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Abstract
Purpose of Review Ensuring broilers’ meat safety is a priority to policy makers, producers, and consumers. This systematic
review aims to update the recent knowledge on pre-harvest interventions to control main foodborne pathogens in broilers and to
assess their effectiveness.
Recent Findings A total of 815 studies were retrieved from PubMed® and Web of Science for 13 pathogens. In total, 51 studies
regarding Campylobacter spp., Salmonella spp., VTEC, ESBL-AmpC Escherichia coli, and Clostridium perfringens were
included in this review.
Summary Research mostly focused on Salmonella spp. and Campylobacter spp. Biosecurity and management interventions had
mixed outcomes, while the effectiveness of feed additives, though intensively researched, remains controversial. Research on
other pathogens (i.e. ESBL-AmpC E. coli/Salmonella, and Toxoplasma gondii) was scarce, with publications focusing on
epidemiology and/or on source-attribution studies. This is also true regarding research on Listeria monocytogenes, Bacillus
cereus, Clostridium botulinum, Clostridium perfringens, and Staphylococcus aureus as these are frequently controlled by
post-harvest interventions. Overall, studies on recent developments of novel pathogen-specific immunisation strategies are
lacking.
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Introduction

Worldwide, poultry meat consumption is growing rapidly and
has surpassed pork as the preferred animal protein source in

2016 [1]. Among poultry meat products, broiler meat is the
most consumed. Therefore, ensuring the safety of broiler meat
and broiler meat products is a priority to policy makers, pro-
ducers, and consumers.

This article is part of the Topical Collection on Bacteriology

* Diana Meemken
Diana.Meemken@fu-berlin.de

Joana Pessoa
Joana.Pessoa@teagasc.ie; Joana.Cardosapessoa@ucdconnect.ie

Maria Rodrigues da Costa
Maria.Costa@sruc.ac.uk

Truls Nesbakken
Truls.Nesbakken@nmbu.no

1 Pig Development Department, Teagasc, Animal and Grassland
Research and Innovation Centre, Moorepark, Fermoy, Co,
Cork, Ireland

2 Section of Herd Health and Animal Husbandry, University College
Dublin, School of Veterinary Medicine, Dublin, Belfield, Dublin 4,
Ireland

3 Epidemiology Research Unit, Department of Veterinary and Animal
Science, Northern Faculty, Scotland’s Rural College (SRUC), An
Lòchran, 10 Inverness Campus, Inverness, Scotland IV2 5NA, UK

4 Faculty of Veterinary Medicine; Department of Production Animal
Clinical Sciences, Norwegian University of Life Sciences,
P.O. Box 5003, 1432 Ås, Norway

5 Institute of Food Safety and Food Hygiene, Working Group Meat
Hygiene, Freie Universität Berlin, Königsweg 67,
14163 Berlin, Germany

https://doi.org/10.1007/s40588-021-00161-z

/ Published online: 14 February 2021

Current Clinical Microbiology Reports (2021) 8:21–30

http://crossmark.crossref.org/dialog/?doi=10.1007/s40588-021-00161-z&domain=pdf
http://orcid.org/0000-0002-4824-048X
mailto:Diana.Meemken@fu-berlin.de


In 2012, the European Food Safety Authority (EFSA) is-
sued a scientific opinion on the public health hazards to be
covered by inspection of poultry. This document contained a
list of 13 biological hazards (Table 1) that can be transmitted
to humans through the handling, preparation, and/or con-
sumption of broiler meat and meat products [2]. Among these
were Campylobacter spp. and Salmonella spp., which have
been the two most frequently reported human gastrointestinal
bacterial pathogens in Europe for the past decade [3]. Indeed,
while several potential transmission routes for these two path-
ogens exist, broilers have been identified as the main reservoir
for Campylobacter [4], and are also an important food vehicle
for Salmonella [5].

Although less commonly reported as causes of human
foodborne illnesses, Bacillus cereus, Clostridium botulinum,
Clostridium difficile, Clostridium perfringens, verotoxin-
producing Escherichia coli (VTEC), Listeria monocytogenes,
Staphylococcus aureus enterotoxins, Yersinia enterocolitica,
and Toxoplasma gondii are also liable to cause infections,
intoxications, or toxicoinfections through the consumption
of contaminated broiler meat [2]. Furthermore, extended spec-
trum β-lactamase (ESBL)/AmpC gene carrying E. coli were
considered to be of medium to high relevance to public health,
while ESBL/AmpC gene carrying Salmonella were consid-
ered to be of low to medium relevance [2].

