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Abstract: S = 2 oxoiron(IV) species act as reactive intermedi-
ates in the catalytic cycle of nonheme iron oxygenases. The few
available synthetic S = 2 FeIV=O complexes known to date are
often limited to trigonal bipyramidal and very rarely to
octahedral geometries. Herein we describe the generation and
characterization of an S = 2 pseudotetrahedral FeIV=O com-
plex 2 supported by the sterically demanding 1,4,7-tri-tert-
butyl-1,4,7-triazacyclononane ligand. Complex 2 is a very
potent oxidant in hydrogen atom abstraction (HAA) reactions
with large non-classical deuterium kinetic isotope effects,
suggesting hydrogen tunneling contributions. For sterically
encumbered substrates, direct HAA is impeded and an
alternative oxidative asynchronous proton-coupled electron
transfer mechanism prevails, which is unique within the
nonheme oxoiron community. The high reactivity and the
similar spectroscopic parameters make 2 one of the best
electronic and functional models for a biological oxoiron(IV)
intermediate of taurine dioxygenase (TauD-J).

Introduction

High-valent oxoiron(IV) intermediates act as the active
oxidants in the catalytic cycles of a variety of mononuclear
non-heme iron oxygenases.[1] These high-valent species have
been characterized by rapid freeze quench methods in few
cases[1] and were unambiguously shown by UV/Vis, Mçssba-
uer, and X-ray absorption spectroscopic methods to contain
high-spin (S = 2) iron(IV) centres. However, the available
experimental data could not reveal other important structural
features, such as the number, identity, and disposition of
ligands in the FeIV coordination sphere. Density functional
theoretical (DFT) studies[2] on the taurine:aKG dioxygenase

(TauD) system have shown that the spectroscopic properties
of the hydrogen-abstracting oxoiron(IV) key intermediate
(TauD-J) are consistent with both suggested structural
models (Scheme 1), that is, with trigonal bipyramidal (TBP)
as well as distorted octahedral (Oh) coordinations. Significant
synthetic efforts in the past decade have led to the generation
of oxoiron(IV) cores in both TBP and Oh geometries
(Scheme 1). Although the majority of the synthetic complexes
exhibit S = 1 ground states in Oh geometry,[3] DFT-studies
predicted stabilization of the more reactive[4] S = 2 oxoiron-
(IV) units[5] either by enforcing a TBP geometry at the
iron(IV) centre[5a–d] or by weakening the equatorial donation
in Oh geometry.[5e]

Results and Discussion

In the context of the existing ambiguity related to the
coordination number of iron in biological oxoiron(IV)
intermediates,[2] and the limitation of the synthetic S = 2
oxoiron(IV) cores to mainly TBP and in rare cases to Oh

geometries, we have now sought to identify a tripodal ligand
that allows for trapping an FeIV=O core in a geometry
different from the known TBP or Oh geometries. Herein we
report the synthesis and characterization of the S = 2 pseu-
dotetrahedral [FeIV(O)(tBu3tacn)]2+ (2, tBu3tacn[6] = 1,4,7-tri-
tert-butyl-1,4,7-triazacyclononane) complex, which exhibits
spectroscopic and reactivity properties distinct from the
oxoiron(IV) cores in TBP or Oh geometries. In particular, in
direct contrast to the vast majority of previous oxoiron(IV)
cores,[3a–g,5a–e] where the reactivity with substrates containing
C�H bonds is controlled by the C�H bond dissociation
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energies (BDEC-H), complex 2 demonstrates a mechanistic
promiscuity in its C�H oxidation reactions. Sterically less
hindered C�H bonds are oxidized via a conventional direct
hydrogen atom abstraction (HAA; Scheme 2) mechanism

that is characterized by large deuterium kinetic isotope effects
(KIEs), which are greater than the semi-classical limit of 7,
implying a significant contribution of hydrogen tunnelling.[7]

In contrast, for sterically encumbered substrates, where the
direct access to the FeIV=O core is blocked, the C�H
oxidation reaction proceeds with a significantly lower KIE
and presumably involves a proton-coupled electron transfer
(PCET) mechanism along a spectrum of “asynchronicity”[8] in
which the transition state for the net H-atom transfer contains
more electron transfer character (Scheme 2; Oxidative asyn-
chronous PCET).

