
 

 

 i 

 

Aus der Klinik für Neurologie 

der Medizinischen Fakultät Charité – Universitätsmedizin Berlin 
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Introductory remarks  

Structure and extent of this synopsis follow the doctorate regulations (“Promotionsordnung”) of 

the Charité – Universitätsmedizin Berlin. It summarizes five peer-reviewed publications 

underlying this dissertation which are abbreviated as Study 1 (Kumral et al., 2019), Study 2 

(Koenig et al., 2020), Study 3 (Kumral et al., 2020), Dataset 1 (Babayan et al., 2019), and Dataset 

2 (Mendes et al., 2019). For more detailed information about background, methods, results, and 

discussions of these studies, please see the respective publications which are inserted in their 

complete form in the section ‘Print versions of the selected publications’, starting on page 27. 
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1.   Summary 

1.1   Abstract (English) 

 

Introduction 

The world population is rapidly aging. In Germany for example, the percentage of individuals 60 

years and older is projected to be 38% in 20501. Longer lifetimes entail more progressive 

impairment of brain and body. It is therefore a crucial question how to assess and quantify these 

frequently occurring alterations associated with aging. In order to address this question, the 

overarching goal of this dissertation is to explore and characterize bodily and neural signals which 

reflect effects of aging across the adult lifespan. To this end, I performed two studies as lead 

investigator and contributed to three more large-scale collaborative studies. 

 

Methods 

In Study 1 (Kumral et al., 2019), I investigated the relationship of heart rate variability (HRV) to 

brain structure (gray matter) and resting state (rs) brain activity (functional connectivity) in a well-

characterized sample of healthy subjects across the adult lifespan (N=388). For Study 2 (Koenig 

et al., 2020), I contributed to a mega analysis testing the association between cortical thickness 

and heart-rate variability (HRV) at rest, also across the lifespan (N=1218). In Study 3 (Kumral et 

al., 2020), I examined whether different measures of brain signal variability – identified with 

hemodynamic (functional magnetic resonance imaging; fMRI) or electrophysiological (EEG) 

methods – reflect the same underlying physiology in healthy younger and older adults (N=189). 

Lastly, during my dissertation work, I was part of the Mind-Body-Emotion group in Leipzig, 

which established two publicly available – and now widely used – datasets (Datasets 1 and 2; 

Babayan et al., 2019, Mendes et al., 2019), which include structural and functional MRI, EEG data 

as well as a range of physiological and behavioral measures. 

 

Results 

In Study 1, I showed that age-related decreases in resting HRV are accompanied by age-dependent 

and age-invariant alterations in brain function, particularly located along cortical midline 

structures. In Study 2, we found that the age-related decrease of resting HRV was associated with 

cortical thinning in prefrontal brain structures. In Study 3, I demonstrated age differences in brain 

signal variability obtained with rs-fMRI and rs-EEG, respectively. Surprisingly, the two measures 

of neural variability showed no significant correlation, but rather seemed to provide 

complementary information on the state of the aging brain. 
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Conclusions 

The present dissertation provides evidence that measures of cardiovascular and neural signal 

variability may be useful biomarkers for neurocognitive health (and disease) in aging. With these 

measures, we can further specify the dynamic interplay of the human body and the brain in relation 

to individual health-related factors.  
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1.2 Abstract (Deutsch) 

Einführung 

Die Weltbevölkerung wird immer älter. In Deutschland wird der Anteil der Personen, die 60 Jahre 

und älter sind, bis zum Jahr 2050 voraussichtlich auf 38 Prozent ansteigen1. Eine längere 

Lebensdauer bedeutet auch eine fortschreitende Beeinträchtigung des Gehirns und des Körpers. 

Es ist daher eine entscheidende Frage, wie diese häufigen alterungsbedingten Veränderungen 

festgestellt und quantifiziert werden können. Das Ziel dieser Dissertation bestand daher darin, 

Körper- und Gehirnsignale zu untersuchen und zu charakterisieren, welche die Auswirkungen des 

Alterns über die gesamte Lebensspanne widerspiegeln. Für dieses Ziel führte ich in meiner 

Dissertation zwei Studien als „lead investigator“ durch, darüber hinaus habe ich mich an drei 

weiteren Kooperations-Projekten beteiligt. 

 

Methoden 

In Studie 1 (Kumral et al., 2019) habe ich die Beziehung zwischen der Herzfrequenzvariabilität 

in Ruhe (HFV), dem Gehirnvolumen (graue Substanz) und der Gehirnaktivität (bzw. 

