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Abstract
Transient absorption is a very powerful observable in attosecond experiments on atoms,
molecules and solids and is frequently used in experiments employing phase-locked few-cycle
infrared and XUV laser pulses derived from high harmonic generation. We show numerically
and analytically that in non-centrosymmetric systems, such as many polyatomic molecules,
which-way interference enabled by the lack of parity conservation leads to new spectral
absorption features, which directly reveal the laser electric field. The extension of attosecond
transient absorption spectroscopy (ATAS) to such targets hence becomes sensitive to global
and local inversion symmetry. We anticipate that ATAS will find new applications in
non-centrosymmetric systems, in which the carrier-to-envelope phase of the infrared pulse
becomes a relevant parameter and in which the orientation of the sample and the electronic
symmetry of the molecule can be addressed.

Keywords: attosecond transient absorption spectroscopy, attosecond physics, ultrafast
spectroscopy, electronic symmetry, carrier-to-envelope phase, molecular physics, chemical
physics

(Some figures may appear in colour only in the online journal)

1. Introduction

Attosecond transient absorption spectroscopy (ATAS) [1, 2]
is emerging as one of the most potent techniques in attosec-
ond science, since it takes advantage of both the appealing
temporal and spectral properties of attosecond XUV pulses.
ATAS has initially been applied to atoms and has shown its
versatility in numerous studies [1, 3–8]. It is very recently
starting to make an impact also in molecular science [9–13],
as well as in studies of the condensed phase, where sub-cycle
dependent modifications of the material dielectric function
have been investigated [14], paving the way towards petahertz
electronics [15]. As ATAS evolves beyond atomic systems,
new aspects emerge that result from the anisotropic nature of
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more complex structures, as explored in recent theory papers
[16–20]. For example, Badankó et al [19] investigated the
importance of the orientation of the transition dipole moment
in non-adiabatic molecular dynamics, and Rørstad et al [20]
studied ATAS of polar molecules, discovering light-induced
structures (LIS) near bright rather than dark states and a lad-
der structure in the spectra that is spaced by the infrared (IR)
photon energy.

The most relevant variables which control ATAS in investi-
gations to date are: (i) the time delay τ between the attosecond
pulse (or pulse train) and the IR field and (ii) the intensity
of the IR field. In contrast, effects which are governed by the
carrier-to-envelope phase (CEP) of the IR pulse have not been
reported. The CEP of a laser pulse is the phase between the
carrier wave and the position of the intensity envelope and
has become a routine (yet sophisticated) control parameter in
attosecond experiments [21].

Here we identify features in numerically obtained ATAS
spectrograms for a non-centrosymmetric model system, which
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oscillate as a function of XUV–IR time delay with a period
2π/ωIR (ωIR-oscillations). This is in contrast with the oscil-
lations with a period π/ωIR (2ωIR-oscillations) that have thus
far been seen in ATAS experiments on atoms and molecules.
We explain the origin of these features in the spectrograms by
extending a recently developed adiabatic model [22] to non-
centrosymmetric systems. The adiabatic model is then applied
to dissect the ATAS spectrograms.

As we will show, the ωIR-oscillations in the absorbance
depend on a broken inversion symmetry, both locally (i.e. in
a molecular fixed frame) and globally (i.e. in the laboratory
frame). We hence anticipate new applications for ATAS in non-
centrosymmetric systems: in oriented molecular samples, the
CEP-dependent signals allow an all-optical diagnostic of the
IR electric field and CEP-stability. On the other hand, with
CEP-stable IR, the orientation of a (molecular) ensemble and
the (evolving) electronic symmetry can be accessed.

In ATAS of atoms most of the observed phenomena can be
understood by considering laser-induced couplings among a
limited set of bound states [23]. While the XUV laser field
couples the ground state to one or more bright states, the IR
laser field couples these to further states that are not directly
accessible from the ground state via a dipole-allowed transition
(dark states). The lack of coupling of the dark states to the
ground state is ensured in atoms by parity selection rules. In
atoms all states have a well-defined parity and the excitation of
a particular state by both an even number of photons (e.g. the
combination of an XUV photon and an IR photon) and an odd
number of photons (e.g. an XUV photon only) is not possible.
This is a direct consequence of the Laporte rule [24], which
states that parity has to change in a dipole-allowed electronic
transition.

