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Abstract – We study the non-Markovian Langevin dynamics of a massive particle in a one-
dimensional double-well potential in the presence of multi-exponential memory by simulations.
We consider memory functions as the sum of two or three exponentials with different friction
amplitudes γi and different memory times τi and confirm the validity of a previously suggested
heuristic formula for the mean first-passage time τMFP . Based on the heuristic formula, we derive
a general scaling diagram that features a Markovian regime for short memory times, an asymptotic
long-memory-time regime where barrier crossing is slowed down and τMFP grows quadratically
with the memory time, and a non-Markovian intermediate regime where barrier crossing is slightly
accelerated or slightly slowed down, depending primarily on the particle mass. The relative weight
of different exponential memory contributions is described by the scaling variable γi/τ

2

i , i.e.,
memory contributions with long memory times or small amplitudes are negligible compared to
other memory contributions.

Introduction. – Most rare events in biology and
chemistry at the nano-scale, e.g. chemical reactions and
protein folding, are governed by thermal noise and can
be described by Langevin or Fokker-Plank equations. Of-
ten these processes are approximated by barrier crossing
events in a one-dimensional reaction-coordinate landscape
[1–10]. The Markovian approximation assumes that all
orthogonal degrees of freedom relax faster than the dif-
fusive and inertial time scales of the reaction coordinate
[11–16]. However, this approximation is not always valid,
for example for dihedral barrier dynamics in peptides and
ion-pairing kinetics, the characteristic time scales of the
reaction coordinate and the environment are similar and,
therefore, one has to account for non-Markovian effects
[17–23]. It was shown that for single-exponential mem-
ory, for long memory time the mean first-passage time
τMFP follows an asymptotic power law τMFP ≃ τ2/γ
as function of the memory time τ and the friction coef-
ficient γ [24]. This means that in the presence of very
slowly decaying memory, the barrier-crossing kinetics is
modified even when the MFPT is much longer than the
memory time; thus, simple time-scale separation, accord-
ing to which memory should only influence the MFPT up
to time scales of the memory time itself, breaks down.

For intermediate values of the memory time and in the
friction-dominated regime, memory was shown to speed
up barrier-crossing kinetics, meaning that the MFPT be-
comes shorter than in the Markovian limit [24]. Thus,
whether memory speeds up or slows down reaction kinet-
ics depends on the precise value of the memory time. For
most systems, memory effects are not characterized by one
time scale and one necessarily has to take into account
several memory time scales depending on the complexity
of the system [11, 17, 25–28]. Very recently it was shown
that for bi-exponential memory and the restricted case
where both exponentials contribute equally to the total
friction, the barrier-crossing time becomes independent of
the longer memory time if at least one of the two memory
times is larger than the intrinsic diffusion time [29]. In the
present work, we focus on barrier crossing in the presence
of a memory function that is written as a sum of two or
three exponentials with unequal friction amplitudes and
confirm that a previously proposed heuristic formula for
the mean first passage time τMFP [29] is valid also when
the friction amplitudes and memory times of the individ-
ual exponential memory contributions vary widely. Based
on the heuristic formula, we show that the weight of indi-
vidual exponential memory contributions is governed by
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the scaling variables γi/τ
2
i , meaning that memory contri-

butions with long memory times or small friction ampli-
tudes become negligible compared to other memory con-
tributions. We construct a general scaling diagram for bi-
exponential memory in terms of the scaling variables γ1/τ

2
1

and γ2/τ
2
2 that displays a Markovian regime for large

γ1/τ
2
1 and γ2/τ

2
2 , an asymptotic non-Markovian regime for

small γ1/τ
2
1 and γ2/τ

2
2 where τMFP grows quadratically

with the memory times, and non-Markovian intermediate
regimes where barrier crossing is slightly accelerated or
slightly slowed down, depending on particle mass and the
friction amplitude ratio γ1/γ2.
To proceed, we consider the generalized Langevin equa-

tion (GLE) [10,30–35]

mẍ(t) = −

∫
t

0

Γ(t− t′)ẋ(t′)dt′ − U ′ (x(t)) + FR(t), (1)

where m is the effective mass of the reaction coordinate
x, Γ(t) is the memory kernel function and U ′(x) is the
derivative of the potential U(x). FR(t) denotes the Gaus-
sian time-dependent random force with 〈FR(t)〉 = 0. In
equilibrium, which is the scenario we consider in this pa-
per, the relation between the friction kernel Γ(t) and the
autocorrelation of the random force is

〈FR(t)FR(t
′)〉 = kBTΓ(|t− t′|), (2)

where T is the temperature and kB is the Boltzmann con-
stant. In non-equilibrium situations, this relation is not
satisfied anymore and one has to deal with in general two
distinct functions, namely the memory function and the
noise correlation function [21,36]. In fact, non-equilibrium
scenarios with colored noise have been shown to be useful
for accelerating simulations [37].

