpyridyl)iridium(III)
complexes against S. aureus a high antibacterial activity was

observed with the polar (hydroxyl) substituted compounds,

specifically the glyco-modified complexes. Of these, the galac-
tosyl-substituted complex (compound 69) was also the only

compound showing a bacterial reduction below the detection
limit even in the presence of serum.

In the tests with the Gram-negative germ P. aeruginosa,
again some of the chlorido(dipyrrinato)(pentamethylcyclopen-

tadienyl)iridium(III)complexes were able to reduce bacterial

growth to the limit of detection. And even in the presence of
serum these complexes exerted a significant effect by reducing
bacterial growth by one or two log stages. With the (dipyrrina-
to)(2-phenylpyridyl)iridium(III) complexes no significant anti-
bacterial activity towards P. aeruginosa was found.

In summary, the synthetic tools provided herein, specifically

the post-functionalization of fluorophenyl-substituted dipyrri-
nato-iridium complexes allow a convenient access to various
functionalized cyclometalated iridium complexes. Some of
these complexes are found to show a high phototoxicity
against tumor cells and a strong antibacterial activity, often

even without illumination. Of specific interest is the strong an-
tibacterial activity of the chlorido(dipyrrinato)(pentamethylcy-

clopentadienyl)iridium(III) complexes against the Gram-positive

germ S. aureus and the Gram-negative P. aeruginosa and the
high activity of the glyco-substituted iridium complexes

against tumor cells and bacteria, underlining the potential that
such complexes hold for (photo)medical applications. The ob-

served antibacterial activities of the (dipyrrinato)(pentamethyl-
cyclopentadienyl) complexes with and without illumination

value more detailed structure–activity investigations including

modified glyco-substitutions on the way to new (photo)antimi-
crobials.

Experimental Section

General remarks : All reactions were performed in standard round
bottom flasks. Air sensitive reactions were carried out under an
argon gas protecting atmosphere. Solvents DCM, n-pentane, and
methanol were purchased and used as received. Other solvents
were purchased and distilled at reduced pressure. Purchased
chemicals were used as received without further purification. All
liquid reagents were added through syringes. Reactions were
monitored by thin-layer chromatography (Merck, TLC Silica gel

Chem. Eur. J. 2021, 27, 6440 – 6459 www.chemeurj.org T 2020 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH6455

Chemistry—A European Journal
Full Paper
doi.org/10.1002/chem.202004776

http://www.chemeurj.org


60 F254. Flash column chromatography was performed on silica gel
(Fluka silica gel 60 m, 40–63 mm). NMR spectra were recorded with
JEOL ECX400, JEOL ECP500, Bruker Avance500, and JEOL ECZ600
instruments. Multiplicity of the signals was assigned as follows: s =
singlet, br s = broad singlet, d = doublet, t = triplet, dd = doublet of
doublets, dt = doublet of triplets, td = triplet of doublets, ddd =
doublet of doublets of doublets, ddt = doublet of doublets of trip-
lets, m = multiplet, mc = centered multiplet. Chemical shifts are re-
ported relative to CDCl3 (1H: d= 7.26 ppm, 13C: d= 77.2 ppm),
CD2Cl2 (1H: d= 5.32 ppm, 13C: d= 53.8 ppm), [D8]THF (1H: d=
3.58 ppm, 13C: d= 67.6 ppm), [D6]DMSO (1H: d= 2.50 ppm, 13C: d=
39.5 ppm). All 13C NMR spectra are proton-decoupled and coupling
constants are given in hertz (Hz). 2D spectra were measured for
detailed peak assignments (COSY, HMBC, and HMQC). HRMS analy-
ses were carried out on an Agilent Technologies 6210 ESI-TOF
(electrospray ionization, time of flight) instrument. IR spectra were
measured with a JASCO FT/IR 4100 spectrometer equipped with a
PIKE MIRacleTM ATR instrument. UV/Vis spectra were recorded on a
SPECORD S300 UV/Vis spectrometer (Analytic Jena) in quartz cuv-
ettes (1 cm length). Absorption spectra of selected heteroleptic (di-
pyrrinato)iridium(III) are given in the Supporting Information, sec-
tion S13. Specified melting points were recorded on a Reichert
Thermovar Apparatus and are not corrected.

Compounds 1–15,[28a,b,d,e, 33] 16,[34] 18,[27a] 20–22,[27a] 24,[28d] 25,[33]

29,[28d] 30,[28d] and 72[28b] were prepared according to the literature.
Dipyrrins 16, 18, and 20–22 were previously synthesized via oxida-
tion with DDQ.[27a, 34] In this work the oxidation was performed with
p-chloranil to increase the yield of the corresponding dipyrrins 16,
18, and 20–22. Previously, dipyrrin 48 was described in the litera-
ture via one pot-multi-step synthesis,[38] herein, a stepwise synthe-
sis of 48 is presented.

