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Kurzfassung

In der zukiinftigen Elektronik werden Quanteneffekte in integrierten Schaltkreisen mit
gekoppelten Nanostrukturen eine Schliisselrolle spielen. In diesem Rahmen koénnte die
Kopplung zwischen entfernten On-Chip-Komponenten durch den Austausch von ballistis-
chen Elektronen realisiert werden. Die vorliegende Dissertation zielt auf die Optimierung
des Austauschs von ballistischen Elektronen zwischen Quantenpunktkontakten (QPCs)
ab, fundamentalen Bausteinen von Quantenschaltkreisen. Um entfernte QPCs zu kop-
peln, wird das Konzept der ballistischen Elektronenoptik verwendet.

Im ersten experimentellen Teil dieser Dissertation wird zunéachst die tatséchliche elektro-
statische Potentialform eines einzelnen gatterdefinierten QPCs anhand seiner gemessenen,
eindimensionalen Subbandabstédnde bestimmt. Die Potentialform ist zentral fiir den Emis-
sionsprozess ballistischer Elektronen sowie fiir Wechselwirkungseffekte. Nach Vergleich der
gemessenen Subbandabstédnde des QPCs mit dem lateral Parabolischen- bzw. Hard-Wall-
FEinschlusspotential-Modell stellt sich heraus, dass dieser vor dem Abschniiren mit dem
parabolischen Sattelpunkt-Szenario kompatibel ist. Sobald jedoch mehrere Subbinder
bevolkert werden, bewirkt Coulomb-Abschirmung ein Abflachen des Potentialbodens. Hier
ist eine Beschreibung durch das Hard-Wall-Potential realistischer.

Im zweiten Experiment wird der Transport ballistischer und lateral koharenter Elektro-
nen durch zwei entfernte QPCs in Serie betrachtet. Die Emissions- und Detektionseigen-
schaften der QPCs werden im Detail durch Ablenkung ballistischer Elektronen in einem
senkrechten Magnetfeld untersucht. Zuséatzlich wird die Serientransmission durch eine
Feldeffekt-Linse fiir Elektronen verstarkt. Anhand des Vergleichs der Messungen mit
quantenmechanischen sowie klassischen Rechnungen werden generische Eigenschaften des
Quantenschaltkreises diskutiert. Es wird gezeigt, wie die kohérente und ballistische Dy-
namik von den Details des QP C-Einschlusspotentials abhéangt.

In einem dritten Experiment wird eine offene, ballistische elektronische Kavitat unter-
sucht, welche durch vier QPCs realisiert wird. Mithilfe von Bias-Voltage-Spektroskopie
werden kohérente, Fabry-Pérot-artige Resonanzen charakterisiert. Dariiber hinaus liefern
Magnetotransportmessungen Hinweise auf einen Ubergang von chaotischer zu integrabler
Dynamik in der Kavitét, sobald diese verkleinert wird.

Schliefflich wird eine parabolische, offene und ballistische Kavitat untersucht. Bei erhéhter
elektronischer Temperatur, bei welcher QPCs besser als klassische Blendendffnungen ohne
koharente Modenstruktur beschrieben werden, wird gezeigt, wie die Serientransmission
durch zwei Blenden iiber die Kavitdt erhoht werden kann.






Abstract

In future electronics, quantum effects in integrated circuits containing coupled nanos-
tructures will play a key role. In this framework, the coupling between distant on-chip
components could be realized by the exchange of ballistic electrons. The present thesis
aims at optimizing the exchange of ballistic electrons between quantum point contacts
(QPCs), fundamental building blocks of quantum circuits. To couple distant QPCs, we
use the concept of ballistic electron optics.

In the first experimental part of this thesis, we study the actual electrostatic potential
shape of a gate-defined single QPC by measuring its one-dimensional subband spacings.
The potential shape is central for the emission process of ballistic electrons as well as
interaction effects. Comparing the measured subband spacings of the QPC to models
of lateral parabolic versus hard-wall confinement, we find that it is compatible with the
parabolic saddle-point scenario near pinch-off. However, as we increase the number of
populated subbands, Coulomb screening flattens the potential bottom and a description
in terms of a hard-wall potential becomes more realistic.

In the second experiment, we consider the ballistic and laterally coherent electron trans-
port through two distant QPCs in series in a three terminal configuration. We study the
emission and detection properties of the QPCs in detail via magnetic deflection of ballistic
electrons in a perpendicular magnetic field. Additionally, we enhance the serial transmis-
sion by using a field effect electron lens. Comparing our measurements with quantum
mechanical and classical calculations we discuss generic features of the quantum circuit
and demonstrate how the coherent and ballistic dynamics depend on the details of the
QPC confinement potentials.

In a third experiment, we consider an open ballistic electronic cavity formed by four
QPCs. Performing bias voltage spectroscopy measurements, we characterize coherent
Fabry-Pérot-like resonances. Furthermore, we find fingerprints of a transition from chaotic
to integrable cavity dynamics in magnetotransport measurements, as we decrease the size
of the cavity.

Finally, in a fourth experiment, we investigate a parabolic, open and ballistic electronic
cavity. Working at a higher temperature, where the QPCs are better described as classical
pinholes without coherent mode structure, we demonstrate how the serial transmission
through the two pinholes can be enhanced by the cavity.
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Introduction and overview

Since more than 50 years, the miniaturization of components in integrated circuits used
in information technology has been the driving force for increasing computational power.
However, as today’s transistors are approaching the size of atoms, conventional electronics
is facing a fundamental limit. In future electronics, quantum effects in integrated circuits
containing coupled nanostructures will be play a key role. The coupling of distant on-chip
components could then be realized by the exchange of ballistic electrons.

Our work aims at optimizing the exchange of ballistic electrons between quantum point
contacts (QPCs), fundamental building blocks of quantum circuits. These short, tunable
one-dimensional (1D) constrictions in a two-dimensional electron system (2DES) display
a rich spectrum of physics. In 1988, the observation of 1D conductance quantization |1-3]
was the starting shot for a vast spectrum of research. This includes shot noise measure-
ments [4], scanning gate spectroscopy [56], thermoelectric studies |7], phototransport [§],
magnetotransport out of equilibrium [9,10], quantum transport through freely suspended
devices [11] or many-body interaction effects such as the 0.7-anomaly [12-14]. Single
QPCs are used as charge detectors [15] or to split quantum-Hall edge channels [16,/17].
Serial QPCs and their ballistic dynamics have been investigated within magnetic deflec-
tion experiments [9,/10}/18], spin-orbit coupling [19,[20], defect scattering [21], diffraction
at a QPC [22] or in terms of non-Ohmic resistance [23-27] .

We first study the actual potential shape of a gate-defined QPC before we investigate
the transport of ballistic electrons in three different sample geometries containing distant
QPCs. The quantum circuits are based on the concept of ballistic electron optics [28-32].
We are interested in maximizing the transmission efficiency of ballistic electrons through
serial QPCs via a region of free, grounded 2DES. For possible applications in devices,
the QPCs could in principle be replaced by quantum dots hosting spin- or charge qubits,
entangled by the exchange of ballistic and coherent electrons. However, the transmission
efficiency strongly depends on the ballistic carrier emission and detection via the QPCs,
as well as the local disorder potential in the 2DES. To enhance the coupling between
distant QPCs, we control ballistic electrons on the mesoscopic scale using magnetic fields,
electrostatic lenses and -mirrors.

While this thesis aims at obtaining a PhD title at the Freie Universitat Berlin, the actual
project was conducted at the facilities of the Paul-Drude-Institut for solid state electronics
in Berlin.

The present thesis is organized as follows:

In chapter 1, we introduce the concept of a high mobility 2DES, the basis for our ballistic
low temperature quantum transport experiments. We additionally describe the fabrication
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process of our customized mesoscopic quantum circuits by optical- as well as electron beam
lithography in detail.

In chapter 2 we address the experimental setup by means of the 3He cryostat, the dewar
containing a superconducting magnet as well as the ensemble of the electrical wiring and
all measurement devices.

In chapter 3 we introduce the theoretical background for our experiments. Starting at
the Drude model, we discuss scattering mechanisms in high mobility 2DES as well as the
ballistic and coherent transport regime. After the introduction of the Landauer-Biittiker
formalism including an example for its application within a real sample, we present the
transfer and scattering matrix method. At the end of the chapter, we show an overview of
our numerical quantum mechanical model used for simulations in the following chapters.

In chapter 4 we characterize the potential shape of a gate-defined QPC by measuring
its 1D subband spacings. We directly compare our experimental results to the lateral
hard-wall and the parabolic confinement potential model. At the end of the chapter, we
calculate the expected beam pattern by implementing the experimentally found subband
spacings into our numerical model.

In chapter 5, we introduce the concept of ballistic electron optics, used to design the
quantum circuits discussed in the following chapters.

In chapter 6 we consider two serial QPCs spaced by a region of free (grounded) 2DES. We
study the lateral current distribution between the QPCs in a magnetic deflection exper-
iment. Additionally, we tune the serial transmission using an electrostatic electron lens.
We compare our experimental results to coherent as well as classical model calculations.

In chapter 7 we discuss an open ballistic cavity with four QPCs. We characterize the
QPCs and their leads and translate the measured currents to transmissions and reflections
within the Landauer-Biittiker formalism. By performing spectroscopy measurements as a
function of the source-drain voltage and the size of the cavity, we characterize coherent,
Fabry-Pérot-like cavity modes. Furthermore, we investigate the carrier dynamics, as we
decrease the size of the cavity in magnetotransport experiments.

In chapter 8 we present an open ballistic cavity formed by two parabolic mirrors which
contain QPCs at their focal points. Operating at an elevated temperature of 6 K, where
the QPCs are better described as classical pinholes without coherent mode structure, we
demonstrate how the serial transmission through the two pinholes can be enhanced by
tuning the cavity size.

Finally, in chapter 9, we summarize the results of the present thesis.



1 Two-dimensional electron system and
sample fabrication

The sample fabrication process can be divided into (i) the growth of the wafer material
providing a high quality two-dimensional electron system (2DES) and (ii) further process-
ing of the wafer to engineer customized quantum circuits. Since the wafer material used
here has been provided by other groups we skip the growth process via molecular beam
epitaxy (MBE) [33] and focus on the processing of the wafer. First, we introduce the
concept of the 2DES, the basis for all experiments presented in this thesis. We further
present the electric field-effect approach used to control the electron carrier density of the
2DES by applying voltages to metallic nanostructures on the wafer surface. In the last
section of the chapter we describe the relevant fabrication processes in detail.

1.1 Heterostructure containing a two-dimensional electron
system

All experiments presented in this thesis were carried out using a GaAs/AlGaAs based
high mobility wafer grown in the research group of V. Umansky (Weizmann Institute, Tel
Aviv, Israel; wafer no. mbe8-309). The bare heterostructure is a single crystal consisting
of various layers of semiconductor material, MBE-grown on a (100) GaAs substrate as
illustrated in Fig. (a). While the thin GaAs layer forming the wafer surface only
serves to prevent oxidation, the functional part of the heterostructure consists of a layer
of AlGaAs grown on GaAs. The AlGaAs layer additionally contains a monolayer of Si
dopants (d-doping [34]).

We sketch the resulting conduction band scheme of the heterostructure with respect to the
growth (z) direction in Fig. [L.1[(b). At cryogenic temperatures, the dopants are partially
ionized, supplying their electrons either to surface states or to the triangular quantum
well with localized states formed at the lower AlGaAs/GaAs interface. By a proper com-
bination of z, the doping density and the spacing, only the lowest subband of the well
is occupied, confining electrons into a 2DES within a plane parallel to the wafer surface.
The spatial separation of the doping layer from the 2DES increases the carrier density and
mobility of the 2DES. The depth of the 2DES for the wafer used in this thesis is around
110 nm measured from the surface.

Due to almost identical lattice constants and identical crystal structures of GaAs and
AlGaAs, the GaAs/AlGaAs interface exhibits an excellent quality with very low defect
density, making it one of the best interfaces for bandgap engineering. The bandgap of
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Figure 1.1: (a) Sketch of a typical J-doped GaAs-AlGaAs based heterostructure hosting
a 2DES. (b) Conduction band along the growth (z) direction. Red dotted line: Fermi
level. At low temperatures, only the ground state (blue line) of the triangular well at
the lower GaAs/AlGaAs interface is occupied as excited states (black line) are above the
Fermi level. (c) Top sketch: of a processed heterostructure cross section; the 2DES is
electrically contacted after annealing AuGeNi contacts into the wafer surface by diffused
Ohmic contacts (see main text). A metal gate on the sample is used to locally tune the
2DES carrier density by applying a gate voltage V. Lower sketch: energy scheme for two
contacts at chemical potentials pir, /g with ur, —ur = eV’ separated by a barrier controlled
by the gate voltage V.

Al,Gaj_,As can be tuned between that of pure AlAs (2.16eV at room temperature) to
that of pure GaAs (1.42eV) by varying the fraction z in the alloy between 0 < z <1 [35].
Typically, growers use 0.2 < x < 0.4.

1.1.1 Field-effect structures

To electrically contact the 2DES for our transport experiments we use AuGeNi contacts
deposited locally, cf. Fig. (c) By annealing the sample, in particular the Germanium
atoms diffuse into the wafer to electrically contact the 2DES buried below the surface. In
contrast, the gold atoms remain mostly on the surface and can be wire-bonded to establish
the electrical connections to measurement devices. Our contacts are optimized to show an
Ohmic (linear) I/V behavior even at low temperatures.

Applying a gate voltage V; to a metallic structure deposited on the sample surface permits
to locally change the carrier density of the 2DES below via the electric field-effect, cf.
Fig. (c) For V; < 0, we realize potential barriers within the 2DES resembling the shape
of the gate. While we control the barrier height by adjusting V;, we tune the chemical
potentials on both sides of the leads by applying a finite bias voltage V= (br — uR) /e
between different Ohmic contacts. Designing nanoscaled field effect structures enables to
further constrain the motion of electrons from two dimensions to one (e.g. in nanowires and
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quantum point contacts) or even to zero (in quantum dots). Local electrostatic potentials
can alternatively be created by other techniques like etching or strain in piezoelectric
semiconductors. However, a key advantage of field effect structures consists in their wide
range tunability of the local carrier density. This makes metal gates in particular useful
components of integrated quantum circuits.

For a basic characterization of the wafer material used for all experiments in this thesis,
we in the following present quantum Hall measurements in a perpendicular magnetic
field B. In Fig. (a)7 we present a top view of a sample containing a 2DES 110 below the

4300
4200
S)
Q{;::
4100
1 1 ] 0

3 5
B(T)

Figure 1.2: (a) Top view of the sample with numbered Ohmic contacts. We ground all
gates for the quantum Hall measurement shown in (b). (b) Inset: measurement setup
with the Ohmic contacts shown in (a) indicated by the same number. Black solid line,
left axis: Hall resistance Ry = Vag/1 and red solid line, right axis: longitudinal resistance
Ry = Va3 /I, as a function of the perpendicular magnetic field B.

surface with six numbered Ohmic contacts that are arranged in a Hall bar-like geometry.
We sketch the setup used for the quantum Hall measurement with the Ohmic contacts from
panel (a) indicated by the same numbers respectively in Fig. b). For this measurement,
we keep all gates grounded as we are interested in characterizing the bulk 2DES, without
additional electrostatic potentials due to gate voltages. After cooling the sample down
to 280 mK, we apply a source-drain voltage V = —0.4V at a 1M resistor in series with
the Hall bar. It causes an approximately constant current of I ~ 400nA flowing from
contact 1 into the grounded contact 4, as sketched in the inset. For better accuracy we
also measure the current using a current-voltage converting amplifier. From the measured
voltage between the contacts 2 and 6 perpendicular to the current flow, Vag(B), we obtain
the Hall resistance Ry = Va/1 plotted as black solid line. From the measured voltage
between the contacts 2 and 3 in current direction, Va3(B), we obtain the longitudinal
resistance Ryx = Va3/I (red solid line). For magnetic fields |B| 2 1T, the Hall resistance
shows pronounced plateaus at Ry = h/(e?v), where h is the Planck constant, e is the
elementary charge and v = 1,2,3,... is the filling factor. The longitudinal resistance shows
Shubnikov-de Haas oscillations with maxima occurring between the Hall plateaus,
while Ryx drops to Ry =~ 32 at the plateaus of Ry. We attribute the finite longitudinal
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resistance (the finite voltage drop after subtracting the internal offset voltage of the voltage
amplifier) to a second, weakly conducting layer parallel to the 2DES, located in the plane
of the donor atoms [38,39]. From the slope of the Hall resistance at low fields, dRy/dB, or
the period of the Shubnikov-de Haas oscillations in 1/B, A(1/B), we calculate the carrier
density of the 2DES,

dRy \ ! 2
ng = <_€dBI’{> = WA(/D) (1.1)

From both methods, we find ny = 3.1 x 10 cm™2, corresponding to a Fermi energy of
the free (i.e. without additional potentials) 2DES EQ = mh?ngs/m* = 11meV, where
m* = 0.067myg is the effective electron mass in GaAs at low temperatures with the free
electron mass mgy and h = h/2m is the reduced Planck constant. This coincides with the
specifications given by the grower. Using the van der Pauw method [40], we can calculate
the mobility from the measured Ry (B = 0),

™

engIn(2)Ryy (12

,LL =
After structuring the sample shown in Fig. (a), we find g = 2.27 x 108cm?/(Vs). As
the fabrication process induces defects in the crystal, this mobility is smaller than nominal

mobility of the bare wafer material (before the fabrication of gated structures) indicated
by the grower, u = 6.1 x 105 cm?/(Vs).

The high electron mobility and large carrier density in this high quality 2DES are essential
for ballistic transport experiments. We show the detailed growth protocol of the wafer
material in the appendix, section [A-1]

1.2 Optical lithography

In the following we introduce the structures processed on the wafer surface and describe
the underlying fabrication process in detail. We carried out the processing in clean room
facilities at the Kotthaus chair of the LMU of Munich and at the Paul-Drude-Institute in
Berlin.

1.2.1 Overview of optically fabricated structures

The optical lithography process aims at the fabrication of the following structures [illus-
trated in Fig.|1.3|(a)] in chronological order:

Mesa

We begin by etching specific areas of the sample down to the level of the 2DES (~ 110 nm).
This way we destroy the 2DES in these areas and thereby define a cohesive conducting
area of the sample - the so called mesa [spanish for table, blue area in Fig. [1.3(a)].
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Figure 1.3: (a) Sample layout with components fabricated by optical lithography: mesa
(blue), Ohmic contacts (green) and Au/Ti gates (brown). (b) Optical microscope image of
a processed structure, after annealing of the Ohmic contacts. (¢) Photograph of a 5x5 pm
chip containing 9 sample fields after the optical lithography process.

Ohmic contacts

To electrically contact the 2DES embedded below the sample surface, we first evaporate
a layer of 60 nm Au,Ge;_, followed by 10 nm Ni and finally 60 nm Au,Ge;_, (where z =
0.88) on the peripheral parts of the mesa. Using an annealing oven with a programmable
heating and cooling sequence, we anneal the contacts into the wafer down to the plane
of the 2DES. For the wafer used in our experiments, we applied a maximum annealing
temperature of 480° C for 50s in a constant flow of nitrogen (flushing mode) at 300 mbar.
We add a detailed listing of the sequence containing all temperatures, hold times and
ramping rates in the appendix, section [A72] We show the annealed contacts covered by
additionally evaporated bond pads in the optical microscope image in Fig. (b)

The contacts have a meander-like structure [cf. green areas in Fig.[1.3|(a)] to maximize the
length between the metallic germanium contact and the 2DES embedded in the semicon-
ductor. This reduces the contact resistance between the two materials. A small overlap
of the contacts beyond the edge of the mesa makes sure that the chiral edge channels
forming at the plateaus in the quantum Hall regime at specific values of the perpendicular
magnetic field do not result in an electrical isolation of the Ohmic contacts.

Gates

In the last step of the optical lithography, we define the local gate structures by evaporating
a 10 nm titanium adhesion layer, followed by 90 nm of gold, cf. brown areas in Fig. |1.3|(a)
and corresponding regions in the optical microscope image in panel (b). They feature wide
bond pads on the periphery of the structures but taper towards to the center of the mesa
where they serve as connections to nanosized gates to be fabricated within the subsequent
electron beam lithography process.

To make optimal use of the precious wafer material, we fabricate 9 nominally identical
structures on each wafer piece during the optical lithography process. In Fig. c) we
show an optical microscope image of a processed wafer piece after the optical lithography.
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1.2.2 The fabrication process

In the following, we describe the fabrication process of the structures introduced above in
more detail.

We begin by cleaving a small (typically 5mm x5 mm) rectangle from the larger wafer
piece. This is done with high precision under an optical microscope by carefully scratching
the wafer along a cleaving axis using a sharp diamond tip. We then flip the wafer and
position it on a sterile clean room tissue on a flat surface. By carefully applying local
pressure at the scratch (e.g. using the dull backside of tweezers) we break the crystal
along the cleaving axis starting at the scratch. In the following, we process the cleaved
wafer piece in the optical lithography process illustrated in Fig. The detailed process
parameters are listed in the appendix, section

1. Cleaning 2. Resist coating 3. UV-exposure

*/ 5a Wet etching 6a Resist removal

4. Development \ *

5b Metalization 6b Lift-off

Figure 1.4: Typical sequence of an etch- or metallization process based on UV-light
exposure using positive photo resist. The GaAs wafer surface is sketched in gray, photo
resist in purple and metal in gold.

First, we carefully clean the sample surface using acetone or a commercial wafer cleaner
followed by isopropanol. Small particles originating from the cleaving procedure and other
contaminations on the surface might be removed by carefully wiping it with a smooth foam
tip while keeping the sample inside the solvent. During the entire lithography process, we
take great care not to scratch the surface, as this would likely destroy the 2DES along the
scratch. We additionally avoid the usage of ultrasonic baths as these can induce defects
in the crystal lattice, affecting the quality of the 2DES.

After cleaning the wafer surface, we spin-coat it with photo resist (photo-reactive long
polymer chains) to form a homogeneous layer of specified thickness. To stabilize the
photo resist we subsequently put the sample on a hot plate for the so-called pre-bake.
Using a patterned photo mask and a mask aligner device, areas mimicking the customized
design of the photo mask are in the following exposed to ultra violet (UV) light. After the
exposure, we put the sample again on a hot plate for the post-bake. During the following
development process the resist is removed from the wafer where it had previously been
exposed to UV light for positive resist. For negative resist, areas not exposed by UV light
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are removed. The remaining areas covered by photo resist are protecting the surface from
the following etch process in diluted persulfuric acid. We stop the etching process in water
and remove the remaining photo-resist in acetone, followed by an isopropanol bath.

To define Ohmic contacts, bond pads and metal gates with feature sizes beyond ~ 1 um
we also use optical lithography. For every structure, we repeat the process described above
of resist coating - pre-bake - UV-exposure - post-bake - development. However, instead of
etching we metallize the processed sample surface using an evaporation machine. In the
final lift-off step we remove all photo resist in an acetone bath. During this process, the
metal film covering areas coated with resist is removed, while the metal evaporated on the
surface remains.

1.3 Electron beam lithography

The resolution in the optical lithography process is limited to &~ 1 um related to the wave-
length of the UV-light used in the mask aligner due to diffraction at the photo mask close
to the sample. To realize much smaller nanostructures we use electron beam lithography
(EBL).

The EBL process is schematically similar to the optical lithography. However, instead of
UV light, we expose the sample to a focused electron beam. We list the detailed processing
parameters of the EBL process in the appendix, section Due to the much smaller
wavelength of electrons (typically on the picometer scale) compared to the UV-light used
for exposure within the optical lithography process (typically around 400 nm), a beam
of accelerated electrons provides a much higher resolution. Instead of using photo resist,
we here spin-coat the sample with polymethyl methacrylate (PMMA or plexiglass) [41],
a polymer-based resist. Inside the EBL-device, the PMMA-coated sample is exposed to
a focused electron beam in vacuum. PMMA behaves like positive resist for moderate
exposure doses < 400 uC/cm? while a high electron dose leads to cross-linking of the
polymer chains [42] and the formation of a transparent, insulating plexiglass layer. In
that limit, it acts as a negative resist.

For moderate exposure doses, the PMMA polymer chains are broken into smaller pieces.
In a subsequent development step, the PMMA can be removed to reveal the surface for a
later metallization. The pattern to be written by the beam can be programmed using a
special software. The resolution of our EBL instrument, a Raith 150two, is ~ 8 nm [43].
However, in our case the specific development process of the PMMA limits the resolution
to around 20 nm [41]. We write the nanostructure at the low acceleration voltage of 5kV to
minimize possible damage due to high energetic electrons which can create defects near the
2DES, decreasing the mobility and stability of the latter. This precaution is in particular
reasonable for ballistic transport experiments requiring high mean free paths and a stable
local electrostatic potential. Before the actual writing process, we align the EBL write
field with respect to the structures defined during the previous optical lithography process.
The nanostructure itself is written in the center of the mesa. We show an example in the
close-up of a sample in Fig. Every gate of the nanostructure [cf. Fig. [L.5c)] is
connected to one of the macroscopic gates such that the larger gates fabricated by optical
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Figure 1.5: (a) Optical microscope image of the surface of a sample fabricated in one
of the 9 fields on a 5mmx5mm chip, cf. Fig. (b) Enlarged image of the center
of the sample, showing the metal gates fabricated by EBL, each overlapping with a gate
fabricated by optical lithography. (c) Scanning electron microscope (SEM) image of the
central part of the nanostructure.

lithography serve as leads [cf. panels (b,c)]. For the metallization of the nanosized gates
we use thinner layers (5nm Ti + 35nm Au) compared to the larger gates defined in the
optical lithography process. A major challenge of the EBL process consists of finding the
correct exposure dose for the sample. First, this becomes particularly difficult for very
small structures of widths comparable to the height of the gate layer (~ 40 nm) which can
cause lift-off problems and surface roughness. Second, a fraction of the focused electron
beam is (back)scattered by the PMMA resist and the semiconductor crystal, leading to
finite exposure doses even in the proximity of the beam. This proximity effect has to be
especially accounted for if different structures are written in close proximity to each other.
In this case, the individual doses have to be carefully adjusted by performing systematic
dose tests. For the nanosized gates fabricated within this project, typical exposure doses
are p ~ 50 pC/cm?,

After metal evaporation and lift-off we make use of the dielectric properties of PMMA and
fabricate an insulating layer covering the nanostructure, cf. blue region in Fig. [1.6(a). To

Crosslinked
Top gate PMMA

|

]120 nm

Figure 1.6: (a) Optical microscope image of a nanostructure covered by cross-linked
PMMA (blue) and a global top gate isolated from the other gates by cross-linked PMMA.
(b) Sketch of the cross section of the final structure on the GaAs surface including a
PMMA layer between the gates deposited on the sample surface and the top gate.

10



1.3 Electron beam lithography

form an insulating layer, we expose the PMMA-coated sample to a high dose of electrons,
typically p = 2400 uC/cm?, which is 40-50 times higher compared to the dose used for
writing the nanosized gates. The high dose leads to a cross-linking of polymer chains,
creating a solid insulating layer in the exposed regions. The excessive, unexposed regions
covered by PMMA can be removed by solvents. Besides providing mechanical and oxida-
tion protection for the delicate center of the nanostructure, the insulating layer permits
to fabricate a macroscopic top gate on top of the central nanostructure in Fig. a).
Such a global top gate is marked by a red arrow with the blue cross-linked PMMA layer
below. We add a cross section of the final structure containing gates, cross-linked PMMA
and the top gate in Fig. b). Applying voltages to the top gate allows us to globally
tune the carrier density in the covered regions, a key parameter to investigate disorder or
interaction effects.

11






2 Cryostat, dewar and setup

Ballistic and coherent transport experiments in a 2DES require special efforts in terms of
the measurement setup, which we introduce in this chapter. In the first section, we briefly
describe the *He cryostat used for all experiments in this thesis. In the second section, we
present the electrical setup used for the quantum transport experiments.

2.1 *He cryostat and dewar

Cryogenic temperatures are required to study ballistic and coherent effects in semicon-
ductor nanostructures and to resolve the low energy scales of electron confinement in
GaAs-AlGaAs based quantum point contacts (typically on the order of a few meV) or
quantum dots (< 1meV). For our experiments, we use a *He cryostat with a base temper-
ature of T' ~ 280 mK, corresponding to thermal excitations of kT = 24 ueV, where kg is
the Boltzmann constant. This temperature is sufficiently low for transport experiments
with distant quantum point contacts. In Fig. (a), we show a mechanical drawing of the
cryostat with labels indicating important components.

The cooling principle is based on evaporation cooling of liquid He. In the following, we
briefly explain the operation principle of the *He system. More detailed explanations can
be found in Ref. [45]. During operation, the insert of the cryostat containing the sample is
pumped and sealed at a pressure of < 5 x 10~% mbar in the inner vacuum chamber (IVC).
We keep the cryostat in a dewar containing a liquid *He reservoir vacuum insulated from
a shield filled with liquid nitrogen, cf. Fig. (b) Using an external rotary pump, we
continuously pump liquid *He from the main bath of the dewar through thin capillaries
into the 1K pot of the cryostat. Here, we reduce the temperature of the liquid *He to
around 1K through the lower vapor pressure in the pumping line. The 1K pot cools
the 3He gas reservoir stored in the cryostat below its boiling point of around 3.2 K. Now
the 3He gas condenses slowly into the *He pot at the lowest stage of the cryostat. The
vapor pressure of the liquid *He is further reduced by an internal charcoal sorption pump,
cooling the *He pot to its base temperature. The hold time of the condensate is several
days and limited by the amount of 3He gas as well as heat leaks. Once the liquid *He has
evaporated, we heat the sorption pump to 40K to restart the condensation process.

The dewar additionally contains a superconducting magnet able to create vertical magnetic
fields of up to 8 T. We mount the sample horizontally on a sample holder located in the
center of the magnetic field below the 3He pot and cool the sample via a thermally treated
ultra high purity 5N silver stick tightly clamped to the 3He pot.

13
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Figure 2.1: (a) Mechanical drawing of the Janis He cryostat used for the experiments
(copied from Ref. [44]). (b) Sketch of the cryostat inserted into the *He bath of the dewar
insulated from the environment by a vacuum chamber and a nitrogen shield.

2.2 Electrical setup

We optimize the electrical wiring, filter components and measurement devices to achieve
high stability of the voltages applied to the sample as well as high signal-to-noise ratios
in the measured output signals. For the experiments presented in this thesis we used two
different setups containing different measurement devices and wiring, which we introduce
in the following.

2.2.1 Setup used for the experiments presented in chapters [6] and

For the measurements shown in ’Coherent electron optics with ballistically coupled quan-
tum point contacts’ (chapter @ and ’Parabolic cavity’ (chapter we used the setup
sketched in Fig. We place the wire-bonded sample on a sample holder at the lowest
temperature stage of the cryostat at T'= 250 mK. We distinguish between current carry-
ing leads (light blue) connected to Ohmic contacts of the sample and leads for voltages
(magenta) applied to gates. Inside the cryostat, all used leads are twisted pair manganin
wires. To minimize heating effects, the wires are thermally anchored at three low temper-
ature stages of the cryostat: 3He pot (250mK), 1K pot (1K) and at the temperature of
the “He bath (4.2K).

14
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Figure 2.2: Sketch of the measurement setup used for the experiments presented in
chapters [6] and [§ with the sample mounted in the cold cryostat kept in the dewar. The
sample is electrically connected to RC low-pass filters and measurement devices at room
temperature. Current carrying leads are light blue, leads connected to gates are magenta.
The cryostat and the devices connected by thick black lines are kept on the measurement

ground potential. We separately ground the dewar (green lines) and magnet power supply
(orange lines), which are both electrically isolated from the cryostat.

0.25 K

At room temperature, double shielded coaxial Fischer- or BNC cables connect the wires of
the cryostat to the different measurement instruments. We use programmable Yokogawa
model 7651 DC voltage sources for the voltages applied to the gates. In the setup, the gates
are protected by RC-filters at room temperature with a cutoff frequency f. =~ 1Hz. In
contrast, the current carrying leads in this setup were not connected to room temperature
RC low-pass filters. This was done to minimize the parasitic lead resistance for the ballistic
transport experiments, at the cost of a lower signal to noise ratio. In table 2.I] and 2.2 we
list the (approximate) individual cable lengths next to their resistances and capacitances
to ground for both the current carrying- and the gate leads.

To measure currents in this setup, we connect one lead of the sample connected to an
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2 Cryostat, dewar and setup

Component Cable length | Resistance | Capacitance to ground
BNC cable 0.4m <1 40 pF
Fischer cable 1.5m <1 150 pF
Manganin twisted pair wire 2m 502 1nF
by 3.9m 502 1.19nF

Table 2.1: Individual and total cable lengths, resistances and capacitances to ground of
the current carrying leads for the setup sketched in Fig.