Konnektivität) im Ruhezustand anhand einer gut charakterisierten Stichprobe gesunder Probanden 

über die gesamte Lebensspanne (N=388) untersucht. Studie 2 (Koenig et al., 2020) ist eine Mega 

Analyse des Zusammenhangs zwischen der kortikalen Dichte und der HFV im Ruhezustand über 

die gesamte Lebensdauer (N=1218), zu der ich wesentlich beigetragen habe. Im Mittelpunkt von 

Studie 3 (Kumral et al., 2020) stand die Frage, ob verschiedene Messungen der Variabilität des 

Gehirnsignals – erhoben mit hämodynamischen (funktionelle Magnetresonanztomografie; fMRT) 

oder elektrophysiologischen (EEG) Methoden – die gleichen physiologischen Grundlagen bei 

gesunden jüngeren und älteren Menschen widerspiegeln (N=189). Als Teil der Mind-Body-

Emotion-Gruppe in Leipzig war ich an der Erstellung von zwei großen – öffentlich zugänglichen 

und weltweit genutzten – Datensätzen aktiv beteiligt (Datensätze 1 und 2; Babayan et al., 2019, 

Mendes et al., 2019), die neben strukturellen und funktionellen MRT- sowie EEG-Daten auch 

physiologische und Verhaltensmaße umfassen. 

 

Ergebnisse 

In Studie 1 fand ich, dass die altersbedingte Abnahme der Ruhe-HFV von altersabhängigen und 

altersinvarianten Veränderungen der Gehirnfunktion begleitet war, insbesondere entlang der 

kortikalen Mittellinie. In Studie 2 berichteten wir, dass die altersbedingte Abnahme der Ruhe-

HFV mit einer kortikalen Verdünnung präfrontaler Hirnstrukturen verbunden war. In Studie 3 
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beobachtete ich Altersunterschiede in der Variabilität des Gehirnsignals, das mit Ruhe-fMRT und 

Ruhe-EEG gemessen wurde. Überraschenderweise zeigten die zwei Messmethoden der 

neuronalen Variabilität keine signifikante Korrelation, sondern lieferten ergänzende 

Informationen über den Zustand des alternden Gehirns. 

 

Schlussfolgerungen 

Die vorliegende Dissertation erbringt den Nachweis, dass die Messungen der kardiovaskulären 

und neuronalen Signalvariabilität nützliche Biomarker für die neurokognitive Gesundheit (und 

Krankheit) während des Alterns sein können. Mit diesen Markern können wir das dynamische 

Zusammenspiel des menschlichen Körpers und des Gehirns im Verhältnis zu individuellen, 

gesundheitsbezogenen Faktoren weiter spezifizieren. 
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1.3 Introduction 

 

Aging is a complex biological process associated with progressive changes in the human body and 

brain. It is a major risk factor and contributor to almost all cardiovascular morbidities and 

mortalities. A major goal in aging research is to achieve what has been termed “successful aging” 

or “healthy aging”, i.e., aging without the appearance of concurrent physical and mental diseases2. 

It is evidently important to understand the factors contributing to healthy aging as, in doing so, we 

could sustain a better quality of life across the lifespan. 

 

How is healthy aging characterized in the human body and brain? To address this question, 

different biomarkers reflecting different aspects of aging must be established. Currently, however, 

there is no consensus on optimal biomarkers and their validity regarding the aging process. In this 

dissertation, I will discuss potential cardiovascular and neural biomarkers for measuring key 

aspects of healthy aging (outlined individually below). 

 

1.3.1 Heart Rate Variability (HRV) as a biomarker for health 

 

Advancing age leads to alterations in structural and functional systems (e.g., perturbed autonomic 

balance). One cardiovascular health marker for investigating such age-related autonomic changes 

is heart rate variability (HRV). HRV describes variations of the cardiac beat-to-beat (or RR) 

interval. Phasic modulation of the heart rate arises from the influences of the two branches of the 

autonomic nervous system (ANS): the sympathetic and parasympathetic nervous system. 

Autonomic afferents at the heart’s sinoatrial node originate from brainstem nuclei, which also 

receive input from cortical brain regions including anterior cingulate cortex (ACC), orbitofrontal 

cortex (OFC), ventromedial prefrontal cortex (vmPFC), and also subcortical brain regions like the 

insula, amygdala, and hypothalamus3. These brain regions are part of the central autonomic 

network (CAN)3 which is implicated in the maintenance of homeostasis. While vagal influences 

on the heart act rapidly (milliseconds), sympathetic activity increases the heart rate relatively 

slowly (seconds). Therefore, analyzing rapid changes in heart rate allows for the extraction of the 

parasympathetic (vagal) component of cardioregulation. 

 

HRV can be quantified from a standard electrocardiogram (ECG), acquired during a task or in the 

absence of stimulation (i.e., “at rest”). It has been used, for example, to quantify individual 

differences in parasympathetic cardioregulation – with higher HRV generally indicating higher 

bodily integrity or health and maintenance, but also better cognitive performance and greater well-
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being4. It is also linked to age-related attenuated vagal control that could capture longevity5. Thus, 

HRV offers a measure of autonomic responsiveness which might be clinically useful as a 

biomarker of cardiovascular autonomic (ab)normalities during aging. 

