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Abstract

Using molecular dynamics simulations in explicit water, the force-extension rela-

tions for the five homopeptides polyglycine, polyalanine, polyasparagine, polyglutamic

acid and polylysine are investigated. From simulations in the low force regime the

Kuhn length is determined, from simulations in the high-force regime the equilibrium

contour length and the linear and non-linear stretching moduli, which agree well with

quantum-chemical density-functional theory calculations, are determined. All these

parameters vary considerably between the different polypeptides. The augmented inho-

mogeneous partially freely rotating chain (iPFRC) model, that accounts for side-chain

interactions and restricted dihedral rotation, is demonstrated to describe the simulated

force-extension relations very well. We present a quantitative comparison between pub-

lished experimental single-molecule force-extension curves for different polypeptides

with simulation and model predictions. The thermodynamic stretching properties of

polypeptides are investigated by decomposition of the stretching free energy into ener-

getic and entropic contributions.
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Introduction

Proteins consist of amino acids that are linked by peptide bonds. Numerous biological

processes depend on the mechanical response of proteins1–6 and the understanding of such

processes requires as a first step the accurate description of the stretching response of single

peptide chains. The elastic response of single protein molecules has been thoroughly investi-

gated experimentally by atomic force microscopy (AFM).7–13 The experimentally measured

force-stretching relations of unfolded peptide chains are typically compared with the freely

jointed chain (FJC)14–16 model or the worm-like chain (WLC)17,18 model. The WLC model

has been shown to describe relatively stiff biological polymers such as double-stranded DNA19

very well, and the persistence length that results from a fit to the force-extension relation-

ship is related to the DNA bending stiffness and thus has physical meaning. For flexible

polymers, which at the atomic scale consist of chemical bonds with a preferred bond length

and preferred bond angle, neither the FJC nor the WLC model is microscopically correct. In

fact, for the stretching of titin immunoglobulin domains, a multitude of different theoretical

polymer models have been used that account for various molecular aspects such as fixed

or extensible bond lengths, fixed bond angles, dihedral potential effects as well as specific

interactions between polymer backbone and solvent.9,20–22

While experimental force-extension data of polypeptides is routinely fitted with the freely-

jointed chain (FJC) model, which is equivalent to the Langevin model for the alignment of a

dipole in an external field, the bond length that results from such a fit has no physical mean-

ing and in particular does not agree with the actual chemical peptide bond length. As a step

towards a more accurate description of experimental force-extension data of polypeptides,

the stretching response of a freely rotating chain (FRC) model, which includes a fixed bond

angle, was favorably compared with experimental data.23,24 The disadvantage of the FRC

model is that the force-extension relation is not available in closed form but must be calcu-

lated numerically by transfer matrix techniques. The resulting stretching behavior is quite

complex and exhibits three distinct scaling regimes, a low-force linear regime, an intermedi-
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ate regime that is similar to the response of a WLC chain, and finally a high force regime that

can be mapped onto the FJC model.23 But a peptide chain is also not accurately described

by the FRC model, since the peptide backbone bond lengths and angles are not all the same

and, more importantly, strong dihedral potentials exist that are very different for different

bonds along the peptide backbone. In fact, one of the bonds, the so-called peptide bond, is

almost unable to rotate. Motivated by this, the more general inhomogeneous partially freely

rotating chain (iPFRC) model25 was introduced, which, in addition to the inhomogeneous

bond lengths and bond angles along the peptide backbone, accounts for the stiff peptide

bond and fixes its dihedral angle to 180◦. All these models are ideal and neglect interactions

between amino acids as well as hydration effects, which for PEG have been demonstrated

to dramatically influence the stretching behavior.26 Particularly important for peptides are

the interactions between side chains of neighboring amino acids, which are difficult to treat

in theoretical polymer models.

In this paper, we investigate the force-extension relation of five different homopeptides

consisting of 13 amino acids by means of molecular dynamics (MD) simulations in explicit

water. In analogy to AFM experiments, we apply a constant force to the outermost Cα atoms

and determine the average end-to-end distance between those Cα atoms, as schematically

shown in Figure 1a and as done earlier for PEG and PNIPAM.26,27 We choose polyglycine

(GLY), which consists of only the peptide backbone and hence represents the structurally

simplest peptide, and in addition polyalanine (ALA), polyasparagine (ASN), polyglutamic

acid (GLU) and polylysine (LYS). These peptides span a wide range from hydrophobic to

hydrophilic and charged polymers.