Component Cable length | Resistance | Capacitance to ground
BNC cable 1m <1Q 100 pF
RC-Filter - 100 k2 1uF
Fischer cable 1.5m <1Q 150 pF
Manganin twisted pair wire 2m 50Q 1nF
by 4.5m 100 k2 1uF

Table 2.2: Individual and total cable lengths, resistances and capacitances to ground of
the leads carrying quasi-static voltages for the setup sketched in Fig.

Ohmic contact of the sample to a DC voltage source. On a second lead connected to an
Ithaco model 1211 current amplifier [46], we measure the dc current flowing through the
sample. The input of the current amplifier generates a small offset voltage V to the sample.
For this model, the offset voltage can be adjusted down to a few uV by fine tuning a built-
in potentiometer using a small screwdriver. A careful adjustment of the input voltage
is essential before every measurement, since Vj directly contributes to the (source-drain)
voltage applied to the sample. Alternatively, V) can be determined by measuring the
current through a known resistor, Vy = RI. The current amplifier produces an output
voltage proportional to the current which we measure in a downstream Keysight 34401A
multimeter and read out with the measurement computer. We connect the individual
leads of the gates to separate Yokogawa voltage sources which we likewise control via the
measurement computer using a common GPIB interface.

To avoid ground loops, we use the cryostat connected to one common grounding point via
a low resistive cable as the reference ground potential for our measurements. From here,
all coaxial cable outer conductors, current amplifiers and measurement instruments obtain
their ground potential (thick black lines in Fig. . To prevent ground loops with the
supply line, we additionally decouple the current amplifier(s) from the supply ground using
isolation transformers. Additionally, we add a galvanic USB isolator between the mea-
surement instruments and the measurement computer as well as a GPIB isolator between
the measurement instruments and the magnet power supply. To protect the delicate sam-
ple and the measurement devices from possible discharging events, we separately ground
the dewar isolated from the cryostat (green lines). For the same reason, we use a third
separate ground for the magnet power supply (orange lines). Other electrical components
connected to the setup, such as vacuum pumps or pressure gauges have to be decoupled
from the measurement ground by using plastic vacuum equipment close to the setup.
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2.2 Electrical setup

2.2.2 Setup used for the experiments presented in chapters |4 and

Within this project, we renewed the electrical wiring of the cryostat including all thermal
anchorings from manganin twisted pair wires to single shielded 42 AWG micro coaxial
cables. Both the inner and outer conductor of the coaxial cables are made of stainless
steel, separated by a thin dielectric layer. Moreover, we purchased the current amplifier
models SP 983-LSK389A [47] and SP 983-1F3602 [48] produced by Physics Basel and
used them in the experiments presented in chapters [] and [[] We show a sketch of the
corresponding electrical setup in Fig. 2.3
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Figure 2.3: Sketch of the measurement setup used for chapters |4f and [7| with the sample
mounted in the cryostat inserted in the cold dewar. Apart from the current amplifiers and
the wiring (cf. main text), the setup is identical to the one shown in Fig.

While the grounding scheme coincides with the one introduced in Fig. the new wiring
and the different current amplifiers have lead to the following changes:
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2 Cryostat, dewar and setup

The outer conductor of the coaxial cables is in direct contact with the cryostat at the
thermal anchorings and thereby kept at the measurement ground potential, providing ad-
ditional protection against external electromagnetic noise for the inner conductors carrying
the voltages and currents. After the change of the wiring, the lowest 3He-pot temperature
reached in this cryostat in the Paul-Drude-Institute lab in Berlin increased from 270 mK
to 280 mK. Additionally, the hold time of the condensate decreased from 4 days [49] to 3
daysf'_-] One possible explanation for the higher base temperature and shorter hold time
is the additional heat leak generated by the outer conductor of the stainless steel coaxial
cables.

Additionally, the Physics Basel current amplifier models SP 983-LSK389A and SP 983-
IF3602 allow for a direct control of the offset voltage V) via a voltage source that can be
connected to the input of the device, as sketched in Fig. In this configuration, we can
measure the current flow while controlling the voltage in one and the same lead, which is
in particular useful for experiments with multi-terminal devices.

To optimize the signal to noise ratio for coherent measurements, we used RC low-pass
filters at room temperature for both the gates and the current carrying lines, at the cost
of a larger parasitic lead resistance in this setup. The cutoff frequency of the filter used for
the current lines is f. ~ 36 kHz. In table [2.3| and [2.4] we list the (approximate) individual
wire lengths next to their resistances and capacitances to ground for the current- and gate
leads in this setup.

Component Cable length | Resistance | Capacitance to ground
BNC cable 0.4m <18 40 pF
RC-Filter - 2.2k 2nF
Fischer cable 1.5m <1 150 pF
Micro coaxial cable 2m 3502 240 pF
by 3.9m 2.55 k2 2.43nF

Table 2.3: Individual and total cable lengths, resistances and capacitances to ground of

the current carrying leads for the setup sketched in Fig.

Component Cable length | Resistance | Capacitance to ground
BNC cable 1m <18 100 pF
RC-Filter - 100 k2 1uF
Fischer cable 1.5m <18 150 pF
Micro coaxial cable 2m 35002 240 pF
by 4.5m 100 k2 1uF

Table 2.4: Individual and total cable lengths, resistances and capacitances to ground of
the leads carrying voltages for the setup sketched in Fig. .

In the LMU Munich lab, base temperatures of T' = 250 mK and hold times of up to 7 days were reached
using the same cryostat with the inserts before the renewing of the wiring. The reason for the higher
base temperature and shorter hold time with the same inserts in Berlin is unclear. We exclude the new
arrangement of the pumping lines in the Berlin lab since the minimum temperatures reached at the
1K pot and the sorption pump were identical compared to the Munich lab.
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3 Theoretical background

This chapter contains the theoretical background of our experiments. We start with the
Drude model [50] for diffusive electrical transport, which allows for the derivation of key
parameters of our experiments, such as the electron mobility p and mean free path ly,.
We subsequently discuss scattering processes in high mobility heterostructures and in-
troduce the ballistic transport regime. In this context, we introduce the realization of
ballistic transport experiments on the basis of quantum point contacts and present the
Landauer formula [51] describing the transmission through a ballistic conductor. In ad-
dition, we discuss the coherent transport regime and dephasing/decoherence mechanisms.
Furthermore, we extend the transmission problem to ballistic and coherent multitermi-
nal conductors within the Landauer-Biittiker formalism and introduce the transfer matrix
method used to calculate the transmission through mesoscopic samples. We close the
chapter with an overview of a numerical quantum mechanical model based on the transfer
matrix method, used for simulations of the experiments shown in chapter [6]

3.1 Drude model

The Drude model [50] provides a microscopic description of carrier transport through
a metal. Within this model, the conduction is described by free charge carriers that
diffusively move through the 2DES. On the microscopic level, the electrical resistance
occurs due to scattering processes between the charge carriers and the lattice. Without
an external voltage, the diffusive motion of carriers is random in space and the net flux is
zero. With an external electrical field E , a steady state in which the momentum gain due
to the external field matches the momentum loss due to scattering is reached:

B (%) scattering - <§> field (3.1)
_m;jD S (3.2)

Here, m* = 0.067m¢ denotes the effective mass of electrons in GaAs at low temperatures
with the free electron mass mg and e the elementary charge with ¢ = —e for electrons
and ¢ = e for holes. ¥ is the average drift velocity of electrons (or holes) in the electric
field and 7;,, the mean scattering time between two subsequent elastic scattering processes
causing randomization of the propagation direction. For electrons, Up can be written as

—

Up=——2F = —ukE, (3.3)

19



3 Theoretical background

with the mobility u = e7,,,/m* being the proportionality factor between drift velocity and
external electrical field. For a given sheet carrier density ng, the corresponding current
density j is

j = —etpns = oF, (3.4)
where o = €%7,,,ns/m* denotes the conductivity. We can thus write the resistivity as

1 *

)
enslh  Ns€Tm,

stating that scattering events lead to limited mobilities and hence finite resistivities for a
given carrier density.

3.2 Scattering in a 2DES

To realize low resistive, high mobility devices, scattering events between electrons and
the lattice have to be minimized. In Fig. we show the measured (dots) next to the
calculated (lines) temperature dependence of the mobility of a modulation doped GaAs-
AlGaAs heterostructure with a carrier density of ny = 3 x 10 em ™2, found in Ref. [52].
This carrier density is very close to the carrier density in our experiments.

The main momentum scattering mech-

anisms for electrons in the 2DES are 107____,_‘__\__._,_.1_.,___.___._._\;\,... ——
given by (i) electron-phonon scatter- F * Remote impuriy i optioa phonon:
ing (i) remote impurity scattering due L "“:.Deff'.a".‘:z'?e?efﬁ'.‘é""“' -\/ 1
to ionized dopants in the doping layer | Background impurity v\, \
and (iii) scattering from background Wm")\ \\
impurities in or close to the plane of 10° Tl }Q,\\\ '-\‘\ 3
the 2DES. Every scattering mechanism — F '\\ : ]
can be associated with a characteris- &> | ' \'_\
tic, temperature dependent elastic scat- L P ‘\f’;?""'e)ﬁ.\ ‘
tering timescale 7;, and the total elas- = \
tic scattering rate can be calculated 2 10° \
from the sum of all scattering rates r Gag7Alg3As-GaAs
(Matthiessen’s Rule), i d=200 A

1 1 "

— Z - (3.6) oL
In Fig. calculated mobilities de- ,— S ““‘lg — ““ic‘)o ]
duced from individual scattering mecha- _ Temperature (K)

nisms (e.g. optical phonon, remote im-

purity, background impurity) are plot- Figure 3.1: Measured (dots) and calculated
ted next to the total mobility obtained (lines) temperature dependence of a modula-
from the combined scattering rates as tion doped high mobility 2DES. Copied from
a function of temperature. The predic- Ref. [52].

tion is in very good agreement to the experimentally measured mobility (dots). Phonons
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3.2 Scattering in a 2DES

(lattice vibrations) are strongly temperature dependent and the limiting factor for the
mobility at high temperatures. At low temperature, phonons freeze out and the mobility
is limited by impurity scattering. The doping layer containing the remote impurities is
typically spaced between 10 nm and 40 nm away from the 2DES. The spatial separation
increases the mobility but still causes a weak, spatially random disorder potential in the
2DES due to Coulomb interaction, giving rise to small angle scattering for electrons in the
2DES. In contrast, background impurities very close to the 2DES lead to large angle scat-
tering, which is the main limiting factor for the low-temperature mobility. For this reason,
growers of high mobility 2DES focus on improving their growth techniques in regard to
lower background impurities close to the GaAs/AlGaAs interface.

3.2.1 Ballistic transport

For an electron at the Fermi edge, the mean free path between two elastic scattering
processes that strongly change the propagation direction can by calculated from the total
elastic scattering time:

lm = VFTm, (3.7)

where vp = 4 /QEEQ /m* is the Fermi-velocity. For a high mobility 2DES at low temperature,

Iy is typically on the order of tens of microns (I, = 55 um for the wafer material used
in this thesis). Technological progress and advanced lithography techniques, in particular
EBL (cf. section , enabled continuous downscaling of gate defined structures This
progress paved the way toward ’ballistic’ transport experiments, cf. Fig.[3.2] The elastic

(@) (b) \ '

<< L I

m

>L

Figure 3.2: [llustration of diffusive (a) and ballistic (b) transport in samples of dimension
L compared to the elastic mean free path Iy,

mean free path is the key quantity in this context: Diffusive transport is observed in
samples of dimensions much larger than the mean free path, L > [,. In this regime,
transport of carriers over a distance L can be understood as a series of elastic scattering
events due to collisions and interactions with impurities, phonons or other electrons, as
illustrated in Fig. [3.2(a).

In contrast, the large elastic mean free path in high mobility wafers and the high litho-
graphic resolution of EBL enables to fabricate customized devices that are considerably
smaller than the elastic mean free path, L < Iy, cf. Fig.[3.2((b). In this regime, large angle
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3 Theoretical background

scattering predominantly occurs at the gated structures. Using this concept, circuits can
be designed to control electrons on the mesoscopic level.

The possibility to fabricate ballistic devices also raised important theoretical questions,
which we motivate on the basis of the sketch in Fig.[3.3(a). We consider a narrow ballistic

(a) macroscopic macroscopic (b) E
conductor 1 L conductor 2
y “ a o
| W
x . .
ballistic
I conductor

oy'o

Figure 3.3: (a) Ballistic conductor carrying transverse modes between two macroscopic
conductors at chemical potentials 1 2. (b) Dispersion relations E, (k) of electrons inside
the ballistic conductor.

conductor of length L sandwiched between two macroscopic conductors. The latter have
dimensions much larger than the Fermi wavelength of the free 2DES Ar, which is typically
on the order of tens of nanometers for high mobility 2DES at low temperatures. The
ballistic conductor between the contacts has a width w on the order of, but larger than Ag.
In this case, the dispersion relation in the macroscopic contacts is that of free electrons

h2k2
- 2m*

E(k)

confined in the z-plane of the 2DES with k% = k2 + kZ, while electrons in the narrow
ballistic conductor are additionally confined in the transverse (y-) direction. Here, the
dispersion relation splits into a set of discrete subbands ('modes’), indexed n = 1,2,3,...,
with individual dispersion relations

h2k2
2m*’
cf. Fig. [3.3(b). The total number of occupied modes is then N(E) = Y O(F — E,),

where O(x) is the Heaviside step function with ©(x) = 1 for x > 0 and O(x) = 0 for
z <0.

E.(k;)=E, +

For a given width w, the conductance of the device sketched in panel (a) approaches
a finite value (and hence a non-zero resistance) once its length L is decreased below
the mean free path. This is surprising, as the conductance of macroscopic conductors
scales like G = ow/L, and intuitively one would assume zero resistance in the absence of
backscattering. Instead, the finite resistance is caused by the rearrangement of the current
as it propagates from the left macroscopic conductor at chemical potential y; through the
narrow ballistic conductor into the right macroscopic conductor at chemical potential uo,
cf. Fig.|3.3(a,b): in the macroscopic two-dimensional conductors, the dispersion relation of
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3.2 Scattering in a 2DES

electrons is continuous and the current is carried by infinitely many modes. At the interface
to the narrow, one-dimensional conductor with a finite set of N transverse modes, most of
the current is reflected and the current redistributes, giving rise to an interface resistance,
independently of the length of the ballistic conductor.

Next, we calculate the current I carried by a set of IV transverse modes inside the ballistic
conductor for a bias voltage V' causing a difference in the chemical potentials p; — g = eV’
between the macroscopic conductors. We write the current as

N o0
=53 [ Dun(Een(Ba(B) (B) - £1(E)] B, 55)
2n—1 0
where X
2 (dE,\ "~
Dup = (dkx>
and
_ 1dE,
Un = ks,

is the 1D density of states and the group velocity of mode n, respectively. Note that the
energy dependence in the density of states and the group velocity cancels, such that every
mode carries the same current, independently of the bandstructure (in 1D). ¢, (E) denotes
the transmission probability of mode n at energy F and

1

FilB) =~
exp< kBTZ> +1

is the Fermi-Dirac distribution function representing the occupation probability of an elec-
tron with energy F in the macroscopic conductor ¢ = 1,2 with local chemical potential p;
at temperature T'. Since all states below o are occupied in both macroscopic conductors,
a net current is only carried by the 4k, states of modes within the transport window
w1 > E > pg [cf. Fig. |3.3(b)], which we account for with the pre-factor 1/2 in equation
[3-8 Inserting into equation [3.8] the current is

% o [
1= [ o ) - i) ar

Assuming a small bias window around the Fermi energy at 7" = 0, such that ¢, (F) ~
t,(EQ) independently of energy we arrive at the expression

2e N 2¢? N
I= W Ztn(Eg) (11— p2) = I Ztn(E%)V’.
n=1

n=1

The conductance G = I/V' can be written as

0 2¢2 & 0 262 0
G(Ep) = T Ztn(EF) = TT(EF)v (3.9)
n=1
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3 Theoretical background

where 2521 tn(EQ) = T(EY) is the total transmission of all N modes at the Fermi energy.
Equation - known as the Landauer formula [51] - demonstrates that ’conductance
is transmission’, in the sense that the conductance of a quantum conductor is directly
proportional to the probability of a particle to transmit through it.

For N fully transmitting modes, Egzl tn(EY) = N, we find the 1D conductance quan-

tization, G = NGg with the spin degenerate conductance quantum Gg = 2e2/h =
7.7480917 x 107°S.

3.2.1.1 Quantum point contact

In 1988, van Wees at al. [53] and Wharam et al. [3] independently of each other realized
a quasi one-dimensional ballistic conductor in a 2DES, denoted quantum point contact
(QPC). In a pioneering work, they deposited metallic split gates on top of a high mobility
GaAs/AlGaAs heterostructure (cf. inset in Fig. [3.4)), creating a constriction for electrons
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Figure 3.4: Historical data of a quantum point contact realized in a 2DES, copied from

Ref. [53] (van Wees et al.).

by depleting the 2DES below the gates via a negative gate voltage (field-effect). The litho-
graphic constriction width in the experiment was around 250 nm at a Fermi wavelength
of 42nm. Strikingly, after subtraction of the lead resistance, the conductance of the de-
vice decreased in steps at integers of G for decreasing gate voltages, cf. main panel in
Fig.[3.4 The conductance plateaus found here are a direct observation of the conductance
quantization derived at the end of the previous section. By lowering the gate voltage,
the depleted area of the 2DES below increases, giving rise to a more narrow constriction
with less transverse modes contributing to conduction. For very negative voltages, the
constriction is fully depleted and the channel is completely pinched off (G = 0, not shown
in Fig. 3.4).
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3.2 Scattering in a 2DES

Note that the length of the 1D channel L ~ 1 um shown in the inset of Fig. [3.4] is much
shorter than the mean free path I, = 8.5 um of the sample, such that the conductance
(the transmission) is mainly a property of the ’contacts’ between the free 2DES and the
1D channel and not the 1D channel itself. The shape of the pinch-off curve thus strongly
depends on the electrostatic potential shape of the constriction and the transition to the
free 2DES. In the appendix (section we use the parabolic saddle point potential model
to explain the smooth steps in QPC pinch-off curves.

3.2.2 Phase-coherent transport

Next to ballistic effects, the small dimensions of our devices and cryogenic temperatures
allow us to study coherent effects related to the wave nature of electrons. The most
famous ones include the Aharanov-Bohm effect [54], weak localization [55], (universal)
conductance fluctuations [56] or a modified Young’s double-slit experiment [57]. In all
these works, the electron phase is manipulated, giving rise to quantum interference features
that are not visible in a classical system. Experimentally, this is realized, for example,
by applying a perpendicular magnetic field B, creating a phase difference between two
electron paths proportional to the enclosed magnetic flux, or by applying local electric
fields to tune the phase difference between two paths. Moreover, the electronic analog of
a Fabry-Pérot resonator [58-60] can be studied by creating standing electron waves.

However, finite temperatures and finite source-drain voltages lead to a loss of the phase in-
formation, limiting the timescale of phase-coherent transport. In the following, we present
the most relevant dephasing/decoherence mechanisms in a 2DES at low temperature.

Dephasing between different electrons

Finite source-drain voltages cause electronic excitations even for the degenerate Fermi gas
at very low temperature. In a measurement under these conditions, different electrons
with different energies within the transport window contribute to the current. Due to
their different energies (k-states), the electrons accumulate a relative phase difference
A¢ = AKl, where Ak is the momentum difference between two electrons at different
energies and [ their propagation distance. For an estimation of the dephasing length of
an electron ensemble excited between EX and EP + eV’ (at T = 0), we calculate the
propagation length after which two electrons at Fy = EIQ and Fy = Eg + eV’ are exactly
out of phase, such that A¢ = m:

s s

1,(V') = = ) (3.10)
) o E ([ v
Y 1+ =1
h T m

Decoherence of single electrons

Besides a dephasing of the electron ensemble, also single electrons can lose their phase
memory. This occurs due to inelastic scattering events as discussed in the following.
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3 Theoretical background

At sufficiently low temperatures, electron-phonon scattering [61] freezes out, leaving be-
hind inelastic electron-electron scattering as the main dephasing mechanism. In this con-
text, we distinguish between inelastic electron-electron scattering events with (i) large
energy transfer on the order of kT (eV’) and (ii) small energy transfer interactions of
single electrons with the fluctuating electromagnetic field of all other electrons (Nyquist
noise [62]). These processes are inelastic by means that single electrons lose/gain energy.
However, the total momentum and energy of the ensemble remains conserved as electrons
exchange their momenta between each other.

(i) Chaplik [63] derived the inelastic scattering rate for an electronic excitation A above
the Fermi level at T' = 0:

1 EY /AN E2\ 1 20 7r
Tee(A)  drh <Eg> [m <A) 3 “n( . >] - (3.11)

Where kp = 1/2m*E19 /h is the Fermi wave number and Qrr = 0.2 nm~! is the Thomas-
Fermi screening vector in 2D for GaAs. Equation holds for moderate excitation
energies A << h3kpQrr/m*. Note that A denotes the excitation energy relative to the
Fermi level and equation [3.11] thus describes decoherence of electrons at a specific energy.

Giuliani et al. [64] extended the picture to finite temperatures with low electronic excita-
tions in the regime A << kgT << EQ:

1 EY (kpT\? kT Qrr
=— In{—+)—-Inl{——)—-In2-1 3.12
7o o(T)  27h ( ED > "UEY) T\ ke )T (3.12)
(ii) Additionally, scattering of electrons due to the fluctuating electromagnetic field created

by the thermal motion of all other electrons causes decoherence, which is known as Nyquist
noise [62]. The corresponding scattering rate for a disordered 2DES (I, < L < ly) is [65]

L ksTAp (e
™w(T)  2mh Iy Ar )]

(3.13)

and the total dephasing rate due to electron-electron scattering can be obtained from

Tq;;_ . =T, .+ 7y, in agreement with an experiment [66).

In contrast, in clean, ballistic and coherent systems, I, > ls > L, large energy transfer
due to inelastic electron-electron scattering represents the main factor for a limited coher-
ence length, T_;i e 2 Tl 16, which has been confirmed experimentally using bias voltage

spectroscopy at low temperature [57] (equation [3.11]) as well as temperature dependent
measurements at small bias [67] (equation |3.12]).

In Fig. we compare the dephasing length of an electron ensemble /4 (dashed black line,
cf. equation to the inelastic electron-electron scattering length of a single electron
le—e = UpTe—e (solid black line, with 7., defined in equation as a function of the
energy |eV’| relative to the Fermi level. For the comparison, we choose the actual Fermi
energy of the wafer material used in our experiments, Eg = 11meV and consider T" = 0.
For a given source drain voltage, the electron ensemble first dephases, before single elec-
trons lose their phase information, l4(|eV’|) < lc—e(|eV’|). By applying sufficiently small
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Figure 3.5: Calculated dephasing length of an electron ensemble I, (dashed black line,
cf. equation and inelastic electron-electron scattering length of a single electron
le—e = UpTe—e (solid black line, with 7., defined in equation as a function of the
energy |eV’| relative to the Fermi level, for Eg = 11meV and T = 0, plotted on a
logarithmic scale.

bias voltages, both phase breaking lengths reach values beyond a few microns, compara-
ble to the dimensions of our samples. In this bias window, we can observe ballistic and
coherent effects at low temperature.

3.3 Landauer-Bittiker formalism

The Landauer formula describing the transmission through a ballistic two terminal con-
ductor (cf. equation can be extended to ballistic samples with an arbitrary number
of terminals indexed 7,7 within the Landauer-Biittiker formalism. We can write the total
current flowing into lead j as [6§]

726

Ij=%

(Tijpg — Thipni)

where
Tij(E) = tijmn(E)
m,n
are the total pairwise transmissions after summation over all mode to mode transmission

probabilities #;;n, of mode n in lead j into mode m in lead 7. With V; = p; /e, we can
rewrite the current as

I} =Go Y (Ti;V; — TjiVi) .
i
To ensure that the current is zero for equal potentials in the leads (V; = V;) it must hold

ZTz‘j :ZTjiv
; ;
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3 Theoretical background

such that we can rewrite the current in terms of potential differences (voltages),
Ij=Gq) Ty (Vi—Vi).
i

Time reversal symmetry gives the condition

Tij(B) = Tji(—B).

3.3.1 Ballistic cavity with four openings and diffusive leads

As an example for the application of the Landauer-Biittiker formalism introduced above,
we consider a real sample shown in Fig. a). In chapter we discuss various experiments
performed with this sample.

N3 N4 R4 .V4

N2 Nl Rl )11

Figure 3.6: (a) Atomic force microscope (AFM) image of Ti/Au gates (yellow) on the
sample surface (dark). Negative gate voltages V;,V., Vi and Vi, are used to define four
QPCs and a mirror, forming a cavity in the 2DES 107 nm below the surface. Crossed
boxes indicate Ohmic contacts far away from the nanostructure. We measure the currents
I and I3 flowing through QPC; 2 after applying a source-drain voltage V' at QPC; and
leaving all other Ohmic contacts grounded. (b) Ballistic four terminal device with lead
resistances R;, spin-degenerate channels N;, potentials V; and currents I; flowing in lead
1 =1,2,34.

By applying four negative voltages V;,V.,V] and Vi, to the gates highlighted in yellow, we
realize four QPCs and a mirror gate in the 2DES below. Together, they form a cavity
with four terminals.

For our transport experiments, we apply a source-drain voltage V to the lead of QPCy,
such that a current [; flows in the same lead, cf. Fig.|3.6(a). Additionally, we measure
the current I» flowing in lead 2 behind QPCs, which we keep as close as possible to the
ground potential. Using Kirchhoft’s law (Z?:l I; = 0), we can determine the sum of the
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3.3 Landauer-Biittiker formalism

currents I3 and I, flowing in the leads of the wider QPCs and QPC4, which we likewise
keep at the ground potential. We sketch a simplified circuit diagram of the four terminal
device with their lead resistances in Fig. [3.6b).

As the dimensions of the cavity are considerably smaller than the measured mean free path
in this sample (I, = 14 pm), the transport within the cavity is ballistic. Nevertheless, as
we will justify below, we next treat the cavity as a node of an Ohmic circuit and assume
diffusive transport to predict the diffusive current flow through the QPCs. We parame-
terize the resistance of QPC; by (NiGQ)_l, where NN; is the number of spin-degenerate
channels in the respective QPC, with ¢ = 1,2,3,4. The macroscopic Ohmic contacts far
away from the cavity (indicated by crossed boxes) and their leads cause a known serial
resistance R; for QPC;. Within this diffusive transport model, we can calculate the cur-
rents as a function of the effective resistances ]:Zl = (NZ-GQ)f1 + R;. The gate voltage
dependence of N; and R; is determined experimentally, cf. section

To quantify the transmission properties of the cavity and its four QPCs, we have to re-
late the measured currents to transmissions and reflections T;; from lead j into lead i
with 4,5 = 1,2,3,4 within the Landauer-Biittiker formalism introduced in section In
particular, we are interested in linking the measured ’emitter’ current I to the reflection
amplitude 777 (corresponding to backscattered electrons returning into QPC;) and the
measured ’detector’ current Iy to the transmission amplitude T5; (corresponding to elec-
trons transmitting through QPC; and QPCy in series). In general, the current measured
at any of the four terminals depends on various transmission or reflection amplitudes,
making the extraction of individual 7;; elements difficult. To still be able to derive good
approximations for 771(I1) and T;([2), we calculate the correction to the diffusive cur-
rents caused by the coherent and ballistic dynamic inside the cavity in leading order. For
this purpose, we make the following assumptions:

(i) While the number of conducting channels coupling into/out of the cavity via the narrow
emitter (QPCy) and detector (QPCs) are of order one, the number of conducting channels
of the wider cavity side constrictions QPCs and QPCy are much larger and similar to each
other, N3 ~ Ny >> Nj 3. As we show in section this is a reasonable assumption at
least if we keep N1o = 1,2.

(ii) We assume chaotic cavity physics [6973] to estimate the background transmission/re-
flection amplitudes of the individual leads. Within this approximation, the transmission
probability through lead j in a cavity with M leads is
N.
tj = —5/— (3.14)
Zi:l Ni

The chaotic and the diffusive regime are equivalent by means of the distribution of cur-
rents proportional to the number of occupied spin-degenerate channels and the Ohmic

resistances, respectively. On this basis, we motivate the application of the diffusive trans-
port model introduced above.

(iii) To simplify the equation system to solve we assume that the leads 2,3,4 are at the
ground potential, such that Vo = V3 = V4 = 0. Experimentally, this assumption is
reasonable since we are able to tune the voltage offset of the current amplifier connected
to QPCy down to the ground potential within an accuracy of |Va| < 10 uV. Note that
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3 Theoretical background

this is an upper limit given by the specifications of the manufacturer [47,48]. In our
experiments, |Va| is typically on the order of very few microvolts, |Va| < 5uV. For this
reason, we in the following approximate Vo = V3 =V; =0 and set V; := V.

Using these assumptions and the unitarity of the scattering matrix (defined in section
below), we arrive at the following approximation

2

i (N10T14 + N16T ) (N3 Rz — NyR3)
1
Zj:l Nj

N3N, (R3 + R4)

L=-V |G+ aq ( —T11> +Go

(3.15)
relates the measured emitter current Iy

to the reflection amplitude 771 for elec- ' ' ' '
trons emitted by QPC; to return into 18r |
the same QPC.. Here, we used the diffu- 16l N,=N,=3 / |
sive sample resistance
e | ]
1 R+<1+1+1)1 © NN =2 —
— ¥ — 1 — — — = - -
Gclhff Ry Rs Ry © 42l — |
| (3.16)
In Fig. we show Gihff as a function 1.0} il
of Vi, obtained from the combined mea-
sured Vi,-dependences of the four QPCs 0.8 N =N, =1
and their leads, for N1 = 1,2,3. 5 '4 '3 '2 '1 0

Figure 3.7: Measured diffusive conductance of
QPCq, Gclhf ! (Vin) obtained from inverting equa-

tion with N1 = Ny =1,2,3.
Similarly,

; NN N16Toy + NodTy1)(N3Rs — NyR
L=V Ggff—l—GQ(Tgl— 1V >_ Q( 16754 + No6Ty1)(N3R3 — NyRy)

St R JiS\Ch
> =1V N3Ny (R:s + R4)
(3.17)

with the diffusive serial transmission

through QPC; and QPC,

GEIT — SN S fl . (3.18)
Ry R+ (3050 1/R))™!

links the measured detector current I5 to the transmission amplitude T5; from QPC; into

QPCs.

The first terms of the two equations and are identical to the solution of the diffu-
sive model, 119 = :FVG‘lijg. Ti1 is the reflection amplitude which takes into account those

carriers emitted into the cavity from QPC; and then backscattered through QPCq. T3

IThe equations were derived by Piet W. Brouwer, head of the Dahlem Center for Complex Quantum
Systems at the FU Berlin.
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3.4 Transfer matrix and scattering matrix

is the transmission coefficient which accounts for all carriers which are first emitted from
QPC; into the cavity and then scattered into QPCs. The second terms in parentheses
describe the chaotic/diffusive limit of 771 and T5;, respectively. Hence, in the chaotic/d-
iffusive transport limit, the correction terms in both equations vanish. The last terms in

eq. [3.15 and [3.17| are of magnitude 1 /N;f, terms of lower magnitude are summarized by
dots.

In the following, we omit these small terms and solve for 777 and T5;:

1 (L(B,Vi) dif f N}
T11(B,Va,V) = — 4+ G V) +Go——— 1, 3.19
To1(B,Vim,V) = L (E(BVn) G (V) + GQ4N1—N2 . (3.20)
Go 4 > =1 Ni(Vm)

In the equations above, we explicitly indicate the dependence on the experimental param-
eters B,V and V. The quantities R], N; and Gdlf ! are or are composed of individual
resistors without ballistic or coherent couphngs. Therefor, these are magnetic field in-
dependent (for not too high fields |B| < 100mT applied in the experiments) and only
affected by Vi,. In contrast, the measured conductances I1(B,Vy)/V and Iy(B,Vy)/V
contain ballistic and coherent components which are sensitive to variations in B,V;,,V, as
well as temperature. These are included in T11(B,V;,) and T (B, V).

From the total reflection (transmission) amplitude 777 (721) we finally calculate the re-

flection probability
T

t = — 3.21
= (3.21)
and the transmission probability
T
tog = — 3.22
0= (322

by dividing by the number of channels N7 coupling into the cavity via the emitter QPCj.

3.4 Transfer matrix and scattering matrix

Inside the quasi one-dimensional leads, the electronic wavefunctions propagating towards
a scatterer in lead ¢ can be written as

+ik
znz Zaz ne™’ lm y)

Here, xn(y) denotes the transverse wavefunction with mode index n and a;, the corre-
sponding amplitude. In z-direction, the electrons propagate as plane waves and the sign
of k, is chosen such that it represents an incoming wave for the scatterer.

Similarly, we can write the outgoing wavefunction in lead ¢

§ : ik z
outz ny banZF N )7
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3 Theoretical background

where the sign of the propagation direction is reverted and b; ,, represent the amplitudes
of the outgoing modes. In the following, we assume that the wave amplitudes a;, and
b;n are directly proportional to the current carried by the corresponding mode (at fixed
particle energy E).