 

1.3.2 Structural and functional neural biomarkers of aging 

 

The brain is known to be strongly affected by aging, however, there is pronounced inter-individual 

variability. Recent advances in magnetic resonance imaging (MRI) now permit noninvasive 

exploration of brain structure and function in relation to these age-associated changes and inter-

individual variations. In the last two decades, to assess the brain structure quantitively, based on 

high-resolution anatomical images (e.g., T1-weighted MRI), several methods have been 

established. The two most widely used techniques are voxel-based morphometry6 (VBM) and the 

measurement of cortical thickness (CT)7. While VBM is a classical quantitative method based 

purely on a volumetric representation of the brain6, CT is based on the estimation of an absolute 

measure of thickness across the cortical surface7. Both methods have been used successfully to 

characterize age-dependent structural degenerations including shrinkage of gray matter volume 

(GMV)8,9 as well as widespread reductions in CT9,10. To further investigate inter-individual 

variability during aging, these methods are utilized (Study 1 and 2), as discussed in detail below. 

  

In addition to changes in brain structure, it is also well-established that brain function alters with 

age. Contemporary functional neuroimaging techniques provide excellent opportunities for 

investigating the aging brain in vivo11,12. Using T2*-weighted echo planar imaging (EPI), it is 

possible to study brain activity, acquired with or without an experimental task or stimulation, the 

latter being called resting state fMRI (rs-fMRI)13. The mostly widely used fMRI method is blood 

oxygenation level dependent (BOLD) fMRI. BOLD fMRI is based on local concentration changes 

in deoxygenated hemoglobin ([deoxy-Hb]) during functional activation with a concomitant 

increase of cerebral blood flow (CBF). This is caused by vascular (blood velocity and volume: 

“neurovascular coupling”) and metabolic (oxygen consumption: “neurometabolic coupling”) 

changes14,15. 

 

While fMRI is ideal for studying age-related functional changes with superb spatial resolution, a 

major disadvantage is its dependence on vascular reactions to the brain activity. This concern is 

especially relevant for studies involving an aging population in which structural changes are 

known to occur in the cerebral vasculature, a notable example of which would be arteriosclerosis. 
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These changes can reduce vessel elasticity and may alter the BOLD fMRI signal due to their effect 

on neurovascular coupling14. 

 

While fMRI BOLD is only partially and indirectly related to neural activity15, different 

electrophysiological methods such as electroencephalography (EEG) provide a more direct 

assessment of neural activity. EEG measures the currents resulting from the synchronization of 

dendritic postsynaptic potentials across the cortical neural population and offers a direct measure 

of neuronal activity with high temporal (at milliseconds scale)16, but at low spatial resolution. 

Interestingly, the combination of EEG with fMRI-based techniques can complement, to some 

extent, the inherent limitations within each individual modality. For example, EEG has been used 

to separate neural from vascular components of the BOLD signal17, while fMRI can be used to 

improve the spatial resolution of EEG signals18. Therefore, to overcome distinct limitations of 

these imaging methods, we employed both fMRI and EEG in Study 3. 

 

While the above-mentioned cardiovascular neural biomarkers have been widely used in studies on 

aging, several important questions are still open. For example, given that HRV reflects the 

interaction of the brain and the heart, little is known about the specific brain regions underlying 

this interaction and – more relevant for this dissertation – whether (and how) this interaction alters 

with age. Furthermore, regarding the above-mentioned functional brain measures, there is still an 

active search for understanding age-related brain alterations, given that both fMRI and EEG have 

significant shortcomings. To address these issues, this dissertation firstly outlines the interaction 

between HRV and the brain across the lifespan and secondly, explores different neural biomarkers 

in aging, for which subsequently some background is given: 

 

1.3.3 HRV and the Brain 

 

The relation of spontaneous, intrinsic brain activity to different cardiovascular biomarkers (e.g., 

HRV) is relevant for understanding how the brain integrates and regulates internal changes during 

aging. Accordingly, the neurovisceral integration model19,20 highlights the role of vagally-

mediated HRV in cognition and bodily homeostasis. Evidence in favor of this model comes from 

a meta-analysis reporting different cortical and subcortical brain structures and functions to be 

associated with HRV20. Given this close relationship between functional and structural features of 

the brain and HRV, it is tempting to further speculate that age-related attenuations in HRV might 

go along with specific neural alterations as well. To address this hypothesis, the first section of 
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this dissertation (Study 1 and 2) investigates structural (CT and GMV) and functional (functional 

connectivity) correlates of resting HRV across the adult lifespan. 

 

1.3.4 Brain signal variability as potential new neural biomarkers 

 

To quantify age-related alterations in the brain, researchers typically compute within-subject 

average signals across a given time course to capture what is conceived as the most task-relevant 

brain activity. However, the evaluation of mean changes in each variable over time ignores the 

dynamic nature of physiological processes. Recently, examining moment-to-moment signal 

variability using fMRI or EEG has provided new insights into the dynamic aspects of the aging 

brain21. For instance, in several neuroimaging studies, age-related changes in BOLD and EEG 

signal variability have been observed22,23. However, it remains unclear whether these alterations 

are dominated by joint signal sources of fMRI and EEG, or by potentially different signal 

contributions. Given the potentially large non-neuronal signal contribution, this issue is 

particularly relevant for BOLD fMRI studies. In Study 3 of this dissertation, I addressed this 

question by analyzing rs-fMRI and EEG measures of variability in healthy young and old 

participants. 
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1.4 Objectives 

The main goals of this dissertation were to (i) investigate potential links between a cardiac 

biomarker of healthy aging (e.g., heart-rate variability) and brain structure (ii) and function, and 

(iii) to compare two potential neural biomarkers of healthy (brain) aging, i.e., variability of BOLD 

fMRI signal and of EEG. As a groundwork for achieving these goals, I was also involved in 

establishing two large datasets on which the brain-body interactions have been studied, not only 

by myself, but also by other groups world-wide given that these data are now publicly available. 

