
Explainable Deep Learning Models For
Biological Sequence Classification

Dissertation zur Erlangung des Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

am Fachbereich Mathematik und Informatik
der Freien Universität Berlin

vorgelegt von
Stefan Budach

Dezember 2019

Erstgutachterin: Prof. Dr. Annalisa Marsico
Zweitgutachter: Prof. Dr. Christoph Lippert
Tag der Disputation: 11. Dezember 2020

Abstract

Biological sequences - DNA, RNA and proteins - orchestrate the behavior of all living
cells and trying to understand the mechanisms that govern and regulate the interac-
tions among these molecules has motivated biological research for many years. The
introduction of experimental protocols that analyze such interactions on a genome- or
transcriptome-wide scale has also established the usage of machine learning in our
field to make sense of the vast amounts of generated data. Recently, deep learning, a
branch of machine learning based on artificial neural networks, and especially convolu-
tional neural networks (CNNs) were shown to deliver promising results for predictive
tasks and automated feature extraction. However, the resulting models are often very
complex and thus make model application and interpretation hard, but the possibility
to interpret which features a model has learned from the data is crucial to understand
and to explain new biological mechanisms.

This work therefore presents pysster, our open source software library that enables
researchers to more easily train, apply and interpret CNNs on biological sequence
data. We evaluate and implement different feature interpretation and visualization
strategies and show that the flexibility of CNNs allows for the integration of additional
data beyond pure sequences to improve the biological feature interpretability. We
demonstrate this by building, among others, predictive models for transcription factor
and RNA-binding protein binding sites and by supplementing these models with struc-
tural information in the form of DNA shape and RNA secondary structure. Features
learned by models are then visualized as sequence and structure motifs together with
information about motif locations and motif co-occurrence. By further analyzing an
artificial data set containing implanted motifs we also illustrate how the hierarchical
feature extraction process in a multi-layer deep neural network operates.

Finally, we present a larger biological application by predicting RNA-binding of
proteins for transcripts for which experimental protein-RNA interaction data is not
yet available. Here, the comprehensive interpretation options of CNNs made us aware
of potential technical bias in the experimental eCLIP data (enhanced crosslinking
and immunoprecipitation) that were used as a basis for the models. This allowed
for subsequent tuning of the models and data to get more meaningful predictions in
practice.

iii

Acknowledgments

First and foremost, I would like to thank my supervisor Annalisa Marsico for giving
me the opportunity to be part of the RNA Bioinformatics lab. Thank you for many
interesting scientific discussions and advice and for granting me the freedom to pursue
my own research ideas. I would also like to thank my office mates and lab colleagues
Roman Schulte-Sasse, Lisa Barros de Andrade e Sousa, Sabrina Krakau, Evgenia Ntini
and Brian Caffrey for making the PhD time an enjoyable one. My thanks further goes
to Martin Vingron and the Computational Molecular Biology lab for many shared
experiences over the years.

I wish to thank the IMPRS graduate program for funding and its scientific coordinators
Kirsten Kelleher and Fabian Feutlinske for regular assistance and events. I am very
grateful to the IT group of the MPIMG for providing excellent computing resources
and for quick help when I crashed the GPU server yet again. Last but not least, I want
to thank my family for their unending support and especially Jessica for continuous
encouragement and for bearing with me during the final stages of the PhD.

iv

Contents

1 introduction 1

1.1 Explainable Machine Learning . 1

1.2 Thesis Outline . 4

2 biological preliminaries 5

2.1 Biological Sequences . 5

2.2 Transcription Factors . 6

2.2.1 Protein-DNA Binding Affinity . 6

2.2.2 Experimental Detection of Protein-DNA Interactions 8

2.3 RNA-binding Proteins . 8

2.3.1 Protein-RNA Binding Affinity . 9

2.3.2 Experimental Detection of Protein-RNA Interactions 10

2.4 RNA A-to-I Editing . 10

3 computational preliminaries 13

3.1 Sequence Motifs . 13

3.1.1 Motif Finding And Sequence Classification 14

3.2 Artificial Neural Networks . 15

3.2.1 Multilayer Perceptrons . 16

3.2.2 Gradient Descent & Backpropagation 18

3.3 Convolutional Neural Networks . 19

3.3.1 Convolutional Layers & Pooling 21

3.3.2 A Complete Convolutional Network 23

3.3.3 Network Regularization . 24

3.3.4 Feature Visualization Methods . 26

3.3.5 Attribution Methods . 27

3.3.6 CNNs For Biological Sequence Analysis 28

3.4 Performance Measurements . 30

4 learning sequence and structure motifs with cnns 33

4.1 Pysster . 33

4.1.1 Network Architecture & Feature Overview 33

4.1.2 Implementation Details . 35

4.2 Sequence & Other Training Data . 35

4.3 Network Interpretation . 36

4.3.1 Discrimination Of Transcription Factor Binding Sites 36

4.3.2 Direct Visualization Of First-Layer Kernel Matrices 40

v

vi contents

4.3.3 Discriminating RNA A-to-I Editing Events
& Adding RNA Structure Information 42

4.3.4 Adding DNA Shape Information 46

4.3.5 Discretization Encoding Of DNA Shape 46

4.3.6 Direct Encoding Of DNA Shape 48

4.3.7 Visualizing All Network Layers By Optimization 52

4.4 Network Performance . 58

4.4.1 DNA Shape Performance . 58

4.4.2 RNA Secondary Structure Performance 61

4.5 Discussion . 65

5 predicting rna-binding protein binding across cell lines 69

5.1 Motivation . 69

5.2 Data Sources & General Data Preparation 70

5.3 Predicting RBP Binding Sites . 70

5.3.1 Binary Classification Models . 71

5.3.2 RBP Sequence Motif Visualizations 72

5.3.3 Using Visualizations To Detect Biases 73

5.3.4 Multiclass Classification Models 75

5.3.5 Measuring Performance In Practice 76

5.3.6 Further Improving Predictions in Practice 78

5.4 Discussion . 81

6 summary & conclusion 83

7 contributions to other projects 85

7.1 Modeling Chromatin-Associated lincRNAs 85

7.2 Interpretable Prediction Of Cancer Driver Genes Using
Graph Convolutional Networks . 86

7.3 Modeling microRNA Expression Quantitative Trait Loci 87

a appendix 89

a.1 Pysster: Hyperparameters . 89

a.2 Pysster: Hyperparameter Tuning Considerations 90

a.3 Pysster: Code Examples . 92

a.4 Further DNA Shape Patterns . 99

a.5 RBP Predictions: Data For All 100 Proteins 101

Bibliography 107

List of Figures 117

List of Tables 118

contents vii

Zusammenfassung 119

Selbstständigkeitserklärung 121

1
Introduction

1.1 Explainable Machine Learning

Over the past years the field of machine learning has undergone a transformation from
being a mostly research-focused discipline to seeing widespread adoption in all aspects
of daily life. Especially through advancements in the branch of deep learning, machine
learning is being popularized and used for product recommendation, language trans-
lation, image processing, credit assessment and many other things, often unbeknownst
to human users. Deep learning describes a class of machine learning methods and
algorithms based on artificial neural networks and has recently been applied very
successfully to both supervised learning (learning based on labeled example data) and
unsupervised learning tasks (learning based on unlabeled example data).

One well-studied and typical supervised problem is the task of detecting objects in
images and the subsequent task of classifying the specific object, i.e. telling whether the
object is a horse, a cat, a boat or something else. A human is able to perform this task
by acquiring knowledge over time. By looking at many examples of each object and
possibly through guidance of a more experienced human, one will eventually be able
to tell different objects apart. Machine learning models are being trained in a similar
way. Given labeled example images of every object category some mathematical model
and algorithm can tweak itself over time to detect common patterns in the data which
can be exploited to classify new, unseen images. Deep learning models have already
been shown to outperform humans in such object classification tasks [1].

Which "patterns" differentiate a horse from a cat? An experienced human might men-
tion the difference in body height or the mane of the horse, but what has a trained
machine learning model learned in this regard? This problem of explaining why a
machine learning model has made a certain decision is currently driving a highly
active field of research. Consequently, it has already been shown that many models
are not actually doing what a human would think they are doing, even when having
a high classification accuracy. As an example, Figure 1.1 shows an image of a horse
that was also correctly classified as containing a horse. It also shows, as a heat map,
the result of an interpretation method highlighting in red color the parts of the image
the machine learning model focused on to arrive at its classification. Surprisingly, the
model seems to focus on the lower left corner of the image: a small copyright text. As
it turns out this is the result of an oversight during the data collection as most training

1

2 introduction

Figure 1.1: Explaining Machine Learning Predictions. A model that correctly classifies the
left image as containing a horse is doing so by detecting a small copyright text
not being present in other classes. The heat map shows the output of a method
called layer-wise relevance propagation that highlights in red color which parts of
an image are most relevant for the model prediction. The image is adapted from [2].

images of horses contained a copyright text while images of other classes did not [2].
Therefore, the model was right, but for the wrong reason.

Unintentional biases in data occur frequently and cause problems if not caught. Ma-
chine learning models will often pick up the "signal" resulting from these biases and
are subsequently prone to deliver wrong predictions outside of the training context.
In the mentioned example the error might be obvious in hindsight, but real-world
data can become complex and unmanageable for humans. Likewise, the resulting
impact of wrong predictions in this case might not be strong, but as machine learning
predictions are increasingly used for decisions directly impacting human lives, e.g. in
healthcare or finance, one has to be sure that predictions are right for the right reasons.
To this effect, in another exemplary study [3], it was found that well-performing image
models trained to detect the presence of pneumonia in chest X-rays were not able to
generalize across multiple hospitals, because the models learned to focus on small
details that were unique to a given hospital. Being aware of and fixing these issues
before deploying models is crucial to avoid wrong diagnosis.

A final example shows that these issues are not restricted to image classification.
Amazon uses machine learning for a variety of tasks, one such being the assessment
of resumes of job applicants. After being leaked to the public that the used model
discriminates against women [4], Amazon stopped using the tool for the time being. The
used model was trained on data from previous years which inherently contained more
male than female applicants and the model scores reflected this gender bias/imbalance.
In this case the model raised ethical concerns. Methods to explain internal model
properties can help to discover such issues more easily to allow tweaking if required.

1.1 explainable machine learning 3

In bioinformatics and in basic research stakes might not be that high. Nevertheless,
because data biases are a common problem it is important to debug machine learning
models during training to get reliable predictions. Biases often arise because of system-
atic technical limitations of experimental protocols (e.g. GC-content bias in RNA-seq
data [5], hyper-ChIPable regions in ChIP-seq data [6], sequence-dependent base calling
accuracy of Nanopore data [7]) and are ideally detected and managed during the
data preprocessing. However, interpretable machine learning models can offer further
sanity checks and act as bias detectors for new experimental protocols. Additionally,
being able to explain why predictions (irrespective of bias) were made is essential to
uncover new biological mechanisms and to advance knowledge. To this end, this thesis
will focus on the interpretation of convolutional neural networks (CNNs), a class of
deep learning models, for the classification of biological sequence data.

At the beginning of this PhD project, applications of deep learning within the bioin-
formatics domain were rare and their usefulness was not fully understood, due to
their complexity and consequent "black box" nature. We contributed to the field by 1)
developing a Python library that makes it easy for researchers to apply CNN models
to sequence data without implementing them from scratch, 2) by exploring, evaluating
and implementing different ways to interpret and visualize such networks through the
usage of sequence motifs, structure motifs, motif enrichment and motif co-occurrence
and 3) by applying networks to emerging research topics studying effects of DNA
shape and modeling of experimental RNA-binding protein data. Especially with regard
to RNA-binding proteins, insights into how proteins influence the RNA life cycle are
still limited due to missing experimental data. Such data has only recently become
available in larger quantities and we show that our CNN visualizations can help to
better understand the role of individual proteins within the co- and post-transcriptional
landscape. While experimental RNA-binding protein data in the form of eCLIP data is
now becoming available for an increasing amount of proteins, it is only available for a
very limited number of cell lines, but cell lines often differ substantially in which RNA
transcripts are expressed. Thus, we also show that CNNs can be used to efficiently
predict protein binding for transcripts for which experimental data is not yet available.
Overall, extracting patterns and knowledge from data and predicting outcomes for
unseen or experimentally unverified data are the two main purposes of machine
learning, which we hope to illustrate during this thesis.

4 introduction

1.2 Thesis Outline

Chapter 2 introduces the biological background needed to understand the problems that
machine learning is used for in this thesis. It explains how proteins interact with DNA
and RNA, in the form of transcription factors and RNA-binding proteins, respectively,
and highlights molecular properties that guide the process. Experimental methods
that are able to detect interactions are presented as well. The data generated by these
experiments will later form the basis for our machine learning models.

Chapter 3 introduces computational preliminaries, including the concepts of biological
sequence classification and so-called sequence motifs that can be used as interpretation
tools. Mathematical details of deep learning and CNNs are explained together with
common interpretation methods.

Chapter 4 describes pysster, our Python software library for training and evalua-
tion of CNNs, and shows how DNA-protein and RNA-protein interactions can be
predicted by learning sequence and structure motifs with CNNs. Different ways of
adding structure information for both DNA and RNA as model inputs are explored
to improve interpretability and we visualize what every layer in a deep neural net-
work is learning by adapting methods from Chapter 3 for our specific problem domain.

Chapter 5 presents a larger biological application by predicting RNA-binding of proteins
for transcripts for which experimental data is not yet available. During this project the
ability to visualize what exactly the models are learning helped to detect technical
biases in the used eCLIP data, which otherwise might have gone unnoticed. Being
aware of these biases allowed for subsequent tuning of the models and data to get
more meaningful predictions.

Chapter 6 and Chapter 7 conclude the thesis and briefly summarize machine learning-
related contributions to other projects that were tackled during the time of the PhD,
namely the interpretation of graph convolutional networks for cancer driver gene
prediction and the dissection of microRNA regulation through modeling of expression
quantitative trait loci.

2
Biological Preliminaries

Nucleobases and amino acids serve as the building blocks for all life on earth. When
arranged in linear chains, these monomeric molecules form large polymers that are
referred to as biological sequences: DNA (deoxyribonucleic acid), RNA (ribonucleic acid)
and proteins. Together, DNA, RNA and protein molecules orchestrate the behavior
of living cells. While the DNA sequence of multiple cells from the same organism is
identical (ignoring mutations), the set of RNAs and proteins available at any given
time is different and defines the specific function of cells.

2.1 Biological Sequences

The DNA sequence, or genome, of an organism is made up of just four different
sequentially arranged nucleobases: adenine (A), guanine (G), cytosine (C) and thymine
(T). When combined with a sugar molecule and a phosphate group, long strands can
be created. In addition, A and T and C and G, respectively, are able to interact with
each other by forming complementary base pairs through hydrogen bonds. Thus, the
well-known double helix structure ("twisted ladder") is the result of two complemen-
tary single strands of DNA (see Figure 2.1). The human genome is comprised of about
3.2 billion base pairs and while it might not look like it, the order of the bases A, C,
G and T is not random. Some small stretches of the genome (usually in the range of
thousands or tens of thousands of base pairs) encode for genes. Genes are regions of
the genome that form the blueprint for RNA. As DNA is a mostly static storage and
located in the cell nucleus, RNA constitutes a more active form that can reach every
region of a cell.

RNA is a single-stranded molecule and created through the process of transcription.
During transcription, enzymes known as polymerases temporarily separate the double-
stranded DNA helix within a gene region into individual strands. Subsequently, the
polymerase uses one of the DNA strands as a template to synthesize an RNA copy out
of bases that are complementary to the ones in the DNA. However, instead of T, its
unmethylated form uracil (U) is used as the complementary base for A. The result of
transcription is a primary transcript that can undergo several post-transcriptional (or
co-transcriptional) modifications, one such being the process of splicing. Most genes
are divided into alternating regions, so-called exons and introns, and intronic regions
are usually spliced out of an RNA, i.e. they are removed from a transcript while the
exons are joined together. Splicing is a very flexible process and it is also possible

5

6 biological preliminaries

to skip individual exons, among other things [8], thereby creating (functionally) dif-
ferent transcripts from a single gene locus. In any case, the resulting transcript after
splicing and other modifications is a mature transcript. One broadly differentiates
two classes of transcripts: non-coding and coding transcripts. The majority of tran-
scripts are non-coding, i.e. the RNA stage represents their final form and they function
through interactions with other molecules. Based on transcript length and distinct
functionality, non-coding RNAs are further divided into many sub-groups such as
microRNAs (∼ 22 bases short RNAs that repress other transcripts or mark transcripts
for degradation [9]) and long non-coding RNAs (lncRNAs) (transcripts of length > 200
[10]). Especially lncRNAs are not well understood, as they are so far solely defined
based on length, even though additional functional classification would be desirable
and many researchers are currently working towards this goal.

Coding transcripts represent the other major transcript class and function as yet another
blueprint, this time for proteins. Proteins are polymers composed out of chains of
amino acids and some post-transcriptional modifications [11] and the presence of an
open-reading frame lead to the translation of an RNA transcript into a protein. Thus,
similar to how polymerases can create RNA from a DNA template, ribosomes can
synthesize a protein from an RNA template. This process is called translation and the
ribosome reads the bases of RNA as triplets, so-called codons, to assemble the proper
amino acid chain (e.g. "ACG" encodes the amino acid threonine). A valid open-reading
frame, a stretch of RNA initiated by a special start codon and terminated by a special
stop codon, is required for successful translation. Resulting proteins have a variety of
functions, one being the role of transcription factors.

2.2 Transcription Factors

Transcription factors (TFs) are proteins that are able to physically bind DNA to activate
or repress the transcription of genes. They do not bind to the gene locus itself, but to
regulatory regions such as promoters and enhancers nearby that are responsible for
initiating transcription. TFs bound to such regions promote or block the recruitment
and assembly of the polymerase complex. More than 2000 genes are estimated to
encode TFs (around 10% of all protein-coding genes) and they can function alone or
in combination with other factors. As TFs are essentially able to turn transcription of
individual genes on and off, they are a major focus of gene regulation research [12].

2.2.1 Protein-DNA Binding Affinity

How does a TF know where exactly to bind within the 3.2 billion base pair long
DNA? To recognize a specific binding site TFs possess at least on DNA-binding
domain. Proteins fold into 3D structures containing individual domains and a DNA-

2.2 transcription factors 7

binding domain is a structure that can recognize double- or single-stranded DNA.
These domains are able to recognize very specific sequence patterns, for instance the
well-studied TF TBP (TATA-binding protein) has a preference to bind "TATAAAA"
sequences, the so-called TATA box often found in promoter regions [13]. However,
DNA-binding domains are not limited to only one specific sequence pattern, they are
able to recognize slightly similar sequences and in some TFs they do not have any
preference and generally recognize DNA. Moreover, binding sites are generally short
(6-12 base pairs on average) and are therefore expected to frequently occur just by
chance within the DNA [14]. To circumvent this problem and to make binding and
hence gene regulation more specific, TFs can have multiple DNA-binding domains
and they often require the presence of other co-factors to collectively bind DNA. The
accessibility of the DNA also plays a role, as the double helix structure is not always
available for binding when it is wrapped around histone proteins. The complex formed
of DNA and histone proteins is called chromatin and its purpose is the compaction
of the otherwise very long DNA. DNA regions that are wrapped around histones
are usually not accessible for TFs to bind, but epigenetic modifications of the histone
proteins can cause unwrapping of specific DNA regions to allow for TF binding and
subsequent gene transcription and represent another level of gene regulation (details
can be found in [15] and [16]).

adenine

thymine

cytosine

guanine

sugar-phosphate
backbone

minor groove width

(helix twist)

(propeller twist)

inter-base pair relations

intra-base pair relations

Figure 2.1: The DNA Double Helix And Shape Features. Two single strands of DNA form
the by now familiar double helix structure. The local structure of the DNA can be
characterized using so-called shape features which include the minor groove width
(measured in angstrom) and multiple intra- and inter-base pair relationships (for
instance helix twist and propeller twist, both measured in degrees). A total of 12
such relationships have been described previously [17].

Another aspect of protein-DNA binding affinity that recently started to attract more
research is DNA shape [17, 18]. The shape of the DNA describes the local structure of

8 biological preliminaries

the double helix and the relationship of bases and adjacent base pairs. DNA shape has
been found to affect the binding in a similar way as the above mentioned sequence
patterns do. Diverse properties and features are being used to describe the shape (see
Figure 2.1) including minor groove width (distance between two opposing phosphates
in the DNA backbone, measured in angstrom), propeller twist (amount to which bases
within a base pair are rotated relative to each other, measured in degrees), helix twist
(amount to which adjacent base pairs are rotated relative to each other, measured in
degrees) and electrostatic potential [19] (how accessible is a mostly negatively charged
stretch of DNA for the mostly positively charged amino acids that are known to
directly interact with it, measured in volt). DNA shape features can be measured
experimentally via X-ray crystallography and they can be derived computationally via
Monte Carlo and molecular dynamics simulations [17]. Computational tools to predict
shape features for a given DNA sequence are available and will be used later in the
thesis [20].

2.2.2 Experimental Detection of Protein-DNA Interactions

A common experimental protocol to detect DNA binding sites for a protein of interest
in vivo is ChIP-seq (chromatin immunoprecipitation sequencing) [21]. Following a
genome-wide fixation of protein-DNA contacts through the use of formaldehyde, the
DNA of cells can be fragmented and the fragments bound to a protein of interest
can be immunoprecipitated (pulled down) by using a protein-specific antibody. The
resulting DNA fragments can be isolated, sequenced and then computationally mapped
to a reference genome to identify the approximate positions of binding sites. The
computational analysis also involves the identification of significant binding sites
(peak calling) by comparing the amount of mapped fragments at a given genomic
position to a control experiment. These control experiments usually represent ChIP-seq
runs missing the immunoprecipitation step ("input" control) or ChIP-seq runs using
a non-specific antibody ("IgG" control) [22]. In Chapter 4 of this thesis, we will use
already peak-called, public ChIP-seq data as the basis for TF binding site prediction
models.

2.3 RNA-binding Proteins

Analogous to TFs binding DNA, RNA-binding proteins (RBPs) are proteins that are
able to physically interact with RNA. In fact, some proteins are able to bind both
DNA and RNA. RNAs are bound and regulated by RBPs throughout their entire life
and RBPs can tune RNA functions by influencing splicing, RNA stability, cellular
localization, degradation and other processes [23]. At the same time, RNAs can of
course regulate the functions of bound RBPs as well [24]. RBPs and RNAs also often
cooperate by forming large complexes comprised out of many different molecules

2.3 rna-binding proteins 9

such as the splicing and translation machinery [25]. About 1500 human RBPs are
known [26], but until recently effective genome-wide experimental protocols to detect
protein-RNA interactions have been missing, making RBPs relatively little understood
compared to TFs.

2.3.1 Protein-RNA Binding Affinity

Binding of a protein to an RNA usually requires the presence of at least one RNA-
binding domain, although it has recently been shown that some RBPs lack such a
domain and can bind RNA through intrinsically disordered regions, among other
things [24]. With about 3-5 bases in length the average RNA sequence pattern recog-
nized by an RBP (if it has a preference at all) is even shorter than patterns recognized
by TFs [26] and similar mechanisms are in place to make binding more specific, i.e. the
presence of multiple RNA-binding domains, cooperative binding of multiple proteins,
competitive binding and preference for certain RNA secondary structures.

mul� loop

hairpin loop

internal loop

stem

Figure 2.2: RNA Secondary Structure Features. Through intra-molecular base interactions
RNAs form secondary structures. In the illustration circles represent bases, grey
lines the RNA backbone and red lines hydrogen bonds between bases. The main
structural features of RNAs are stems (continuously paired bases, shown in green),
hairpin loops (unpaired bases connecting the two sides of a stem, shown in blue),
internal loops (mismatches or small loops connecting two stems, shown in yellow)
and multi loops (unpaired bases in loops with more than two outgoing stems,
shown in red).

RNA is a single-stranded molecule, but the primary sequence of bases does not
exist as a linear string in living cells. Rather, intra-molecular interactions between
complementary bases lead to the formation of so-called secondary structures often
visualized as 2D images (see Figure 2.2). The most important structural features that
are recognized by different RBPs are stems (stretches of continuously paired bases),

10 biological preliminaries

hairpin loops (small unpaired stretches connecting the two sides of a stem) and internal
loops (small mismatches within an otherwise continuous stem). Secondary structures
of RNAs are not static and change over time depending on cellular conditions and
binding of molecules can even induce changes to the structure [27]. Genome-wide
in vivo approaches measuring RNA secondary structures are feasible [28, 29], but
they were only introduced recently and data are not yet available for a wide variety
of cell lines and conditions. Because of this we are using computationally predicted
secondary structures in the form of minimum free energy structures in later chapters.
These predictions provide the theoretically most stable structure, but not necessarily
the one an RNA adopts in reality at a given time [30].

2.3.2 Experimental Detection of Protein-RNA Interactions

By now, multiple methods exist that measure genome-wide RNA binding for a protein
of interest in vivo. Most of them are based on the CLIP-seq protocol (crosslinking
immunoprecipitation sequencing) [31] and for this thesis we will focus on one of its
many variations called eCLIP (enhanced crosslinking and immunoprecipitation) [32].
The general idea of the protocol is similar to ChIP-seq and involves the crosslinking
(fixation) of protein-RNA interactions through ultraviolet radiation, followed by RNA
fragmentation, immunoprecipitation of the protein of interest, reverse transcription
of isolated RNA into DNA and a final sequencing step. An input control experiment
missing the immunoprecipitation is used to detect significant binding sites during the
computational analysis of the data. The peak calling of both ChIP-seq and eCLIP data
can be a very challenging task, due to potential biases and details of the protocols and
the interested reader can learn more about the technicalities in [33] and [34]. Therefore,
we will again use already processed, public CLIP data for our RBP models in Chapter 4

and Chapter 5, most of which was recently published as part of the ENCODE project
[35] and represents the first large-scale profiling study of over 150 RBPs [36].

2.4 RNA A-to-I Editing

We briefly mentioned splicing as one of many post- and co-transcriptional modifi-
cations RNA sequences are subject to. Another such process is A-to-I editing: the
act of converting an adenosine into an inosine (I). It is catalyzed by ADAR proteins
(adenosine deaminase acting on RNA) which remove amino groups from A’s turning
them into I’s [37]. In humans, ADAR RBPs possess a deaminase domain and at least
one double-stranded RNA (dsRNA) binding domain, therefore editing frequently
occurs in stem-rich regions of a transcript. With over 4.5 million events annotated in
public databases, A-to-I editing is the most prevalent form of RNA editing [38], but its
function is not fully understood. In all cellular processes, including RNA secondary
structure formation and translation, I’s behave as G’s. Accordingly, editing is known to

2.4 rna a-to-i editing 11

alter protein sequences if exonic regions of transcripts are affected [37]. This introduces
yet another level of diversity and results in proteins not directly encoded in the original
DNA gene locus. However, only 3% of editing happens in exonic regions. Editing
overwhelmingly occurs in non-coding regions and, in addition, within so-called Alu
repeats (89%) [39].

Alu sequences are repetitive elements specific to primates. They are ∼ 300 base pairs
long and over one million, almost identical copies can be found throughout the human
genome [40]. Due to their repetitive nature, Alu elements form long regions of dsRNA,
especially if two adjacent Alu’s are transcribed together. Thus, they represent an ideal
target for ADAR proteins. It has been observed that frequent editing of transcribed
Alu’s disrupts the double-stranded stem regions and thereby suppresses the interferon
signalling pathway. This pathway initiates an immune response and is usually activated
by the presence of long dsRNA, such as viral RNA. Consequently, preventing Alu-
related auto-immune responses is thought to be one of the main functions of A-to-I
editing [37, 41]. As edited A’s are being read as G’s also during normal sequencing,
public databases with genomic locations of validated editing events are available [38]
and later in this thesis, we will use an A-to-I editing data set to demonstrate the
functionality of our Python CNN software library.

3
Computational Preliminaries

Sequence data generated by the ChIP and CLIP protocols mentioned in the previous
chapter will form the basis for our deep learning models. In this chapter, we introduce
mathematical details of convolutional neural networks and explain how they can
be used together with this specific kind of input data. We also present multiple
interpretation techniques for neural networks that can be used to detect so-called
sequence motifs, the most common interpretation tool for the analysis of biological
sequence data.

3.1 Sequence Motifs

For many years already, sequence motifs have been the tool of choice to draw conclu-
sions from sequence data, as they inform about the binding preferences of proteins
and as they can be used to estimate the impact of mutations that affect said binding
preferences. The previously mentioned TFs and RBPs do not just bind a single spe-
cific sequence pattern, but they are able to recognize variations of a pattern. The RBP
PUM2, for instance, is able to recognize the sequences "UGUAUAAU", "UGUAAAUA",
"UGUACAUU" and many others (see Figure 3.1). All these patterns differ by one or
more bases, but one can also see that some positions almost never change, while
others vary frequently. This fact makes the use of a simple consensus sequence (a
single "average" sequence showing the most common base for each position) often
not suitable to summarize binding sites, as too much information is lost. Information
about which positions are more stable, however, is important to estimate the impact of
mutations, among other things. Consequently, sequence motifs (also called logos) [42,
43] have been proposed to better visualize a set of short sequences of equal length.

Sequence motifs allow for easy visual inspection of a set of sequences (Figure 3.1).
Positions that vary frequently and therefore carry little information are depicted small
(e.g. position 5 in Figure 3.1) and stable, informative positions are depicted larger
(positions 1-3). To arrive at such a visual representation of a motif, the possible bases of
a position are stacked on top of each other with heights proportional to their observed
frequencies which are collected in a so-called position frequency matrix (a matrix of
shape m x n holding normalized base counts for every sequence position where m is
the number of possible bases and n the length of the sequences, see Figure 3.1). The
height of a complete stack is limited by the information content of a position. Given
a set of equally-sized sequences, the amount of information I(i) of position i, also

13

14 computational preliminaries

sequence mo�f

1 2 3 4 5 6 7 8

A 0 0 0 0.63 0.37 1.0 0.13 0.63

C 0 0 0 0 0.25 0 0 0

G 0 1.0 0 0.37 0 0 0 0

U 1.0 0 1.0 0 0.38 0 0.87 0.37

UGUAUAAU
UGUAAAUA
UGUACAUU
UGUGUAUA
UGUGAAUA
UGUACAUA
UGUAUAUA
UGUGAAUU

binding sites posi�on frequency matrix

Figure 3.1: A Sequence Motif Example. The left part of the figure shows a non-exhaustive
list of PUM2 binding site sequences. These sites can be summarized as a position
frequency matrix by counting the occurrences of each base at each position and by
dividing by the number of sequences. Based on the position frequency matrix a
sequence motif can be computed with the help of Equation 3.1.

known as the Kullback-Leibler divergence and measured in bits, can be computed as
follows [43]:

I(i) = −∑
b

fb,i ∗ log2
fb,i

pb
(3.1)

where b represents the possible bases, fb,i is the observed frequency of base b at
position i and pb is the background frequency of base b. The background frequencies
can either represent a uniform distribution of all possible bases (i.e. 0.25 in the case of
the elemental 4-letter DNA and RNA alphabets) or they can be chosen differently to
reflect prior knowledge about the origin of the used sequences (e.g. many promoter
regions show higher G and C counts). The observed frequencies fb,i, i.e. all entries
of a position frequency matrix, are commonly artificially increased through small
pseudocounts (and normalized again) to account for unobserved cases and to avoid
frequency values of zero before computing the Kullback-Leibler divergence.