The mode to mode transmission probabilities #;; .., between different leads can be ex-
pressed in a illustrative matrix representation that relates the incoming wave amplitudes
with the outgoing wave amplitudes. We explain this concept on the basis of an exam-
ple, sketched in Fig. [3.8] We consider the transmission of a fully coherent electron with

E 4
| 11 111
lead 1 scatterer lead 2
o |
a, ok celk™ e ikx
ble th. de—ik/xi. > bze[kx
0
-Xo 0 Xo X

Figure 3.8: Potential barrier of height ®( relative to the electronic energy E sandwiched
between two ideal leads at zero potential. Arrows indicate the propagation direction of
the corresponding wave amplitudes a; (b;) of a single transverse mode propagating into
(out of) the scattering region.

kinetic energy E through a rectangular potential barrier of height ®y placed between
—x9 < z < xg. For simplicity but without loss of generality we assume only one trans-
verse mode and define its amplitude propagating towards the scatterer in lead 1 (2) a3
(a2) and the outgoing amplitude by (b2). We denote the amplitude in the scattering region
propagating along x (—x) as ¢ (d).

We can connect the amplitudes a; and b; in lead 1 with the amplitudes ¢ and d in the
region of finite potential in a matrix representation

with the transfer matrix

'lk + k/ e(’ik*k/)xo Zk - k, e(ik+kl)$0
2ik 2ik

= N\ . : 3.23
I ik — k, e*(ik+k’):p0 ik + k/ e*(ik‘*k/)zo ( )
21k 2ik

where k and " are the wave numbers in the region of zero and finite potential, respectively.
For the detailed derivation, please see section in the appendix.
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3.4 Transfer matrix and scattering matrix

In the same fashion, we can connect the amplitudes of the central region with finite

potential and lead 2
c\ bg
(6) - (2

where Ty is obtained by replacing —xg by z¢ and exchanging ¢k and k' in equation
Likewise, we can relate the amplitudes on both sides of the scatterer by concatenating the

two transfer matrices, T = T1Ty,
ar) bo
(51) == ()

For given incoming amplitudes, we can now calculate the transmission coefficient ¢. Setting
a; = 1 and a2 = 0 (no incoming wave from lead 2 towards the scattering region), the

transmission is
2 2 2 -1
k*+k .
= |:1 + <2k§k¢l> sinh (2]€/.T()):| s

where T1; is the first entry of the total transfer matrix. Similarly, the reflection r into
lead 1 is obtained via

2 1

by B
T11

ai

t =

2 2

b1
aj

T
T
The transmission through more complicated barriers of arbitrary shape can be calculated

by discretizing the barrier ®(z) into M slices of piecewise constant potentials ®(z;) with
wave numbers

K = V2m* [E — ®(x;)]

h
from which we calculate the transfer matrix of every slice ¢, T;. The total transfer matrix
of the potential barrier is again obtained from the concatenation of all transfer matrices

in the correct order,
M
T=]]T.
i

The transfer matrix connects wave amplitudes on different sides of the scattering region.
By rearranging the entries of the transfer matrix, we can likewise define the scattering
matrix S, which relates wave amplitudes moving into the scattering region with amplitudes
moving out the scattering region. For the example above, we can relate the entries of the
transfer matrix to those of the scattering matrix as follows:

1| Toyp |2
t—‘811’2_’T11 ;T:‘SQIPZ Ti

and write the scattering matrix S in

as
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3 Theoretical background

where t and r (¢ and r’) are the transmission and reflection amplitudes of the waves
propagating from left to right (right to left). The scattering matrix is a unitary matrix,
STS = 1 which follows from the charge conservation condition

Z |an‘2 = Z |bn|2-
n n

3.5 Quantum mechanical model for the transmission
through a mesoscopic sample

Our numerical quantum mechanical mode]E| allows for the calculation of pairwise mode to
mode transmission probabilities t;;,m between the n < N (m < M) channels in contact
j (). These channels represent the transverse modes of a ballistic conductor within the
Landauer-Biittiker formalism presented section @ For k contacts, we consider Ni,; =
Hle N; pairwise transmission probabilities. In the following, we describe our method for
the calculation, without loss of generality assuming only two contacts labeled j (i) with
N (M) one-dimensional channels, cf. sketch in Fig. 3.9

absorbing potential

2

X °

Ax B@

absorbing potential

(0

M modes

lead i lead j

D(x,y)
>Ep

0

Figure 3.9: Sketch of the simulation region for our calculations. We numerically calculate
the transmission through ideal reflectionless leads for a realistic 2D electrostatic potential
landscape ®(x,y) (greyscale) based on the actual sample layout. For the calculation, we
divide the simulation region into parallel slices of width Ax along the y-direction where
we solve the scattering problem exactly. To mimic grounded side drains of the 2DES, we
implement absorbing potentials. Additional hard-wall impurity potentials (black circles)
and a perpendicular magnetic field are added on demand.

Before the calculation, we first carefully model the electrostatic potential and its depen-
dence on the gate voltages based on the lithographic sample layout as well as calibration
measurements of the individual circuit components to result in a realistic 2D potential

2The model described in this section was realized and provided by Max Geier from the Dahlem Center
for Complex Quantum Systems at the FU Berlin.
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3.5 Quantum mechanical model for the transmission through a mesoscopic sample

landscape of the actual sample. We attach ideal, reflectionless leads ¢,j to the two bound-
aries of the simulation region in z-direction, mimicking the measurement terminals in the
experiment. To model macroscopic, grounded contacts connected to an intermediate re-
gion of free 2DES, we use an absorbing potential with periodic boundary conditions in
y-direction, which allow an expansion in terms of plane waves, cf. upper and lower leads
in Fig. 3.9

For the calculation, we divide the simulation region into parallel slices of width Ax =
Tiy1 — x; = 15nm for which we solve the Schrodinger equation for a given spatial elec-
trostatic potential ®(z;,y) exactly. Additionally accounting for a perpendicular magnetic
field B, the problem of a single electron in a spatial potential ®(z;,y) is described by the
Hamiltonian

2
. e 1

where E(zl,y) is the magnetic vector potential and ¢ is the speed of light. While we
calculate the solutions at fixed energy E, we account for the energy distribution of charge
carriers due to finite temperature and source drain voltage by sampling over the energy
distribution of the electrons. For solving the scattering problem for a given electrostatic
potential and magnetic field at x;, we expand the wavefunction along the vertical slices
(in y-direction) in plane waves. Making use of the linearity of the scattering problem
we calculate the scattering matrix of each individual slice separately. For each slice we
further divide the problem into a free propagation without electrostatic potential and
magnetic field between x; and x;41 setting & = 0 and ff(:cl,y) = 0. Concatenation of the
resulting slice-by-slice scattering matrices in the correct order yields the scattering matrix
of the complete simulation region, from which we then extract the total transmission

Ty = Zgi\é:l tn,m between the two contacts with N and M conducting channels.

Additional hard-wall impurities or piezoelectric potentials are added on demand. However,
we do not account for a weak, spatially random disorder potential due remote impurities in
the donor layer. We also neglect any interaction effects due to electron-electron scattering
or the electron spin.
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4 Electrostatic potential shape of
gate-defined quantum point contacts

Despite their role as fundamental building blocks in nanoelectronic circuits and the vast
amount of literature about them [1-3(13}/74], surprisingly little is known about the electro-
static potential shape of gate defined QPCs as a function of gate voltages. However, the
precise potential shape is crucial for understanding interaction effects in QPCs [14,75-77]
as well as their carrier emission dynamics [5,/78|, which is central for optimizing a quantum
electronic circuit. The lateral confinement defines the mode structure of the 1D channel
while the longitudinal potential shape governs the coupling of the 1D modes into the
surrounding 2DES. A well designed QPC has several conductance steps that often are ap-
proximately equidistant in gate voltage as the QPC is opened up starting from pinch-off at
G = 0. It is tempting to interpret equidistant conductance steps [279-83| as a signature of
a parabolic lateral confinement potential [84] since such a potential has transverse modes
at equally spaced energies. However, this interpretation is questionable as the distance of
the conductance steps as a function of gate voltage is not necessarily proportional to the
energy spacing between the 1D modes [82,85]. Instead, populating the 1D channel with
electrons by increasing the voltage applied to the split gates enhances Coulomb screening
inside the constriction. As a consequence, the lateral confinement potential undergoes
a transition from an unscreened approximately parabolic shape near pinch-off towards a
screened potential for many occupied 1D subbands. This transition had been theoreti-
cally predicted [86]. Here, we experimentally investigate it using transport spectroscopy
as a function of source-drain- and gate voltage. In the appendix (section we apply
the parabolic saddle point potential model to our QPC, which would explain its almost
perfectly equidistant conductance plateaus in the absence of screening. At first sight,
the model describes the data qualitatively well. However, it is incompatible with the
measured subband spectrum of the QPC. At the end of the present chapter, we use the
experimentally found potential shape parameters into our numerical model (cf. section
to simulate beam profiles emitted from a QPCE]

In the top left inset of Fig.[4.1|(a) we present an SEM image of the QPC under investigation.
We realize the QPC by the usual split-gate technique on the surface of wafer mbe8-309 (see
section hosting a 2DES 107 nm below the wafer surface. The 2DES Fermi energy
is EI(} = 11meV and the measured mean free path after processing the present sample
Im ~ 24 um. A detailed description of the experimental setup used for the experiments
described in this chapter is available in section The smallest distance of the two
gates defining the QPC is approximately 250 nm. The tips of the gates are designed as
half circles with a radius of approximately 150nm. To study the energetic spectrum of

!This chapter presents results of Phys. Rev. B 101. 165429 (2020) (Ref. [87]). See section [B| for the
contributions of each author.
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4 Electrostatic potential shape of gate-defined quantum point contacts

the 1D modes we measure the current as a function of both the voltage V, applied to
the gates and the source drain voltage V serving as an energy reference. In the main
panel of Fig. (a), we plot a pinch-off curve of the QPC measured at a small source-

(b)-1 ol e

~ dg/dV,) (uS/mV)

0.1 0.2

—

8 6 4 2 0 2 4 6 8
Vg (V) Varc (MV)

-2.2 -2.0 -1.8 -1.6 -1.4 -1.2

Figure 4.1: (a) Pinch-off curve G(Vy)/Gq of the QPC at source-drain voltage V =
—0.5mV,; solid line: raw data; dots: corrected for lead resistance Rjeaq = 4.62 k() which
includes 4.4 k2 resistance of external RC filters; left inset: SEM image of the QPC,; right
inset: simplified circuit diagram of the measurement. (b) Differential transconductance
dg/dVy as a function of V, and the bias voltage Vopc = V — Rjeaq! dropping across
the QPC. Local maxima of dg/dV, (white regions) indicate transitions between adjacent
conductance plateaus. Red lines are a guide for the eye.

drain voltage, V= —0.5mV. It features almost equidistant conductance plateaus in gate
voltage. The line shows the measured conductance I/V of the sample, while black dots
show the conductance of the QPC, G, after subtracting the finite lead resistance Rjeqq,
cf. right inset in panel (a). Since the source-drain voltage V is applied across the QPC
and its leads (which is always the case, because of the finite contact sizes even for a four-
terminal measurement), the voltage drop across a QPC is Vopc =V — Viead = V — Ricaal,
cf. sketch in Fig. (a). The lead resistance can be directly determined from the linear
response pinch-off curves by fitting the conductance plateaus to their quantized values,
Ricag = V/I — (NGQ)fl.

To experimentally determine the energies of the 1D modes we measure the differential con-
ductance g = dI/dV (e.g., using a lock-in amplifier) as a function of source-drain voltage
V and the gate voltage. In Fig. b) we plot the differential transconductance dg/dV
as a function of the gate voltage and the bias voltage Vopc dropping across the QPC.
In this plot, steps of the conductance G(V;,Vqpc) appear as lines of positive differential
transconductance (white). Red lines are a guide for the eye, indicating resonances between
the 1D modes and the chemical potentials of the source and drain leads. Along the Nth
line of positive (negative) slope counted from the bottom of the plot, the Nth 1D subband
bottom potential is equal to the chemical potential in the source (drain) lead, ey = ug
(eny = pup). The lines frame diamond shaped regions. Within these regions the conduc-
tance takes the quantized values G = NGq. Intersection points at Vopc = 0 indicate
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4.1 Lateral hard-wall confinement potential

steps of the linear response pinch-off curve, i.e., G = (N —0.5)Gq. At intersection points
at finite Vgpc # 0 the chemical potential drop across a QPC equals the energy spacing
between the corresponding 1D modes, |us — pup| = eVgpc = env — enm. The additional
curved lines of enhanced differential transconductance within the N = 1 diamond indicate
the 0.7-anomaly [13}|14)/75-77].

At the intersection points marked by red squares in panel (b), the bias Vopc is precisely
equal to the energy spacings between the highest occupied adjacent subbands,

(56(N) —=EN+1 —EN
=eVqpc. (4.1)

We plot de(N) in Fig. 4.2 We observe a

strong decrease of Je(IN) as the QPC is opened 6
and N is increased. This result directly con-

tradicts the very simple parabolic saddle po- Sr |
tential model with constant curvature [84] __ ,| |
since such a potential would give rise to a >

constant subband spacing de, independently E 5l _
of N (assuming that the potential offset de- S

pends linearly on the applied gate voltage). 2r 1
For reflectionless coupling of the 1D modes 1F .
into the free 2DES, the conductance of a QPC

is limited by its strongest lateral confinement 0 1' é é 4'1 é é } é é
in the center of the constriction. In the follow- N

ing, we compare the two most common models
describing the lateral confinement, namely a
hard-wall versus a parabolic potential. These
two models may be considered the extreme
limits of a “continuum” of realistic scenarios
for the transverse confinement.

Figure 4.2: Subband spacings de(N) of
the QPC presented in Fig.

4.1 Lateral hard-wall confinement potential

For the lateral hard-wall potential we model the transverse confinement potential ®(y)

_ o, Jyl<W)/2
q’(y)—{oo’ T (4.2)

where the two parameters W and ®( are the width and offset of the hard-wall potential
well. An offset can be caused by a partial depletion of the constriction related to the in-
complete screening in a semiconductor with a small carrier density. The threshold energies
for the transverse modes indexed n = 1,2,3,... are

m2h2n?

En = 2m*W?2

+ B (4.3)
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4 Electrostatic potential shape of gate-defined quantum point contacts

Using Eq. to relate the bias voltage at the intersection points marked by the red
squares in Fig. b) to the subband spacing éc(N) = Eni1 — En, we calculate the
widths

2N +1

W(N) = 7h 2mde (V)

(4.4)
Neglecting additional screening effects due to the applied bias voltage, these values of
W (N) apply everywhere along the (almost horizontal) lines connecting pairs of red squares,
see the yellow line for N = 2 in Fig. |4.1{(b). In particular, this allows us to extend our
estimate of the width W(NN) to Vqpc = 0, indicated for N = 2 by the yellow dot in
Fig. [4.1(b). Substituting W in Eq. with W(N) we then find the potential offset ®
for Vopc = 0 using the relation EY ~ Ey + 0.50¢(N), which gives

2
o(N) ~ EY — 6¢(N) (2]\][V+ T+ ;) . (4.5)

The potential shift by 0.5d¢(IN) accounts for the difference between the Nth subband
bottom Ey and the Fermi level Eg in the center of each diamond at Vopc = 0, assuming
symmetric coupling between the 1D constriction and both leads. The assumption of
symmetric coupling is confirmed by the fact that the lines connecting pairs of red squares

in Fig. [4.1|(b) are almost perfectly horizontal.

4.2 Lateral parabolic confinement potential with variable
curvature

To model a lateral parabolic potential we use

mwzyQ
2 )

where w, and ®g are the characteristic frequency and offset of the parabolic potential well.

The eigen energies of the modes within the parabolic confinement model are given by

D(y) = o + (4.6)

1
E, = <n - 2) huw, + . (4.7)

In analogy to the analysis assuming hard-wall potentials we determine the parameters w,
and ®q from the measured subband spacings. At the intersection points indicated with

red squares in Fig. (b) we find
hwy(N) = eVapc = 6e(N) (4.8)
and in the centers of the diamonds at Vopc = 0 in addition
Do(N) =~ EX — Nhw, . (4.9)

Other than in the simple parabolic saddle-point potential with fixed curvature [84], here
we consider a lateral potential curvature which varies with N, hw,(N), and, hence, the
gate voltage [82].
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4.2 Lateral parabolic confinement potential with variable curvature
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Figure 4.3: Comparison between hard-wall (left column) and parabolic (right column)
potential models of the lateral confinement. (a) Width of hard-wall potential W (N). (b)
Offset of hard-wall potential ®o(N). (c) Shape of hard-wall potential for 1 < N <9, only
for QPC;. (d) Curvature of parabolic potential wy(N). (e) Offset of parabolic potential
®o(N). (f) Shape of parabolic potential for 1 < N < 9, only for QPC;. Error bars in
panels (a), (b), (d) and (e) are calculated by error propagation from the error of de(N),
cf. Fig. The gray shaded regions in (c,f) indicate the lithographic width of the gates
forming the QPC constriction.

In Fig. 43| we directly compare our results for the hard-wall potential shown in the left
column and for assuming parabolic confinement of variable curvature plotted on the right
hand side. We present the parameters W and ® as a function of the subband number N
for the hard-wall potential in panels (a) and (b) and w, and ®q for the parabolic potential
in panels (d) and (e). In panels (c) and (f) showing the actual potentials wells of the QPC
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4 Electrostatic potential shape of gate-defined quantum point contacts

for the hard-wall and the parabolic model, we indicate the lithographic distance of 250 nm
between the gates shown in the inset of Fig. [4.1(a) for comparison. It corresponds to the
white area between regions shaded in gray. The width of the hard-wall potential slightly
exceeds the lithographic width for N = 9. The QPC does not show further plateaus for
N > 0.

Comparing the two models a substantial difference is visible in ®(N). While for N =1
the potential offset is similar for both models with ®¢/ Eg ~ (.6, in case of the hard-wall
potential it slowly decreases to ®q/E% ~ 0.4 at N = 4 and stays approximately constant
at that level as the QPC is opened further. In contrast, the decrease of the offset ®q(IV)
of the parabolic potential with N is much steeper, such that for N 2 4 it moves below
the bottom of the conduction band in the 2D leads, indicated as a dashed line at & = 0.
We are not aware of a realistic mechanism that could lead to such an over-screening of the
negative voltages applied to the gates.

The main result of our simple analysis starting from the measured subband spacings de (V)
is, that for IV > 4 we can exclude a parabolic lateral confinement potential for our QPCs.
Based on a self-consistent calculation it has been suggested that the increasing population
of the 1D constriction as the QPC is opened up with N leads to an increased screening
of the electric field originating from the charged control gates. For a gate-defined QPC,
this causes a transition from a parabolic confinement for the case of little screening, i.e.,
N =1 towards a truncated potential with a flat bottom at larger N where many carriers
populate the constriction [86]. Our findings are in favor of such a scenario. The hard-wall
potential presents the extreme limit of strong screening. Nevertheless, for N > 4, the
hard-wall potential is more realistic than the other limit, namely the parabolic potential.
The true shape of the lateral confinement potential of a QPC likely lies between these two
extremes. For IV < 4 it is closer to a parabola, but for N > 4 the parabola has a truncated,
flat bottom, identical to that of a hard-wall potential but with smoothly increasing side
walls of constant curvature as the case for a parabola [86}88]|.

In summary, a parabolic saddle point potential is likely a realistic description of a QPC
near pinch-off. However, as the QPC is opened up beyond N ~ 4, the parabolic lateral
confinement turns out to be a bad approximation. In this regime of enhanced screening,
a hard-wall potential is the better approximation.

4.3 Coupling between control gates and the QPC

The electrostatic potential defining a QPC can be generated and controlled via the field
effect by applying voltages to nearby metal gates. The size of the plateaus of quantized
conductance in the pinch-off curves as a function of gate voltage, cf. Fig. is proportional
to the capacitive coupling between the control gates and the QPC, which we approximate
as a conducting 1D-channel with the carrier density nip. We determine the approximate
capacitance per unit length between gate and QPC as

C1D = eénlD/évgate ) (410)

where dnip is the increase of the carrier density as the voltage on the control gate is
increased by dVgate. If we take for dVgate the voltage difference between two subsequent
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4.3 Coupling between control gates and the QPC

intersection points of the source- and drain-resonances at Vgpc = 0 in Fig. on1p
corresponds to the difference of the values of nip at these points corresponding to the
N-th versus (N + 1)st subband bottom at the Fermi level. The 1D carrier density is

mo(V) = [ Din(E)A(ENE. (4.11)

where Dip = Z1/22° is the 1D electron density of states and f(E) the Fermi-Dirac

distribution. Given kgT < EQ we approximate f(E) = 1 for E < E2 and f(E) = 0 for
E > Eg. Summing up all 1D modes which are actually populated for the QPC tuned to
the conductance G = NGq we find

v2m* 2m / 2 B

nip (N)

EY —E,. (4.12)

where E,, is the eigen energy of mode n for the hard-wall (parabolic) model given by
equation (14.7)).

We plot n1p(N) in Fig. 4.4 (right axis)

for the hard-wall model (filled squares) 1250
and the parabolic model (open squares). 100| o —"
Inserting 577,11)(]\7) = nlD(N + 1) — /I/ - 1200
nip(N) from Eq. (4.12) in Eq. (4.10) E ./. — ’E\
. . - —~
we finally determine the 1D capacitance |- o a—" {150 =
LL ./ / ~~
density as - 50l yd /ﬂ Z
OE 1100 :9
(N) V8m*e? \/ Ep — Ent1 D/j o:.xs—./g DY 50
c = , |
b mh Vaate(N) S
(4.13) 0 i ‘ ‘ ‘ ‘ 0
where 0Vgate(IV) is the voltage differ- 0 2 4 6 8
ence between two adjacent conductance N

plateaus, cf. Fig. measured between
the conductance values (N+0.5)Gq and
(N —0.5)Gq. Substituting Exn41 with
the according eigen-energy of the hard-
wall (parabolic) potential using
we can now determine the 1D capaci-
tance density cip(V), cf. filled (open) blue circles in Fig. cip(N) is the slope of the
also shown 1D carrier density n1p (V). The strong decrease of the capacitance with N for
N < 4 is a direct signature of the increase of the screening of the electric field of the gates
with growing carrier density.

Figure 4.4: Blue circles, left axis: 1D capac-
itance and red squares, right axis: 1D carrier
density of the QPC, deduced from de(N) for a
hard-wall confinement potential (filled symbols)
and a parabolic potential (open symbols).

Clearly, the variations in capacitance as a function of N explain the counter-intuitive result
that the subband spacings de(N) strongly vary in a region of almost equal widths of the
plateaus of quantized conductance of the pinch-off curve, cf. Fig. [f.1]and Fig. [4.2]
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4 Electrostatic potential shape of gate-defined quantum point contacts

4.4 QPC emission profiles

In this section, we use the experimentally determined subband spacings dc(N) shown in
Fig. and our quantum mechanical model introduced in section to compare the
emission properties of QPCs modeled by (i) the hard-wall potential and (ii) the parabolic
saddle-point potential. Above, we described the analytic form of the hard-wall- and the
parabolic potential at the point of maximum confinement at the center of the QPC
constriction. Below show the two-dimensional continuation of both the hard-wall and
parabolic potential as we used them in our quantum mechanical simulations.

Hard-wall potential. Within the hard-wall model, we write the 2D potential as

(I)(.%' y) — e(x,(%)(bo ‘y’ < % + \/(RO - %)2 - xQ (4'14)
’ de(w,wy)EY  else

using the coordinate system indicated in Fig. [4.5(a). e(z,w;) is an envelope function as
described below. The electrostatic potential defined in equation has a discontinuity
along two semicircles modeling the semicircular shape of the split gates defining the QPC.
The width W and the offset potential ®( at the QPC center determines the mode structure
of the QPC. These parameters are directly obtained from the measured subband spacings
and depend on N (V;) as shown in Fig. [£.3] The radius R = Ry — W/2 of the semicircles
decreases with increasing width of the QPC center modeling the shrinking of the gate
depleted region when the gate voltage is increased, cf. sketch in Fig. 4.5(a). Since the
precise shape of the electrostatic potential towards the free 2DES is not exactly known,
we use Ry as a fit parameter to match the lateral width of the experimentally determined
beam profile. To model the transition of the electrostatic potential between the 1D channel
and the free 2DES in current direction, we assume a smooth function in order to ensure
reflectionless transmission through the QPC. This is implemented by a smooth version of
the envelope function

0, | > =<
e(r;wy) = mw2z? (4.15)
1-— 25T else
0
where the channel length Lqpc = wl\/ % = 2Ry — W such that the function e(z,w,)

is continuous. We plot the envelope function in Fig. [4.5(b). In the quantum mechanical
simulation, we use a version of e(z,w,) that connects smoothly to the free 2DES over a
length Lopc/12 on both sides of the QPC. We show a top view of the final implementation
of the hard-wall potential in Fig. [4.5{c).

Parabolic saddle point potential. For comparison, a parabolic saddle point potential con-
necting continuously to the free regions with vanishing potential can be defined as

w2y
D(z,y) = e(r;wy) <<I>o + ny ) , (4.16)

where hw, = de(N) is the subband spacing. To simulate a parabolic QPC at the N’th
conductance plateau we set ®o(N) = Eg — Nhwy. We show the corresponding two-
dimensional QPC potential for N = 7 in Fig. |4.5(d).
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4.4 QPC emission profiles
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Figure 4.5: (a) Top view of a QPC with gate-voltage dependent width W and tip radius
R. Ry is a fit-parameter, cf. main text. (b) Envelope function e(z;w,) as defined in
eq. (4.15) (blue) and the smoothed version used in the quantum mechanical simulation
(orange). (c) Hard-wall potential modeling a QPC and (d) smooth potential modeling a
parabolic QPC for N = 7. The lateral potential geometry at the center of the QPC (at
x = 0) is obtained from the quantum well parameters shown in Fig.

In Fig. we present calculated emitted probability densities in the free 2DES for a given
electrostatlc QPC potential, normalized such that f U(y)|?dy = 1. We first consider
N = 1 with the corresponding measured subband spacmg 55(N = 1) ~ 5meV and directly
compare the corresponding calculated spatial probability density |¥(z’,y)|?> behind the
hard-wall QPC [panel (a)] and the parabolic QPC [panel (b)]. For the calculations, we
choose Ry = 200nm. 2’ = z — Lqpc/2 is the z-coordinate relative to the 'detachment
point’ where the QPC potential has vanished and the electron beam propagates in the
free 2DES. We additionally plot the lateral beam profile |¥(y)[? at various z’ in panel
(c). For both QPCs, the lateral pattern resembles a symmetric Gaussian profile centered
at y = 0. From the drop of the amplitude along y we deduce an emission angle 6. To
quantify 6, we look at the lateral beam profile in the far field sufficiently far away from
the QPC (2/ > 1um) and define = arctan (w(z)/x). w(z) is the beam width obtained
from the y-coordinate where the amplitude dropped to 1/e? relative to the peak amplitude
for a given z, |¥(z,w(x))|? = |¥(z,0)|?/e2. We find 6 ~ 20° for the hard-wall model and
0 ~ 24° for the parabolic model.

As the beam propagates along the free 2DES (in z-direction), the beam profile widens and
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4 Electrostatic potential shape of gate-defined quantum point contacts
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Figure 4.6: Spatial electronic probability density |¥(z,y)|? behind a QPC at N = 1 and
B = 0, modeled by the hard-wall (a) and the parabolic saddle point potential model (b).
The depleted QPC region is sketched for comparison. We indicate the emission angle 6 in
panel (a). 2’ is measured with respect to the point where the QPC potential vanishes. (c)
|U(y)|? for various 2’ of the corresponding color in (a, solid lines) and (b, dashed lines).
(d) |®(a')|? for y = 0. Solid lines: hard-wall model, dashed lines parabolic model.

the central maximum decays. We additionally show the decay of the peak height, |¥(z')|?
for y = 0 in panel (d). Throughout the propagation, the integral over the lateral profile
stays constant and equal to one (not shown), as we assume a perfectly flat (free) 2DES
without reflections. Due to the parabolic confinement, the corresponding beam profile at
the exit of the QPC at 2’ = 0 is slightly narrower.

Next, we extend the comparison between both QPC potentials to higher QPCs conduc-
tances G = NGg with N = 1,3,5 and 7 and plot the corresponding calculated beam profiles
in Fig. Again, we model the QPCs using the subband spacings de(N) shown in Fig. [4.2
and the QPC potential discussed above. For both the hard-wall and the parabolic model,
the beam pattern clearly shows the coherent QPC mode structure by means of N local
maxima of the lateral beam profile for G = NGg. Analog to the fundamental mode for
N =1, which we replot in the left two panels, all beam patterns broaden as they expand
into the free 2DES. Additionally, higher conductances give rise to a wider beam pattern,
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4.4 QPC emission profiles
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Figure 4.7: Calculated beam profiles for the hard-wall model (top panels) and the
parabolic model (lower panels) for N = 1,3,5 and 7 (left to right).

reflecting the transverse momentum components increasing with V.

Next, we focus on the dependence of the emission angle # introduced in Fig. 4.6(a) on
N. In Fig. |4.8| we plot O(N) for the hard-wall model [panel (a)] and the parabolic model
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Figure 4.8: Calculated emission angles 6 as a function of N for various Ry for (a) the
hard-wall model and (b) the parabolic model.

[panel (b)]. For both models, 6 increases for a given value of Ry as we open the QPC from
N =1 and saturates towards N = 7. The parabolic model gives rise to slightly larger
emission angles than the hard-wall model for a given V. We additionally consider different
values for the parameter Ry (colored symbols), which is related to the longitudinal extent
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4 Electrostatic potential shape of gate-defined quantum point contacts

of the QPC as explained above. Longer QPCs (larger Ryp) result in smaller emission angles
for given V.

The assumption of QPCs as perfect point sources
is a starting point for the design of ballistic quan-
tum circuits based on the simple laws of ray optics.
However, as we demonstrate in Fig. the realistic —_—
emission process of our gate defined QPC features R
deviations from this simple model. We display the
calculated current density assuming the hard-wall
potential with the experimentally determined sub-
band spacings (cf. Fig. and the corresponding
gate voltage (and hence N-) dependent constriction
widths W and tip radius R for N = 1,4 and 7 with
Ry =200nm. For N =4 and 7, the coherent lateral
mode structure features N local maxima. Due to in-
terference, the local maxima do not propagate along
straight trajectories but slightly bend as they enter
the free 2DES (indicated by solid black lines as guide
to the eye in Fig. . This behavior is also known
from coherent laser beams frequently described by
the Gaussian beam model [89]. Only sufficiently far
away from the QPC the maxima diverge linearly, al-
lowing us to indicate an approximate emission angle
0 as discussed above. Due to this funnel-like emis-
sion process, every local lateral beam maximum has
a slightly different apparent focus point for a given
N, which we obtain from the intersection of the lin-
ear extrapolations of the beam pattern in the far-
field back to the QPC, cf. dashed colored lines in
Fig. The QPC is thus not a perfect point source
for electrons. This trend becomes stronger for larger
N. Additionally, the course of the local maxima
also varies as the length of the QPC (along z-axis)
is changed with N: for larger N, the length of the Figure 4.9: Calculated beam pro-
QPC becomes shorter, and the beam detaches ear- files using the hard-wall potential
lier from the QPC into the free 2DES. These issues for N = 1,4and 7. For N =4 and 7,
make it impossible to design a gate layout for a cou- the funnel-like emission process be-
pling tool (such as an electrostatic lens or -mirror) comes evident

which perfectly focuses the entire beam onto a sin-

gle point, as there are slightly different angles of incidence for each local maximum (that
additionally depend on N). However, the gate layout for a coupling device can in principle
be optimized for a given mode, for example the fundamental mode at N = 1.

N=1 Hard-wall

The funnel-like carrier emission described above leads to losses due to slight astigmatisms
for coupling tools like electrostatic lenses or mirrors, introduced in the following chapters,
limiting the maximum possible serial transmission through distant QPCs. Furthermore,
our calculations assume a perfect (flat) free 2DES without disorder. In contrast, a realistic
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4.4 QPC emission profiles

2DES always features a weak random background disorder potential due to ionized dopants
in the donor layer [cf. Fig. [1.1a)], giving rise to branched electron flow [5] even in high
mobility wafers, further limiting the transmission through serial QPCs.
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5 Ballistic electron optics

A thorough understanding of the carrier emission process from a single QPC into the free
2DES is central for the design of quantum circuits including multiple QPCs. In particular,
in this project, we are interested in maximizing the transmission through two distant QPCs
using the concept of ballistic electron optics . In the most simple picture, QPCs
serve as emitters and detectors for ballistic electrons which propagate through the 2DES
at constant velocity along perfectly straight trajectories (similar to light rays in vacuum).
Upon penetration of regions with a different nonzero carrier density than the surrounding
free 2DES, ballistic electrons are refracted. On the boundary to depleted regions in the
2DES, they are specularly reflected.