Combination of equimolar amounts of the previously
reported tBu3tacn ligand[6, 9] and FeII(OTf)2(CH3CN)2 in
CH2Cl2 afforded [FeII(tBu3tacn)(OTf)](OTf) (1), whose crys-
tal structure (Figure S1; Tables S1,S2) exhibited a distorted
tetrahedral geometry (N-Fe-N angles of 86.5–88.38) with an
Fe-O distance of 1.935(2) � and three Fe-N distances of
2.105(2)–2.124(2) �. The zero-field Mçssbauer spectrum of
1 (Figure S2) revealed a single doublet with an isomer shift
(d) of 0.97 mms�1 and a large quadrupole splitting (DEQ =

1.98 mms�1), consistent with an S = 2 spin state, which is also
supported by DFT[11] (Table S3). Reaction of 1 in pure CH2Cl2

or butyronitrile (PrCN) at �90 8C with 2-(tert-butylsulfonyl)-

iodosobenzene (sPhIO)[12] yielded a transient species 2 (Fig-
ure 1A; half-life at �70 8C = 20 min) with electronic absorp-
tion features centered at lmax = 356 nm (e = 7500 M�1 cm�1)
and 780 nm (e = 150 M�1 cm�1). Notably, the presence of
a well-defined strong absorption band in the near-UV region
is typical of S = 2 oxoiron(IV) cores (Table S4);[5a–d] in 2 this
band at lmax = 356 nm is slightly red-shifted (Table 1) relative
to that of TauD-J (lmax = 318 nm).[1a] The S = 2 spin state of 2
was additionally corroborated by the Evans[13] NMR method
(Figure S3) at �90 8C which yielded the magnetic moment
meff = 4.50 mB (theoretical value for S = 2: 4.90 mB). An elec-
tron spray ionization mass spectrum (Figure S4) of 2 exhib-

Scheme 1. Left: Proposed structures of S = 2 TauD-J based on DFT studies;[2] middle: selected examples of S = 1 and S = 2 oxoiron(IV) cores in
TBP and Oh geometries; right: A pseudotetrahedral S = 2 oxoiron(IV) complex 2 reported in this work; in the inset is shown the DFT calculated
structure of 2 in the S = 2 state.

Scheme 2. Mechanisms of net hydrogen atom transfer.

Figure 1. A) UV/Vis spectra of 1 (dashed line) and 2 (solid line) in
CH2Cl2 at �90 8C; inset shows the rRaman spectra of 16O- (solid line)
and 18O-labelled (dashed line) 2 (4 mM solution) in CH2Cl2 upon
406 nm irradiation at �90 8C; solvent signals are indicated by an
asterisk; B) Zero-field Mçssbauer spectrum (grey) of a frozen sample
of 2 in PrCN/CH2Cl2 (10:1) and simulation with d= 0.11 mms�1 and
DEQ = 0.96 mms�1 for the main species (solid line, 87 %). The minor
species (dashed line) with d = 0.97 mms�1 and DEQ = 1.98 mms�1

corresponds to unreacted 1.

Table 1: Comparison of the spectroscopic properties of TauD-J and 2.

TauD-J[1a,b, 2,10] 2

lmax [nm] 318 356
R (Fe-O) [	] 1.62 1.66
nFe=O [cm�1] 821 802
d [mm�1 s�1] 0.31 0.11
DEQ [mm�1 s�1] 0.88 0.96
Axx, Ayy, Azz [T] S = 2:

�18.4, �17.6, �31
S= 2:
�10.1, �3.3, �36.1

Eo [eV] 7123.8 7123.2
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ited a signal at m/z = 518.7, consistent with its formulation as
[FeIV(O)(tBu3tacn)(OTf)]+ (m/z calc = 518.2). However, the
19F-NMR spectrum (Figure S5) of 2 displayed a single reso-
nance at �77.0 ppm, which confirmed that the triflate (OTf)
anion is not bound to the Fe-centre in 2. This observation
together with the same UV-vis spectrum (Figure S6) of 2 in
both coordinating (PrCN) and non-coordinating (CH2Cl2)
solvents corroborates the absence of any exogeneous ligands
binding to the iron centre. Thus, the 4-coordinate geometry
found in 1 is retained in 2, leading us to formulate the latter as
[FeIV(O)(tBu3tacn)]2+.

The 4-coordinate geometry of 2 was also supported by
Extended X-ray Absorption Fine Structure (EXAFS) anal-
ysis (Figure S7A, Table S5), which yielded a good fit with an
oxygen ligand at 1.66 �, assigned to the Fe=O bond, and
a further shell of three nitrogen ligands at 2.06 �, corre-
sponding to the N donors of tBu3tacn. The Fe K-edge X-ray
absorption spectrum (Figure S7B) of 2 reveals an edge energy
of 7123.2 eV (vs. 7119.7 eV for 1), which is within the range of
values found for synthetic FeIV=O complexes.[3b, 5a–c] Further-
more, in contrast to the pre-edge features of existing S = 1
complexes that can be modelled with a single Gaussian,[13] in
the pre-edge region of 2 two spectral features at � 7115 and
� 7117 eV are tentatively discernible (Figure S7A,C), which
may be rationalized in terms of a splitting of the a and b dz2

orbitals by spin polarization in the S = 2 oxoiron(IV) cor-
es.[5a,b]

