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Abstract 

 

The last two decades have seen the zoonotic emergence of three highly pathogenic 

coronaviruses (CoVs): MERS-, SARS- and SARS-CoV-2. Their epidemic and pandemic 

spread, respectively, underlines the importance of monitoring emerging CoVs and of 

developing a deeper understanding of the molecular mechanisms that contribute to their 

emergence and pathogenicity. CoV are highly diverse in their animal reservoirs, yet how this 

diversity translates to phenotypical traits that may account for the zoonotic and pandemic 

potential of these viruses remains elusive.  

In the first part, several generated clinical Middle East respiratory syndrome coronavirus 

(MERS-CoV) isolates pertaining to different phylogenetic clades were analyzed for their in-

vitro and ex-vivo infection phenotypes. Importantly, the isolate diversity used here reflects 

phylogenetic lineages sampled before and after the year 2015, when a novel phylogenetic 

lineage emerged by a recombination event (MERS-CoV lineage 5) and superseded other, 

hitherto co-circulating viral lineages from circulation, as well as causing large nosocomial 

outbreaks in Saudi Arabia and South Korea. The present studies demonstrate that MERS-CoV 

recombinant lineage 5 isolates have increased replicative capacity in the human lung, in 

correlation with increased interferon resilience and signaling antagonism. These phenotypic 

differences might explain the dominance of lineage 5 on the Arabian Peninsula and suggests 

an increased pandemic potential of the currently circulating MERS-CoV lineage 5.  

The second part comprises a phenotypical comparison of severe acute respiratory syndrome 

coronavirus (SARS-CoV) and SARS-CoV-2, focusing on potential differences in their capacity 

to antagonize the innate immune response. Both viruses share a completely homologous 

repertoire of open reading frames (ORFs) and pertain to the same phylogenetic clade of SARS-

related CoV, yet display differences in their transmission efficiencies and pathogenic traits. 

The data presented here show that SARS-CoV-2 is more sensitive to the antiviral activity of 

interferons and that SARS-CoV-2 is less efficient in antagonizing cytokine induction and 

interferon signaling. SARS-CoV-2 protein 6 expressed in the context of a fully replicating 

SARS-CoV backbone had reduced functionality in suppressing interferon signaling induction, 

suggesting that the overall reduced antagonism of SARS-CoV-2 might therefore by a function 

of reduced antagonistic capacity of protein 6.  
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Zusammenfassung 

 

Drei hochpathogene Coronaviren (CoV) sind in den letzten zwei Jahrzehnten auf den 

Menschen übergegangen: MERS-, SARS- und SARS-CoV-2. Insbesondere die Ausbreitung 

des SARS-CoV-2 zeigt auf, wie wichtig die Überwachung neu auftretender CoV ist. Die 

aktuelle Pandemie demonstriert auch welche Relevanz es für unser Gesundheitswesen hat 

ein tiefergehendes Verständnis für jene Faktoren zu entwickeln, die das Infektionsrisiko und 

die Pathogenität solcher Viren beeinflussen. Die Diversität von CoV ist in ihren tierischen 

Reservoiren groß, doch wie sich diese Vielfalt auf phänotypische Merkmale auswirkt, 

besonders auf solche, die das zoonotische und pandemische Potenzial dieser Viren 

beeinflussen könnten, ist nach wie vor unklar. 

Im ersten Teil der Dissertation wurden in verschiedenen in-vitro- und ex-vivo- Modellen 

mehrere klinische MERS-CoV-Isolate phänotypisch analysiert. Es konnte gezeigt werden, 

dass die hierfür isolierten Viren repräsentativ für drei unterschiedliche phylogenetischen 

Kladen sind, und mit MERS-CoV Linie 5 jene Klade beinhalten, die in oder vor 2014 durch ein 

Rekombinationsereignis entstanden ist, und nachträglich alle bis dato zirkulierenden 

Viruslinien verdrängt hat. Die vorliegende Studie zeigt, dass Virusisolate der rekombinanten 

MERS-CoV-Linie 5 eine erhöhte Replikationskapazität in der menschlichen Lunge haben, die 

mit einer erhöhten Interferon-Resilienz und einer effektiveren Unterdrückung der Interferon-

spezifischen Signaltransduktionskaskade korrelierend. Diese phänotypischen Unterschiede 

könnten die mögliche Dominanz der Linie 5 auf der Arabischen Halbinsel erklären und 

implizieren, dass die aktuell zirkulierende MERS-CoV Linie 5 ein erhöhtes zoonotisches und 

pandemisches Risiko für den Menschen darstellt. 