In the following chapters, we use this picture to design an electrostatic electron lens (chap-
ter @, an elliptical mirror (chapter [7)) and parabolic mirrors (chapter [8)) to couple two
distant QPCs via a region of grounded 2DES. In Fig. we present exemplary mea-
surements showing the transmission probability to; = T51/N (with the transmission To;
defined in section and N the number of incoming 1D channels) through two QPCs in
series for all three devices. We add AFM (SEM) microscope images showing each device
as insets.
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Figure 5.1: Gate voltage dependent transmission probability to; through two serial QPCs
at B = 0 in three different devices shown as insets. (a) Electrostatic electron lens. (b)
Elliptical arc mirror. (c¢) Parabolic mirrors. The central region of the 2DES between the
QPCs is electrically grounded.

For these measurements, we set the QPCs to a known conductance by adjusting the cor-
responding gate voltage (for example by tuning them to a quantized conductance plateau)
and sweep the voltage applied to a gate used to tune the coupling between the QPCs.
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5 Ballistic electron optics

We indicate the gate voltage swept for every measurement in the insets of Fig. [5.1} For
practical applications, we aim at maximizing the transmission through two serial QPCs
without an external magnetic field, at B = 0. Nevertheless, B represents an important
experimental parameter to explore the spatial current distribution and to manipulate the
phase of ballistic electrons.

For all three devices, the serial transmission can be enhanced by tuning the gate voltage,
but stays limited to a transmission probability below 15 %. In the following chapters, we
present a detailed analysis of the three devices shown above.
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6 Coherent electron optics with
ballistically coupled quantum point
contacts

In this chapter, we consider two QPCs tuned to their quantized conductance regimes that
interact by the exchange of ballistic electrons via a free, i.e., grounded, region of 2DESE|
We demonstrate that the mutual coupling can be strongly enhanced by fine tuning an
electrostatic lens [30,31] between the two QPCs. In Fig. we display the surface partly
covered by metal gates used to define the two QPCs and the lens.

Figure 6.1: Atomic force microscope (AFM) image of the sample and corresponding
circuit diagram. Metallic gates (light areas) are patterned on the sample surface (dark).
Negative voltages Vi, Vo and V4, electrostatically define QPC;, QPCsy and the concave
lens. Crossed boxes display macroscopic Ohmic contacts far away from the nanostructure.
A source-drain voltage V is applied at one of the QPCs while the detector current [ is
measured at the second QPC. The central region of the 2DES is electrically grounded. An
external magnetic field B can be applied perpendicular to the 2DES.

The lens functions by refocusing carriers diverging from one QPC into the second QPC.
For studying this electrostatic focusing we combine it with magnetic deflection [18,90] in a
field perpendicular to the 2DES. (We avoid the common term magnetic focusing, as a ho-
mogeneous magnetic field merely deflects currents.) With this combination we determine

!This chapter presents results of Phys. Rev. Lett. 125. 107701 (2020) (Ref. [78]). See section [B| for the
contributions of each author.
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6 Coherent electron optics with ballistically coupled quantum point contacts

the angular resolved emission spectrum of the QPCs, which carries the coherent modes of
the 1D constrictions, and explore electrostatic focusing between QPCs. The measurements
presented in this chapter are performed within an (Al,Ga)As/GaAs heterostructure con-
taining a 2DES located 107 nm beneath its surface on wafer mbe8-309 (see section .
The 2DESs Fermi energy and actual mean free path measured at cryogenic temperatures
are Eg ~ 11meV and I, ~ 24 pm.

6.1 QPCs

For a basic characterization we present linear response pinch-off curves of the individual
QPCs in Fig.|6.2(a). The current as a function of voltages Vi, V5 applied to the QPC gates
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Figure 6.2: (a) Pinch-off curves I(V; 2) for QPCy (red line) and QPCy (blue line) mea-
sured separately (with V51 = 0). (b) Conductance G(V}2) (with V31 = 0) of both QPCs in
units of G¢ in the region indicated by a dotted rectangle in (a). The curves are corrected
for the lead resistance of 300 (2.

decreases sharply as the constriction is formed at the depletion voltage around —1V. For
Vig < =1V, both QPCs feature a series of quantized conductance plateaus, highlighted
by the dashed rectangle. In Fig. [6.2(b), we plot the conductance as a function of gate
voltages V7 2 in units of the conductance quantum Gg. The curves are corrected for the
lead resistance R; = 300Q using G = (V/I — R;)™". Both QPCs feature flat conductance
plateaus at integers of Gq. Smooth steps between the conductance plateaus suggest
reflectionless transmission between the free 2DES and the QPCs. This indicates smooth
(parabolic) potential barriers in current (z-) direction. We parameterize our measurements
with the coupled system of both QPCs in terms of the number of conducting 1D modes N
of QPC; and M of QPC,, which define the quantized conductance plateaus via N,M =
GLQ / GQ.

One of the nominally identical QPCs used in this experiment, QPCy, has been thoroughly
characterized by finite bias voltage spectroscopy measurements, see chapter [4] above.
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6.2 Setup and basic concept of the measurements

6.2 Setup and basic concept of the measurements

The experimental data presented here are all direct current (dc) measurements using the
current amplifier model 1211 of DL Instruments. As voltage sources for the gates and the
source-drain voltage we used the model 7651 of Yokogawa. All measurements presented
here were performed in a helium-3 evaporation cryostat and, if not stated otherwise, at a
temperature of T ~ 250 mK. In Fig. a), we show a simplified circuit diagram of the

B=0
(a) (b) Ty - -
gl V2 N=1 M=12|
dc voltage source -2.12V
Yokogawa 7651 I/V converter -2.09V

multimeter - -2.03V
agilent 34410A <é

Ithaco 1211 6l — -2.06V

Figure 6.3: (a) Equivalent circuit diagram of the sample including the measurement
instruments. (b) Measured detector current I(V1,) at B = 0 for the emitter (QPC;) tuned
to the center of the first plateau (N = 1) at source-drain voltage V' = —1mV while the
detector (QPCy) is tuned to various values between M = 1 and M = 2 by varying V5.
The detector conductance is indicated in the inset.

measurements described in this chapter. In section [2.2.1] we show further details of the
experimental setup.

For the experiments we applied a source-drain voltage of V"= —1mV across the emitter
QPC while we measured the serial current I behind the second (detector) QPC. I is
additionally influenced by a small offset input voltage Vj caused by the I/V converter. In
our experiments, we try to keep Vj as low as possible. The QPCs are resistors that take
values 1/Gy(9) = h/(N(M)2e®). Every lead and its Ohmic contact (cf. crossed boxes in
Fig. |6.1)) represents a resistor R. The central region between the QPCs is grounded by
four leads. Together they cause the side resistance R/4, cf. Fig. a).

If not stated otherwise, we adjust the gate voltages such that the QPCs are tuned close to
the centers of the respective conductance plateaus, cf. Fig.[6.2(b). To study the coupling
between the two QPCs, we consider the current Iy a(V1,,B) flowing through both QPCs
in series while (i) sweeping the voltage Vi, applied to the concave lens gate and/or (ii)
varying the external perpendicular magnetic field B. In the following we show the strong
sensitivity of the serial current flowing through both QPCs as we change the number M
of occupied 1D modes in QPCs. The lower inset of Fig. b) shows the pinch-off curve
for QPCy with M < 2. In the main figure we present the detector current, i.e., the current
through both QPCs in series (with V' applied to QPC; and I measured behind QPCy) as
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6 Coherent electron optics with ballistically coupled quantum point contacts

a function of the lens gate voltage V1, at B = 0. The emitter QPC; is tuned to its first
conductance plateau (N = 1) while the detector is tuned to various conductance values
between Gg < MGg < 2Gg as indicated in the lower inset. Traces I(V;,) measured
with the detector on one and the same plateau are almost identical even in small details.
In contrast, we observe large variations between traces measured for different detector
conductance. This result demonstrates that the current profile between the QPCs is
directly related with the occupied eigenmodes of the QPCs. The latter stay unchanged as
long as both QPCs remain on their respective plateaus. However, the mode structure and
current profile rapidly change as soon as the conductance of one of the QPCs is changed.

6.3 Magnetic deflection

To study the divergence and lateral mode structure of the QPCs we perform magnetic
deflection experiments without electrostatic focusing while QPC; is set to conduc-
tance plateau N and QPCs is set to conductance plateau M. We apply a dc voltage of
V = —1mV across the emitter QPC and measure the current I flowing to ground through
the detector QPC, as a function of the perpendicular magnetic field B, cf. Fig. a).
Electrons move ballistically between the QPCs as their distance of [ ~ 4.6 ym is smaller

I (nA)

Figure 6.4: (a) Magnetic deflection experiment with grounded lens gate, V1, = 0. By
exchanging the external voltage source for the source-drain voltage V and the current
amplifier detecting I, we change the current direction (blue/red). (b) Measured detector
current [(B) while both QPCs are on their 7th plateau (upper curves) and the emitter
QPC at N = 4 with the detector QPC at M = 7 (lower curves). Blue and red data points
correspond to electron flow directions as indicated by the colored arrows in in panel (a).

than l,,. Classically, the magnetic field exerts the Lorentz force on ballistic electrons,
causing them to propagate in a circle with the cyclotron radius r.(B) = m*vgr/|leB|. To
estimate the emission angle of ballistic electrons from the magnetic field dependence of the
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6.3 Magnetic deflection

serial current through both QPCs, I(B), we in the following use the simplifying picture
of a point-source-like electron emission from the QPC center. Using this picture, we geo-
metrically derive at which angle 6 ballistic electrons are emitted if they contribute to the
current through the detector QPC at a given magnetic field, 0(B) = arcsin(leB/2m*vp),
cf. Fig. a). Our QPCs are aligned in series, such that ballistic carriers emitted at a
larger angle reach the detector at a higher field.

In panel (b), we plot the measured serial currents I(B) for electrons emitted by QPC; to
be detected by QPCsy (red curves) and the reversed current direction (blue curves). For
each curve, the detector QPC is set to M = 7. For the lower curves, we set the emitter
QPC to N = 4 and for the upper curves to N = 7. The approximate (within the picture of
point-like electron emission from a QPC) emission angles 6(B) are shown on the top axis.
The symmetry between both current directions is predicted by the Onsager-relations [91]
for a multi-terminal device, here I(B)|_ = I(—DB)|_,, where arrows indicate the opposite
current directions. An offset of the symmetry point (vertical dashed line) is caused by
a small residual perpendicular magnetic field of By ~ 2.57mT. The residual field By
originates from slightly magnetized connector pins nearby the sample. Slight deviations
from perfect symmetry can be attributed to the in-plane component of the residual field
1 B or to magnetic impurities. Surprisingly, the I(B) patterns do not show a maximum
around B = 0, which would be expected for the serial transmission of two QPCs without
additional potentials in the free 2DES.

The bimodal I(B) patterns with maxima
around B = +15mT could in principle be re-
lated to disorder potentials, even if the mean 60+ e runl
free path exceeds the device size. In this 4 runll
regime we expect small angle scattering, e.g. i

originated by charged defects such as the ion- 4l oA i
ized donor atoms, to have a small influence on s = !\/fmﬁ

the quantum mechanical phase of the carrier
dynamics. However, even a single hard-wall, 20

i.e., large angle scatterer can alter the ballis-
tic properties completely by reflecting carriers
and thereby generating a standing waves pat- ol , , , ,

tern. -30 -15 0 15 30

To experimentally explore the influence of dis-

order, we performed the some of our measure- Figure 6.5: [ (B) through both QPCs,
ments twice in separate runs. However, be- tuned to N = M = 7. Black dots: mea-
tween the two runs we warmed the sample up sured I (B) in run I. Red triangles: same
to room temperature, illuminated it with day- measurement after warming up, illuminat-
light and than cooled it back down. Because ng and cooling down the sample again
this procedure affects many defects by exci- (run II).

tation and diffusion, the potential landscape

induced by defects should vary between the two runs. We present a typical result in
Fig. |6.5] which shows the measured currents through both QPCs as a function of the
magnetic field for N = M = 7. The two curves are very similar with identical features for
both runs.
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6 Coherent electron optics with ballistically coupled quantum point contacts

We conclude that the traces I(B) are not strongly influenced by disorder. Instead, as we
will show in section below, the bimodal I(B) patterns are caused by a piezoelectric
potential located at the waist of the lens gate.

6.3.1 Diffusive current contribution

Electrons which do not traverse both QPCs ballistically are either backscattered through
the emitter or diffuse to the grounded side contacts. The resistance between the center
region and ground is ~ 37 (), small compared to the QPC resistances exceeding 1.8 k2 for
N < 7 in our measurements. Nevertheless, the backscattering from the macroscopic, i.e.,
Ohmic leads connecting the region between the QPCs to ground causes a small diffusive
contribution Iyif to the detector current, such that I = Iya + Igig. Here, I,y is generated
by carriers moving ballistically between emitter and detector. Below, we demonstrate
how we achieve a clean a separation between the ballistic and diffusive contributions to
the measured current I(B).

Both, I,y and Igig can be directly determined from our magnetic deflection measurements.
In Fig. (a) we plot I(B) where we keep the detector QPC; fixed at M = 7 and open the

40

30

I (nA)

20

10
Idiff

B- B, (mT)

Figure 6.6: (a) I(B) for detector QPCy with M = 7 and emitter QPC; opening from
N =1to N =7. (b) Black dots: magnetic field independent diffusive detector current
contribution I4ig(N) obtained from I(|B| > 35mT) for N =<7 and M = 7 in panel (a),
gray shaded areas. Red line: model curve according to equation [6.1] with Vp = —1.07 uV
as fit parameter. Inset: simplified circuit diagram of the present sample.

emitter QPCs from N =1 to N = 7. These measurements include the blue data points
in Fig. [6.4{b). There is no lens defined between the QPCs as V1, = 0. At high enough
magnetic fields, here for | B — By| > 35mT, the cyclotron diameter of the ballistic electron
orbits becomes smaller than the distance between the two QPCs, 2r, = m*vr/|e(B—By)| <
I = 4.6 um, such that ballistic carriers emitted from one QPC can no longer reach the
second QPC. This is the case in the regions shaded in gray in Fig. a). The current
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6.3 Magnetic deflection

flowing through the detector QPC for |B — By| > 35 mT is diffusive and independent of B
for moderate fields where Landau quantization is negligible. The diffusive current Igg is
caused by the voltage drop across the detector, QPCs. In the inset of Fig. (b) we sketch
a simplified circuit diagram of our setup which contains the Ohmic resistances relevant
in the diffusive transport regime. For simplicity we assume identical resistances, R, of
all leads indicated in Fig. [6.1] as crossed squares. Note that independent characterization
measurements of the sample with all gates grounded, i.e. no QPCs and no lens defined,
yielded indeed approximately identical lead resistances of R = 144+ 0.5 2 for the six leads
of the sample. 1/G; and 1/G2 are the tunable resistances of the two QPCs. The current
amplifier connected to the detector QPC causes a small additional input offset voltage Vj
to the sample. Using Kirchhoff’s circuit laws for the circuit sketched in panel (b) with the
QPC conductances G1 = NGq and Gy = MGqg we find

VRGoN — Vi (BRGQN + 4)
6(RGq)2NM + 5RGq(N + M) + 4’

Taig = GoM (6.1)

The black squares in panel (b) show I4g extracted from panel (a) next to a model curve
according to equation [6.1| with the fit parameter V; = —1.07 uV.

6.3.2 Ballistic transmission

Aiming at a direct comparison with model predictions, we next subtract the B-field
independent Igig [cf. Fig. [6.6(b)] from the raw data [cf. Fig. [6.6(a)] and present
%Y, _(B) = Iny=r(B) — I$% _,(B) in Fig.
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Figure 6.7: Same data as shown in after subtraction of the diffusive current contri-
bution, Iyan(B) = I(B) — Iqig(B), for N = 1,2,3..,7 and M = 7. Right axis: corresponding
total transmissions T'(B) = Ipan(B)/VqorcGg-
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6 Coherent electron optics with ballistically coupled quantum point contacts

Following the Landauer-Biittiker formalism introduced in section we define the total
transmission of the N conducting modes as T y=7(B) = IR/E%:7(B) /VarcGg, shown on
the right axis in Fig. Here, Vgpc is the voltage drop across the emitter QPC only,
i.e.

v

Vapc =

Gy [(R+1/Gy) + (4/R + 1) B

1/Ga+ R

6.3.3 Calculated transmission matrix

To predict T a(B) we numerically solve the Schrédinger equation for a single electron
moving in a 2D Fermi gas connected to ideal (reflectionless) leads. We account for the
estimated dephasing length (cf. equation of lg ~ 0.5 um by energy averaging, where
l4 is dominated by bias broadening. To mimic the measured mean free path of I, ~ 24 ym
we include a weak homogeneous absorbing potential between the QPCs. To model the
lateral confinement of the QPCs we use a hard wall potential, where its gate voltage
dependent width and depth (at the center of the constrictions) are determined from the
subband spacings plotted in Fig. following the analysis shown in chapter The
opening of the constrictions towards the leads follow the semicircular shape of the gates.
The lens potential controlled by the gate voltage Vi, cf. Fig. is added on demand.

From the solution of the Schrédinger equation we extract the total transmission probability
Tnm(BW,) = an tn,m of a ballistic and coherent electron through the two QPCs in
series with the first (second) QPC set to the N-th (M-th) conductance plateau. Here,
tn,m are the individual probabilities for an electron emitted from the nth mode of the
emitter to transmit through the mth subband of the detector. In Fig. (a), we present
the calculated ¢, ,,,(B) for n = 1 and m = 1,2,3,4. The serial transmission is similar to the
convolution integral of the localized wavefunctions in QPC; and QPCs. The individual
tn,m(B) thus show alternating maxima/minima at B = 0 as n (or m) is changed by 1.

In our experiments, we performed measurements with up to seven occupied subbands in
QPCy 2. The corresponding total transmission matrix with elements t,, ,, and n,m <7 is
presented in Fig. (b) We consider slowly varying QPC potentials and neglect coherent
reflections into the QPCs. In this limit, ¢, ,, do not depend on the gate voltages for n < N
and m < M and can be reconstructed from the total transmissions as t,.,m = Ty —
Tn-1,m—TNrv—1+TN-1,m—1. The Landauer formula relates Tn v (B,W4,) to the measured
ballistic current, T (B, V1) = IR, (B,V1.)/GqVqpc. For instance, the measured current
for N = M = 7 contains contributions of all 49 elements of the transmission matrix.

6.3.4 Comparison between experiment and coherent model calculations

For a first direct comparison between experiment and coherent model calculations we
consider T'(B) for N = 1 and M = 7. The measured data are plotted as blue dots in

Fig.[6.9(a).
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Figure 6.8: (a) Calculated transmission probabilities ¢, ,,(B) for n = 1 and m = 1,2,3,4.
The simulations were performed for V7, = 0 (no lens) and a flat electrostatic potential
between the perfectly aligned QPCs and show the average over energy to simulate tem-
perature and source-drain voltage broadening. (b) Calculated ¢, ,,(B) for n,m < 7. Each
panel shows ¢, ,,(B) between the nth mode of QPC; and the mth mode of QPCy. B =0
at vertical symmetry axes. For N = M = 7 the total transmission is the sum of all shown

N=7,M=T7
elements, Tn—7 p—7 = Zn:1,m:1 tn,m-

The corresponding calculated transmission Tn=1 p=7(B) = Zznzl tN=1,m(B) assuming a
flat 2DES without additional potentials and perfectly aligned QPCs is plotted as a dashed
red line. This profile corresponds to the summation over all elements of the lower row
in the transmission matrix shown in Fig. [6.§b). While the widths of the patterns are
comparable, we observe two characteristic differences between the experiment and the
calculation: the measured data (i) show a decreased transmission around B = 0 and (ii)
are asymmetric in B.

The decreased transmission around B = 0 is a consequence of a piezoelectric potential dip
which is located at the lens waist and caused by strain developing during the cool down
after the evaporation of the metal gates, see also section Accounting for such a
potential dip in the calculations results in the double peak structure in panel (a), dashed
gray line. The dip splits the current peak centered at B — By = 0 in two while the
symmetry in magnetic field is preserved.

The additional breaking of the B symmetry in our measurements is a consequence of slight
lateral shifts between the nanostructures, as shown in the AFM image in Fig. [6.9(b). The
solid black line in panel (a) shows the calculated pattern after accounting for both the
piezoelectric potential dip and slight lateral shifts of the nanonstructures. For better
agreement with theory we used slightly smaller shifts than the ones extracted from the
AFM data.
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6 Coherent electron optics with ballistically coupled quantum point contacts
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Figure 6.9: (a) Blue dots: measured T'(B) at N = 1 and M = 7. Lines are calculated
Tn=1,m=7(B). Dashed red line: for a flat 2DES (without dip) and perfect alignment of
the QPCs. Dashed gray line: including the potential dip for perfectly aligned QPCs.
Black solid line: including both the potential dip and the misalignment of the QPCs with
respect to the lens. (b) AFM image of the sample surface. Light color corresponds to the
metal gates. Green bars depict the lateral shifts of the QPCs from the waist of the lens
(dashed horizontal line) by 80nm and 260 nm, respectively. (c) Like (a) but for all for
N = 1,2,3,...7 and without the calculated data for aligned QPCs with a potential dip at
the lens waist.

For completeness, we additionally plot in Fig. (c) the measured total transmissions

for all N < 7 as blue dots in direct comparison to (i) the calculated T y=7(B) =
Z;V:A{[;Ll tn,m(B) assuming a perfect sample without shifts and the piezoelectric potential
dip (red dashed line) and (ii) the calculated transmission accounting for the imperfections
(black solid line). While the calculations for the realistic potential geometry still over-
estimate the transmission around B — By = 0, accounting for the sample imperfections
substantially improves the agreement with the experiment and reproduces its main fea-

tures.

To reveal the mode structure of individual QPC subbands, we next consider the measured
transmission differences ATy p—7(B) = {IR,%\I/[ﬂ(B) - R,allLM:7(B)} /GqVarc. Using
IR,?%(B)/VQPCGQ =Ty mu(B) = SN tpm(B), we aim at subtracting the contribu-

n=1,m=1
tions of the (NN — 1) x M lower mode to mode transmission probabilities, ATn y=7 =

ZZn:l tnm for N < 7. These elements correspond to the summation over all elements in

one row of the transmission matrix in Fig. [6.8|(b).

In Fig. we directly compare the measured AT ys=7(B) [panel (a)] to the bare model
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Figure 6.10: Measured (a) versus calculated (b) transmission differences ATy pr—=7.
Model curves in (b) for perfect symmetry and zero lens potential (red dashed) and with
corrections of the QPC positions and accounting for the piezoelectric dip of the lens po-
tential (solid black lines). Maxima and minima of ATy y/—7 are marked in panel (a) with
red (black) triangles. Dashed gray lines [identical in (a) and (b)] connect the nth maxima
for odd (even) N and the nth minima for even (odd) N.

predictions ATn p=7 = Zzn:l tn,m for perfectly aligned nanostructures and a flat 2DES
[red dashed lines in panel (b)]. Both, measured and predicted curves display a growing
magnetic field range of finite Iy as N is increased, confirming a larger aperture angle
of carriers emitted from a QPC at higher modes. Our measured data roughly follow the
features of the model curves, albeit they show additional fine structure and a reduced
symmetry. The black solid lines in Fig. [6.10(b) are the result of the more realistic model
taking into account (i) the slight lateral misalignment of the QPCs with respect to each
other and the principal axis of the lens breaking the B-symmetry and (ii) the piezoelectric
dip beneath the lens. These modifications improve the agreement between our model and

experiments.

The comparison between our measurements and the model calculations demonstrates that
a detailed knowledge and fine control of the sample properties are key for a successful
engineering of the dynamics of ballistic carriers. The combination of (i) and (ii) results in
additional features in T'(B) [cf. Fig.[6.9|c)] and AT(B) [cf. Fig. [6.10[b)] similar to our
experimental observations, albeit the agreement is not perfect: Compared to our model,
our measurements show enhanced transmissions of the outermost maxima in AT'(B) for
N < 5. This is also visible as an almost bimodal current distribution of the measured
T(B) in Fig.[6.9(c) (blue dots). We attribute the differences to the scattering properties
of the electrostatic potential dip. Not knowing its detailed shape, we assume a parabolic
dip with smooth edges. Compared to our measurements, it slightly underestimates the
reduction of (A)T(B) around B = 0. Such deviations between theory and experiment il-
lustrate our limited knowledge of the exact potential landscape. More accurate predictions

63



6 Coherent electron optics with ballistically coupled quantum point contacts

might be reached with self-consistent calculations solving the 3D Poisson and Schrodinger
equations.

Next we focus on the interference pattern of the transmission curves ATy ps—7, which
expresses the lateral coherence in our setup. The N maxima of each of the fully coherent
model curves [red dashed lines in Fig. |6.10(b)] reflect the order of the lateral eigenmodes.
The dashed gray lines in Fig.[6.10(b) connect the nth maxima for odd (even) N. They also
cut through the nth minima for even (odd) N as expected for the interference pattern. In
Fig. |6.10(a) the same lines (shifted in B) approximately connect corresponding maxima
and minima of the measured data similar as for the model data including imperfections
[blue lines in (b)]. This behavior is a fingerprint of the coherent mode structure of the

QPCs.

6.3.5 Classical model calculations

In order to identify coherent effects we additionally compare our results with a classical
simulation of the magnetic deflection experiment.

For the comparison, we implement the parabolic saddle point potential defined in equation
with the subband spacings shown in Fig. and Ry = 400nm in both the coherent
and the classical calculation. To compute the current for classical electrons we sample
the lateral distribution function of free electrons at the center of the emitter QPC (in
current direction). We calculate the trajectory of each sampling point as a function of the
perpendicular magnetic field B numerically and determine whether it transmits through
the detector and hence contributes to the current. In the classical simulation we neglect
trajectories that involve multiple reflections between the QPCSH

In Fig. [6.11)(a), we show the classically and quantum mechanically computed magnetic
deflection transmission profiles Ty a7 (B) for a perfectly aligned geometry and without the
electrostatic potential dip at the lens waist. The QPCs are set to the same conductance
plateau, N = M. The quantum mechanical solution exhibits oscillations that reflect the
mode structure of the waves emitted from the QPC. These coherent oscillations are absent
in the transmission profile for classical electrons. The envelope of the transmission profile
of coherent electrons coincides with the classical result for large magnetic field strengths.
For small magnetic fields there are electron trajectories involving reflections between the
QPCs that contribute to the current through the setup. These trajectories are included in
the quantum mechanical calculation but are neglected in the classical calculation. They
yield an overall enhanced transmission for small magnetic field strengths in the quantum
mechanical calculation compared to our classical solution. In our experiments, coherent
Fabry-Pérot-like oscillations caused by standing waves between the QPCs are averaged out,
as expected for the dephasing length of /5 = 500 nm due to bias broadening, cf. measured
data in Fig.[6.7] In our quantum mechanical calculation we account for the broadening by
energy averaging. Nevertheless, the quantum mechanical solution in Fig.|6.11{(a) contains
high frequency oscillations at small magnetic fields which are a remnant of the Fabry-Pérot

2The classical calculation was realized and provided by Max Geier from the Dahlem Center for Complex
Quantum Systems at the FU Berlin.
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Figure 6.11: Comparison of quantum mechanically (solid lines) and classically (dashed
lines) calculated (a) magnetic deflection transmission Ty—jp/(B) and (b) corresponding
first transmission differences ATn—ps(B) for a parabolic electrostatic QPC potential and
a flat 2DES between two perfectly aligned QPCs. Both the emitter and the detector QPC
are set to identical conductance plateaus with N = M < 7.

oscillations after averaging over the energy distribution of transmitting electrons. These
remnants of the Fabry-Pérot oscillations are vulnerable to geometric imperfections and
weak disorder contributing additional phase shifts to interfering paths.

In Fig. [6.11fb) we show the calculated first transmission differences ATn y(B) =
Tnm(B) — Tn—1,m—1(B) corresponding to panel (a) (with N = M). Since the coher-
ent substructure is absent in the classical calculation, the first differences for the classical
simulation show a smooth transmission maximum without oscillations, independently of
N. In contrast, the quantum mechanical calculation clearly reflects the coherent QPC
modestructure with N pronounced maxima for ATy—ps(B).

The lateral mode structure of the QPCs is visible in both, experimental results and quan-
tum mechanical solution of their serial transmission, cf. Fig. M(a,b). In contrast to
the Fabry-Pérot-like oscillations discussed above, the lateral mode structure remains sta-
ble as long as the dephasing length is larger than the lateral distance of two adjacent
maxima in the interference pattern of emitted electrons in real space. By choosing the
bias voltage V' = —1mV corresponding to a dephasing length I4 = 500nm (cf. Fig. ,
we are thus able to see the coherent lateral mode structure of the QPCs, while coherent
Fabry-Pérot-like modes between the QPCs spaced by [ = 4.6 um are averaged out.
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6 Coherent electron optics with ballistically coupled quantum point contacts

6.4 Electrostatic focusing

For practical applications, we aim at maximizing the coupling of distant nanodevices
without external magnetic fields. This can be realized by electrostatically refocusing the
carriers emitted from one QPC to the other. For this purpose, we add a gate designed
to define a concave spherical lens in the center between the two QPCs, cf. Fig.
. In a classical model with perfect geometry, the focusing properties are described
by the electronic version of Snell’s law with the refractive index for electrons defined as

ny = W/Eg / EIF“, where the Fermi energies below the lens gate EIF“ and elsewhere Eg are
assumed to be constants. As we are using a concave lens, focusing requires n, > 1 which we
achieve by reducing E% via applying V1, < 0 to the lens gate. For the electrostatic focusing
experiment, we set both the emitter QPC; and the detector QPCy to N = M = 7. In
Fig. (a), we plot the calculated emitted current density using a realistic QPC potential
geometry based on the measured QPC subband spacings, see chapter The resulting
electron beam (for zero B and no lens potential) is fairly wide and approximately matches
the lens aperture, which we sketch for comparison.
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Figure 6.12: (a) Calculated current density emitted by QPC; modeled as hard wall
potential for N = 7 at B = V1, = 0 and without the electrostatic potential dip at the
lens waist. We sketch the edge of the lens potential for comparison. (b) Measured serial
transmission through both QPCs, T'(V1,,B) for N = M = 7 and QPC; as emitter. (c)
T'(V1,) for various magnetic fields. For B— By = 0 (blue) a pronounced maximum indicates
focusing. Red dashed line: T'(V1,) of the lens gate without QPCs (Vi = V4, = 0).

To experimentally demonstrate the focusing effect, we combine electrostatic focusing and
magnetic deflection and plot the measured transmission for N = M = 7 in Fig. [6.12(b).
The magnetic deflection experiment shown in Fig. [6.7(a) (for N = M = 7) corresponds
to the vertical cross section at V7, = 0. While we decrease V1,, the current maxima bend
inwards and eventually merge in a single peak at B — By = 0 and Vi, ~ —0.64'V, a direct
signature of electrostatic focusing. In Fig. c) we present various horizontal cuts 7'(V1,)
for constant B. Independent of B, the lens pinches off near V1, = —1.2 V similar as the lens’
transmission curve without QPCs (V] = V2 = 0), added as a red dashed line. Interestingly,
the transmission maxima all lie within a range of V7, in which the lens itself has almost
zero reflection, corroborating our interpretation in terms of electrostatic focusing.
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6.4 Electrostatic focusing

6.4.1 Lens potential

While we measure electrostatic focusing as a function of the gate voltage V1, model cal-
culations are performed in terms of the electrostatic potential induced by the lens and
parameterized by n, or EI}; Aiming at a direct comparison, we present a detailed calibra-
tion of n, (V1) in this section.

The differences between the dispersion relations of light with the momentum o 1/¢ and
that of massive particles result in different refraction laws. The momentum of the relevant
electrons is in our case proportional to its Fermi velocity vg. In optics, the refractive index
of a medium is defined as the ratio of the vacuum light speed ¢ to the phase velocity ¢y, of
light in the medium, n,, = ¢/cy. In analogy, we define the relative refractive index of our
electrostatic lens as n, = v /vk, where v is the Fermi velocity of electrons in the bulk
2DES away from the lens and vlﬁ its counterpart below the lens gate.

The focusing properties of a lens can be calculated by requiring a smooth transition be-
tween regions of different refractive index. In Fig.[6.13|(a), we sketch two regions of different
refractive indices (white/gray). Requiring the component of the momentum in the plane
of the interface (along the y-axis) to remain constant yields Snell’s law for light:

ind
for photons: ny, = - @71, (6.2)
Cm  Sinds
where d; is the angle of incidence (in vacuum) and dy the angle of refraction (in the lens).
In contrast, we find a different refraction law for

electron optics [30,31] (a) y
0 [ 170 . 0
‘ _vp _ [Ep  sindy 2
for electrons: n, = @ = E—Iﬁ = Gns,’ (6.3) )V =
where we introduced the kinetic energies E}Q and EIFJ (b) O

in the bulk 2DES away from the lens and below the 0
lens gate, as sketched in Fig. [6.13(b). Using these EF “““““ B Sl

L
kinetic energies, we define the electrostatic lens po- IEF
tential energy ®1, = Eg — E% To achieve focusing
for n, > 1, an optical lens must be convex while an (I)L

electrostatic lens must be concave.