3.1.1 Motif Finding And Sequence Classification

Sequence patterns that can be used to compute a position frequency matrix are often
not as neatly aligned as shown in Figure 3.1. Experimentally derived sequences that
are assumed to share common motifs are usually long (hundreds of bases), but motif
starting positions and the motifs themselves are unknown and therefore de novo motif

3.2 artificial neural networks 15

finding tools have been developed that are able to discover overrepresented motifs in
an unsupervised way. Many tools and algorithms have been proposed in the past [44],
one of the most used ones being MEME [45] which discovers motifs by optimizing the
information content of position frequency matrices using an expectation–maximization
algorithm. Following the de novo discovery of motifs it is often of interest to computa-
tionally predict additional motif occurrences by using a position frequency matrix to
scan sequences that were not experimentally covered. Tools such as RSAT [46] score
each position of a sequence of interest based on similarity to a given motif. By also
scoring background sequences a score threshold can be determined that enables the
identification of statistically significant motif hits.

By connecting motif discovery and motif scanning into a pipeline it is certainly possible
to perform a binary classification of sequences based on whether they contain a motif
hit or not. However, if classification is the goal, for instance protein binding prediction
for sequences not covered experimentally, dedicated supervised machine learning
methods that blend feature extraction and scoring into a single model provide better
predictive performance than the motif finding/scanning approach [47]. Additionally,
machine learning methods can be applied to problems beyond binary decision making
for example multi-class and multi-label classifications. To this end, different machine
learning methods have been used in the past, such as string kernel support vector
machines [48] and k-mer (short strings of length k) frequency approaches [49], as well
as neural networks and CNNs [50] which will be the focus of the remaining thesis.

3.2 Artificial Neural Networks

Artificial neural networks (ANNs) are a class of machine learning methods and are
loosely based on the nervous system of living beings. Similar to how neurons within
the nervous system form networks to propagate and transform signals, ANNs are
made out of connected nodes that are arranged in layers and propagate data from one
layer to the next while applying nonlinear transformations. ANNs have already been
proposed in the 1940s [51] and research has been dedicated to them ever since, but
they have only recently seen widespread adoption. This is due to a strong increase in
computing power (GPUs), the availability of much more training data and small but
impactful changes to model details, such as random dropout of nodes and rectified
linear unit activation functions, all of which made the backpropagation and gradient
descent algorithms used for training of networks practically feasible.

16 computational preliminaries

3.2.1 Multilayer Perceptrons

The basic building block of ANNs are artificial neurons (Figure 3.2). Given n inputs
(x1, ..., xn) and n weights (w1, ..., wn), a neuron computes the weighted sum of its
inputs and applies a function f afterwards:

y = f (
n

∑
i

wixi) (3.2)

Function f is called activation function and introduces non-linearity into the system.
Accordingly, the output of a neuron is referred to as its activation. One possible
activation function is the sigmoid, or logistic, function:

f (z) =
1

1 + e−z (3.3)

which squashes the weighted sum into the [0, 1] range and is especially popular for
output neurons in the final layer of binary classifiers. Another popular activation is the
rectified linear unit (ReLU) function:

f (z) = max(0, z) (3.4)

which replaces all negative values with zero. ReLUs are one of the reasons why neural
networks became popular again, because they introduce sparsity into networks (which
helps to keep the often huge number of weights in a multilayer network under control),
they are very fast to compute and because they lead to models with a high predictive
performance [52].

Figure 3.2: Neurons And Activation Functions. A neuron computes the weighted sum of
its inputs and applies an activation function to introduce non-linearity into the
computation. Frequently used activation functions are the sigmoid function (top
plot) and the rectified linear unit function (bottom plot). The output y of a neuron
is used as an input for neurons in the next layer of a multilayer network or as the
overall network output, if that particular neuron is the final one.

3.2 artificial neural networks 17

Organizing multiple neurons into layers and connecting all neurons of a layer to
all neurons in the subsequent layer leads to a so-called multilayer perceptron - the
"default" neural network type (Figure 3.3). The output y of an individual neuron is
thereby used as an input for all neurons in a subsequent layer. Each neuron, including
the final output neuron of the network, performs the aforementioned computations,
but the activation might differ between neurons. Today, ReLU functions are often used
throughout the majority of a network [53], while the output neurons in the final layer
use a function tailored to the specific classification task, e.g. the sigmoid function is
appropriate for binary classifications. The individual layers of multilayer perceptrons
are either called fully-connected layers or dense layers. Finally, yet another activation
function frequently used for output layers containing more than one neuron is the
softmax function [54]:

f (zi) =
ezi

∑j ezj
(3.5)

where z is a vector containing all outputs of a layer. This function is applied to every
neuron output i individually and normalizes the output ensuring that all values are
within the range [0, 1] and form a probability distribution by summing up to one. This
function is therefore useful for classification settings with more than two output classes
(multi-class classification).

forward propagation of input data

error
function

backward propagation of output error

Figure 3.3: A Multilayer Perceptron. A "default" neural network is a collection of neurons
arranged in layers in which every neuron passes its output as an input to all
neurons in the subsequent layer. The example shows a 4-layer network consisting
out of an input layer, two hidden layers (yellow neurons) and an output layer
(green neuron). Each arrow connecting inputs/neurons in the visualization carries
a different weight. Given some input data x, the weights are used to compute a
forward pass through the network. Given the resulting network output and an
expected output, the backpropagation algorithm (see Chapter 3.2.2) is used to walk
backwards through the network to minimize the output error by adjusting the
weights.

18 computational preliminaries

3.2.2 Gradient Descent & Backpropagation

In this thesis, neural networks are used for supervised learning tasks. Given a set of
pairs (x, y) with x ∈ X and y ∈ Y, the goal of supervised learning is to find a function
g : X → Y. In our case, x represents an input (e.g. a DNA sequence) and y the desired
network output (e.g. a label indicating if the sequence is bound by a protein or not).
If we would only have a single neuron in our "network", the function g is equal to
Equation 3.2. Accordingly, in bigger networks, g would be a nested combination of
Equation 3.2. Learning then means to find weights w that minimize the difference
between the desired output y and the actual network output, denoted as ŷ from now
on. The similarity between y and ŷ can be measured using a loss function (also called
error or objective function). Many loss functions are possible, but in case of a binary
classifier and if a sigmoid activation is used in the last neuron, the binary cross-entropy
loss is a popular choice1:

L(y, ŷ) = −(y ∗ log(ŷ) + (1− y) ∗ log(1− ŷ)) (3.6)

where ŷ is within the range [0, 1] (because of the sigmoid activation) and y is either
zero or one. The bigger the difference between these two variables, the higher the cross-
entropy. One method to minimize such a loss function is gradient descent. Gradient
descent involves the computation of the partial derivatives of L with respect to all
individual weights wi of a network, defined by the mentioned function g. The partial
derivative of a function represents the slope of that function for a specific wi. Thus,
the derivative indicates how a change in wi influences L. The gradient of a function is
defined as a vector containing all partial derivatives and the gradient always points in
a direction that increases the respective function [54]. Therefore, since our goal is the
minimization of L, we want to adjust the network weights by moving in the direction
of the negative gradient. This is called gradient descent and can be summarized as
follows [54]:

w∗ = w− ε∇wL(w) (3.7)

where w is the original set of weights, w∗ the adjusted set of weights, ∇wL(w) the
gradient and ε the learning rate, a hyperparameter (a parameter that has to be set by
the user before the training) that controls how large the change of the weights should
be.

Knowing all of this, backpropagation is a method to efficiently compute the gradient
∇wL(w) in the above equation by decomposing the nested neural network function
(which is composed out of many individual neuron computations) and recursively

1 https://github.com/tensorflow/tensorflow/blob/r1.14/tensorflow/python/keras/backend.py, ac-
cessed: 9.8.2019

https://github.com/tensorflow/tensorflow/blob/r1.14/tensorflow/python/keras/backend.py

3.3 convolutional neural networks 19

employing the chain rule used for derivatives in calculus. It moves backwards through
the network and computes the partial derivatives of neurons of higher-level layers
first before it moves to previous layers, thereby propagating the loss throughout the
network to reach every weight. Details of the chain rule application depend on the
particular loss and activation functions being used and can be found in [54] and [55].

Taking everything together, a neural network is trained by an iterative process. Net-
work weights are usually randomly initialized before computing the first forward
pass through the network which leads to a first loss value. Due to the random initial-
ization of weights this value will most likely be random as well. After updating the
weights through backpropagation and gradient descent, another forward pass can be
performed using the new weights. This should now lead to a lower loss value which
one can try to minimize once again. The described process is then repeated until the
loss function converges and it usually also makes use of mini-batch training. Instead
of looking at all the data at once, the training data is shuffled, split into batches and
fed batch-wise through the network, that is, a certain number of input samples will be
forwarded through the network and their average gradient will be determined before a
weight update is performed. A full training iteration is called epoch in neural network
jargon and indicates that every batch has been seen by the network. For every training
iteration, shuffling and splitting of the training data is repeated. Similar to the learning
rate, the batch size is another hyperparameter of the model. Looking only at small
batches of data has the advantage that gradients are noisier compared to the gradient
of the complete data set which can help the model to better generalize to data other
than the training data [56]. Nonetheless, smaller batches require more frequent weight
updates and have a negative impact on the computational runtime performance and
the batch size parameter therefore has a strong influence on the convergence of the
training process.

In general, mini-batch training is a form of stochastic gradient descent (in contrast
to "normal" gradient descent), as the gradient of random batches only approximates
the real gradient of the complete data set. Nowadays, training of neural networks is
almost exclusively performed by backpropagation and gradient descent combined
with mini-batch training. The main disadvantage of the procedure is its tendency to
only find local minima of loss functions (due to those being non-convex) which is,
however, not a frequent problem in practice and for large networks [57].

3.3 Convolutional Neural Networks

Dense multilayer perceptrons are very performant classifiers, but they are not a good
fit for the sequential DNA and RNA string data we are working with. One problem

20 computational preliminaries

is the number of weights that would be needed to model biological sequence data.
For instance, to use a DNA sequence of length 200, one might treat each position as a
distinct network input (i.e. distinct xi in the aforementioned explanations). Assuming
that we want to use a network with three hidden dense layers and 100 neurons per
layer, we would need 20, 000 weights to connect the input to the first layer, 10, 000 to
connect the first to the second layer, 10, 000 for layer two and three as well and 100
weights for the final connection to the output neuron. However, having a large number
of trainable weights negatively affects the runtime performance, requires a substantial
amount of training data and is in turn prone to overfitting. Another problem, and
arguably a bigger one, is the fact that a multilayer perceptron treats each input xi
independently. This means, that we are losing valuable information about the relation
of adjacent bases that form sequence motifs.

....

Convolutional
Layer

Max Pooling
Layer

Fully-connected
Layer

Output

71% Lap Cat

29% Deadly
 Panther

Input

Figure 3.4: Standard Convolutional Neural Network Architecture. Originally, CNNs have
been invented for the task of image classification. Receptive fields within the
convolutional and pooling layers are able to detect small patterns in the input and
by hierarchically combining the learned patterns, CNNs can classify images with
high accuracy.

For sequential data, CNNs are a viable alternative, as they drastically reduce the
number of weights and because they capture the dependencies between adjacent input
positions by automatically learning sequence motifs (or something that we interpret
that way) to classify the given data. The basic architecture of a CNN consists of a
variable number of convolutional and max pooling layers followed by a variable
number of fully-connected layers. As we will see later in the thesis, the convolutional
portion of the network is responsible for automatically extracting features from the
input data (in our case sequence motifs) while the fully-connected layers are responsible
for classifying the data based on the learned features. CNNs have been and continue
to be a very successful architecture for different types of problems, first and foremost
image classification (Figure 3.4). Conceptually, CNNs are based on the visual cortex of
living beings in that they consist of multiple receptive fields that learn to recognize
small patterns. Combining many receptive fields in a hierarchical fashion enables the
detection of larger patterns and eventually allows for the complete understanding of
the image or scenery that is being looked at [58, 59]. For image classification, object

3.3 convolutional neural networks 21

detection and other computer vision tasks, CNNs have become the de facto standard
[60]. In the following, we will explain the details of CNNs and their application to
sequential string data, as this is the data we are interested in.

3.3.1 Convolutional Layers & Pooling

Before one can apply a CNN to biological sequence data, the data has to be transformed
into a numeric representation. Therefore, DNA (or RNA) sequences are usually one-hot
encoded, that is, each position in a sequence is treated as a categorical variable of
size n and represented by a vector of length n containing exactly 1 one and zeros
otherwise (Figure 3.5). Vectors of all positions are then concatenated into a single
matrix. In the case of a DNA sequence of length 100 the result is a 4× 100 matrix.
The one-hot encoded matrix is equal to a position frequency matrix that is based on a
single sequence.

Kernel 1

C T C

0 0 0

1 0 1

0 0 0

0 1 0

2 0 3 0 1=
Max Pooling

(window size 2,
step size 2)

A T C T C A G

1 0 0 0 0 1 0

0 0 1 0 1 0 0

0 0 0 0 0 0 1

0 1 0 1 0 0 0

A

C

T

G

One-hot encoded input

2 3 1

3 0 1
0 01

2 3 1Kernel 1
Kernel 2
Kernel 3

.

Input for next layer

*

Convolution
(step size 1)

Figure 3.5: Convolution And Max Pooling. To obtain numeric input suitable for a CNN, input
strings are one-hot encoded ("ATCTCAG" in the example). Kernel entries are usually
randomly initialized with real-valued numbers, but for the sake of the example
kernel 1 shows a perfect "CTC" kernel. Kernels scan a sequence using a sliding
window approach by computing the sum of the element-wise products at each step
and the vector (2, 0, 3, 0, 1) is the result of applying Equation 3.8 to the example.
Applying max pooling with window size two and step size two further leads to
the vector (2, 3, 1). As layers consist of multiple kernels, the output of every kernel
within the same layer is summarized into a single matrix which is used as an input
for the subsequent network layer.

As opposed to fully-connected layers, convolutional layers are not a collection of
neurons, but a collection of so-called convolutional kernels that take on the duty of

22 computational preliminaries

receptive fields. A kernel is a matrix and acts as a feature detector. In our case, a
kernel is also comparable to a position frequency matrix in that each row represents a
possible base and each column a position of the motif. The number of columns of a
kernel, and therefore the length of a motif, is a hyperparameter. For the sake of the
example, the kernel in Figure 3.5 shows only perfect zero/one entries. In practice, the
entries of kernels represent the network weights w, i.e. kernels are randomly initialized
with real-valued numbers and hopefully converge to something meaningful at the
end of the backpropagation training. In a convolutional layer there are no weights
connecting kernels to every input and a kernel operates by moving over the input in a
sliding window fashion ("convolving") and by computing the sum of the element-wise
products (dot product) between itself and the input window at each input position i:

ci = f (∑
k

∑
l

Akl ∗ Bkl) (3.8)

where A and B are matrices representing an input window and a kernel, respectively,
where k and l are row and column indices, respectively, and where f and c are the
activation function (e.g. ReLU) and activation vector, respectively.

The step size of the convolution approach is usually one, resulting in overlapping
input windows (e.g. an input of length seven and a kernel of length three produce an
output vector c of length five, see Figure 3.5). Kernels in convolutional layers make
use of so-called parameter sharing by using the same weights regardless of the current
input window. This additionally differentiates kernels from neurons in fully-connected
layers which use one weight per input position. By sharing a fixed set of weights across
the input sequence, kernels can detect a pattern multiple times and independent of its
location in the input sequence. This leads to the effect that CNNs are equivariant to
translation [54], i.e., if patterns in an input sequence shift or change, the kernel output
vector c shifts or changes in the same way.

Before the resulting vector c is passed as an input to the next part of the network, a
pooling operation is performed. A popular pooling method is max pooling, another
sliding window approach, which, given a window and a step size, slides over c and
only keeps track of the maximum value in each window, thereby effectively reducing
the size of c (see Figure 3.5). Pooling down-samples the data to improve the runtime
performance of the network and to decrease the amount of needed weights in the
fully-connected layers at the end of the network. Since high values in vector c imply
high similarity of the kernel to a particular input position, only keeping track of the
maximum value and deleting smaller values also helps the network to generalize to
different data by decoupling a kernel from an exact input position. Thus, the model
becomes "approximately invariant to small translations of the input" [54], that is, small

3.3 convolutional neural networks 23

changes in the input likely do not affect the output vector of the max pooling operation.

The number of kernels in a convolutional layer is another hyperparameter. Kernels
(including pooling) operate independently of each other and the output vectors of all
kernels are concatenated to form a matrix C of size m× n where m is the number of
kernels and n the length of vectors c after pooling (Figure 3.5). This matrix is used
as the input for the next network layer, which is often another convolutional layer.
Conceptually, this matrix is similar to the original one-hot encoded input matrix, but
now rows represent kernels/full motifs (in contrast to individual bases) and while
columns still represent input positions, there is no direct mapping to the original input
possible anymore, because of the max pooling (e.g. position C1,1 and position C2,1 might
not refer to the same position in the original input, depending on the results of the
max pooling operation). As a side note, the form of convolution applied to sequential
string data is often referred to as 1D convolution, whereas image classification uses 2D
convolution. 2D convolution performs the exact same computations presented here,
but the input of image classifiers is usually interpreted as a 2D matrix (containing
individual pixels) and kernels and pooling operations do not just slide over the input
from the left to the right (as shown in our example in Figure 3.5), but additionally from
the top to the bottom such that the result is another 2D matrix that can be interpreted
as an image.

3.3.2 A Complete Convolutional Network

The convolutional/pooling layer that is directly connected to the input is usually
followed by at least one additional convolutional/pooling layer. Each layer operates on
the output of the previous one and has its own kernels and hyperparameters, but they
all perform the same operations, thereby learning bigger and bigger motifs over time.
Every pooling layer also increases the effect of the mentioned translational invariance.
At some point, the output matrix of a convolutional/pooling layer is flattened (row- or
column-wise) and fed into a fully-connected layer which performs the final classifica-
tion task (Figure 3.6). In Chapter 4, we will visualize what every kernel and neuron in
such a CNN is learning.

The number of weights in the convolutional part of a CNN is independent of the
length of the input sequences. Weights depend on user-controllable hyperparameters
such as number of kernels, length of kernels and pooling window size and step size.
The number of weights in the first fully-connected layer partly depends on the length
of the input sequence, however, convolutional/pooling layers substantially reduce that
length by essentially compressing sequences. For instance, applying a kernel of length
10 to an input of length 200 results in an output vector of length 191 (200-10+1) and
applying a typical pooling operation of window size two and step size two halves

24 computational preliminaries

A G AC TC T A

Input

Dense Layer 1

Output

Convolutional Layer 1
+ Max Pooling

Convolutional Layer 2
+ Max Pooling

Convolutional Layer 3
+ Max Pooling

A
C
G
T

Flatten

Figure 3.6: A Convolutional Neural Network For Sequence Classification. A basic CNN con-
sists of a variable number of convolutional layers augmented through max pooling
layers (here exemplarily using two kernels of length three in the first layer) followed
by a variable number of dense layers. Convolutional layers are able to hierarchically
extract features from the data and the dense layers are able to perform the desired
classification task utilizing these features.

that number to 96. Each additional convolutional/pooling layer in the network further
reduces the length until eventually the first fully-connected layer is reached. Because
of the length reduction and because pooling helps the network to only focus on the
important parts of the input, a single, small fully-connected layer at the end is often
enough to perform the classification task, resulting in the fact that CNNs need less
weights than comparable multilayer perceptrons.

3.3.3 Network Regularization

Even though the number of trainable weights in a CNN is comparably low, there is
still a considerable amount left and the network still has to be regularized to avoid
overfitting and to improve the convergence of the backpropagation algorithm. The
main regularization method is dropout [61]. The idea of dropout is to randomly and
temporarily remove kernels and neurons from the network during training. Different
randomly selected kernels and neurons are being removed in each training iteration,
thus, not all parts of the network are being adjusted every time. It is also possible
to apply dropout to the network input, e.g. by randomly setting a small amount

3.3 convolutional neural networks 25

of columns in the one-hot encoded input to zero. This prevents the network from
focusing too much on specific patterns in the data. Dropout adds a form of random
noise to both the data and the network itself, making it more robust by intuitively
averaging over many slightly different network architectures. Dropout is only used
during training and not for predicting new data. It is applied to individual layers and
in small amounts, e.g. one might randomly turn off 20% of units in a specific layer.

Another regularization method is early stopping [62]. Here, the idea is to stop the
backpropagation when the loss of a validation data set has stopped improving for a
certain number of iterations. During training of a network, it is good practice to split
the available data into a training and a validation set. The network is only trained
on the training set and the validation set can be used to decide on when to stop
training. By monitoring the loss on both the training set and the validation set, it
is often observable that at some point the validation loss starts to plateau or even
increases again while the training loss still improves (Figure 3.7). This indicates the
beginning of overfitting and can be used to dynamically stop training to preserve the
generalizability of a network.

training loss

validation loss

training iterations

lo
ss

early stopping

Figure 3.7: Early Stopping. The loss of the training and validation data sets will often start to
diverge at some point during network training. To avoid overfitting to the training
data, the training can be stopped at that point. The number of training iterations
needed to determine when exactly to stop is yet another hyperparameter and
usually reflects the number of iterations without validation loss improvement.

One last exemplary regularization approach is the restriction of network weights. In
later chapters of the thesis, we will be using a max-norm regularization [61], that is,
given a vector w representing the weights associated to a kernel or neuron, the network
will be optimized such that ||w||2 ≤ d holds. d is a hyperparameter and prevents
individual weights from becoming too large and more evenly distributes the available
information in the input data over all weights to make better use of the full model
capacity.

26 computational preliminaries

3.3.4 Feature Visualization Methods

Neural networks automatically extract features from the input data that are indicative
of the classification problem at hand. If the goal of network training is not just a high
predictive performance, but also to gain new insights into a problem, feature visu-
alization methods can be applied to extract learned features from a trained network
model. Moreover, visualization methods can be helpful for debugging by looking
for (unintentional) biases in the data. A hint in that direction can be a model that is
learning features which a human with strong domain knowledge would not expect to
be learned or which they would not expect to be in the data in the first place. Feature
visualization helps to detect such cases and therefore improves the fine-tuning of data
or model.

Specifically for biological sequence data, the DeepBind paper [50] was the first to
introduce a method for visualizing sequence motifs learned by kernels from the first
convolutional layer of a CNN. While kernel matrices have the shape of a position
frequency matrix, their entries are more or less arbitrary. A high value within a column
of a kernel indicates that the respective base is the most likely one, but there are
no restrictions ensuring that kernel entries are always positive or that individual
columns form a probability distribution by summing to one (as is the case in position
frequency matrices). The DeepBind authors proposed to visualize a kernel by extracting
subsequences from the training data that lead to high kernel activations. Given an
input sequence s and a kernel k with corresponding output vector c (as defined by
Equation 3.8 and before pooling has been applied), the objective is to find the position
of the maximum value in c:

j = argmax
i

ci (3.9)

Position j represents the part of input s that is most similar to the kernel matrix and if cj
is above a chosen threshold, the subsequence sj...j+m−1 can be extracted from the input,
where m is the length of kernel k. The procedure is repeated for all input sequences
and yields a set of equally-sized subsequences that can be used to compute a sequence
motif in the usual way.

Unfortunately, the above visualization method can only be applied to kernels of the
very first convolutional layer. The pooling layers destroy the direct connection between
input sequence and kernel output, therefore it is not possible anymore to map the
maximum value of a kernel output of downstream layers to a corresponding position
in an input sequence. One possible method to visualize kernels (and also neurons)
in every layer of a network is called visualization by optimization [63]. Instead of
computing a summary statistic over the input as the above method, visualization by

3.3 convolutional neural networks 27

optimization generates a single input sequence that maximizes the output of a kernel
or neuron. During training of a neural network we usually start with a fixed input
and randomized network weights to minimize the network loss function with respect
to the weights. After the successful training, when fixed network weights have been
obtained, we can accordingly start with a randomized input to maximize the output of
a specific kernel or neuron anywhere within the network with respect to the input,
that is, entries of a randomly initialized input matrix now depict the weights w we
want to learn. This allows to visualize what every unit in a network is reacting to.
Analogous to the network training, the optimization is an iterative process involving
backpropagation and, since we want to maximize an objective, gradient ascent:

w∗ = w + ε∇wL(w) (3.10)

where w represents a set of weights, w∗ the adjusted set of weights, ∇wL(w) the gra-
dient and ε a learning rate. Instead of moving in the negative direction of the gradient
as is the case during gradient descent, we are simply going with the gradient. Many
variations of this method have been applied to image data (see [63] for an overview)
and in Chapter 4 we will adopt it for biological sequence data.

3.3.5 Attribution Methods

The two methods explained in the previous subsection are model-centric approaches
that try to give insights into the inner workings of a network by explaining individual
network units. This thesis focuses on model-centric methods. In addition to explain-
ing internal network properties, it can, of course, also be of interest to explain why
a specific input has been classified in a certain way. Input-centric approaches, also
called attribution methods, try to tackle this problem. In this thesis, we will not apply
attribution methods, but for the sake of completeness we present their general idea.

Attribution methods explain which features of a specific input were most relevant
for the network prediction. For a given DNA sequence, these features would be its
individual positions. Multiple methods, such as saliency maps [64], DeepLIFT [65]
and layer-wise relevance propagation (LRP) [66] exist. They all try to achieve a similar
goal, but use different mathematical means to do so. LRP, for instance, computes a
backward pass through a network and redistributes the network output ŷ over the
input such that:

R(l)
i = ∑

j

ciwij

∑i ciwij
R(l+1)

j (3.11)

28 computational preliminaries

where R represents the relevance of unit i and j in layer l and l + 1, respectively, and
where c is the output of unit i and wij the weight connecting unit i and j. Given that
the relevance of the output neuron is ŷ, this assures that:

∑
d

R(1)
d = ŷ (3.12)

is satisfied for the input layer (layer 1). Relevance values obtained that way can be
both positive or negative and indicate if the presence of the feature had a positive or
negative impact on the prediction. Example applications of input-centric interpretation
methods on biological sequence data can be found in [50] and [67].

3.3.6 CNNs For Biological Sequence Analysis

Deep learning and especially CNNs have already been successfully applied in bioinfor-
matics research and are now widely used to tackle various questions. This subsection
gives a brief overview of notable publications published in the previous years and
should also provide some insight into why we decided to write our own CNN software
library in Chapter 4.

To the best of our knowledge, DeepBind (2015) [50] represents the application of CNNs
for biological sequence data that popularized their usage in our field. In this paper,
the authors showed that the standard CNN architecture that has been established for
computer vision tasks can also be applied to sequence data. By modeling ChIP-seq
and other experimental data, the presented CNN models were able to automatically
learn sequence motifs without the need for time-consuming feature engineering and
their predictive power outperformed most methods previously presented as part of
the DREAM5 challenge for predicting protein binding sites [68]. As described in Sec-
tion 3.3.4, the DeepBind paper also introduced a way to visualize first-layer kernels as
sequence motifs. In addition, it introduced “mutation maps” as an interpretation option
for neural networks. By performing perturbation tests (e.g. systematically changing
individual bases within a sequence) and by comparing the network predictions for
wildtype and perturbed sequences, the authors were able to deduce the importance of
every sequence position. Trained models and visualizations are available online and
the source code of DeepBind is available as well, however, it is undocumented and not
usable without significant time investment. We actually asked the authors about how
to use DeepBind for our own data and were told that it would be easier to implement
everything from scratch. In support of the authors, software libraries like Tensorflow
[69] were not yet available when DeepBind was published. Since CNNs require GPUs
as hardware for effective training, which are cumbersome to program for, it was not
an easy task to provide software that runs on a variety of hardware. Today, Tensorflow

3.3 convolutional neural networks 29

and other libraries abstract these hardware requirements away and have substantially
simplified the distribution of related software.

Basset (2016) [70] is another CNN library and was explicitly designed for training
models on one’s own data. It makes use of the standard CNN architecture and in
their paper, the authors presented the prediction of DNA accessibility (open versus
closed chromatin) from DNase-seq data as an example application. With regard to
model interpretation they offer the visualization of first-layer kernels as sequence
motifs and the option to perform mutation map analysis. One short-coming of Basset
is its restriction to sequence data, as no other additional input data can be used and
while model hyperparameters can be changed, no built-in hyperparameter search or
optimization is available.

Deep learning models are very flexible, because different kinds of layers and units
can be freely combined and DeepCpG (2017) [71] makes use of this point. The goal
of DeepCpG is the detection of cytosines possessing an additional, temporary methyl
group (such cytosines are frequently followed by a guanine and therefore abbreviated
as “CpG”). Methylated cytosines depict a form of genome and transcription regulation,
as, for example, heavily methylated promoter regions repress transcriptional activity.
In their work, the authors present a multimodal model, i.e., a model that uses separate
inputs that are being joined together at some point. The DeepCpG network consists of
two modules: a convolutional neural network block processing DNA sequence infor-
mation and a recurrent neural network block that processes single-cell methylation
profiling data based on scBS-seq and scRRBS-seq. Specifically, the latter block performs
an embedding operation to model CpG dependencies within individual cells and is
followed by recurrent layers to model dependencies between different cells. Recurrent
layers are yet another type of layer (in addition to dense and convolutional layers) and
able to learn long-range dependencies in data, much more so than convolutional layers
whose kernels are restricted to a defined range of adjacent input positions. The inter-
ested reader can learn more about recurrent layers in [54]. At some point, DeepCpG
concatenates the outputs of both network blocks and feeds them into two dense layers
to predict the methylation state of cytosines in individual cells. The final model was
shown to outperform previous methods and through the visualization of first-layer
kernels as sequence motifs, the authors could learn which proteins are associated with
elevated methylation levels and general methylation variability. Software has been
made available to train models using one’s own single-cell methylation data.