Resonance Raman spectroscopy revealed a n(Fe=O)
stretching mode at 802 cm�1 in 2 (Figure 1A, inset) that
shifted to 767 cm�1 upon 18O-labelling. The observed n(Fe=O)
mode has one of the lowest energies reported to date for
oxoiron(IV) cores. This may be attributed to the high spin
(S = 2) ground state of 2 as this would (in a simplified
pseudotetrahedral ligand field) require a d(x2�y2)1d(xy)1d-
(xz,yz)2d(z2)0 electronic configuration with an Fe�O bond
order (BO) of 2.0.[15] Notably, the high-spin ground state of 2
is unique for a pseudotetrahedral geometry; previously
reported pseudotetrahedral M-X (X = O2�, NR2�, or N3�)
complexes,[16] including the recent CoIII�O complex,[8,17] all
possess a low-spin ground state with a M-X BO of 3. The zero
field Mçssbauer spectrum of 2 exhibits a doublet (87 % yield)
with a quadrupole splitting, DEQ = 0.96 mms�1, and an isomer
shift, d = 0.11 mms�1 (Figure 1B). Although, the DEQ value is
very close to the value reported for TauD-J (Table 1),[1b] the
d-value is significantly lower, which may reflect the nitrogen-
rich character in 2 in contrast to the harder oxygen-containing
ligand sphere in TauD-J. In applied magnetic fields, the
spectra of 2 exhibit paramagnetic hyperfine structures, which
were analysed by assuming an S = 2 center yielding a non-
axial A-tensor with Axx/gnbn =�10.1 T, Ayy/gnbn =�3.3 T and
Azz/gnbn =�36.1 T (Figure S8). The structure of 2 as obtained
by DFT calculations (Scheme 1, inset) reveals an off-axis tilt
of the oxo ligand resulting in a deviation from the C3

symmetry, which may account for the non-axial A-tensor
determined from magnetic Mçssbauer studies. The quintet
state was calculated to be more stable than the triplet and the
singlet states by 0.8 and 6.6 kcal mol�1, respectively (Ta-
ble S3). Furthermore, among all spin states, the calculated
spectroscopic properties of the S = 2 state provide the best

description of the experimental data. The calculated Fe=O
and Fe�N bond distances (1.63 and 2.06 �, respectively), Fe=

O stretching mode frequency (893 cm�1, 18O isotope shift
�36 cm�1), and Mçssbauer d-value (0.06 mms�1), on the
ground S = 2 state are in satisfactory agreement with experi-
ments (Table S3). Notably, the calculated data for the S = 1
and S = 0 states deviate significantly from the experiments,
such that we take the calculations as a further support for the
S = 2 ground state in 2.

The oxidative reactivity of 2 (Figures S9–S18; Table S6)
has been investigated with several substrates in oxygen atom
transfer (OAT) and HAA reactions and the second order rate
constants derived from these studies in CH2Cl2 are compared
with three of the most reactive high-valent Fe-oxo inter-
mediates reported to date (namely the [(TQA)FeIV(O)-
(CH3CN)]2+ (TQA = tris(2-quinolylmethyl)amine),[5e]

[(Me3NTB)FeIV(O)]2+ (Me3NTB = tris((N-methyl-benzimi-
dazol-2-yl)methyl)amine)[3c] and [(TMCO)FeIV(O)-
(CH3CN)]2+ (TMCO = 4,8,12-trimethyl-1-oxa-4,8,12-triaza-
cyclotetradecane)[3f] complexes (Table 2). In reactions with
ethylbenzene, 1,4-cyclohexadiene (1,4-CHD), and toluene, 2

is a stronger oxidant than [(TMCO)FeIV(O)(CH3CN)]2+, but
comparable to [(TQA)FeIV(O)(CH3CN)]2+ and
[(Me3NTB)FeIV(O)]2+. Interestingly, the reactivity trend is
reversed in reactions with 9,10-dihydroanthracene (DHA),
where 2 exhibits the least reactivity. Furthermore, when the
logarithms of the statistically corrected second order rate
constants (k2�) were plotted vs. the BDEC-H values of the
substrates (Figure 2A, Figure S20A), the linear correlation
typically observed for oxoiron(IV) cores[3a–i,5] is found to be
not valid for 2. While the respective log (k2) values associated
with 2 for the oxidation of 1,4-CHD, 1,3-cyclohexadiene (1,3-
CHD), ethylbenzene, cyclohexene and toluene fall on a line
(Figure 2A, black points), xanthene, DHA, indene and
fluorene substrates (Figure 2A, inset) deviate from this
pattern and exhibit significantly lower rates than predicted
by the linear relationship. Particularly interesting is the large
rate difference of two orders of magnitude for DHA and 1,4-
CHD, which are known to have small difference in BDEC-H

values.[18] Furthermore, large deuterium KIEs of 7 (Fig-
ure S9), 12 (Figure S10), and 53 (Figure 2C, Figure S11) were