Figure 6.13: (a) Refraction at
the interface between two regions
with different refractive indices
(white/gray). (b) Kinetic energies
in the free 2DES EQ and EE in the
region of finite lens potential ®r,.

Below, we compare two different methods to experi-
mentally calibrate the lens potential as a function of
W.: Landau-level reflection measurements |92] and
a self-consistent approach by applying Snell’s law
for a given lens geometry. Comparison between the
two methods reveals the dip of the lens potential
discussed above.
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6 Coherent electron optics with ballistically coupled quantum point contacts

6.4.1.1 Landau-level calibration

A viable method to calibrate the height of an electronic barrier is to measure the reflection
of quantum Hall edge channels in a strong perpendicular magnetic field B. The edge
channels are a consequence of the quantization of the density of states of the 2DES in
Landau levels (LLs) with quantum number [ = 1,2,3,.... Taking into account the Zeeman
splitting of the electron states, each LL results in two spin-resolved energy levels quantized
at

Ba(l) = hw (z - ;) + gunB. (6.4)
where w. = eB/m* is the cyclotron frequency, g is the Landé g-factor with g ~ —0.36
in GaAs and pp the Bohr magneton. We denote the corresponding spin polarized edge
channels by their filling factor v = 1,2,3,... defined as v = 2Eg /hw.. For instance at
v = 2.25 the lowest two edge channels, corresponding to the lowest LL, are completely
filled and one quarter of the states of (spin-up polarized) third level are also occupied.

For our calibration measurements, we apply a constant B such that the bulk 2DES (away
from the gates) has an integer filling factor. By sweeping V1, we then gradually increase the
lens barrier, hence decrease EIF“ and the filling factor beneath the lens gate . Thereby, we
detect the successive reflection of the individual edge channels at the barrier in terms of the
corresponding resistance changes. In Fig. [6.14{a) we present an overview photograph of
the wafer surface including bond pads and Ohmic contacts in the periphery. The position
of the Ohmic contacts, labeled by numbers 1-6, are also indicated in panels (b) and (c),
which show an SEM image of the central part of the lens gate and a sketch of the quantum
Hall measurement set-up, respectively. In panel (c) we assume the filling factor of v = 4
in the bulk but 11 = 2 below the lens gate, such that the third and the fourth edge channel
(red) are reflected off the lens. As illustrated in Fig. [6.14(d), this reflection occurs for
EII; < v /2 hw. = hw.. Here E{; denotes the maximum of EII; (y) taking into account a
possible dip of ®1,(y) in the center of the lens. In our sketch E'IF“ is centered in the gap
between two LLs, such that below the lens gate [precisely at the minimum of ®1,(y)] all
states corresponding to filling factors ¥ = 1 and 2 are occupied while states at higher
energies, e.g. for v = 3 and 4, are empty. We expect to find the longitudinal resistance
measured between contacts 3 and 2 across the lens [93}94]

Vs — Vo h2<1 1)

Ryz = == (=
VL v

6.5
n . (6.5)

while applying a constant current between contacts 1 and 4. Likewise, between contacts
3 and 6 we expect to measure the transverse resistance across the lens gate

R = =— = . (6.6)

For simplicity we restrict the analysis of our calibration experiment to even filling factors v
and v, (and disregard features allocated to odd vy,). In Fig.|6.15|(a) we present the results
of four terminal resistance measurements for the setups described by Eq. and in panel
(a) and according to Eq. in panel (b). Each curve has been measured at constant B
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6.4 Electrostatic focusing
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Figure 6.14: (a) Photograph of the sample with numbered Ohmic contacts and the lens
gate highlighted in green. (b) SEM image of the concave shaped lens gate. (c) Sketch of
edge channels at large B at integer filling factor v1, = 2 beneath the lens gate and v = 4
elsewhere. (d) Reflection of edge channels at the lens gate. Edge channels corresponding
to the red quantized energy levels (with v = 3,4) are reflected at the lens barrier as their
energy exceeds the chemical potential p at the lens.

and bulk filling factors v = 4,6,8,10,12 while decreasing the filling factor beneath the lens
gate by sweeping V1, from zero to the pinch-off point at V3, = —1.2 V. For a bulk quantum
Hall measurement of the sample at V1, = 0, see Fig. [L.2{(b).

Instead of the monotonous steps naively expected between resistance plateaus, we often
find local resistance maxima. This phenomenon is related with an additional tunnel cur-
rent between reflected edge channels via localized states below the thin barrier and has
previously been observed in Ref. . Where our measurements are close enough to the
expected resistance plateaus (at the resistance values indicated by horizontal lines) we
choose the center of these plateaus as calibration points Vi,(v1,) with

oL

i _m (6.7)

Ex v
see Fig. [6.16(a) for the final calibration result. We assume that the chemical potential at
the center of the plateaus lies exactly between two adjacent LLs, as sketched in Fig.|6.14{(d).
As expected, the calibration points obtained in this way turn out to be almost identical
for the two alternative measurements presented in Fig. The dependence EPI:(VL) is a
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6 Coherent electron optics with ballistically coupled quantum point contacts
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Figure 6.15: Longitudinal resistance R32(V1,) defined in Eq. in panel (a) and trans-
verse resistance Rsg(V1,) defined in Eq. in (b). Each curve has been measured at
constant B and fixed bulk filling factor v with V' = —0.4V applied at a 1 M series re-
sistor causing an approximately constant current of I ~ 400nA flowing from contact 1
into the grounded contact 4. Horizontal lines indicate plateaus expected at filling factors
(v,v1,) according to Eq. in (a) and Eq. in (b) [not all expected plateaus are
shown]. Our calibration points in the centers of the open circles are at identical values
of 11, in (a) and (b). Top sketches: Four-terminal circuits of our Landau-level calibration
measurements. A bulk (V, = 0) quantum Hall measurement of the present sample is
shown in Fig. |1.2

fingerprint of our heterostructure. The non-linear relation reveals a lens voltage dependent
capacitance between the lens gate and the 2DES beneath. We conjecture that this behavior
is related with a high-resistance conducting delta doped layer located between the wafer
surface and the 2DES. This interpretation is supported by a finite longitudinal resistance
Ry ~ 3Q at integer filling factors, compare Fig. b). Since the carrier density (and
mobility) in this layer likewise depends on the gate voltage, it causes a Vi-dependent
screening between lens gate and 2DES.

In Fig. b), we show the pinch-off curve G(V1,) of the lens gate measured at B = 0
(solid line). Related with the concave shape of the lens gate it develops a few quantized
conductance steps at integer multiples of G, emphasized in the inset. They indicate a
potential dip at the center of the lens forming a weakly confined QPC. Such a dip can
be explained in terms of the piezoelectric effect of GaAs which gives rise to a sizable
inhomogeneous built-in electric field below the lens gate. The piezo-field is caused by
strain in response to stress at the metal-semiconductor interface built up during cool-
down because of the different thermal expansion coefficients of the materials. The detailed
build-in field depends on the geometry and orientation (as the piezo tensor is anisotropic)
of the lens but can alter the potential ®1,(x,y) locally by up to several meV . Our
LL calibration measures the absolute minimum of the barrier height, which is reduced at
the dip located at the center of the lens. However, the focusing properties of the lens are
predominantly determined by its curvature and potential further away from its center.
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Figure 6.16: (a) Kinetic energy below the lens gate relative to the Fermi energy in the free
2DES as a function of lens gate voltage, EII; / Eg(VL). Each point corresponds to a circle
in Fig. [6.15] (same colors). Error bars correspond to the plateau widths in Fig. |6.15] (b)
Solid black line: transmission through the lens gate, T'(V,) = I(V)/1(VL, = 0) with B =0
and no QPCs defined (Vi = V5 = 0). The pinch-off voltage is V;” ~ —1.2 V. Dashed red
line: calculated transmission through a (one-dimensional 250 nm wide parabolic) barrier
fitted to the depletion onset of the lens’ pinch-off curve. It provides a rough estimate of
the depletion voltage Vﬁi ~ —1.02V where the 2DES is depleted beneath wide gates, i.e.
outside of the central dip. Inset: For V1, < Vf the lens conductance features two quantized
conductance steps pointing to a 1D conducting channel through the central dip.

6.4.1.2 Self-consistent calibration

Our second calibration method aims at determining the lens potential in the wider concave
regions away from the dip in its center. It relies on a self-consistent comparison of the
measured focusing properties of the lens with our theoretical expectations. In Fig. [6.17] we
present the transmission 71" through both QPCs in series tuned to their 7th conductance
plateaus (N = M = 7). In panel (c) we re-plot the measured data T'(B,11,) already
presented in Fig. b). To achieve a self-consistent calibration of the lens potential
we first track the pronounced measured current maximum as a function of B and Vi, cf.
dashed line in Fig. (c) Next, we track the corresponding maximum in the calculated
transmission including the sample imperfections as a function of B and EI%, cf. dashed line
in Fig. |6.17(b). By a point-by-point scaling of (V1,,B) — (E%,B), we obtain the relation
EL(W).

In addition to tracking the current maximum, we use the following features to quanti-
tatively adjust the calibration result: (i) at the focus point measured at Vi, = —0.64V
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Figure 6.17: (a) Calculated serial transmission T'(EL,B) through two QPCs tuned to the
7th conductance plateau for a symmetric sample and a flat lens potential without potential
dip. (b) Calculated T'(EL,B) including the slight lateral shifts between the QPCs and the
lens potential dip at the lens waist. A dashed black line traces one of the main current
maxima. (c) Measured transmission T'(V1,,B). A dashed black line traces one of the
main current maxima. A point-by-point scaling of the two lines in (b) and (c) results in
the calibration EX(V1,). (d) Comparison between the two calibration methods, plotting
@1, /EX =1—1/n2. The blue solid line indicates the result of the self-consistent and the
colored symbols that of the LL lens calibration. The dashed black line is identical to the
solid blue line but vertically shifted to fit the LL calibration points. The vertical shift can
be interpreted as the dip depth Ag;,. Top right inset: lateral model lens potential with
parabolic dip, cf. main text. Bottom left inset: calculated quantum mechanical current
density emitted from QPC; with N = 7.

our calculation predicts Ex = 0.49FEY; (ii) we assume that the lens gate (away from its
center, where it has a dip) has a negligible effect on the local potential at V1, = 0 such
that ®r,(V4, = 0) = 0; and (iii) we estimate the pinch-off point for the lens away from the
center dip to occur at Vi, ~ —1.02V which leads to &, (Vg ~ —1.02V) = EEQ.

In Fig. d) we present the obtained relation as a solid line in comparison with our LL
lens calibration (symbols). Assuming in our calculations a flat lens potential & (V) =
EY — ElIs(VL) independent of y, we disregard the dip in the center of the lens. As such,
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6.4 Electrostatic focusing

the self-consistent calibration approximately averages the lens potential weighted by the
actual lateral current distribution (in y-direction). For N = M = 7 the lateral current
distribution has two pronounced maxima away from the center of the lens. Underpinned
by measured data, we argue that the current density is much smaller in the dip region,
such that our second calibration mostly probes the lens potential away from its center.

With our second calibration method we predominantly determined the lens properties
away from its center, hence outside its potential dip, while with our first calibration
method we measured precisely the minimum of the electrostatic lens potential. Hence,
we interpret the difference between the two results as being the depth of the dip. In
Fig.|6.17(d) it is indicated as Agip. Our data are consistent with a constant Aqi,(V1), i.e.,
independent of Vi,. This is expected if the electric field is generated by strain combined
with the piezoelectric effect.

To model the 2D shape of the potential dip at the lens waist, we consider the pinch-off
curve of the lens plotted in the inset of Fig. (b) Using the LL lens calibration we
determine the corresponding one-dimensional subband spacing AFEp; ~ 0.7meV from the
step width between the two lowest quantized conductance plateaus. For a rough estimation
we assume a parabolic potential dip in y-direction, which is centered in an otherwise flat
barrier:

1
Paip(y) = PL(VL) — Adip + gm*u)ipf for |y| < Waip/2
Paip(y) = (VL) for |y| > Waip/2

where wqip, = AEp/h is its curvature and Wy, = 2h/AEg1\/2Agip/m* ~ 270nm its
width at ®qip,(y) = ®1,(V1), cf. top right sketch in Fig.|6.17(d). The dip width is indicated
by the central gray region of the lens gate left out in the bottom left inset of Fig. (d)
It is small enough to corroborate our assumption that the dip has only little influence on
our second calibration method.

6.4.2 Comparison between experiment and coherent model calculations

The calibration ®1,(V1,) allows us to display coherent model calculations in the same
coordinate system like our measurements. In Fig. |6.18| we directly compare the mea-
sured T(B,W,) [panel (a)] to the corresponding calculated transmission [panel (b)] for
N = M = 7. In this calculation, we included the sample imperfections discussed above.
The dashed lines in both panels are identical and serve as a guide for the eyes to facilitate
comparison. The model calculations clearly reproduce the main features of our measure-
ments in Fig. [6.18(a). For comparison, we also add the calculated T'(B,V1,) for a perfect
sample, i.e. without lateral shifts of the nanostructure and without piezoelectric potential
dip in Fig.|6.18(c). For the fairly wide electron beam at N = 7, accounting for the sample
imperfections gives rise to only small deviations between the two scenarios.

Modulations in the transmission as a function of B (vertical cuts, constant V1,) can be
interpreted in terms of the lateral mode structure of a QPC encoded in the current profile
emitted from a QPC. To demonstrate the impact of the lens potential on the lateral
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Figure 6.18: (a) Measured transmission as a function of lens voltage and magnetic field,
T(B,V1,). (b) Calculated T(B,V1,) accounting for the sample imperfections due to the
slight lateral shifts between the QPCs and the lens breaking the B-symmetry as well as
a piezoelectric potential dip at the lens waist strongly decreasing the transmission around
B = 0. (c) Calculated T(B,14,) for perfectly aligned QPCs and lens and a flat lens
potential. Dashed lines in (a) and (b) are identical, dashed line in (c) is vertically shifted
because of the perfect symmetry in the corresponding calculation.

current profile in real space, we display calculated beam profiles at finite lens potentials

in Fig. [6.19]

Figure 6.19: Calculated beam profiles for N = 7 and B = 0 for various lens potentials
at finite lens voltages, @1, (V). Dark (light) regions correspond to high (low) current
density. We sketch the boundaries of the flat lens potential for comparison. (a) ®r, (V1 =
—0.47 V)= 0.25 EY (Focal point behind the second QPC). (b) ®r,(V1, = —0.64 V)= 0.5 EY
(Focal point on the second QPC). (c) ®1(Vr, = —0.85V)= 0.75 E2 (Focal point between
the second QPC and the lens). For these calculations, we assumed perfect symmetry, a
perfect lens without the central dip and a flat 2DES between gates.

For simplicity we consider a flat lens potential without the piezoelectric potential dip
here. For Vi, = 0, the electron beam diverges into the free 2DES without any refraction or
reflection from the lens gate, cf. Fig. a). As we increase @1, by decreasing Vi, the part
of the beam hitting the concave aperture is refracted towards the optical axis at the two
lens boundaries and the focal point moves towards the lens. The relation ®1,(141,), is known
from our self-consistent lens calibration, cf. Fig.[6.17(d). For ®r,(Vf, = —0.47 V)= 0.25 E2
[cf. Fig.[6.19(a)], the beam is slightly collimated but the focal point still lies behind the
second QPC. For this lens voltage (potential), an additional magnetic field is needed to
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6.4 Electrostatic focusing

deflect the beam into the second QPC, cf. measured and calculated transmission maxima,
at finite B in Fig. [6.18 At the focal point around ®r,(Vi, = —0.64 V)= 0.5 EY, the beam
is strongly collimated with the beam waist located on the second QPC for B = 0, cf.
Fig. b). For V1, < —0.64 V, the refraction on the lens boundaries becomes so strong
that the focal point moves between the second QPC and the lens, cf. calculated beam
profile for ®1,(14, = —0.85 V)= 0.75 EY in Fig. c). In this regime, finite magnetic fields
are needed to deflect the branches missing the second QPC into the latter, cf. measured
and calculated transmission maxima at finite B for V1, < —0.64V in Fig. [6.18

To demonstrate the impact of the sample imperfections on a more narrow electron beam,
we now consider the case of N = M = 1. In Fig. a), we plot the measured

(a) (c)
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Figure 6.20: (a) Measured transmission 7'(B,V1,) through both QPCs in series at N =
M =1 at a source drain voltage V' = —1mV. (b) Calculated T(B,V1,) for N = M =1
for a perfectly symmetric sample without electrostatic potential dip at the lens waist.
(c) Calculated T'(B,V1,) for N = M = 1 for the lateral misalignments measured in (a)
including a electrostatic potential dip at the lens waist as discussed in section [6.4.1] The
dephasing length for the calculations in panels (b,c) is set to the estimated dephasing
length in the experiment, [, = 0.5 um. (d) Calculated T'(B = 0,V1,) cuts for N = M =1
as in (b) but with varying dephasing length 4.

Tn=pn=1(B,VL). For comparison, we plot the predicted calculated transmission for a
perfect sample in panel (b). Clearly, the much more narrow electron beam is strongly
affected by the imperfections. Accounting for the imperfections discussed above results in
the calculated data shown in panel (c). The traces of the measured I(V1,,B = 0) (plotted
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6 Coherent electron optics with ballistically coupled quantum point contacts

separately in Fig. b), red solid line) display strong oscillations, which depend on the
mode occupation of the QPCs, i.e., N and M. They are stronger for smaller N, M, lower
temperature and smaller source drain voltage V', indicating an origin in terms of coherent
standing waves (i) between the two QPCs or (ii) between emitter or detector QPC and the
lens. Furthermore, (iii) the presence of the electrostatic potential dip at the center of the
lens causes diffraction of the electron beam resulting in a modulated transmission profile
T(Vi, = 0,B) as seen both in experiment, Fig. |6.20(a) panel (b), and in the simulation
accounting for the sample imperfections Fig. |6.20(c) as bent stripes of local transmission
maxima. Due to the asymmetry of the sample, this diffraction results in oscillations of
the transmission along horizontal cuts of the transmission profile, e.g., for B = 0.

As the interference pattern strongly depends even on slight disorder and the precise real-
ization of the electrostatic potential, a one-to-one comparison with a numerical simulation
is difficult. In order to qualitatively explain the oscillations in I(V1,) in Fig.|6.3{(b), we com-
pare simulated 7'(Vi,,B = 0) cuts with varying dephasing length I, = 0.5 um, [, = 5pum
and [y = oo shown in Fig. [6.20(d). The fast oscillations for small negative lens voltages
V1, > —0.6V are consistent with an interpretation in terms of standing waves between the
two QPCs as they are strong for a dephasing length much larger than the distance between
the QPCs [y = oo while they are averaged out for a dephasing length l; < 5pm of the
order of the distance between the QPCs. The oscillations at large negative lens voltages
VL, < —0.6V can originate both from (ii) coherent standing waves between the QPC and
the lens and (iii) the lens voltage tuning the diffraction pattern through the B = 0 cut.
The former exist only if the lens voltage V1, is nega-

tive enough such that electrons approaching a suffi- (a) B=V =0

ciently smooth electrostatic potential ®(V1,) are re- -

flected if their forward momentum is smaller than U

\/2m*(EY — ®1,). As the experiment was conducted — ‘

at T'= 250 mK with a source drain voltage of —1 mV Q / (al.u.)
1um N=1

corresponding to a dephasing length of 0.5 um (cf.
Fig. , oscillating current contributions due to
standing waves between lens and the QPCs are av-

eraged out. Thus, the simulation supports the con- (b)
clusion that the large oscillations in the experimen- U
tal data at Vi, < —0.6 V of Fig.[6.3(b) are caused by
(iii) the tuning of the diffraction pattern through the B -
N=17

0.5
0

B = 0 cut. This conclusion is in agreement with the
measured and simulated T'(V1,,B) profile for emitter
and detector plateaus N = M = 1 Fig. [6.20|(b,c),
respectively. Note, that the simulated T'(V,,B) pro- Figure 6.21: Calculated spatial
file in a symmetric geometry without electrostatic . rent densities with B — Vi, = 0
potential dip at lens waist does not exhibit these . v — 1 (a) and N = 7 (b), ac-

oscillations. counting for the piezoelectric poten-

tial dip at the lens waist.

Using our numerical model, the magnetic field dependent oscillations of the serial current
through the QPCs can be translated into modulations of the calculated current density
in real space, cf. Fig.[6.21a) for N = 1 and accounting for the piezoelectric potential dip
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6.4 Electrostatic focusing

but an otherwise flat lens potential at V1, = 0. Due to scattering off the potential dip,
the beam fans out behind the lens. This effect is particularly strong for a narrow electron
beam (N = 1) centered on the lens waist. For comparison, we add the calculated beam
profile including the piezoelectric potential dip also for a wider electron beam at N =7
in Fig. [6.21(b). Since the potential dip only affects a minor range of the beam width,
the lateral current modulation is less pronounced here. Nevertheless, it manifests as a
bimodal current distribution behind the lens. This explains the measured magnetic field
dependent serial current, cf. Fig. [6.7]for N > 3.
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7 Electron scattering in a ballistic and
coherent cavity with quantum point
contacts

Besides electrostatic lenses, electrostatic mirrors represent another tool to couple distant
nanostructures via a region of free 2DES. Here, we study the coupled system of four QPCs
and an elliptical mirror forming an open cavity in the ballistic and coherent transport
regime.

7.1 Sample

We present an AFM picture of the sample in Fig.[7.1] The gate layout consisting of a mirror

Figure 7.1: AFM image of Ti/Au gates (yellow) on the sample surface (dark). Negative
gate voltages V;,V;, V] and V, are used to define four QPCs and a mirror following an
elliptical arc (red line) in the 2DES 107 nm below the surface. Emitter QPC; and detector
QPC, are located close to the two focal points of the elliptical arc (red dots). Crossed
boxes indicate positions of Ohmic contacts far away from the nanostructure. We measure
the currents /1 and I flowing through QPC 2 after applying a source drain voltage V' at
QPC; and leaving all other Ohmic contacts grounded. A perpendicular magnetic field B
is added on demand.
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7 Electron scattering in a ballistic and coherent cavity with quantum point contacts

gate and three split-gates forms a cavity with four QPCs. To realize the two narrow QPCs,
(QPC; and QPCs) used as emitter and detector for electrons, we keep the central gate at
a constant negative voltage V., = —1.5V depleting the 2DES below, while the other gate
voltages V,.; are swept to control QPCy 2 respectively. We define the electrostatic mirror
by applying the gate voltage Vi,. The geometry of the mirror follows an elliptic arc (red
line) with the two corresponding focal points located close to the exits of the QPCs (red
dots). Within the simplified ray-optics picture, every ballistic electron emitted from one of
the two focal points is scattered onto the second focal point after one specular reflection of
the elliptical mirror gate. By decreasing Vi, we decrease the size of the cavity, effectively
shifting the focal points towards the centers of the QPCs. Using this concept, we intend to
couple the two QPCs: we apply a source-drain voltage V' at the emitter contact, such that
electrons flow through the emitter QPC; into the cavity. Inside the cavity, electrons can
scatter between each other or from the elliptical mirror and the QPC gates, before they
either traverse the detector QPCs, backscatter into the emitter QPCy, or leave the cavity
to the grounded side contacts. To characterize the cavity, we simultaneously measure
the currents I1(Vy,) and I2(Vy,) flowing through QPC; and QPCs respectively, with a
perpendicular magnetic field B added on demand, cf. Fig.[7.1] The sample was fabricated
on wafer no. mbe8-309 [cf. | with the corresponding Fermi energy F2 = 11meV and
a measured elastic mean free path (after structuring the present sample) of [, = 14 pm.
A detailed overview of the experimental setup used for the experiments described in this
chapter is shown in section [2.2.2]

7.2 Cavity constrictions characterization

Before looking into the ensemble of the four QPCs and the elliptical mirror we start with
the characterization of all individual components forming the cavity. In Fig. [7.2[(a), we
show an overview of the present sample layout with the gates used for the experiments
(red) on the mesa representing the conducting areas of 2DES (blue). We additionally
indicate the six Ohmic contacts located in the periphery of the mesa (crossed boxes).
We bias the contact connected to the emitter QPC with an external source-drain voltage
V1 < 0, while keeping all other contacts grounded. The internal input offset voltage of the
current amplifier connected to the detector QPC is adjusted as close as possible to the
ground potential, [Va]| < 10 uV.

In panel (b) we show a magnified view of the cavity and its four openings labeled 1,2,3.4
connected to the free 2DES and Ohmic contacts. Each opening represents a QPC where
we have determined the number of occupied spin-degenerate channels in the constriction,
N;. The present sample was designed to host two slightly different cavities, cf. 2nd mirror
gate visible on the right in Fig.[7.2|b). To minimize the number of electrical connections in
the setup, the mirror gates of both cavities were shorted and have the same potential. The
distance between the two cavities (55 um) is larger than the mean free path (I, = 14 pm).
While we do not discuss the second cavity on the right hand side of the mesa, we account
for an additional (lead) resistance R:l due to the short of the mirror gates as shown in
Fig. (b) Other gates of the second cavity are kept at ground potential and are not
shown.
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7.2 Cavity constrictions characterization

R; = Ri + (NiGg)™*
— y~] Rz = Rleadv 1= 17253
R\l I R R ,

2 Ry = l§ad +R4

Figure 7.2: (a) Sample layout with gated structures connected to voltage sources (red)
on the mesa (blue). Crossed boxes indicate Ohmic contacts in the periphery of the mesa.
(b) Magnified view of the cavity and the Ohmic contacts connected to its leads. QPCy is
connected to its lead via another constriction accounted for as R:y (c) Simplified circuit
diagram of the setup.

In Fig. (c), we present a simplified equivalent circuit diagram including the components
introduced above. The lead resistance Rje.q = 26452 caused by RC low-pass filters at
room temperature (2.2k(2), wire resistances (350€2), Ohmic contacts and 2DES (95€) is
practically identical for every lead within two percent accuracy. In table we present
all pairwise lead resistances between the six leads of the sample determined from I/V
measurements with grounded gates.

R(QY) | Lead 1 | Lead 2 | Lead 3 | Lead 4 | Lead 5 | Lead 6
Lead 1 - 5258 5297 5303 5313 5328
Lead 2 | 5258 - 5262 5267 5284 5300
Lead 3 | 5297 5262 - 5263 5276 5298
Lead 4 | 5303 5267 5263 - 5279 5296
Lead 5 | 5313 5284 5276 5279 - 5308
Lead 6 | 5328 5300 59298 5296 5308 -

Table 7.1: Pairwise resistances between the six leads of the sample, including wire- and
RC filter resistances (cf. main text).

In the following, we first characterize the emitter and detector openings QPC; 2 before
discussing the larger cavity side openings QPC3 4 and their leads.
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7 Electron scattering in a ballistic and coherent cavity with quantum point contacts

7.2.1 Emitter and detector - QPC; and QPC,

In Fig. we present finite bias spectroscopy measurements for the emitter and detector

QPCy 2.

(a)zo, V1=-OH mV I I I i (b)
[V5l< 10 pv 50 ]
Gy=2¢"/h QPC,
15¢ 1 _ 4t |
z QPC, QPC, | @ | QPC,
= O
2_ 4
11 4
0 | | |
.0 -2.4 -2.1 -1.8 -1.5 -1.2

-5.0 -2.5 0.0 2.5 5.0 -5.0 -2.5 0.0 2.5 5.0
V__.(mV) V__.(mV)

QPC QPC

Figure 7.3: (a) Full pinch-off curves I(V;;) of QPCy (red) and QPCy (blue) measured
separately while the central gate is kept constant at V. = —1.5V, depleting the 2DES
below. (b) Solid lines: conductance G(V;) and G(V;) of both QPCs after subtraction
of 2Rjeqq = 5.29kQ?, including room temperature filters not used for (c,d). (c,d) Finite
bias spectroscopy dg/dV;;(Vi1,Vqpc) of QPCy 2, where Vpc is the voltage drop over the
respective QPC, cf. main text.

We keep the central gate at V., = —1.5V and vary V,.; to control QPCy 2 with the other
QPC grounded, V;, = 0, cf. inset in Fig. [7.3[(a). In the main panel of Fig. [7.3(a) we
plot the full pinch-off curves I(V;;) for both QPCs separately at V3 = —0.1mV, used
for most of the experiments presented in this chapter. Fig. [7.3(b) displays the quantized
conductance regime of both QPCs after subtraction of the lead resistance, featuring well
defined conductance plateaus with smooth transitions, indicating reflectionless coupling
of the 1D modes to the free 2DES. For experiments aiming at the coupling of both QPCs,
we keep the QPCs at the centers of the plateaus at G 2(V,.;) = N12Gg. To determine the
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7.2 Cavity constrictions characterization

subband spacings of the QPCs, we measure the differential conductance g = dI/dV as a
function of the gate voltage and the source-drain voltage V serving as an energy reference.
This allows us to extract their 1D subband spacings de(N;2), analogous to the detailed
QPC confinement potential characterization presented in chapter 4| In Fig. m(c,d) we
plot the differential transconductance dg/dV;; of QPCy 2 which displays transitions be-
tween adjacent conductance plateaus in a diamond-like pattern, highlighted by red lines.
Here, the z-axis shows the actual voltage drop over the QPC, Vopc = V' — 2Rjeaql, after
subtracting the parasitic voltage drop along the two leads. The first intersection points
of the red lines at finite Vgpc indicate the subband spacings den, , = eVqpc, plotted in

Fig.[7.4

Both QPCs feature almost identical decreas-

ing subband spacings as the QPCs are opened M ' ' ' ' ' '
by increasing the gate voltage. Moreover, S i
the subband spacings found here are identi- A = QPC,

cal to the ones found for the QPC character- I . e QPC, T
ized in chapter [4] within the accuracy of the % 3l . |
experiment. This is not surprising, since all & ¢ .

three QPCs have a nominally identical gate .8, | * . |

geometry and are fabricated on the same het- . N
erostructure. Note, however, that the QPCs 1
in this chapter are realized by keeping the cen-

tral gate at V. = —1.5V while controlling the ol

conductance with the second gate defining the T2 3 4 5 6 7
QPC, V;.;. We thus expect an asymmetry of N,,

the lateral confinement potential [97] which .

increases with [V.| — [V,;|. Our experimental Figure 7.4: Subband spacings de(N1,2)

data suggest that the asymmetry of the poten- of QPCy (red squares) and QPCy (blue
tial well does not affect the subband spacings dots).

of the QPCs, which is still compatible with a transition from a parabolic towards a hard-
wall confinement potential caused by Coulomb screening [87].

7.2.2 Cavity side exits - QPC;3; and QPC,

To determine the gate voltage dependent channel numbers of the wide QPCs QPC3 and
QPCy, N3 and Ny as well as the resistance R [cf. Fig. (b)], we perform various two
terminal pinch-off measurements as a function of the voltages applied to the two gates
forming the respective constriction V; & Vi, for QPC3 and V,. & V,, for QPCy while
keeping all other gates grounded. We present them in Fig.

In the experiments with the coupled system including the cavity with its four exits, we
tune QPC; and QPCy to the centers of their conductance plateaus Nipo at fixed QPC
gate voltages V;.;(N1,2) while sweeping the mirror gate voltage Vi,. To calibrate the cavity
side exits under exactly these conditions, we present two-terminal pinch-off curves I(Vy,)
with V;.;(N12) corresponding to the first three conductance plateaus Nio = 1,2,3 [cf.
Fig. [7.3|(b)].
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7 Electron scattering in a ballistic and coherent cavity with quantum point contacts
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Figure 7.5: (a) Upper curves and sketch: I3(V,) for V;. = 0 flowing through the left cavity
exit with V; corresponding to Ny = 1,2,3. Lower curves and sketch: I4(Vi,) for V; = 0
flowing through the right cavity exit with V,. corresponding to N1 = 1,2,3. Other contacts
are floating, gates not shown are grounded. (b) Resistances R; = V/I; with V = 0.1mV
obtained from the currents shown in (a). In the transparent mirror regime, R(—0.9V<
Vin < 0) = 2Rjeqq corresponds to the resistance of the two leads. (c¢) Upper (lower) curves:
resistance of the right (left) cavity exit, Rgp = R4 + R, (R3) after subtraction of the lead
resistances (cf. main text). (d) Resistance R, of the additional constriction far away from
the cavity, obtained from R, = Rr — R3 (cf. main text).

To characterize the left opening of the cavity, we apply V = 0.1mV to a contact on one
side of the constriction and measure the current I3(V;,) for V. = 0 and V; corresponding
to Ny = 1,2,3 flowing through it (cf. upper inset and upper curves). Similarly, for the
right drain we measure I4(V;,Vy) (cf. lower inset and lower curves). In both cases, we
observe a drop in the current at the depletion voltage of the mirror, V.4 ~ —0.9 V. Further
decreasing Vi, reduces the constriction size (field-effect) and leads to decreasing currents.
Due to the additional constriction in the right drain of the cavity I4(Vi) < I3(Vi,) in the
depleted mirror regime.