Finally, iDeepS (2018) [72] represents a deep learning model that also incorporates
RNA secondary structure data and is able to learn both sequence and structure
motifs to predict RBP binding sites. The iDeepS authors also follow a multimodal
approach and train two convolutional blocks in parallel, where one block is applied to
sequences based on CLIP-seq data and where a second convolutional block is applied

30 computational preliminaries

to the respective secondary structure predictions. The outputs of both convolutional
blocks are merged at some point to apply an additional recurrent layer followed by a
dense layer for classification. First-layer kernels of both convolutional blocks can be
individually visualized as motifs, however, it is not possible to tell which sequence
and structure motifs belong together, as the convolutional blocks processed the data
separately. Additionally, while the authors provide source code to reproduce the results
and to train models on other data, its functionality is very limited and it is not possible
to adjust hyperparameters (number of layers, number of kernels, length of kernels,
etc.), as the described network architecture is fixed.

3.4 Performance Measurements

To conclude the chapter, we will explain how the predictive performance of supervised
classification models can be evaluated. In a binary classification setting, the classes
are generally referred to as positive class and negative class (or background) and
the last-layer outputs of our CNNs can be interpreted as the probability that a given
input sample belongs to a certain class. Directly working with predicted probabilities
has the advantage that these values carry information about the confidence of the
prediction, but if the goal is to further assign discrete class labels a probability threshold
is required. Given a threshold (e.g. 0.5 such that inputs above 0.5 are classified as
positive and inputs below or equal to 0.5 as negative) and a collection of inputs to
predict (e.g. held-out test data not used during training to avoid overfitting), one can
compute a so-called confusion matrix, a 2× 2 matrix that summarizes the predictive
performance by reporting the true positives (TP, number of positive samples predicted
to be positive), false positives (FP, number of negative samples predicted to be positive),
false negatives (FN, number of positive samples predicted to be negative) and true
negatives (TN, number of negative samples predicted to be negative) (see Table 3.1).

True Labels
Positive Negative

Predicted Labels
Positive TP FP
Negative FN TN

Table 3.1: Confusion Matrix. Count data describing true positives (TP), false positives (FP),
false negatives (FN) and true negatives (TN) can be used to assess the performance
of a binary classifier for a specific probability threshold.

Based on the confusion matrix, additional measurements can be defined. Frequently
used are the true positive rate (TPR, portion of correctly predicted positive samples)
[73]

TPR =
TP

TP + FN
, (3.13)

3.4 performance measurements 31

the false positive rate (FPR, portion of negative samples incorrectly predicted as
positive) [73]

FPR =
FP

FP + TN
(3.14)

and the precision (portion of positive predictions that are truly positive) [73]

Precision =
TP

TP + FP
. (3.15)

To get a visual overview of the performance, so-called receiver operator characteristic
(ROC) curves can be constructed by plotting the TPR (y-axis) against the FPR (x-axis)
at different probability thresholds. The ideal ROC curve has high TPR and low FPR,
i.e. the curve should tend towards the top-left corner of the plot. ROC curves can
further be condensed into a single number by computing the area under the ROC curve
(auROC), a value between 0 and 1 where higher values indicate better performance
across a range of thresholds. A classifier that randomly assigns class labels creates a
straight line across the main diagonal in ROC plots with a respective auROC value of
0.5 and can be considered as a baseline [74].

Finally, if classes are highly imbalanced (much more samples are available for one
of the classes), precision-recall plots are preferred over ROC plots by plotting the
precision (y-axis) against the TPR, also called recall (x-axis). ROC curves are insensitive
to the class balance and can be misleading in such cases [73, 74], because TPR and FPR
metrics evaluate the classes separately. Precision, however, takes predictions for both
classes into account. In practice, this means that a model that is evaluated using both
balanced and imbalanced held-out test data will show near-identical ROC curves, but
different precision-recall curves [73, 74]. Generally, the ideal precision-recall curve has
high precision and high TPR, i.e. the curve should tend towards the top-right corner.
The area under the precision-recall curve (auPRE) can be computed analogous to the
auROC and the random baseline performance is given by a horizontal line that varies
according to the portion of the positive class (e.g. if 10% of samples are positive, the
baseline is at y = 0.1)

4
Learning Sequence And Structure Motifs with CNNs

Neural network-based classification methods have increasingly been shown to out-
perform traditional machine learning methods, such as random forests and support
vector machines, for the analysis of biological sequence data [70, 71]. However, when
we started to work with neural networks and especially CNNs, there was no easy
way to use these methods for one’s own data. Existing implementations were either
hard to reuse [50], focused on specific problems [71] or lacked comprehensive data
integration and interpretation options [70, 72]. To this end, we developed pysster (a
PYthon Sequence-STructure classifiER) [75], an open-source Python library for training
and interpretation of CNNs on biological sequence data and this chapter demonstrates
the main features of our library. While most of the upcoming sections focus heavily on
network visualization and biological interpretation aspects, predictive performance
is, of course, equally important and will be discussed in more detail at the end in
Section 4.4 and Chapter 5.

4.1 Pysster

Pysster was designed to enable more researchers to easily apply, tune and evaluate
CNNs on biological sequences using only a handful of lines of code and this chapter
describes and showcases its features by modelling ChIP-seq, CLIP-seq, A-to-I editing
and artificial data. Before showcasing specific examples, however, this subsection takes
a bird’s eye view of the package features and some implementation details.

4.1.1 Network Architecture & Feature Overview

the base model . Pysster’s basic network architecture mirrors the established CNN
architecture described previously: a variable number of convolutional/max pooling
layers are followed by a variable number of dense layers. All hidden layers, except
the output layer, use ReLU activations to achieve a high predictive performance. The
network architecture and individual layers can be freely adjusted using a collection
of hyperparameters, such as number of layers, number of kernels/neurons, length of
kernels, mini-batch size and regularization parameters. A full list of hyperparameters
and usage considerations can be found in Section A.1 and Section A.2, respectively.
These appendix sections also list default parameters that we found to perform well,
both in terms of predictive performance and training convergence, for a variety of tasks.

33

34 learning sequence and structure motifs with cnns

To simplify the identification of the most suitable hyperparameters for a given data
set, grid search tuning has been implemented, i.e. given a set of hyperparameters and
respective value ranges, the model architecture reaching the lowest loss on validation
data will be automatically found for the user.

regularization. To regularize the network, dropout is applied after the input
layer and after every max pooling and dense layer. Network weights in all layers are
subject to a max-norm constraint and early stopping is implemented with respect to
the loss on validation data. We also regularize the learning rate of the network weight
optimization. Similar to early stopping, we halve the learning rate if the validation
loss did not improve for a certain number of training iterations. This allows the
backpropagation to take big steps in the beginning of the training while taking smaller,
more precise steps when the loss is close to a minimum. This regularization was not
always found to be useful in the past [76], but for our data sets adjusting the learning
rate in such a way was beneficial for the training convergence time (see Section A.2 for
details on learning rates and network optimization). Adjusting learning rates in some
defined manner is also referred to as learning rate scheduling.

classification. Pysster models are able to perform multi-class and single-label
or multi-label classifications. To achieve this, different output layer activation functions
and loss functions are used. The output layer of a model always contains as many
neurons as input classes are available and each output neuron represents a different
class. For single-label classifications (i.e. each input sequence belongs to exactly one
class) a softmax activation is used in the output layer to ensure that output values form
a valid probability distribution. This can be combined with a categorical cross-entropy
loss, the generalized form of the binary cross-entropy introduced in the previous
chapter that scales to more than two classes [54]:

L(y, ŷ) = −
C

∑
i

yi log(ŷi) (4.1)

where C is the number of classes and y a one-hot encoded vector representing the
true class label. Together, softmax activation and categorical cross-entropy loss can
perform a single-label classification for an arbitrary number of classes. For multi-label
classifications (i.e. each input sequence can belong to multiple classes simultaneously) a
sigmoid activation together with a binary cross-entropy loss is applied to every output
neuron individually. Thereby, the model can predict an arbitrary number of classes at
the same time which is not possible with a softmax activation. The final loss value is in
this case represented by the sum of all binary cross-entropy losses. Irrespective of the
classification mode, we make use of class weighting in our models, that is, to tackle
potential class imbalances loss values of minority class training samples are multiplied
by a constant factor according to the class frequencies. For example, given a training

4.2 sequence & other training data 35

set of 1, 000 class A sequences, 200 class B sequences and 100 class C sequences, loss
values of class B and C sequences will be multiplied by five and ten, respectively.

input data . The fundamental input data the models operate on are strings, for
example DNA sequences over the [A, C, G, T] alphabet. Alphabets are user-defined
and models are therefore applicable to DNA, RNA, protein and other custom data.
Moreover, it is possible to add arbitrary, additional handcrafted data both on a per-base
and on a per-sequence basis. Examples of the first kind will be shown throughout this
chapter, while additional data on a per-sequence basis will be utilized in Chapter 5.

interpretation. Finally, an important focus of our Python library is the inter-
pretability of networks. For this purpose, we extended previous visualization methods
to also report information on positional and class enrichment of motifs and motif
co-occurrence. Additional input data, in the following examples in the form of RNA
secondary structure and DNA shape, can be visualized as well to further increase
interpretability. By adapting the "visualization by optimization" scheme introduced in
Section 3.3.4 to our specific problem domain we are also able to visualize what every
kernel and neuron in every network layer is learning.

4.1.2 Implementation Details

Pysster is implemented in Python and compatible with Python 3.5+. It is MIT licensed
and available on GitHub at https://github.com/budach/pysster and the Python
Package Index (PyPI) at https://pypi.org/project/pysster. The code is extensively
documented and comes with an application programming interface (API) documen-
tation and tutorials in the form of Jupyter notebooks. Continuous integration of the
GitHub repository ensures that all unit tests are executed on every code change. By
building on top of Tensorflow [69] and Keras [77], users can train models on both CPU
and GPU without having to change any code. In addition, pysster offers a number of
convenience functions such as prediction of RNA secondary structures via RNAfold,
RNAplfold and forgi [78, 79] and database comparison of learned motifs via Tomtom
[45]. A brief tutorial with code examples of pysster can be found in Section A.3.

4.2 Sequence & Other Training Data

In the following sections we use publicly available sequence data to highlight classi-
fication problems that CNNs are suitable for and to demonstrate different network
visualization methods. Peak-called ChIP-seq data were generated by the ENCODE
Consortium [35] and we use data for the TFs CTCF (accession number ENCSR560BUE),
JUN (ENCSR569XNP), CEBPB (ENCSR701TCU), E2F1 (ENCSR563LLO) and SRF
(ENCSR041XML). Further ChIP-seq peaks for the glucocorticoid receptor TF (GR)

https://github.com/budach/pysster
https://pypi.org/project/pysster

36 learning sequence and structure motifs with cnns

are taken from EBI ArrayExpress (accession number E-MTAB-2955 [80]). Genome-wide
DNA minor groove width data are based on GBshape [81] and additional DNA shape
features are predicted using the DNAshapeR library [20]. Processed CLIP data for
a collection of RBPs are taken from [82], as this publication also provides matching
background data suitable for binary classification (binding sites of an RBP of interest
are classified against a random selection of binding sites of other RBPs) and we ad-
ditionally predicted RNA secondary structures for binding sites using RNAfold and
forgi. Lastly, experimentally validated genomic positions of RNA A-to-I editing events
are based on the REDIportal database [38].

4.3 Network Interpretation

The following section demonstrates the network visualization and biological interpre-
tation capabilities of our pysster models. For this purpose, we model two different
classification problems: the discrimination of different TF binding sites and the dis-
crimination of repetitive/non-repetitive RNA A-to-I editing events. We first present
interpretation options for first-layer kernels and sequence-only models and show sub-
sequently how additional data in the form of RNA secondary structure and DNA shape
can be visualized as well without breaking said interpretation options. Afterwards,
we present visualizations for all network layers using an artificial data set containing
embedded and known motifs.

4.3.1 Discrimination Of Transcription Factor Binding Sites

The first model we look at has been trained to discriminate GR binding sites from
CTCF binding sites in a binary classification setting. As will become clear later, we
chose these specific proteins because they allow us to illustrate multiple interpretation
aspects in a concise manner. For both the GR class and CTCF class we randomly se-
lected 20, 000 sequences of length 300 centered at a ChIP-seq peak summit, that means,
sequence motifs are expected to be located around position 150 within these sequences.
Prior to the network training, data were split randomly into 70% training (14, 000 per
class), 15% validation (3, 000) and 15% test (3, 000). A pysster model with 20 kernels
per convolutional layer and default hyperparameters otherwise was then trained on
the training set while the validation set was used for learning rate scheduling and early
stopping. The final predictive performance on the test set amounted to 0.974 auROC.
As mentioned, more detailed predictive results for similar classification settings can be
found in Section 4.4. In this case, we (ab-)use the high predictive performance only as
another validation that the learned network features are relevant.

After the network training we can now visualize motifs learned by kernels of the
first convolutional layer. Kernels are visualized analogous to the method introduced

4.3 network interpretation 37

Figure 4.1: First-Layer Kernel Visualization Principle. Kernels can be visualized by looking
for the position of the maximum activation. This position points towards the
subsequence in the input that is most similar to the kernel. Plotting the position
of the maximum activation (ideally over many input sequences) as a histogram or
directly plotting the complete activation vector also informs about the positional
enrichment of the subsequence.

Figure 4.2: Example Kernels Of The GR/CTCF Model. (A) Known sequence motifs for CTCF,
JUN (both [83]) and GR [84]. (B) Four kernels (length 25) and derived sequence
motifs, global class enrichments (violin plots, showing maximum activation densities
and means) and positional enrichments per class (histogram and activation plots,
the latter show mean and standard deviation).

38 learning sequence and structure motifs with cnns

previously: subsequences of the length of the kernel that lead to high kernel activa-
tions above a threshold are extracted from input sequences and subsequently used to
compute a position frequency matrix and a motif. However, we extend the previous
method by also keeping track of the position of the maximum activation for each input
sequence to gain information about the positional enrichment of motifs (Figure 4.1).
Doing all of this separately for every input class further gives information about the
global class enrichment of every motif. Figure 4.2 shows these information visualized
for four first-layer kernels and the model is able to recover known sequence motifs
and their locations for CTCF, GR and JUN, a major binding partner of GR whose
binding motif is expected to be overrepresented near GR binding sites [80]. Positional
enrichment of motifs can be visualized by either plotting the positions of the maximum
activations as a histogram (in Figure 4.2 using a bin size of one, i.e. the highest point
in the histogram shows the most likely motif start location) or by directly plotting the
complete activation vectors (depicted below the histograms in Figure 4.2 using the
mean and standard deviation over the vectors). Histograms of maximum activations
and direct plots of activation vectors contain the same information, but looking at the
activation vectors can be favorable if histograms are sparse due to highly imbalanced
classes or low amounts of input sequences.

In general, a sequence is only considered for visualization if its maximum activation is
above some threshold. Instead of having a fixed threshold, we dynamically determine
thresholds for every kernel by computing the average maximum activation per class.
The highest average across classes is considered as the threshold for all classes, for
example the threshold for kernel 15 in Figure 4.2 is ∼ 0.3 according to the violin plots
that show average maximum activations and their densities for both classes. We found
this threshold to deliver the expected motifs and locations across all studied data sets.
The violin plots used to visualize the maximum activations per class also inform about
the global class enrichment of a motif (higher values indicate a stronger motif signal).
Interestingly, and in addition to known motifs, Figure 4.2 also shows a kernel that
learned to recognize AT-rich sequences depleted near the center of both GR and CTCF
sequences. Depleted "motifs" are a feature we commonly observe in TF and RBP models
and the location of the depletion usually overlaps with the location of other, enriched
motifs (e.g. kernel 10 is substantially depleted at CTCF motif locations represented by
kernel 15 in Figure 4.2). Thus, looking at all first-layer kernel visualizations provides
a convenient overview of the general sequence composition of a data set and is an
advisable practice to likewise learn about the features the CNN uses to differentiate
the classes.

Looking at individual kernel visualizations is already insightful, but it does not tell
us whether different motifs found in the same class (e.g. GR and JUN motifs in
our example) are present within the same sequences or whether their signals we
see in the histograms represent distinct sets of sequences. Maximum activations of

4.3 network interpretation 39

Figure 4.3: Kernel Clustering Of The GR/CTCF Model. Normalized maximum activation
values of sequences (columns) and first-layer kernels (rows) can be hierarchically
clustered to gain insights into motif co-occurrence and class enrichment.

kernel-sequence pairs can therefore further be used to gain information about motif
co-occurrence by computing a hierarchical clustering of both sequences and kernels
(see Figure 4.3). Clustering kernel-sequence pairs according to their maximum acti-
vations ideally places co-occurring kernels close to each other. In practice, it is often
observable that strong motifs are learned by multiple kernels and accordingly, these
will be close to each other in the clustering (e.g. kernel 4 and 15 in Figure 4.3 both
learned the CTCF motif). Looking at the clustering also makes it apparent that two
kernels (12 and 13) learned the reverse complement motif of CTCF and consequently
do not co-occur with the other CTCF kernels. GR and JUN co-occur within a small
subset of GR sequences, however, the kernels seem to mostly be independent (kernel
18 and 16).

A number of kernels (e.g. kernel 0 and 1) learn low-complexity motifs and show
neither a preference for a particular class, according to the clustering, nor any kind
of global or positional enrichment, according to their respective violin plots and
histograms. This brings up the problem of feature importance, i.e. which kernels were
most important for the classification or which kernels should a researcher focus on?
The GR/CTCF example only used 20 kernels, but studying all kernel visualizations can
become time-consuming for bigger models. There is no consensus on how to compute
feature importance for CNNs, but to simplify the model evaluation we implemented
an importance score and users are presented with an ordered list of kernels when

40 learning sequence and structure motifs with cnns

performing visualizations. Kernels can be ordered according to their class-wise average
maximum activation values and we define the importance score of a kernel as the
difference between the highest average maximum activation and the smallest average
maximum activation (higher differences indicate higher importance, see also violin
plots in Figure 4.2). Formally, given a CNN model with n input classes and a vector
x of length n holding the average maximum activations of every class for first-layer
kernel k, the importance score of kernel k is defined as

max(x)−min(x). (4.2)

The idea is that kernels showing large activation differences across classes are more
important for the network to deliver correct predictions. Such kernels also tend to show
specific positional enrichment in at least one class according to our experience. In the
end, it is important to keep in mind that interpretation efforts, such as the clustering
and importance scoring, are intended to give a rough guide on where to start looking
for potentially interesting biological insights. While the visualizations presented so far
might appear fairly comprehensive, one should never blindly trust a computational
prediction without considering one’s domain knowledge of the data and problem at
hand.

4.3.2 Direct Visualization Of First-Layer Kernel Matrices

Kernel matrices of the first convolutional layer have the shape of position frequency
matrices (columns are sequence positions and rows are alphabet characters), but the
numeric entries of their columns do not form probability distributions and therefore
cannot be directly used for the visualization of a sequence motif. However, since we
are able to utilize the maximum kernel activations to find matching subsequences
in the input sequences, this implies that numeric kernel entries are not completely
arbitrary and that higher values are more important. It also implies that it is possible to
normalize kernel matrices to create valid position frequency matrices, for instance by
individually applying the softmax function (see Equation 3.5 from Chapter 3) to every
column of a kernel. To this end, we investigated whether such a direct visualization of
kernel matrices as sequence motifs is a feasible alternative to the "detour" visualization
presented so far.

We found that the quality of directly visualizing kernels through application of soft-
max normalization strongly depends on the random weight initialization of kernels
(Table 4.1). By default, weights in pysster models are initialized by sampling from a
uniform distribution with lower and upper bound −0.05 and +0.05, respectively. Ap-
plying the described column-wise softmax normalization to kernels of the GR/CTCF
model after the network training resulted in matrices with all values close to 0.25

4.3 network interpretation 41

uniform weight

initialization

training

iterations

auroc example motif

±1.5 ∼ 144 ∼ 0.954

±1.0 ∼ 140 ∼ 0.957

±0.5 ∼ 123 ∼ 0.968

±0.05 ∼ 61 ∼ 0.974

Table 4.1: Influence Of Weight Initialization On Direct Kernel Visualization. Visualizing
first-layer kernels by softmax-normalizing kernel columns only shows acceptable
results if very large boundaries are chosen for the uniform distributions used to
initialize kernel weights. However, this negatively impacts both predictive perfor-
mance and the number of training iterations (shown numbers are averaged over five
network trainings). The example motifs show CTCF kernels.

and sequence motifs with essentially zero information content (see example motifs
in Table 4.1). Increasing the bounds of the uniform weight initialization helped to
spread out the weights and resulted in higher information content motifs, but at the
expense of predictive performance (0.974 auROC for ±0.05 bounds, 0.954 auROC for
±1.5 bounds) and a substantial increase in training iterations until early stopping
(61 iterations for ±0.05 bounds, 144 iterations ±1.5 bounds). The largest distribution
boundaries we were able to test were ±1.5, for larger bounds the network got "stuck"
and loss values did not change over time anymore. In addition, we had to remove
the max-norm weight regularization from the network for all tests using larger than
default bounds to allow weights to grow in the first place. Still, resulting motifs do
not look as convincing as motifs created through the "detour" visualization, which
is not affected by the random weight initialization because the specific magnitudes
of kernel weights and resulting activation vectors do not influence the extraction of
subsequences from the input.

To avoid the mentioned downsides of larger initialization boundaries it is certainly
possible to train a network with default settings and to artificially increase final kernel
entries by simply multiplying them with a constant factor before softmax normal-
ization. This way, both negative and positive entries diverge from each other and
sequence motifs tend to have higher information content. However, we also found
that the needed multiplication factor is different for every model and even for kernels
within the same model. Fine-tuning the information content of motifs, especially if
it is unknown what motifs to expect in a data set, is not an advisable practice and
we therefore prefer the visualization method presented in the previous section, as it
delivers more consistent results and, as a byproduct, also informs about class and

42 learning sequence and structure motifs with cnns

positional enrichment.

4.3.3 Discriminating RNA A-to-I Editing Events
& Adding RNA Structure Information

Proteins binding to DNA/RNA might do so by recognizing specific structural elements
in addition to the sequence. While the primary sequence composition of a stretch of
DNA/RNA substantially dictates its structure, there is not necessarily a bidirectional
mapping possible between sequence and structure and differing sequences are able to
form the same structure and vice versa. Accordingly, we are interested in incorporating
structural information into our predictive CNN models. In this subsection, we switch
to an RNA-based classification problem, the discrimination of repetitive/non-repetitive
RNA A-to-I editing events, to describe how RNA secondary structure information
can be added as a model input to improve the biological interpretability of the problem.

Generally, RNA secondary structure can be encoded as a categorical feature: a base is
either paired or unpaired, or, more precisely, a base can be located in a stem context
(paired) or in a hairpin, internal or multi loop context (all unpaired). Computational
tools that predict the RNA secondary structure for a given sequence usually output
a dot-bracket string (see Figure 4.4A) where a dot indicates an unpaired base and
opening and matching closing brackets a base pair. Such strings can further be an-
notated to assign a precise structural context to unpaired bases. The result is another
string (of the length of the original RNA sequence), often over the [H, I, M, S] alphabet
where H represents a hairpin loop, I an internal loop, M a multi loop and S a stem
region (see Figure 4.4A). Since CNNs operate directly on (one-hot encoded) strings, it
is possible to train a model on a secondary structure string (dot-bracket or annotated)
instead of the RNA sequence. To use both sequence and structure information at the
same time, one could also train a multimodal CNN, for example by designing a model
architecture that trains two convolution blocks in parallel, one on the sequence strings
and another on the structure strings, and that combines these two blocks before the
dense block of the network. This would, however, obstruct the network interpretability.
As there is no direct relation between kernels from the sequence and structure blocks,
it would not be possible to tell which sequence and structure motifs belong together.

To overcome this problem, we combine sequence and structure strings before the model
training to simultaneously learn sequence and related structure motifs from a single
model input. Given a sequence string over the four-character alphabet [A, C, G, U] and
the corresponding structure string over the four-character alphabet [H, I, M, S], we join
the strings into a single intermediate string over an arbitrary alphabet of size 16 repre-
senting all possible combinations of characters of the two original alphabets. The new

4.3 network interpretation 43

GGGGUAUACCCC

SSSSHHHHSSSS

((((....))))

Prediction

Annotation

A
GGGGUAUACCCC

|ΣRNA| = 4

SSSSHHHHSSSS
|Σstruct| = 4

AAAABCBCDDDD

|Σjoined| = 16

A
B
C
D

M
N
O
P

...

B

Figure 4.4: RNA Secondary Structure & Model Input Encoding. (A) Secondary structure
prediction tools often output dot-bracket strings to represent paired and unpaired
bases. These strings can be converted into annotated strings indicating more precise
structural contexts (H meaning hairpin loop, S stem region, I internal loop, M multi
loop). (B) To enable the simultaneous detection of sequence and structure motifs
with pysster, sequence and structure strings are joined into a single new string over
an arbitrary alphabet before network training (e.g. using the first 16 letters of the
English alphabet). The new string is subsequently one-hot encoded and used as the
CNN input.

string is then one-hot encoded and used for model training (see Figure 4.4). Combining
strings this way has the advantage of not impairing first-layer kernel visualizations.
After the network training we can still extract subsequences from the intermediate
strings and then decode these subsequences into the two original strings. Thereby, we
can visualize two sequence motifs, one motif over the [A, C, G, U] alphabet and one
over the [H, I, M, S] alphabet.

To demonstrate the capability of the approach to capture known motifs the following
paragraphs present a binary classification model that discriminates A-to-I editing in
repetitive Alu regions from editing in non-repetitive regions. A-to-I editing sites are
strongly enriched in repetitive Alu sequences which, when transcribed into RNA, form
very similar secondary structures that our model should be able to detect. Input data
for the A-to-I editing model has been extracted from the REDIportal database [38]
which collects experimentally validated editing events in humans and other species
and genomic positions of edited A’s in humans are already annotated as being located
in Alu repeats or non-repetitive regions. To detect A’s in Alu repeats that are more
prone to editing than others and to detect how editing patterns differ in non-repetitive
regions, we designed a binary classification model by randomly selecting 50, 000 edited
sites from Alu regions and 50, 000 from non-repetitive regions. Sites were then ex-
tended into both directions to form sequences of length 301, that is, all sequences in
both classes have an edited A at position 151. Secondary structures for all sequences
were predicted and annotated using RNAfold and forgi, respectively, and sequence and
structure strings were joined as described. Finally, data was split into 70% training, 15%
validation, 15% test and the model was trained with default parameters. Somewhat
expected, predictive performance on the held-out test set amounted to 0.999 auROC
due to the strong Alu signal and is again only treated as another validation for the

44 learning sequence and structure motifs with cnns

found motifs.

Figure 4.5: Example Kernels Of The A-to-I Editing Model. Motifs (A) and (B) are enriched
in the Alu class. Spikes in the histograms and activation plots mark motif starting
positions. Since all sequences have an edited A at position 151 this indicates that
bases 14 and 15 in (A) are often edited. The positional enrichment of motif (B)
indicates that it is mostly located downstream of edited A’s. Motifs (C) and (D) are
enriched in the non-repetitive class and show a general preference for stem regions
and a slight preference for a G immediately downstream of the edited A.

Figure 4.5 presents four noticeable kernels that learned to recognize known motifs.
Kernels overrepresented in the non-repetitive class show low-complexity sequence
motifs, but a strong enrichment for stem regions in the respective structure motifs
(Figure 4.5C and Figure 4.5D). This is in line with previous studies which found a
general editing preference for stems, but no distinct sequence motif other than an en-
richment of G’s at the position immediately downstream of edited A’s [39]. The model
kernel in Figure 4.5D was able to learn this information. Overall, the Alu signal is very
dominant in this model and most kernels accordingly have learned to recognize small
Alu stretches. The information content of the visualized motifs is usually very high
for both sequence and structure (kernels A and B in Figure 4.5). Since all sequences
were anchored at an edited A at sequence position 151, the positional enrichment
plots can be used to pinpoint exact editing locations. The kernel in Figure 4.5A pre-

4.3 network interpretation 45

dominantly starts slightly upstream of sequence position 151 indicating that motif
positions 14 and 15 might be often edited. At the same time, the kernel in Figure 4.5B
predominantly starts slightly downstream of sequence position 151 indicating that the
edited A is not part of the motif itself. Interestingly, the end of the former motif and
the start of the latter motif seem to be identical. Indeed, mapping the motifs to the
consensus secondary structure of a transcripted Alu repeat leads to an unambiguous
match (Figure 4.6) and the A’s that the model predicted to be edited have, in fact,
previously been shown to be among the most frequently edited sites of Alu repeats [85].

20
kernel 0

kernel 5

*

Figure 4.6: Learned Motifs Match Alu Sequence And Structure. Mapping learned motifs to
a consensus Alu repeat and combining the results with the positional enrichment
information of said motifs from Figure 4.5 suggests Alu positions 27 and 28 to
be frequently edited, which has been shown previously [85]. The consensus Alu
structure has been adapted from [86].

Taken together, the A-to-I editing example demonstrates our ability to effectively
learn sequence and structure motifs simultaneously. During the interpretation process

46 learning sequence and structure motifs with cnns

additional structure motifs can be used both to strengthen biological insights (locations
of edited A’s in Alu repeats) and to allow conclusions to be drawn in the first place
(enrichment of stems in non-repetitive editing regions). In general, our Python library
allows the combination of strings over arbitrary alphabets (including special characters
for e.g. dot-bracket strings) and users can therefore freely encode and visualize custom
data.

4.3.4 Adding DNA Shape Information

The previous section described how RNA secondary structure information can be
added to a CNN. Compared to RNA secondary structure, DNA shape information are
thought to have a similar influence on protein binding site recognition and thus adding
this information to a CNN promises benefits for model interpretation. However, the
features used to describe DNA shape are much more complex. While RNA secondary
structure can be encoded as a single categorical feature, over a dozen features describing
DNA shape are known, all of which are on a continuous scale. Below, we explore
two different methods to supplement sequence-based CNN models with DNA shape
information by extending our previously described GR/CTCF model. The first method
seeks to preserve the familiar motif visualization by simplifying individual shape
features whereas the second method directly adds multiple shape features to a model
and we show that both methods produce visualizations that reproduce the current
DNA shape literature knowledge.