We choose a symmetric double-well potential

U(x) = U0

[

( x

L

)2

− 1

]2

, (3)

where the separation between the two wells is 2L and the
barrier height is defined by U0. In the main part of this
article we use U0 = 3kBT .

We consider the memory kernel as a sum of N exponen-
tials

Γ(t) =
N
∑

i=1

γi
τi
e−t/τi , (4)

where τi and γi are the memory times and friction coef-
ficients. Accordingly, the random force in eq. (1) can be
decomposed as

FR(t) =

N
∑

i=1

fRi
(t), (5)

where

〈fRi
(t)fRj

(t′)〉 = kBT
γi
τi
e−|t−t′|/τiδij . (6)
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Figure 1: Two-dimensional particle trajectories for
τm/τD = 0.01 and γ2/γ1 = 10 without an external po-
tential for the Markovian case τ1/τD = τ2/τD = 0 (red),
for bi-exponential memory with τ1/τD = 0.01, τ2/τD =
0.00316 (green) and τ1/τD = 100, τ2/τD = 31.6 (blue).

The integral over the memory function γ =
∫∞
0

Γ(t)dt =
∑N

i=1 γi defines the total friction coefficient and by con-
struction is independent of the memory times. For ease of
discussion, we introduce two effective time scales,

τD =
L2γ

kBT
, (7)

τm =
m

γ
. (8)

The diffusion time τD is the time it would take the
particle in the overdamped limit and in the absence of
a potential to diffuse by L, the inertial time τm char-
acterizes the time scale of viscous dissipation of particle
momentum. For N = 2 we can thus describe the sys-
tem by U0/(kBT ) and three dimensionless time scale ra-
tios τm/τD, τ1/τD and τ2/τD. To simulate the GLE in an
efficient manner, we couple auxiliary variables with relax-
ation times τi and friction coefficients γi to the particle
[38], as explained in the Methods Section. The numerical
simulations are based on a fourth-order Runge-Kutta in-
tegration scheme [39,40]. From the simulations, we obtain
the first-passage time (FPT) distribution, defined as the
distribution of times necessary for the particle to go from
one potential minimum to the other for the first time. By
averaging over the FPT distribution we obtain the mean
first-passage time (MFPT) τMFP .

To illustrate the effects of memory on the dynamics we
plot in Fig. 1 particle trajectories in two spatial dimen-
sions for vanishing potential U(x, y) = 0 and for vari-
ous memory times τ1/τD and τ2/τD for τm/τD = 0.01
and γ2/γ1 = 10. One clearly sees drastic differences be-
tween the Markovian case (red) for τ1/τD = τ2/τD =
0, the intermediate-memory case (green) for τ1/τD =
0.01, τ2/τD = 0.00316 and the long-memory case (blue) for
τ1/τD = 100, τ2/τD = 31.6, the longer the memory times,
the more persistent the particle trajectories become.
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Results. – We first consider bi-exponential memory.
Fig. 2a shows the rescaled MFPT τMFP /τD as a func-
tion of τ1/τD for fixed τm/τD = 1 and γ2/γ1 = 2. Dif-
ferent colours in Fig. 2a label different values of τ2/τD.
We observe that in the right part of the plot, i.e. for
τ2/τD ≪ τ1/τD, the value of the MFPT becomes inde-
pendent of τ1/τD, i.e. the value of the longer memory
time becomes irrelevant.
We compare our results for the MFPT with a heuris-

tic crossover formula that was previously proposed based
on simulations for bi-exponential memory functions with
equal amplitudes γ1 = γ2, and which is given by [29]

τMFP =
∑

τ iOD +
(

∑

1/τ iED

)−1

, (9)

which is the sum of the overdamped contribution

τ i
OD

τD
=

γie
βU0

γβU0

[

π

2
√
2

1

1 + 10βU0τi/τD
+

√

βU0

τm

τD

]

(10)

and the energy-diffusion contribution to the MFPT

τ i
ED

τD
=

γeβU0

γiβU0

[

τm

τD
+ 4βU0

(

τi

τD

)

2

+

√

βU0

τm

τD

]