Der zweite Teil der Dissertation umfasst einen phänotypischen Vergleich von SARS- und 

SARS-CoV-2 mit besonderem Fokus auf die virale Interaktion mit der angeborenen Immunität 

in Wirtszellen. Beide Viren zeigen ein vollständig homologes Repertoire von offenen 

Leserahmen (open reading frames, ORFs) und gehören der gleichen phylogenetischen Art, 

den SARS-verwandten CoV an. Die Viren unterscheiden sich jedoch deutlich in ihrer 

Übertragungseffizienz und in ihrer Pathogenese im Menschen. In dieser Arbeit konnte gezeigt 

werden, dass SARS-CoV-2 weniger resilient gegenüber der antiviralen Wirkung von Interferon 

ist. Im Vergleich zu SARS-CoV kann SARS-CoV-2 die Zytokininduktion und Interferon-

Signalübertragung weniger effizient unterdrücken. Mittels reverser Genetik konnte gezeigt 

werden, dass das SARS-CoV-2 Protein 6 im Kontext eines vollständig replizierenden SARS-

CoV eine geringere Effizienz als SARS-CoV Protein 6 hat, die Interferon-

Signaltransduktionskaskade zu blockieren.  
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1 – General Introduction 

 

Coronaviruses (CoV; order Nidovirales, family Coronaviridae) are positive sense, single 

stranded RNA viruses of exceptional genomic complexity and the capacity to infect a broad 

range of invertebrate and vertebrate hosts [1-3]. Human pathogenic CoVs (HCoVs) have first 

been notified in the late 1960s and have since then been observed as a frequent, yet mild 

cause of “common cold”-like, acute respiratory syndromes in humans [4, 5].  

The global spread of three highly pathogenic CoVs within the last two centuries (SARS-CoV 

in 2002, MERS-CoV in 2012 and SARS-CoV-2 in 2019 [6-8]) has shifted that perception and 

demonstrated the importance of monitoring newly emerging CoVs and to develop a deeper 

mechanistic understanding of their biology and evolution (Figure 1). 

 

Figure 1: CoVs known to infect humans (HCoV) and their time point of emergence. CoVs were 

initially discovered in poultry (Infectious Bronchitis Virus, IBV) in 1937 [9]. IBV and other animal CoVs 

are important livestock pathogens, but not focused on here. The low pathogenic HCoV-229E and OC43 

have been known to cause seasonal “common cold” respiratory syndromes in humans for over 50 years 

[4, 5]. The SARS pandemic in 2003 intensified CoV surveillance and led to the discovery of two more 

HCoVs, HCoV-NL63 and HKU1 [10, 11]. Seasonal HCoV are estimated to cause around 15% of acute 

respiratory tract infections in humans [12-14]. References for SARS-, MERS- and SARS-CoV-2 

emergence are displayed in the main text. * refers to the date of writing, i.e. 20.07.2020.; case and 

country numbers are provided by the WHO (2020).  
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1.1 – CoV genome complexity 

 

With genomes sizes of 12 to 41 kb (averaging 26 to 31 kb) Nidovirales constitute the largest 

known RNA based lifeforms on earth [15]. A prevailing dogma, proposed by Manfred Eigen 

(†2019) in his famous 1971 paper, states a positive correlation between genome complexity 

and replication fidelity [16]. The large Nidovirales RNA genomes appear to be a remarkable 

exception to that rule, since other RNA virus families (averaging 2 to 12 kb genomes) show 

average replication error rates 10,000 to 100,000 times higher than DNA replication error rates 

[17-20], trapping RNA viruses at the lower end of genome complexity. Fundamentally, RNA 

polymerases lack the ability to correct for errors during replication (proofreading) and have 

evolved a replication fidelity low enough to allow for the generation of a maximally diverse 

“cloud” of variants in the population (referred to as the viral quasispecies) [21-23]. The 

quasispecies provides the basis for natural selection to work upon and contributes a major 

explanation for the huge adaptability observed in RNA virus species [24, 25]. However, artificial 

increases in the mutation rate of RNA viruses pushes species into a state of intolerable 

accumulation of mutations, often referred to as “error catastrophe” [26-29].  