In order to separate effects due to interactions between neighboring amino acids from

effects due to interactions between non-neighboring amino acids, we compare stretching sim-

ulations of tripeptides with stretching simulations of peptides consisting of 13 amino acids,

both in water. From this comparison we conclude that interactions between side chains of

neighboring amino acids are strong and modify significantly the unstretched peptide contour
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length and the backbone extensibility. By comparison of tripeptide simulations in water at

room temperature and in vacuum at zero temperature, we demonstrate that hydration effects

do not modify the peptide contour length and the peptide contour extensibility, which we

explain by a detailed hydrogen bonding analysis. The comparison with density-functional

quantum-chemistry calculations of stretched tripeptides shows that the MD peptide force

fields are well parameterized in terms of the backbone contour length and its extensibility.

We then extract the peptide Kuhn length from the low-force stretching response of 13-mers.

An analysis of dihedral angle distributions in terms of Ramachandran plots demonstrates

that indeed the peptide bond is not rotating, which confirms the basic assumption of the

iPFRC model. By comparison of the iPFRC model with the MD simulations at large stretch-

ing force, we determine the single undetermined parameter in the iPFRC model and show

that it provides an excellent description of MD stretching curves over the entire force range

if the contour length and contour extensibility are correctly taken into account. Finally,

we compare the force-extension relations from MD simulations and the iPFRC model with

experimental AFM results obtained previously24 for two different heteropolymers, titin and

spider silk (GVGVP), and for polylysine. The agreement is overall good but shows some

discrepancy in the 200 pN force range, which might be due to peptide bond isomerization ef-

fects. We also determine the energetic and entropic contributions to the stretching response

and find that water bridges, where one water forms two hydrogens bonds with the polypep-

tide, play only a marginal role in thermodynamically stabilizing homopeptide conformations

against stretching. We conclude that the iPFRC model is an accurate model for the descrip-

tion of peptide stretching, provided that effects due to restricted backbone dihedral rotation

and side-chain interactions are accounted for by suitably choosing the single fit parameter

of the iPFRC model.
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Figure 1: (a) Snapshot of an MD simulation of ALA13 at a stretching force of f = 1300 pN. (b)
Simulation results for the force-extension relation of five different polypeptides. The inset highlights
the high-stretching regime.

Results

In Figure 1a we show an MD simulation snapshot of an alanine chain with 13 residues, which

we abbreviate by ALA13, solvated in water at a stretching force of f = 1300 pN. Constant

stretching forces f , parallel to the z-axis, act in opposite directions on the first and last Cα

atoms. For each force, we calculate the time-averaged end-to-end distance zete in z-direction

between these two Cα atoms. In Figure 1b we present force-extension results for all five

polypeptides investigated in this study. All simulations are performed without added salt, in

the supplementary information, salt effects are shown to be negligible in the the force range

considered by us. Deviations between different peptides are revealed in the inset, where we

show the large stretching regime. Of the five polypeptides, polyglycine shows the largest

end-to-end distance zete for a given force, as we will explain based on an analysis of the

contour lengths of the different peptides later on.

In order to quantify the stretching response of different peptides, we first need to deter-

mine the contour length in the absence of an external force, which need not be the same

for the different peptides. For this we probe the stretching response of a tripeptide, which

is the smallest subunit of a polypeptide for which the separation vector between the outer
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Cα atoms in the stretched state is parallel to the end-to-end vector of the polypeptide.24

This is so because one amino acid residue consists of an odd number of backbone atoms,

namely three. Figures 2a and 2b show as solid lines the potential energy landscapes of all

tripeptides in vacuum at zero temperature as a function of the separation between the outer

Cα atoms, denoted by 2a, which are obtained from ground state optimization of the MD

force field (see Figure 2c for a snapshot and illustration of the geometry), where a denotes

the contour length per amino acid residue.

The results demonstrate the existence of different competing ground states that exhibit

sharp transitions as different ground state energies cross. The dotted lines in Figures 2a

and 2b correspond to the free energy landscapes obtained from MD umbrella simulations

of tripeptides in water at room temperature T=300K. For large stretching the differences

between the corresponding solid and broken lines are very small, which means that hydration

as well as conformational fluctuation effects are not important in the stretched state. For

small values of 2a, i.e. in the unstretched and compressed state, the differences between the

vacuum T = 0K results and the hydrated finite-T results are significant and the sharp tran-

sitions between different groundstates that are visible in the T = 0K results are expectedly

washed out at room temperature.