4.3.5 Discretization Encoding Of DNA Shape

The alphabet and string joining approach used for RNA secondary structure encoding
proved to deliver meaningful results. Therefore, the first DNA shape encoding attempts
to fit individual shape features into this existing framework. As a feature of choice,
we will look at the minor groove width (MGW), the distance in angstrom (Å) between
two opposing phosphates in the DNA backbone, and the already established motifs
from the previous GR/CTCF model will be used for illustrations. Only one piece is
needed to fit a shape feature into the existing framework - a string representing said
feature. To this end, we discretize the otherwise continuous MGW measurements.
Using the DNAshapeR tool we first predicted the MGW for all bases and sequences of
the GR/CTCF model. Based on genome-wide MGW data from the GBshape database
[81] (which uses DNAshapeR internally) we subsequently determined the first, second
and third quartiles (Q1, Q2, Q3) of the MGW distribution. Numeric MGW predictions
of bases of model inputs were then replaced by one of four different characters: values
below Q1 were replaced with an A, values between Q1 and Q2 with B, values between
Q2 and Q3 with C and values above Q3 with D (see Figure 4.7 for an example). Thereby,
we obtain a string of the length of the original DNA sequence over the [A, B, C, D]

4.3 network interpretation 47

alphabet where A represents very low MGW values, D very high values and B and C
more average ones.

Q1

Q2

Q3

genome-wide quartiles

 < Q1 → A
Q1 - Q2 → B
Q2 - Q3 → C

> Q4 → D

Discretization & Encoding

Figure 4.7: MGW Feature Discretization. By using the quartiles of genome-wide MGW predic-
tions as thresholds, MGW predictions (y-axis) of individual model input sequences
(x-axis) can be discretized into four groups. Groups are encoded using a four-letter
alphabet, leading to a final string representation that can be used as a CNN input.

Analogous to the RNA secondary structure encoding, the MGW string can now be used
as a model input in addition to the DNA sequence string. We retrained the GR/CTCF
model and Figure 4.8 shows example motif visualizations for CTCF, GR and JUN. The
appearance of the sequence motifs is not affected by adding MGW information. GR
does not show a particularly strong MGW preference, but CTCF and especially JUN
display high information content MGW motifs. CTCF appears to prefer a high MGW
in the center of its motif, while JUN prefers a very low MGW. Interestingly, many motif
positions with high MGW information content show a comparatively low sequence
information content (position 16 and 23 for CTCF, 6 and 16 for GR, 14 for JUN),
signalling that shape information might supplement binding site specificity. Overall,
the model (20 first-layer kernels) did not learn MGW motifs without accompanying
sequence motif.

48 learning sequence and structure motifs with cnns

Figure 4.8: MGW Discretization Example Motifs. The GR/CTCF model was retrained using
MGW "ABCD" strings as additional input. Sequence motifs for CTCF, GR and JUN
do not change and MGW motifs show preferences for particular MGW ranges.

4.3.6 Direct Encoding Of DNA Shape

Encoding DNA shape features as discretized strings produces familiar motif visual-
izations, but adding more than one feature at once is impractical due to exploding
sizes of joined alphabets. MGW is a major shape feature, but many other features
describing the relation of bases within a base pair or the relation of adjacent base pairs
can be predicted using the available tools. To enable the addition and visualization of
multiple features at once we tested a different encoding and directly added numeric
shape predictions (e.g. the predictions from the y-axis in Figure 4.7) as rows to the
one-hot encoded sequence matrix (see Figure 4.9). Prior to their addition, individual
shape predictions have been standardized (by subtracting their mean and dividing by
their standard deviation). Adding multiple features this way enables the simultaneous
learning of sequence motifs and shape patterns and does not affect our first-layer kernel
visualization strategy. During kernel visualization we still look for the subsequences
in the input, or in this case more precisely, for the columns in the input matrix that
maximally activate a kernel (see Figure 4.9). The rows corresponding to the one-hot
encoding can then be used to receive a sequence for motif visualization and rows
corresponding to DNA shape features can be individually visualized by plotting the
values of the respective columns as line plots (such visualizations are called pattern

4.3 network interpretation 49

from now on). Pysster offers users the option to automatically standardize arbitrary
input features, but will visualize such features using the non-standardized values in
output plots.

Figure 4.9: Direct Shape Feature Encoding. By concatenating further features as individual
rows to the one-hot encoded input matrix multiple features can be added to the
network at once. Thereby, kernels can be visualized using the established strategy:
input columns that maximally activate a kernel (light blue accentuation) can be
extracted and rows belonging to the one-hot encoding are still being used to create
sequence motifs, while other rows are individually plotted using summary statistics.
As this figure technically only shows a single network input, orange lines and shades
indicate mean and standard deviation over many inputs for illustrative purposes.
ProT symbolizes the propeller twist feature and EP electrostatic potential.

As a first test, we retrained the GR/CTCF model with only the numeric MGW feature
as additional input. Resulting CTCF, GR and JUN motifs and MGW patterns are shown
in Figure 4.10A. The figure also shows a comparison of the MGW patterns with the
previously learned "ABCD" motifs from Figure 4.8. Both visualizations are very similar
in that they show the same general trend regarding low/high MGW values for each
position and in that the information content in the motifs and the standard deviation in
the patterns correlate. High information content positions always show a comparatively
low standard deviation while low information content positions exhibit a very high
standard deviation. Therefore, the simplified "ABCD" string motifs constitute a familiar
and effective visualization. To demonstrate that the features learned by our model
can recover known shape patterns, Figure 4.10B and C show heatmap visualizations
provided by the TFBSshape database [87] for CTCF and JUN (GR was not available).
In both cases patterns and motifs learned by our models match the database entries.

50 learning sequence and structure motifs with cnns

Figure 4.10: MGW Pattern And Motif Comparison. Line plots below motifs in (A) show mean
and standard deviations for learned MGW patterns. Below that, "ABCD" string
motifs from Figure 4.8 are shown as a comparison. Screenshots in (B) and (C)
depict known MGW patterns for CTCF and JUN from the TFBSshape database
(GR was not available).

The big advantage of the direct encoding is that it is possible to add an arbitrary
number of additional features at once. Thus, we retrained the GR/CTCF model yet
again with five predicted shape features - MGW, Roll, propeller twist (ProT), helix
twist (HelT) and electrostatic potential (EP) - and Figure 4.11 illustrates the resulting
visualizations for CTCF, GR and JUN. Notably, not all features are equally important
for every protein (or position), for example while MGW does not appear to be partic-
ularly important for GR, the Roll and EP features show specific patterns for this protein.

4.3 network interpretation 51

Figure 4.11: Adding Multiple Shape Features At Once. Features visualizations for the
GR/CTCF model trained with five shape features. In order: MGW, propeller
twist (ProT), electrostatic potential (EP), helix twist (HelT) and Roll.

In summary, we demonstrated that our models can recover known DNA shape patterns
and are additionally able to utilize multiple features at the same time to aid the model
interpretation process. Example visualizations for other DNA binding proteins can be
found in Section A.4 and predictive performance results for all tested proteins and
shape features can further be found in Section 4.4. Analogous to the RNA secondary
structure encoding, usage of DNA shape as input is only an example. Users of our
Python library are free to use custom data in the presented way.

52 learning sequence and structure motifs with cnns

4.3.7 Visualizing All Network Layers By Optimization

The visualizations presented so far were all concerned with only the first convolutional
layer - the layer directly connected to the input. Mapping positions of the maximum
kernel activations to input positions, however, is not applicable anymore to down-
stream layers in the network, because the max pooling operations break the direct
connection to the input. To still visualize downstream layers of a network, visualization
by optimization can be used (see Section 3.3.4). It has previously been applied to image
data and could illustrate how networks hierarchically extract features from inputs.
Starting layers of image classifiers, for instance, usually learn to recognize individual
colors and line directions while later layers learn textures and more complex patterns
until at some point shapes are learned that resemble input objects (see Figure 4.12).
We adapted the visualization by optimization approach for biological sequence data
and show in the following that a comparable feature hierarchy is also learned for our
particular input data.

Figure 4.12: Visualization By Optimization Overview. Visualizing what every unit (convolu-
tional kernel or neuron) in every layer of a CNN is learning assists in understanding
how features are hierarchically extracted during network training. Images on the
left side of the figure are adapted from [88] and depict exemplary convolutional
kernel visualizations from different layers of an image classification model (two
per layer).

Given an already trained network, the idea of visualization by optimization is to gener-
ate an input that maximizes the output of a specific network unit. Such an input depicts
the optimal input a unit might react to. Units can be individual kernels, neurons or
combinations thereof and applying this idea to every network unit creates a collection
of inputs that depict the hierarchical feature extraction and classification process. To
generate an optimal input for a network unit a gradient ascent optimization is applied
that maximizes the unit output with respect to a randomly initialized input. Unit

4.3 network interpretation 53

outputs are either the activation vectors of convolutional kernels or the real-valued
output numbers of neurons. In the case of the sequence-only GR/CTCF model a
network input would be a matrix of shape 4× 300 and entries of that matrix would
now be the weights that are adjusted during the gradient ascent training.

More formally, the objective function we are trying to optimize can be stated as:

L = max(c) (4.3)

where c is the activation of a kernel or a neuron. Since kernel activations are vectors,
they can be optimized in different ways and we found that only optimization of the
maximum value leads to satisfying results. Neurons only produce a single output
number and are trivial to optimize. Given a randomly initialized input through a set
of weights w, we perform the gradient ascent optimization as follows:

w∗ = w + εg(∇wL(w)) (4.4)

where w∗ is the adjusted set of weights, ε the learning rate, ∇wL(w) the gradient and
g a function that normalizes the gradient with respect to the L2 norm1:

g(x) =
x√

∑i x2
i

. (4.5)

We mentioned earlier that the direct visualization of a kernel matrix is not advisable,
but for the visualization by optimization procedure to work we essentially have to
do exactly this. The generated input is a position frequency matrix-like object, just
as a convolutional kernel, and we now have to normalize it in some way to directly
visualize it. Visualization attempts of image classifiers are confronted with a similar
problem in that they have to manually find appropriate normalization or regularization
schemes that create "viewable" images. We found the L2 normalization to be helpful for
our data, as it keeps the partial derivatives in the gradient small and close to each other,
which in turn results in a more consistent gradient ascent process. Moreover, it affects
the learned weights such that a final column-wise softmax normalization without any
further scaling is usually enough to produce suitable sequence motif visualizations.
Overall, the optimization process is controlled by three hyperparameters: the learning
rate (0.02 by default), the number of gradient ascent iterations (600 by default) and the
boundaries of the uniform distribution used to initialize the input (±0.1 by default).
Higher values for all parameters can be used to increase the information content of the
generated input. They can also be tuned if the iterative gradient ascent scheme is not
converging for a particular model.

1 https://keras.io/backend/, accessed: 20.9.2019

https://keras.io/backend/

54 learning sequence and structure motifs with cnns

We will now demonstrate the method using an artificial data set that contains defined
motifs. Therefore, a positive and a negative class were created by randomly sampling
sequences over the DNA alphabet and by implanting motifs into the positive class.
The positive class consists of two kinds of sequences: one half (5, 000 sequences) con-
tains a "CCCCCCCCCC" and a "GGGGGGGGGG" motif, always starting at the exact
same positions within a sequence, while the other half (5, 000 sequences) contains an
"AAAAAAAAAA" and a "TTTTTTTTTT" motif, likewise always starting at the same
positions. Figure 4.13 shows the two kinds of positive input sequences visualized
as full-length motifs. One can see that the C and G and A and T motifs are always
co-occurring, respectively, while G and A, for example, never co-occur. The negative
class (10, 000 sequences) does not contain any motifs and all sequences in both classes
are of length 140.

Figure 4.13: Positive Class Of the Artificial Data. Random sequences of length 140 from the
DNA alphabet were sampled to create the positive class. Afterwards, motifs were
implanted at exact locations. One half of the positive class therefore contains a C
and G motif, while the other contains an A and T motif.

We trained a small CNN comprised out of two convolutional layers with 20 kernels
of length eight per layer, a dense layer with five neurons and an output layer with
two neurons on the data. Although we already have a visualization method for first-
layer kernels, we will now look at said layer, because the existing visualizations can
be utilized to validate the new approach. We would expect the visualizations to be
similar. Figure 4.14 shows the results of the visualization by optimization approach
for all kernels of the first layer and the reference visualization for one of the kernels.
Motifs are identical and we can now be more confident that results obtained from
downstream layers are correct. Generally, it is noticeable that all optimized inputs of
first-layer kernels only possess eight adjoined positions with an observable information
content, which is desirable as eight is the length of our kernels. We mentioned already
that only optimization of the maximum activation leads to this result (Equation 4.3).
Optimization of other metrics, such as mean activation or sum of the activation vector,
created motifs that were stretched out over the complete 140 bases long input, which
we did not consider to be useful (e.g. the input of the first kernel in Figure 4.14 would
show high information content A’s for all 140 positions instead of just eight positions).

One can further notice that the locations of the four implanted motifs in the gradient
ascent visualization do not match the locations in the real input. Indeed, re-running the
optimization of all first-layer kernels results in the same motifs, but different random
locations yet again (not shown). This is due to convolutional layers being equivariant
to translations in the input as discussed earlier in the thesis. Kernels can therefore

4.3 network interpretation 55

detect motifs irrespective of their location in the input and the gradient ascent-derived
inputs reflect this property.

kernel 0, positive (n = 5140) kernel 0, negative (n = 347)

kernel 0

pos
iti

ve

negativ
e

B

A

Figure 4.14: Visualization Of The First Convolutional Layer. Every row in (A) shows the
generated input for one of the 20 kernels of the first layer. Comparing the generated
input of the first kernel to the visualization created by the default approach in (B)
indicates a strong agreement.

Figure 4.15 illustrates the generated inputs for all 20 kernels of the second convo-
lutional layer. The second layer appears to learn combinations of first-layer motifs.
Combinations usually comprise two previous motifs and feature no spacing between
motifs, possibly due to the max pooling applied after the first convolutional layer. It is
also noticeable that even motif combinations that never occur in the real data are being
learned (e.g. combinations of the A and G motif). In addition, motifs are much longer
than the kernel length eight instructs, presumably because the second convolutional
layer operates on an input matrix whose rows conceptually already represent full
motifs instead of individual bases. Again, the network is not yet learning exact motif
locations, re-running the optimization yields the same motifs at random locations (not
shown).

56 learning sequence and structure motifs with cnns

Figure 4.15: Visualization Of The Second Convolutional Layer. Kernels in the second con-
volutional layer learn combinations of first-layer motifs. However, some of these
combinations do not exist in the real input data the model was trained on.

Applying visualization by optimization to the five neurons in the dense layer generates
inputs as shown in Figure 4.16 and we finally see exact motif locations and correct
motif spacing. Interestingly, some neurons seem to learn inputs that contain all four
motifs at the same time, resembling a consensus input. The generated input for the
second to last neuron shows motifs at locations where we expect motifs, but the order
is not correct. To understand this, we can look at the last network layer, the output layer.

Figure 4.16: Visualization Of The Dense Layer. Generated inputs for the five neurons in the
dense layer show exact motif locations and correct motif spacing for some neurons.
Neuron four (from the top) appears to learn exact locations, but an incorrect order.
The optimization for neuron two did not converge.

The output layer consists of two neurons and each neuron represents one class. There-
fore, visualizing the output layer can help to understand what the network considers
to be the most representative sequence for each class. For all previous layers we
maximized unit activations. The output layer uses a softmax (or sigmoid) activation
for classification which saturates at one. To allow for an effective maximization we

4.3 network interpretation 57

replaced the activation with a linear activation (f (x) = x) before applying gradient
ascent and results are shown in Figure 4.17. The generated input for the neuron of
the positive class shows all four motifs with correct locations and spacing. We likely
already observe the same generated input in the previous dense layer, because the
data set is very easy to learn. The neuron representing the negative class is more
interesting. The real negative input was completely random and did not contain any
motifs, nevertheless, the generated input shows clear motifs and locations. Notably,
motifs and locations are comparable to motifs from the positive class, but the order of
motifs is different. Apparently the network is forced to somehow model a negative
sequence and it has to do so by using motifs from the positive class (since there are no
motifs in the negative class) and by arranging the motifs in a way that cannot possibly
form a positive class sequence. Shuffling the order of motifs seems to be the solution
chosen by the network to learn the classification task. Indeed, retraining a different
model on the same data from scratch and applying the visualization scheme leads to a
different motif order for the neuron representing the negative class.

Figure 4.17: Visualization Of The Output Layer. The generated input at the top represents
what the positive class neuron assumes an average positive sequence to look like.
The generated input at the bottom represents the same for the negative class
neuron. As there were no motifs in real negative inputs, the network appears to
reorder motifs from the positive class to model a sequence that is never found in
the positive class (and neither in the negative class).

In summary, the presented results indicate that visualizations of internal network
layers have to be interpreted very cautiously. Convolutional layers beyond the first one
are learning motif combinations that never actually occur in the real data. Similarly,
visualizations of negative class neurons in the output layer generated inputs that do
not exist in the real data. On top of that, the contrived artificial data set was completely

Figure 4.18: Output Layer Visualization Of The GR/CTCF Model. Generated inputs for the
GR and CTCF class neurons (top and bottom, respectively) only show the general
sequence composition of binding sites and resemble consensus sequences. The
motifs only show the center region around position 150 (full-length inputs of
length 300 have been omitted for brevity). As binding sites are enriched around
position 150, but are not precisely located at the same positions, we only see a
general preference for GC-rich regions in the CTCF class and individual di- and
trinucleotides from the GR motif (possibly JUN motif) in the GR class.

58 learning sequence and structure motifs with cnns

free of noise. A real, noisy biological data set is much harder to interpret, but even
when looking at a comparatively simple classification, such as the GR/CTCF model,
the usefulness of the visualizations become questionable (see Figure 4.18 for output
layer visualizations of the GR/CTCF model). While visualization by optimization
can be useful for image classification models (as the human brain is very efficient at
recognizing patterns even in very noisy images) we are not convinced of its value for
biological sequence data. Nevertheless, it is very interesting to see the inner workings
of such a network at least once.

4.4 Network Performance

The models presented so far were useful to demonstrate visualization and interpre-
tation aspects of CNNs in a concise manner. The last section of this chapter focuses
on additional binary classification settings to investigate both predictive and training
runtime performance as well as their dependence on additional DNA shape and RNA
secondary structure input. All measurements were performed on a 64-bit Linux ma-
chine with two E5-2697Av4 CPUs (32 cores, 64 threads) and an NVIDIA Titan X GPU.
In addition, all results are based on pysster version 1.2.1 with TensorFlow version 1.14
as back-end.

4.4.1 DNA Shape Performance

We first looked into the performance of TF and DNA shape models by classifying
TF binding sites versus genomic background regions in a binary classification setting
for six different proteins. As before, sequences of length 300 centered at ChIP-seq
peak summits were used for individual TFs, but instead of classifying one TF against
another TF we now used the flanking regions of peaks for the background class. To this
end, we randomly selected regions of length 300 located downstream and upstream
of peaks (selected regions and peaks do not overlap) such that we received balanced
classes (20, 000 sequences per class). Classes were further randomly split into distinct
sets of 70% training, 15% validation and 15% test data. This splitting was repeated 50
times and all presented measurements are medians of the resulting 50 models. Models
were trained using kernel length 30 and default hyperparameters otherwise.

To obtain baseline predictive performance results, we trained sequence-only models
for each protein (TF versus its respective flanking background). Subsequently, we
added DNA shape features, individually and jointly, to assess their predictive per-
formance impact (Table 4.2). We observe that baseline results are already very high
(0.978 auROC for the CEBPB model being the highest, 0.806 auROC for GR being
the lowest) and that adding DNA shape features has essentially no consequences.
Depending on the TF, some DNA shape features seem to perform better than others,

4.4 network performance 59

tf

sequence

baseline

mgw

"abcd"
mgw prot ep helt roll

all

features

CTCF 0.965 0.959 0.964 0.965 0.964 0.964 0.963 0.964
CEBPB 0.978 0.973 0.978 0.978 0.978 0.977 0.977 0.977
JUN 0.969 0.961 0.968 0.969 0.969 0.968 0.969 0.968
E2F1 0.83 0.826 0.83 0.829 0.832 0.828 0.828 0.829
SRF 0.906 0.899 0.906 0.907 0.907 0.903 0.903 0.904
GR 0.806 0.771 0.8 0.804 0.802 0.806 0.797 0.797

Table 4.2: DNA Shape Feature Performance With Flanking Regions Background. Table en-
tries are median test set auROC measurements and each based on 50 models trained
on different training/validation/test data splits. The "all features" column represents
models using all five examined DNA shape features at the same time (minus the
MGW "ABCD" string). Bold values depict maximum row entries.

but since we often have to look at the third decimal place to find auROC differences,
this has no practical meaning. We also tested the impact of the MGW "ABCD" string
discretization encoding, which leads to a persistent performance reduction, pointing
to a loss of information during the discretization. Here, with 0.771 auROC, GR shows
a meaningful performance difference compared to the baseline (0.806) and compared
to the direct addition of MGW to the input matrices (0.8) and the very weak MGW
"ABCD" motif observed earlier for GR (Figure 4.8) might be a potential explanation,
as additional input data does not necessarily causes better performance if it does not
carry additional extractable patterns. For all other proteins, however, differences are
much smaller (e.g. CTCF: 0.965 baseline, 0.959 MGW "ABCD" string, 0.964 direct MGW
addition).

tf

sequence

baseline

mgw

"abcd"
mgw prot ep helt roll

all

features

CTCF 0.98 0.977 0.981 0.98 0.98 0.981 0.98 0.981
CEBPB 0.979 0.976 0.981 0.978 0.979 0.978 0.983 0.982
JUN 0.974 0.971 0.976 0.978 0.977 0.976 0.977 0.979
E2F1 0.906 0.902 0.913 0.913 0.913 0.912 0.919 0.924
SRF 0.935 0.936 0.939 0.942 0.942 0.935 0.941 0.948
GR 0.912 0.91 0.916 0.909 0.91 0.914 0.921 0.92

Table 4.3: DNA Shape Feature Performance With Dinucleotide Shuffled Background. Table
entries are median test set auROC measurements and each based on 50 models
trained on different training/validation/test data splits. The "all features" column
represents models using all five examined DNA shape features at the same time
(minus the MGW "ABCD" string). Bold values depict maximum row entries.

60 learning sequence and structure motifs with cnns

To further investigate the predictive performance impact of DNA shape features, we
also tested another common background class. Everything else being the same, we
replaced the flanking regions background with a dinucleotide shuffled background,
that is, sequences from the TF classes were shuffled such that their dinucleotide content
remained constant. DNA shape features were then predicted for the shuffled sequences
and model results can be found in Table 4.3. For this background, one can notice
a slightly higher positive impact of DNA shape features (often already observable
in the second auROC decimal place) and the negative impact of the "ABCD" string
discretization seems to be moderated as well (e.g. GR: 0.912 baseline, 0.91 MGW
"ABCD", 0.92 all features). This might be caused by the fact that, while dinucleotide
shuffled backgrounds are popular, they nevertheless represent a more artificial setting
than the flanking regions background and are easier to distinguish from real sequences.

tf

sequence

baseline

mgw

"abcd"
mgw prot ep helt roll

all

features

CTCF 100 72 111 108 99 106 102 93
CEBPB 58 74 71 81 92 70 79 98
JUN 72 67 83 83 84 72 88 82
E2F1 71 55 88 121 110 81 105 105
SRF 62 63 71 68 70 62 111 98
GR 72 59 103 105 95 77 103 82

Table 4.4: DNA Shape Training Runtime Performance. Table entries depict median GPU
training times in seconds and are each based on 50 models trained on different train-
ing/validation/test data splits (using dinucleotide shuffled backgrounds). 28, 000
training and 6, 000 validation sequences (all length 300) were used for each split.
Bold values highlight minimum row entries.

With respect to the runtime performance, we observed that adding more DNA shape
features tends to result in longer training times (Table 4.4). Models operate on m× n
input matrices, where n is the length of a sequence and where m is bound by the di-
mensionality of a sequence’s one-hot encoding and the number of additional features.
Therefore, adding more features can be expected to raise training times. In spite of this,
it is also observable that adding features can occasionally improve the training time
(e.g. CTCF: 100 seconds baseline, 93 seconds all features) and in no case did the more
than doubling of the input (four-dimensional one-hot encoding + five additional shape
features) led to a doubling of training time. Even more interestingly, using the "ABCD"
string discretization, i.e. a 16-dimensional one-hot encoded input, produces the fastest
training times for four out of six proteins (e.g. 72 seconds for CTCF compared to its 100
seconds baseline). In these cases, adding further input benefits the convergence of the
training and less training iterations are required before the automated early stopping

4.4 network performance 61

takes effect. Unfortunately, there is no consistent pattern noticeable in our used data
that would explain, or allow to predict whether a particular kind of additional data
benefits training convergence.

In summary, since DNA shape features are predicted solely based on sequence and
therefore correlate with said sequence, it is not obvious what kind of predictive perfor-
mance impact to expect, but it is certainly possible that shape features do not supply
significant new information to a complex CNN model, especially given the already
very high predictive results of baseline models. Conversely, although adding DNA
shape features increases the biological interpretability of CNN models, we found
only marginal predictive performance improvements, if any. The runtime performance
shows stronger variations and can be affected both positively and negatively through
additional features.

4.4.2 RNA Secondary Structure Performance

To measure the predictive performance for RNA sequences, we chose data sets from the
ssHMM publication [82], a tool for the unsupervised extraction of RNA sequence/struc-
ture motifs. Here, the authors already prepared filtered RBP data sets suitable for
binary classifications by providing CLIP-seq based RBP binding site peak locations
for a collection of proteins. Binding sites of a protein of interest can then be classified
against a balanced, random selection of binding sites of all other proteins. For our
pysster models, we used the provided genomic peak locations, which were already
split into positive and background class for each protein, to extract sequences of length
200 centered at peak summits. We predicted and annotated their respective secondary
structures as described earlier and trained models with kernel length eight and default
hyperparameters otherwise. Reported results are again medians based on 50 different
data splits and models. RBP motifs are usually short and we therefore chose kernel
length eight to briefly compare learned motifs with the literature knowledge. We
also used the opportunity to compare pysster’s performance with GraphProt [89],
a frequently used classifier for RNA sequence/structure data. Compared to CNNs,
GraphProt represents a very different machine learning approach and extracts both
sequence and corresponding RNA secondary structure binding preferences using a
graph-kernel approach and subsequently uses the extracted features to classify inputs
with a support vector machine.

Table 4.5 shows predictive performance and runtime results for a number of proteins
with known sequence or structure preferences. Predictive pysster results on the held-
out test data are very high (on average ∼ 0.931 over all proteins) and outperform
GraphProt for all tested proteins (∼ 0.816 over all proteins). In terms of runtime,

62 learning sequence and structure motifs with cnns

both GPU and CPU-only runs of pysster compare favourably with GraphProt. While
running pysster requires an average of ∼ 80 seconds on the GPU and ∼ 165 seconds
using only the CPU, running GraphProt takes ∼ 67 minutes on average. This is due to
GraphProt using only a single thread, while pysster is fully parallelized and makes
more efficient use of the available hardware.

rbp

pysster

auroc

graphprot

auroc

pysster (gpu)
seconds

pysster (cpu)
seconds

graphprot

seconds

PUM2 0.948 0.853 49 102 2503
NOVA 0.965 0.881 58 101 2531
QKI 0.967 0.888 45 90 2014
SRFS1 0.94 0.87 199 457 10730
TAF2N 0.913 0.7 74 157 3960
IGF2BP 0.855 0.701 52 81 2400

Table 4.5: RBP Performance: pysster & GraphProt. All pysster measurements are medians
based on 50 models that used different data splits. GraphProt (version 1.1.7, with
motif length 8 and default parameters otherwise) was only executed once due to its
high runtime. All runtimes include RNA secondary structure predictions, because
GraphProt automatically computes these internally. We used a utility function from
the pysster library to predict structures via RNAfold. The total amount of training
and validation sequences (all length 200) for each RBP model are (in row order)
10368, 11132, 8700, 43472, 17302 and 10260.

The classification of RBP binding sites represents a more canonical RNA-based classi-
fication task compared to the already presented RNA A-to-I classification and while
this section of the thesis focuses on predictive and runtime performance, we therefore
also want to briefly investigate the learned motifs. To this end, Table 4.6 shows motif
visualizations from pysster, GraphProt and ssHMM, a hidden Markov model-based
tool that learns motifs in an unsupervised fashion from the protein of interest class and
with regard to the learned sequence/structure motifs, all three tools can recapitulate
existing knowledge.

Next, we examined how the addition of RNA secondary structure information affects
both predictive and runtime performance of pysster. Since secondary structure is
represented as a string (over the four-letter [H, I, M, S] alphabet), we trained models
that either utilized only sequence information, only structure information or both. To
incorporate the fact that structure strings usually show long runs of the same character
and potentially favor longer motifs, we measured the runtime of a three-model grid
search for all input data (kernel length 8, 16 or 24). For every input type the grid search
was repeated 50 times with different data splits and predictive performances are based

4.4 network performance 63

rbp &
literature

pysster

(top 2)
sshmm graphprot

PUM2

[90]

QKI

[90]

TAF2N

AU-rich
stems
[91]

Table 4.6: Motif Comparison Of pysster, ssHMM & GraphProt. Pysster produces a user-
defined number of motifs and only the two motifs with the highest importance
score showing a local enrichment near the sequence center are shown in the table.
GraphProt only learns a single motif per classifier and does not report any additional
information. ssHMM, an unsupervised hidden Markov model-based motif finder,
can learn a motif from the protein of interest class alone and in its visualization
the thickness of the arrows indicates the most likely structural path through the
sequence motif.

on the top-performing models only. The results shown in Figure 4.19 indicate that
structure-only models consistently deliver the lowest predictive performance, while
sequence-only models deliver the highest. The joined sequence/structure encoding
into 16-dimensional one-hot encoded inputs tends to achieve slightly lower perfor-

64 learning sequence and structure motifs with cnns

mance than the sequence-only baseline, similar to what we observed in the DNA shape
"ABCD" string discretization. For example, the RBP PUM2 achieves a median auROC
of 0.58 with structure-only input, 0.957 auROC with sequence-only input and 0.955
auROC with the joined 16-dimensional input. This trend holds true for all six tested
RBPs and the importance of the sequence in the joined encoding seems to dominate
the structure information, as the predictive performance is not simply the average of
the respective separate models.