, (11)

where β−1 = kBT .
The heuristic formula eq. (9) is shown by continuous

lines in Fig. 2a and is seen to describe the numerical data
very accurately. The black horizontal lines to the right de-
note the predictions of the heuristic formula in the single-
exponential case and are obtained by setting γ1 = 0 in
eq. (9) and using the unmodified value of τD for the rescal-
ing of the MFPT in Fig. 2a.
This demonstrates that for a memory time τ1 that

is long compared to the diffusion time, that means for
τ1/τD ≫ 1, the effect of the exponential memory contri-
bution proportional to γ1 on the MFPT disappears, as has
been shown for the symmetric friction case γ1 = γ2 before
[29]. For τ2/τD = 0.1 and τ2/τD = 0.316 the MFPT is
almost constant over the entire range of τ1/τD, which re-
flects the fact that for these values of τ2/τD, in both limits
τ1/τD ≪ 1 as well as τ1/τD ≫ 1, the MFPT is dominated
by the overdamped contribution to the MFPT in eq. (10).
Next we investigate how the ratio between the two fric-

tion coefficients γ2/γ1 affects the MFPT. For this we show
in Fig. 2b the rescaled MFPT τMFP /τD as function of
γ2/γ1 for various values of τm/τD and fixed τ1/τD = 1 and
τ2/τD = 10. There are some deviations between the sim-
ulation results and eq. (9), in particular for small γ2/γ1,
but overall the heuristic formula constitutes a good ap-
proximation of our simulations results. We notice that in
the left and the right parts of the figure, i.e. for γ2 ≪ γ1
and γ2 ≫ γ1, respectively, τMFP becomes constant. The
black horizontal lines denote the predictions of the heuris-
tic formula in the single-exponential case for γ1 = 0 on
the left and for γ2 = 0 on the right. As expected, as
the amplitude of one of the two exponential contributions

to the memory kernel becomes substantially smaller than
the amplitude of the other contribution, its effect on the
MFPT disappears.

In Fig. 2c the ratio between the memory times τ2 and
τ1 is larger and corresponds to 100. Similarly to Fig. 2b,
in the left and right parts of the plot the MFPTs satu-
rate at constant values, but the crossover regime within
which the MFPT depends on the friction coefficient ratio
γ2/γ1 is larger. While in Fig. 2b, where τ2/τ1 = 10, the
crossover regime spans two orders of magnitude in γ2/γ1,
the crossover regime in Fig. 2c, where τ2/τ1 = 100, ex-
tends over four orders of magnitude in γ2/γ1. This sug-
gests already that the scaling variable that describes the
relative importance of exponential memory contributions
is proportional to γi/τ

2
i , which further below we will derive

from the heuristic formula eq. (9).
We now consider triple-exponential memory ker-

nels, which are characterized by three friction co-
efficients γ1, γ2, γ3 and three rescaled memory times
τ1/τD, τ2/τD, τ3/τD and τm/τD. In Fig. 3 we compare
simulation data with the heuristic formula eq. (9). In the
two plots, the MFPT is shown as function of γ2/γ1 and
γ1/γ2 for various fixed values of γ3/γ1 and γ3/γ2, respec-
tively, and for fixed values of τ1/τD = 0.316, τ2/τD = 1,
τ3/τD = 3.16. In both plots we observe good agreement
between the heuristic formula, shown by solid lines, and
the simulation data, shown by stars, demonstrating the
validity of the heuristic formula also for tri-exponential
memory kernels. This suggests that the heuristic formula
eq. (9) holds also for any multi-exponential memory.
We also observe in Fig. 3 in both plots, that τMFP /τD

reaches the single-exponential limit, marked by a horizon-
tal black line to the right, if the amplitude of one memory
kernel becomes very large, i.e. for γ2/γ1 → ∞ in Fig. 3a
and γ1/γ2 → ∞ in Fig. 3b. If the amplitude of one ex-
ponential memory contribution becomes very small, i.e.
for γ2/γ1 → 0 in Fig. 3a and γ1/γ2 → 0 in Fig. 3b, the
bi-exponential memory kernel limit is asymptotically ap-
proached, which is marked by horizontal black lines to the
left.
In Fig. 4 we show simulation data for the rescaled

MFPT τMFP /τD for bi-exponential memory as a function
of the rescaled barrier height U0/kBT and compare with
the heuristic formula eq. (9). We observe good agreement
for barrier heights larger than U0/kBT ≥ 2 for all three
friction coefficient ratios γ2/γ1 = 0.1, 2, 10. This means
that the asymptotic exponential scaling of MFPT, domi-
nated by the exponential τMFP ∼ eU0/kBT and which cor-
responds to the classical Arrhenius law, is already realized
for quite small barrier heights.