In Figures 2e and 2f we show the stretching forces of tripeptides, which are obtained from

the numerical derivative of the tripeptide energy and free energy landscapes. We define the

equilibrium monomer contour length a0 by the largest monomer length at which the force

vanishes and base our results, which are denoted by vertical colored arrows, on the forces

obtained within the vacuum calculations (solid lines). The resulting equilibrium monomer

lengths are 0.74 nm for glycine, 0.72 nm for alanine and 0.70 nm for asparagine, glutamic

acid and lysine. The fact that the glycine equilibrium monomer length is significantly larger

than for the other investigated peptides is explained by the fact polyglycine forms a perfectly

planar structure in the ground state, while the other polypeptides exhibit non-planar ground

states due to repulsive interactions between side chains and the backbone. This is illustrated
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Figure 2: (a+b) Comparison of energy landscapes in vacuum at T = 0K (solid lines) and free
energy landscapes in water at T = 300K (dotted lines) from MD simulations as function of the
separation between the terminal Cα atoms, 2a, for (a) GLY3, ALA3 and (b) ASN3, GLU3, LYS3
(ALA3 in red is shown for reference). Ground state conformations for a strongly stretched state
(2a = 0.77 nm) of (c) GLY3 and (d) ALA3 obtained from the MD force field in vacuum at T = 0K.
The structures reveal that the backbone of ALA3 is non planar, which is due to repulsive side-chain
backbone interactions. GLY3 on the other hand adopts a planar state at the same separation.
(e+f) Stretching forces of the different tripeptides, obtained by numerical derivative of the energy
and free energy landscapes in (a) and (b). The largest separation 2a0 where the stretching force
in vacuum vanishes is used to define the equilibrium monomer lengths a0, which are denoted by
vertical colored arrows. Note that the range of separations shown is decreased compared to (a)
and (b) in order to focus on the equilibrium configuration with separation 2a0. (g): Comparison
of stretching forces from quantum chemistry DFT in vacuum at T = 0K (data points), MD force-
fields in vacuum at T = 0K (solid lines), MD force-fields in water at T = 300K (dotted lines) for
the stretching force of alanine and glycine tripeptides.

in Figure 2c and d, where we show MD snapshots in vacuum and at T = 0K of GLY3 and

ALA3 at the same fixed separation 2a = 0.77 nm. This fixed separation corresponds to a

significant stretching force in the range of 2 nN. We see that the backbone of alanine is non

planar even at such a strong stretching force.

In Figure 2g we compare DFT results in vacuum at T = 0K with MD force-field results
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in vacuum at T = 0K and in water at T = 300K for the stretching force for glycine

and alanine tripeptides. DFT and MD results agree very well in the relevant force regime

between 0 pN and 1500 pN, which reflects that amber backbone force-field parameters have

been optimized using gas-phase QM calculations.28 The DFT results confirm the increased

resistance to stretching of alanine compared to glycine. An analysis of the MD interaction

energies in vacuum for ALA3 and GLY3 (cf. supporting information) shows that the smaller

contour length of alanine is caused by repulsive Lennard-Jones interactions between the

side-chain and the backbone. This means that backbone rotational degrees of freedom are

restricted by the presence of side-chains in alanine, the same mechanism acts for the other

polypeptides as well.

In order to further understand the structural differences between polyglycine and the

other polypeptides, we investigate backbone dihedral angles of polypeptides in water. The

nomenclature for the different backbone dihedral angles is defined in Figure 2c, φ denotes

the C–Cα –N–C dihedral angle and ψ denotes the N–C–Cα –N dihedral angle. We calcu-

late the dihedral angles φ and ψ for zero stretching force and for a large stretching force of

1300 pN by averaging over all 12 equivalent dihedral angles in the polypeptide. The resulting

Ramachandran plots for zero force for GLY13 and for ALA13 are shown in Figure 3a and

Figure 3b. We see that for glycine the distribution of the dihedral φ is symmetric and rather

broadly distributed, whereas for alanine the distribution is asymmetric and restricted to a

smaller region of the conformational space, which demonstrates the restricted backbone ro-

tation due to side-chain steric hindrance. The symmetry breaking persists to large stretching

forces of 1300 pN in Figure 3c and Figure 3d. These results show that even at large stretch-

ing forces alanine is not planar, while glycine is perfectly planar at such high forces. That

this effect is not specific to alanine but holds also for all other investigated polypeptides,

except glycine, can be seen in the plots Figures 3e to 3g. The intercept of the broken lines

in Figure 3 indicates the planar state, where φ = 180◦ and ψ = 180◦.