As these 13 pathogens continue to pose a threat to public
health, control options using a farm to fork approach are need-
ed to minimise the risk and spread of foodborne diseases by
consumption of broiler meat. Pre-harvest interventions take
place on-farm and/or during transport of animals to slaughter

and aim to minimise the introduction, persistence, and trans-
mission of foodborne pathogens into broiler flocks. Indeed,
several studies have shown that reducing the prevalence and/
or the concentration of pathogens in primary broiler produc-
tion would result in greater public health benefits than inter-
ventions at later stages in the food chain [4–6].

Pre-harvest interventions can be divided into two main cat-
egories that aim to (1) reduce the prevalence of flocks con-
taminated with a specific pathogen, and (2) reduce the con-
centration of a pathogen in broilers belonging to contaminated
flocks.

In the first group, the main intervention strategies are
related to external biosecurity measures, which prevent
the introduction of a pathogen into a farm. Key inter-
ventions focus on breeding animals free from selected
pathogens at the top of the breeding pyramid, the con-
trol of feed and water supplies, and implementing phys-
ical barriers that restrict access to broiler houses and the
external environment around farms [6, 7]. Internal
biosecurity, where high hygiene is implemented through
good cleaning and disinfection protocols, is also an im-
portant preventative measure [7].

In the second group, several interventions focus on increas-
ing host resistance to reduce pathogen load in the caeca and on
the use of antimicrobial alternatives to reduce or eliminate
selected pathogens from colonised broilers. Research in this
area has focused on studying and developing new control
strategies such as the use of feed and water additives, the
application of bacteriophages, vaccination, bacteriocins, and
competitive exclusion [8–12].

Table 1 Keyword search and flow of information through the systematic review for 13 foodborne pathogens

Pathogen Keyword searched Records
identified

Records after
duplicate removal

Records retained
after abstract
screening

Records retained
after full text
screening

B. cereus bacillus cereus 3 3 0 0

Campylobacter campylobacter* OR “campylobacter jejuni” OR
“campylobacter coli”

230 208 34 24

C. botulinum clostridium botulinum OR botulism 3 2 0 0

C. difficile clostridium difficile OR c. difficile OR
clostridioides difficile

0 0 0 0

C. perfringens clostridium perfringens OR c. perfringens OR
clostridial diarrh*

23 22 5 3

ESBL-Amp C E. coli ((ESBL* OR AmpC) AND E. coli) 57 53 6 2

ESBL-Amp C Salmonella ((ESBL* OR AmpC) AND salmonella) 9 9 0 0

Listeria monocytogenes listeria monocytogenes OR listeriosis 14 13 0 0

MRSA methicillin resistant staphylococcus aureus
OR MRSA OR resistant s.aureus

17 17 0 0

Salmonella spp. salmone* 301 282 33 20

VTEC Escherichia coli OR toxicoinfectious E. coli
OR VTEC

201 191 8 1

Y. enterocolitica Yersini* 6 6 0 0

T. gondii toxoplasma gondii OR toxoplasmosis 10 9 0 0
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This review of literature published between 2015 and 2020
aims to update the knowledge on pre-harvest interventions to
control 13 public health hazards enlisted in EFSA’s report,
and to assess their effectiveness.

Materials and Methods

This systematic review was based on EFSA guidelines issued
for “those carrying out systematic reviews” for food and feed
safety assessments [13], and on the methodology proposed in
the PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) statement [14].

Literature searches were carried out on PubMed® andWeb
of Science on June 7th, 2020, including peer-reviewed studies
written in English and published between 2015 and 2020 (un-
til June 7th) on the effectiveness of pre-harvest meat safety
interventions to control 13 foodborne pathogens. The 5-year
timeframe was introduced as a Journal requirement and
narrowed down this systematic review to focus on the most
recent research tackling the control of foodborne pathogens
on-farm or during transport. All searches were restricted to
title and abstract. The structure of the search strings used in
each database is shown in Fig. 1, and each search had
pathogen-specific keywords, as shown in Table 1. The de-
tailed search strings used for each database can be assessed
in the supplementary material.

All records were imported into EndNote and duplicates
were removed. One co-author screened abstracts using a de-
fined set of inclusion and exclusion criteria (Table 2). In a
second phase, full texts of all remaining references were re-
trieved and screened in parallel by two co-authors, using the
same eligibility criteria (Table 2). For any record to be re-
moved, both co-authors had to agree on its exclusion. If agree-
ment was not attained, a third co-author reviewed the full text

and made the final decision. The flow of information through
the systematic review process is shown in Table 1.