General synthetic procedure for the oxidation of dipyrrome-
thanes (16–30): The corresponding dipyrromethane (1–15,
1 equiv.) was dissolved in THF and p-chloranil or DDQ (1 equiv, sus-
pended in THF) was added. The reaction mixture was stirred for
the indicated time at room temperature. Afterwards, the solvent
was evaporated at reduced pressure, the remaining solid was dis-
solved and filtered over a silica gel filled glass frit. The filtrate was
evaporated to dryness and purified by column chromatography.

General synthetic procedure for the chlorido(dipyrrinato)(penta-
methyl-h5-cyclopentadienyl)iridium(III) complexes (31–45): The
corresponding dipyrrin (16–30, 1 equiv.) and the [IrCl2Cp*]2

(0.5 equiv.) were dissolved in DCM or THF. DIPEA (14 equiv.) was
added and the mixture was stirred for 24 h at room temperature.
The flask was shielded from ambient light with aluminium foil.
After the indicated time, saturated NaCl solution was added and
extracted with DCM several times. The combined organic layers
were dried with Na2SO4, filtered, and evaporated to dryness. The
crude product was purified by column chromatography and recrys-
tallized.

Preparation of chlorido(5-pentafluorophenyl-1,3,7,9-tetrame-
thyldipyrrinato)(pentamethyl-h5-cyclopentadienyl)iridium(III)
(50): Dipyrrin 48 (250 mg, 0.68 mmol), [IrCl2Cp*]2 (272 mg,
0.34 mmol) and DIPEA (1.62 mL, 9.55 mmol) were dissolved in
10 mL of THF. The mixture was stirred for 24 h at room tempera-
ture. The flask was shielded from ambient light with aluminium
foil. After the indicated time, saturated NaCl solution was added
and extracted with DCM several times. The combined organic
layers were dried with Na2SO4, filtered, and evaporated to dryness.
After column chromatography (silica gel, EtOAc/n-hexane = 1/1,
v/v) and recrystallization (DCM/n-hexane) complex 50 was ob-
tained as an orange-green solid (161 mg, 0.22 mmol, 32 %). M.p.
>250 8C. 1H NMR (500 MHz, CD2Cl2): d (ppm) = 1.40 (s, 15 H, MeCp*),

1.68 (s, 6 H, Me), 2.62 (s, 6 H, Me), 6.16 (s, 2 H, Hpyrrole). 13C NMR
(126 MHz, CD2Cl2): d (ppm) = 8.6 (MeCp*), 15.1 (Me), 18.9 (Me), 86.8
(CCp*), 123.4 (CHpyrrole), 130.6 (Cmeso), 142.1 (Cpyrrole), 162.9 (Cpyrrole).
19F NMR (376 MHz, CD2Cl2): d (ppm) =@162.07—@161.89 (m, 2F,
CFortho), @153.99 (t, J = 20.9 Hz, 1F, CFpara), @139.87 (dd, J = 24.3,
8.5 Hz, 1F, CFpara), @140.38 (dd, J = 51.5, 22.8 Hz, 2F, CFmeta). HRMS
(ESI-TOF): m/z calcd for C29H29F5IrN2

+ [M-Cl]+ : 693.1875, found:
693.1857, m/z calcd for C58H58ClF10Ir2N4

+ [2M-Cl]+ : 1421.3443,
found: 1421.3393. UV/Vis (DCM): lmax (nm) [log (e L@1 mol@1 cm@1)] =
518 [4.62].

Preparation of chlorido(4-fluoro-3-nitrophenyl-1,3,7,9-tetrame-
thyldipyrrinato)(pentamethyl-h5-cyclopentadienyl)iridium(III)
(51): Dipyrrin 49 (250 mg, 0.74 mmol), [IrCl2Cp*]2 (293 mg,
0.37 mmol) and DIPEA (1.75 mL, 10.31 mmol) were dissolved in
10 mL of THF. The mixture was stirred for 24 h at room tempera-
ture. The flask was shielded from ambient light with aluminium
foil. After the indicated time, saturated NaCl solution was added
and extracted with DCM several times. The combined organic
layers were dried with Na2SO4, filtered, and evaporated to dryness.
After column chromatography (silica gel, DCM/EtOAc = 1/1, v/v)
and recrystallization (DCM/n-hexane) complex 51 was obtained as
a red-orange solid (137 mg, 0.20 mmol, 27 %). M.p. >250 8C.
1H NMR (500 MHz, CD2Cl2): d (ppm) = 1.41 (d, J = 5.4 Hz, 15 H,
MeCp*), 1.48 (d, J = 2.3 Hz, 6 H, Me), 2.60 (s, 6 H, Me), 6.14 (d, J =
2.6 Hz, 2 H, Hpyrrole), 7.43 (ddd, J = 24.4, 10.8, 8.5 Hz, 1 H, Ar-Hmeta),
7.57 (ddd, J = 8.4, 4.2, 2.1 Hz, 1 H, Ar-Hortho), 7.97 (td, J = 7.7, 7.2,
2.2 Hz, 1 H, Ar-Hortho). 13C NMR (126 MHz, CD2Cl2): d (ppm) = 9.0
(MeCp*), 16.9 (Me), 18.7 (Me), 86.6 (CCp*), 119.20 (d, J = 24.2 Hz, Ar-
Cmeta), 123.2 (CHpyrrole), 126.50* (d, J = 2.4 Hz, Ar-Cortho), 129.10 (d, J =
2.6 Hz, ), 131.34 (d, J = 5.0 Hz, Cpyrrole), 136.14* (d, J = 8.6 Hz), 137.9
(Ar-Cortho), 139.0 (Cmeso), 143.40 (d, J = 5.7 Hz, Cpyrrole), 155.90 (d, J =
265.6 Hz, Ar-Cpara), 162.0 (Cpyrrole). *These signals could not be as-
signed exactly to corresponding carbon atoms. They belong to the
Ar-Cipso and the Ar-Cnitro of the aryl moiety. 19F NMR (376 MHz,
CD2Cl2): d (ppm) =@119.25–118.56 (m, 1F, CF). HRMS (ESI-TOF): m/z
calcd for C29H32FIrN2O2