We next analyze the stretching response of all tripeptides quantitatively. In Figure 4
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Figure 3: (a - d): Ramachandran plots for GLY13 and ALA13 at 0 pN and 1300 pN from MD
simulations in water. All φ and ψ angles of the polypeptides are averaged. Side-chain interactions
in polyalanine shift the most probable (red) region away from the symmetric planar state φ =
180◦, ψ = 180◦ (intercept of the broken lines). The results for polyglycine on the other hand
indicate a planar conformation. The results are in close agreement with previously published
Ramachandran plots of GLY3 and ALA3.

28–31 MD simulations snapshots in water show the most
probable conformations of a part of the polypeptides. (e - g): Ramachandran plots of ASN13,
GLU13 and LYS13 at a stretching force of 1300 pN show that all peptides except glycine adopt non
planar most probable states.
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Figure 4: (a) Stretching force for GLY3 and ALA3 tripeptides in vacuum and at T = 0K as a
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defined in eq 5, which are fitted to the MD results, illustrate the relative importance of the stretching
moduli γ1 and γ2. (b) Results for ASN3, GLU3 and LYS3. Results for ALA3 in red are included
for reference.

we again show our results for the stretching force of tripeptides in vacuum and at T = 0K

obtained from DFT and MD force fields as a function of the end-to-end distance 2a. We fit

the stretching force from the MD zero-temperature calculations by a second-order polynomial

function, similar to a previous analysis,24 given by

f = γ1

(

a

a0
− 1

)

+ γ2

(

a

a0
− 1

)2

, (1)

where we use the equilibrium monomer lengths a0 as determined in Figures 2e and 2f. The

linear stretching modulus coefficient γ1 is determined by a local fit for monomer lengths a

above the equilibrium monomer length a0 in the range 0 ≤ (a/a0 − 1) < 0.015. For the

non-linear coefficient γ2 the full range of data is used for fitting. The fits to the MD results

are presented in Figure 4 as dotted lines (including only the first order) and as dashed lines

(including first and second-order). It is seen that non-linear stretching effects are rather

small for glycine while non-linear effects are important for alanine. This can be explained

by the fact that alanine is rather soft for small stretching due to its non-planar ground state
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and hardens for larger stretching, similar to results observed previously for the stretching of

RNA molecules.24 We conclude that the non-linear model eq 1 fits the T = 0K stretching

response of tripeptides very well over the entire force range.

The parameters extracted so far describe the zero-temperature stretching response of

polypeptides and thus neglect the effects of conformational fluctuations. Finite-temperature

fluctuation effects in fact become important for stretching forces smaller than roughly 1 nN.24

For low forces the stretching response of polymers is characterized by a linear relation between

the end-to-end extension zete (normalized by the equilibrium unstretched contour length L0)

and the applied stretching force f according to

zete
L0

=
faKuhn

3kBT
, (2)

which defines the Kuhn length aKuhn.
32–34 This relation holds if the low-stretching condition

faKuhn < kBT is satisfied and if monomer-monomer interactions are neglected.35,36 Since

the polypeptides used in our simulations are rather short, the transition from the linear

stretching response zete ∼ f to the non-linear Pincus stretching response zete ∼ f 2/3, which
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Figure 5: (a): Low-force MD simulation results. Solid lines depict linear fits according to eq 2 and
yield estimates for the Kuhn length aKuhn for the different polypeptides. (b): Same results as in
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is expected to occur in the presence of repulsive monomer-monomer interactions at very low

stretching forces, cannot be observed.37–39 In the supporting information we demonstrate

that the addition of salt into our simulations does not change the stretching response, we

conclude that electrostatic repulsive interactions between charged side chains are not relevant

in the force regime we are investigating. Figure 5a shows the MD force-extension data in the

small force regime. We extract aKuhn from the MD simulation results by linear fits in the force

range 0 ≤ f < fmax, indicated by solid straight lines. The upper bound fmax is determined

by the aforementioned condition fmaxaKuhn = kBT and is indicated by dotted horizontal

lines in Figure 5a. The contour length L0 at zero force in eq 2 is given by 12 × a0, where

the equilibrium monomer lengths a0 are taken from Figures 2e and 2f. The resulting Kuhn

lengths are shown in Figure 5c for all different peptides. Except for asparagine, a larger

side-chain size leads to a larger Kuhn length. The inset of Figure 5c shows the squared

radius of gyration RG at zero force as a function of the Kuhn length. The relation between

the squared radius of gyration R2
G and the Kuhn length aKuhn is described by the heuristic

relation

R2
G/N = αaKuhna0 + β, (3)

where α = 0.04 and β = 0.025 nm2 are the best-fit values. The presence of a finite offset β

is unexpected but obviously needed to describe the data.