A B

C D

E F

st
ru

ct
ur

e

se
qu

en
ce

bo
th

 (j
oi
ne

d)

bo
th

 (t
wo-

ho
t)

30

40

50

60

70

S
e
co

n
d

s

Grid Search Time (PUM2)

st
ru

ct
ur

e

se
qu

en
ce

bo
th

 (j
oi
ne

d)

bo
th

 (t
wo-

ho
t)

0.5

0.6

0.7

0.8

0.9

1.0

a
u
R

O
C

auROC (PUM2)

st
ru

ct
ur

e

se
qu

en
ce

bo
th

 (j
oi
ne

d)

bo
th

 (t
wo-

ho
t)

30

40

50

60

70

80

S
e
co

n
d

s

Grid Search Time (NOVA)

st
ru

ct
ur

e

se
qu

en
ce

bo
th

 (j
oi
ne

d)

bo
th

 (t
wo-

ho
t)

0.5

0.6

0.7

0.8

0.9

1.0

a
u
R

O
C

auROC (NOVA)

st
ru

ct
ur

e

se
qu

en
ce

bo
th

 (j
oi
ne

d)

bo
th

 (t
wo-

ho
t)

30

40

50

60

S
e
co

n
d

s

Grid Search Time (QKI)

st
ru

ct
ur

e

se
qu

en
ce

bo
th

 (j
oi
ne

d)

bo
th

 (t
wo-

ho
t)

0.5

0.6

0.7

0.8

0.9

1.0

a
u
R

O
C

auROC (QKI)

st
ru

ct
ur

e

se
qu

en
ce

bo
th

 (j
oi
ne

d)

bo
th

 (t
wo-

ho
t)

100

150

200

250

S
e
co

n
d

s

Grid Search Time (SRSF1)

st
ru

ct
ur

e

se
qu

en
ce

bo
th

 (j
oi
ne

d)

bo
th

 (t
wo-

ho
t)

0.5

0.6

0.7

0.8

0.9

1.0

a
u
R

O
C

auROC (SRSF1)

st
ru

ct
ur

e

se
qu

en
ce

bo
th

 (j
oi
ne

d)

bo
th

 (t
wo-

ho
t)

40

50

60

70

80

90

S
e
co

n
d

s

Grid Search Time (TAF2N)

st
ru

ct
ur

e

se
qu

en
ce

bo
th

 (j
oi
ne

d)

bo
th

 (t
wo-

ho
t)

0.5

0.6

0.7

0.8

0.9

1.0

a
u
R

O
C

auROC (TAF2N)

st
ru

ct
ur

e

se
qu

en
ce

bo
th

 (j
oi
ne

d)

bo
th

 (t
wo-

ho
t)

30

40

50

S
e
co

n
d

s

Grid Search Time (IGF2BP123)

st
ru

ct
ur

e

se
qu

en
ce

bo
th

 (j
oi
ne

d)

bo
th

 (t
wo-

ho
t)

0.5

0.6

0.7

0.8

0.9

1.0

a
u
R

O
C

auROC (IGF2BP123)

Figure 4.19: Performance Effects Of RNA Secondary Structure. Structure-only, sequence-
only and combined inputs (joined 16-dimensional one-hot encoding and eight-
dimensional two-hot encoding, see main text below) were tested to assess model
performance for six different proteins. Per input, 50 grid searches were performed
on different data splits (on the GPU). While predictive performance (auROCs) is
very stable, grid search runtime varies substantially due to early stopping.

With respect to the training runtime, one can observe that, even though structure-
only and sequence-only models use the same amount of input, structure-only models
converge considerable faster (e.g. PUM2: 34 seconds using only structure, 52 sec-
onds using only sequence, see Figure 4.19). Given the low predictive performance
results of structure-only models, this might be due to the low amount of "signal"
in the data which hinders validation loss improvements and consequently leads to
fast early stopping (experimenting with relaxed early stopping did not improve the

4.5 discussion 65

predictive performance of structure-only models). Interestingly, models using the
considerably larger 16-dimensional joined input exhibit a lower training runtime than
the sequence-only baseline models for all proteins (e.g. PUM2: 46 seconds versus 52
seconds baseline). We already observed a similar trend for the DNA shape discretiza-
tion encoding and decided to explore this in more detail. To this end, we additionally
tested a simple "two-hot" encoding for our RPBs, that is, we separately created four-
dimensional one-hot encodings for sequence and structure strings and concatenated
these into 8 × n input matrices. In terms of training time, this input encoding is
slower than the 16-dimensional encoding and comparable to sequence-only models
(e.g. PUM2: 56 seconds versus 52 seconds baseline, see Figure 4.19). The predictive
performance of two-hot encoded models is slightly higher than results from the joined
encoding (e.g. PUM2: 0.96 auROC versus 0.955 auROC).

It is hard, or likely not possible at all, to quantify why the 16-dimensional input
encoding leads to faster training convergence compared to four-dimensional or eight-
dimensional inputs. Models based on the 16-dimensional inputs usually show the
lowest predictive performance (excluding structure-only models), however, differences
are marginal and manifest only in the second or third decimal positions of auROC
measurements. Differences in training runtimes are more noticeable, and therefore
arguably more relevant in practice, where data sets can become much larger or grid
searches more comprehensive than in our examples. Accordingly, we found the joined
input encoding to represent a convenient middle ground.

4.5 Discussion

In this chapter we presented the main capabilities of pysster, our open-source Python
library for training and interpretation of CNNs on biological sequence data. We
demonstrated that CNN models possess a high predictive performance and that vari-
ous feature visualization and interpretation methods can deliver biological insights
for the problem and data at hand. In addition to using only sequence information,
our models can handle arbitrary, supplemental data in a way that still allows for
visualization and interpretation, which we exemplified by using DNA shape and RNA
secondary structure information. Overall, by providing an easy-to-use programming
interface and automated hyperparameter tuning for model training (see code examples
in Section A.3), this software library is intended to simplify the usage of deep learning
models for other researchers.

One of the fundamental, and still not fully solved, problems that biological sequence
classification methods try to solve is the prediction of protein-DNA and protein-RNA
interactions. TF and RBP binding sites on DNA and RNA, respectively, are usually
short and therefore expected to be found all over the genome. Since we used sim-

66 learning sequence and structure motifs with cnns

ple sequence-only models, supplemented by structure/shape information, this has
implications for the usefulness of said models in practice, because they will predict
all potential binding sites, irrespective of whether they are actually bound in a given
cell and at a given time. Binding also depends on whether the DNA is accessible in a
specific cell type and under the given conditions and it depends on whether co-binding
proteins are available, the latter being valid for both DNA and RNA. To get meaningful
predictions in practice and to avoid false positives, these simple models have to be fur-
ther supplemented with other information such as DNA accessibility and correlation
with binding sites for other proteins. Some data, for example experimentally validated
accessibility and binding signals of relevant proteins, can be directly added to the
input of our models analogously to shape information. However, since predictions are
usually used to tackle the absence of experimental data (or to pinpoint effects that are
worth to be experimentally validated) it also likely requires researchers to merge and
overlap results of multiple predictive models.

One of the types of additional information that promise to improve results of sequence-
only models are DNA shape and RNA secondary structure. Nonetheless, our results
found no meaningful predictive performance improvements when adding such infor-
mation. This might be due to some inherent property of shape/structure data, due to
methodical issues of neural networks or due to data encoding before model training.
Both shape and structure predictions are purely based on sequence and strongly
correlated with sequence. It is therefore not completely unexpected that they do not
add actionable information to the network and might even lead to a loss of predictive
performance. Observations similar to ours made by previous studies point into that
direction. For example, the iDeepS authors [72] also experimented with augmenting
sequence-only RBP deep learning models with secondary structure information. In
their case, they used a multimodal model, that is, they separately applied convolutional
neural layers to sequence and structure strings before merging of results and further
application of recurrent and dense layers. Compared to a sequence input-only variant
of the described architecture, their predictive results likewise showed no practically
meaningful differences (both positive or negative) for the tested proteins (Figure S3 in
[72]). GraphProt, representing a very different machine learning approach, also gener-
ally reports little changes, however, it found significant improvements for a collection
of RBPs (Figure 6 in [89]). IGF2BP is one of those proteins and was also tested by us
during this chapter, but our models did not improve by using secondary structure
data. This might be due to our much higher baseline performance, but given that we
tested multiple input encodings and that the iDeepS authors report similar results for
their neural network architecture, this points towards CNNs not taking full advantage
of the available structure information. Thus, further research is required and looking
into alternative network architectures, such as graph convolutional networks (see also
Chapter 7), and using experimentally derived structure information that promise more

4.5 discussion 67

variability than predictions might be interesting starting points.

Regarding DNA shape features, our observations are very similar to the RNA sec-
ondary structure case. Shape predictions are again purely based on sequence alone
and correlations might influence their effectiveness in improving predictive model
performance. Using our input encoding and dinucleotide shuffled backgrounds for TF
binding prediction we found small predictive performance improvements for all tested
proteins. DNA shape is relatively little studied, compared to RNA secondary structure,
but our observation is in line with a previous study that used decision trees and a gra-
dient boosting classifier to examine different input encodings that combined sequence
and shape information. They likewise used a dinucleotide shuffled background and
pre-defined position frequency matrices to find the regions of input sequences that
were most similar to the position frequency matrix before classification. Regions were
then one-hot encoded and shape features were added to receive matrices analogous to
our input matrices and results only showed very small improvements compared to
sequence-only models (see "4-bits" encoding in Data S3 in [92]). However, replacing
the one-hot encoding of bases with position frequency matrix scanning scores led to
significant classification improvements of more than 0.1 area under the precision-recall
curve for individual TFs (see "PSSM" encoding in Data S3 in [92]). To be fair, using
pre-defined motifs for classification (a single motif in the cited case) substantially shifts
the difficulty of the problem towards the motif finding and scanning, but their results
also show, as in the RNA secondary structure problem, that CNNs might not take full
advantage of the data or that the data encoding is not appropriate and that further
research is required to improve predictions.

Overall, applying deep convolutional networks to biological sequence data yields well-
performing models from which extensive interpretations can be derived, as presented
in this chapter. Given that they also can be efficiently trained on GPUs using large
amounts of input data, they present themselves as a promising method to tackle
large-scale projects. To this end, the next chapter of the thesis will cover such a project
and will detail the prediction of RBP binding sites for 100 proteins in a cell line for
which experimental data is not available. During this project, the ability to visualize
what exactly the networks are learning helped us to be aware of potential biases in the
training data to tune model predictions.

5
Predicting RNA-Binding Protein Binding Across Cell Lines

5.1 Motivation

Predictive models are often used to substitute for missing experimental data. While
having experimentally validated data is, of course, the ideal to strive for, monetary
costs of experiments and time constraints can be prohibiting factors. Concerning bind-
ing of TFs and RBPs, ENCODE and other public databases provide raw experimental
and already computationally processed data that is free to use, however, especially for
RBPs the available data are still very limited. At the time of writing, ENCODE provides
eCLIP data for more than 150 proteins, but only for the HepG2 (human liver cancer) or
K562 (human leukemia) cell lines. For one collaborative project we undertook during
the PhD time, we were interested in the binding of RBPs in the MCF-7 (human breast
cancer) cell line. Specifically, we were interested in interactions between RBPs and
long intergenic non-coding RNAs (lincRNAs). LincRNAs represent a subset of the
lncRNA class that does not overlap with protein-coding gene annotations and lincR-
NAs perform a wide range of functions through interactions with DNA, proteins and
other RNAs (more details about their functions can be found in Section 7.1 and [93, 94]).

The most important motivation for this project was the fact that lincRNAs are expressed
in a very cell line-specific fashion, much more so than protein-coding transcripts [94].
This means that many lincRNAs expressed in MCF-7 cells are simply not expressed
in HepG2 and K562 cells for which eCLIP data is available. As there are so far no
public eCLIP data available for the MCF-7 cell line, we decided to train predictive
models based on the ENCODE eCLIP data to still get information about protein-RNA
interactions for these transcripts. The main objective of this RBP binding prediction task
was the training of well-performing models for a large collection of RBPs. In addition,
since many eCLIP data sets have only been published recently and since consequently
not much is known about many RBPs, using pysster’s visualization options to learn
more about protein-RNA interactions for specific proteins was a secondary objective.
Therefore, this chapter describes the iterative model training and fine-tuning process
that was needed to achieve high predictive performance and interpretable models
in practice. The predictive models trained in this chapter represent a small part of a
bigger project led by Evgenia Ntini tackling the functional classification of lincRNAs
and a summary of the broader biological context of the complete lincRNA project can
be found in Section 7.1.

69

70 predicting rna-binding protein binding across cell lines

5.2 Data Sources & General Data Preparation

Since 2016, the Gene Yeo lab is publishing eCLIP data as part of the ENCODE consor-
tium for an ever-growing amount of RBPs in HepG2 and K562 cell lines. To date, data
sets for 161 proteins are available and the data used in this chapter were downloaded
from ENCODE on September 6, 2018 and comprise 100 RBPs known to be expressed
in the MCF-7 cell line. Table A.2 shows the ENCODE accession numbers and original
cell lines for all RBPs. Most RPBs were only available for either HepG2 or K562, but in
case an RBP was available for both cell lines we used the cell line with the higher data
quality (as indicated by the ENCODE audit categories) or HepG2 by default.

For each RBP, we downloaded two bed files containing the called peaks for the two
available biological replicates. From these two bed files, we selected all peaks that
overlapped with peaks from the respective other replicate by at least one base. Subse-
quently, peaks with a log-fold enrichment over the input control sample smaller than
two were removed. As suggested by Dominguez et al. [26], the 5’ end of each peak
was considered as the exact protein binding site. GENCODE [95] gene annotations
version 24 for the GRCh38 human genome assembly were used to summarize binding
locations and to identify transcripts that overlap with protein binding sites.

5.3 Predicting RBP Binding Sites

In the following, we will present multiple model training approaches using different
input data to obtain increasingly better performing models. We will show that models
that appear to perform well in artificial training and test settings are not necessarily
the models that perform well in practice and that it is important to design the training
data such that it represents the “real world” as close as possible. In this case, “real
world” means that we want to predict the probability of being bound by a given RBP
for every base of a transcript.

While a high predictive performance is the main objective of the project, we will also
show that our neural network feature visualizations can help to better understand RBP
biology and that they can be used to detect potential technical biases in the eCLIP
data. Throughout this chapter, results will be showcased using a small selection of
proteins for the sake of brevity. Results for the final models and all 100 proteins can be
found in the appendix and will be referenced accordingly.

5.3 predicting rbp binding sites 71

5.3.1 Binary Classification Models

To obtain baseline models and to get familiar with the data, we first trained CNN
models performing a binary classification. For each protein we trained a model that is
able to distinguish between protein binding site sequences (the “positive” class from
now on) and background sequences (the “lincRNA” class). The positive class consists
of sequences of length 400 centered at protein binding sites (5’ end of peaks) that over-
lap with annotated genes. Taking long flanking regions of binding sites into account
improves the predictive performance of models, but at the same time negatively affects
training times. Given the amount of RBPs and sequences we need to process, we found
sequences of length 400 to strike a reasonable balance. Similarly, we used a maximum
of 50, 000 sequences for the positive class if more than that amount passed the log-fold
enrichment over the input threshold.

For the background class, and to obtain balanced classes, we selected an equal amount
of sequences of length 400 that we randomly sampled from lincRNAs that overlap with
a binding site of the protein of interest. These sampled sequences were chosen such that
they do not overlap with sequences from the positive class. The positive class could not
be restricted exclusively to lincRNA binding sites, as only very few sites would haven
been left (< 1, 000) for most proteins, prohibiting the training of effective deep learning
models. Note that we do not make use of secondary structure information in any of
the models presented in this chapter. As shown in the previous chapter, use of RNA
secondary structure predictions likely does not increase the predictive performance of
models. In addition, prediction of secondary structure has to be performed for every
sequence of length 400 individually, because predictions for full-length transcripts
are very unreliable. Given the amount of sequences used throughout this chapter,
prediction of RNA secondary structures would have been the computational bottleneck.

A

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

CDC40 = 0.955

DDX6 = 0.956

DDX59 = 0.948

DKC1 = 0.983

GEMIN5 = 0.979

ILF3 = 0.955

LARP7 = 0.893

PPIG = 0.998

PUM2 = 0.971

QKI = 0.986

RBFOX2 = 0.990

SERBP1 = 0.953

ZRANB2 = 0.968

False Positive Rate

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

CDC40 = 0.953

DDX6 = 0.955

DDX59 = 0.951

DKC1 = 0.984

GEMIN5 = 0.979

ILF3 = 0.958

LARP7 = 0.902

PPIG = 0.997

PUM2 = 0.972

QKI = 0.986

RBFOX2 = 0.989

SERBP1 = 0.964

ZRANB2 = 0.969

Recall

B

Figure 5.1: Performance Of Binary Classification Models. auROC values in (A) and auPRE
values in (B) computed on held-out test data indicate a high predictive performance
for all proteins. Balanced classes have been used for all proteins and dotted lines
illustrate the performance of a random classifier.We now used the collected sequences (randomly split into 70% training, 15% validation

and 15% held-out test) to train pysster models with a small grid search testing models

72 predicting rna-binding protein binding across cell lines

with three convolutional layers, kernels of length 12, 18 or 24, 150 or 300 kernels per
layer and default parameters otherwise. Figure 5.1 shows the predictive performance
results on the held-out test data for a collection of proteins. auROC values are usually
very high (e.g. up to 0.990 for RBFOX2) and auPRE values are comparable, because
balanced classes were used.

5.3.2 RBP Sequence Motif Visualizations

A B

C D

Figure 5.2: Example Kernel Visualizations. Many first-layer kernels learned to recognize
known motifs that show specific positional enrichment relative to the protein
binding site (sequence position 200, enrichment plots taken from the positive class).
(A) shows the known RBFOX2 binding motif. (B) and (C) show the canonical 5’
and 3’ splice site motifs from the PPIG and SF3B4 models, respectively. (D) displays
the polyadenylation signal learned from the CSTF2 model.

To investigate the high predictive performance we subsequently visualized the kernels
of the first convolutional layer of all models and Figure 5.2 illustrates some example
motifs and their positional enrichment within positive class sequences. Figure 5.2A, for
example, shows a kernel that learned to recognize the well-known RBFOX2 binding

5.3 predicting rbp binding sites 73

motif TGCATG [96]. The respective positional enrichment plots show that the motif
predominantly starts at sequence position 200, as expected. However, only very few
RBP data sets show such unique motifs. For the majority of RBPs our models do not
show unique motifs with precise local enrichments, but visually inspecting all kernels
rather indicates that many RBPs seem to recognize the general sequence compositions,
such as GC-rich or GT-rich sequences, in the broader area around sequence position
200. Moreover, our models learned canonical splice site motifs [97] for many RBPs.
These boundary regions between exons and introns (also called 5’ splice site) and
introns and exons (3’ splice site) possess specific consensus sequences and many RBPs
seem to bind locations relative to splice sites. PPIG, for instance, binds upstream of
the 5’ splice site (Figure 5.2B), indicating preferential binding of exons, while SF3B4

binds upstream of the 3’ splice site (Figure 5.2C), indicating preferential binding of
introns. Indeed, looking at summary statistics of binding locations affirms that 89%
of PPIG binding sites are located in exons and that 67% of SF3B4 binding sites are
located in introns (see Figure A.4). Both proteins are known to be part of the splicing
machinery [98, 99]. Another general motif that we found for some proteins such as
CSTF2 is the polyadenylation signal AATAAA (Figure 5.2D) which marks transcripts
to receive a poly(A) tail as a post-transcriptional modification. CSTF2 is a factor known
to be involved in the process by binding downstream of the polyadenylation signal
[100, 101], which our kernel visualizations reflect as well.

Overall, we found strong motif signals or general sequence patterns that distinguish
positive sequences from background sequences for most RBPs. We compiled a list
summarizing found motifs for all RBPs in Table A.3. This table also indicates whether
we found potential T-rich and G-rich bias motifs which will be discussed in the next
section.

5.3.3 Using Visualizations To Detect Biases

The motifs highlighted in the previous section are not the only motifs we found
during the kernel visualizations. We also consistently found T-rich and G-rich stretches
showing a specific signal across many RBPs. For 63 out of 100 proteins our models
learned kernels recognizing long T-rich motifs that are located immediately upstream of
the protein binding site and that are often slightly depleted on top of and downstream
of the binding site (Figure 5.3A). In addition, T-rich motifs do not co-occur with the
actual binding motif. For 53 out of 100 proteins we saw kernels learning long G-rich
sequences located on top of or downstream of the binding site (Figure 5.3B). The
exemplary G-rich motif depicted in Figure 5.3B was found in RBFOX2 models. As
shown in the previous section, RBFOX2 exhibits a unique binding motif, however, both
unique motif and G-rich motif occupy the same location and do not co-occur.

74 predicting rna-binding protein binding across cell lines

A

B

positive class lincRNA class

positive class lincRNA class

Figure 5.3: Potential eCLIP Bias Signals. Many eCLIP data sets show T-rich and G-rich se-
quence motifs with noticeable similar locations across RBPs relative to the protein
binding site. (A) depicts an exemplary T-rich kernel from the DDX6 model enriched
upstream of the protein binding site at sequence position 200. (B) shows a G-rich
motif from the RBFOX2 model enriched on top of and downstream of the binding
site. Neither T-rich nor G-rich motifs co-occur with the actual binding motif.

Concerning the G-rich motifs, another publication recently reported similar find-
ings and speculates that the motifs either indicate interaction partners of RBFOX2 or
crosslinking artifacts in the data [36]. In this publication, the authors also compared
in vivo eCLIP data with RNA Bind-N-Seq (RBNS) data, an experimental in vitro
protocol that tests the binding of an RBP against a collection of random sequences.
While many eCLIP data sets show G-rich motifs, RBNS data for the same RBPs do not.
Consequently, the authors labeled such motifs as “eCLIP-only”. Whether the motifs
indicate real binding of interaction partners in the in vivo eCLIP data or some kind of
bias, such as antibody specificity or crosslinking artifacts, is not clear, however.

Concerning the T-rich motifs, it is hypothesized that UV-C light used for protein-RNA
crosslinking during eCLIP experiments favors crosslinking to uridines [102, 103]. Cor-
responding motifs have been named “UV crosslink-associated motifs” (CL-motifs) [103]
and described motifs do not necessarily consist of pure stretches of uridines, but are
always uridine-rich. Given the literature evidence, it is possible that the motifs learned
by our models show said UV-C bias, but the strength of the signal is still surprising,
as we found these motifs in highly enriched peaks and not just in the input sample data.

In any case and irrespective of the source of both G-rich and T-rich motifs, it is clear
that our CNN models heavily focus on the resulting motif signals which might lead to
spurious and false predictions when we actually scan new transcripts for binding sites.

5.3 predicting rbp binding sites 75

To this end, the next section tries to tackle this problem by introducing an additional
class into the models.

5.3.4 Multiclass Classification Models

CNNs are supervised machine learning methods and as such the training process
focuses on signals in the data that are able to distinguish the given classes. Accordingly,
bias signals can distract the model from the actual signals that we would expect the
model to focus on. As the bias motifs are not part of the lincRNA background class,
this is the case for our models. One way to diminish the impact of bias is to introduce
bias into the background class as well. Thereby, the signal that arises from the bias
is not able to distinguish the classes anymore and the model should, theoretically,
focus on different aspects in the data instead. Here, we decided to introduce a second
background class (the “RPB” class from now on) to capture the influence of bias motifs.
The RBP class consists of randomly selected binding sites from other proteins that
do not overlap with the sequences from the positive class. Analogous to the posi-
tive class, sequences from the RBP class are of length 400 and centered at a binding site.

A

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

CDC40 = 0.790

DDX6 = 0.747

DDX59 = 0.858

DKC1 = 0.940

GEMIN5 = 0.842

ILF3 = 0.924

LARP7 = 0.788

PPIG = 0.971

PUM2 = 0.929

QKI = 0.975

RBFOX2 = 0.944

SERBP1 = 0.821

ZRANB2 = 0.838

Recall

positive class

lincRNA class RBP class

B

Figure 5.4: Multiclass Model Evaluation. Precision-recall curves in (A) depict the positive
class and were computed in a one-versus-rest fashion. The dotted line indicates
the performance of a random classifier. (B) shows a kernel from the DDX6 model
that learned to recognize T-rich sequences. The kernel shows similar positional
enrichment in the positive class and RBP class, highlighting that a collection of
randomly selected binding sites contains the potential bias motifs.

We then trained multiclass, single-label CNNs using an equal amount of sequences
for all three classes and using the grid search outlined before. Performance results in
the form of precision-recall curves on held-out test data are shown in Figure 5.4A.
Precision-recall curves are only defined for two classes and the figure therefore shows
curves for the positive class computed in a one-versus-rest fashion. Compared to the
performance of the binary classification models (average auPRE of 0.97), the multiclass

76 predicting rna-binding protein binding across cell lines

models exhibit a lower performance (average auPRE of 0.87). The visualization of the
first-layer kernels indicates that the model is still learning bias motifs (see Figure 5.4B),
but both the positive and the RBP class show a comparable positional enrichment for
such motifs. The model can, of course, still use the bias motifs to distinguish positive
and RBP class sequences from lincRNA class sequences. However, distinguishing
positive and RBP class sequences from each other is harder and likely the reason why
the predictive performance decreases.

5.3.5 Measuring Performance In Practice

0 1000 2000 3000 4000 5000 6000
sequence position

0.00

0.25

0.50

0.75

1.00

P
re

d
ic

ti
o
n
s

in
 %

ENST00000486015.1 (Spearman's correlation = 0.49)

0

1

E
N

C
O

D
E
 p

e
a
ks

0 1000 2000 3000 4000 5000 6000
sequence position

0.00

0.25

0.50

0.75

1.00

P
re

d
ic

ti
o
n
s

in
 %

ENST00000486015.1 (Spearman's correlation = 0.247)

0

1

E
N

C
O

D
E
 p

e
a
ks

RBFOX2 (binary model) RBFOX2 (multiclass model)

0 1000 2000 3000 4000
sequence position

0.00

0.25

0.50

0.75

1.00

P
re

d
ic

ti
o
n
s

in
 %

ENST00000581816.1 (Spearman's correlation = 0.605)

0

1

E
N

C
O

D
E
 p

e
a
ks

GEMIN5

0 1000 2000 3000 4000 5000
sequence position

0.00

0.25

0.50

0.75

1.00

P
re

d
ic

ti
o
n
s

in
 %

ENST00000432701.2 (Spearman's correlation = 0.735)

0

1

E
N

C
O

D
E
 p

e
a
ks

RBFOX2

0 1000 2000 3000 4000 5000 6000 7000
sequence position

0.00

0.25

0.50

0.75

1.00

P
re

d
ic

ti
o
n
s

in
 %

ENST00000448136.4 (Spearman's correlation = -0.023)

0

1

E
N

C
O

D
E
 p

e
a
ks

GEMIN5

0 1000 2000 3000 4000 5000 6000
sequence position

0.00

0.25

0.50

0.75

1.00

P
re

d
ic

ti
o
n
s

in
 %

ENST00000592377.1 (Spearman's correlation = 0.357)

0

1

E
N

C
O

D
E
 p

e
a
ks

CDC40

A

B

Figure 5.5: Spearman’s Correlation Examples. When scanning the same transcript with dif-
ferent RBFOX2 models in (A), we see substantially less positive class predictions
using the multiclass model. (B) shows additional scans to get familiar with different
Spearman’s correlations between predictions and ENCODE eCLIP signals. To make
the blue prediction lines less noisy all values below a threshold have been set
to zero (0.5 for the binary models, 0.66 for the three-class multiclass models, see
Figure A.5 for details about the effect of thresholds) and Spearman’s correlations
are computed based on the denoised predictions. The orange ENCODE eCLIP lines
do not show the peaks as defined in the bed files, but rather the 5’ ends of the peaks
extended by +/- 75 to better reflect the data classification models have been trained
on. Only peaks found in both replicates passing the log-fold enrichment over the
input threshold as described earlier are used.

To further compare the binary and multiclass models, we subsequently predicted bind-
ing for full-length transcripts, as this reflects what we eventually want to do with new
transcripts for which no eCLIP data is available. To this end, we “scanned” lincRNA
transcripts overlapping with an eCLIP peak of a protein of interest to predict the
binding probability for every base using a sliding window approach. Using a window

5.3 predicting rbp binding sites 77

size of 400 and a step size of one, the central base of each sequence was assigned the
probability of belonging to the positive class (for positions at the transcript boundaries,
flanking regions were used to obtain sequences of length 400).

Figure 5.5A shows the scanning results for a transcript using the binary and multiclass
RBFOX2 models. Both models correctly predict the eCLIP peaks that are located within
the transcript. However, especially the binary model predicts many additional locations
within the transcript to have a high protein binding probability. In fact, this is an obser-
vation we made for all binary classification models, as they tend to output a lot of high
probability values for the positive class. This is not something we expected given the
area under curve metrics of these models. The multiclass models, while having slightly
lower area under the curve metrics, produce much less positive class predictions when
scanning a full-length transcript. To better quantify this behavior, we measured the
similarity between the predictions (represented by a vector containing the predicted
probabilities) and the eCLIP signal (represented by an equally-sized vector containing
zero/one entries) of a given transcript by computing their Spearman’s correlation,
that is, we compute the similarity between the blue and orange lines illustrated in
Figure 5.5. Spearman’s correlation is arguably not explicitly made for such a use case,
but it provides a familiar metric (coefficients between -1 and +1 where -1 indicates
perfect negative correlation, 0 no correlation and +1 perfect positive correlation) and
roughly captures the trend of the relation we would expect when looking at the data
by eye. To get a better feeling for the metric, Figure 5.5B shows additional examples
for different correlation values.

Figure 5.6: LincRNA Scanning Results For Binary And Multiclass Models. Each black dot
shows the Spearman’s correlation for a protein/transcript pair. Correlation values
are usually positive and multiclass models tend to provide higher correlations.

78 predicting rna-binding protein binding across cell lines

Overall, when looking at the general trend for all example proteins and multiple tran-
scripts per protein, the multiclass models outperform the binary classification models
in a practical setting (Figure 5.6). They create considerably less predictions for the
protein of interest class outside of the desired eCLIP peaks, due to the introduction of
the strong bias signals into the background classes of the models. However, predictions
are not perfect and probably never should be perfect, as we do not want to predict
peaks that contain only bias signal. While multiclass models create less predictions,
we still see many predictions outside of eCLIP peaks which we will further improve
upon in the next section by training on imbalanced data and by using additional input
data beyond pure sequence information.

5.3.6 Further Improving Predictions in Practice

So far, models were trained on balanced data, that is, every class consisted of the same
amount of sequences. The problem we are trying to solve, however, is not balanced.
When scanning a transcript, we do not expect one third (or one half for binary classi-
fications) of the positions to be predicted as belonging to the positive class, because
only an average of 3-4% of the bases of a transcript overlap with an eCLIP peak of
a given RBP. Yet, machine learning models trained on balanced data tend to deliver
“balanced” predictions. When we predict new input with our models, the models of
course do not know in advance how many inputs there are going to be, nevertheless,
in our experience model predictions show a trend towards the class ratios used during
training. To not artificially change the problem at hand, training on class ratios that
reflect reality as closely as possible is advisable. We therefore trained models on im-
balanced data by increasing the amount of sequences for both background classes by
five, e.g. if 50, 000 sequences are available for the positive class 250, 000 sequences are
used for both the lincRNA and RBP background class for a total of 550, 000 sequences.
Thereby around 9% of the input belongs to the positive class. Class ratios were chosen
such that model training for all RBPs could still be completed within a reasonable
amount of time (around one week given our single GPU). In the following, models
trained that way will be labeled as “imbalanced models”.