In Fig. [7.5(b) we plot the total resistances R; = V/I; with V = 0.1 mV obtained from the
measured currents shown in (a). The additional constriction enhances the total resistances
of the right cavity drain (upper three curves) compared to those of the left exit (lower three
curves). For Vi, > V& the 2DES below the mirror gate is transparent and the constant
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7.3 Transmission and reflection at B =0

resistance corresponds to the total resistance of the two leads, 2Rj.qq = 5290 2.

To extract the contribution of the constrictions to the measured total resistance, we plot
the total resistances shown in panel (b) after subtraction of 2Rje.q in Fig. [7.5(c). In this
representation, we can directly read off the resistances of the left constriction (N3Gg) ™! =
R— 2Rjeqq for Vi(N = 1,2,3) (lower curves). For the right cavity drain we have to subtract
R— 2Rjcad — Ri; for V(N = 1,2,3) (upper curves). Note that we neglect ballistic effects
and treat the extra constriction beyond the right exit as a serial Ohmic resistor, as the
distance between QPCy and the extra constriction is substantially larger than the elastic

mean free path.

Since the gate geometry of the left and right constriction of the cavity is nominally identical
in terms of the gate geometry and V,(Ni) = Vj(N2) [cf. Fig. [7.3[(d)], in the following
we assume identical resistances of the left and right cavity constriction, (N3Gg)™! =
(N4Gg)~'. Under this assumption, we can separate the contributions (NyGg)~! and R
in the serial resistance Rg = (N4G@)~' + R;. In Fig. (d) we plot Ry (Vin).

To quantitatively determine the various trans-

mission coefficients between the four leads 1000k N‘ N ‘ ‘ ‘ 104

of the cavity, we need the number of spin- ZAN

degenerate channels in each lead. For QPCy2, 800 M\/\Z’/V\\/\ﬂ 10

Ni2(V;) can be determined from the pinch- % R 3 .

off curves shown in Fig. [7.3(d). . 600F , =
N K 16 2

In Fig. we plot ég — 2Rjeqq (solid lines, ml? 40017 -1

left axis) and the corresponding N3 = [(R3 — 200l — Vi(N=3) 112

2Rieqd)Go| ™t = Ny (dashed lines, right axis). — g: E%;f;

Our resonator represents an ’open’ system in 0_5 ” 5 5 ¥ o

the sense that the number of spin-degenerate V. (V)
channels of the side constrictions N3 = Ny >

13 is much larger than the number of chan- : o
nels coupling into/out of the cavity via the tance of the left cavity constriction shown

QPCs, if we restrict our measurements to in [7.2b, R3(Vin) for V; = 0 and Vi cor-
Nig=12. responding to No = 1,2,3. Dashed lines,

right axis: corresponding number of spin-
degenerate channels N3 = 1/R3Gg.

Figure 7.6: Solid lines, left axis: resis-

7.3 Transmission and reflection at B =0

Together with the calibration measurements of the individual QPCs shown above, applying
the Landauer-Biittiker formalism to the present four terminal device (cf. section now
allows us to deduce the probability for electrons to return into QPC; from the measured
emitter current I; (equation . In the same fashion, we can use equation to
indicate the transmission probability for electrons emitted by QPC; to traverse QPCs
using the measured detector current I». Additionally, we in the following calculate the
probability of electrons to be scattered through the larger side exits QPCs and QPCy
using Kirchhoff’s law. In this section, we only vary the size of the cavity by tuning Vi,
while keeping B = 0.
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7 Electron scattering in a ballistic and coherent cavity with quantum point contacts

7.3.1 Reflection into the emitter QPC;

The dimensions of the cavity (< 2 um) are much smaller than the measured elastic mean
free path after structuring the present sample, I, = 14 um. Hence, we expect the mea-
sured current [;(V},) to contain ballistic components. In particular, the concave shape of
the resonator supports ballistic backscattering of electrons emitted into the cavity back
through the emitter QPC;. We plot I;(Vy,) for Ny = Ny = 1,2 and 3 in Fig. (a) mea-

14 . . : : . . . .
(a) N=Nez3) (b) °
4
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Figure 7.7: (a) Measured I;(Vi) at 280mK (solid lines) and 10K (dashed lines). (b)
Reflection probabilities t11(Vy,) for 280 mK. Dashed green lines: reflection probabilities
assuming chaotic cavity physics for Ny = Ny = 1,2,3, calculated with equation [7.1] The
inset shows the strong sensitivity of the QPC conductance to temperature, measured for
another QPC. In the classical limit at high temperatures the conductance is expected to
cut through the centers of the low-temperature plateaus.

sured at 280 mK (solid lines) and 10 K (dashed lines). For moderate voltages (—1 V< V),
the mirror gate is transparent for electrons at the Fermi edge, while for V;; < —1V the
2DES below the gate is depleted and the open cavity with four QPCs is formed. For
both the data at 280 mK and 10K, the formation of the cavity manifests as a drop in
I (Vi), as electrons are reflected back through QPCj, decreasing the net current flowing
into the cavity. For more negative values of V4, the depleted area below the mirror gate
increases, giving rise to a smaller cavity size. Comparing the data measured at the two
temperatures, we find additional reproducible fine structures at 280 mK, which point to
ballistic and coherent resonator modes.

The slight vertical offset between the data for the two temperatures originates from the
temperature dependence of the QPC conductance. In the inset of Fig. [7.7(b) we show the
pinch-off curve of a QPC with identical geometry fabricated on a different heterostruc-
ture, measured at various temperatures. As we increase the temperature, the conductance
plateaus smear out due to thermal broadening. The conductance is in principle expected to
feature temperature-independent fixed points as a function of energy, located at roughly
multiple integers of e2/h . However, such points are less pronounced in the actual,
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7.3 Transmission and reflection at B =0

measured temperature dependence of the conductance as a function of gate voltage due to
heating effects. For a fixed gate voltage set in the experiment, the conductance can there-
fore deviate from the quantized low temperature conductance as a function of temperature.
The strong sensitivity of the QPC conductance on temperature makes a quantitative anal-
ysis of the currents at high temperature difficult, as N; and Ny in equations and
are not well controlled here. We thus translate only the measured I;(Vy,) at low tem-
perature directly to the corresponding reflection probabilities t11(V4,) using equation

with a source-drain voltage V = —0.1mV, where Gilif 7 and ng’f I can be calculated from

equation and respectively. We plot ¢11(Vy,) in Fig. [7.7(b).

We observe a first local reflection maximum around the depletion voltage of the mirror,
Vm = —1V, which is more pronounced for higher N; = N,. For intermediate mirror
voltages —1.5 V> V;,, > =3V, ¢11(V4,) is oscillating close to the chaotic predictions

4
t11(Vin) = N1/2Nj(Vm), (7.1)
j=1

which we plot in Fig. b) as dashed green lines for N1 = Ny = 1,2,3 for comparison. The
gate voltage dependence of the chaotic prediction, cf. equation , is known from the
Vmm-dependence of the conducting channels N;(Vy,) of all four QPCs forming the cavity,
explained in detail in section and N3(Vi,) = Ny(Vi) depicted in Fig. [7.6] (dashed
lines). Further decreasing the cavity size with decreasing V;,, the reflection increases,
most pronounced for lower Ny = Ns. In particular, for Ny = No = 1, we observe a
dramatic increase of the reflection probability up to around 25 %, which is more than 7
times the corresponding chaotic prediction.

7.3.2 Transmission through the detector QPC,

Next, we consider the serial current I flowing from the emitter QPC into the detector
QPC via the cavity. In Fig. m(a) we show the measured raw currents I»(Vy,) for Ny =
Ny = 1,2,3 at 280mK (solid lines) and 10K (dashed lines). Here, the depletion of the
cavity shows as an abrupt increase of I» around Vi, = —1V, as carriers are scattered into
the detector via the cavity. Just like I1(Vi) [cf. Fig. [7.7(a)], the serial current I5(Vin)
shows features of coherent resonator modes: at 280 mK, pronounced, reproducible maxima
and fine structures occur, which are absent as the temperature is increased to 10 K.

Next, we use equation to translate the measured detector currents Io(V;,) into the
corresponding transmission probabilities t91(V4,) for electrons to transmit through QPCy
and QPCy in series, plotted in Fig. [7.8(b). We again only consider the low temperature
data due to the strong sensitivity of the QPC conductance on temperature, addressed
in section After subtracting the diffusive contribution, the coherent and ballistic
features are clearly more pronounced than in the measured raw currents [panel (a)]: as we
decrease the cavity size with V},, the transmission strongly oscillates due to constructive
and destructive interference. For comparison, we add the predictions of the transmission
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7 Electron scattering in a ballistic and coherent cavity with quantum point contacts
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Figure 7.8: (a) (Vi) flowing through the detector QPCy for N = 1,2,3. Solid lines
are data for 280 mK, dashed lines are for 10 K. (b) Transmission probabilities t21 (Vi) for
280mK. Dashed green lines: transmission probabilities assuming chaotic cavity physics
for Ny = Ny = 1,2,3, calculated with equation

for chaotic cavity physics,

4
to1(Vin) = Na/ Y N;j(Vin) (7.2)
=1

for Ny = Ny = 1,2,3 as dashed green lines in Fig. [7.8(b). For N; = Ny = 1, the oscillations
in to1 (Vi) feature the highest visibility. The transmission in this case oscillates around the
corresponding chaotic prediction. In contrast, for Ny = Ny = 2,3 we observe an additional
broad maximum between —1.5V> V,,, > —3.5V superimposed on the oscillations. Here,
the transmission is substantially higher than the chaotic prediction, pointing to ballistic
focusing of electrons between QPC; and QPC,. The highest transmissions are found for
N; = Ns = 3 as we go to very small cavity sizes by lowering V},, towards —5 V. Nevertheless,
the total transmission does not exceed 15 % in the mirror voltage range considered here.

Note that we do not apply Vi, < =5V to avoid leakage currents between the mirror gate
and the 2DES.

7.3.3 Transmission through the side exits QPC3; and QPC,

In the previous two sections we have discussed backscattering of electrons emitted from
QPC; into the same QPC in terms of the reflection probability ¢11 (Vi) (see section [7.3.1])
and the transmission through QPC; and QPCy in series, ta1 (Vi) (see section. Using
unitarity of the scattering matrix (the equivalent of Kirchhoff’s law), we calculate the
transmission t3; +1%41 through QPCs and QPC,, forming the wide side exits of the cavity:

t31 4+ ta1r =1 —to1 —t11. (7.3)

In Fig. 7.9 we re-plot the reflection t1;(Vin) [panel (a)] and the transmission to1 (Vi)
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Figure 7.9: (a) Reflection probability back through emitter QPCy, t11(Vim), (b) trans-
mission probability through QPC; and QPCsy, t91(Vi,) and (¢) transmission probabil-
ity through the side exits (t31 + t41)(Vin) for Ny = No = 1,2,3 at 280mK. The green
dashed lines show the reflection/transmission prediction assuming chaotic cavity physics
for N1 = N2 = 2.

[panel (b)] next to (t31 + t41)(Vim) [panel (c)] for Ny = Np = 1,2,3 and a temperature
of 280 mK. For a completely transparent mirror gate, Vi, > —0.8 V, the cavity is absent
and the current diffuses into leads 3 and 4, t31 + t41 ~ 1. The depletion of the mirror
around Vy, ~ —1V results in increasing ballistic signals, t11,t21 > 0. Further decreasing Vi,
results in a trend to stronger overall 11 and ts;. This is expected, as the side exits QPCs
and QPCy are becoming more narrow by decreasing Vi, while QPC; and QPCsy are not
affected by it. However, for very negative mirror voltages, t11 and ts; substantially exceed
the chaotic prediction. This points to enhanced (classical and/or coherent) backscattering
through QPC; and focusing through QPCs.

Nevertheless, throughout the entire V,-range considered in the experiments, the main
fraction of the current is scattered to the wide side drains of the cavity, ts1 + t41 >>
t11 + to1.

7.3.4 Source-drain dependence

Next, we study the energy dependence of the Vy,-dependent oscillations in the reflection
(transmission) probabilities by measuring the currents I; and I, as a function of both the
mirror gate voltage Vi, as well as the source-drain voltage V' applied to the lead of emitter

QPC;.

The confinement of electrons in a cavity gives rise to a discrete density of states character-
ized by the charging energy, e’ /Ceavity, where Ceayity is the self capacitance of our cavity.
However, if the charging energy is much smaller than the line width, the discrete states can
not be resolved and the density of states is continuous. The line width can be estimated
semiclassically by substituting the quantum mechanical decay time 7 = h/AF by the clas-
sical time constant RClcayity of the disc: AE ~ h/(RCeavity), where R = (Z?:l NZ-GQ)_1
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7 Electron scattering in a ballistic and coherent cavity with quantum point contacts

denotes the effective resistance for charging the cavity. In this approximation, the ratio
between charging energy and the line width is e?/ (CeavityAE) = 0.5/ Z?Zl N;, which for

Zle N; > 25 as in our experiments is smaller than 0.02. Hence, we deal with an open
cavity characterized by a continuous density of states. This implies that Coulomb block-
ade oscillations of the conductance of our cavity can not be resolved. An appropriate
description of regular oscillations of the conductance as a function of applied voltages
is the picture of standing waves of the quantum mechanical probability function caused
by closed orbitals of multiple reflected electrons, the electronic analogue of Fabry-Pérot

modes [58-60].

In Fig.|7.10|a,b), we present the source-drain dependence of the V;,-dependent oscillations
in the reflection and transmission probability for Ny = No = 1, which showed the highest
oscillation visibility. The z-axis represents a direct energy reference by means of the actual
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Figure 7.10: (a) Reflection probability into emitter QPC; as a function of source-drain-
and mirror voltage, t11(V,Vy,) for Ny = N = 1, B = 0 and 280 mK. (b) Transmission prob-
ability into QPCs, t21(V,Vim). (¢,d) Cuts of (a,b) along V, for various V (data vertically
shifted for clarity).
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7.3 Transmission and reflection at B =0

voltage drop over the emitter QPCy,
Gdiff

Vapc =V MGo’
with G‘lﬁf 7 defined in equation Both the reflection and the transmission probability
show a blurred pattern of diagonal resonances around Vgpc = 0, highlighted by dashed
white lines as a guide for the eye. The stripes give rise to the pronounced oscillations found
in the Vi -dependence in t1; and t9;. In Fig.|7.10[c,d) we present vertical cuts of the panels
(a,b) for various Vopc. Clearly, the oscillations are most pronounced for lower Vgpc. This
suggests to interpret the diagonal stripes as a coherent interference pattern which blurs
out due to bias smearing as the bias window gets larger. Since the dominant features are
diagonal, the coherent cavity modes are sensitive to both V4, (used to control the size of
the cavity) and Vgpc (used to control the width of the transport window between source-
and drain leads).

In the inset of Fig. we present a reference sample containing a QPC in strongly
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Figure 7.11: (a) Mirror gate voltage dependent conductance of a QPC set to N = 4,
coupled to a hemisperical mirror, published in the appendix of Ref. . (b) Fast Fourier
transformation of ¢11(Vin) (red solid line) and t21(Vin) (black solid line) for V- = —50 uV.
Blue solid line: fast Fourier transformation of the pronounced Fabry-Pérot oscillations in

().

coupled to a hemispherical mirror. In the main panel, we plot the measured conductance
as a function of the mirror gate voltage Vi, while the QPC is set to N = 4. The strong
oscillation in the conductance can be interpreted in analogy to the oscillations of the
standing wave in a Fabry-Pérot resonator, while here, coherent electrons generate the
standing wave. By increasing Vi, we decrease the area of 2DES depleted next to the
mirror gate and thereby increase the length of the resonator (the distance between the
QPC and the mirror). Per period of the conductance oscillation, the length of the resonator
is reduced by half of the Fermi wavelength dL;es/dV;y, = 0.5Ap/6Vy, with the resonator
length L,es. We determine the averaged period from the fast Fourier transform of the
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7 Electron scattering in a ballistic and coherent cavity with quantum point contacts

oscillation, §[I1/V (V)] and find a strong peak around f = 6.6V~ cf. blue solid line
in Fig. [7.11](b). This corresponds to a period 6Vy = 1/f = 150mV. With Ap = 45nm,
we finally estimate the rate of the depletion length reduction dL,es/dVy = 150nm/V.
The sample in Fig. [7.11(a) was fabricated on the same heterostructure and the
QPC is nominally identical to QPC; and QPCs. To compare the pronounced Fabry-Pérot
frequency of the hemispherical mirror device to our elliptical cavity, we follow the same
procedure and consider the fast Fourier transforms §[t11(Vin)] (F[t21(Vim)]) at V- = =50 uV,
plotted as black solid (red solid) line in Fig.|7.11|(b). Interestingly, both Fourier transforms
show peaks around the characteristic Fabry-Pérot frequency obtained from the pronounced
oscillations in Fig. [7.11)(a). Note that the hemispherical mirror is designed such that it
reflects the entire emitted electron beam directly back to the QPC. Ideally, this leads
to the formation of a standing wave between the QPC and the mirror independently
of the emission angle within the aperture of the mirror, causing a strong peak in the
Fourier-spectrum. In contrast, the more complex geometry of the elliptical resonator
gives rise to various trajectories that depend strongly on the emission angle of the QPC.
Nevertheless, the good agreement between the peak frequencies obtained in the elliptical
resonator and the hemispherical resonator suggests to interpret the periodic component
of the Vyy-dependent oscillations as Fabry-Pérot modes.

The visibility of the oscillations in ¢11(Vi,) and to1 (Vi) strongly drops with increasing
|Vqpc| due to bias smearing, cf. Fig. [7.10 To obtain a better resolution of the cavity
modes, we next consider the differential reflection and transmission coeflicients dt11 and
dto1 which we determined in analogy to t1; and t; but replacing the terms I /V in
equation and by dI;2/dV, with dV = 20uV. This approach is similar to a
lock-in measurement with a small ac-voltage superimposed on a dc-voltage offset. We
plot the differential reflection and transmission cofficients as a function of V;,, and Vgpc

in Fig. a,b).

0

(a)
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Figure 7.12: (a) Differential reflection coefficient, 0t11(Vim,Vqrc) and (b) differential
transmission coefficient dto1(Vin,Vopc) for Ny = Ny =1, B =0 and T = 280 mK.
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7.3 Transmission and reflection at B =0

In this representation, the resolution of the cavity modes is much higher compared to
the reflection/transmission plotted in Fig. which were directly calculated from the
measured raw data I; 2/V and thus reflect the bias smearing proportional to the full bias
window o eV relative to Eg. In contrast, in Fig. we only consider the current flow
within the narrow window edV relative to the chemical potential at the source lead, which
we control with V. This allows us to study the decoherence of single electron states due to
electron-electron scattering on length scales shorter than the elastic mean free path [57].

The diagonal interference pattern is most pronounced in the differential reflection
dt11(Vin,Vqpo), cf. Fig.|7.12(a). Here, we observe parallel diagonal stripes that are visible
within a substantially larger Vopc-range compared to the reflection data, cf. Fig. a).
The average spacing between two resonances along the Vi,-axis coincides with the charac-
teristic period obtained from the fast Fourier transform analysis of ¢11(V4,) and to1 (Vi) for
low Vopc shown in Fig. [7.T1} Moreover, the regular, equidistant nature of the interference
pattern supports our interpretation of the cavity modes as Fabry-Pérot modes rather than
conductance fluctuations. The latter are caused by the unique (random) disorder potential
of the sample and are in general not equidistant in gate voltage [73].

The pattern in the differential detector transmission dt21(Vm,Vqrc), cf. Fig. [7.12(b), is
less regular. One possible explanation for the lower visibility is the finite transmission of

the two QPCs. In contrast, standing waves of the emitter QPC; only couple out of the
cavity via one QPC (QPCy).

Next, we repeat the Fourier analysis of the Vj,-dependent oscillations for the much more
pronounced pattern of the differential reflection/transmission. Since the main features are
diagonal, they only acquire a phase shift in V,, as we vary Vqpc, while their frequencies
in the Fourier spectrum remain unchanged. However, we expect the peak amplitudes to
be sensitive to Vqpc, as we (i) vary the wavelength of electrons emitted into the res-
onator and (ii) modulate the phase space for electron-electron scattering. We present the
fast Fourier transforms of dt11(V4,) and dt21(Vin) as a function of Vgpc in Fig. (a,b).
Due to the high visibility of the Vi,-dependent oscillations in the differential reflection
beyond |Vgpc| > 1mV, the Fourier transformation shows peaks around the Fabry-Pérot
frequency f ~ 6.6V ! in the same Vqpc-range, cf. Fig.[7.13|(a). Interestingly, the visibility
of the Fabry Pérot mode (proportional to the Fourier amplitude) is strongly modulated
by Vqpc, giving rise to a pattern of resonances around f ~ 6.6V~L. In contrast, there is
no systematic Vopc-dependence in the fast Fourier transform of the differential detector
transmission [cf. Fig.|7.13(b)]. As we argued above, this could be related to the two par-
tially transmitting QPCs in the detector transmission, compared to the reflection through
a single QPC (QPCy).

Next, we aim at extracting the dominant trajectory lengths from our bias voltage spec-
troscopy measurements. In the simple Fabry-Pérot picture, an increase (decrease) of Vopc
results in increasing (decreasing) wavelength of electrons in the resonator. Resonances oc-
cur, once the wavenumber between adjacent modes changes by Ak = 7/l, where [ is
the length of the standing wave. Along the diagonal resonances in the differential re-
flection/transmission patterns, the variation in the resonator length (via V;,) and of the
wavelength (via Vopc) exactly compensate each other (constant phase condition). As-
suming a parabolic dispersion relation in 1D, we can calculate the energy spacing between
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7 Electron scattering in a ballistic and coherent cavity with quantum point contacts
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Figure 7.13: Fast Fourier transforms (FFT) of the differential reflection dt11(V4,) plotted
in Fig. [7.12h and the differential transmission d¢11 (Vi) plotted in Fig. [7.12p, as a function
of Vopc. Light (dark) areas correspond to high (low) FFT amplitudes.

adjacent cavity modes at the Fermi energy,

wh [2Ep

AE = .
l m*

(7.4)

In this picture, we treat the electron trajectories in the 2DES in 1D by ’unfolding’ them
after every reflection from a gate to result in an effective 1D trajectory length [. Exemplary
classical calculated trajectories for a cavity based on the actual sample layout are shown

in the appendix, Fig.

We interpret the Vqopc-dependent resonances in Fig. (a) as resonant conditions be-
tween the chemical potential of a cavity mode with the source-lead, uy = us, where
s is tuned by Vqpc as sketched in the energy diagram in Fig. (a). We thus relate
the spacing between two adjacent resonances as a function of Vgpc, AVqpc, to the en-
ergetic difference between two adjacent cavity modes, eAVgpc = AE. In Fig. a),
we additionally indicate the chemical potential in the cavity and the drain lead behind
the detector QPCa, u. and pq, respectively. All local chemical potentials scale with the
total source-drain voltage V applied at the emitter QPC;. Assuming diffusive transport,
we can calculate them from the measured, gate-voltage dependent resistances of the four
QPCs (cf. Section using the diffusive sample resistance Rg;r¢ = 1/ Gihf 7 and the effec-
tive resistances of the QPCs and their leads, R; = (NZGQ)_l + R;, introduced in section
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Figure 7.14: (a) Energy diagram of the cavity and the source- and drain leads, cf. main
text. (b) Cuts along various frequencies of the fast Fourier transform of §t¢11(V4,), plotted
as a function of Vgpc. Data are vertically shifted for clarity. (c) Standing electron wave
with trajectory length [ ~ 3.4 um, in very good agreement to the prediction obtained of
the spacing of the resonances in panel (a), cf. main text.
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To extract pus — i = eAVqpc from our data, we plot cuts of the Fourier transform of the
differential reflection coefficient for different frequencies around f ~ 6.6V ! as a function of
Vqrc in Fig. b). Within the window 4V~ < f <8V~! we find the most pronounced
resonances that exhibit a periodicity in Vgpc. Close to the Fabry-Pérot frequency around
f ~ 6.6V, the pattern covers the broadest Vqpc-range and the resonances show the
highest visibility.

Using equation [7.4] we can calculate the trajectory length [ for a given energetic cavity
mode spacing. For the frequencies shown in Fig. [7.14{b), we find a characteristic spacing
AFE = 0.15meV corresponding to [ = 3.2 um. This trajectory length is in good agreement
with the dimensions of the cavity. In particular, it is compatible with the most simple
standing wave expected for our cavity, which we illustrate in Fig. [7.14|(c): the current den-
sity maximum of the narrow electron beam emitted from QPC; set to N1 = 1 is reflected
off the mirror towards the detector QPC. After an additional reflection from the upper
detector QPC gate, a standing wave can be formed. The corresponding trajectory length
of approximately 3.4 um almost perfectly matches the trajectory length obtained from the
energy spacings of adjacent cavity modes discussed above, [ = 3.2 um. This suggests to
relate the pronounced Fabry-Pérot pattern to standing waves similar to the one illustrated
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7 Electron scattering in a ballistic and coherent cavity with quantum point contacts

here. Other, more complex (longer) standing waves are possible, but expected to dephase
faster with the bias voltage due to their increased trajectory length, contributing less to
the diagonal (Vqpc-dependent) pattern.

Note that we find an identical trajectory length by directly reading off the spacing be-
tween two resonances (along the Vopc-axis) in the differential reflection before the Fourier
transform, cf. Fig.[7.12(a). However, the analysis above allows us to study the dependence
of the Fabry-Pérot mode directly as a function of Vqpc.

To do so, we now focus on the dephasing and decoherence of electrons as a function of
Vqpc, introduced in section and consider:

(i) Dephasing of an electron ensemble excited within the energy window E2 < E < EY +
eVqpc described by the dephasing length introduced in equation (with V' = Vgpe).

(ii) Decoherence of a single electron excited at energy E19+6VQPC described by the inelastic
electron-electron scattering rate defined in equation (with A = eVqpc).

For our analysis, we neglect the small additional temperature broadening at the base tem-
perature of 280 mK. In Fig.|7.15(a), we plot Vqpc(lg) (black solid line) next to Vopc(le—e)

| v, (V)

Vape (MV) Vaee (MV)

Figure 7.15: (a) Black solid line: electron dephasing length, cf. equation and black
dashed line: electron-electron scattering length for T' = 0, cf. equation [3.11] as a function
of the voltage drop into the cavity, Vqpc. (b) Measured reflection coefficient t11(Vi,Voprc)
and (c) differential reflection coefficient ¢¢11(Vin,Vqpc) with vertical lines indicating the
expected Vgpc-range for visible resonances obtained from the intersections in panel (a).

(black dashed line). We choose this representation instead of I(Vqpc) because we are
interested in finding the |Vqpc| for which (i) an electron ensemble dephases and (ii)
single electrons suffer phase memory loss due to electron-electron scattering, as a func-
tion of their propagation distance. By increasing |Vqpc| for a given trajectory length
[, the electron ensemble first dephases, before single electrons lose their phase memory,
[Vapc(ls)] < |Vqpc(le—e)|- This is in agreement with our experimental observation that
the diagonal pattern in the measured reflection coefficient ¢11 (Vm,VQpc) vanishes for lower
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7.4 Combined electrostatic and magnetic field measurements

|[Vqpc| than in the differential reflection coefficient 6t11(Vin,Vqrc). We plot both as a
function of Vopc in Fig. [7.15(b,c).

In panel (a) we additionally indicate the dominant trajectory length [ = 3.2 um found in
the analysis above as a vertical line. From the intersections with the dephasing length and
the electron-electron scattering length dependence, we read off the corresponding |Vopc|
that is expected to limit the range of visible features in the reflection coefficient (due
to dephasing of the electron ensemble) and the differential reflection coefficient (due to
inelastic electron-electron scattering). We add vertical lines at the corresponding values
of Vgpc in the panels (b,c) for direct comparison with the experimental data. For both
the reflection [panel (b)] and the differential reflection [panel (c)], the prediction of the
dephasing and inelastic electron-electron scattering model agrees well with the range of
visible coherent features found in the experiment.

7.4 Combined electrostatic and magnetic field
measurements

Another experimental parameter that can be used to manipulate coherent electrons con-
sists in applying a perpendicular magnetic field B. In particular, magnetic field dependent
measurements including ballistic and coherent cavities gave rise to a number of insightful
publications [70-73,(99/100]. In the first part of this section, we discuss the magnetic field
dependent reflection probability ¢11(B,Vy) related to the cavity magnetoresistance, in the
spirit of the publications cited above. The second part of this section treats the magnetic
field dependent serial transmission through QPC; and QPCa, to1(B,Viy).

7.4.1 Magnetic field dependent reflection

Cavities of dimensions smaller than the elastic mean free path and comparable to the
coherence/dephasing length have been widely discussed in literature in terms of ’quantum
chaos’ in chaotic cavities both theoretically |69] and experimentally [70H73]. Next to
chaotic cavities, also so called ’integrable’ cavities have been theoretically predicted [101]
and experimentally realized [99,/100]. The common method to characterize these cavities
consists in measuring the magnetic field dependent resistance of the cavity. While the
experiments cited above considered quantum dot-like structures with only two leads (two
QPCs) serving as entrance and exit of the otherwise closed cavity, we here consider the case
of an 'open’ system by means of two additional side drains that are much wider than the
QPCs, cf. Fig.[7.1] For the following measurements, we directly translate the measured
cavity resistance V/I1(B,Vy,) into the corresponding reflection probability ¢11(B,Vi,) using

equation [3.21]

In Fig. (a), we show t11(B,Viy,) for V.= —0.1mV and N; = Ny =1 at 280mK in a 2D
colorplot representation. Beyond the depletion voltage of the mirror (V, < —0.9V) we
observe a finite reflection probability modulated by both V;, and B. As almost the entire
source-drain voltage drops along the emitter QPC, this measurement represents practically
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Figure 7.16: (a) Reflection probability t11(B,Vy) for Ny = Noa =1 and V = —0.1mV at
280 mK. (b) Solid lines: cuts t11(B) along Vi, = 0, —1.25V and —4.6 V (black, red and
blue line). Dashed lines indicate the corresponding reflection probability assuming chaotic
cavity physics.

a two-terminal measurement. Consequently, we find a mirror symmetry around B = 0,
confirming the Onsager relations .

In Fig. [7.16|b), we plot cuts t11(B) for V5, = 0, —1.25V and —4.6 V (black, red and
blue line). Clearly, the depleted cavity manifests as a reflection maximum at B = 0 (red
and blue line) compared to the flat curve without cavity at Vi, = 0 (black line). This
maximum can have both classical and quantum-mechanical contributions. Classically, our
cavity layout can give rise to enhanced backscattering into the emitter QPC; at B = 0,
while finite magnetic fields can cause a stronger coupling into the other QPCs. Quantum
mechanically, constructive interference between time-reversed paths of electrons increases
the probability of a particle to return to where it came from, compared to the classical
case. This form of coherent backscattering was originally found in phase coherent, strongly
disordered (diffusive) systems at low temperature [55], where it is termed weak localization
effect. In this kind of samples, scattering events happen at spatially randomly distributed
impurities. This effect is strongly B-dependent, as a magnetic field breaks time reversal
symmetry. In contrast, we here present a system smaller than the elastic mean free path
Im = 14pum - i.e. in the ballistic transport regime - with large angle scattering events
occurring at the gate-defined boundaries.

Next to the pronounced reflection maximum at B = 0, we observe characteristic, repro-
ducible oscillations in ¢;;(B) which change strongly as we vary the cavity size with Vi,
cf. Fig. Similar to the weak localization effect, this behavior was originally found
in phase-coherent diffusive systems and termed "universal conductance fluctuations’ [56],
resulting from interference between different forward scattered paths. Due to their bal-
listic origin in our case, we denote them ’ballistic conductance fluctuations’ (BCFs), in
accordance with literature ,.

For comparison, we add the predicted reflection probability assuming chaotic cavity physics
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7.4 Combined electrostatic and magnetic field measurements

defined in equation as dashed black, red and blue line in Fig. [7.16(b). While the re-
flection for Vi, = —1.25 V is close to the chaotic prediction for |B| > 20 mT, it dramatically
exceeds the chaotic prediction for V,, = —4.2V, pointing to non-chaotic cavity dynamics
as we decrease the size of the cavity.