We have so far determined the most important polymer parameters of the different

polypeptides investigated in this study, namely the equilibrium unstretched monomer length

a0, from which the contour length L0 = Na0 in the absence of a stretching force can be

calculated, the Kuhn length aKuhn, and the non-linear elastic coefficients that characterize

the stretching response of the contour length. Notably, all these parameters are rather differ-

ent for different polypeptides. The Kuhn length describes the low-force stretching response,

while the elastic parameters describe the high-force stretching response of polymers. We now

set out to describe the polypeptide stretching response at intermediate forces. Based on the

stretching response of a partially restricted freely-rotating chain model,23 a simple heuris-
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Figure 6: Ramachandran plots of the dihedral angles for zero stretching force demonstrate that
the dihedral angle ω that characterizes rotations around the peptide bond is restricted and fixed
to 180◦. The other two dihedral angles, φ and ψ, exhibit rather broad distributions the shapes of
which depend sensitively on the peptide type.

tic formula for the force-extension relation of polypeptides, which omits the intermediate

worm-like-chain stretching regime, was given as 25

fiPFRC =
kBT zete
L(f)

(

3

aKuhn

+
1

c a0

zete/L(f)

1− zete/L(f)

)

. (4)

Note that this expression is constructed such as to reproduce both the low-force and the

high-force limits of the stretching response of a rotating chain model. We here generalize the

iPFRC model by allowing the contour length L(f) to be force-dependent, which is motivated

by the results shown in Figures 4a and 4b. As a main feature, the inhomogeneous partially

freely rotating chain (iPFRC) model accounts for the fact that the dihedral angle ω, which

describes the peptide bond, defined by Cα –N–C–Cα, is fixed at 180◦, see Figure 2c for

a graphical definition. In the original iPFRC model, the other two dihedral angles, φ and

ψ (as defined in Figure 2c), are free to rotate, which clearly is an approximation. To test
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whether the dihedral angle ω is restricted in our simulations, we consider Ramachandran plots

of all different combinations of dihedral angles. Two-dimensional probability histograms

of dihedral angles from simulations at zero stretching force are shown in Figure 6. The

results support the assumption that the dihedral angle characterizing the peptide bond ω

is restricted to 180◦. Furthermore, we see that the other two dihedral angles, φ and ψ, are

restricted in their rotation to different degrees, depending on the peptide type. This suggests

that the parameter c in eq 4, which was determined from transfer-matrix calculations where

two of the three dihedral angles in the peptide backbone were completely free to rotate, must

be adjusted.

The relation between the force-dependent contour length L(f) and the unstretched con-

tour length L0 follows from eq 1 as

L(f) = L0

(

1 +

√

γ21 + 4γ2f − γ1
2γ2

)

, for

√

γ21 + 4γ2f − γ1
2γ2

≥ 0. (5)

The large force stretching response from eq 4 follows as
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Figure 8: Comparison of the simulated force-stretching data to the stretching model eq 4 (lines).
The force-dependent contour length is given by eq 5, for the solid lines the c parameter values
are used as deduced from the MD simulations in Figure 7. We also show predictions using the
previously determined parameter values for the iFRC and iPFRC models25 (dotted and dashed
lines).

(

1−
zete
L(f)

)−1

=
ca0
kBT

× f. (6)

To determine the parameter c we plot 1/(1−zete/L(f)) as a function of the applied stretching

force f in Figure 7. We use a least-square fit algorithm based on eq 6 for forces between

10 pN and 400 pN, since for forces above 400 pN solvation effects, finite-temperature effects

and higher-order elastic effects presumably modify the dependence of the contour length

L(f) on force compared to the elastic response we extracted from our MD simulations of

tripeptides at zero temperature. The resulting values for c are given in Figure 7.

Now that we have determined all parameters of the iPFRC model from simulations,

which are compiled in Table 1, we can describe the simulated force-stretching data over

the entire force range without any adjustable parameters and thereby test the applicability

of the heuristic force-extension relation eq 4. In Figure 8 we present the MD simulation
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data by plotting the logarithm of the force versus the linear end-to-end distance divided by

the force-dependent contour length L(f). In Figure 8 a we compare data for all different

Table 1: Parameters obtained from simulations including the equilibrium monomer length a0, the
Kuhn length aKuhn, the linear and non-linear stretching moduli γ1 and γ2 and the parameter c of
the iPFRC model.