Furthermore, we explored the usage of input data beyond just sequence information.
Binding sites of RBPs are not uniformly distributed across transcripts and many RBPs
show strong preferences for binding within either exons or introns (e.g. 92% of FXR2

binding sites are located in exons, 97% of SUGP2 binding sites are located in introns)
or for binding close to the transcription start site (TSS) or transcription termination
site (TTS) (e.g. NCBP2 predominantly binds close to the TSS, PUM2 binds close to the
TTS). Figure A.4 shows a summary of these location information for all RBPs. Sup-
plying these information to the models likely increases their predictive performance.

5.3 predicting rbp binding sites 79

In the previous chapter, we already showed how pysster models can use additional
data on a per-base basis (DNA shape information), but our models are also able to
utilize additional data on a per-sequence basis such as the described binding site
locations. Additional data on a per-sequence basis is integrated into the models by
using additional neurons in the first dense layer (see Figure 5.7). Categorical features
(e.g. exon/intron location) are zero/one encoded using an amount of neurons equal
to the amount of categories, while continuous features (e.g. distance to the TSS/TTS)
use a single neuron. For our models, we use the two-category exon/intron feature
(location of sequence position 200) and the distance to the TSS/TTS as additional
inputs (distance of sequence position 200, normalized to the transcript length such that
zero indicates overlap with the TTS and one overlap with the TSS). In the following,
models trained on both imbalanced data and utilizing additional input are referred to
as “full models”.

A G AC TC T A

Sequence Input

Dense Layer

Output

Convolutional Layers

A
C
G
T

Flatten
Location Input

Distance Input
+

Figure 5.7: Adding Additional Data On A Per-Sequence Basis. Additional data, in our case
exon/intron location (categorical feature) and distance to the TSS/TTS (continuous
feature), are introduced into the model separately from the main sequence input
by creating additional neurons in the first dense layer of a network. For categorical
features, the number of new neurons is equal to the number of categories and
categories are zero/one encoded.

Table 5.1 shows the auPRE results on held-out test data for the imbalanced and full
models, as well as for the previously presented binary and multiclass models for
comparison. Both imbalanced and full models use three classes and values therefore
again represent the auPRE of the positive class computed in a one-versus-rest fashion.
With an average of 0.69 the imbalanced models possess lower auPRE than the bal-

80 predicting rna-binding protein binding across cell lines

anced models, which is not unexpected, as precision-recall curves are sensitive to class
imbalance and shift the random baseline performance accordingly. Supplementing the
imbalanced models with the additional input features (full models) restores some of
the performance and results in an average auPRE of 0.71. The performance results of
the full models for all 100 proteins and all three classes can be found in Table A.4.

rbp
binary

models

multiclass

models

imbalanced

models

full

models

CDC40 0.953 0.790 0.391 0.497
DDX59 0.951 0.858 0.608 0.645
DDX6 0.955 0.747 0.558 0.518
DKC1 0.984 0.940 0.889 0.878
GEMIN5 0.979 0.842 0.495 0.609
ILF3 0.958 0.924 0.795 0.786
LARP7 0.902 0.788 0.769 0.676
PPIG 0.997 0.971 0.673 0.671
PUM2 0.972 0.929 0.801 0.849
QKI 0.986 0.975 0.915 0.913
RBFOX2 0.989 0.944 0.757 0.752
SERBP1 0.964 0.821 0.713 0.746
ZRANB2 0.969 0.838 0.610 0.657

Table 5.1: auPRE For All Model Variations. Held-out test data measurements for binary and
multiclass models were previously presented in Figure 5.1 and Figure 5.4, respec-
tively. All values in all columns represent the auPRE of the positive class computed
in a one-version-rest fashion.

Interestingly, when looking at the practical transcript scanning results of imbalanced
and full models, we observe a much better performance compared to binary and mul-
ticlass models (Figure 5.8). Spearman’s correlations are usually substantially increased
and the full models provide the best match between predictions and eCLIP signal for
most proteins. While we do not try to interpret the absolute correlation values, their
steady increase for the different model variants suggests to us that the full models
indeed deliver the best performance in practice out of all tested variants. Full model
scanning results for all 100 proteins are illustrated in Figure A.6.

5.4 discussion 81

Figure 5.8: LincRNA Scanning Results For All Model Variations. Each black dot shows the
Spearman’s correlation for a protein/transcript pair. Scanning results for binary
and multiclass models have previously been shown in Figure 5.6.

5.4 Discussion

In this chapter, we described our process of training CNN models to predict RBP bind-
ing sites based on eCLIP data. Starting with simple binary classification models we
showed how to continuously improve model performance by adding another class that
captured data bias, by adding additional input features beyond sequence information
and by making use of the rarity of the signal we try to predict.

Our main conclusion is the observation that models that appear to deliver the best
performance according to often-used metrics such as auROC and auPRE do not neces-
sarily deliver the best performance in the practical application. Therefore, one should
always conduct tests in a setting that reflects the practical application and appropriately
designing the training data to simulate the reality of the problem as close as possible
is very important in this regard as well. This includes class balance which is one of
the big issues in machine learning. If the amount of minority class samples is not
high enough to successfully train a classifier, then artificially balancing data can be
taken into consideration. In our case, availability of positive class samples was not
a limiting factor and our results show that approximating the class balance of the
practical problem leads to the best performing classifiers. We mentioned in Chapter 4

that our pysster models make use of class weighting by balancing out the loss function
values of individual inputs. This additionally supports the process by shifting the

82 predicting rna-binding protein binding across cell lines

predicted probability distributions such that the intuitive classification thresholds can
be applied (e.g. 0.5 for two classes or 0.66 for three) and makes things easier to interpret
for human eyes.

Producing models with high predictive performance was the main objective of the
project, but the visualization options we implemented for our pysster CNN library
also produce biological insights for individual RBPs as a byproduct. As demonstrated,
these visualizations can be used to detect potential bias in the data of which eCLIP
data unfortunately appears to have a substantial amount of. If we would have used
a different classifier, without comparable visualization options, we might have not
been aware of the bias which would have resulted in worse classification models. As
mentioned in the beginning, the presented RBP prediction task is part of a bigger
project described in more detail in Section 7.1.

6
Summary & Conclusion

Understanding the molecular mechanisms that control the regulation of genes and
transcripts has been one of the main goals of biological research. Transcription fac-
tors and RNA-binding proteins are key regulatory factors in this regard and while
individual genes and transcripts have been studied in great detail for decades, the
introduction of genome-wide experimental protocols such as ChIP-seq and CLIP-seq
has notably improved the ability to derive broader regulatory rules. The availability
of large-scale data measuring protein-DNA and protein-RNA interactions, amongst
others, also allows for more effective computational modeling of said measurements
and consequently, the field of machine learning has become established in our area of
research. Compared to performing experimental protocols, the creation of machine
learning models is often cheaper. Models are therefore used to provide predictions
for cell lines or cellular conditions for which experimental data is not yet available, to
guide experiments towards promising targets or to find patterns in the data that can
be used to gain biological insights.

Lately, neural network-based deep learning models have shown promising results,
especially together with GPU training, which enabled the analysis of very large data
sets within reasonable time frames. By freely combining different layer types and other
building blocks, deep learning models can be architectured in a very flexible way and
they allow for the integration of many different input data types into a single model.
One can essentially customize models to fit specific inputs, while other machine learn-
ing methods often require the input to be customized to fit specific models. However,
all of this leads to a certain complexity that makes model selection and interpretation
hard and deep learning certainly no silver bullet.

To this end, we contributed to the research field by creating a software library that
enables researchers to more easily apply deep learning methods to biological sequence
data. In Chapter 4 we presented pysster, our Python library that achieves this task
by providing CNN models that can be trained and evaluated with only a handful of
lines of code. Sequence data are the basic input needed for our library, but they can
be supplemented with arbitrary other data provided by the user. We showcased the
functionality of our library by modeling sequence and structure data (DNA shape,
RNA secondary structure) and we provide users of our library with options to visualize
what features the trained network has learned. Sequence motifs, structure motifs and
positional patterns in the data received that way can shed light on what exactly the

83

84 summary & conclusion

network has learned and combined with domain knowledge of the researcher, these
visualizations can aid the understanding of biological mechanisms. Our eCLIP-based
models presented in Chapter 5 have shown that visualizations can be used to learn
about binding properties of individual RBPs and to detect technical bias in the ex-
perimental data, which is a common problem. All of the above visualizations and
interpretations can of course be derived using different methods as well. However,
having models that provide both high predictive performance and extensive interpre-
tation at the same time is very convenient and we therefore showed that deep learning
models do not have to be “black boxes”.

When we started working on our library, no easy way of training and interpreting
CNNs on one’s own data was available, but after pysster other packages such as
Selene [104] and Janggu [105] have been published, which are also intended as general
deep learning frameworks for bioinformatics. As is often the case with “competing”
packages, they overlap to some extent, but they also focus on different layer types or
interpretation aspects and thus all contribute to the community such that researchers
wanting to simply use pre-configured deep learning models are now able to do so.
Concerning our own library, there are many directions for further improvements. In
our opinion, the two main points that can positively impact the community are: 1)
the implementation of attribution methods (e.g. LRP) that enable the interpretation
of individual inputs and make pysster a more complete package and 2) the adaption
of our package API for the Kipoi model zoo [106, 107], a repository of pre-trained
machine learning models for genomics that tries to unify models from different sources
to facilitate their application in a consistent manner.

Finally, while the mentioned flexibility of deep learning models is an advantage over
other methods, it is simultaneously its biggest weakness, as a very large number of
hyperparameters has to be considered when finding the best network architecture.
Extensive parameter searches are very slow even on GPUs and so far no method
(grid search, random search, bayesian optimization) appears to consistently stand out,
degrading the process essentially into trial and error. Model selection was often a pain
point for us and exploring more efficient ways to find the best hyperparameters should
have substantial benefits for models that try to integrate different data sources to tackle
more complex biological problems in the future.

7
Contributions To Other Projects

During the time of the PhD we were involved in other projects not presented thus
far. This chapter briefly describes these projects and our machine learning-related
contributions.

7.1 Modeling Chromatin-Associated lincRNAs

In Chapter 5 we described the predictive modeling of eCLIP data for 100 RBPs. As
mentioned, the resulting predictions are intended to be used for a currently ongoing
project led by Evgenia Ntini. This project aims to dissect the functional landscape of
lincRNAs, specifically, it aims to better understand chromatin-associated lincRNAs.
Until now, lincRNAs are defined as RNAs that are not translated, that are longer than
200 bases and that do not overlap with annotated protein-coding genes [94]. However,
since this definition is very broad, it likely covers groups of functionally different
RNAs. Indeed, it has been shown that lincRNAs perform a diverse range of functions
both in cis and in trans [108], where cis indicates function close to and dependent of
the site of transcription and where trans indicates function independent of the site of
transcription and often far away from it. In our project, we are interested in chromatin-
associated lincRNAs, a subset of cis-acting lincRNAs that stay tethered to their site
of transcription. The most well-known example of such lincRNAs are enhancer-like
RNAs, i.e. transcripts that arise from enhancer regions which then stay tethered to their
site of transcription and interact with promoter regions, the transcription machinery
or other proteins within pre-formed chromatin loops to upregulate or repress the
expression of genes [108]. In other cases, individual lincRNAs have been shown to
influence nearby genes through the mere act of being transcripted or spliced (both in
sequence and non-sequence dependent ways). Here, the transcripts likely function by
increasing the local concentration of transcription and splicing factors which benefits
their neighborhood as well, however, the same principle can also lead to transcriptional
interference, that is, the lincRNA competes with neighboring genes for the available
resources and triggers a repression of the neighborhood [108].

To better understand chromatin-associated lincRNAs, our objective is a genome-wide
classification of lincRNAs into distinct degrees of chromatin association and to un-
derstand the underlying features that distinguish chromatin-associated lincRNAs and
efficiently dissociating lincRNAs. To this end, Evgenia Ntini performed 4-sU metabolic
pulse labeling experiments combined with nuclear fractionation and sequencing in

85

86 contributions to other projects

MCF-7 cells. In brief, cells were labeled with a uridine analog (4-sU) that can be tar-
geted to specifically sequence only transcripts that have incorporated said analog. By
separately sequencing both the chromatin-associated and the chromatin-released parts
of the transcriptome at multiple time points, we can then track how long individual
transcripts stay tethered to the chromatin. Based on the sequencing results, we have
clustered lincRNAs into groups of slowly and quickly released transcripts and we
now aim to computationally classify these groups based on a collection of features
such as RBP binding (our predictions from Chapter 5), splicing efficiency, chromatin
marks, R-loops and polymerase pausing. Thereby, we hope to find features that can
explain why some lincRNAs stay tethered to their site of transcription. This might
also lead to a more general mechanistic insight if a broader pattern can be identified.
Overall, our contributions to this project are the prediction of RBP binding sites and
the computational classification of lincRNA groups.

7.2 Interpretable Prediction Of Cancer Driver Genes Using
Graph Convolutional Networks

Another project is concerned with the prediction of cancer driver genes. This project is
led by Roman Schulte-Sasse and has been partially published in [109]. The prediction
of new cancer driver genes is continuously attempted by many researchers, but cancer
being a very heterogeneous disease makes it hard to receive reliable predictions and to
pin-point the influence of individual genes. Due to the increase of publicly available
cancer-related sequencing data (e.g. The Cancer Genome Atlas [110]), however, it has
at least become easier to integrate different data types into computational models. One
promising method are graph convolutional networks (GCNs) [111], a deep learning
approach based on CNNs. A GCN expands the general idea of CNNs (scanning ker-
nels over the input) to be applicable to graph structures by learning small patterns
in the neighborhood of graph nodes. In this project, the graph is represented by a
protein-protein interaction network with the goal to predict a “is cancer-related”/”is
not cancer-related” label for every node in the network. One advantage of GCNs is
the possibility to add arbitrary feature vectors to every node. For this, mutation rate,
DNA promoter methylation and gene expression data for 16 different cell types have
been collected from public sources to form 48-dimensional feature vectors for every
node. Together with a curated list of cancer driver gene labels and negative labels, the
GCN was then applied to predict node labels in a semi-supervised fashion (i.e. labels
were not available for all nodes in the network). By combining the protein-protein
interaction network with the feature vectors, the GCN was able to outperform previous
methods such as network propagation algorithms and mutation-based approaches.
Our contribution to this project concerns the interpretation of the GCN predictions.
We applied the attribution method LRP (as outlined in Chapter 3) to individual genes

7.3 modeling microrna expression quantitative trait loci 87

to explain why genes were labeled as cancer-related or not. Given a gene, LRP redis-
tributes the GCN prediction over all inputs and assigns a relevance to every input. This
allowed us to make statements about which -omics features (mutation, methylation,
gene expression) were most important and in which cell types and whether certain
neighbors in the network had a strong influence on the prediction of the given gene.
Our predictions and interpretations were able to validate known cancer genes, thus,
making new, so far unknown predictions promising.

7.3 Modeling microRNA Expression Quantitative Trait Loci

Finally, the beginning of the PhD time (November 2015 - June 2016) was used to
finalize a project that had already started previously. This project was led by us, has
been published in [112] and investigated the transcriptional regulation of microRNAs.

MicroRNAs are a class of non-coding transcripts. They are single-stranded, roughly 22
bases long and post-transcriptionally repress other transcripts through direct binding
of complementary sequence regions. Their regulatory functions have been extensively
researched, however, the transcriptional regulation of microRNAs themselves was far
less well understood at that point in time. We tried to tackle this problem by exploiting
expression quantitative trait loci (eQTL), i.e. genomic locations, often single-nucleotide
polymorphisms (SNPs), that correlate with the expression levels of transcripts. By
integrating publicly available microRNA-eQTL data with microRNA gene annotations,
regulatory annotations and transcription factor binding sites, we built logistic regres-
sion models to classify microRNA/SNP pairs into eQTL and non-eQTL. We were able
to predict eQTL with 85% accuracy (balanced data set) and found eQTL enrichment
for specific transcription factors and related promoter and enhancer annotations. Inter-
estingly, many so-called intragenic microRNAs are embedded within introns of bigger
genes, called host genes. These intragenic microRNAs were presumed to share the
promoter of their host genes. Nevertheless, there has also been evidence that intragenic
microRNAs can use separate promoters to be transcribed independently from their
hosts. By using microRNA-specific promoter predictions we could show a significant
enrichment of eQTL within these alternative promoters, validating their existence
once more. By additionally analyzing eQTL of host genes we found many eQTL to be
shared between hosts and microRNAs, however, the majority of shared eQTL affect
microRNA and host expression differently, e.g. a SNP repressing the microRNA might
upregulate the respective host. Ultimately, since many eQTL overlap with locations
found in genome-wide association studies (GWAS), we could also show that predictive
models which integrate a variety of genomic and regulatory annotations can be used to
aid the interpretation of said GWAS results, as most of them are located in non-coding
parts of the genome and therefore comparatively hard to interpret.

A
Appendix

a.1 Pysster: Hyperparameters

parameter default description

conv_num 2 number of convolutional/pooling layers
kernel_num 30 number of kernels in each conv layer
kernel_len 25 length of kernels
pool_size 2 size of pooling windows
pool_stride 2 step size of pooling operation
dense_num 1 number of dense layers
neuron_num 100 number of neurons in each dense layer
dropout_input 0.1 dropout portion after input
dropout_conv 0.3 dropout portion after pooling layers
dropout_dense 0.6 dropout portion after dense layers
batch_size 128 batch size during training
learning_rate 0.0005 maximum learning rate of Adam optimizer
patience_lr 5 number of epochs without validation loss

improvement before halving learning rate
patience_stopping 15 number of epochs without validation loss

improvement before stopping training
kernel_constraint 3 max-norm weight constraint
rnn_type None "LSTM" or "GRU" (strings) are possible layers
rnn_num 1 number of RNN layers
rnn_units 32 number of output dimensions of each layer
rnn_bidirectional True should layers be bidirectional (bool)
rnn_dropout_input 0.2 dropout portion for input connections
rnn_dropout_recurrent 0.0 dropout portion for recurrent connections

Table A.1: Default Hyperparameters Of Pysster.

89

90 appendix

a.2 Pysster: Hyperparameter Tuning Considerations

The preceding table lists all adjustable hyperparameters of a pysster model together
with their respective default values. We found the default values to perform reason-
able well for a variety of data, but if a grid search is desired not all parameters are
equally important. The conv_num (range 1-3), kernel_num (range 50-300) and dropout
parameters (around 0.1 for the input and 0.2-0.6 otherwise) are usually a good starting
point as they hold the strongest influence over the predictive performance. If training
time is an issue the learning_rate, patience_lr and patience_stopping parameters can be
decreased. However, this will most likely sacrifice some predictive performance.

The batch_size is set to 128 by default. In addition to our explanations in Chapter 3

(trade-off between runtime and model generalization) it is also important to choose a
large enough batch_size such that each random batch likely contains at least one sample
from every class. Otherwise, training time might increase because of inconsistent loss
values and weight updates. Stratified random sampling is another way to accomplish
this, however, it is currently not implemented in pysster. Therefore, a batch_size of 128
should be large enough to achieve this goal for most classification tasks. In general,
adjusting the batch_size parameter can influence the training time, because it controls
how often backpropagation will be performed, but it therefore also affects the total
number of epochs before early stopping takes effect and might not make a real differ-
ence in the end. Generally, a considerable amount of trial and error is needed, if one
really wants to find the very best parameters for the problem at hand.

For the realization of the gradient descent optimization scheme we use the Adam
algorithm (adaptive moment estimation) [113] as implemented in Keras. Adam per-
forms very well in practice, both in terms of training time and predictive performance,
and is currently regarded as the standard optimization algorithm for neural networks
[114]. Compared to the basic gradient descent scheme presented in the beginning of
the thesis, Adam uses individual learning rates for every weight instead of a single
global rate and these individual learning rates change over time based on the gradients
of previous batches. Further details can be found in [113]. In pysster models, the
learning_rate hyperparameter therefore represents an upper bound for the adaptive
rates Adam chooses internally.

For more advanced users we offer the option to add recurrent neural network (RNN)
layers to the network in between the convolutional and dense blocks (see rnn_... hyper-
parameters). Both long short-term memory (LSTM) and gated recurrent unit (GRU)
layers are possible options. Recurrent layers are a popular choice for time series and
comparable sequential data, as they take long-term relations among data points into
account, and they are often combined with convolutional layers. Nonetheless, in our
experience they are not beneficial for the predictive performance of our type of input

A.2 pysster : hyperparameter tuning considerations 91

data. At the same time they substantially increase the training time of networks and
therefore no model discussed in this thesis makes use of recurrent layers. The interested
reader can learn more about them in [54].

Lastly, while the basic architecture of our models consists of a convolutional block
followed by a dense block with an optional recurrent block in between, users can
change this and completely remove individual blocks from the network by setting
conv_num or dense_num to zero or rnn_type to None (this is already the default). Thus,
it is possible to train models that only contain dense layers, among other things.
However, sequence motif visualization is not possible anymore if the first network
layer is not a convolutional layer.

92 appendix

a.3 Pysster: Code Examples

The following code demonstrates a typical pysster worklow and minimal example.
The full API documentation and further tutorials can be found at https://github.
com/budach/pysster. In the below code, we will train a simple binary classification
model that distinguishes between binding sites of the RBP PUM2 and background
sequences (as has been shown in Chapter 4). Therefore, we first import the necessary
pysster components: Data objects will handle our input data, Grid_Search objects will
handle training/model selection and functions from the utils module will provide
small helper functionality. We also need to create an output directory that we will use
to store some model outputs later on.

1 from pysster.Data import Data
2 from pysster.Grid_Search import Grid_Search
3 from pysster import utils
4 import os
5

6 if not os.path.isdir("out/"):
7 os.makedirs("out/")

Basic input data has to be provided by the user in the form of fasta files. We prepared to
fasta files containing sequences for the two classes: "pum2_positives.fasta.gz" contains
sequences of length 200 centered at PUM2 binding sites and "pum2_background.fasta.gz"
contains an equal amount of sequences of length 200 centered at randomly selected
binding sites of other RBPs. Both files can be found at https://github.com/budach/
pysster/tree/master/tutorials/data. Given these fasta files, we can now use pysster
to predict and annotate the RNA secondary structure for all sequences. The utils mod-
ule contains a function predict_structures() to do that and given a fasta file, it outputs
another fasta file containing both sequences and structures. Internally, the function uses
either the ViennaRNA Python bindings or the RNAfold binary, if available in the PATH
environment variable. The function is parallelized to speed up structure predictions
and can handle both gzipped and non-compressed files (as can all of pysster).

8 # entries in the output fasta file contain sequence and
9 # structure strings on separate lines, e.g.:

10 #
11 # > header
12 # CCCCAUAGGGG
13 # SSSSHHHSSSS
14 #
15 # if the annotate parameter is set to False, the output
16 # contains dot-bracket strings instead
17

18 utils.predict_structures(
19 input_file="pum2_positives.fasta.gz",
20 output_file="pum2_positives_with_struct.fasta.gz",
21 num_processes=20,
22 annotate=True)
23 utils.predict_structures(
24 input_file="pum2_background.fasta.gz",
25 output_file="pum2_background_with_struct.fasta.gz",

https://github.com/budach/pysster
https://github.com/budach/pysster
https://github.com/budach/pysster/tree/master/tutorials/data
https://github.com/budach/pysster/tree/master/tutorials/data

A.3 pysster : code examples 93

26 num_processes=20,
27 annotate=True)

Next, sequences and structures can be loaded into Data objects that automatically
handle one-hot encoding, data splitting and communicate with the model later on. By
default, creating a Data object will split data into 70% training, 15% validation and
15% test. This can be changed manually using the train_val_test_split() method if other
ratios or reproducible splits are desired (using the seed parameter).

28 # the number of files given through the class_files parameter
29 # automatically determines how many classes models are going to have
30 #
31 # if only a single file is provided, models will attempt a multi-label
32 # classification and class memberships of sequences have to be encoded
33 # into the faster headers (see API documentation)
34

35 data = Data(class_files=["pum2_positives_with_struct.fasta.gz", # class_0 later
36 "pum2_background_with_struct.fasta.gz"],# class_1 later
37 alphabet=("ACGU", "HIMS"))
38 data.train_val_test_split(portion_train=0.6, portion_val=0.2, seed=42)
39 print(data.get_summary())
40

41 # print output:
42 #
43 # class_0 class_1
44 # all data: 5184 5184
45 # training: 3142 3078
46 # validation: 1025 1049
47 # test: 1017 1057

With that, we can start training models on the data. The below code performs a small
grid search using models with either 1, 2 or 3 convolution layers and with kernels of
length 8 or 16, that is, six different models will be trained (all other hyperparameters
have default values). By default, the grid search training returns the model with the
highest area under the ROC curve on the validation data. If the pr_auc parameter is
set to True, the area under the precision-recall curve will be optimized instead. At the
end, the model variable holds a pysster Model object, which is a wrapper around a
keras model.

48 # if a grid search is not desired, one can directly train a single model:
49 #
50 # from pysster.Model import Model
51 # model = Model({"conv_num": 2, "kernel_len": 8}, data)
52 # model.train(data)
53

54 params = {"conv_num": [1,2,3], "kernel_len": [8, 16]}
55 searcher = Grid_Search(params)
56 model, summary = searcher.train(data, pr_auc=True, verbose=True)
57

58 # verbose training output (shortened):
59 #
60 # Epoch 1/500
61 # 49/49 [==============================] - 2s 34ms/step - loss: 0.8168 - val_loss: 0.6290
62 # Epoch 2/500
63 # 49/49 [==============================] - 0s 9ms/step - loss: 0.6684 - val_loss: 0.4997

94 appendix

64 # Epoch 3/500
65 # 49/49 [==============================] - 0s 9ms/step - loss: 0.6076 - val_loss: 0.4752
66 # Epoch 4/500
67 # 49/49 [==============================] - 0s 10ms/step - loss: 0.5683 - val_loss: 0.4593
68 # Epoch 5/500
69 # 49/49 [==============================] - 0s 9ms/step - loss: 0.5530 - val_loss: 0.4470
70 # Epoch 6/500
71 # 49/49 [==============================] - 0s 10ms/step - loss: 0.5249 - val_loss: 0.4243
72 # Epoch 7/500
73 # 49/49 [==============================] - 0s 9ms/step - loss: 0.5053 - val_loss: 0.4077
74 # ...

The grid search also returns a training summary as a string, that shows the parameter
ranges and the optimized metric on the validation data for all parameter combinations.

75 print(summary)
76

77 # print output:
78 #
79 # # conv_num: [1, 2, 3]
80 # # kernel_len: [8, 16]
81 # conv_num kernel_len pre-auc
82 # 3 8 0.96434
83 # 2 8 0.96253
84 # 2 16 0.95091
85 # 3 16 0.94821
86 # 1 8 0.92896
87 # 1 16 0.92499

A summary of the final model architecture can be printed as well. The actual keras
model can be accessed through model.model, if desired.

88 model.print_summary()
89

90 # print output:
91 #
92 # ___

93 # Layer (type) Output Shape Param #
94 # ===
95 # input_1 (InputLayer) (None, 200, 16) 0
96 # ___

97 # dropout_1 (Dropout) (None, 200, 16) 0
98 # ___

99 # conv1d_1 (Conv1D) (None, 193, 30) 3870
100 # ___

101 # max_pooling1d_1 (MaxPooling1 (None, 96, 30) 0
102 # ___

103 # dropout_2 (Dropout) (None, 96, 30) 0
104 # ___

105 # conv1d_2 (Conv1D) (None, 89, 30) 7230
106 # ___

107 # max_pooling1d_2 (MaxPooling1 (None, 44, 30) 0
108 # ___

109 # dropout_3 (Dropout) (None, 44, 30) 0
110 # ___

111 # conv1d_3 (Conv1D) (None, 37, 30) 7230
112 # ___

113 # max_pooling1d_3 (MaxPooling1 (None, 18, 30) 0
114 # ___

115 # dropout_4 (Dropout) (None, 18, 30) 0

A.3 pysster : code examples 95

116 # ___

117 # flatten_1 (Flatten) (None, 540) 0
118 # ___

119 # dense_1 (Dense) (None, 100) 54100
120 # ___

121 # dropout_5 (Dropout) (None, 100) 0
122 # ___

123 # dense_2 (Dense) (None, 2) 202
124 # ===
125 # Total params: 72,632
126 # Trainable params: 72,632
127 # Non-trainable params: 0

Given a trained model, we can now predict new data. In our case, we predict the
held-out test data and the model.predict() function returns a numpy array of shape
(number of sequences, number of classes) containing predicted probabilities.

128 # the group parameter controls what portion of the data is predicted
129 # possible values are "train", "val", "test" and "all"
130

131 # "all" permits the prediction of all sequences in a non-random order (the
132 # order in which sequences were loaded from the fasta files) and is useful
133 # if a completely new Data object not used for model training should be
134 # predicted
135

136 predictions = model.predict(data, group="test")
137 print(predictions)
138

139 # print output:
140 #
141 # [[0.9628826 0.03711742]
142 # [0.29889268 0.7011074]
143 # [0.03372031 0.9662796]
144 # ...
145 # [0.40860504 0.59139496]
146 # [0.93532455 0.06467547]
147 # [0.89703226 0.10296768]]

To compare predictions to the ground truth, labels for the held-out test data can be
retrieved from the respective Data object. The result is again a numpy array of shape
(number of sequences, number of classes).

148 labels = data.get_labels(group="test")
149 print(labels)
150

151 # print output:
152 #
153 # [[1 0]
154 # [0 1]
155 # [0 1]
156 # ...
157 # [0 1]
158 # [1 0]
159 # [0 1]]

Given predictions and labels, we can use a utils function to get a predictive performance
overview.

96 appendix

160 print(utils.get_performance_report(labels, predictions))
161

162 # print output:
163 #
164 # precision recall f1-score roc-auc pr-auc n
165 # class_0 0.895 0.862 0.878 0.946 0.950 | 1017
166 # class_1 0.872 0.903 0.887 0.946 0.950 | 1057
167 #
168 # weighted avg 0.883 0.883 0.883 0.946 0.950 |

Next, we can visualize the kernels from the first convolutional layer. Therefore, we
first compute the maximum activations for each kernel/sequence pair and then vi-
sualize kernels as explained in Chapter 3 and Chapter 4 of the thesis. The visual-
ize_all_kernels() function will place all output files into a provided folder (i.e. sequence
motif image files, violin plots, local enrichment plots as explained in Chapter 4) and
it additionally creates a summary.html file that presents an overview of all kernel
visualizations ordered by importance score (30 kernels in our case, as this is the default
hyperparameter; see Figure A.1 for a web browser screenshot of summary.html).