The specific objectives of this dissertation were as follows: 

• Study 1 (Kumral et al., 2019): To investigate resting HRV in relation to brain structure 

(GMV) and resting state functional connectivity in a well-characterized healthy sample 

with different age groups across the adult lifespan. 

• Study 2 (Koenig et al., 2020): Data contribution into the cross-sectional pooled mega 

analysis exploring the association between brain structure using CT and resting HRV 

across the lifespan from 12 to 87 years of age. 

• Study 3 (Kumral et al., 2020): To explore whether different measures of brain signal 

variability – identified with either hemodynamic or electrophysiological methods – reflect 

the same underlying physiology in healthy younger and older adults. 

• Datasets (Babayan et al., 2019, Mendes et al., 2019): To establish a framework for the 

study of mind, brain, and body interaction, e.g., the interaction between the heart (ECG) 

and the brain (fMRI, EEG). These datasets are now publicly available and include raw and 

preprocessed structural and functional MRI as well as EEG data and a range of other health 

and behavioral measures. 
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1.5 Methods 

The specific methodologies of each study, including study design, participant selection criteria, 

image preprocessing, and statistical analysis are described in the methods section of the respective 

publications. 

1.5.1 Subjects and Study Design  

In Study 1, I combined two datasets, (i) the “Leipzig Research Centre for Civilization Diseases” 

(LIFE24; N=278) and (ii) the Leipzig Study for Mind-Body-Emotion Interactions (LEMON25; 

N=110), totaling 388 healthy young (N=140, 26.0±4.2 years, range: 20–35, 38 female), middle-

aged (N=119, 46.3±6.2 years, range: 35–60, 36 female), and older (N=119, 66.9±4.7 years, range: 

60–80, 50 female) adults.  

In Study 2, I contributed structural MRI and ECG data (N=110) collected under similar protocols 

to be pooled in a mega analysis (N=1218, 36.7±14.9 years, range: 12–87, 615 female). 

Preregistration and a full preprint/manuscript detailing the hypotheses, strategies for pooling of 

data, and analyses of the project have been posted on the Open Science Framework 

(https://osf.io/btjpw/).  

In Study 3, I also used the LEMON dataset, consisting of 135 healthy younger (25.10±3.70 years, 

42 females) and 54 older subjects (67.15±4.52 years, 27 females). Lastly, as part of the Mind-

Body-Emotion group at MPI in Leipzig, we made an extended version of the data used in our 

empirical studies publicly available, containing raw and preprocessed structural, functional MRI 

and EEG data as well as a range of behavioral, physiological and phenotypic measures25,26. 

All subjects were healthy and gave written informed consent according to the declaration of 

Helsinki prior to investigation. All studies were conducted in compliance with the relevant laws 

and institutional guidelines and approved by the local ethics committee at the Medical Faculty of 

the University of Leipzig. 

1.5.2 Data Acquisition 

Electrocardiography. In Study 1, ten seconds of a standard medical 12-lead resting ECG was 

acquired using a Page-Writer TC50 ECG system in the supine position (LIFE, N=278) in the LIFE 

study, while in the LEMON study (N=110), four minutes of resting ECG were acquired using a 

Biopac MP35 amplifier with three disposable electrodes on the thorax. 

https://osf.io/btjpw/
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Structural and Functional Magnetic Resonance Imaging. In all studies, MRI data were acquired 

using a whole-body 3T scanner (Magnetom Verio, Siemens, Germany) equipped with a 32-

channel head coil. In Study 1, 2, and 3, the MRI data for each participant comprised a structural 

scan acquired using a three-dimensional Magnetization-Prepared 2 Rapid Acquisition Gradient 

Echoes (MP2RAGE) sequence, and rs-fMRI scans acquired using a multiband gradient EPI 

sequence. 

Electroencephalography. In Study 3, Rs-EEG was recorded with a BrainAmp MR plus amplifier 

with 62-channel active ActiCAP electrodes attached according to the international standard 10–20 

localization system. Rs-EEG session comprised a total of 16 blocks, each 60 s long, 8 with eyes-

closed and 8 with eyes-open. 

1.5.3 Data Analysis 

Electrocardiography. In Studies 1 and 2, the time series of heart rate consisting of beat-to-beat 

intervals (RR-intervals) were detected automatically and inspected visually. As a HRV measure, I 

calculated the root mean square of successive differences (RMSSD) of adjacent RR intervals from 

the ECG time series (Figure 1). 