aKuhn[nm] a0[nm] γ1[nN] γ2[nN] c
Glycine 0.45± 0.02 0.368 32.3± 0.1 78.6± 0.2 1.57± 0.06
Alanine 0.91± 0.09 0.359 9.4± 0.3 189.9± 0.7 2.07± 0.14
Asparagine 0.35± 0.04 0.351 5.3± 0.2 137.8± 1.4 1.95± 0.09
Glutamic acid 1.49± 0.18 0.351 6.2± 0.4 137.7± 0.9 2.68± 0.14
Lysine 2.92± 0.15 0.349 4.0± 1.0 136.9± 1.1 2.45± 0.22

polypeptides and in the other subfigures we compare data for individual polypeptides with

eq 4. For comparison, we here also show results for previously determined values of c, as

predicted from the inhomogeneous partially freely rotating chain model, ciPFRC = 0.807, and

the inhomogeneous freely rotating chain model, ciFRC = 0.515.25 Our results show that with

the c values extracted by fits to the MD simulation data, which are generally higher than the

previously estimated values ciPFRC and ciFRC, less force is needed in the intermediate regime

to stretch the peptides. This reflects the fact that previous models have neglected side-chain

interactions, which of course are included in the MD simulations.
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Figure 9: (a) Snapshots of ALA13 from MD simulations for several different applied forces. Com-
parison of the iPFRC model predictions (solid lines) with (b) experimental single polypeptide data
from AFM stretching experiments24 (open data points) and with (c) simulation data (filled data
points) for the logarithm of the stretching force versus the end-to-end distance rescaled by the
unstretched contour length L0. (d) and (e): Same data as in (b) and (c) but on a linear force
scale. Here in addition the force-dependent contour lengths are shown as determined in this study
(dashed lines) and as determined by Hugel et al. for polyglycine24 (dashed-dotted line).
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In Figure 9b and c we compare iPFRC modeling results (solid lines) with previously

published experimental AFM results for the stretching of different single polypeptides24 and

with our MD simulation results, where we show the logarithm of the force versus the end-to-

end distance zete rescaled by the unstretched contour length L0. The experimental contour

length L0 we take from the original paper:24 There, a fit of the experimental data in the large

force regime according to zete = L(f)× (1− kBT/(2bf)) with b = 0.154 nm was done, where

L(f) is given by eq 5 with the parameters a0 = 0.365 nm, γ1 = 27.4 nN and γ2 = 109.8 nN.

These parameters were determined previously from DFT calculations of polyglycine.24 For

the rescaling of our MD simulation results we use the parameters for a0, γ1, γ2 and c as

derived from MD simulations in the present paper, which for polyglycine are very similar to

the parameters obtained earlier.24 The comparison does not employ additional fit parame-

ters. The agreement between experimental and iPFRC results in Figure 9b is fair over the

experimentally probed force range, which primarily validates the MD force-field that was

used to obtain the iPFRC parameters. Note that only one of the three experimental data

sets, polylysine, corresponds to a homo-polypeptide; polyGVGVP is a repeating pentameric

sequence and titin consists of a titin domain repeat, so the comparison with our homopoly-

meric results can strictly be done only for polylysine. In fact, the three different experimental

sequences agree with each other for forces above 30 pN, where data for all three sets is avail-

able. Unfortunately, for smaller forces, where our results would predict differences between

different sequences to show up, data for only polyGVGVP is available, which is seen to agree

quite well with our results for polyglycine and polyasparagine. Interestingly, deviations

between the experimental and modeling results appear in the force regime around 200-400

pN. The origin of this discrepancy is unclear, we speculate that it might be related to kinet-

ically frozen dihedral angle flips. Additional experiments that specifically probe aging and

memory effects and that use different stretching rates would be highly desirable in order to

understand these deviations.

In Figure 9d and Figure 9e we compare experimental and simulation data with iPFRC
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results on a linear force scale. Here we in addition also show the force-dependent contour

length as given by eq 5. The contour stretching response as determined from our simulation

results is shown as broken lines, the contour stretching response for glycine using the param-

eters determined previously by Hugel et al.24 is shown as a dashed-dotted line, these two

estimates are seen to differ only slightly. This shows that the way we compare experimental

data with modeling results is consistent.

In Figure 9a we depict MD simulation snapshots of ALA13 for a few different applied

forces. Only for the smallest force f = 1 pN are monomer-monomer contacts seen, the

snapshots thus indicate that for the force range we are interested in, which is substantially

larger, interactions between amino acid residues can be neglected.