Nidovirales evolution has uniquely overcome this trap by acquisition of a complex replication 

machinery of which one protein subunit (non-structural protein 14, nsp14) encodes for a 

domain with exonuclease activity (ExoN), similar in function to proofreading domains of DNA 

polymerases [30-34]. The emergence of RNA proofreading activity is believed to have 

facilitated genome expansion in Nidovirales and is in line with Eigen´s theory that predicts 

inverse correlation of mutation rate and genome complexity (reviewed in [2]). In a Darwinian 

sense, increased genomic complexity provides a broader basis for natural selection to work 

upon and may have facilitated the diversity and broad host tropism of the Nidovirales order 

(chapter 1.2). 
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1.2 – CoV diversity and bat ancestry 

 

Nidovirales are considered the second most diverse order of positive-sense RNA viruses, after 

the Picornaviridae, comprising 109 formally recognized species, 46 of which pertain to the 

family Coronaviridae [35]. The remaining species of Nidovirales belong to the family of 

Arteriviridae and Roniviridae [35]. Phylogenetic inferences suggest a further division of 

Coronaviridae into four genera, the Alpha-, Beta-, Gamma-, and Deltacoronavirus (Figure 2B), 

each of which contains several sub-clades. Interestingly, the split of alpha-/betacoronaviruses 

and gamma-/deltacoroanviruses coincides with a split in host tropism, with members of the 

former group infecting primarily mammals, and the latter infecting primarily (but not exclusively) 

birds [36]. Five of the seven CoVs known to infect humans (including the three highly 

pathogenic strains, SARS-CoV, SARS-CoV-2, MERS-CoV; as well as HCoV-OC43 and HCoV-

HKU1; Figure 1), pertain to the genus Betacoronavirus and two belong to the 

alphacoronaviruses (HCoV-229E and HCoV-NL63) (Figure 2A).  

There is strong evidence for a zoonotic origin of all human CoVs, i.e. that they originated in 

animal reservoirs (reviewed in [37]). Phylogenies constructed from the increasingly complex 

data of metagenomics strongly suggest that ancestral CoVs might have emerged in bat 

species (reviewed in [38]). In fact, all of the CoVs known to infect humans have bat ancestors, 

but frequently involve intermediate hosts [39-49], with the exception of HCoV-OC43 and HKU1 

for which rodent ancestry has been proposed [50, 51] (Figure 2C).  
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Figure 2: CoV phylogeny and animal origin, with focus on HCoV. A) Displayed is a maximum-

likelihood phylogeny of selected Alpha- (HCoV-229E and -NL63) and Betacoronavirus (all other names) 

species. CoVs known to infect humans (red names, severe infection in humans; orange names, mild 

infection), cluster within clades of species identified in bats (black names), arguing for close evolutionary 

distance between them (not shown for alphacoronaviruses). The tree was calculated with the 

Shimodaira–Hasegawa (SH) method and 1,000 replicates (the higher the %-value (SH-ratio), the higher 

the support of a node; top left panel) and was adapted from [52] B) Bayesian inference phylogeny of 

selected members of the Coronaviridae family, with Cavally virus as an outlier species. The tree displays 

the split into the four genera Alpha-, Beta-, Gamma-, and Deltacoronavirus and was adapted from [38]. 

More details on the construction of phylogenies in A) and B) are provided in the respective references. 

C) Schematic display of emergence of HCoVs, with color code as above. Left panel shows HCoVs that 

cause mild disease in humans, right panel the highly pathogenic CoVs. Adapted from [37]. 
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1.3 – Highly pathogenic CoVs: MERS-,  
SARS- and SARS-CoV-2 

 

Middle East respiratory syndrome coronavirus (MERS-CoV), a 2c betacoronavirus, is the 

causative agent of a novel form of severe viral pneumonia in humans [7]. MERS-CoV emerged 

in 2012 and the majority of currently more than 2,494 notified cases, including 858 deaths, 

occurred on the Arabian Peninsula. Travel-associated cases were diagnosed in 27 countries 

and sparked secondary case clusters in some. The largest MERS-CoV outbreak outside the 

Arabian Peninsula occurred in South Korea in 2015, involving 186 cases and 36 deaths (WHO, 

June 2020). MERS-CoV is acquired as a zoonotic infection from dromedary camels [53-56] 

and likely originated in bats [42, 57]. Spillover from dromedaries to humans can lead to local 

outbreaks with limited human-to-human transmission [58, 59]. Healthcare facilities can 

experience protracted outbreaks with severe infections in co-morbid patients [60]. Behavioral 

factors like family patient care may accelerate outbreaks [61-63].  