In molecules that lack centrosymmetry, parity can no longer
be defined. In such systems two states can be coupled by both
an odd and an even number of photons. In other words, exci-
tation pathways then need to be taken into account where the
XUV pulse coherently excites states that are then coupled by
either an odd or an even number of IR photons. A three-level
model system consisting of a ground state E0 and two excited
states E1, E2 captures most of the essential physics [23]. It is
described by the Hamiltonian:

Ĥ =

⎡
⎣ E0

�d01 · �εXUV(t) �d02 · �εXUV(t)
�d10 · �εXUV(t) E1 Ω(t)
�d20 · �εXUV(t) Ω∗(t) E2

⎤
⎦ , (1)

where Ω(t) = �d12 · �εIR(t), �dnm = �d∗
mn are the transition dipole

moments between the levels n and m and �εXUV(t), �εIR(t) are
the time-dependent electric fields of the XUV and the IR pulse
(see appendix A). While molecular transition dipole moments
and electric fields generally are described by three dimensional
vectors, we will first consider that the molecular frame (to
which the dipole moment is fixed) is perfectly spatially ori-
ented parallel to the electric fields in the laboratory frame. We
then express them as scalars in our calculations by projection
onto a common reference axis, i.e. dnm = �dnm ·�ez and ε(t) =
�ε(t) ·�ez. The effect of this orientation against a more general
alignment is discussed in section 4. Here and elsewhere, all
equations are given in atomic units.

In order to be able to contrast our results for non-
centrosymmetric ATAS with the well-studied case of ATAS
of the Helium atom, we choose parameters analogous to the
latter, i.e. E0 = 0 eV ∼ He(1s2), E1 = 21.22 eV ∼ He(1s2p),
E2 = 20.62 eV ∼ He(1s2s), d01 = 0.33 a.u. and d12 = 2.75 a.u.

The parameter d02 depends on the symmetry of the model
system, i.e. d02 = 0 for the centrosymmetric He atom and
d02 �= 0 for the non-centrosymmetric model system that we
will consider here. In the latter case, we make the arbitrary
choice to set d02 = d01 = 0.33 a.u. to ensure an equal popula-
tion of both excited states by the XUV pulse.

2. Numerical solution

We solve the time-dependent Schrödinger equation (TDSE)
for the three-level problem described in equation (1):

i
∂

∂t
|Ψ(t)〉 = Ĥ|Ψ(t)〉 = Ĥ

2∑
n=0

cn(t) e−iEnt|Φn〉. (2)

Note that the presence of the phase-term e−iEnt in this equation
implies that cn(t) describes a slow variation of the amplitude of
a given state due to coupling to other states. In the absence of
such couplings, cn(t) is a constant. To account for the decay of
excited states and finite spectral resolution, an imaginary term
−iΓ2 is added to the excited states energy. While the He excited
states lifetime is on the nanosecond scale, the lifetime is set to
30 fs to visualize the delay-dependent regions of ATAS in a
single spectogram [23].

To obtain the time-dependent amplitudes cn(t), we follow
the ansatz of equation (2) and get the system of ordinary
differential equations (ODE):

i
∂

∂t

⎛
⎜⎝

c0

c1

c2

⎞
⎟⎠

=

⎡
⎢⎢⎢⎣

0 d01εXUV(t)e−iE1t d02εXUV(t)e−iE2t

d10εXUV(t)eiE1t −i
Γ

2
Ω(t)ei(E1−E2)t

d20εXUV(t)eiE2t Ω(t)∗ ei(E2−E1)t −i
Γ

2

⎤
⎥⎥⎥⎦

⎛
⎜⎝

c0

c1

c2

⎞
⎟⎠ .

(3)

The ODE is solved for a given XUV–IR time-delay by forward
integrating in time using a Runge–Kutta–Dormand–Prince
method of 5th order with adaptive step-size control. For ease
of notation, we assume a real-valued transition dipole moment
for the rest of the discussion, i.e. dnm = dmn.

Knowing the full time-evolution of the system, the time-
dependent dipole moment can be calculated:

d(t) = 〈Ψ(t)|d|Ψ(t)〉 =
∑
n,m

c∗n(t)cm(t)dnm ei(En−Em)t. (4)

The spectral representation of the time-dependent dipole
can be calculated by a Fourier transformation:

d(ω) =
1

2π

∫ ∞

−∞
d(t)eiωt dt = F [d(t)](ω). (5)

2
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Since d(t) is a real quantity, the spectral representation
obtained via Fourier transformation is Hermitian, i.e. d(−ω) =
d∗(ω), meaning that the full spectral information is contained
at either positive or negative frequencies.

The spectral response, i.e. the absorption or emission prob-
ability per unit frequencyω of a single molecule, is obtained by
Fourier transformation of the temporal evolution of the dipole
moment and the electric field according to [23]

S(ω, τ ) = Im

[
F [d(t)](ω)

F [εXUV(t)](ω)

]
. (6)

Of interest in ATAS is the change of the spectral response,
ΔS(ω, τ ), i.e. the difference between the delay-dependent two-
color response and the static XUV-only response.