We thus have established that the heuristic formula for
the MFPT, eq. (9), is a good approximation for multi-
exponential memory kernels with general friction coeffi-
cients and memory times if the barrier height is larger
than a few kBT . Based on this validation, we will use
that formula to investigate the global scaling behavior of
τMFP . We first derive the proper scaling variables to be
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Figure 2: Mean first-passage time for bi-exponential memory and U0/kBT = 3: (a) The rescaled MFPT τMFP /τD as a function
of τ1/τD for several values of τ2/τD and fixed τm/τD = 1, γ2/γ1 = 2. (b) τMFP /τD for fixed τ1/τD = 1, τ2/τD = 10 as a
function of γ2/γ1 for several values of τm/τD, (c) τMFP /τD for fixed τ1/τD = 0.316, τ2/τD = 31.6 as a function of γ2/γ1 for
several values of τm/τD. Stars show the simulation results and colored lines represent the heuristic formula eq. (9). In plot a)
the black horizontal lines for high τ1/τD values denote the heuristic formula for a single exponential memory kernel, i.e. γ1 = 0.
The horizontal black lines in (b) and (c) denote the heuristic formula for a single exponential memory kernel for γ2 = 0 on the
left and γ1 = 0 on the right.

used in a global analysis of the MFPT. If we assume that
for all memory times τi/τD ≫ 1 holds, eq. (9) simplifies
to

τMFP

τD
∝ 4eβU0

[

∑

i

(

τ2D
τ2i

γi
γ

)

]−1

. (12)

This demonstrates that the MFPT in this limit depends

on the scaling variables
[

(τD/τi)
2γi/γ

]−1
and that it is

dominated by the exponential memory contribution for
which (τD/τi)

2γi/γ is largest. The scaling variables look
at first sight counter-intuitive, since one would expect the
effect of an exponential memory contribution to be pro-
portional to its memory time. However, barrier crossing in
the energy-diffusion limit is dominated by the slow energy
exchange between particle and heat bath. In this limit,
the barrier crossing rate for a multi-exponential memory
kernel is the sum of the individual barrier-crossing rates of
each single-exponential memory contribution and is thus
dominated by the memory contribution with the shortest
memory time, which most quickly can exchange energy
with the system [41].
We therefore construct scaling diagrams for the behav-

ior of τMFP for bi-exponential memory as a function of the
inverse scaling variables (τ1/τD)2γ/γ1 and (τ2/τD)2γ/γ2.
In Fig. 5a we present the scaling diagram of the MFPT for
high friction, τm/τD = 0.01, and in Fig. 5b for low friction,
τm/τD = 10, for various values of γ2/γ1, based on a numer-
ical analysis of the heuristic formula for the MFPT eq. (9).
For short rescaled memory times (τ1/τD)2γ/γ1 → 0 and
(τ2/τD)2γ/γ2 → 0 the Markovian regime is obtained,
where memory effects are absent. Depending on whether
the friction is large or small, this Markovian regime cor-
responds to the Markovian high friction regime or the
Markovian inertial regime. We define the transition to the