A Microsoft Office Excel spreadsheet documented the
classification of studies based on the intervention described
and other relevant information, such as follows: country and
year where/when the study took place; type of experimental
study (challenge or field studies); type (i.e. animal, flock, en-
vironmental) and number of experimental units; sample type;
type of outcome measured; and estimate of the effectiveness
of each intervention. For this systematic review, “study” was
defined as any primary research peer-reviewed publication, in
which the authors had collected, analysed, and reported their
own data. On several occasions, we found that within the same
study, authors evaluated the efficacy of different interven-
tions. Therefore, within each study, several trials could be
reported (defined as the unique treatment-to-control compari-
sons made), and whenever possible, trial-specific information
was collected. Whenever the outcome of an intervention was
measured through several time-points, data collected at the
end of the study were preferred.

Results

A total of 815 unique studies were retrieved through the search
strings run on PubMed® and Web of Science for the 13 path-
ogens included in this study. Salmonella spp., Campylobacter
spp., and VTECwere the pathogens for which the largest num-
ber of studies was found (Table 1), while C. difficile,
C. botulinum, and B. cereus had the fewest, with zero, two,
and three studies, respectively. After the abstract-based screen-
ing, only five pathogens remained. These were as follows:
Campylobacter spp. (n = 34 studies), Salmonella spp. (n = 33
studies), VTEC (n = 8 studies), ESBL-AmpC E. coli (n = 6
studies), andC. perfringens (n = 5 studies). Full texts were then
retrieved for further evaluation. Even though 86 studies passed

Fig. 1 Search string structure
used for the searches conducted in
PubMed® and the Web of
Science databases on June 7th,
2020. The detailed search strings
used are provided as
supplementary material
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the initial screening, one full text could not be retrieved, and 34
other studies were discarded during full text evaluation. Studies
with the following characteristics were excluded (n = 34): stud-
ies not performed in the target population (n = 14, 41%), studies
not mentioning a clear intervention (n = 7, 21%), studies with
no control group (n = 7, 21%), studies which did not report a
measurable outcome (n = 3, 9%), or in vitro studies (n = 3, 9%).
Ultimately, a total of 51 studies (59% of the initial 86 studies)
stratified by five different pathogens (Table 1) were included in
this systematic review.

Within the reported studies (i.e. 24 studies regarding
Campylobacter spp. and 20 studies regarding Salmonella
spp.), a total of 71 and 62 trials on pre-harvest interventions
to control Campylobacter spp. and Salmonella spp., respec-
tively, were identified and included in this systematic review.
Studies regarding Campylobacter spp. [15–34, 35•, 36–38]
and Salmonella spp. [15, 19, 39–56] were carried out in thir-
teen and eleven different countries, respectively. For both
pathogens, most of the pre-harvest interventions were
assessed in lab-based challenge trials (65% and 82%), while
the remaining trials were field trials where no experimental
infection was performed. Characteristics of these trials are
summarised in Table 3.

Overall, the most common interventions to control
Campylobacterwere those evaluating the effect of feed additives
(49%), followed by cleaning and disinfection programmes
(23%). Regarding Salmonella spp., cleaning and disinfection
programmes were the most frequent interventions applied
(27%), followed closely by feed additives (21%).

All trials measured the effectiveness of each intervention
by bacteriological isolation. For both pathogens, the most

common unit of measurement was log CFU/g, with 61%
and 44% of trials reporting CFU/g for Campylobacter spp.
and Salmonella spp., respectively. Still, many different units
quantifying results were used. To overcome this, results were
qualitatively characterised concerning the effectiveness of
each intervention by considering whether a reduction in the
outcome measured could be observed or not (Table 4).

Of the eight types of pre-harvest interventions to control
Campylobacter spp. included in this review, only three had a
positive effect. Biosecurity interventions proved to be most
effective, with 71% of trials showing a reduction in
Campylobacter spp. On the other hand, all biosecurity inter-
ventions were ineffective in reducing Salmonella spp., while
all trials applying competitive exclusion and 80% of trials
using bacteriophages proved to be effective in significantly
reducing Salmonella spp.