 

Figure 1. The Root Mean Square of Successive Differences (RMSSD) between each heartbeat (R 

peak). RMSSD is a common time-domain measurement to assess mainly vagally-mediated heart 

rate variability (HRV), the successive differences being neighboring RR intervals. 
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Structural and Functional Magnetic Resonance Imaging. MRI preprocessing pipelines were 

implemented using Nipype, and all code is available in a Github repository 

(https://github.com/NeuroanatomyAndConnectivity/pipelines/). I thereby ensure that our entire 

research process is transparent to other researchers for reproduction and critical discussion. A 

detailed description of the preprocessing steps and all employed tools can be found in the 

publications on the two Datasets25,26. 

In Study 1, I analyzed structural brain alterations (GMV) on the T1-weighted 3D images using 

VBM implemented in the Computational Anatomy Toolbox6. Based on spontaneous modulations 

of the rs-fMRI BOLD signal, it is further possible to quantify temporal properties such as resting 

state functional connectivity27. For rs-fMRI data, I used whole-brain functional connectivity 

analysis with graph theory metrics, called Eigenvector Centrality Mapping (ECM) that attributes 

a value to each voxel in the brain such that it receives a larger centrality value if it is strongly 

correlated with many other voxels that are themselves central in the brain28. To further explore the 

functional connectivity patterns of identified centrality changes across the whole brain, ECM was 

complemented by an exploratory seed-based connectivity analysis (SBCA), in which correlations 

between the time series of the seed and every other voxel in the whole brain were computed for 

each subject. 

In Study 2, FreeSurfer software was used to generate models of the cortical surface and to model 

CT from the T1-weighted images. CT was quantified for a total of 68 regions of interest (ROIs). 

A series of multiple regression models using frequency and Bayesian statistics were used to predict 

the association between resting HRV and brain structure (CT). 

In Study 3, I computed brain signal variability as the standard deviation (SD) of BOLD fMRI 

signal that quantifies the amount of variation or dispersion across the whole time-series (Figure 

2). Essentially, I calculated SDBOLD across the whole time series for each voxel and subsequently 

within 96 boundaries of preselected ROIs. 

https://github.com/NeuroanatomyAndConnectivity/pipelines/releases/tag/v2.0
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Figure 2. Brain signal variability from the preprocessed resting state functional MRI and EEG 

signal. Standard deviations of the blood oxygen level-dependent (BOLD) signal and of the coarse-

grained amplitude envelope of EEG time series for a number of standard frequency bands at the 

source space were calculated. Each sample of coarse-grained amplitude envelope of -EEG 

(represented in numbers) was generated by averaging the samples in non-overlapping windows of 

length 0.5 s. 

Electroencephalography. Rs-EEG preprocessing and analyses were performed with custom 

Matlab (The MathWorks, USA) scripts using functions from the EEGLAB environment. Firstly, 

the continuous EEG data were down-sampled to 250 Hz, band-pass filtered within 1–45 Hz. 

Artefactual channels and data segments were removed after visual inspection. Principal component 

analysis was used to reduce data dimensionality. Next, I applied Infomax independent component 

analysis to manually remove components representing eye-movement, eye-blinks, muscle activity, 

and residual ballistocardiography artifacts. For all subjects, the “New York Head”, a standard 

highly-detailed forward model was used. Source activity was estimated using exact low-resolution 

tomography and then the data were filtered into several frequency bands. The amplitude envelope 

of filtered oscillations was extracted using the Hilbert transform. I then applied temporal coarse-

graining by averaging data points in non-overlapping windows of length 0.5 s (Figure 2). Finally, 

I calculated the variability of amplitude envelope of band-pass filtered oscillations on the coarse-

grained signal (SDEEG) in each of 96 ROIs. 
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1.6 Results 

In Study 1, I examined the relationship between parasympathetic cardioregulation indexed by 

resting HRV and brain structure (gray matter) as well as whole-brain functional connectivity 

across the adult lifespan. In structural brain analyses (VBM), there was no significant association 

between HRV and GMV across all subjects, in either younger or older adults. However, there was 

a significant HRV-related increase of GMV in the left cerebellum in the middle-aged group. In 

whole-brain graph-based analysis (ECM) on rs-fMRI, a higher HRV was linked to stronger 

network centrality in several brain regions, particularly along the cortical midline structures. More 

precisely, there was a significant interaction between age group and resting HRV in the bilateral 

vmPFC and an increased centrality in the bilateral posterior cingulate cortex (PCC) across all age 

groups. In the connectivity analysis (SBCA), I found a significant effect of age on the relation 

between resting HRV and whole-brain bilateral vmPFC connectivity in the bilateral cerebellum, 

right superior parietal lobe, left middle and inferior occipital gyrus, and left superior frontal gyrus. 

Furthermore, there was an increased functional connectivity with the left middle frontal gyrus 

extending to the dorsolateral prefrontal cortex in the overall sample (N=388). All statistical 3D 

maps are available at NeuroVault for detailed inspection in 3D 

(http://neurovault.org/collections/TELEUIIY). 