asymptotic memory slowdown regime, which is observed
when (τ1/τD)2γ/γ1 and (τ2/τD)2γ/γ2 are both large, by
the location where τMFP is ten times the value in the
Markovian limit, defined by τ1 = τ2 = 0. The dashed
black diagonal lines in the asymptotic memory slowdown
regime indicate the crossover from the asymptotic scaling
behavior τMFP ∼ τ21 for τ21 /γ1 ≪ τ22 /γ2, to the asymp-
totic scaling behavior τMFP ∼ τ22 for τ22 /γ2 ≪ τ21 /γ1.
Between the Markovian regime and the asymptotic mem-
ory slowdown regime two different intermediate regimes
exist. We define the transition between the Markovian
regime and the intermediate memory-speed-up regime by
the location where τMFP is smaller than the Markovian
limiting result by 5%. Analogously, we define the transi-
tion between the Markovian regime and the intermediate
memory-slowdown regime by the location where τMFP is
larger than the Markovian limiting result by 5%. The
intermediate memory-speed-up regime in the high-friction
limit, which was first observed for single-exponential mem-
ory [24], can be intuitively understood by the fact that
memory friction pushes the particle towards the barrier
after an unsuccessful barrier-crossing attempt and there-
fore accelerates the barrier crossing. In Fig. 5a we observe
both the intermediate memory-speed-up regime and the
intermediate memory-slowdown regime for γ2/γ1 = 10,
the transition between these two intermediate regimes is
denoted by a blue broken line. For the other values of
γ2/γ1 the intermediate memory-slowdown regime is ab-
sent, which is why there is only a blue broken line visible.
We observe that the intermediate regimes slightly shrink
in size as the ratio γ2/γ1 increases, particularly in the di-
rection of (τ1/τD)2γ/γ1. Nevertheless, we conclude that
the global behavior of the MFPT can be very efficiently
described in terms of the scaling variables (τ1/τD)2γ/γ1
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Figure 3: Mean first-passage time for tri-exponential memory for fixed τm/τD = 1, τ1/τD = 0.316, τ2/τD = 1, τ3/τD = 3.16
and U0/kBT = 3. In (a) we plot the simulation results for the rescaled MFPT τMFP /τD as function of γ2/γ1, differently colored
stars represent results for various values of γ3/γ1. In (b), τMFP /τD is shown as a function of γ1/γ2 for various values of γ3/γ2.
In both plots colored lines represent the heuristic formula eq. (9) and the horizontal black lines to the right represent eq. (9)
for single-exponential memory, in (a) for γ1 = γ3 = 0 and in (b) for γ2 = γ3 = 0, while the horizontal black lines to the left
represent eq. (9) for bi-exponential memory.
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Figure 4: Bi-exponential memory. Simulation results for the
rescaled MFPT τMFP /τD as function of the rescaled barrier
height U0/kBT for τm/τD = 1, τ1/τD = 10 and τ2/τD = 1 and
different values γ2/γ1 = 0.1, 2, 10. The stars depict the simu-
lation data and the lines depict the heuristic formula eq. (9).

and (τ2/τD)2γ/γ2.

In Fig. 5c and 5d we show the rescaled MFPT as a func-
tion of (τ2/τD)2γ/γ2 for fixed (τ1/τD)2γ/γ1 = 10−4 in the
high and low friction regimes, this corresponds to verti-
cal paths in the scaling diagrams. In Fig. 5c we see that
for small values of (τ2/τD)2γ/γ2, τMFP /τD has the same
value as in the Markovian regime, indicated by a dashed
horizontal line. Increasing the value of (τ2/τD)2γ/γ2 the
barrier crossing accelerates as one enters the intermediate
memory-speed-up regime and τMFP /τD decreases. For
γ2/γ1 = 10, τMFP /τD increases as (τ2/τD)2γ/γ2 grows
further as one enters the intermediate memory-slowdown
regime, but the asymptotic memory slowdown regime is
not entered. For γ2/γ1 = 3, τMFP /τD slightly increases
but does not become larger than the Markovian limit,
therefore one stays in the intermediate memory-speed-up
regime. In Fig. 5d we see that the MFPT τMFP /τD in-

creases monotonically as (τ2/τD)2γ/γ2, increases, indicat-
ing the intermediate memory-slowdown regime.

Conclusion. – We studied numerically the barrier
crossing of a massive particle in a one-dimensional double-
well potential based on the generalized Langevin equation
in the presence of bi- and tri-exponential memory kernels.
We particularly studied the case where the different expo-
nential contributions have different amplitudes and vali-
dated the heuristic crossover formula eq. (9) that was pre-
viously introduced based on simulations for bi-exponential
memory with equal friction amplitudes γ1 = γ2. Based on
that heuristic formula, we show that the relative effect of
different exponential memory contributions on the MFPT
is described by the scaling variable (τD/τi)

2γi/γ, which is
given by the rescaled ratio of the individual friction coef-
ficient γi and the squared memory time τ2i . A global dia-
gram for the scaling behavior of the MFPT is constructed
in terms of these scaling variables for bi-exponential mem-
ory. In that scaling diagram the Markovian regime for
small memory times is separated from the asymptotic
memory slowdown regime by intermediate regimes, where
the MFPT is slightly larger or smaller than in the Marko-
vian regimes, depending on the parameters.

The scaling diagram derived here looks similar to the
scaling digram derived previously for the restricted case
of bi-exponential memory with equal friction amplitudes
γ1 = γ2 [29], but is in fact much more general since by use
of the scaling variables (τD/τ1)

2γ1/γ and (τD/τ2)
2γ2/γ it

applies to the generic case where the friction amplitudes γ1
and γ2 are unequal. As a main result, we find that in the
non-Markovian limit, the barrier-crossing time becomes
dominated by the memory contributions that are charac-
terized by the largest scaling variables (τD/τi)

2γi/γ.