When the calculations are performed setting d02 = 0,
ΔS(ω, τ ) displays a number of oscillatory features
(figure 1(a1)) that are well-established in the literature
and that are defined by a 2ωIR frequency that indicates
the dominant role of processes involving two IR photons.
In contrast, when choosing d02 �= 0 (non-centrosymmetric
case) the obtained spectrogram is dominated by features that
oscillate as a function of τ with the periodicity of the IR field
(figure 1(b1)). They are discussed in detail below. The 2ωIR

features observed for the centrosymmetric case (figure 1(a1))
are still present, as seen upon closer inspection.

Further insight can be obtained by varying the IR field
strength and the transition dipole moment d12 in the simula-
tion, i.e. Ω(t). While the modulation amplitudes of the 2ωIR

components depend quadratically on Ω(t), the amplitudes of
the ωIR component depend only linearly on Ω(t). This explains
the predominance of the non-centrosymmetric features in
figure 1(b1): since for the chosen transition dipole moment and
IR field strengthΩ(t) � 1, linearly dependent effects are much
stronger than effects that depend quadratically on Ω(t).

3. Adiabatic solution

For further insight, the TDSE for the three-level system is
solved analytically using the adiabatic basis

|Ψ(t)〉 = b0(t)|ϕ0〉 + c+(t)eiθ+ |ϕ+(t)〉 + c−(t)eiθ− |ϕ−(t)〉, (7)

where |ϕ±(t)〉 denote adiabatic excited eigenstates with time-
dependent eigenenergies E±, which are obtained by diago-
nalizing a reduced two-level Hamiltonian including only the
excited states (1 and 2), justified since the IR-induced dynam-
ics only involve these two XUV-excited states. In equation (7),
the dynamic phase is given by θ± = −

∫ t
τ dt′E±(t′). This basis

allows to treat the XUV excitation perturbatively, while con-
sidering an adiabatic evolution of the IR-induced dynamics.
Also here the CEP of the IR field is set to zero and perfectly
oriented molecules are discussed first. We define a state mixing
angle α(t), given by

tanα(t) =
Ω(t)

Δ+
√
Δ2 +Ω(t)2

≈ Ω(t)
2Δ+Ω(t)2/(2Δ)

, (8)

with Δ = (E1 − E2)/2. The time- and intensity-dependent
mixing-angleα(t) defines the projection of the time-dependent

adiabatic states onto the time-independent field-free states:

|ϕ+(t)〉 = cos α(t)|Φ1〉+ sin α(t)|Φ2〉,

|ϕ−(t)〉 = − sin α(t)|Φ1〉+ cos α(t)|Φ2〉.
(9)

For Ω(t) → 0 the mixing angle α(t) → 0 and |ϕ+〉 and
|ϕ−〉 become the field-free excited states |Φ1〉 and |Φ2〉,
respectively.

To find the coefficients c+(t), c−(t) within the adiabatic
basis, the wavefunction equation (7) is expanded in the field-
free basis equation (9) and inserted into the TDSE (see
appendix B for further details). A perturbative approach to the
XUV excitation is used to solve for the coefficients. Within
a sudden approximation for the XUV excitation [22, 23], i.e.
εXUV(t) = δ(t − τ ), the time-dependent dipole moment can be
written in a compact form using an index notation:

d(t) = iϑ(t − τ )e−
Γ
2 (t−τ )

1,2∑
n

1,2∑
m �=n

e(−1)n i ϕ(t,τ ) [Cnm + Nn] + c.c., (10)

with

Cnm = −d2
0n eiEn(t−τ ) cosα(τ ) cosα(t)

− d2
0n eiEm(t−τ ) sinα(τ ) sinα(t), (11a)

Nn = (−1)n d01d02 eiEn(t−τ ) (sinα(τ ) cosα(t)

+ cosα(τ ) sinα(t)) , (11b)

where c.c. denotes the complex conjugate and ϑ(t − τ ) is the
Heaviside function, which represents the step-like excitation
by the XUV pulse, Γ is the finite lifetime of the excited states
that is assumed and ϕ(t, τ ) the light-induced phase (LIP) [4].
Note that while the LIP in a perturbative treatment is often
described by the AC Stark effect [6, 25], it is in the adiabatic
basis described by the DC Stark effect. For small IR intensities
(Ω(t) � 1) it can be approximated as:

ϕ(t, τ ) ≈ 1
2Δ

∫ t

τ

dt′Ω2(t′). (12)

The dipole moment d(t) has two contributions: (i) Cnm

contains only terms that depend on the square of the transi-
tion dipole moments connecting the ground to either of the
excited states, d2

0n, and (ii) Nn contains only terms that depend
on the product of them, d01d02. For systems that obey the
Laporte rule (i.e. a centrosymmetric system), Nn vanishes since
d01d02d12 ≡ 0. This implies that either d01d02 = 0 or d12 = 0,
in which case a lack of coupling between the two excited-
states prohibits an IR-induced state-mixing, i.e. sin α(t) =
sin α(τ ) = 0.