Finally, we investigate the entropic and energetic contributions to the stretching free

energy. The stretching free energy is calculated by integrating the force-extension rela-

tion according to ∆F (zete) =
∫ zete

0
f(z′ete) dz

′

ete. The change in internal energy ∆U is di-

rectly calculated from the simulation trajectories. The change in entropy then follows as

−T∆S = ∆F −∆U . All contributions are divided by the number of monomeric units and

thus refer to monomeric quantities. In Figure 10a we show the free energy and its decomposi-

tion into internal energy and entropy. We see that the stretching response is mostly entropic

in nature and that for alanine and glutamic acid a noticeable attractive energetic contribu-

tion is present. All energy curves increase steeply for large force, which in the supporting

information is demonstrated to be due to backbone bond stretching and backbone angle de-

formation. In Figure 10b we show the mean number of hydrogen bonds per residue between

peptides and water, nHB/N, as well as the ratio between the mean number of water-bridges

and the mean number of hydrogen-bonds between peptides and water, 2nWB/nHB. A water

bridge is defined as a water molecule that forms two hydrogen bonds with the polypeptide.26

An example of a water bridge is shown in the inset of Figure 10b. We see that the number of

hydrogen bonds between peptide and water does not change with the stretching force, from

which we conclude by inversion that interactions with water do only have a marginal impact
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Figure 10: (a) The polypeptide stretching free energy is decomposed into internal energy and
entropic contributions. The stretching free energy is calculated by the integral of the force-extension
relation. (b) The mean number of hydrogen bonds per monomeric unit between the polypeptides
and water, nHB/N, is shown to change only weakly as a function of the stretching force. The force-
dependent ratio between the mean number of water-bridges and the mean number of hydrogen
bonds between the polypeptide and water, 2nWB/nHB, depends strongly on peptide type but only
weakly on stretching force.

on the stretching response of polypeptides. This is in line with our previous observation that

the stretching response of tripeptides is very similar in vacuum and in water.
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Conclusions

We present extensive MD simulation results for the force-extension relation of five different

homopeptides in explicit water and compare with the iPFRC model force-extension relation,

with quantum-chemistry calculations as well as with previously published experimental AFM

data. The parameters for the equilibrium monomer length a0 and the linear and nonlinear

contour length stretching moduli γ0 and γ1 are determined from tripeptide simulations in

vacuum and in water. The Kuhn length aKuhn is extracted from the linear relation of stretch-

ing force and relative extension for 13-mers in the low-force regime. All these parameters

depend strongly on the peptide type. The applicability of the inhomogeneous partially freely

rotating chain (iPFRC) model is analyzed by detailed analysis of Ramachandran plots and it

is shown that side-chain interactions in peptides modify the iPFRC parameter c that plays

a prominent role in the high-force regime. It is shown that the iPFRC model describes

the simulated force-extension very well over the entire force range without additional freely

adjustable parameters. Agreement with published experimental data is good over the force

range where experimental data is available, but shows significant deviations in the mid-

force regime around 200-400 pN, which suggests further experimental studies in the future.

We thus demonstrate that if all relevant parameters such as the the equilibrium monomer

length, the Kuhn length, the iPFRC parameter c and the stretching moduli are determined,

the global force-stretching relation of peptides can be quantitatively predicted. This will

help to interpret polypeptide force-extension relations measured experimentally in different

applications and scenarios. The stretching of the contour length is important in the high-

force regime. The effect of amino-acid interactions is expected to show up in the low-force

regime and can be included by incorporating existing scaling models.35,36 A decomposition

of the stretching free energy into energetic and entropic contributions shows that peptide

stretching is mostly entropic, which is different from previous results found for PEG.26,27

This result is rationalized by an analysis of the number of hydrogen bonds between water

and peptide and of the number of water-bridges, which depend very little on the applied
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force.

Methods

All MD simulations are performed using the Gromacs simulation package version 5.1.5, some

simulations were additionally done with the version 2016.1.40 The time step is set to 2 fs,

the temperature is set to 300 K and the pressure is set to 1 bar with a water compressibil-

ity of 4.5× 10−5 bar−1. For temperature coupling we use the v-rescale41 and for pressure

coupling the Parrinello-Rahman42 algorithm with relaxation times of 0.1 ps and 0.5 ps, re-

spectively. All simulations are performed using periodic boundary conditions. The cut-off

for non-bonded interactions is set to 1.0 nm. The particle mesh Ewald method43 is used to

calculate the long-range electrostatic interactions. Except for the tripeptide calculations, all

homopeptides investigated consist of 13 amino acids. The first and last Cα atoms along the

backbone are the anchor points for constant forces that are applied in opposite directions

in the z-direction. The polypeptides are simulated in a box with dimensions of 4.5 nm in x-

and y- and 12.5 nm in z-direction. Production runs for low forces have a simulation time

of up to 830 ns, for high forces the simulations times are at least 200 ns. The mean end-