169 activations = model.get_max_activations(data, group="test")
170 logos = model.visualize_all_kernels(activations, data, folder="out/")

The visualize_all_kernels() function also returns a list of pysster Motif objects that can
be utilized to access position frequency matrices or that can be saved in MEME format
for further use. Since we trained models on two strings, the function returns a list of
tuples where the first tuple member represents the sequence motif and the second
member the corresponding structure string.

171 utils.save_as_meme(logos=[logo[0] for logo in logos],
172 file_path="out/motifs_seq.meme")
173 utils.save_as_meme(logos=[logo[1] for logo in logos],
174 file_path="out/motifs_struct.meme")

Finally, we can use the previously computed maximum activations for kernel/sequence
pairs to perform a hierarchical clustering of both kernels and sequences (see Chapter 4).
For this model, results are "boring", because only the PUM2 motif was learned (see
Figure A.2).

175 # the classes parameter can be used to restrict the clustering
176 # to certain classes; here we cluster both classes at the same time
177

178 model.plot_clustering(activations, "out/clustering.png", classes=[0, 1])

This concludes the common workflow example and both Data and trained Model objects
can now be saved (pickled) for future use (utils.load_data() and utils.load_model() can
be used for loading).

179 utils.save_data(data, "out/data.pkl")
180 utils.save_model(model, "out/model.pkl")

A.3 pysster : code examples 97

Figure A.1: Screenshot Of summary.html. All first-layer kernels are sorted by importance
score and visualizations are presented in descending order (a total of 30 kernels
for this model).

98 appendix

Figure A.2: Maximum Activation Clustering Of Kernels And Sequences. Many model ker-
nels learned variations of the PUM2 motif (kernels 2 to 20 in the cluster in the
center).

A.4 further dna shape patterns 99

a.4 Further DNA Shape Patterns

Figure A.3: DNA Shape Visualizations. Sequence motif and DNA shape pattern visualizations
of kernels that learned to recognize CEBPB, E2F1 and SRF binding sites. Further
shape patterns for the AT-rich, depleted motif mentioned in Section 4.3.1 are shown
as well.

100 appendix

A.5 rbp predictions : data for all 100 proteins 101

a.5 RBP Predictions: Data For All 100 Proteins

rbp
cell

line

encode

accession
rbp

cell

line

encode

accession

AKAP8L K562 ENCSR206RXT MTPAP K562 ENCSR200DKE
BCCIP HepG2 ENCSR485QCG NCBP2 HepG2 ENCSR018RVZ
BUD13 HepG2 ENCSR830BSQ NKRF HepG2 ENCSR277DEO
CDC40 HepG2 ENCSR815VVI NONO K562 ENCSR861PAR
CPSF6 K562 ENCSR532VUB NPM1 K562 ENCSR867DSZ
CSTF2 HepG2 ENCSR384MWO PCBP2 HepG2 ENCSR339FUY
CSTF2T HepG2 ENCSR919HSE POLR2G HepG2 ENCSR820WHR
DDX24 K562 ENCSR999WKT PPIG HepG2 ENCSR097NEE
DDX3X HepG2 ENCSR648LAH PPIL4 K562 ENCSR197INS
DDX42 K562 ENCSR576SHT PRPF8 HepG2 ENCSR121NVA
DDX55 HepG2 ENCSR845VGB PTBP1 HepG2 ENCSR384KAN
DDX59 HepG2 ENCSR214BZA PUM2 K562 ENCSR661ICQ
DDX6 HepG2 ENCSR141OIM PUS1 K562 ENCSR291XPT
DGCR8 HepG2 ENCSR061SZV QKI HepG2 ENCSR570WLM
DHX30 HepG2 ENCSR565DGW RBFOX2 HepG2 ENCSR987FTF
DKC1 HepG2 ENCSR301TFY RBM15 HepG2 ENCSR754NDA
DROSHA K562 ENCSR653HQC RBM22 HepG2 ENCSR456JJQ
EFTUD2 HepG2 ENCSR527DXF RBM5 HepG2 ENCSR489ABS
EWSR1 K562 ENCSR887LPK SAFB2 K562 ENCSR943MHU
EXOSC5 K562 ENCSR013CTQ SERBP1 K562 ENCSR121GQH
FAM120A HepG2 ENCSR987NYS SF3A3 HepG2 ENCSR331MIC
FKBP4 HepG2 ENCSR018ZUE SF3B1 K562 ENCSR133QEA
FTO K562 ENCSR989SMC SF3B4 HepG2 ENCSR279UJF
FUBP3 HepG2 ENCSR486YGP SFPQ HepG2 ENCSR965DLL
FXR2 K562 ENCSR224QWC SLBP K562 ENCSR483NOP
GEMIN5 K562 ENCSR238CLX SLTM HepG2 ENCSR351PVI
GNL3 K562 ENCSR301UQM SMNDC1 HepG2 ENCSR373ODC
GPKOW K562 ENCSR647CLF SRSF1 HepG2 ENCSR989VIY
GRSF1 HepG2 ENCSR668MJX SRSF7 HepG2 ENCSR513NDD
GRWD1 HepG2 ENCSR893NWB SRSF9 HepG2 ENCSR773KRC
GTF2F1 HepG2 ENCSR265ZIS SUB1 HepG2 ENCSR406OOZ
HLTF K562 ENCSR589YHM SUGP2 HepG2 ENCSR506UPY
HNRNPA1 HepG2 ENCSR769UEW SUPV3L1 HepG2 ENCSR580MFX
HNRNPC HepG2 ENCSR550DVK TAF15 HepG2 ENCSR841EQA
HNRNPK HepG2 ENCSR828ZID TARDBP K562 ENCSR584TCR
HNRNPL HepG2 ENCSR724RDN TBRG4 HepG2 ENCSR916SRV
HNRNPM HepG2 ENCSR267UCX TIA1 HepG2 ENCSR623VEQ
HNRNPU HepG2 ENCSR240MVJ TRA2A HepG2 ENCSR314UMJ
HNRNPUL1 HepG2 ENCSR755TJC TROVE2 HepG2 ENCSR993FMY
IGF2BP1 HepG2 ENCSR744GEU U2AF1 HepG2 ENCSR328LLU
IGF2BP2 K562 ENCSR062NNB U2AF2 HepG2 ENCSR202BFN
IGF2BP3 HepG2 ENCSR993OLA UCHL5 HepG2 ENCSR490IEE
ILF3 HepG2 ENCSR786TSC UPF1 K562 ENCSR456ASB
KHDRBS1 K562 ENCSR628IDK XPO5 HepG2 ENCSR921SXC
KHSRP K562 ENCSR438GZQ XRCC6 HepG2 ENCSR571ROL
LARP4 HepG2 ENCSR805SRN XRN2 HepG2 ENCSR655NZA
LARP7 HepG2 ENCSR961OKA YBX3 K562 ENCSR529FKI
LIN28B HepG2 ENCSR861GYE YWHAG K562 ENCSR867ZVK
LSM11 HepG2 ENCSR135VMS ZNF622 K562 ENCSR657TZZ
METAP2 K562 ENCSR303OQD ZRANB2 K562 ENCSR663NRA

Table A.2: Source Of eCLIP Data. Bed files for the biological replicates containing called peaks
were downloaded on September 6, 2018.

102 appendix

rbp t g other motifs rbp t g other motifs

AKAP8L X X MTPAP X GC-rich
BCCIP X NCBP2 X X GC-rich
BUD13 X 5’ ss , 3’ ss NKRF X X GC-rich
CDC40 X X CG-rich NONO X X GC-rich
CPSF6 X X GA rich NPM1 X X
CSTF2 X X poly(A), ACTAA PCBP2 X CT-rich
CSTF2T X G- and GC-rich POLR2G X X ALU motifs
DDX24 X PPIG 5’ ss, 3’ ss
DDX3X GC-rich PPIL4 X X
DDX42 X X PRPF8 X 5’ ss
DDX55 X GT-rich PTBP1 X CT-rich
DDX59 X C-rich PUM2 X TGTANATA
DDX6 X X PUS1 X
DGCR8 X X 3’ ss QKI X ACTAA
DHX30 X G-rich RBFOX2 X TGCATG
DKC1 X GT-rich RBM15 X GC-rich
DROSHA X X RBM22 X 5’ ss, 3’ ss, GC-rich
EFTUD2 X X 5’ ss RBM5 X X
EWSR1 X X GC- and GT-rich SAFB2 X X GC-rich
EXOSC5 X X GA- and GT-rich SERBP1 GC-rich
FAM120A X SF3A3 3’ ss
FKBP4 X SF3B1 X X 3’ ss
FTO X X GC-rich SF3B4 X 3’ ss
FUBP3 X TGT SFPQ X CCG
FXR2 X GC-rich, 5’ ss SLBP X 3’ ss
GEMIN5 X G-rich SLTM X X GC-rich
GNL3 X SMNDC1 X
GPKOW X X SRSF1 X 5’ ss
GRSF1 X X GC-rich SRSF7 X GT-rich
GRWD1 GC-rich, 5’ ss, 3’ ss SRSF9 X GGA
GTF2F1 X X SUB1 X GT-rich
HLTF X GA-rich, 5’ ss SUGP2 X X GA-rich
HNRNPA1 AGGGAG, GC-rich SUPV3L1 X X 5’ ss
HNRNPC X X ALU motifs TAF15 X GA-rich, 5’ ss
HNRNPK CT-rich, CCC TARDBP GT-rich, TGAATG
HNRNPL X CA-rich TBRG4

HNRNPM G-rich TIA1 X X 5’ ss
HNRNPU X X AGGGAG TRA2A GAAGAA
HNRNPUL1 X G-rich TROVE2 X X
IGF2BP1 X U2AF1 X X 3’ ss
IGF2BP2 C-rich U2AF2 X 3’ ss
IGF2BP3 X C-rich UCHL5 3’ ss
ILF3 X ALU motifs UPF1 X G- and C-rich
KHDRBS1 X poly(A) XPO5 GC-rich
KHSRP X G-rich XRCC6 X ALU motifs
LARP4 X XRN2 X GC-rich
LARP7 TGA YBX3 TGTCATC, C-rich
LIN28B GA-rich YWHAG X X
LSM11 X ZNF622 GA-rich, 5’ ss, 3’ ss
METAP2 X GC-rich ZRANB2 X X AGGTA (5’ ss?)

Table A.3: Motif Summary For All 100 RBPs. Crosses in the “T” and “G” columns indicate
whether kernels learning T-rich and G-rich eCLIP bias motifs were found. Bias
motifs make the detection of similar genuine motifs hard, therefore G-rich motifs in
the “Other Motifs” column indicate that G-rich motifs with a positional enrichment
different from the one shown in Figure 5.3 were found. “ss” stands for splice site.

A.5 rbp predictions : data for all 100 proteins 103

AKAP8L
exon: 33%

intron: 67%

BCCIP
exon: 16%

intron: 84%

BUD13
exon: 60%

intron: 40%

CDC40
exon: 40%

intron: 60%

CPSF6
exon: 71%

intron: 29%

CSTF2
exon: 24%

intron: 76%

CSTF2T
exon: 13%

intron: 87%

DDX24
exon: 85%

intron: 15%

DDX3X
exon: 92%

intron: 8%

DDX42
exon: 45%

intron: 55%

DDX55
exon: 92%

intron: 8%

DDX59
exon: 31%

intron: 69%

DDX6
exon: 81%

intron: 19%

0.0

0.5

1.0

re
la

ti
v
e
 d

is
ta

n
ce

DGCR8
exon: 39%

intron: 61%

DHX30
exon: 64%

intron: 36%

DKC1
exon: 48%

intron: 52%

DROSHA
exon: 42%

intron: 58%

EFTUD2
exon: 40%

intron: 60%

EWSR1
exon: 15%

intron: 85%

EXOSC5
exon: 3%

intron: 97%

FAM120A
exon: 28%

intron: 72%

FKBP4
exon: 23%

intron: 77%

FTO
exon: 50%

intron: 50%

FUBP3
exon: 78%

intron: 22%

FXR2
exon: 96%

intron: 4%

GEMIN5
exon: 68%

intron: 32%

0.0

0.5

1.0

re
la

ti
v
e
 d

is
ta

n
ce

GNL3
exon: 78%

intron: 22%

GPKOW
exon: 48%

intron: 52%

GRSF1
exon: 68%

intron: 32%

GRWD1
exon: 93%

intron: 7%

GTF2F1
exon: 24%

intron: 76%

HLTF
exon: 64%

intron: 36%

HNRNPA1
exon: 15%

intron: 85%

HNRNPC
exon: 6%

intron: 94%

HNRNPK
exon: 19%

intron: 81%

HNRNPL
exon: 9%

intron: 91%

HNRNPM
exon: 5%

intron: 95%

HNRNPU
exon: 7%

intron: 93%

HNRNPUL1
exon: 13%

intron: 87%

0.0

0.5

1.0

re
la

ti
v
e
 d

is
ta

n
ce

IGF2BP1
exon: 79%

intron: 21%

IGF2BP2
exon: 92%

intron: 8%

IGF2BP3
exon: 94%

intron: 6%

ILF3
exon: 6%

intron: 94%

KHDRBS1
exon: 11%

intron: 89%

KHSRP
exon: 14%

intron: 86%

LARP4
exon: 84%

intron: 16%

LARP7
exon: 85%

intron: 15%

LIN28B
exon: 87%

intron: 13%

LSM11
exon: 82%

intron: 18%

METAP2
exon: 88%

intron: 12%

MTPAP
exon: 71%

intron: 29%

NCBP2
exon: 68%

intron: 32%

0.0

0.5

1.0

re
la

ti
v
e
 d

is
ta

n
ce

NKRF
exon: 23%

intron: 77%

NONO
exon: 14%

intron: 86%

NPM1
exon: 77%

intron: 23%

PCBP2
exon: 30%

intron: 70%

POLR2G
exon: 11%

intron: 89%

PPIG
exon: 89%

intron: 11%

PPIL4
exon: 27%

intron: 73%

PRPF8
exon: 84%

intron: 16%

PTBP1
exon: 13%

intron: 87%

PUM2
exon: 92%

intron: 8%

PUS1
exon: 57%

intron: 43%

QKI
exon: 8%

intron: 92%

RBFOX2
exon: 23%

intron: 77%

0.0

0.5

1.0

re
la

ti
v
e
 d

is
ta

n
ce

RBM15
exon: 82%

intron: 18%

RBM22
exon: 32%

intron: 68%

RBM5
exon: 28%

intron: 72%

SAFB2
exon: 12%

intron: 88%

SERBP1
exon: 88%

intron: 12%

SF3A3
exon: 37%

intron: 63%

SF3B1
exon: 47%

intron: 53%

SF3B4
exon: 33%

intron: 67%

SFPQ
exon: 5%

intron: 95%

SLBP
exon: 83%

intron: 17%

SLTM
exon: 25%

intron: 75%

SMNDC1
exon: 55%

intron: 45%

SRSF1
exon: 83%

intron: 17%

0.0

0.5

1.0

re
la

ti
v
e
 d

is
ta

n
ce

SRSF7
exon: 64%

intron: 36%

SRSF9
exon: 60%

intron: 40%

SUB1
exon: 94%

intron: 6%

SUGP2
exon: 3%

intron: 97%

SUPV3L1
exon: 49%

intron: 51%

TAF15
exon: 10%

intron: 90%

TARDBP
exon: 17%

intron: 83%

TBRG4
exon: 45%

intron: 55%

TIA1
exon: 65%

intron: 35%

TRA2A
exon: 80%

intron: 20%

TROVE2
exon: 41%

intron: 59%

U2AF1
exon: 45%

intron: 55%

U2AF2
exon: 23%

intron: 77%

0.0

0.5

1.0

re
la

ti
v
e
 d

is
ta

n
ce

UCHL5
exon: 92%

intron: 8%

UPF1
exon: 94%

intron: 6%

XPO5
exon: 21%

intron: 79%

XRCC6
exon: 24%

intron: 76%

XRN2
exon: 25%

intron: 75%

YBX3
exon: 94%

intron: 6%

YWHAG
exon: 33%

intron: 67%

ZNF622
exon: 89%

intron: 11%

ZRANB2
exon: 43%

intron: 57%

0.0

0.5

1.0

re
la

ti
v
e
 d

is
ta

n
ce

distance nearest TSS distance nearest TTS

Figure A.4: RBP Location Information Overview. Summary statistics based on peaks found
in both eCLIP replicates that have a log-fold enrichment over the input of bigger
than two. Distances of binding sites to the nearest TSS/TTS are normalized to the
transcript length, i.e. a distance of 0 indicates that the binding site is equal to the
TSS/TTS.

104 appendix

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

S
pe

ar
m

an
's

 c
or

re
la

tio
n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

S
pe

ar
m

an
's

 c
or

re
la

tio
n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

S
pe

ar
m

an
's

 c
or

re
la

tio
n

CDC40 - binary model

CDC40 - multiclass model

CDC40 - full model

predicted probability cutoff

predicted probability cutoff

predicted probability cutoff

Figure A.5: Effect Of Probability Cutoffs On Spearman’s Correlation. Each black dot shows
the Spearman’s correlation for a protein/transcript pair. To denoise the predicted
probabilities, we apply a probability cutoff before computing their Spearman’s
correlation with the eCLIP signal, that is, all values below the cutoff are set to zero.
For binary models, the impact of the cutoff is small (possibly due to binary models
producing many predictions even for high cutoffs), while it is bigger for multiclass
and full models (multiclass + imbalanced data + additional input). 0.5 (binary) and
0.66 (three-class multiclass) are reasonable cutoffs for many proteins, but cutoffs
can also be tuned for individual proteins at the risk of overfitting.

A.5 rbp predictions : data for all 100 proteins 105

rbp aupre rbp aupre

AKAP8L 0.552 / 0.944 / 0.851 MTPAP 0.447 / 0.978 / 0.868
BCCIP 0.676 / 0.920 / 0.862 NCBP2 0.743 / 0.975 / 0.925
BUD13 0.603 / 0.991 / 0.920 NKRF 0.540 / 0.970 / 0.881
CDC40 0.497 / 0.970 / 0.866 NONO 0.659 / 0.954 / 0.883
CPSF6 0.583 / 0.965 / 0.892 NPM1 0.513 / 0.946 / 0.851
CSTF2 0.807 / 0.936 / 0.915 PCBP2 0.778 / 0.953 / 0.903
CSTF2T 0.629 / 0.980 / 0.929 POLR2G 0.604 / 0.910 / 0.857
DDX24 0.491 / 0.989 / 0.914 PPIG 0.586 / 0.992 / 0.929
DDX3X 0.787 / 0.994 / 0.957 PPIL4 0.537 / 0.892 / 0.857
DDX42 0.589 / 0.937 / 0.854 PRPF8 0.797 / 0.991 / 0.956
DDX55 0.452 / 0.995 / 0.918 PTBP1 0.850 / 0.911 / 0.882
DDX59 0.645 / 0.949 / 0.876 PUM2 0.819 / 0.991 / 0.969
DDX6 0.518 / 0.989 / 0.890 PUS1 0.417 / 0.906 / 0.796
DGCR8 0.574 / 0.964 / 0.845 QKI 0.913 / 0.936 / 0.937
DHX30 0.526 / 0.952 / 0.849 RBFOX2 0.752 / 0.967 / 0.911
DKC1 0.878 / 0.969 / 0.934 RBM15 0.516 / 0.984 / 0.891
DROSHA 0.587 / 0.954 / 0.868 RBM22 0.717 / 0.967 / 0.906
EFTUD2 0.581 / 0.992 / 0.940 RBM5 0.516 / 0.953 / 0.862
EWSR1 0.577 / 0.980 / 0.933 SAFB2 0.642 / 0.912 / 0.906
EXOSC5 0.847 / 0.918 / 0.905 SERBP1 0.746 / 0.994 / 0.954
FAM120A 0.603 / 0.984 / 0.914 SF3A3 0.795 / 0.987 / 0.955
FKBP4 0.645 / 0.985 / 0.928 SF3B1 0.705 / 0.936 / 0.850
FTO 0.619 / 0.956 / 0.876 SF3B4 0.838 / 0.989 / 0.968
FUBP3 0.834 / 0.986 / 0.968 SFPQ 0.648 / 0.949 / 0.906
FXR2 0.541 / 0.991 / 0.955 SLBP 0.841 / 0.934 / 0.885
GEMIN5 0.609 / 0.979 / 0.903 SLTM 0.566 / 0.942 / 0.856
GNL3 0.569 / 0.969 / 0.857 SMNDC1 0.647 / 0.972 / 0.886
GPKOW 0.756 / 0.973 / 0.912 SRSF1 0.614 / 0.987 / 0.927
GRSF1 0.691 / 0.985 / 0.929 SRSF7 0.643 / 0.972 / 0.901
GRWD1 0.502 / 0.994 / 0.933 SRSF9 0.599 / 0.972 / 0.908
GTF2F1 0.604 / 0.962 / 0.893 SUB1 0.530 / 0.993 / 0.939
HLTF 0.590 / 0.963 / 0.905 SUGP2 0.756 / 0.928 / 0.913
HNRNPA1 0.733 / 0.938 / 0.925 SUPV3L1 0.591 / 0.984 / 0.891
HNRNPC 0.855 / 0.940 / 0.932 TAF15 0.652 / 0.929 / 0.899
HNRNPK 0.842 / 0.960 / 0.933 TARDBP 0.907 / 0.936 / 0.919
HNRNPL 0.874 / 0.909 / 0.927 TBRG4 0.708 / 0.941 / 0.867
HNRNPM 0.828 / 0.950 / 0.928 TIA1 0.738 / 0.983 / 0.953
HNRNPU 0.540 / 0.900 / 0.864 TRA2A 0.722 / 0.983 / 0.942
HNRNPUL1 0.479 / 0.888 / 0.833 TROVE2 0.501 / 0.938 / 0.830
IGF2BP1 0.717 / 0.988 / 0.941 U2AF1 0.580 / 0.966 / 0.877
IGF2BP2 0.583 / 0.993 / 0.940 U2AF2 0.809 / 0.955 / 0.928
IGF2BP3 0.574 / 0.997 / 0.955 UCHL5 0.435 / 0.994 / 0.920
ILF3 0.786 / 0.935 / 0.927 UPF1 0.689 / 0.995 / 0.968
KHDRBS1 0.822 / 0.900 / 0.921 XPO5 0.703 / 0.932 / 0.880
KHSRP 0.901 / 0.941 / 0.941 XRCC6 0.581 / 0.896 / 0.861
LARP4 0.518 / 0.987 / 0.908 XRN2 0.532 / 0.967 / 0.888
LARP7 0.676 / 0.982 / 0.913 YBX3 0.624 / 0.994 / 0.952
LIN28B 0.605 / 0.993 / 0.941 YWHAG 0.571 / 0.915 / 0.833
LSM11 0.535 / 0.988 / 0.903 ZNF622 0.500 / 0.989 / 0.918
METAP2 0.409 / 0.989 / 0.878 ZRANB2 0.657 / 0.942 / 0.855

Table A.4: Class-wise auPRE For All 100 RBPs. Performance results on held-out test data for
the full models (multiclass + imbalanced data + additional input). Numbers indicate
the auPRE of the individual classes computed in a one-versus-rest fashion in the
following order: positive class / lincRNA class / RBP class.

106 appendix

Figure A.6: LincRNA Scanning Results For Full Models. Each black dot shows the Spear-
man’s correlation for a protein/transcript pair using the full CNN models (multi-
class + imbalanced data + additional input).

Bibliography

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification.” In:
Proceedings of the IEEE international conference on computer vision. 2015, pp. 1026–
1034.

[2] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. “Methods
for interpreting and understanding deep neural networks.” In: Digital Signal
Processing 73 (2018), pp. 1–15.

[3] John R Zech, Marcus A Badgeley, Manway Liu, Anthony B Costa, Joseph J
Titano, and Eric Karl Oermann. “Variable generalization performance of a deep
learning model to detect pneumonia in chest radiographs: A cross-sectional
study.” In: PLoS medicine 15.11 (2018), e1002683.

[4] Jeffrey Dastin. Amazon scraps secret AI recruiting tool that showed bias against
women. https://www.reuters.com/article/us-amazon-com-jobs-automation-
insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-

against-women-idUSKCN1MK08G. Accessed: 9-7-2019. 2018.

[5] Kasper D Hansen, Rafael A Irizarry, and Zhijin Wu. “Removing technical
variability in RNA-seq data using conditional quantile normalization.” In:
Biostatistics 13.2 (2012), pp. 204–216.

[6] Leonid Teytelman, Deborah M Thurtle, Jasper Rine, and Alexander van Oude-
naarden. “Highly expressed loci are vulnerable to misleading ChIP localization
of multiple unrelated proteins.” In: Proceedings of the National Academy of Sciences
110.46 (2013), pp. 18602–18607.

[7] Raga Krishnakumar, Anupama Sinha, Sara W Bird, Harikrishnan Jayamohan,
Harrison S Edwards, Joseph S Schoeniger, Kamlesh D Patel, Steven S Branda,
and Michael S Bartsch. “Systematic and stochastic influences on the performance
of the MinION nanopore sequencer across a range of nucleotide bias.” In:
Scientific reports 8.1 (2018), p. 3159.

[8] Timothy W Nilsen and Brenton R Graveley. “Expansion of the eukaryotic
proteome by alternative splicing.” In: Nature 463.7280 (2010), p. 457.

[9] Jacob O’Brien, Heyam Hayder, Yara Zayed, and Chun Peng. “Overview of
microRNA biogenesis, mechanisms of actions, and circulation.” In: Frontiers in
endocrinology 9 (2018), p. 402.

[10] Run-Wen Yao, Yang Wang, and Ling-Ling Chen. “Cellular functions of long
noncoding RNAs.” In: Nature cell biology 21.5 (2019), pp. 542–551.

107

https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G

108 bibliography

[11] Alan B Sachs, Peter Sarnow, and Matthias W Hentze. “Starting at the beginning,
middle, and end: translation initiation in eukaryotes.” In: Cell 89.6 (1997),
pp. 831–838.

[12] Juan M Vaquerizas, Sarah K Kummerfeld, Sarah A Teichmann, and Nicholas M
Luscombe. “A census of human transcription factors: function, expression and
evolution.” In: Nature Reviews Genetics 10.4 (2009), p. 252.

[13] Stephen T Smale and James T Kadonaga. “The RNA polymerase II core pro-
moter.” In: Annual review of biochemistry 72.1 (2003), pp. 449–479.

[14] Murat Tuğrul, Tiago Paixao, Nicholas H Barton, and Gašper Tkačik. “Dynamics
of transcription factor binding site evolution.” In: PLoS genetics 11.11 (2015),
e1005639.

[15] Bing Li, Michael Carey, and Jerry L Workman. “The role of chromatin during
transcription.” In: Cell 128.4 (2007), pp. 707–719.

[16] Moyra Lawrence, Sylvain Daujat, and Robert Schneider. “Lateral thinking:
how histone modifications regulate gene expression.” In: Trends in Genetics 32.1
(2016), pp. 42–56.

[17] Jinsen Li, Jared M Sagendorf, Tsu-Pei Chiu, Marco Pasi, Alberto Perez, and
Remo Rohs. “Expanding the repertoire of DNA shape features for genome-scale
studies of transcription factor binding.” In: Nucleic acids research 45.22 (2017),
pp. 12877–12887.

[18] Remo Rohs, Sean M West, Alona Sosinsky, Peng Liu, Richard S Mann, and
Barry Honig. “The role of DNA shape in protein–DNA recognition.” In: Nature
461.7268 (2009), p. 1248.

[19] Richard Lavery and Bernard Pullman. “The electrostatic field of DNA: the
role of the nucleic acid conformation.” In: Nucleic acids research 10.14 (1982),
pp. 4383–4395.

[20] Tsu-Pei Chiu, Federico Comoglio, Tianyin Zhou, Lin Yang, Renato Paro, and
Remo Rohs. “DNAshapeR: an R/Bioconductor package for DNA shape predic-
tion and feature encoding.” In: Bioinformatics 32.8 (2015), pp. 1211–1213.

[21] David S Johnson, Ali Mortazavi, Richard M Myers, and Barbara Wold. “Genome-
wide mapping of in vivo protein-DNA interactions.” In: Science 316.5830 (2007),
pp. 1497–1502.

[22] Stephen G Landt, Georgi K Marinov, Anshul Kundaje, Pouya Kheradpour,
Florencia Pauli, Serafim Batzoglou, Bradley E Bernstein, Peter Bickel, James B
Brown, Philip Cayting, et al. “ChIP-seq guidelines and practices of the ENCODE
and modENCODE consortia.” In: Genome research 22.9 (2012), pp. 1813–1831.

[23] Tina Glisovic, Jennifer L Bachorik, Jeongsik Yong, and Gideon Dreyfuss. “RNA-
binding proteins and post-transcriptional gene regulation.” In: FEBS letters
582.14 (2008), pp. 1977–1986.

bibliography 109

[24] Matthias W Hentze, Alfredo Castello, Thomas Schwarzl, and Thomas Preiss.
“A brave new world of RNA-binding proteins.” In: Nature Reviews Molecular
Cell Biology 19.5 (2018), p. 327.

[25] Bradley M Lunde, Claire Moore, and Gabriele Varani. “RNA-binding proteins:
modular design for efficient function.” In: Nature reviews Molecular cell biology
8.6 (2007), p. 479.

[26] Daniel Dominguez, Peter Freese, Maria S Alexis, Amanda Su, Myles Hochman,
Tsultrim Palden, Cassandra Bazile, Nicole J Lambert, Eric L Van Nostrand,
Gabriel A Pratt, et al. “Sequence, structure, and context preferences of human
RNA binding proteins.” In: Molecular cell 70.5 (2018), pp. 854–867.

[27] James R Williamson. “Induced fit in RNA–protein recognition.” In: Nature
Structural & Molecular Biology 7.10 (2000), p. 834.

[28] Silvi Rouskin, Meghan Zubradt, Stefan Washietl, Manolis Kellis, and Jonathan S
Weissman. “Genome-wide probing of RNA structure reveals active unfolding
of mRNA structures in vivo.” In: Nature 505.7485 (2014), p. 701.

[29] Meghan Zubradt, Paromita Gupta, Sitara Persad, Alan M Lambowitz, Jonathan
S Weissman, and Silvi Rouskin. “DMS-MaPseq for genome-wide or targeted
RNA structure probing in vivo.” In: Nature methods 14.1 (2017), p. 75.