4. Results and discussion

In figure 1, alongside the results obtained by numerically
solving the TDSE, ATAS spectrograms are shown in panels
(a2), (b2) that were obtained using the analytical approach
outlined in equations (7)–(12), by numerical solution of the
LIP integral (equation (12)), by Fourier transformation of
the dipole moment (equation (10)) and by calculation of the

3
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Figure 1. ATAS spectrograms for the centrosymmetric (a) and for the non-centrosymmetric case (b), for fixed CEP (0), obtained by the
TDSE simulation (left column) and the adiabatic model (center column). In the right column (c)–(f), the individual contributions separated
in the adiabatic model are shown. Positive time delays correspond to the IR pulse arriving before the XUV pulse.

change of spectral response. The analytical calculation qual-
itatively reproduces the results of the numerical TDSE solu-
tion, both for the centrosymmetric case ((a) panels) and the
non-centrosymmetric case ((b) panels).

The analytic solution lends itself to prying apart the dif-
ferent mechanisms that underlie the calculated ATAS spectro-
grams. Both Cnm and Nn contain two terms each that depend
on the IR-induced state-mixing at the time of excitation by
the XUV pulse (described by α(τ )) and during the subsequent
evolution (described by α(t)). The effect of the mixing-angle
terms on the transient absorption spectrum can be clarified by
expandingα(t) in orders ofΩ(t), the strength of the IR-induced
coupling:

cosα(t) = 1 − Ω2(t)

8Δ2 +O(Ω4)

sinα(t) =
Ω(t)
2Δ

+O(Ω3).

(13)

Upon Fourier transform into the spectral domain, time-
dependent terms proportional to Ω(t) and Ω2(t) become
sidebands, displaced by ±ωIR and ±2ωIR. Since the
femtosecond-duration IR pulse is inherently non-
monochromatic, the spectral width of these sidebands
will be given by a convolution of their pulse spectral envelope
and the natural linewidth. The sidebands are modulated as a
function of time-delay by the τ -dependent terms.

The individual contributions from the four terms constitut-
ing Cnm and Nn are separately shown in the right column of
figure 1. The centrosymmetric case (d02 = 0) was recently dis-
cussed by Rørstad et al [22] but is briefly covered here as well

in order to distinguish its features from the additional charac-
teristics that emerge in the non-centrosymmetric case. Panel
(c) is obtained by exclusively considering the term contain-
ing cos α(τ ) cos α(t) in Cnm (equation (11a)). The leading
term (= 1) in the series expansion of cos α(t) (equation (13))
results in a strong LIP effect on the resonance absorption
line. In the centrosymmetric case, this LIP results from the
Stark shift of the bright E1 state, caused by its coupling to
the dark E2 state. The LIP changes the interference between
the free-induction decay and the incident XUV field, resulting
in a delay-dependent (sub-cycle) reshaping of the absorption
line, typically from Lorentzian (symmetric) to Fano-like (dis-
persive) [4]. This can be seen close to the energy of E1 in
figures 1(a1) and (a2). Since both E1 and E2 are bright states
in our non-centrosymmetric model, their role is interchange-
able and they both exhibit a LIP effect, as can be seen in panel
(c). At longer delays, the accumulated LIP is constant, but a
fast oscillating phase from the term eiEnτ in equation (10) is
interfering with a phase from the spectral representation of the
XUV pulse as described in equation (6), which leads to a inter-
ference condition ω × τ = const. This interference is mani-
fested by oscillating absorption and emission features, which
are hyperbolically converging towards the resonant energy at
large (negative) delays. This is the perturbed induction decay
(PID) [23]. The structures displaced by ±2ωIR from the field-
free resonance (cf SB E1 ± 2ω in figure 1(a1)) are the side-
bands that originate from an excitation of two-photon dressed
states [22, 26]. Panel (d) is obtained by exclusively considering
the term containing sin α(τ ) sin α(t) in Cnm and exhibits side-
bands displaced by ±ωIR with respect to the resonant energy.