7.4.1.1 Chaotic cavities

Ballistic microcavities have been widely discussed in the literature in terms of 'quantum
billiard’, in which electrons enter a cavity through one lead and leave the cavity through
a second lead after multiple elastic reflections from the cavity boundaries. The quantum
billiard model was motivated from a semiclassical point of view, in which electrons propa-
gate along classical trajectories and additionally carry phase information. The dynamics of
such cavities was investigated first theoretically by Jalabert et al. [69], who found ’chaotic’
scattering dynamics for certain cavity geometries. To illustrate the characteristics of a
chaotic system, we show an example in Fig. Both figures show calculated classical

4 4
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Figure 7.17: Calculated trajectories of a chaotic system. The trajectories strongly change
with a small variation in the initial conditions (impact parameter b) of the system. Found
in Ref. [102].

trajectories for a ballistic particle entering a scattering region for two different distances
b to the symmetry axis (impact parameters). The particle propagates at constant veloc-
ity and scatters elastically with specular reflections from the circles. Comparing the two
figures, we find that the trajectory changes dramatically while the impact parameter is
just slightly varied: the strong sensitivity of the observable to only a small variation of
the initial conditions is characteristic for a chaotic system. Using semiclassical arguments,
it has been shown that the number of particles remaining in the scattering region after
a time ¢ follows an exponential law [103,/104] N(t) = Noexp (—~t), with the classical
escape rate v and the number of incoming particles Ny. Assuming a constant particle
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7 Electron scattering in a ballistic and coherent cavity with quantum point contacts

velocity v, the distribution of trajectory lengths inside the scattering region then scales
like N(L) o exp (—~vrL), with v, = «/v. It is important to emphasize that the escape
rate of the exact quantum mechanical solution for a ’quantum billiard’ is determined by
the underlying chaotic classical scattering [69].

To adapt these findings to magnetoresistance measurements in chaotic ballistic cavities,
the convenient distribution function is

N(A) x exp <_3‘7|TA’> , (7.5)

with the area enclosed by closed electron orbits A and the characteristic root-mean-squared
area o' [69]. This distribution function is favorable because A and the experimental
parameter B are linked by the Aharanov-Bohm relation ¢y = AB, with the magnetic
flux quantum ¢ = h/e. By evaluating the Fourier spectrum of the oscillations, Sy(f) =
§ [t11(B)], we can relate the magnetic frequency f to an orbit area, f = 1/B = A/pg. The
spectrum is thus a measure for the distribution of flux areas of trajectories contributing
to conduction [70,|105]. For the area distribution function assuming chaotic scattering
(equation , the functional form of the corresponding Fourier spectrum in the chaotic
case is predicted to be [69):

Sg(f) = Sg(0)[1 + (2mapo) flexp (—2maspof) - (7.6)

From the BCFs in ¢;;(B), we can thus extract statistical properties of the trajectories
inside the cavity to reveal their dynamics.

In Fig. [7.18((a), we plot t11(B) at Ny = No =1 and V = —0.1mV without cavity (V;, =
0, black line) and for a cavity with decreasing size (Vi < —1V, colored lines). The
experimental data show the average after measuring each curve ten times to increase the
signal to noise ratio of the BCFs. We additionally indicate the average value of the chaotic
prediction for the reflection (cf. equation [3.14]) within —1 V>V, > —5V as a gray dashed
line.

In Fig. [T.1§(b), we show the Fourier transformation of the curves shown in panel (a),
F [t11(B)] (dots) next to fits according to equation|[7.6](solid red lines) on a semi-logarithmic
scale. On the 100 mT wide magnetic field range, we only consider oscillations with periods
smaller than 25 mT. On the top axis, we show the flux area A = fyqg enclosed by electron
trajectories. We use the measurement with transparent mirror gate (Vi, = 0) to obtain
the noise-level of the measurement and indicate it as a dashed horizontal black line in
all panels. This value was obtained from the average value of the spectrum for V,, = 0.
Decreasing V;,,, we observe a steeper decay of the Fourier amplitude with f, corresponding
to increasing decay constants .

In Fig. [7.1§|c), we plot the inverse of the decay constants found in the fits in (b). As
explained above, a~! can be interpreted as the root-mean-squared area enclosed by closed
electron paths. Just like the shift of the decay to smaller frequencies, the inverse decay
constants display the decreasing cavity size with decreasing Vi, in good agreement with the
dimensions of the cavity. For Vi, = 0, the Fourier spectrum shows no significant decay: the
open high mobility 2DES contains too few impurities to cause enhanced backscattering into
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Figure 7.18: (a) Colored lines: t11(B) for Ny = Ny =1land V = —0.1mV at "= 280 mK
for various V. Dashed line: averaged chaotic prediction for ¢11, cf. main text. (b) Colored
dots: Fourier transformations of (a) plotted on semi-logarithmic scale. Solid red lines are
fits of the decaying part of the spectrum according to equation with fit parameters «
and S,(0). (c) Root-mean-squared areas o' determined from the fits in (b) as a function
of V.
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7 Electron scattering in a ballistic and coherent cavity with quantum point contacts

the emitter QPC. With the mirror depleted, Vi, < —1V, the fit to the chaotic prediction
(red line) describes the data roughly over two decades. This agreement is worse than
what has been found in other ballistic microcavities [70-73] and can be attributed to the
geometry of our cavity: the larger area of our cavity (compared to those in the publications
cited above) makes the magnetic flux more sensitive to the magnetic field (¢ = AB),
decreasing the resolution of the B-dependent oscillations. Additionally, the large cavity
openings QPC3 and QPC, lead to much shorter dwell times for electrons in our cavity.
This causes in particular chaotic modes with multiple reflections to contribute less to the
measured reflection amplitude. Finally, the magnetic field range of the measurements is
likewise limited by the large cavity openings QPC3 and QPCy, as electrons leave the cavity
already for fields |B| > 60mT (based on a simple classical estimation of the cyclotron
radius). Within the remaining magnetic field range, the conductance fluctuations in our
open electron cavity are substantially less pronounced, giving rise to a weaker decay in
the Fourier spectra.

For Vi, < —3V, the data show a smooth transition down to a constant level, where they
are not well described by the exponential fit anymore. Here, the data rather follow a power
law distribution, cf. black dashed lines in Fig.[7.18{(b). Similar deviations from the chaotic
prediction for large frequencies have been observed before experimentally and found
in numerical calculations , who attributed the latter to fingerprints of non-chaotic,
so-called integrable contributions.

7.4.1.2 Towards integrable cavities

Besides chaotic cavities, there are certain cavity geometries that lead to non-chaotic, so
called ’integrable’ dynamics. This concept is illustrated in Fig. The two left panels

n =100 n = 1000 n = 1500 n = 2000

Sy,
N I,’\’\\

4
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Figure 7.19: Left figures (red): calculated trajectories of a classical particle after 100
specular reflections from the boundaries. Right figures (black and white): calculated
stationary eigenfunctions with quantum number n where dark areas correspond to high
probability densities. Figures in (a) are for a circular (integrable) and (b) for a cardiod
(chaotic) geometry, cf. main text. Copied from Ref. [107].
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7.4 Combined electrostatic and magnetic field measurements

show the evolution of a classical particle after 100 reflections of the system boundaries for
(a) an integrable circular and (b) a chaotic cardioid shape. While the circular geometry
gives rise to a regular pattern with areas that are not traversed by the particle, the car-
dioid geometry results in an irregular pattern that spans the entire system. The latter
represents an ergodic system, in which the particle fills the entire phase space after suffi-
ciently many reflections. In contrast, for the circular geometry, the phase space traversed
by the particle forms a torus smaller than the total system size, which is characteristic
for an integrable system. Different characteristics are also found in the solution of the
corresponding quantum mechanical problem [107], cf. black and white figures in Fig.|7.19
The probability density of the integrable circular geometry shows repetitive patterns with
multiple symmetry axes and nodes in phase space. On the other hand, the chaotic car-
diod gives rise to a complex pattern that equally fills the entire phase with respect to the
symmetry axis of the geometry.

This motivated multiple groups to investigate circular microcavities which indeed showed
two theoretically predicted features of integrability [72,99,100]. In the following, we present
these predictions and compare them to our data.

Shape of the backscattering feature

Baranger et al. [L01] derived a Lorentzian magnetic field dependence around the reflection
maximum ¢;;(B = 0) in coherent chaotic cavities:

1
(25
1+ —
aPo
The first term denotes the classical reflection amplitude, t,. The second term describes
the quantum mechanical interference contribution to the reflection, with the root-mean-
squared area o~ ! enclosed by electron paths with start- and end point at emitter QPCy,
introduced before in equation The width of the reflection maximum can thus be
related to the average flux area enclosed by electron paths with the same starting and
endpoint. In contrast, they predicted a linear relation t1;(B) o |B| around B = 0 for the

integrable case. The qualitative difference between both regimes is a consequence of their
different classical distribution of orbit areas [101].

tll(B) =tla |1+ (77)

In Fig. (a), we show t11(B,Vy,) for N; = Ny = 2 with cuts along different V;,, plotted in
Fig. [7.20(b). The latter figure demonstrates that our tunable structure permits to switch
between chaotic and integrable behavior: for V4, = —4.68 V [blue line in Fig. [7.20{(a)], we
find a Lorentzian t1;(B) profile indicating chaotic behavior [blue line in Fig. [7.20(b)]. We
additionally plot a fit to the clearly Lorentzian feature using equation [7.7|(red dashed line).
From the fit, we find o = 3.12 x 102 m~2, corresponding to a flux area o' = 0.32 um?,
which is substantially smaller than the cavity size. This is in contrast to earlier results us-
ing fully-circular microcavities: here, the peaks were comparable to the cavity dimensions
and could be readily explained by electrons propagating along the cavity boundaries in a
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Figure 7.20: (a) t;; for Ny = Ny =2 and V = —0.1mV at 280 mK as a function of the
perpendicular magnetic field B and Vy,. (b) Line cuts of ¢1;(B) as indicated in (a) for
Vm = —4.68V (blue line), V;, = —4.75V (turquoise line) and V;, = —4.82V (green line).
Red dashed line: Lorentzian fit using equation indicating chaotic cavity modes (see
text). The black dashed lines are a guide to the eye highlighting the linear B-dependence
around t;;(B = 0), indicating integrable cavity modes. Inset: sketch of a backscattering
trajectory with two closed orbits of opposite magnetic flux, cf. main text.

closed loop ,. In our half-elliptical geometry, closed loops are unlikely, since emitted
electrons are reflected from the mirror towards the detector, rather than along the mirror
gate. Closed paths thus require additional reflections from the QPC- and the mirror gates,
as illustrated schematically in Fig. (b) These kind of trajectories necessarily include
intersections, which leads to flux areas with opposite directions of rotations (blue, red).
Since the magnetic flux is a directed vector quantity, the accumulated net area corresponds
to the difference of both orbits. Consequently, the flux can cancel out completely for iden-
tical areas , or give rise to net areas that are substantially smaller than the cavity
itself . As we further decrease the cavity size with Vi, the shape of the reflection
maximum feature evolves into a clearly triangular V-shape at Vj, = —4.82V [green line in
Fig.|7.20(a)], pointing to an integrable cavity regime [green line in Fig.|7.20(b) with black
dashed lines as guide for the eye]. Note that we find similar line shapes for comparable
voltages at N1 = Ny = 1, cf. Fig.[7.16(b). However, a clear transition from a Lorentzian
(chaotic) to a triangle (integrable) was found only at N3 = Ny = 2.

To demonstrate the coherent nature of the V-shaped reflection maximum, we show t11(B)
at N1 = Ny = 2 and V;, = —4.82'V for temperatures T increasing from 280 mK to 5K in
Fig.[7.21] Due to the strong sensitivity of the QPC conductance on temperature (cf. inset
of Fig. b)) and to facilitate comparison, we vertically shifted the curves. For the base
temperature, we clearly find a triangular, non-Lorentzian resistance peak, corresponding
to an integrable cavity (7' = 280 mK, solid black line). While the peak shape remains
triangular for 7' = 0.55 K (solid red line), the triangular structure smears out for higher
temperatures and transforms into a smooth maximum (7" = 2.5 K) before it vanishes at
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Figure 7.21: Temperature dependence of the V-shaped reflection maximum ¢11(B,V;, =
—4.82V) shown in Fig. Dashed gray line: chaotic prediction of the reflection prob-
ability.

T = 5 K. The same behavior has been found within the first experimental realization of
an integrable electron cavity in a 2DES [99]. Chang et al. concluded that phase coherence
of the electrons giving rise to the integrable feature is destroyed as the dephasing length
due to thermal broadening is becoming shorter than the characteristic trajectory lengths
contributing to conduction.

7.4.2 Magnetic field dependent transmission

In the previous section, we have discussed the magnetic field dependent reflection proba-
bility t11(B) related to the measured emitter current I;. Next, we consider the magnetic
field dependence of the simultaneously measured detector current I and the correspond-
ing transmission probability ¢o1(B) through both QPCs in series, which can be obtained
from equation for not too high magnetic fields. In the first part of this section, we
investigate the coupling of both QPCs with grounded mirror gate, Vi, = 0, by only ap-
plying a perpendicular magnetic field. In the second part, we look at their coupling while
additionally varying the cavity size with Vy,.

7.4.2.1 QPCs coupled via magnetic field

Classically, the application of a perpendicular magnetic field exerts the Lorentz force on
electrons, giving rise to cyclotron motion. For not too high fields, the magnetic field
dependent cyclotron radius is defined as:

*

" JeB[”

re(B) (7.8)
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7 Electron scattering in a ballistic and coherent cavity with quantum point contacts

The vertical alignment of our QPCs requires finite magnetic fields to bend electron tra-
jectories from the emitter into the detector, analog to earlier 'magnetic focusing’ experi-
ments [29/[110]. In Fig. [7.22|(a), we plot I1(B) (solid black line, left axis) for Ny = Ny =1
and the mirror gate grounded, Vi, = 0. For comparison, we add the simultaneously mea-
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Figure 7.22: (a) Left axis, black solid line: I5(B) at Vi, = 0 for N; = Ny = 1 and black
dashed line: I;(B). Right axis, red line: Hall resistance R,,(B) measured in the bulk
(without QPCs). The inset shows the corresponding circuit diagram and sketches magnetic
focusing. The red shaded areas schematically show the depleted areas after applying Vj ,;,
see main text. (b) Black squares: position of the first three (p = 1,2,3) peaks from (a).
Dashed gray line: linear fit fixed at zero, corresponding to an effective lateral spacing
Lery = 0.755 um< L between the QPCs, cf. main text. Blue circles: calculated positions
of the first three magnetic focusing maxima, assuming the lithographic spacing L between
the QPCs. (c) Magnified Ir(—2T< B < 0.1T) from (a) with vertical lines indicating the
peak positions obtained from the linear fit in (b) for p < 7. (d) Black line: Iy with vertical
lines p = 3,4 from (c) added for orientation, next to bulk Shubnikov-de Haas oscillations
(red line), plotted against 1/B.

sured emitter current I (B) as a dashed black line. Other than I»(B), I;(B) is asymmetric,
as only for B < 0 electrons are bent towards the detector. Here, we observe a series of
peaks in I;(B), highlighted in a magnified view in Fig. [7.22]c). For small magnetic fields,
we expect classical cyclotron motion (skipping orbits) along the intermediate gate (cf.
Fig. that can give rise to magnetic focusing. As we increase |B|, Landau quantization
as well as Zeeman splitting (cf. equation compete with the energies of the electro-
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7.4 Combined electrostatic and magnetic field measurements

static 1D QPC subbands [spaced by (N)]. Consequently, for high fields, edge channel
transport within the quantum Hall regime [cf. measured R,,(B) red curve, right axis in
Fig. [7.22|(a)] gives rise to additional features.

From the lithographical lateral distance between the QPCs, L = 1 um (cf. Fig. [7.1]), we
derive the focusing conditions for electrons propagating in classical cyclotron motion:

_ 2m*vp

Bl =
B =2

(7.9)

where L = 2pr. and the positive integer p accounting for p — 1 reflections off the interme-
diate gate before reaching the detector, as sketched in the inset of Fig. [7.22(a).

In Fig. (b), we compare the measured peak positions (black squares) to the fields
calculated from the focusing condition in equation (blue circles) for p = 1,2 and 3,
assuming L = 1um. As expected from the periodic focusing condition, the measured
peaks are approximately equidistant within error bars related to their widths, pointing to
classical cyclotron motion with specular reflections from the intermediate gate. However,
we find a higher slope compared to the calculated fields, cf. linear fit fixed at zero (dashed
gray line). We exclude interactions with the mirror gate to cause these deviations, as
the distance between the grounded mirror gate is larger than the cyclotron radius of the
first magnetic focusing peak, cf. inset of Fig. [7.22(a). Instead, we attribute the different
slopes to the electrostatic potentials defining the QPCs: while the central gate is always
kept at a constant voltage V. = —1.5V, QPCy 2 are controlled by varying V,.;. On the
first conductance plateau, we have V, = V; = —2.25V< Vj = —1.5V (cf. Fig. [7.3)).
Consequently, the outer QPC-gates defined by V;.; cause a larger depleted region (red
shaded areas) than the intermediate gate, effectively lowering the lateral distance of the
QPCs Leysy. This effect is particularly strong at Ny = Ny = 1, where §Vyate = |Viy| — |Ve|
is largest. From a linear fit to the experimental data in Fig. (b) (dashed gray line),
we determine L.yy = 0.755 um, slightly larger than the lithographic vertical extent of
the intermediate gate (0.75um). This is in very good agreement with the depletion rate
01/0V = 150nm/V determined in section

Panel (c) shows a magnified view of the first peaks in I3(B) with gray vertical lines
indicating the classical magnetic focusing conditions |B(Lesy)| for p < 7. Additionally, we
plot the Shubnikov-de Haas (SdH) oscillations measured in the bulk with no QPCs defined
(red line). The first two I2(B) peaks are clearly distinguishable due to the intermediate
pronounced minima: here, the ballistic orbits skip the detector and I»(B) is diffusive.
This suggests an interpretation of the first two peaks as orbits with zero (p = 1) or one
(p = 2) reflection on the intermediate gate. However, for p > 2, the assignment of the
peaks to the classical periodicity in B becomes difficult, as contributions of different p
begin to overlap. The resolution of the peaks is limited by the narrow constriction size of
the detector QPC at Ny = 1 (approximately 80 nm, see QPC calibration measurements
in chapter . Second, the round shape of the QPC-gates can lead to deviations of the
estimation of the focusing conditions, which does not take into account the shape of the
QPCs. Third, and most importantly, as | B| is increased, Landau quantization of electrons
becomes stronger and the semiclassical skipping orbits gradually transform into quantum
mechanical edge states [29,111]. For high fields, |B| > 3T, the Landau quantization energy
dominates the 1D subband spacing of the QPCs, ¢(N = 1) = 5.2meV, cf. Fig. At
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7 Electron scattering in a ballistic and coherent cavity with quantum point contacts

these fields, we observe a transition from the spin-degenerate 1D QPC-subbands to spin
split Landau levels [11].

In Fig.|7.22(d), we compare I2(B) to the periodicity of the SDH oscillations by plotting the
data in 1/B, with the vertical lines for p = 3,4 from (c) added for orientation. While the
SdH oscillations show the expected periodicity with increasing Zeeman-splitting (double-
peaks), Io(B) turns out to be neither periodic in B nor 1/B. In literature, these kind of
oscillations have been described as interference between occupied edge channels [111].

In Fig. [7.23] we translate the measured de-

tector current Ip(B) into the probability to 1.0
traverse QPC; and QPCy in series, to1(B),
while keeping Vi, = 0. Note that the cav-
ity (and hence QPCs and QPCy) are not de-
fined here, such that we can omit the last
term in the equation for T (B) (cf. equa-
tion . The magnetic focusing maxima
lead to transmissions of beyond 60 %, mak-
ing magnetic focusing in this geometry much
more efficient than the typical transmissions
for (electrostatic) focusing at B = 0 found
in this and other samples, see chapter In
the edge-channel regime for very high fields, 00 ‘ ‘
B < —3T, the transmission probability in- -6 -4 2 0
creases to more than 80 %. B (T)

Next, we open up the QPC-constrictions and Figure 7.23: Serial transmission proba-
additionally consider Io(B) at N3 = Ny = 2,3 bility through QPC; and QPC; as a func-
and 4 while still keeping the mirror grounded tion of B, for N; = N3 =1 and Vi = 0.
(Vi = 0). In Fig. [7.24fa), we plot the corresponding transmissions as a function of B
within the range of the first two pronounced magnetic focusing maxima shown in Fig. [7.22
For all Ny = N, we find a pronounced first order magnetic focusing peak around B ~
—0.2T. The peak widths increase with Nj o, reflecting the increasing emission angles as the
QPCs are opened up, cf. section Other than for N = Ny = 1 (solid black line), o1 (B)
does not drop to zero behind the second magnetic focusing peak around B ~ —0.45T, as
the beams are becoming too wide and skipping orbits propagating along the intermediate
gate begin to overlap. While we found the highest transmission of the first magnetic
focusing peak around B ~ —0.2T for N3 = Ny = 2 (solid red line), the second focusing
peak around B ~ —0.45 T is strongest for only one conducting channel with systematically
decreasing amplitudes for higher Ny = No. At N1 = Ny = 3,4, the second peak becomes
less pronounced and additional oscillations develop. As these oscillations are weakened at
lower N2 (less conducting subbands), they might be attributed to interference between
different transverse modes.

Surprisingly, we find a feature before the first magnetic focusing peak around B >~ —50 mT
with a trend to more negative B for increasing N o, cf. area shaded in gray in panel (a)
and the magnified view in Fig. [7.24(b). Drawing the corresponding skipping orbit with
re(B = —=50mT)= 1.7 um [see sketch in panel (b)] shows that this feature is compatible
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Figure 7.24: (a) to1(B) for V4, = 0 for Ny = Ny = 1,2,3 and 4 with V = —0.1mV. Data in
the gray frame are plotted separately in (b). Sketch: cyclotron orbit for r.(B = —50mT),
compatible with ballistic focusing via a reflection off the mirror, indicating a piezoelectric
potential modulation within the 2DES caused by the mirror gate even at Vi, = 0.

with magnetic focusing via one specular reflection off the mirror gate. This points to the
presence of a finite piezoelectric potential below the curved mirror gate, causing reflections
even for a grounded mirror gate at Vi, = 0, similar to the piezoelectric potential discussed
in section

7.4.2.2 QPCs coupled via the cavity in a magnetic field

To further investigate the connection between the features around B = —50mT and the
mirror gate, we now additionally apply a negative gate voltage and consider to;(B,V;,) for
Ny = Ny = 2, cf. Fig. a). Again, we find the prominent magnetic focusing feature
at B = —0.2'T which is not affected by V},, as the distance to the mirror is larger than
the corresponding cyclotron orbit, cf. sketch in Fig. (a). For more positive B, we
find increasing transmissions precisely around B = —50mT, confirming the connection
between the feature found at Vi, = 0 and the mirror gate. As we move the mirror closer
to the QPCs by decreasing V;,, the transmission maximum bends towards lower absolute
magnetic fields (larger 7).

To describe the bent features in the to1(B,V;,) map, highlighted by black dashed lines in
panel (a), we use a frequently used semiclassical picture, in which electrons carry phase
information while moving along classical trajectories. In Fig. (d) we show classical
cyclotron orbits corresponding to various coordinates of the t91(B,Vy,) map in panel (a),
highlighted in the same color: at (V;, = —1V,B = 0, cyan trajectory and circle), electrons
are propagating straight and are scattered from the mirror towards the detector [cyan
trajectory in panel (d)]. At (Vi = —1V,B = —50mT, red), electrons are focused into the
detector via a curved trajectory after one reflection off the mirror. By decreasing Vi, we
move the mirror towards the QPCs [dashed arc in panel (d)]. For (V;, = —1.5V,B =0,
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Figure 7.25: (a) t91(B,Vy) for Ny = Ny = 2 and V = —0.1mV. (b) Cuts t21(Vy) for
different B. (c) Cuts t21(B) for different V;,. (d) Sketch of various electron trajectories at
coordinates (Vin,B) of the map in (a), marked with circles in the respective color.

purple), electrons propagate parallel to the trajectories for more positive Vy, (with B = 0).
For trajectories at B < 0, (Vi = —1.5V,B = —25mT, green) shifting the mirror towards
the QPCs requires more positive B to keep the orbit focused into the detector.

Quantum mechanically, the electrons’ phase can be modulated by both, variations in B
and V;,. Consequently, a constant phase condition in the (B, V;,) parameter space gives
rise to bent, arc-like features like the ones found in our experiment [cf. dashed black
lines as guide for the eye in Fig. [7.25(a)], as well as in earlier works with open electron

resonators |112].

In Fig. b), we plot cuts ta1(Vin) along various values of B. The oscillating features
demonstrate the alternating constructive and destructive interference, as we vary the res-
onator size with V;,. Fig.[7.25(b) shows cuts t21(B) for decreasing V. Clearly, the cavity
related focusing peak shifts to more positive B as we decrease Vi, demonstrating the sen-
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sitivity of the cavity modes to both Vi, and B. In contrast, the direct magnetic focusing
maximum around B = —200mT is not affected by Vi, as the corresponding cyclotron ra-
dius is smaller than the distance from the emitter QPC to the mirror gate, gray trajectory
in Fig. [7.25(d).
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8 Parabolic cavity

Making use of ballistic electron optics we next present an approach to couple two distant
nanostructures via a parabolic cavityﬂ We present an SEM image of an exemplary sample

in Fig. 8.1[a).

Figure 8.1: (a) SEM image of a sample. Light areas show gated structures on the sample
surface (dark). Crossed boxes mark Ohmic contacts, negative voltages V;; with i = 1,2 and
j = A,B,C define nanostructures 1,2 with pairs of split gates labeled A,B,C. We measure
the serial current I flowing through structure 1 after applying a source drain voltage V to
the lead of structure 2. All other Ohmic contacts (crossed boxes) are electrically grounded.
Thin lines show two ideal trajectories coupling both structures after specular reflections
off the parabolic mirrors. Two different devices with distances L = 2.8 um and L = 4 pum
with different parabolic mirror gates were studied. (b) Ilustration of the longitudinal
electrical potential component ®(x) for y = 0 through a QPC defined by three pairs of
split gates. (c) ®(z) for y = 0 the case where outer split gates form tunneling barriers
defining a quantum dot (cf. main text).

The two nanostructures labeled 1,2 consist of three thin (~ 90 nm wide) pairs of split-gates
labeled A,B,C respectively. We control the electrical potential in the 2DES below each

!The measurements presented in this chapter were conducted by I. Sampaio, who also took over the optical
lithography process for the sample. The concept and design of the samples based on EBL was developed
and realized by J. Freudenfeld and J. Meister. The single QPC characterization measurements can be
found in I. Sampaio’s masterthesis (Ref. [49]). Section of this thesis contains data from Ref.
but additionally accounts for the finite lead resistance in the measurements.
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split gate by the voltages V;; with ¢ = 1,2 and j = A,B,C. The split gates labeled A form
the mirrors of a cavity located between the two nanostructures. They have a parabolic
shape with their focal point located close to the central orifice of the opposite split-gate
respectively. Ideally, for this design, electrons emitted from one of the two nanostructures
are focused into the second nanostructure after two specular reflections off the parabolic
mirror gates, cf. white trajectories in Fig. [8.1] We aim at demonstrating the focusing
effect by measuring the serial current I flowing through the two nanostructures in series
after applying a source-drain voltage V' to the the lead of the emitter nanostructure for
different mirror voltages. The central region of 2DES is electrically grounded via four
Ohmic contacts. The samples shown in this chapter were fabricated on wafer number
mbe8-309 grown by V. Umansky (see growth protocol in section hosting a 2DES
107 nm below the wafer surface. The 2DES Fermi energy is E2 = 11 meV and the measured
mean free path after processing of the present samples I, ~ 35 um. A detailed overview
of the experimental setup used for the experiments in this chapter is shown in section

221

Depending on the gate voltages V;;, various confinement potential configurations can be
realized. In the following we describe the two limiting cases.

Quantum point contact

Each pair of split-gate features a constriction. By adjusting the respective gate voltage,
it can be tuned to a classical pinhole or to a QPC. For V5 c) > Vip, the electrical
potential below split-gate B in the center of the nanostructure is higher than the electrical
potential below the outer split-gates A and C. In Fig. b) we show an illustration of the
longitudinal electrical potential component ®, at the center of the 1D-channel at y = 0.
In this regime, the gate voltages V;g are used to tune to control the strongest lateral
confinement at the maximum &, and the nanostructure represents a QPC. Additionally,
the gate voltages V(4 c) are used to fine tune the longitudinal channel length of the QPC.
In particular, V;o are used to control the distance between the parabolic mirrors

Quantum dot

In contrast, for Vjs ¢y < Vip the electrical potential below the outer gates can be higher
than below the central split-gate cf. Fig. (c) For a proper choice of gate voltages, the
outer potential wells exceed the chemical potential and thereby form quantum dot with
discrete states [113]. In this regime, the outer gates represent tunneling barriers that are
controlled by the gate voltages Vj(a ¢y while the energies of the localized states are varied
with V;g. The transition between the quantum point contact and the quantum dot regime
is described in detail in Ref. |77].

8.1 Concept

In the spirit of ballistic electron optics, we assume that electrons emitted into the cavity
propagate along perfectly straight trajectories and only scatter from the system bound-
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aries (the gates) via specular reflections. Furthermore, the ideal trajectories sketched in
Fig. a) (white solid lines) require a perfect cavity geometry. To design the cavity,
we treat the QPCs as classical pinholes without a characteristic 1D mode structure. In
Fig. M(a), we place one pinhole at the vertex of one of the two parabolic mirror gates.
The latter follows the parabola equation 2’(3') = ay? (dashed black lines), where a is the
curvature of the parabola. The second mirror obeys the parabola equation of a vertically
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Figure 8.2: (a) Sketch of the cavity geometry. The parabolic mirrors (red solid line) obey
a parabola equation with curvature a (black dashed line) within a lateral region |y/| < b/2
and are straight for |y/| > b/2. (b) Exemplary calculated serial transmission through two
mirror constrictions for a = 0.0833 um™! and b = 4.3 um as a function of the distance
L' between their vertices [cf. panel (a)] with both mirror constrictions set to G = 3Gg
respectively. Inset: illustration of a pinhole serving as a point source of electrons (blue
trajectory) and a parabolic mirror.

flipped copy of the first parabola, spaced by a distance L’ along the a’-axis. We define
a maximum lateral extent b of the parabolic mirrors, such that the minimum distance
between the two structures along the z’-axis does not cause a too high side resistance,
Rsige << 1/Gq, as we intend to study an open resonator. At the same time, we make
sure that the aperture b is large enough to collect electrons emitted at an angle |0 < 35°
with respect to the x’-axis. This angle is chosen such that electrons are captured by the
mirror for up to four conducting channels, cf. Fig. For |y'| > b/2, the mirrors are
straight and run parallel to the y/-axis, cf. red solid line. The vertices of the mirrors are
left out to form the orifices of the nanostructures.

With the parameters a and b set, we next run coherent numerical calculations (cf. section
to find the optimum spacing L’ between the two mirror vertices maximizing the trans-
mission through the system, cf. Fig.|8.2(b). In our calculations, we describe the pinhole
using a realistic parabolic saddle point potential which reproduces the typical emission
angles in our experiments, cf. section [6.3] Even though we are considering specular re-
flections off perfect mirrors and a perfectly flat 2DES without disorder potentials, the
theoretical transmissions found in the calculations are limited to approximately 80 %. We
attribute the upper limit to the actual funnel-like emission of electrons from the QPC, cf.
sketch in Fig. [8.2|(b) and explanations in section other than the simplified ray-optics
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picture suggests, the QPCs do not represent perfect point sources emitting electrons from
the center of the constriction (blue trajectories). Instead, the entire quantum well formed
in the constriction is populated with electrons depending on the lateral QPC potential
relative to the local chemical potential. As the lateral electrostatic potential drops to-
wards the free 2DES, the transverse electron momentum changes and the emission follows
a funnel shape (red trajectories). Extrapolating the straight course of the red trajectories
back through the QPC (black dashed lines), we find that the effective focal point of the
parabolic cavity slightly varies with the emission angle. In other words, our parabolic
mirrors have a slight astigmatism due to the funnel-like emission of the QPCs. Despite
the upper transmission limit, we choose L’ for a given a and b such that our device op-
erates close to the calculated transmission maximum. Note that the calculated L’ for
maximum transmission only deviates by 10 % from the simple geometrical estimation of
the focal point based on point-sources, f = 1/4a. We follow that the idealized trajectories
sketched in Fig. 8.Ifa) are major contributors to the serial transmission through both
mirrors rather than chaotic cavity modes which couple much stronger to the open side
drains of the cavity.

Summarizing the concept introduced above, we conclude that the simple geometrical optics
picture is a starting point for the design of the present structure, even though more complex
mirror shapes would be required to maximize the coupling between the two pinholes.

8.2 Transmission enhancement via the cavity

In Fig. 8.3 we show pinch-off curves for a device with a distance L = 4 pm between split-
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Figure 8.3: Individual pinch-off curves of the split-gates highlighted in the respective
color in the top left inset at a temperature of 270 mK [panel (a)] and 6 K [panel (b)]. The
missing split-gate 2B did not respond to the applied gate voltage for the device shown
here. The SEM image shown in the inset is not true to scale.

gates 1B and 2B and a lateral extent of the mirrors with parabolic shape b = 3.8 um.
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8.2 'Transmission enhancement via the cavity

The mirror curvature is a = 0.0625 um~1. In Fig. [8.3((a), we display the pinch-off curves
of the individual split-gates measured at a temperature of 270 mK. Split-gate 2B was
not functional due to a disconnected bond wire. At this temperature, all working split-
gates feature a discrete 1D subband spectrum, as we observe pronounced conductance
plateaus in all pinch-off curves. In Fig.|8.3(b), we show the pinch-off curves measured at a
temperature of 6 K. Here, the thermal excitations cause energy broadening, such that the
conductance plateaus smear out and the QPCs lose their characteristic 1D modestructure.
In this regime, the constrictions are better described as classical pinholes with a Gaussian
lateral emission pattern.