[30] Ivo L Hofacker and Ronny Lorenz. “Predicting RNA structure: advances and
limitations.” In: RNA Folding. Springer, 2014, pp. 1–19.

[31] Jernej Ule, Kirk B Jensen, Matteo Ruggiu, Aldo Mele, Aljaž Ule, and Robert
B Darnell. “CLIP identifies Nova-regulated RNA networks in the brain.” In:
Science 302.5648 (2003), pp. 1212–1215.

[32] Eric L Van Nostrand, Gabriel A Pratt, Alexander A Shishkin, Chelsea Gelboin-
Burkhart, Mark Y Fang, Balaji Sundararaman, Steven M Blue, Thai B Nguyen,
Christine Surka, Keri Elkins, et al. “Robust transcriptome-wide discovery of
RNA-binding protein binding sites with enhanced CLIP (eCLIP).” In: Nature
methods 13.6 (2016), p. 508.

[33] Yong Zhang, Tao Liu, Clifford A Meyer, Jérôme Eeckhoute, David S Johnson,
Bradley E Bernstein, Chad Nusbaum, Richard M Myers, Myles Brown, Wei Li,
et al. “Model-based analysis of ChIP-Seq (MACS).” In: Genome biology 9.9 (2008),
R137.

[34] Sabrina Krakau, Hugues Richard, and Annalisa Marsico. “PureCLIP: capturing
target-specific protein–RNA interaction footprints from single-nucleotide CLIP-
seq data.” In: Genome biology 18.1 (2017), p. 240.

[35] ENCODE Project Consortium et al. “An integrated encyclopedia of DNA ele-
ments in the human genome.” In: Nature 489.7414 (2012), p. 57.

110 bibliography

[36] Eric L Van Nostrand, Peter Freese, Gabriel A Pratt, Xiaofeng Wang, Xintao
Wei, Steven M Blue, Daniel Dominguez, Neal AL Cody, Sara Olson, Balaji
Sundararaman, et al. “A large-scale binding and functional map of human RNA
binding proteins.” In: bioRxiv (2018), p. 179648.

[37] Kazuko Nishikura. “A-to-I editing of coding and non-coding RNAs by ADARs.”
In: Nature reviews Molecular cell biology 17.2 (2016), p. 83.

[38] Ernesto Picardi, Anna Maria D’Erchia, Claudio Lo Giudice, and Graziano
Pesole. “REDIportal: a comprehensive database of A-to-I RNA editing events in
humans.” In: Nucleic acids research 45.D1 (2016), pp. D750–D757.

[39] Ernesto Picardi, Caterina Manzari, Francesca Mastropasqua, Italia Aiello, Anna
Maria D’Erchia, and Graziano Pesole. “Profiling RNA editing in human tissues:
towards the inosinome Atlas.” In: Scientific reports 5 (2015), p. 14941.

[40] Erez Y Levanon and Eli Eisenberg. “Does RNA editing compensate for Alu
invasion of the primate genome?” In: Bioessays 37.2 (2015), pp. 175–181.

[41] Shengyong Yang, Peng Deng, Zhaowei Zhu, Jianzhong Zhu, Guoliang Wang,
Liyong Zhang, Alex F Chen, Tony Wang, Saumendra N Sarkar, Timothy R
Billiar, et al. “Adenosine deaminase acting on RNA 1 limits RIG-I RNA detection
and suppresses IFN production responding to viral and endogenous RNAs.”
In: The Journal of Immunology 193.7 (2014), pp. 3436–3445.

[42] Thomas D Schneider and R Michael Stephens. “Sequence logos: a new way to
display consensus sequences.” In: Nucleic acids research 18.20 (1990), pp. 6097–
6100.

[43] Patrik D’haeseleer. “What are DNA sequence motifs?” In: Nature biotechnology
24.4 (2006), p. 423.

[44] Modan K Das and Ho-Kwok Dai. “A survey of DNA motif finding algorithms.”
In: BMC bioinformatics. Vol. 8. 7. BioMed Central. 2007, S21.

[45] Timothy L Bailey, Mikael Boden, Fabian A Buske, Martin Frith, Charles E Grant,
Luca Clementi, Jingyuan Ren, Wilfred W Li, and William S Noble. “MEME
SUITE: tools for motif discovery and searching.” In: Nucleic acids research 37

(2009), W202–W208.

[46] Nga Thi Thuy Nguyen, Bruno Contreras-Moreira, Jaime A Castro-Mondragon,
Walter Santana-Garcia, Raul Ossio, Carla Daniela Robles-Espinoza, Mathieu
Bahin, Samuel Collombet, Pierre Vincens, Denis Thieffry, et al. “RSAT 2018:
regulatory sequence analysis tools 20th anniversary.” In: Nucleic acids research
46.W1 (2018), W209–W214.

[47] Yue Fan, Mark Kon, and Charles DeLisi. “Transcription Factor-DNA Binding
Via Machine Learning Ensembles.” In: arXiv preprint arXiv:1805.03771 (2018).

bibliography 111

[48] Gunnar Rätsch, Sören Sonnenburg, and Christin Schäfer. “Learning inter-
pretable SVMs for biological sequence classification.” In: BMC bioinformatics.
Vol. 7. 1. BioMed Central. 2006, S9.

[49] Mahmoud Ghandi, Dongwon Lee, Morteza Mohammad-Noori, and Michael A
Beer. “Enhanced regulatory sequence prediction using gapped k-mer features.”
In: PLoS computational biology 10.7 (2014), e1003711.

[50] Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey.
“Predicting the sequence specificities of DNA-and RNA-binding proteins by
deep learning.” In: Nature biotechnology 33.8 (2015), p. 831.

[51] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas immanent
in nervous activity.” In: The bulletin of mathematical biophysics 5.4 (1943), pp. 115–
133.

[52] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier
neural networks.” In: Proceedings of the fourteenth international conference on
artificial intelligence and statistics. 2011, pp. 315–323.

[53] Prajit Ramachandran, Barret Zoph, and Quoc V Le. “Searching for activation
functions.” In: arXiv preprint arXiv:1710.05941 (2017).

[54] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[55] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. “Learning
representations by back-propagating errors.” In: Cognitive modeling 5.3 (1988),
p. 1.

[56] Dominic Masters and Carlo Luschi. “Revisiting small batch training for deep
neural networks.” In: arXiv preprint arXiv:1804.07612 (2018).

[57] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning.” In: nature
521.7553 (2015), p. 436.

[58] Kunihiko Fukushima. “Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position.” In:
Biological cybernetics 36.4 (1980), pp. 193–202.

[59] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. “Gradient-
based learning applied to document recognition.” In: Proceedings of the IEEE
86.11 (1998), pp. 2278–2324.

[60] Waseem Rawat and Zenghui Wang. “Deep convolutional neural networks for
image classification: A comprehensive review.” In: Neural computation 29.9
(2017), pp. 2352–2449.

[61] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. “Dropout: a simple way to prevent neural networks from
overfitting.” In: The journal of machine learning research 15.1 (2014), pp. 1929–1958.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

112 bibliography

[62] Lutz Prechelt. “Early stopping-but when?” In: Neural Networks: Tricks of the
trade. Springer, 1998, pp. 55–69.

[63] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. “Feature Visual-
ization.” In: Distill (2017). https://distill.pub/2017/feature-visualization. doi:
10.23915/distill.00007.

[64] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep inside convo-
lutional networks: Visualising image classification models and saliency maps.”
In: arXiv preprint arXiv:1312.6034 (2013).

[65] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. “Learning impor-
tant features through propagating activation differences.” In: Proceedings of the
34th International Conference on Machine Learning-Volume 70. JMLR. org. 2017,
pp. 3145–3153.

[66] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen,
Klaus-Robert Müller, and Wojciech Samek. “On pixel-wise explanations for
non-linear classifier decisions by layer-wise relevance propagation.” In: PloS one
10.7 (2015), e0130140.

[67] Jack Lanchantin, Ritambhara Singh, Beilun Wang, and Yanjun Qi. “Deep motif
dashboard: Visualizing and understanding genomic sequences using deep
neural networks.” In: PACIFIC SYMPOSIUM ON BIOCOMPUTING 2017. World
Scientific. 2017, pp. 254–265.

[68] Matthew T Weirauch, Atina Cote, Raquel Norel, Matti Annala, Yue Zhao,
Todd R Riley, Julio Saez-Rodriguez, Thomas Cokelaer, Anastasia Vedenko,
Shaheynoor Talukder, et al. “Evaluation of methods for modeling transcription
factor sequence specificity.” In: Nature biotechnology 31.2 (2013), p. 126.

[69] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. 2015. url: https : / / www .

tensorflow.org/.

[70] David R Kelley, Jasper Snoek, and John L Rinn. “Basset: learning the regulatory
code of the accessible genome with deep convolutional neural networks.” In:
Genome research 26.7 (2016), pp. 990–999.

[71] Christof Angermueller, Heather J Lee, Wolf Reik, and Oliver Stegle. “DeepCpG:
accurate prediction of single-cell DNA methylation states using deep learning.”
In: Genome biology 18.1 (2017), p. 67.

[72] Xiaoyong Pan, Peter Rijnbeek, Junchi Yan, and Hong-Bin Shen. “Prediction of
RNA-protein sequence and structure binding preferences using deep convolu-
tional and recurrent neural networks.” In: BMC genomics 19.1 (2018), p. 511.

[73] Jesse Davis and Mark Goadrich. “The relationship between Precision-Recall
and ROC curves.” In: Proceedings of the 23rd international conference on Machine
learning. ACM. 2006, pp. 233–240.

https://doi.org/10.23915/distill.00007
https://www.tensorflow.org/
https://www.tensorflow.org/

bibliography 113

[74] Takaya Saito and Marc Rehmsmeier. “The precision-recall plot is more infor-
mative than the ROC plot when evaluating binary classifiers on imbalanced
datasets.” In: PloS one 10.3 (2015), e0118432.

[75] Stefan Budach and Annalisa Marsico. “pysster: classification of biological se-
quences by learning sequence and structure motifs with convolutional neural
networks.” In: Bioinformatics 34.17 (2018), pp. 3035–3037.

[76] Yoshua Bengio. “Practical recommendations for gradient-based training of deep
architectures.” In: Neural networks: Tricks of the trade. Springer, 2012, pp. 437–478.

[77] François Chollet et al. Keras. https://keras.io. 2015.

[78] Ronny Lorenz, Stephan H Bernhart, Christian Höner Zu Siederdissen, Hakim
Tafer, Christoph Flamm, Peter F Stadler, and Ivo L Hofacker. “ViennaRNA
Package 2.0.” In: Algorithms for molecular biology 6.1 (2011), p. 26.

[79] Bernhard C Thiel, Irene K Beckmann, Peter Kerpedjiev, and Ivo L Hofacker.
“3D based on 2D: Calculating helix angles and stacking patterns using forgi
2.0, an RNA Python library centered on secondary structure elements.” In:
F1000Research 8 (2019).

[80] Stephan R Starick, Jonas Ibn-Salem, Marcel Jurk, Céline Hernandez, Michael I
Love, Ho-Ryun Chung, Martin Vingron, Morgane Thomas-Chollier, and Se-
bastiaan H Meijsing. “ChIP-exo signal associated with DNA-binding motifs
provides insight into the genomic binding of the glucocorticoid receptor and
cooperating transcription factors.” In: Genome research 25.6 (2015), pp. 825–835.

[81] Tsu-Pei Chiu, Lin Yang, Tianyin Zhou, Bradley J Main, Stephen CJ Parker,
Sergey V Nuzhdin, Thomas D Tullius, and Remo Rohs. “GBshape: a genome
browser database for DNA shape annotations.” In: Nucleic acids research 43.D1

(2014), pp. D103–D109.

[82] David Heller, Ralf Krestel, Uwe Ohler, Martin Vingron, and Annalisa Marsico.
“ssHMM: extracting intuitive sequence-structure motifs from high-throughput
RNA-binding protein data.” In: Nucleic acids research 45.19 (2017), pp. 11004–
11018.

[83] Aziz Khan, Oriol Fornes, Arnaud Stigliani, Marius Gheorghe, Jaime A Castro-
Mondragon, Robin van der Lee, Adrien Bessy, Jeanne Cheneby, Shubhada R
Kulkarni, Ge Tan, et al. “JASPAR 2018: update of the open-access database of
transcription factor binding profiles and its web framework.” In: Nucleic acids
research 46.D1 (2017), pp. D260–D266.

[84] Taiyi Kuo, Michelle J Lew, Oleg Mayba, Charles A Harris, Terence P Speed, and
Jen-Chywan Wang. “Genome-wide analysis of glucocorticoid receptor-binding
sites in myotubes identifies gene networks modulating insulin signaling.” In:
Proceedings of the National Academy of Sciences 109.28 (2012), pp. 11160–11165.

https://keras.io

114 bibliography

[85] Alekos Athanasiadis, Alexander Rich, and Stefan Maas. “Widespread A-to-I
RNA editing of Alu-containing mRNAs in the human transcriptome.” In: PLoS
biology 2.12 (2004), e391.

[86] Michael Hadjiargyrou and Nicholas Delihas. “The intertwining of transposable
elements and non-coding RNAs.” In: International journal of molecular sciences
14.7 (2013), pp. 13307–13328.

[87] Lin Yang, Tianyin Zhou, Iris Dror, Anthony Mathelier, Wyeth W Wasserman,
Raluca Gordân, and Remo Rohs. “TFBSshape: a motif database for DNA shape
features of transcription factor binding sites.” In: Nucleic acids research 42.D1

(2013), pp. D148–D155.

[88] Fabien Tencé. Visualizing Deep Neural Networks Classes and Features. http://
ankivil.com/visualizing-deep-neural-networks-classes-and-features/.
Accessed: 19-11-2017. 2016.

[89] Daniel Maticzka, Sita J Lange, Fabrizio Costa, and Rolf Backofen. “GraphProt:
modeling binding preferences of RNA-binding proteins.” In: Genome biology
15.1 (2014), R17.

[90] Markus Hafner, Markus Landthaler, Lukas Burger, Mohsen Khorshid, Jean
Hausser, Philipp Berninger, Andrea Rothballer, Manuel Ascano Jr, Anna-Carina
Jungkamp, Mathias Munschauer, et al. “Transcriptome-wide identification of
RNA-binding protein and microRNA target sites by PAR-CLIP.” In: Cell 141.1
(2010), pp. 129–141.

[91] Jessica I Hoell, Erik Larsson, Simon Runge, Jeffrey D Nusbaum, Sujitha Dug-
gimpudi, Thalia A Farazi, Markus Hafner, Arndt Borkhardt, Chris Sander, and
Thomas Tuschl. “RNA targets of wild-type and mutant FET family proteins.”
In: Nature structural & molecular biology 18.12 (2011), p. 1428.

[92] Anthony Mathelier, Beibei Xin, Tsu-Pei Chiu, Lin Yang, Remo Rohs, and Wyeth
W Wasserman. “DNA shape features improve transcription factor binding site
predictions in vivo.” In: Cell systems 3.3 (2016), pp. 278–286.

[93] Igor Ulitsky and David P Bartel. “lincRNAs: genomics, evolution, and mecha-
nisms.” In: Cell 154.1 (2013), pp. 26–46.

[94] Julia D Ransohoff, Yuning Wei, and Paul A Khavari. “The functions and unique
features of long intergenic non-coding RNA.” In: Nature reviews Molecular cell
biology 19.3 (2018), p. 143.

[95] Adam Frankish, Mark Diekhans, Anne-Maud Ferreira, Rory Johnson, Irwin
Jungreis, Jane Loveland, Jonathan M Mudge, Cristina Sisu, James Wright, Joel
Armstrong, et al. “GENCODE reference annotation for the human and mouse
genomes.” In: Nucleic acids research 47.D1 (2018), pp. D766–D773.

http://ankivil.com/visualizing-deep-neural-networks-classes-and-features/
http://ankivil.com/visualizing-deep-neural-networks-classes-and-features/

bibliography 115

[96] Michael T Lovci, Dana Ghanem, Henry Marr, Justin Arnold, Sherry Gee, Mari-
lyn Parra, Tiffany Y Liang, Thomas J Stark, Lauren T Gehman, Shawn Hoon, et
al. “Rbfox proteins regulate alternative mRNA splicing through evolutionarily
conserved RNA bridges.” In: Nature structural & molecular biology 20.12 (2013),
p. 1434.

[97] Christopher R Sibley, Lorea Blazquez, and Jernej Ule. “Lessons from non-
canonical splicing.” In: Nature Reviews Genetics 17.7 (2016), p. 407.

[98] Annia Mesa, Jason A Somarelli, and Rene J Herrera. “Spliceosomal immunophilins.”
In: FEBS letters 582.16 (2008), pp. 2345–2351.

[99] Patrick Champion-Arnaud and Robin Reed. “The prespliceosome components
SAP 49 and SAP 145 interact in a complex implicated in tethering U2 snRNP to
the branch site.” In: Genes & development 8.16 (1994), pp. 1974–1983.

[100] Yoshio Takagaki, Clinton C MacDonald, Thomas Shenk, and James L Manley.
“The human 64-kDa polyadenylylation factor contains a ribonucleoprotein-
type RNA binding domain and unusual auxiliary motifs.” In: Proceedings of the
National Academy of Sciences 89.4 (1992), pp. 1403–1407.

[101] Emmanuel Beaudoing, Susan Freier, Jacqueline R Wyatt, Jean-Michel Claverie,
and Daniel Gautheret. “Patterns of variant polyadenylation signal usage in
human genes.” In: Genome research 10.7 (2000), pp. 1001–1010.

[102] Yoichiro Sugimoto, Julian König, Shobbir Hussain, Blaž Zupan, Tomaž Curk,
Michaela Frye, and Jernej Ule. “Analysis of CLIP and iCLIP methods for
nucleotide-resolution studies of protein-RNA interactions.” In: Genome biology
13.8 (2012), R67.

[103] Nejc Haberman, Ina Huppertz, Jan Attig, Julian König, Zhen Wang, Christian
Hauer, Matthias W Hentze, Andreas E Kulozik, Hervé Le Hir, Tomaž Curk,
et al. “Insights into the design and interpretation of iCLIP experiments.” In:
Genome biology 18.1 (2017), p. 7.

[104] Kathleen M Chen, Evan M Cofer, Jian Zhou, and Olga G Troyanskaya. “Selene:
a PyTorch-based deep learning library for sequence data.” In: Nature methods
16.4 (2019), p. 315.

[105] Wolfgang Kopp, Remo Monti, Annalaura Tamburrini, Uwe Ohler, and Altuna
Akalin. “Janggu-Deep learning for genomics.” In: bioRxiv (2019), p. 700450.

[106] Ziga Avsec, Roman Kreuzhuber, Johnny Israeli, Nancy Xu, Jun Cheng, Avanti
Shrikumar, Abhimanyu Banerjee, Daniel S Kim, Lara Urban, Anshul Kundaje,
et al. “Kipoi: accelerating the community exchange and reuse of predictive
models for genomics.” In: BioRxiv (2018), p. 375345.

116 bibliography

[107] Žiga Avsec, Roman Kreuzhuber, Johnny Israeli, Nancy Xu, Jun Cheng, Avanti
Shrikumar, Abhimanyu Banerjee, Daniel S Kim, Thorsten Beier, Lara Urban,
et al. “The Kipoi repository accelerates community exchange and reuse of
predictive models for genomics.” In: Nature biotechnology (2019), p. 1.

[108] Florian Kopp and Joshua T Mendell. “Functional classification and experimental
dissection of long noncoding RNAs.” In: Cell 172.3 (2018), pp. 393–407.

[109] Roman Schulte-Sasse, Stefan Budach, Denes Hnisz, and Annalisa Marsico.
“Graph Convolutional Networks Improve the Prediction of Cancer Driver
Genes.” In: International Conference on Artificial Neural Networks. Springer. 2019,
pp. 658–668.

[110] John N Weinstein, Eric A Collisson, Gordon B Mills, Kenna R Mills Shaw,
Brad A Ozenberger, Kyle Ellrott, Ilya Shmulevich, Chris Sander, Joshua M
Stuart, Cancer Genome Atlas Research Network, et al. “The cancer genome
atlas pan-cancer analysis project.” In: Nature genetics 45.10 (2013), p. 1113.

[111] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph
convolutional networks.” In: arXiv preprint arXiv:1609.02907 (2016).

[112] Stefan Budach, Matthias Heinig, and Annalisa Marsico. “Principles of mi-
croRNA regulation revealed through modeling microrna expression quantitative
trait loci.” In: Genetics 203.4 (2016), pp. 1629–1640.

[113] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion.” In: arXiv preprint arXiv:1412.6980 (2014).

[114] Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. “Adaptive gradient meth-
ods with dynamic bound of learning rate.” In: arXiv preprint arXiv:1902.09843
(2019).

List of Figures

Figure 1.1 Explaining Machine Learning Predictions 2

Figure 2.1 The DNA Double Helix And Shape Features. 7

Figure 2.2 RNA Secondary Structure Features 9

Figure 3.1 A Sequence Motif Example . 14

Figure 3.2 Neurons And Activation Functions 16

Figure 3.3 A Multilayer Perceptron . 17

Figure 3.4 Standard Convolutional Neural Network Architecture 20

Figure 3.5 Convolution And Max Pooling 21

Figure 3.6 A Convolutional Neural Network For Sequence Classification . 24

Figure 3.7 Early Stopping . 25

Figure 4.1 First-Layer Kernel Visualization Principle 37

Figure 4.2 Example Kernels Of The GR/CTCF Model 37

Figure 4.3 Kernel Clustering Of The GR/CTCF Model 39

Figure 4.4 RNA Secondary Structure & Model Input Encoding 43

Figure 4.5 Example Kernels Of The A-to-I Editing Model 44

Figure 4.6 Learned Motifs Match Alu Sequence And Structure 45

Figure 4.7 MGW Feature Discretization . 47

Figure 4.8 MGW Discretization Example Motifs. 48

Figure 4.9 Direct Shape Feature Encoding 49

Figure 4.10 MGW Pattern And Motif Comparison 50

Figure 4.11 Adding Multiple Shape Features At Once 51

Figure 4.12 Visualization By Optimization Overview 52

Figure 4.13 Positive Class Of the Artificial Data 54

Figure 4.14 Visualization Of The First Convolutional Layer 55

Figure 4.15 Visualization Of The Second Convolutional Layer 56

Figure 4.16 Visualization Of The Dense Layer 56

Figure 4.17 Visualization Of The Output Layer 57

Figure 4.18 Output Layer Visualization Of The GR/CTCF Model 57

Figure 4.19 Performance Effects Of RNA Secondary Structure 64

Figure 5.1 Performance Of Binary Classification Models 71

Figure 5.2 Example Kernel Visualizations 72

Figure 5.3 Potential eCLIP Bias Signals . 74

Figure 5.4 Multiclass Model Evaluation . 75

Figure 5.5 Spearman’s Correlation Examples 76

Figure 5.6 LincRNA Scanning Results For Binary And Multiclass Models . 77

Figure 5.7 Adding Additional Data On A Per-Sequence Basis 79

Figure 5.8 LincRNA Scanning Results For All Model Variations 81

117

Figure A.1 Screenshot Of summary.html . 97

Figure A.2 Maximum Activation Clustering Of Kernels And Sequences . . 98

Figure A.3 DNA Shape Visualizations . 99

Figure A.4 RBP Location Information Overview 103

Figure A.5 Effect Of Probability Cutoffs On Spearman’s Correlation 104

Figure A.6 LincRNA Scanning Results For Full Models 106

List of Tables

Table 3.1 Confusion Matrix . 30

Table 4.1 Influence Of Weight Initialization On Direct Kernel Visualization 41

Table 4.2 DNA Shape Feature Performance With Flanking Regions Back-
ground . 59

Table 4.3 DNA Shape Feature Performance With Dinucleotide Shuffled
Background . 59

Table 4.4 DNA Shape Training Runtime Performance 60

Table 4.5 RBP Performance: pysster & GraphProt 62

Table 4.6 Motif Comparison Of pysster, ssHMM & GraphProt 63

Table 5.1 auPRE For All Model Variations 80

Table A.1 Default Hyperparameters Of Pysster 89

Table A.2 Source Of eCLIP Data . 101

Table A.3 Motif Summary For All 100 RBPs 102

Table A.4 Class-wise auPRE For All 100 RBPs 105

118

Zusammenfassung

Biologische Sequenzen - DNA, RNA und Proteine - koordinieren das Verhalten aller
lebenden Zellen und der Versuch, die Mechanismen zu verstehen, die die Interaktionen
zwischen diesen Molekülen steuern und regeln, motiviert die biologische Forschung
seit vielen Jahren. Die Einführung experimenteller Protokolle, die solche Interaktio-
nen auf genom- oder transkriptom-weiter Ebene analysieren, hat auch den Einsatz
von maschinellem Lernen in unserem Bereich etabliert, um die riesigen Mengen an
erzeugten Daten zu verstehen. In jüngster Zeit hat sich gezeigt, dass Deep Learning, ein
Zweig des maschinellen Lernens auf der Grundlage künstlicher neuronaler Netze, und
insbesondere sogenannte Convolutional Neural Networks (CNNs), vielversprechende
Ergebnisse für prädiktive Aufgaben und automatisierte Mustererkennung liefern. Die
resultierenden Modelle sind oft sehr komplex und erschweren dadurch Anwendung
und Interpretation. Die Möglichkeit, zu interpretieren, welche Muster ein Modell aus
den Daten gelernt hat, ist jedoch entscheidend, um neue biologische Mechanismen zu
verstehen und zu erklären.

Diese Arbeit stellt daher pysster vor, unsere Open-Source Softwarebibliothek, die es
Forschern ermöglicht, CNNs auf biologischen Sequenzdaten einfacher zu trainieren,
anzuwenden und zu interpretieren. Wir bewerten und implementieren verschiedene
Interpretationsstrategien und zeigen, dass die Flexibilität von CNNs die Integration
zusätzlicher Daten über reine Sequenzen hinaus ermöglicht, um die biologische In-
terpretationsfähigkeit zu verbessern. Wir demonstrieren dies unter anderem durch
den Aufbau von prädiktiven Modellen für die Vorhersage von DNA-Protein und
RNA-Protein Interaktionen und durch die Erweiterung dieser Modelle mit Struktur-
informationen in Form von DNA shape und RNA-Sekundärstruktur. Die von den
Modellen erlernten Muster werden dann als Sequenz- und Strukturmotive zusam-
men mit Informationen über Motivpositionen und Motivkooperationen visualisiert.
Durch die weitere Analyse eines künstlichen Datensatzes mit implantierten Motiven
veranschaulichen wir auch, wie der hierarchische Musterextraktionsprozess in einem
mehrschichtigen neuronalen Netzwerk abläuft.

Zum Abschluss präsentieren wir eine größere biologische Anwendung, indem wir
die Bindungsstellen von Proteinen für Transkripte vorhersagen, für die noch keine
experimentellen RNA-Protein Interaktionsdaten verfügbar sind. Hier machten uns die
umfassenden Interpretationsmöglichkeiten der CNNs auf mögliche technische und
systematische Fehler in den eCLIP-Daten aufmerksam, die als Grundlage für unsere
Vorhersagen dienen. Dies ermöglichte eine darauffolgende Anpassung der Modelle
und Daten, um in der Praxis aussagekräftigere Vorhersagen zu erhalten.

119

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine
anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Ich erkläre
weiterhin, dass ich die vorliegende Arbeit oder deren Inhalt nicht in einem früheren
Promotionsverfahren eingereicht habe.

Berlin, Dezember 2019

Stefan Budach

	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Explainable Machine Learning
	1.2 Thesis Outline

	2 Biological Preliminaries
	2.1 Biological Sequences
	2.2 Transcription Factors
	2.2.1 Protein-DNA Binding Affinity
	2.2.2 Experimental Detection of Protein-DNA Interactions

	2.3 RNA-binding Proteins
	2.3.1 Protein-RNA Binding Affinity
	2.3.2 Experimental Detection of Protein-RNA Interactions

	2.4 RNA A-to-I Editing

	3 Computational Preliminaries
	3.1 Sequence Motifs
	3.1.1 Motif Finding And Sequence Classification

	3.2 Artificial Neural Networks
	3.2.1 Multilayer Perceptrons
	3.2.2 Gradient Descent & Backpropagation

	3.3 Convolutional Neural Networks
	3.3.1 Convolutional Layers & Pooling
	3.3.2 A Complete Convolutional Network
	3.3.3 Network Regularization
	3.3.4 Feature Visualization Methods
	3.3.5 Attribution Methods
	3.3.6 CNNs For Biological Sequence Analysis

	3.4 Performance Measurements

	4 Learning Sequence And Structure Motifs with CNNs
	4.1 Pysster
	4.1.1 Network Architecture & Feature Overview
	4.1.2 Implementation Details

	4.2 Sequence & Other Training Data
	4.3 Network Interpretation
	4.3.1 Discrimination Of Transcription Factor Binding Sites
	4.3.2 Direct Visualization Of First-Layer Kernel Matrices
	4.3.3 Discriminating RNA A-to-I Editing Events & Adding RNA Structure Information
	4.3.4 Adding DNA Shape Information
	4.3.5 Discretization Encoding Of DNA Shape
	4.3.6 Direct Encoding Of DNA Shape
	4.3.7 Visualizing All Network Layers By Optimization

	4.4 Network Performance
	4.4.1 DNA Shape Performance
	4.4.2 RNA Secondary Structure Performance

	4.5 Discussion

	5 Predicting RNA-Binding Protein Binding Across Cell Lines
	5.1 Motivation
	5.2 Data Sources & General Data Preparation
	5.3 Predicting RBP Binding Sites
	5.3.1 Binary Classification Models
	5.3.2 RBP Sequence Motif Visualizations
	5.3.3 Using Visualizations To Detect Biases
	5.3.4 Multiclass Classification Models
	5.3.5 Measuring Performance In Practice
	5.3.6 Further Improving Predictions in Practice

	5.4 Discussion

	6 Summary & Conclusion
	7 Contributions To Other Projects
	7.1 Modeling Chromatin-Associated lincRNAs
	7.2 Interpretable Prediction Of Cancer Driver Genes Using Graph Convolutional Networks
	7.3 Modeling microRNA Expression Quantitative Trait Loci

	A Appendix
	A.1 Pysster: Hyperparameters
	A.2 Pysster: Hyperparameter Tuning Considerations
	A.3 Pysster: Code Examples
	A.4 Further DNA Shape Patterns
	A.5 RBP Predictions: Data For All 100 Proteins

	Bibliography
	Bibliography

	List of Figures
	List of Figures

	List of Tables
	List of Tables

	Zusammenfassung
	Zusammenfassung

	Selbstständigkeitserklärung
	Selbstständigkeitserklärung