4
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These result from two-photon XUV ± IR excitation of the
excited states, in which XUV absorption into virtual states at
En ± ωIR is accompanied by IR photon absorption/emission.
In the centrosymmetric case these transitions only appear for
the dark state (i.e. E2, see figure 1(a)). Their dependence on
sin α(τ ) (i.e. the fact that they require a non-zero IR field
at the time of the XUV excitation) explains their appearance
only at time overlap. Note that while one might expect an
1ωIR-oscillation due to the sin α(τ ) term, the delay-dependent
interference between the XUV field and the dipole moment
(see above) leads to an additional oscillation term after Fourier
transformation [22, 23], which combines to the observed 2ωIR

modulation (see appendix C).
As seen from Cnm (equation (11a)), the terms that contribute

to the description of the spectrogram in the centrosymmet-
ric case contain a product of sines and cosines of two mixing
angles, one evaluated at time t, and one evaluated at delay τ . In
the adiabatic basis (equation (9)) these can be understood as (i)
an IR-dependent projection from each of the field-free states
onto their adiabatically evolving states (eiEn(t−τ ) cosα(τ )) and
then back to the field-free states after the interaction with the
IR field (cos α(t)) and (ii) such a projection from each of
the field-free states onto the other adiabatically evolving state
(eiEm(t−τ ) sinα(τ )) and then back again to the original field-
free state (sin α(t)). In contrast, in the non-centrosymmetric
case the additional term Nn (equation (11b)) describes a coher-
ent XUV excitation of both states. The terms containing a
product of sines and cosines, evaluated at time t and delay τ
can be interpreted in terms of a transfer from one field-free
state to the other via a coherent superposition of intermediate
adiabatic states.

A prominent additional feature introduced in the spectro-
grams for the non-centrosymmetric case is a pair of sidebands
at energies lying one IR photon above and below the field-
free resonance energies of both bright excited states (En ± ω
in figures 1(b1) and (b2)). These non-centrosymmetric SBs
(NC SBs) are singled out in panel (e), obtained by exclu-
sively considering the term containing cos α(τ ) sin α(t) in Nn

(equation (11b)). NC SBs result from an extension of the cen-
trosymmetric SB mechanism: they appear at energies of ±ωIR

displaced from the excited states, in contrast to ±2ωIR in the
centrosymmetric case, and originate from the breakdown of
the Laporte rule [20]. Importantly, the NC SBs differ from
the LIS found at the same energies in that they are observed
also outside of temporal overlap, i.e. when the IR field arrives
after XUV field. Since only a single IR photon is involved, the
resulting modulation of the NC SB with τ occurs with the peri-
odicity of the IR field. Note that while, from the expansion of
cos α(τ ), oscillations of the sidebands at the periodicity 2ωIR

might be expected, again the interference of the dipole moment
with the XUV field leads to additional oscillatory terms that
results in the ωIR oscillations (see appendix C).

The second prominent additional feature introduced in the
spectrograms for the asymmetric case is a modification of
the absorption strength directly at the field-free resonance
energies [label ‘NC WWI’ (non-centrosymmetric which-way

interference) in figure 1(b1)]. The effect is also seen in
panel (f), obtained within the adiabatic model by exclu-
sively considering the term containing sin α(τ ) cos α(t) in
Nn (equation (11b)). Due to the constant in the expansion of
cos α(t) (equation (13)) the modulation as a function of delay
introduced by sin α(τ ) remains spectrally at the field-free res-
onance energy. This modulation follows the IR field εIR(τ )
(ωIR-oscillations), as seen from a series expansion of sin α(τ ).
NC WWI stems from the interference of two processes with
which population is transferred to the same final state (E1 or
E2): one-color (XUV-only) and two-color (XUV ± IR) exci-
tation, where the XUV absorption in the two-color pathway
leads to a NC SB (see above). NC WWI does not exist for cen-
trosymmetric systems due to the Laporte rule and has not been
observed experimentally in transient absorption to date. Note
also that the Ω2(t) term in the expansion of cos α(t) results in
another set of very weak sidebands displaced by 2ωIR from the
resonance energy, seen in figure 1(f).

Importantly, due to the WWI for non-centrosymmetric sys-
tems, the CEP of the IR electric field εIR(τ ) controls the delay-
dependent modulation of the differential absorbance at the
field-free resonance energies E1 and E2. Changing the CEP of
the IR laser pulse by π leads to inversion of the linear electric
field (εIR(t,φ = 0) = −εIR(t,φ = π)) and therefore of Ω(t).
Terms depending on sin α(τ ) cos α(t) and cos α(t) sin α(τ )
will change sign when the sign ofΩ changes (odd terms), while
the terms depending on cos α(t) cos α(τ ) and sin α(t) sin α(τ )
will remain unchanged under inversion of Ω (even terms).
In figure 2 the effect of controlling the CEP is explored in
more detail. The spectrogram in panel (a) was obtained by
incoherently adding the result of two numerical simulations
with a CEP of the IR pulse of 0 and π. The observed spec-
trogram resembles the one calculated for the centrosymmetric
case, with the distinction that both excited states are bright, as
was the case for the individual contributions described by Cnm

(figures 1(c) and (d)). In figure 2(b) we show the difference
of two spectrograms obtained for a CEP of 0 and π. Since the
even-terms that give rise to 2ωIR oscillations cancel out, only
effects featuring ωIR-oscillations remain, which result from
the non-centrosymmetric term Nn, i.e. the contributions shown
in figures 1(e) and (f). This means that by comparing mea-
surements with a controlled CEP, the signal depending on the
non-centrosymmetric term Nn can be isolated.