In the cross-sectional study (Study 2), I contributed data (N=110) collected under similar protocols 

of CT assessment and HRV recording to be pooled in a mega analysis. Previous findings were 

confirmed by illustrating that resting HRV and CT decline with increasing age. Further, frequentist 

analyses revealed a significant relationship between CT in the left lateral OFC and HRV 

accounting for all potential confounds. However, regression analyses for 68 ROIs did not yield 

significant associations between RMSSD and CT. Finally, Bayesian analyses showed moderate 

evidence for the association of resting HRV with CT in left lateral OFC and left inferior temporal 

gyrus thickness.  

The primary aim of Study 3 was to investigate the effects of age differences on the variability in 

brain activity, as measured by rs-fMRI and rs-EEG. After controlling for different confounding 

factors such as head size and head motion, nonparametric ANCOVAs with BOLD signal 

variability (SDBOLD) as a dependent variable demonstrated a significant main effect of age in 72 

ROIs including frontal, temporal, and occipital brain regions. Similarly, I showed age group 

differences for EEG signal variability (SDEEG) in all frequency bands: SDDELTA in 14 ROIs in 
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occipital, SDTHETA in 16 ROIs in frontal and parietal, SDALPHA in 20 ROIs in occipital, and SDBETA 

in 19 ROIs in central and temporal brain regions. As a secondary aim, I also explored sex 

differences in both brain signal variability measures. There was no significant main effect of sex 

on SDBOLD. However, a main effect of sex was found in all EEG frequency bands: SDDELTA in 21 

ROIs in temporal and occipital, SDTHETA in 74 ROIs including frontal, occipital, and temporal, 

SDALPHA in 4 ROIs in frontal, and SDBETA in 69 ROIs in temporal, occipital, and central brain 

areas. The details of the topographic distribution (3D images) of age and sex group differences are 

available at Neurovault (https://neurovault.org/collections/WWOKVUDV/). Lastly, correlations 

between two measurements of signal variability were examined: Both univariate and exploratory 

confirmatory multivariate analyses showed that none of the pairwise associations between SDBOLD 

and SDEEG were significant. 

https://neurovault.org/collections/WWOKVUDV/
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1.7 Discussion 
 

The empirical studies presented in this dissertation aimed to explore and characterize the signal 

variability measured in the heart and brain across the lifespan. Crucially, multi-modal and 

integrative approaches (e.g., ECG, fMRI, and EEG) were used to understand normal aging on a 

more sophisticated level, as different physiological properties do not function in isolation. 

 

Throughout the literature, variability is often conceived as neural “noise” despite the longstanding 

knowledge that it is instead a central feature of a well-functioning nervous system29. Accordingly, 

the dynamics of a healthy organism produce an apparently irregular and highly complex type of 

variability at multiple scales (e.g., in time and space) and adapt themselves in response to adverse 

conditions30. In contrast, aged and diseased systems are often associated with more regularity and 

less complexity, i.e., they lose the capability to adapt. 

 

In my dissertation, I aimed to improve the physiological understanding of potentially important 

biomarkers of healthy aging. In Study 1, I demonstrated the frequently observed age-related 

decrease in resting HRV to be accompanied by age-dependent and age-invariant alterations in 

brain functional connectivity, particularly along the cortical midline structures. As discussed in 

more detail in Kumral et al.,31, changes in the network architecture in the anterior default mode 

network (DMN) regions may represent altered cardiovascular control with advancing age and 

concomitant network reorganization. Age-invariant patterns in posterior DMN (e.g., PCC) might 

reflect the “internal milieu” throughout the lifespan, that is, monitoring and regulating bodily 

signals (e.g., the parasympathetic “rest-and-digest”). Importantly, these brain regions also form 

the central autonomic network (CAN) that has the connections to the sinoatrial node of the heart 

via the stellate ganglia and the vagus nerve20. CAN is critical for tonic background excitation in 

autonomic and respiratory motoneurons but also for integrated autonomic, neuroendocrine, and 

behavioral responses to maintained homeostasis3. In the mega analysis (Study 2)32, we found an 

association between resting HRV and thinning in the prefrontal cortex (e.g., lateral OFC) with 

aging. This finding provides evidence for global autonomy from a neurovisceral perspective 

throughout aging and highlights the crucial role of the prefrontal cortex in maintaining 

parasympathetic vagal activity. Overall, the findings in these two studies are consistent with the 

notion that brain structure and function in frontal areas are related to autonomic cardiac function 

as indexed by HRV across the adult lifespan. Studies 1 and 2 thus provide a comprehensive picture 

of heart-brain interactions and also highlight the importance of inter-individual differences on 
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parasympathetic outflow at the neural level. Crucially, understanding which brain areas are 

associated with autonomic function may lead to better focused clinical interventions targeting 

specific autonomic pathways, thereby improving well-being and promoting adaptive 

psychophysiological flexibility in aging. 