Regarding C. perfringens, a total of 27 trials on pre-harvest
interventions were identified in the three studies [16, 57, 58]
included in this systematic review. Of those, 26 investigated
the use of different feed additives to control this pathogen,
while one trial used a drug-free programme with a combina-
tion of feed additives, improved water quality, and optimised
brooding conditions. Of the 26 trials using feed additives, ten
showed a significant reduction in bacterial counts (log CFU/
g), while the drug-free programme proved ineffective.

One study, comprising two trials, investigated the use of
feed additives and enrofloxacin to control ESBL-AmpC
E. coli, showing that the first intervention was not effective
in significantly reducing this pathogen, while enrofloxacin
proved to be effective [59]. The second study investigated
the effect of cessation of ceftiofur and its substitution with

Table 2 Eligibility (inclusion and
exclusion) criteria used for the
screening of title/abstracts and full
texts

PICOa Inclusion Exclusion

Population Animal species being evaluated: must include (but
not limited to) broilers

Does not include actual or theoretical
<pathogen> infection/contamination
in broilers

Unit of study (animal, flock, house, farm and
surfaces, food, water, environment, drinkers,
feeder, other animals)

Others

Intervention Interventions to control/reduce/eradicate
<pathogen> in broilers

Studies not mentioning
control/reduce/eradicate interventions
for <pathogen> in broilers

Interventions on-farm or during transport
(pre-harvest)

Interventions on lairage, at slaughter and
post-harvest

Field/experimental studies Lab/bench studies

Comparison Control group present (group subjected to no
intervention)

Control group absent

Outcomes Provides some measure of the efficacy of the
intervention

Efficacy of the intervention not measured

Others Language: English Other languages

Peer reviews Grey literature

a PICO (participants, interventions, comparisons, and outcome(s)) constitutes the framework in which research
questions are formulated, as proposed in the PRISMA statement [14]
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lincomycin-spectinomycin on the proportion of E. coli isolates
harbouring ESBL-AmpC genes, which proved effective ini-
tially, but led to an increase in antimicrobial non-β-lactam
resistance of ESBL-AmpC E. coli due to the use of this anti-
biotic [60].

Lastly, only one study regarding VTEC [61] was identified
in this review. It investigated the effectiveness of feed supple-
mentation with Agaricus bisporus in two different

concentrations (two trials) in the feed, but no statistical anal-
ysis was performed to assess if the reduction of VTEC counts
reported in the trial using a higher concentration of the feed
additive was significant.

Discussion

In the past 5 years, several studies have been published on pre-
harvest interventions to control foodborne pathogens in
broilers. These were mostly focused on two main hazards
(Salmonella spp. and Campylobacter spp.), which reflects
the high burden of disease associated with these pathogens.

Campylobacter and Salmonella

In this review, only two studies, in which biosecurity mea-
sures were applied to control Campylobacter spp. [15, 18]
and Salmonella spp. [15], were identified, and both were car-
ried out in a commercial setting. Dale et al. used a combina-
tion of pest control and hygienic actions for farm staff (e.g.
hand disinfection, changing boots, house-specific working
materials), which were insufficient measures to decrease the
prevalence of either pathogen. The other study, focusing on
Campylobacter control, encompassed five trials where a
“biosecure cube”was installed and prevented contact between
the farm-staff and the birds. All trials reported in this study

Table 3 Descriptive
characteristics of 72 trials from 24
studies and 62 trials from 20
studies investigating pre-harvest
interventions to control
Campylobacter spp. and
Salmonella spp., respectively

Variable Category # trials, n (%)

Campylobacter Salmonella

On-farm vs. during transport intervention On-farm 63 (89) 52 (84)

Transport coop 8 (11) 10 (16)

Study setting Commercial farm 20 (28) 11 (18)

Commercial plant 5 (7)

Research lab 46 (65) 51 (82)

Type of intervention Bacteriophages 1 (1) 5 (8)

Biosecurity 7 (10) 2 (3)

Cleaning & disinfection 16 (23) 17 (27)

Combination of measures 1 (1) 6 (10)

Competitive exclusion - 3 (5)

Feed additives 35 (49) 13 (21)

Litter management 1 (1) 10 (16)

Oral immunisation 4 (6) -

Vaccination 6 (9) 6 (10)

Sample type Caecal 51 (72) 25 (40)

Cloacal 1 (1) 6 (10)

Environmental 9 (13) 11 (18)

Fresh faeces 1 (1) -

Litter 1 (1) 10 (16)

Transport coop 8 (12) 10 (16)

Table 4 Efficacy of pre-harvest interventions to controlCampylobacter
and Salmonella stratified by type. Effective interventions were those that
significantly reduced a measurable outcome

Type of intervention Efficacy of interventions %*

Campylobacter spp. Salmonella spp.