We emphasize that, as stated above, the results described
were obtained for perfectly spatially oriented non-
centrosymmetric molecules. When the orientation of the
system is reversed, the sign of the transition dipole moment
is inverted as it is antiparallel to the IR electric field, i.e.
�dnm · �εIR(t) = −dnmεIR(t), thus leading to an inversion of Ω(t).
This has the equal result to a CEP shift by π, i.e. odd terms
change sign when the orientation is changed from parallel
to antiparallel to the IR electric field, while the even terms
remain unchanged. Therefore, a spatial distribution of samples
that is aligned (i.e. even distribution of molecules oriented
parallel and antiparallel to the electric field) is equal to the
effect of the averaged measurement of CEP 0 and π as shown

5
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Figure 2. Numerically obtained ATAS spectograms, which are (a) the sum of two results derived for opposite CEP (0 and π) or, equivalently,
the result of calculations for up- and down-oriented molecules at fixed CEP (0) and (b) the difference between these calculations.

in figures 2(a) and (b) also depicts the difference between
the results for the two orientation directions. Therefore, to
observe the features that depend on the odd terms, the dis-
tribution of spatial orientations of molecules must be uneven
with respect to the parallel and antiparallel projection to the
laser polarization axis. However, even if no such molecular
orientation is achieved, the observed ATAS of non-oriented
non-centrosymmetric molecules (figure 2(a)) still is distinct
from the centrosymmetric case (figure 1(a)).

Due to this difference of the observability of odd- and
even-terms, ATAS with CEP-stable and -controlled pulses on
non-centrosymmetric molecules has potential as an all-optical
diagnostic tool of the spatial orientation of molecules in a gas
phase sample, introduced by a laser pulse in a non-adiabatic
orientation scheme [27, 28]. Moreover, we point out that in the
case of an oriented sample (e.g. a laser-induced gas phase sam-
ple or a naturally oriented solid-state sample), ATAS becomes
sensitive to CEP-stability, since for a uncontrolled CEP the
1ωIR signals in ATAS quickly average out in a measurement
over multiple laser shots.

Finally, the strict symmetry argument depending on the lack
of centrosymmetry creates an intriguing opportunity to study
ultrafast changes in the electronic symmetry of molecules.
Centrosymmetry-sensitive transient absorption could hereby
be used as a probe to observe charge localization during dis-
sociation [29] or photon-induced symmetry breaking [30] in
molecules.
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Appendix A. Parameters for numerical solution

The XUV and IR electric fields used for the simulations were
Gaussian envelope pulses:

ε(t, τ ) =
√

Ie−( t+τ
T )2

cos[ω(t + τ ) − φ], (A1)

Table 1. Laser parameters used in the simulations.

IR-pulse XUV-pulse

Central frequency 1.55 eV 20.0 eV
Pulse duration (FWHM) 12 fs 200 as
Peak field intensity 1012 W cm−2 109 W cm−2

where TXUV,IR = FWHM/2
√

ln 2 defines the temporal width
of the pulse envelope in terms of its full-width at half-
maximum (FWHM), IXUV,IR is the pulse (peak) intensity and
ωXUV,IR the central frequency, respectively. For the IR pulse τ
defines the XUV–IR time-delay, while the XUV pulse is fixed
centered around t = 0, i.e. τ = 0 corresponds to XUV–IR time
overlap and τ > 0 (< 0) refers to the situation where the IR
pulse precedes (trails) the XUV pulse. The parameters for the
two pulses are listed in table 1. The carrier-to-envelope phase
φ was zero unless stated otherwise.

Appendix B. Analytical solution with adiabatic
basis

We will derive the analytical expression for the time-dependent
dipole using the adiabatic basis, as described in equation (7).
After the initial excitation from the ground-state by the XUV
pulse, the IR-induced dynamics only involves the two excited
states E1 and E2, and we therefore consider the reduced two-
level system:

Hr =

[
ER +Δ Ω(t)

Ω(t) ER −Δ

]
, (B1)

where ER = (E1 + E2)/2, Δ = (E1 − E2)/2 and
Ω(t) = d12εIR(t).