+ [M-Cl]+ : 666.2102, found: 666.2124. IR
(ATR): myEqn.5 (cm@1) = 3052 [n(Ar-H)] , 2960 and 2916 [n(Me)],
1616 and 1580 [n(C=C), n(C=N-)] , 1532 [nas(NO2)] , 1441 [d(CH2)] ,
1339 [nsym(NO2)] , 1087 [n(C=CF)], 732 [d(HC=CH)]. UV/Vis (DCM):
lmax (nm) [log (e L@1 mol@1 cm@1)] = 509 [4.54].

General synthetic procedure for the (dipyrrinato)bis(2-phenyl-
pyridyl)iridium(III) complexes (52–66): The corresponding dipyrrin
(16–30, 1 equiv) and DIPEA (14 equiv) were dissolved in THF.
Under an argon atmosphere the [IrCl(ppy)2]2 (0.5 equiv) was added
and the mixture was stirred for 24 h under reflux. After the indicat-
ed time, DCM was added and washed with water several times.
The organic layer was dried with Na2SO4, filtered, and evaporated
to dryness. The crude product was purified by column chromatog-
raphy and recrystallized.

General synthetic procedure for nucleophilic substitution of 52
with amines : Complex 52 (1 equiv) and the corresponding amine
(20 equiv) were dissolved in DMSO. The mixture was stirred for
24 h at 80 8C. After the indicated time, the mixture was diluted
with DCM and washed with water several times. The organic layer
was dried with Na2SO4, filtered, and evaporated to dryness. The
crude product was purified by column chromatography and recrys-
tallization.

General synthetic procedure for nucleophilic substitution of 52
with alcohols : Complex 52 (1 equiv) was dissolved in THF, freshly
powdered potassium hydroxide (5 equiv), and the corresponding
alcohol (10 equiv) were added. The mixture was stirred for 24 h at
room temperature. Afterwards, the mixture was diluted with DCM
and washed several times with water. The organic layer was dried
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with Na2SO4, filtered, and evaporated to dryness. The crude prod-
uct was purified by column chromatography.

General synthetic procedure for nucleophilic substitution of 60
with amines : Complex 60 (1 equiv) and the corresponding amine
(20 equiv) were dissolved in DCM. The mixture was stirred for 2 h
at room temperature. After the indicated time, the mixture was di-
luted with EtOAc and washed with water several times. The organ-
ic layer was dried with Na2SO4, filtered, and evaporated to dryness.
The crude product was purified by column chromatography.

General synthetic procedure for glycosylation of 52 and 60 : The
complex 52 or 60 (1 equiv) and the corresponding thio-carbohy-
drate sodium salt (1.2 equiv) were dissolved DMF. The mixture was
stirred for the indicated time at room temperature. Afterwards,
5 mL of water was added and stirred for additional 5 min at room
temperature. Due to the high polarity of the product, the mixture
was directly evaporated to dryness with a rotary evaporator. The
crude product was purified by column chromatography and recrys-
tallization.

X-ray crystallography : The compounds 31, 51, 54, 60 and 66
were each crystallized by slow evaporation of a solution of the
target compound in dichloromethane (31, 60), layered dichlorome-
thane/hexane (54) or toluene (51, 66) following the concept devel-
oped by Hope,[72] and the crystal structure obtained from patterns
collected on a Bruker APEX-II Duo diffractometer with CuKa or MoKa

as indicated in Table S1.1.1 Data reduction and multi-scan absorp-
tion corrections were applied with the Bruker APEX3 package.[73]

Structures were solved using SHELXT,[74] and refinements were per-
formed against jF2 j using SHELXL in the ShelXle[75] GUI. All non-H
atoms were refined with anisotropic thermal parameters, with H
atoms as riding isotropic thermal parameters. C-bound H-positions
were constrained to geometrically optimized positions, N-bound H
atoms were positionally refined. Additional refinement details are
presented in Supporting Information section S1.1.2.

Deposition numbers 2035034, 2035035, 2035036, 2035037, and
2035038 contain the supplementary crystallographic data for this
paper. These data are provided free of charge by the joint Cam-
bridge Crystallographic Data Centre and Fachinformationszentrum
Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.
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