Table 2: Comparison of the reaction rate constants k2’ (normalized to the
number of equivalent H atoms) at�40 8C for the C�H activation reaction
of 2 and the highly reactive intermediates (TMCO)FeIV=O,
(Me3NTB)FeIV=O and (TQA)FeIV=O towards a selection of substrates.

Substrate
(BDEC-H, kcal/mol)

k2’ [M�1 s�1]

2 (TMCO)
FeIV=O

(Me3NTB)
FeIV=O

(TQA)
FeIV=O

1,4-CHD (76.0) 1.0 
 102[a] nd 7.8 
 102 nd
DHA (76.3) 1.6[b] Too fast (�90 8C) 2.4 
 102 nd
Ethylbenzene (85.4) 3.3[b] 0.10[c] 0.75 1.1
Toluene (89.7) 0.43[b] 0.0044[c] 0.16 0.21

nd = rate not determined; k2’ values at �40 8C were calculated from the
values measured at [a] �90 8C; [b] �70 8C; [c] �60 8C; [d] �50 8C and
corrected for the temperature difference by doubling the rate for every 10
degrees rise in temperature.
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recorded for toluene, 1,4-CHD, and ethylbenzene reactions,
respectively, suggesting a HAA mechanism with significant
contribution of hydrogen-tunnelling, as is frequently pro-
posed in C�H bond activation reactions of FeIV=O species.[7]

In contrast, significantly reduced KIEs of 1.2 (Figure 2D,
Figure S12) and 2.1 (Figure S13) were determined for DHA
and xanthene, respectively, thereby pointing to a change of
mechanism. Further mechanistic insights were obtained by
plotting the rate constants against the pKa and the ionization
energies (IE) of the substrates. The log(k2) vs. IE plot
(Figure 2B, Figure S20B) revealed that for reactions of 2 with
xanthene, DHA, indene and fluorene the rate decreased
linearly with increasing IE, whereas the rates for 1,4-CHD,
1,3-CHD, ethylbenzene, cyclohexene and toluene scatter
irregularly. Furthermore, no linear trend was observed in
the log (k2) vs. pKa plot (Figure S20C) for all the investigated
substrates. Thus, the tBu3tacn ligand blocks the HAA pathway
by presumably impeding access of the bulkier polycyclic
hydrocarbons to the Fe=O unit in 2. An alternative oxidative
asynchronous PCET mechanism (Scheme 2) prevails in such
cases, which are typically characterized by low KIEs and
a linear correlation of the reaction rates to IEs.

Conclusion

Taken together the results presented herein unequivocally
validate the formation of a terminal oxoiron(IV) complex 2 in
a pseudotetrahedral geometry. The computational and ex-
perimental analyses are consistent with the presence of an S =

2 FeIV=O core in 2. Complex 2 represents the only example of
a high-spin complex with metal-ligand multiple bond charac-
ter in a pseudotetrahedral geometry; notably, a pseudotetra-
hedral oxoiron(IV) complex has been very recently demon-
strated to possess an S = 0 state in the gas-phase.[19] The
absorption spectrum, Mçssbauer DEQ, Fe K-edge energy, and
the n(Fe=O) mode of 2 (Table 1) bear very close resemblance
to the corresponding spectroscopic properties of TauD-J. 2
also exhibits the distinct high-reactivity features known from
the strongly oxidizing iron-oxo cores in biology and accord-
ingly possesses one of the most reactive oxoiron(IV) cores
that have been synthesized to date. Furthermore, a large KIE
of 53 has been determined for the reaction of 2 with
ethylbenzene, which compares well with the KIE of 57[1]

determined for the oxidation of taurine by TauD-J. The
uniqueness of 2 within the non-heme oxoiron family is,
however, emphasized in its ability to oxidize sterically
hindered C�H bonds by an IE-driven asynchronous PCET
mechanism. Although limited examples of C�H oxidation by
a basicity controlled PCET mechanism (Scheme 2) are
known,[8,20] evidence of oxidative PCET mechanism has
stayed elusive prior to this study. In conclusion, the high
reactivity and the similar spectroscopic parameters of 2 and
TauD-J make 2 one of the best structural, electronic and
functional models for TauD-J.
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