Upon diagonalization, the time-dependent eigenenergies
for the excited states are:

E+ = ER +

√
Δ2 +Ω2(t),

E− = ER −
√
Δ2 +Ω2(t),

(B2)
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with normalized adiabatic eigenstates:

|ϕ+(t)〉 = Δ+
√
Δ2 +Ω(t)2√

Ω(t)2 +
(
Δ+

√
Δ2 +Ω(t)2

)2
|Φ1〉

+
Ω(t)√

Ω(t)2 +
(
Δ+

√
Δ2 +Ω(t)2

)2
|Φ2〉

.
= cosα(t)|Φ1〉+ sinα(t)|Φ2〉,

|ϕ−(t)〉 = −Ω(t)√
Ω(t)2 +

(
Δ+

√
Δ2 +Ω(t)2

)2
|Φ1〉

+
Δ+

√
Δ2 +Ω(t)2√

Ω(t)2 +
(
Δ+

√
Δ2 +Ω(t)2

)2
|Φ2〉

.
= − sinα(t)|Φ1〉+ cosα(t)|Φ2〉,

(B3)

where Φn are the field-free excited states, and α(t) is a state
mixing angle (see equation (8)).

To find the state-coefficients c+(t) and c−(t) of the adiabatic
basis, the wavefunction is expressed in the field-free basis:

|Ψ(t)〉 = b0(t)|Φ0〉+ b1(t)|Φ1〉+ b2(t)|Φ2〉. (B4)

Combining equations (7) and (B4) with equation (B3)
results in:

b1(t) = c+(t)eiθ+ cosα(t) − c−(t)eiθ− sinα(t),

b2(t) = c+(t)eiθ+ sinα(t) + c−(t)eiθ− cosα(t).
(B5)

To obtain the temporal dependence of the excited state
coefficients, the expression for the field-free wavefunction
(equation (B4)) is inserted into the TDSE, leading to:

iḃ1 = b0d01εXUV + b2d12εIR

iḃ2 = b0d02εXUV + b1d12εIR.
(B6)

A perturbative approach is used to solve for the coefficients
[31]: if the system remains unperturbed, the entire population
remains in the ground state: b(0)

0 (t) = 1, b(0)
1 (t) = b(0)

2 (t) = 0
(zeroth-order approximation). To obtain the coefficients in first
order, the zeroth-order wavefunction amplitudes are inserted
into equation (B6) and the set of equations is converted to a
set of equations for the amplitudes in the adiabatic basis:

ċ+(t)eiθ+(t) cosα(t) − ċ−(t)eiθ−(t) sinα(t) = −id01εXUV,

ċ+(t)eiθ+(t) cosα(t) + ċ−(t)eiθ−(t) sinα(t) = −id02εXUV.
(B7)

Solving for ċ(1)
± (t) gives:

ċ(1)
+ (t) = −iεXUVe−iθ+(t) (d01 cosα(t) + d02 sinα(t)) ,

ċ(1)
− (t) = +iεXUVe−iθ−(t) (d01 sinα(t) − d02 cosα(t)) .

(B8)

Assuming that the initial excitation of the XUV pulses is
sufficiently short with respect to the IR-induced dynamics, it

can be approximated by a Dirac δ-function [22, 23]: εXUV(t) →
I0δ(t − τ ), and c(1)

± (t) can be obtained by direct integration:

c(1)
+ (t) =

∫ t

τ

ċ(1)
+ (t′) dt′

= −iϑ(t − τ ) (d01 cosα(τ ) + d02 sinα(τ )) ,

c(1)
− (t) =

∫ t

τ

ċ(1)
− (t′) dt′

= iϑ(t − τ ) (d01 sinα(τ ) − d02 cosα(τ )) ,

(B9)

where ϑ(t) is the Heaviside function. Note that in these
expressions the state-mixing angle, which defines the rela-
tion between the adiabatic eigenstates and the field-free eigen-
states, is no longer a function of t, but a function of the
XUV–IR delay τ .

Ultimately, we are interested in the time-dependent dipole
expressed in terms of the field-free basis, which can be written
as:

〈d(t)〉 = d01b1(t) + d02b2(t) + c.c.

= d01[c+(t)eiθ+ cosα(t) − c−(t)eiθ− sinα(t)]

+ d02[c+(t)eiθ+ sinα(t) + c−(t)eiθ− cosα(t)] + c.c..

(B10)

In the presented derivation, the time dependence of the
dynamic phase term has so far been ignored. Inserting the
time-dependent energy of the adiabatic states into equation (7)
allows to rewrite the state-dependent exponential term as:

eiθ± + c.c. = e−i
∫ t
τ E0±

√
Δ2+Ω2(t′) dt′ + c.c.