to-end distance zete in stretching-direction is defined by the time average over the distance

in z-direction between the first and the last Cα atom of the backbone of the polypeptide

as zete = 〈zC1
α
−C13

α

〉. We simulate polyalanine, polyasparagine, polyglutamic acid, polyg-

lycine and polylysine. The caps of the polypeptides are chosen in the zwitterionic form. All

polypeptides are simulated using the amber99sb force field.44 The bond lengths are not con-

straint. In the initial configuration of the simulations the dihedral angles are all 180◦, which

for GLY13 corresponds to a length of zC1
α
−C13

α

= 4.38 nm. Initial configurations are created

with Avogadro.45 The exported pdb file is converted to Gromacs input files using pdb2gmx.

For the polypeptides with charged side chains, such as polylysine and polyglutamic acid, all

side chains are charged. The system is neutralized by inserting the same number of counter
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ions Na+ or Cl– . Simulations with added salt are shown in the supplementary information.

For water, the recommended force field tip3p is used.46 To equilibrate the system before pro-

duction runs, an energy minimization followed by a 1 ns NPT simulation is performed. For a

given polypeptide, the same equilibrated configuration is used for initializing all production

runs at different forces. We analyzed the auto-correlation function of the end-to-end sepa-

ration to confirm that the relaxation time is much smaller than the simulation time. From

the ratio of simulation times and relaxation times the number of uncorrelated configurations

is estimated, which is then used for the calculation of the standard error of expectation val-

ues. For the hydrogen bond analysis, a donor-acceptor distance cutoff of 3.5 Å and an angle

cutoff of 150◦ is used, which agrees with cutoffs used in the definition of strong hydrogen

bonds.47–49 The number of hydrogen bonds between water and the polypeptide is analyzed

every 0.2 ns using the tools MDAnalysis.analysis.hbonds.hbond analysis.50,51 A water

molecule that forms two hydrogen bonds with the polypeptide is denoted as a water bridge.

For the umbrella simulations, tripeptides are put in a 2.5 × 2.5 × 2.5 nm3 box with 503

water molecules. After energy minimization, the box is equilibrated for 1 ns in an NPT

simulation. Afterwards, a harmonic potential with a force constant of 200 000 kJ/(mol nm2)

is applied between the first and the last Cα atoms. The minimum of the harmonic potential is

varied between 0.50 nm and 0.80 nm in steps of 0.01 nm. The number of windows is therefore

given by 30. The simulations are analyzed using the WHAM algorithm.52

For the estimate of the force response of a monomer in vacuum, we perform energy

minimizations in double precision, where a single stretched tripeptide is put in a 2.5× 2.5×

2.5 nm3 box without any water molecules. The distance 2a between the first and the last

Cα atoms is constrained during each energy minimization. For each value of 2a we perform

two indepedent minimizations using the steepest descent method and using the conjugate

gradient method and choose the result that gives the lower energy, which helps to avoid

the pitfall of being stuck in a local energy minimum. We then change the value of 2a in

steps of 0.01 nm and use the result from the previous minimization as starting point. By
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starting from various different initial configurations, we ensure to obtain the lowest energy

structures for all values of 2a. For steepest descent, the maximum step size is set to 0.01 nm

and the maximum tolerance is set to 1 kJ/(mol nm). The same tolerance value is used for

the conjugate gradient method. The dielectric constant for the energy minimization is set

to the bulk value of tip3p water, which we found to be 106 at 300K. This value matches

reasonable well the reported value of 97 ± 7 by Höchtl et al.,53 which was simulated with

AMBER 4.154 in a box with 2.5 nm side length.

In order to support the results from classical simulations and exclude the possibility

that differences between glycine and other peptides are force-field specific effects, density

functional theory (DFT) calculations are performed. The tripeptide structures are simplified

compared to the MD simulations by substituting the capping groups for neutral methyl

groups (CH3 –NH–CO–CR–NH–CO–CH3). We limit the computations to two systems,

glycine and alanine. Energy minimizations of the structures in vacuum at fixed separations

between the C atoms of the caps are performed for several values around 2a = 0.73 nm,

starting from optimized geometries of the corresponding classical simulations. For the DFT

calculations, we use the CP2K 4.1 environment with a correlation-consistent polarized triple-

zeta basis set augmented with diffuse functions, the BLYP exchange-correlation functional

and D3 dispersion corrections.55–57

Associated Content

Supporting Information. Stretching response in salt solution, origin of different backbone

stretching moduli. This material is available free of charge via the Internet at http://pubs.acs.org.
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