Bacteriophages 0 80

Biosecurity 71 0

Cleaning & disinfection 50 77

Combination of measures 0 17

Competitive exclusion - 100

Feed additives 31 31

Litter management 0 50

Oral immunisation 0 -

Vaccination 0 17

*Given as the number of trials with successful outcomes divided by the
total number of trials for each intervention-pathogen
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were successful in reducing Campylobacter loads. In another
review focusing on pre- and post-harvest interventions to con-
trol Campylobacter, the implementation of biosecurity mea-
sures such as specific hygienic actions targeting farm-staff and
drinking water and the restriction of other farm and wild ani-
mals were identified as successful interventions [62•]. A study
also found the following variables to be independently asso-
ciated with an increased risk of Campylobacter spp. colonisa-
tion using logistic regression analysis: (i) undisinfected water
(having the greatest impact); (ii) tending to other poultry prior
to entering the broiler house; (iii) tending to pigs before enter-
ing the house; (iv) geographic region; and (v) season (autumn
vs. other seasons) [6].

On the other hand, Finland, Norway, and Sweden have
documented, during more than 25 years, that stringent
biosecurity measures targeting Salmonella spp. in poultry at
herd level can be successful in controlling this pathogen [63,
64]. Furthermore, it has also been shown that epidemiological
and biological differences between Campylobacter spp. and
Salmonella spp. result in a greater likelihood of introduction
of Campylobacter spp. into broiler flocks at any production
stage if there are lapses in biosecurity standards, likely due to a
lower number of organisms needed to infect broiler flocks
than for Salmonella spp. and the lack of age-related reduced
susceptibility [5].

Regarding cleaning and disinfection practices, most trials
focused on transport coops, rather than on-farm interventions.
ForCampylobacter spp., the most successful intervention was
implemented on a commercial plant and used a combination
of disinfectant and water at 60°C, achieving reductions of up
to 3.6 log10 CFU per transport coop and a marked improve-
ment in visual cleanliness [35•]. While for Salmonella spp., all
trials were carried out in research institutions (controlled re-
search setting), and the most effective intervention used a
combination of slightly acidic electrolysed water and ultravi-
olet light, obtaining a complete 100% inactivation of
Salmonella on plastic coop surfaces [53].

Overall, many studies tested the use of feed additives such
as probiotics, prebiotics, and essential oils in controlling
Campylobacter spp. [17, 20, 23, 25–30, 32–34, 65] and
Salmonella spp. [42, 46, 51, 54]. Our results showed great
variability in the effectiveness of this group of control mea-
sures (Table 4), which is in line with several reviews carried
out in the past, which conclude that the exact impact of these
feed additives is still unknown [8, 12, 62, 66].

Our results also show that, after excluding interventions to
control pathogens through improved management, research is
lacking on the development of targeted immunisation strategies
for each pathogen. This type of intervention takes longer to
develop and has the additional challenge of having to address
the epidemiology and biological characteristics of each patho-
gen at study. However, this additional challenge is also what
warrants a higher impact as a control intervention if successful.

Regarding vaccination strategies to control Campylobacter
spp., we found only one study using an in ovo DNA vaccine,
which presented ineffective results [31]. Furthermore, two
studies reported different vaccination strategies for the control
of Salmonella entericia subsp. enterica serovar Heidelberg
[44, 49]. The first study tested the efficacy of a genetically
modified live vaccine, which was able to partially decrease the
bacterial load of S. Heidelberg in the caecum and its preva-
lence in the liver/spleen after oral challenge but had limited
duration of immunity [44]. The second study investigated if a
broiler breeders’ vaccination protocol containing two live and
two killed vaccines provided adequate protection in the broiler
progeny, and if the level of maternal antibody would deter-
mine the protective status of broiler progeny. Results showed
that broiler breeders’ antibody titres wane over time, and
therefore, broiler progeny is not protected from early
Salmonella colonisation [49].

Given that most studies, including vaccination studies,
were performed under controlled research settings, we high-
light the need for more large-scale randomised, blinded trials
conducted with different vaccination strategies on commercial
farms. These would ascertain the efficacy of these interven-
tions under field conditions.