≈ e−i(E0±Δ)(t−τ )e±iϕ(t,τ ) + c.c., (B11)

where the fast-oscillating terms e−i(E0±Δ)(t−τ ) + c.c., i.e. the
field-free resonant energy of the excited states, lead to a reso-
nant frequency response at −E0 ±Δ and E0 ±Δ in the com-
plex conjugated terms. ϕ(t, τ ) is the so called light-induced
phase (LIP) caused by the Stark effect, which can be approx-
imated for small IR intensities (Ω(t) � 1, see equation (12)).
To account for the decay of the excited states, an imaginary
energy −iΓ/2 is added to the energy eigenvalues.

Inserting equation (B11) with the added imaginary energy
term and equation (B9) into equation (B10), we obtain the
full time-dependent dipole, as described by equation (10). As
noted in the main text, numerical methods were used to solve
the LIP integral and to calculate the Fourier transform of the
time-dependent dipole.

Appendix C. Delay-dependent interference with
XUV-field

The spectral representation of the time-dependent dipole and
the spectral response can be calculated analytically by further
approximations. To investigate the delay-dependentent spec-
tral response due to the interference with the XUV field, we
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will demonstrate this for the light induced structures (LIS).
As identified in the main text, the LIS originates from the

sin α(t) sin α(τ )-terms of Cnm in equation (10), i.e. the part of
the time-dependent dipole:

d(t)LIS = −iθ(t − τ )e−
Γ
2 (t−τ )ei(Em)(t−τ )e(−1)niϕ

× d0n sinα(t) sinα(τ ) + c.c..
(C1)

If the LIP ϕ is assumed to be a constant function of time,
the first part of the time-dependent dipole can be transformed
into the spectral domain:

F
[
iθ(t − τ )e−

Γ
2 (t−τ )ei(Em)(t−τ )e(−1)niϕ

]

= e−iτEm
i e(−1)niϕ

√
2π ( Γ

2 + i(ω − Em)
. (C2)

Note that we have dropped the complex conjugated terms,
since they correspond to identical features at negative fre-
quencies due to the Hermitian property of the Fourier
transformation.

For the second part, the IR electric field is approximated as
monochromatic, so that the Rabi-frequency can be described
as:

Ω(t) = d12E0 cos(ωIRt) (C3)

where E0 is the field amplitude. We express the mixing-angles
using the series expansion (equation (13)):

sinα(τ ) sinα(t) ≈ 1

4Δ2 Ω(τ )Ω(t)

=
1

4Δ2 d2
12E2

0 cos(ωIRτ ) cos(ωIRt).

(C4)

As discussed in the main text, the time-dependent mixing-
angle terms will lead to the generation of sidebands after
Fourier-transformation, while the delay-dependent terms
remain:

F
[

1

4Δ2 d2
12E2

0 cos(ωIRτ ) cos(ωIRt)

]
(ω)

=
1

4Δ2 cos(ωIRτ )
√

2πd2
12E2

0
δ(ω − ωIR) + δ(ω + ωIR)

2
.

(C5)

Both parts of the spectral dipole are combined using the
convolution theorem:

F [ f · g](ω) = F [ f ](ω) ∗ F [g](ω), (C6)

where:

( f ∗ g)(x) =
∫ ∞

−∞
f (y)g(x − y) dy. (C7)

The spectral dipole of the LIS then is:

d(ω)LIS ≈ −F [iϑ(t − τ )e−
Γ
2 (t−τ )eiEm(t−τ )e(−1)n iϕ] ∗ d2

02F

×
[

1
4Δ2 d2

12E2
0 cos(ωIRτ ) cos(ωIRt)

]

= −
[

e−iEmτ
ie(−1)niϕ

√
2π(Γ2 + i(ω − Em))

]

∗
[√

2πd2
0nd2

12E2
0

4Δ2 cos(ωIRτ )
δ(ω − ωIR) + δ(ω + ωIR)

2

]

= −i
d2

0nd2
12E2

0

8Δ2 cos(ωIRτ )e−iEmτe(−1)n iϕ

× 1

(Γ2 + i(ω − Em ± ωIR))
, (C8)

where we have used the translational properties of the Dirac-
delta function in convolutions.

However, the observable signal is:

S(ω, τ ) = Im

[
d(ω)

εXUV(ω)

]
. (C9)

Since a Dirac-delta pulse was assumed in the deviation of the
adiabatic solution εXUV(ω) ∝ e−iωτ . The additional fast oscil-
lating term eiωτ will therefore need to be considered. This
modifies the observable delay-dependent dynamic at the light-
induced structures and sidebands. For the (centrosymmetric)
LIS, the temporal behavior at the sideband energy is:

S(Em ± ωIR, τ ) ∝ Im

[
i cos(ωIRτ )e−iEmτ

e−i(Em±ωIR)τ

]

= R[cos(ωIRτ )e±iωIRτ ]

= ± cos (ωIRτ )2. (C10)

Therefore, at resonance, the symmetric light-induced struc-
ture will be modulated by cos (ωIRτ )2.
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