 

Age-related alterations in the vascular system are known to impact neurovascular coupling. Since 

the most widely used method to study brain function, BOLD fMRI, depends on neurovascular 

coupling, one can never be certain whether findings on aging obtained with BOLD fMRI mainly 

reflect neuronal or vascular or a combination of both components. One approach to estimate the 

neuronal contributions to the BOLD fMRI signal is to use independent measures of neural 

function, such as EEG. To achieve this goal, in Study 3, brain variability measures based on rs-

fMRI and rs-EEG were compared in healthy younger and older adults. Replicating previous 

findings, it was firstly demonstrated that BOLD signal variability decreases with age in DMN and 

fronto-parietal network (FPN) regions22,33 in which cognitive performance (e.g., speed of cognitive 

processing) were also correlated34. As discussed earlier, DMN is an intrinsically correlated 

network of brain regions and associated with self-referential thought and integration of cognitive 

processing35. The FPN is involved in cognitive control36. In this study, I thus suggest that reduced 

BOLD signal variability in both networks might be an index for age-related neural processing 

deficits and impaired cognitive functioning. 

 

Regarding rs-EEG, in Study 3 it was demonstrated that age-related signal variability alterations 

within the same network was associated with more than one frequency band. More precisely, age-

related reductions in SDDELTA and SDALPHA were mainly found in a visual network, SDTHETA in 

posterior DMN, while an enhancement of SDBETA was mainly seen in the fronto-temporal and 

sensorimotor networks. Alpha rhythm is the most salient rs-EEG oscillatory phenomenon that 

originates from thalamo-cortical and cortico-cortical interactions37,38. Accordingly, decreased 

alpha variability in occipital regions might be associated with the cholinergic basal forebrain 

functioning, affecting thalamo-cortical and cortico-cortical processing. Further, healthy aging has 

been previously associated with an increase in movement-related beta-band attenuation, 

suggesting an enhanced GABAergic inhibitory activity in elderly individuals39. Therefore, greater 

beta-band variability in sensorimotor brain regions could be interpreted as a compensatory 

mechanism to account for a decline in motor performance. It is further important to note that these 

observed age effects might be due to localized or global disturbances of brain anatomy leading to 

deviations in the EEG sources and resulting in EEG amplitude changes. This further motivated us 
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to explore inter-subject variability of EEG signals (amplitude, peak frequency, and temporal 

dynamics) on the basis of individual neuroanatomical characteristics (white-matter 

hyperintensities) in a large sample of healthy elderly individuals (N=907, https://osf.io/mdwc6/). 

 

Finally, in Study 3 - somewhat surprisingly - there were no significant associations between the 

two measures of signal variability based on the BOLD signal and EEG, respectively. This finding 

was supported by the distinct anatomical distributions of age-dependent changes in both measures, 

that scarcely showed spatial overlap. As discussed in more detail in Kumral et al.,34 neuronal 

activity is the main signal source for EEG recordings and consequently for EEG-based variability 

measures. On the other hand, BOLD signal variability can reflect both vascular and neural 

processes. As mentioned in the introduction, changes of the ultrastructural integrity of the cerebral 

vasculature in aging (e.g., decrease in the elasticity and compliancy of affected vessels) are likely 

to influence neurovascular coupling14, consequently the BOLD variability. Given different 

underlying physiology of both methods, findings in Study 3 emphasize that joint EEG and fMRI 

variability measures may provide complementary information about aging. 

 

The scientific community is evolving towards a more transparent and collaborative endeavor40. 

Aligned with this idea, one of my main aims (as part of the Mind-Body-Emotion group at the MPI 

in Leipzig) was to publish a large dataset combining high-quality structural and functional MRI 

and EEG measures with health markers (e.g., blood markers, anthropometric measures), and also 

several broad state and trait phenotypic variables (e.g., emotion, personality). Since our datasets 

have become publicly available as of January 201925,26, a multitude of studies around the world 

have started to explore brain structure and function and its potential relationship to higher-order 

cognitive faculties, personality features, and health-related factors using these data. 

 

In conclusion, this dissertation provides further evidence, that cardiovascular and neural signal 

variability are not just “meaningless noise”, but rather can provide important information about 

the dynamic interplay between body and brain throughout the lifespan. Such techniques might be 

valuable biomarkers for neurocognitive health (and disease) in aging, and may also impact clinical 

outcomes. 

https://osf.io/mdwc6/
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26.  Mendes N, Oligschläger S, Lauckner ME, Golchert J, Huntenburg JM, Falkiewicz M, 

Ellamil M, Krause S, Baczkowski BM, Cozatl R, Osoianu A, Kumral D, Pool J, Golz L, 

Dreyer M, Haueis P, Jost R, Kramarenko Y, Engen H, Ohrnberger K, Gorgolewski KJ, 

Farrugia N, Babayan A, Reiter A, Schaare HL, Reinelt J, Röbbig J, Uhlig M, Erbey M, 

Gaebler M, Smallwood J, Villringer A, Margulies DS. Data descriptor: A functional 

connectome phenotyping dataset including cognitive state and personality measures. Sci 

Data. 2019;6:180307. 

27.  Biswal BB, Mennes M, Zuo X-N. Toward discovery science of human brain function. 

Proc Natl Acad Sci U S A. 2010;107(10):4734-4739. 

28.  Lohmann G, Margulies DS, Horstmann A, Pleger B, Lepsien J, Goldhahn D, Schloegl H, 

Stumvoll M, Villringer A, Turner R. Eigenvector centrality mapping for analyzing 

connectivity patterns in fMRI data of the human brain. PLoS One. 2010;5(4):e10232. 