As antimicrobial resistance raises concerns regarding the
use of antimicrobials in livestock, interest in alternatives such
as bacteriophage therapy has increased. Still, in our review,
research on the use of bacteriophages to control
Campylobacter and Salmonellawas scarce. One study carried
out on a commercial farm showed no significant impact of
bacteriophage application on Campylobacter loads [37],
while for Salmonella, studies carried out on research institu-
tions (controlled research setting) reported that this type of
intervention caused significant reductions of the pathogen
loads [55, 56], which was not verified in a study held in a
commercial setting [50]. While bacteriophages may be an al-
ternative for the control of Campylobacter and Salmonella,
one of the major disadvantages to widespread on farm bacte-
riophage application is due to the capacity of pathogens to
become resistant to their bacteriophage, especially if the resis-
tant bacteria can persist in the environment and replicate [11].
Indeed, replicable, and effective studies are lacking.
Furthermore, the extrapolation of each trial’s results to com-
mercial farms may result in even less optimal outcomes due to
the inherent difficulties in consistently implementing standard
operating procedures (SOPs) in multiple farms/systems.

Other Pathogens

Interventions to control other less prominent hazards were
much less frequent or non-existent, in spite of their relevance
as stated in the 2012 EFSA report [2]. Several pathogen-
specific factors should be taken into consideration.
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Although broilers are considered a possible reservoir for
ESBL-AmpC gene carrying E. coli [2], the public health bur-
den associated with these animals as sources of human infec-
tion is still controversial [67]. Therefore, most studies pub-
lished focus on the epidemiology of this pathogen and on
source attribution, whereas interventions for its control are still
not a common research topic. Regarding ESBL-AmpC gene
carrying Salmonella, information is even more scarce.

Furthermore, human cases of VTEC infection have not
been successfully attributed to broilers [2, 68, 69], and there-
fore, EFSA has considered that broiler meat constitutes a low
risk for public health when considering this pathogen [2].

Although Y. enterocolitica has been the third most reported
foodborne zoonoses in EU for several years [3], pigs are con-
sidered the main reservoir for this pathogen, and broilers have
not been identified as a significant source of human infections
[70].

In recent years, T. gondii has gained attention due to the
severe repercussions it can cause in humans (e.g. neonatal or
foetal losses and high disability in cases living permanently
with the disease due to compromised vision and/or neurolog-
ical disease; [71]). In a recent review, it was concluded that the
risk of ingestion of T. gondii cysts in meat from commercially
(indoor) reared broilers was low, but a high prevalence of this
parasite was found in broilers from free-range farms [72]. In
this study, we only considered studies that focused on indoor
farms. Still, with the increase of consumers from high income
countries who prefer meat from broilers in outdoor holdings as
well as locally sourced products, there may be an increased
risk to public health, and therefore need for implementation of
preventive measures to control this parasite.

Finally, L. monocytogenes, B. cereus, C. botulinum,
C. perfringens, and S. aureus are mainly controlled by post-
harvest interventions [2], and therefore, it had to be expected
that literature on pre-harvest interventions was not abundant.

Conclusion

The results of this systematic review reflect that the recent
research on pre-harvest interventions to control foodborne
zoonoses in broilers were mostly focused on Salmonella
spp. and Campylobacter spp.

Biosecurity (i.e. pest control) and management (i.e. hy-
giene, cleaning, and disinfection) interventions had mixed
outcomes in controlling these pathogens, and a strong empha-
sis on (1) adequately implementing the interventions and (2)
combining multiple approaches is recommended across the
literature for optimum results. In addition, the effectiveness
of feed additives (probiotics, prebiotics, and essential oils)
has been extensively researched but remains controversial
with results showing great variability.

Recent research on other pathogens (i.e. ESBL-AmpC
E. coli, ESBL-AmpC Salmonella, and T. gondii) was scarce,
focusing mostly on the epidemiology of the disease and/or
documenting source-attribution studies. This is also true re-
garding research on pre-harvest interventions for controlling
L. monocytogenes, B. cereus, C. botulinum, C. perfringens,
and S. aureus as these are mostly controlled by post-harvest
interventions.

Overall, research is lacking on the development of targeted
immunisation strategies for each pathogen. This is seen as an
essential step to control some of the most prevalent pathogens.
However, vaccination strategies should always be implement-
ed in combination with other interventions, especially those
which are related to best farming practices. Indeed, interven-
tions such as good cleaning and disinfection and strict
biosecurity may be enough to prevent the introduction and/
or control less prevalent pathogens.
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