Simulation Method. – The generalized Langevin
equation can be rewritten as the coupled set of dimen-
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Figure 5: (a) and (b) Scaling diagrams for the MFPT in the presence of bi-exponential memory, based on the heuristic
formula eq. (9) as a function of the scaling variables (τ1/τD)2γ/γ1 and (τ2/τD)2γ/γ2 for U0/kBT = 3 and three ratios
of the friction coefficients γ2/γ1 = 1, 3, 10. The transition from the Markovian regime to the intermediate memory-
speed-up regime is defined by the location where τMFP is smaller by 5% than the value in the Markovian limit
(τ1 = τ2 = 0). The transition from the Markovian regime to the intermediate memory-slowdown regime is defined by
the location where τMFP is larger by 5% than the value in the Markovian limit. The asymptotic memory slowdown
regime is defined where τMFP is ten times the value in the Markovian limit. Results are shown for the high friction
case τm/τD = 0.01 in (a) and for the low friction regime τm/τD = 10 in (b). The dashed blue line in (a) represents
the transition between the intermediate memory-speed-up regime and the intermediate memory-slowdown regime, the
intermediate memory-slowdown regime is for τm/τD = 0.01 only present for γ2/γ1 = 10. The dashed black diagonal
lines in (a) and (b) in the asymptotic memory slowdown regime indicate the crossover from the τ1-dominated barrier
crossing for τ21 /γ1 ≪ τ22 /γ2, to the τ2-dominated barrier crossing for τ22 /γ2 ≪ τ21 /γ1. One sees that the Markovian
regime is entered when both (τ1/τD)2γ/γ1 and (τ2/τD)2γ/γ2 become small. Conversely, the asymptotic memory
slowdown regime is entered when both (τ1/τD)2γ/γ1 and (τ2/τD)2γ/γ2 become large. The two asymptotic regimes
are separated by intermediate slowdown or speed-up regimes. The small deviation between the scaling boundaries for
the three different ratios of the friction coefficients γ2/γ1 = 1, 3, 10 demonstrates that the scaling diagram in terms of
the scaling variables (τ1/τD)2γ/γ1 and (τ2/τD)2γ/γ2 describes the global behavior very well and leads to a diagram
that is almost independent of γ2/γ1. In (c) and (d) the rescaled MFPT τMFP /τD is plotted according to eq. (9) as a
function of (τ2/τD)2γ/γ2 for fixed (τ1/τD)2γ/γ1 = 10−4 for different fixed ratios γ2/γ1 for τm/τD = 0.01 in (c) and
for τm/τD = 10 in (d). The dashed horizontal lines denote the Markovian limit, obtained from eq. (9) by setting
τ1 = τ2 = 0.
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sionless Markovian equations

˙̃x(t̃ ) = z̃(t̃ ), (13)

τm
τD

˙̃z(t̃ ) =
N
∑

i=1

τD
τi

γi
γ

[

ỹj(t̃)− x̃(t̃ )
]

+ F̃
(

x̃(t̃ )
)

, (14)

˙̃yi(t̃ ) = −
τD
τi

[

ỹi(t̃ )− x̃(t̃ )
]

+

√

γ

γi
ξ̃i(t̃ ) 1 ≤ i ≤ N,

(15)

where t̃ = t/τD, x̃(t̃) = x(τD t̃)/L, z̃ and the ỹi are auxil-
iary variables, F̃ (x̃) = (kBT )

−1LU ′(Lx̃), dots here denote
derivatives with respect to t̃, and the correlators of the
dimensionless random forces ξ̃i(t̃) := (kBT )

−1LfRi
(τD t̃)

are given by

〈ξ̃i(t̃)ξ̃j(t̃
′)〉 = 2δ(t̃− t̃′)δij . (16)

Solving the inhomogeneous harmonic oscillator eq. (15)
for the auxiliary variable ỹi, substituting the result into
eq. (14), it is seen that eqs. (13-16) are equivalent to
the GLE eqs. (1), (2) [29]. In the simulations we used
eqs. (13-16) with the 4-th order Runge-Kutta method.
The time step was fixed at ∆t̃ = ∆t/τD = 0.01 ·
min{τm/τD, τ1/τD, τ2/τD, 1}.
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