Comparing the two panels, we also observe a strong shift in gate voltages for the indi-
vidual pinch-off curves. This shift occurred for all gates after frequently sweeping the
corresponding gate voltage in the measurements. We believe that this behavior is related
to a leakage current leading to frozen negative charges trapped between the gates and
the 2DES. Since we have not been facing this problem in the other samples presented in
this work, we suspect the application of a plasma etching procedure in Oy prior to the
evaporation of the gate layer, performed only during the fabrication for this set of samples
to cause this problem.

To couple two distant QPCs for a fully operational device with the present geometry, we
ideally aim at setting the maximum lateral confinement potential of QPC; and QPCs with
the two central split-gates 1B and 2B, while using the split-gates 1A and 2A as mirrors of
the parabolic cavity. By decreasing V14 and V5 beyond the depletion voltage, we increase
the depleted area below the respective gates and thereby lower the effective cavity size.
The additional split-gates 1C and 2C can be used to tune the longitudinal channel length
to control the beam profile.

However, to reduce the number of gates swept and to still characterize the focusing prop-
erties of the parabolic mirrors, we in the following apply a source-drain voltage V' to QPCs
(emitter) defined by split-gate 2A and measure the serial current I flowing through QPCy
(detector) defined by split-gate 1A. We keep all other gates at the ground potential. We
set the detector to a conductance of G(Vipo = —1.66 V) ~ 2Gg, cf. Fig.|8.3(b). We now
step the emitter gate voltage Vo5 and simultaneously measure the lateral carrier emis-
sion spectrum in a magnetic deflection experiment, introduced in section [6.3] We plot
I(Vaa,B), in a 2D colorplot representation in Fig. [8.4|(a) for orientation. In Fig. [8.4{b)
we show cuts I(B) for various values of the emitter split-gate voltage V2. Independently
of Voa, we find a current maximum around B =~ 9mT. Note that the expected magnetic
focusing maximum is located at B = 0 due to the symmetry of the design. However, a
broken y-symmetry due to lithography imperfections or electrostatic (disorder) potentials
in the intermediate region between the 2DES can give rise to the observed shift in B.

To extract the ballistic component Ip,;(B) of the measured current we next look at
I(Vop,B = 40mT), plotted in Fig. [8.4(c). The corresponding cyclotron radius r.(B =
40mT) = 2.1 um is small enough that carriers can no longer be ballistically focused into
the opposite QPC via specular reflections and cyclotron motion for the present gate geom-
etry (assuming a free 2DES without additional elastic scattering between the two QPCs).
We thus define this as the magnetic field independent diffusive contribution Ig;rs to the
total current I(B) = lpqu(B) + Laifs-
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8 Parabolic cavity
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Figure 8.4: (a) Serial current as a function of the emitter QPC voltage and magnetic
field, I(Vaa,B) with the detector QPC fixed at G(Via = —1.66) ~ 2Gg. Other gates
are grounded. (b) Cuts along I(B) for various Via. (c) Cut along I(Vaa,B = 40mT),
identified as the diffusive current contribution Ig;r¢, cf. main text. (d) Ipqu(Vaa,B) after
subtraction of the diffusive current contribution of the total current.

In Fig. [8.4(d), we finally plot the ballistic current after subtraction of the diffusive com-
ponent, Iball(B) = I(B) — Idiff-

To quantify the ballistic transmission T = Iy, /Iy we need to know the total current Iy
flowing through the emitter into the cavity. To determine I, we consider the equivalent
circuit diagram of the present setup sketched in Fig. [8.5(a). The emitter (detector) QPC
is represented by an Ohmic resistor Rop = 1/G(Vaa) [Ria = 1/G(Via)]. Their serial
lead resistances consisting of a 2.2k} RC low-pass filter resistance at room temperature,
50 wire resistance and 1202 due to Ohmic contact and 2DES resistance sum up to
Rieaq =~ 2370€). The central region between both QPCs is grounded via four leads, such
that we define the side resistance Rgge = Riead/4. The total sample resistance Ry is
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8.2 'Transmission enhancement via the cavity

thus
Riot = Rieat + R +(1 T— ) (8.1)
ot = THead 24 Rside RlA + Rlead ‘ .
Using Ohm’s law, we calculate the total cur-
rent IO ﬂOWing into the Ca‘Vity IO = V/Rt0t7 (a) |H||HRIeadH R2A| R1A Rlead ||H|
where V = 0.1mV is the source-drain volt- V4 \// Rad ~—~7 Vo
0 /

age applied in the experiments. We plot Ij
as a function of the emitter voltage V54 in
Fig. [8.5(b) (black dashed line, right axis).
Finally, we extract the ballistic transmission
from Iy (Voa,B = 9mT), cf. Fig.[8.4(d), via
T(VQA,B = 9mT) = Iball(VgA,B = QmT)/I(),
plotted in Fig. [8.5(b). For the emitter volt-
age Vop = —1.1V, the ballistic serial trans-
mission through both QPCs is only around
2%. As we decrease the emitter constriction
size with decreasing V5, we decrease both the 0.00 yA ‘ ‘ ‘
lateral width of the electron beam and (ii) the 20 e _1\/'6 V) e 2
size of the cavity. We observe a smooth in- *

crease of the transmission as we decrease Vo5. Figure 8.5: (a) Equivalent circuit dia-
Towards the pinch-off of the emitter constric- gram of the sample. (b) Black dashed line,
tion, the transmission finally saturates around right axis: calculated Iy as a function of
7.5%. We did not consider the transmission the emitter QPC gate voltage Voa. Red
very close to the pinch-off of the emitter as solid line, left axis: ballistic transmission
the division by small numbers gives rise to ar- 1" = Ipq/lo at B =9mT, cf. main text.
tificially high transmissions.
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9 Summary and outlook

Within the present thesis, we explored the ballistic transport of electrons between distant
QPCs. Below, we summarize the most important results and give an outlook for the
project.

In chapter 4] we first showed that the actual potential landscape of a gate-defined QPC
resembles a bathtub-like confinement potential for multiple occupied subbands (N > 4),
which undergoes a transition to a parabolic saddle-point potential close to pinch-off of
the QPC. The transition is caused by Coulomb screening inside the constriction. In the
following, we investigated three different sample geometries containing multiple distant

QPCs:

In chapter [6] we considered two nominally identical QPCs spaced by 4.6 um in a three
terminal configuration. In a magnetic deflection experiment, we were able to find generic
features of the two QPCs’ eigenmodes encoded in the serial transmission through both
QPCs. By comparing our experiments to coherent model calculations, we demonstrated
how the laterally coherent mode structure of the serial transmission changes, if we vary the
number of occupied subbands in the two QPCs. Deviations from the expected transmission
profiles for a perfect sample could be mainly attributed to lithographic imperfections and a
piezoelectric potential dip created by an intermediate lens-shaped gate between the QPCs,
rather than strong (large-angle scattering) disorder potentials. Moreover, by combining
magnetic deflection and electrostatic refraction using the lens gate, we found evidence
for electrostatic focusing of ballistic electrons. Comparing our experiments to our model
calculations, we were also able to calibrate the spatial electrostatic lens potential as a
function of the voltage applied to the lens gate, as well as to reconstruct the electron
beam pattern between the two QPCs.

In chapter [7| we investigated a ballistic and coherent electronic cavity. The cavity was
realized by two narrow QPCs and an elliptical mirror gate, which formed two wider QPCs
acting as side drains of the cavity. The cavity was ’open’ by means of a continuous density
of states and no resolvable Coulomb blockade oscillations. In this regime, the coherent
oscillations of the conductance found in the experiments are described by Fabry-Pérot-
like cavity modes. We characterized the latter using bias spectroscopy and found good
agreement with the prediction for the dephasing of the electron ensemble as well as the
decoherence of single electrons due to inelastic electron-electron scattering. Moreover,
we found indications for a transition from chaotic to integrable cavity dynamics, as we
decreased the size of the cavity in magnetotransport experiments.

In chapter[§] we considered an open ballistic cavity formed by parabolic mirrors with QPCs
located close to their focal points. In this experiment, we operated at an elevated electronic
temperature of around 6 K, where the QPCs are better described as classical pinholes
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9 Summary and outlook

without coherent mode structure. We successfully demonstrated how the transmission
through the two pinholes can be enhanced by decreasing the size of the cavity.

However, in all three devices, the serial transmission stayed limited below 15 %, which we
mainly attributed to small-angle scattering from the disorder potential caused by remote
impurities as well as the funnel-like emission process of ballistic electrons from a QPC.
This mechanism leads to slightly different emission angles for different occupied subbands,
making it impossible to design an electron-optics-based coupling gate (like a lens or mir-
ror) which focuses the entire beam pattern. To further optimize the serial transmission
efficiency and to avoid the problem described above, future sample geometries could be tai-
lored for a specific mode, for example the fundamental mode (N = 1) using the predictions
of coherent model calculations.

Once the ballistic and coherent coupling between two distant QPCs is maximized, the next
step consists in replacing the split-gate based QPCs shown in chapters 6 and 7 by quantum
dots, for instance based on the gate layout presented in chapter 8. With additional QPCs
acting as charge detectors in close vicinity to the two dots, two distant charge or spin qubits
with a readout could be formed, which interact by the exchange of ballistic and coherent
electrons via the intermediate region of grounded 2DES. Nevertheless, the feasibility of
this approach requires further investigation, as the coherent coupling is a complicated
function of gate layout, disorder potential and not least electronic excitations.
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A Appendix

A.1 Heterostructure: Umansky wafer no. mbe8-309

In Fig. we show the growth protocol of the wafer material used for the experiments
shown in this thesis. The wafer material was provided by V. Umansky from the Weizmann
Institute of Science.

Process Name: mbe8-309.mbe

Description:: as 8-304 but with delta 300 sp

Substrate Type : Semi-Insulating

Run Time : 01:51:16.8

Creation Date: 13-08-2007 08:27:50 Date of Last Change 13-08-2007 11:11:22

# Material X% Y% N(Si) (A/min)  |Thick Time Temp |SL To
001 Gad4AS4 160.0 0750.0 00:04:41.2 | 570

002 Gad4AS4:Si 3.0e+17 |160.0 0100.0 00:00:37.5 | 600

003 Gad4AS4 160.0 0120.0 00:00:45.0 | 600

004 IAS4 (Gad) 160.0 0080.0 00:00:30.0 |600

005 AlGadAS4 26.0 216.2 0270.0 00:01:14.9 | 650

006 Gad4AS4 160.0 0060.0 00:00:22.5 | 600

007 IAS4 (Ga4d) 160.0 0070.0 00:00:26.2 | 640 033  |005
008 IAS3 (Ga3) 100.0 0060.0 00:00:36.0 | 600

009 /AlGa3AS3 26.0 135.1 0270.0 00:01:59.8 | 600

010 Ga3AS3 100.0 0060.0 00:00:36.0 | 600

011 IAS3 (Ga3) 100.0 0040.0 00:00:24.0 | 600 005 (009
012 IAS3 (Ga3) 100.0 0010.0 00:00:06.0 |600

013 Ga3AS3 100.0 0600.0 00:06:00.0 |630

014 IAS3 (Ga3) 100.0 0060.0 00:00:36.0 | 600

015 IAlGa3AS3 25.0 133.3 0300.0 00:02:15.0 |630

016 Ga3AS3 100.0 0005.6 00:00:03.3 | 630

017 AS2 (Ga2) 60.0 0080.0 00:01:20.0 |600

018 AS2:Si (Ga2) 1.0e+18 [60.0 0088.0 00:01:28.0 | 600

019 AlGa3AS3 25.0 133.3 0020.0 00:00:09.0 |600

020 Ga2AS2 60.0 0002.8 00:00:02.7 |600

021 AS2 (Ga2) 60.0 0030.0 00:00:30.0 |600

022 AlGa2AS2 25.0 80.0 0030.0 00:00:22.5 | 580

023 rAlGa2AS2 34.0 90.9 0170.0 00:01:59.8 | 600

024 IAIGa2AS2 34.0 90.9 0020.0 00:00:13.2 | 600

025 IAlGa2AS2:Si 34.0 1.7e+18 [90.9 0150.0 00:01:39.0 |600

026 AlGa2AS2 34.0 90.9 0250.0 00:02:45.0 |600

027 Ga2AS2 60.0 0100.0 00:01:39.9 | 580

Figure A.1: Growth protocol of the heterostructure used for the experiments presented
in this thesis. The carrier density of the wafer material is ny, = 3.1 x 10''ecm™2 at a
mobility of p = 6.1 x 10% cm?/Vs (measured on the bare wafer material without further
processing).
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A Appendix

A.2 Sample fabrication parameters

Optical lithography

Mesa

Spin-coating positive resist AZ MiR 701: 3s at 800 rpm, 30s at 6000 rpm
Prebake: 60s at 90°C

Exposure time: 17s in hard contact mode

Postbake: 60s at 110°C

Development: 30s in AZ 726, stopping in HyO

Etching: 100 nm deep in a piranha solution HoO:H2SO4:H202 (100:1:8)

Stopping of the etching process in HoO

Ohmic contacts
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Spin-coating negative resist AR-N 7520-18: 45s at 4000 rpm

Prebake: 60s at 90°C

Exposure time: 0.6s in hard contact mode

Postbake: 90s at 90°C

Development: 35s in AR 300-47:H2O (1:5), stopping in HoO

Plasma etching in Electronic Diener Femto, 20s in 0.5 mbar Og

Evaporation of 60nm AuGe, 10nm Ni, 60 nm AuGe

Lift-off in acetone followed by an isopropanol bath

Annealing procedure in AO 500-2103035 oven (Dr. Eberl MBE-Komponenten)
— flush-mode on (in 300 mbar Na)

ramp to 100°C in 58
— hold temperature for 180s
flush-mode off

— ramp to 360°C in 58

hold temperature for 120s

ramp to 480°C in 58

— hold temperature for 50s

ramp to 100°C in 58



A.2 Sample fabrication parameters

— flush-mode on

— hold temperature for 2s

— end

Gates

e Spin-coating negative resist AR-N 7520-18: 45s at 4000 rpm

e Prebake: 60s at 90°C

e Exposure time: 0.6s in hard contact mode

e Postbake: 90s at 90°C

e Development: 35s in AR 300-47:H20O (1:5), stopping in HoO

e Evaporation of 10nm Ti, 90nm Au

e Lift-off in acetone followed by an isopropanol bath

Electron beam lithography with Raith 150 two

e Nanostructure

Spin-coating of adhesion promoter AR300-80, 45s at 4000 rpm, 2 min hot plate
at 150°C, acetone bath followed by isopropanol bath

Spin-coating EBL resist ARP 669.029 (PMMA 600k): 1s at 800rpm, 30s at
5000 rpm

Prebake: 180s at 150°C

Electron beam acceleration voltage: 5kV

Electron beam aperture: 7 um

Electron beam exposure dose: 50 uC/cm?

Development: 45s in MIBK:isopropanol (1:3), stopping in isopropanol
Evaporation of 5nm Ti, 35 nm Au

Lift-off in acetone followed by an isopropanol bath

e Insulating PMMA layer

Spin-coating of adhesion promoter AR300-80, 45s at 4000 rpm, 120smin hot
plate at 150°C, acetone bath followed by isopropanol bath

Spin-coating EBL resist PMMA 950k A4: 1s at 800 rpm, 30s at 5000 rpm
Prebake: 180s at 150°C

Electron beam acceleration voltage: 5kV

125



A Appendix

— Electron beam aperture: 60 pm

— Dose to cross-link PMMA for the insulating later: 2400 pC/cm?

— Removing unexposed PMMA in acetone followed by an isopropanol bath
e Top gate

— Spin-coating of adhesion promoter AR300-80, 45s at 4000 rpm, 120smin hot
plate at 150°C, acetone bath followed by isopropanol bath

— Spin-coating EBL resist ARP 679.04 (PMMA 950k): 1s at 800rpm, 60s at
6000 rpm

— Prebake: 180s at 150°C

— Electron beam acceleration voltage: 5kV

— Electron beam aperture: 20 um

— Dose 2400 uC/cm?

— Development: 45s in MIBK:isopropanol (1:3), stopping in isopropanol
— Evaporation of 5nm Ti, 55nm Au

— Lift-off in acetone followed by an isopropanol bath

A.3 Textbook calculation of the transfer- and scattering
matrix

Knowing the electron energy and the electrostatic potential in every region, we can write
the wave numbers in leads 1 and 2 at zero potential, cf. Fig.

Vo2m*E

k‘:
h

and in the region of finite potential

k:,: \/2m* (E—(I)())

h

For ®y < E both k and %’ are real, while for ®; > E the wave number in the scattering
region k' becomes imaginary and the wavefunction amplitude in the barrier is decaying
exponentially with z.

We write the wavefunctions in the different regions of constant potential:

a1 4 hre T < g
N -1,/
P(x) = ce® fde T, —gp <a < x

ase T 4 hoeth T, x> .
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A.4 Parabolic saddle-point potential model

Using continuity at ¢(x = —xg) we obtain
alefikxo + bleikxo _ cefik/mo + deik’mg.
Similarly, continuity at ¢'(x = z() implies

W) X e R g
cike™ ™0 — ik e~ T0 — _goike 70 4 poiketkT0.

A.4 Parabolic saddle-point potential model

The observation of quantized conductance in quantum point contacts directly raised the
question about the electrostatic potential resulting in a series of flat plateaus with smooth
transitions as a function of the gate voltage. For electrostatically defined QPCs, the course
of the field lines gives rise to a smooth potential landscape forming the QPC. Consequently,
the parabolic saddle-point potential is frequently used to describe the spatial electrostatic
QPC potential in the 2DES. The corresponding analytic form around the constriction
center is:

1 1
O(z,y) = Do + Py(x) + Py (y) = Po — im*ngz + §m*w§y2
where ®( is the potential energy at the saddle point with x = y = 0, w, and w, are the
curvatures of the parabolic potential barrier ®, in current direction and the confinement
potential ®, in transverse direction, respectively. Fig. illustrates ®(x,y) in a 3D-

(a) D4 (b ®,, (c)
vt ( )\ / u u
n= 4\ / '

\

n=3 / ha’y
-t \/
n=1
D, (V) Dy (Vy
"y

N

Figure A.2: (a) Illustration of parabolic saddle-point potential within the QPC-
constriction around the saddle point ®(x = y = 0). (b) Cut along the lateral parabolic
confinement potential ®(z = 0,y), corresponding to the red parabola in (a). Equidistant
energy levels indexed n spaced by hw, are formed with respect to ®o(V) and the chemical
potential p. The corresponding eigenfunctions are the Hermite functions (gray lines). (c)
Cut along the longitudinal parabolic barrier ®(y = 0,z) with the vertex ®(, corresponding
to the blue parabola shown in (a).

representation, additionally including smooth transitions to the free 2DES with ®(x,y) =
0. The transverse parabolic confinement potential ®, around the saddle-point [cf. panel
(b)] results in equidistant energy-levels E,, = hwy(n — 1/2) + ®; with the corresponding
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eigenfunctions given by the well-known Hermite functions (gray lines). The longitudinal
potential @, [cf. panel (c)] represents a parabolic barrier.

In the most simple model, the potential at the saddle point depends on the gate volt-
age, ®o(V;), while the curvatures w, and w, are constants. A variation in gate voltage
then causes the whole saddle to vertically shift with respect to the chemical potential at
the Fermi edge, while its shape remains unchanged. Under these assumptions, Biittiker
calculated the quantized conductance through the parabolic saddle-point potential [84]:

N
1
n=1

with
2 (e — oy (n — 1/2) ~ Bo(Vy))

hws
where pp is the fixed chemical potential at the Fermi edge. The coupling constant
dPy/(e6Vy) describing the capacitance between the QPC gates and 2DES can be de-
termined by finite bias spectroscopy measurements, cf. section Here, we assume an

en(Ve) =

(A.2)

2
— X a)X —
S s
1
N
Q)
Xy —
0 I I
-2.2 -2.1 -2.0
v, (V)

Figure A.3: Applying the parabolic saddle-point potential for a constant capacitance
between 2DES and gate, the separation between conductance plateaus is proportional to
hw, while the width of transitions scales with w,.

arbitrary energy scale of the offset potential that depends linearly on the gate voltage
(®g o Vi), corresponding to a constant capacitance between the QPC gate and the 2DES.
In this case, the functional form of equation[A.1]gives rise to equidistant conductance steps
in gate voltage. The spacing between steps is then proportional to the energy spacing of
subsequent subbands (Awy), as indicated in Fig. The parabolic barrier in current
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A.4 Parabolic saddle-point potential model

direction sets the stepwidth of transitions between plateaus proportional to hw,. Well
pronounced conductance plateaus thus occur for w, > w,. Note that smooth transitions
between subsequent conductance plateaus are a fingerprint for a smooth parabolic con-
finement potential with adiabatic (reflectionless) coupling to the free 2DES: non-adiabatic
couplings between a QPC and its leads would result in enhanced back-scattering and de-
viations from the theoretical plateau values NGq. An elongated barrier would give rise
to (Fabry-Pérot type) resonances at energies above the barrier and lead to conductance
oscillations with Gy < NG(q along the plateaus [77]. Reflectionless coupling of a QPC to
its leads can be achieved with a parabolic (or sharper) barrier in the direction of current
flow as long as the potential gradients are also small within the lengths scale of the Fermi
wavelength. For adiabatic coupling the lateral profile of the current emitted from a QPC
resembles the eigenmodes of the transverse potential. In the case of parabolic lateral con-
finement these are the eigenstates of the 1D-harmonic oscillator, i.e. Hermite functions [cf.

Fig. [A.2[(b)].

A.4.1 Finite anharmonicity

Small corrections to the parabolic saddle-point potential scenario with constant capaci-
tance occur by accounting for finite anharmonicity of the lateral potential component. In
Fig. a), we plot individually measured pinch-off curves for two QPCs (black dots).

(@) 7 (b)
6
5
o4 3
<) s
o3 o
2
1
0

Figure A.4: (a)Pinch-off curves of both QPCs for N < 7 (black data points). Solid lines:
model curves according to equation with fit parameters from table (red: QPCy,
blue: QPCz). Dashed gray lines: model curves assuming parabolic potentials with A = 0.
wy is proportional to the stepwidth and w, to the width of the curved transition regions
between plateaus. (b) Potential wells ®,(x = 0,y) resulting from fitting the harmonic
(A = 0) conductance formula to QPC; (red dashed line) and QPCy (blue dashed line).
Solid lines show the corresponding wells accounting for finite anharmonicity with (A < 0)
for QPCy and (A > 0) for QPCs.

Taking a close look to the data we find that the spacings between plateaus are not per-
fectly equidistant: while QPC; shows a trend to decreasing spacings for higher conductance
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plateaus, QPCy features slightly increasing spacings. Attributing these deviations to a fi-
nite anharmonic (non-parabolic) component, we expand the symmetric lateral confinement
potential in lowest relevant order

1 2
P, = §m*w§y2 <1 + A <yyo> ) ,

where |\| < 1 determines the degree of anharmonicity and yo = 100 nm sets the length
scale. The solution of the Schrédinger equation for this anharmonic oscillator can be
reduced to the solution of the depressed qubic equation [114]

( > - =A (A 3)
V E V 6 l</ ) .
wheIe En iS the nlh eigen energy Wlth n = 1,2,3, Loooal (1 VUp — (2TL — 1)71. The parame(el

Kn, can be approximated with [114]

oo L1924+ 33.2383(n — 1) + 56.2169(n — 1)?
e 1+43.6106(n — 1)

2
with high accuracy. For Ak, < ——= the three roots of Eq. (A.3) are
Tuw
5n(/\7wy) = v
3,

33
1 3v/3 2ms
73 cos [3 arccos <2z\/<;n) — 3] , (A.4)

where the parameter s takes the values 0, 1 or 2. Analysis of the harmonic limit with
A = 0 establishes that s = 0 provides the correct solution of the eigenvalue problem. For

2
Aky > ——= the only real valued root is

3v3
en(Awy) = \/h/;y cosh léarcosh (3\/?”%)] . (A.5)
Un

Note that k, grows quickly with n. As a consequence, for n = 1 Eq. (A.4) is valid for
|IA] < 0.32 and Eq. (A.5) for |A| 2 0.32, while for n = 7 Eq. (A.5) applies already for
I\ > 0.045.

Using Biittikers formula for the quantized transmission through a parabolic saddle point
potential [84], while replacing the eigenenergies of the harmonic oscillator with our results
for the slightly anharmonic oscillator, we find

N
1
GOV =Gq 14 e—menNVh) o
n=1

with
2 (:U/F - (I)O(V;) - Sn()\va))
hw, ’

6»,1()\,‘/;) =

130



1
2
3
4
5
6
7
8
9
10
11
12
13
14

A.4 Parabolic saddle-point potential model

Wy /Wy A
QPC, | 2.02 | -0.017
QPCsy | 1.65 0.046

Table A.1: Parameters describing the QPC potentials obtained by fitting equation
to the measured data in figure [A.4p.

en(Awy) is given by Eq. with s = 0 or Eq. , depending on A as discussed above.
The solid lines in Fig. M(a) are model curves representing Eq. with the curvatures
wz and w, as well as the anharmonicity parameter A as fit-parameters. In table
we list the ratios wy/w, as well as A for both QPCs. Energies fuw, , can be determined
with a known energy reference by performing finite bias measurements. Our main result
is |[A\| < 1 corresponding to almost parabolic saddle point potentials. As indicated in
Fig. (a), w; determines the width of the conductance steps, while the plateau width
is proportional to w, and would be independent of N for a parabolic confinement. Non
harmonic confinement with A # 0 causes deviations from this behavior. The anharmonicity
of our lateral confinement potentials can be directly seen in Fig. |A.4(b) which displays
®,(y) for the harmonic case (A = 0) for QPC; and QPCy (red/blue dashed line) as well
as the corresponding wells with finite anharmonicity (red/blue solid lines).

Summarizing the above, the parabolic saddle point potential with constant curvature
describes the pinch-off curves of hypothetical QPCs without screening qualitatively well.
The agreement can even be improved by accounting for a weak anharmonic component
of the lateral confinement potential. Nevertheless, this model is in contradiction to the
measured subband spacings of the same QPC: in chapter ] we demonstrate that Coulomb
screening causes a transition of the QPC potential from a parabolic potential of variable
curvature close to pinch-off towards a hard-wall potential as the QPC is opened up by
increasing the gate voltage.

A.4.2 Code to fit (an)harmonic QPCs

The following shows a Python script which can be used to fit (an)harmonic QPCs from
measured conductance pinch-off curves within the model discussed in the previous sec-
tion.

import scipy

import numpy

import matplotlib

import numpy as np

import os

import matplotlib.cm as cm

import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
get_ipython (). magic(u’matplotlib inline’)
from scipy import interpolate

#from scipy.optimize import *

#from __future__ import division
from scipy.optimize import curve_fit

#!/usr/bin/env python
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15 #examples/doc_-modell . py>

16 from numpy import sqrt, pi, exp, linspace, loadtxt

17 from Imfit import Model

18 import matplotlib.pyplot as plt

19 import csv

20 from numpy import exp,arange

21 from pylab import meshgrid ,cm,imshow, contour , clabel ,colorbar ,axis,title ,show
22 import pylab

23

24 #Constants

25 hbar=1.0545718e—34

26

27 # FEquation :

28 #axr" 83 + bxr"2 + cx + d = 0

20 #x°8/(2n+1) — z/(2n+1) — la(4/3+8n/9) = 0 (az 3+cz+d=0)

30 #with a=(1/(2n+1))*+8, b=0, c=—1/(2n+1)

31 #and d=lax((1.1924+33.2383+n+56.2169+(nx+2))/(1+43.6106+n))
32 #D(n,la ): Diskriminante

ii def a(n):

35 return (1/(2xn+1))*%3

ii def c(n):

38 return (—1/(2%xn+1))

ii def d(n,la):

a1 return —la*((1.1924+33.2383%n+56.2169%(n*%2))/(1+43.6106%n))
43 def p(n):

44 return c(n)/a(n)

46 def q(n,la):

a7 return d(n,la)/a(n)

40 def D(n,la):

50 return —4sxa(n)*(c(n))**3—-27*((a(n))**2)*((d(n,la))*=*2)

52 def kO(n,la):

53 return 2xnp.sqrt(—p(n)/3)*np.cos((1/3)*np.arccos (((3*q(n,la))\
54 /(2+p(n))) ¥np. sqrt (~3/p(n))) —2+np. pi 0/3)
56 def kl(n,la):

57 return 2xnp.sqrt(—p(n)/3)*np.cos((1/3)*np.arccos (((3*xq(n,la))\
58 /(2%¥p(n)))*np.sqrt(—3/p(n))) —2%np.pix1/3)
Zz def k2(n,la):

61 2xnp.sqrt(—p(n)/3)*np.cos((1/3)*np.arccos (((3*xq(n,la))\

@ /(2+p(n)))#np. sart (~3/p(n))) —2¢np. pi+2/3)
64 def r(n,la):

65 —2%(np.abs(q(n,la))/q(n,la))*np.sqrt(—p(n)/3)*np.cosh ((1/3)\
66 xnp.arccosh(—np.sqrt(—3/( p(n)))*3*np.abs(q(n,la))/(2xp(n))))
67

68 def e(n,la):

69 if (D(n,la)>0):

70 return 2xnp.sqrt(—p(n)/3)*np.cos((1/3)\

71 xnp.arccos (((3xq(n,la))/(2+«p(n)))*np.sqrt(—3/p(n)))—2*np.pi*0/3)
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A.5 Classical trajectories in a (half) elliptical cavity

else:

return —2x%(np.abs(q(n,la))/q(n,la))\
*np.sqrt(—p(n)/3)*np.cosh((1/3)*np.arccosh(—np.sqrt(—=3/( p(n)))\
#*3xnp.abs(q(n,la))/(2+*p(n))))

# Load data—set

data = loadtxt(’C:/Users/freudenfeld /Desktop/Programme/python/data/qpcly.dat’)
#xr = data[:, 0]

x = np.linspace (0, 21, num=161)

y = data[:, 1]

from Imfit import minimize, Minimizer, Parameters, Parameter, report_fit

def fcn2min(params, x, y):
T=np.linspace (0, 0, num=161)
r = params|[’'r’| # ratio of omega-y/omega_x
la = params|[’la’] # anharmonicity lambda
for n in range(0,7):
T = T+1/(14np.exp(—2#np. pi*(x—0.5%xr*(e(n,la)))))
return (T—y)

params = Parameters ()

params.add(’'r’, value=3, min=2, max=5)
params.add(’la’, value=0.01, min=0, max=0.05)

minner = Minimizer (fcn2min, params, fcn_args=(x, y))
kws = {’options’: {’maxiter’:1000}}

result = minner. minimize ()

result . params

final = y + result.residual
report_fit (result)
plt.plot(x, y, ’07)
plt.plot(x, final, ’r’)
params2=result . params

v = params2.valuesdict ()

A.5 Classical trajectories in a (half) elliptical cavity

In Fig. we show calculated classical trajectories of electrons in a cavity adapted to
the gate layout of the sample discussed in chapter [7}

To compute the current for classical electrons we sample the lateral distribution function
of free electrons at the center of the emitter QPC (in current direction). We calculate
the trajectory of each sampling point as a function of the perpendicular magnetic field B
numerically by assuming a constant velocity (vp) as well as specular reflections from the
gated structures (solid black lines). []

IThe classical calculation was realized and provided by Max Geier from the Dahlem Center for Complex
Quantum Systems at the FU Berlin.
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Figure A.5: Calculated classical trajectories for a ballistic resonator adapted to the actual
sample geometry. Upper panels: trajectories contributing to ¢1;(B) at B = —40mT (a),
B =0 (b) and B = +40mT (c). Lower panels: trajectories contributing to t2;(B) at
B =—40mT (d), B=0 (e¢) and B = +40mT (f).

The upper (lower) panels show trajectories that contribute to the reflection into QPCjy,
t11 (the transmission into QPCy, t21). Panels (a,d); (b,e) and (c,f) correspond to constant
magnetic fields B = —40mT; B = 0 and B = +40mT, respectively. For clarity, we change
the color of the branches after each reflection off a gate.

Note that these trajectories show exemplary trajectories for the above gate layout. We
neglect the curvature of the QPC tips, which can give rise to a different, chaotic scattering
behavior of the incident branches. However, as we argue in chapter [7} we intend to treat
the actual two-dimensional trajectories in the cavity as 1D trajectories with a total length
I, by 'unfolding’ them after every reflection from a gate. We determine [ for B = 0 by
source-drain spectroscopy measurements as shown in section
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