29.  Pinneo LR. On noise in the nervous system. Psych Rev. 1966;73(3):242-247. 

30.  Lipsitz LA, Goldberger AL. Loss of ‘Complexity’ and Aging: Potential Applications of 

Fractals and Chaos Theory to Senescence. JAMA J Am Med Assoc. 1992;267(13):1806-

1809. 

31.  Kumral D, Schaare HL, Beyer F, Reinelt J, Uhlig M, Liem F, Lampe L, Babayan A, 

Reiter A, Erbey M, Roebbig J, Loeffler M, Schroeter ML, Husser D, Witte A V., 

Villringer A, Gaebler M. The age-dependent relationship between resting heart rate 

variability and functional brain connectivity. Neuroimage. 2019;185:521-533. 

32.  Koenig J, Abler B, Agartz I, Åkerstedt T, Andreassen OA, Anthony M, Bär KJ, Bertsch 

K, Brown RC, Brunner R, Carnevali L, Critchley HD, Cullen KR, de Geus EJC, de la 

Cruz F, Dziobek I, Ferger MD, Fischer H, Flor H, Gaebler M, Gianaros PJ, Giummarra 



 

22 

 

MJ, Greening SG, Guendelman S, Heathers JAJ, Herpertz SC, Hu MX, Jentschke S, 

Kaess M, Kaufmann T, Klimes-Dougan B, Koelsch S, Krauch M, Kumral D, Lamers F, 

Lee TH, Lekander M, Lin F, Lotze M, Makovac E, Mancini M, Mancke F, Månsson 

KNT, Manuck SB, Mather M, Meeten F, Min J, Mueller B, Muench V, Nees F, Nga L, 

Nilsonne G, Ordonez Acuna D, Osnes B, Ottaviani C, Penninx BWJH, Ponzio A, Poudel 

GR, Reinelt J, Ren P, Sakaki M, Schumann A, Sørensen L, Specht K, Straub J, Tamm S, 

Thai M, Thayer JF, Ubani B, van der Mee DJ, van Velzen LS, Ventura-Bort C, Villringer 

A, Watson DR, Wei L, Wendt J, Schreiner MW, Westlye LT, Weymar M, Winkelmann T, 

Wu GR, Yoo HJ, Quintana DS. Cortical thickness and resting-state cardiac function 

across the lifespan: A cross-sectional pooled mega-analysis. Psychophysiology. 

2020;(July):1-16. 

33.  Grady CL, Garrett DD. Brain signal variability is modulated as a function of internal and 

external demand in younger and older adults. Neuroimage. 2018;169:510-523. 

34.  Kumral D, Şansal F, Cesnaite E, Mahjoory K, Al E, Gaebler M, Nikulin V V., Villringer 

A. BOLD and EEG signal variability at rest differently relate to aging in the human brain. 

Neuroimage. 2020;207:116373. 

35.  Raichle ME. The Brain’s Default Mode Network. Annu Rev Neurosci. 2015;38(1):433-

447. 

36.  Spreng RN, Sepulcre J, Turner GR, Stevens WD, Schacter DL. Intrinsic Architecture 

Underlying the Relations among the Default, Dorsal Attention, and Frontoparietal Control 

Networks of the Human Brain. J Cogn Neurosci. 2013;25(1):74-86. 

37.  Goldman RI, Stern JM, Engel J, Cohen MS. Simultaneous EEG and fMRI of the alpha 

rhythm. Neuroreport. 2002;13(18):2487-2492. 

38.  Bazanova OM, Vernon D. Interpreting EEG alpha activity. Neurosci Biobehav Rev July. 

2014;44:94-110. 

39.  Rossiter HE, Davis EM, Clark E V., Boudrias MH, Ward NS. Beta oscillations reflect 

changes in motor cortex inhibition in healthy ageing. Neuroimage. 2014;91:360-365. 

40.  Poldrack RA, Baker CI, Durnez J, Gorgolewski KJ, Matthews PM, Munafò MR, Nichols 

TE, Poline J-B, Vul E, Yarkoni T. Scanning the horizon: towards transparent and 

reproducible neuroimaging research. Nat Rev Neurosci. 2017;18(2):115-126. 

  



 

23 

 

2. Statutory Declaration 

 

 

I, Deniz Kumral, by personally signing this document in lieu of an oath, hereby affirm that I 

prepared the submitted dissertation on the topic Variability in heart and brain activity across the 

adult lifespan independently and without the support of third parties, and that I used no other 

sources and aids than those stated. 

 

All parts which are based on the publications or presentations of other authors, either in letter or 

in spirit, are specified as such in accordance with the citing guidelines. The sections on 

methodology (in particular regarding practical work, laboratory regulations, statistical processing) 

and results (in particular regarding figures, charts, and tables) are exclusively my responsibility. 

My contributions to any publications to this dissertation correspond to those stated in the below 

joint declaration made together with the supervisor. All publications created within the scope of 

the dissertation comply with the guidelines of the ICMJE (International Committee of Medical 

Journal Editors; www.icmje.org) on authorship. In addition, I declare that I shall comply with the 
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