SARS-CoV is a group 2b betacoronavirus that emerged in 2002 in the Guangdong Province 

of China and was identified as the causative agent of the Severe Acute Respiratory Syndrome 

(SARS) [6]. The transmission dynamics of SARS-CoV are relatively low and despite having 

spread to 29 countries and infecting more than 8000 patients with 774 deaths the SARS 

pandemic was halted by public health interventions in 2003 [64]. As described in chapter 1.2, 

SARS-related CoVs originate in bats, but in the case of the 2002 SARS-CoV, palm civets and 

raccoon dogs have been implicated to act as intermediate hosts [65].   

SARS-CoV-2 was identified as the etiological agent of a novel viral pneumonia, called COVID-

19 in late 2019 [8]. Since then, it has rapidly shifted from initial local case clusters in the Hubei 

province in China to a pandemic with over 12,000,000 cases and over 600,000 deaths (WHO, 

July 2020). The novel virus pertains to the same species as the etiological agent of the SARS 

pandemic in 2002/3 [52]. Therefore, SARS-CoV-2 and SARS-CoV share striking similarities in 

their genome architecture [66], in receptor and host protease usage [67] and in emergence 

from an initial zoonotic acquisition with bat ancestry [46]. However, SARS-CoV-2 seems to be 

distinct from SARS-CoV in its clinical and epidemiological presentation, with lower 

pathogenicity and case fatality rate but higher human-to-human transmission rate and 

incidence [68]. 
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1.4 – CoV genome organization and  
protein expression strategy 

 

CoV genomes contain several higher order RNA structures. The 5´ and 3´ ends of the viral 

genome comprise untranslated regions (UTR) required for genome replication and 

transcription. UTRs may vary in sequence length between different CoV species, but share a 

conserved core area in the 5´UTR, which comprises the leader TRS (transcription regulatory 

sequence, TRS) that interacts with body TRS located upstream of structural and accessory 

genes during their transcription (see below) [69, 70] (Figure 3).  

Two thirds of the genome comprises ORF1 that is translated directly from the capped and 

polyadenylated genomic RNA as two large polyproteins (pp1a and pp1ab) by means of an 

RNA pseudoknot-mediated -1 ribosomal frameshift [71]. The polyproteins are proteolytically 

processed by the viral proteases PLpro (Papain-like protease, in nsp3) and 3CLpro 

(chymotrypsin-like protease 3, in nsp5) to yield 16 (in some species only 15) nsps [72, 73]. 

While mutagenesis studies could demonstrate an essential function of the nsps for replication, 

their precise individual function is still under debate, particularly because most exhibit multi-

functionality. Yet in principle, the nsps encode for the components of the multi-structural 

replication transcription complex (RTC) that governs the production of viral RNAs, for proteins 

that rearrange cellular membranes to create a double-membrane vesicle environment 

proposed to host CoV replication, or for proteins that interfere with the antiviral host response 

(see below) [74-80].  

The last third of the CoV genome encodes for structural and accessory proteins that are 

translated from subgenomic mRNAs (sgmRNAs; chapter 1.5). Structural proteins form the 

virus particle and are common to all CoVs. These comprise the spike protein, which mediates 

entry into and attachment to host cells by binding to host cell proteins (called receptors), the 

envelope (E) and membrane (M) protein, as well as the genome-encapsidating nucleocapsid 

(N) protein [67, 81, 82]. Accessory proteins comprise a range of proteins that may vary in 

number between different CoV species. These are non-essential for virus replication (therefore 

called accessory), but implicated in in vivo pathogenesis and/or suppression of the antiviral 

host reaction (chapter 1.6) [83-86] (Figure 3). 
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Figure 3: CoV genome organization and protein expression strategy. Exemplified for MERS-CoV. 

Upper panel: MERS-CoV genome and its 11 open reading frames (ORFs): ORF1 (split into ORF1a and 

ORF1b, which express proteins required for replication and transcription), the structural ORFs 

(expressing spike-, envelope- (E), membrane- (M), nucleocapsid- (N) protein), and accessory ORFs 

(expressing p4a, p4b, p5 and p8). Replicase and structural ORFs are present in all CoVs; the number 

of accessory ORFs varies between species. SARS- and SARS-CoV-2 encode for nine accessory ORFs 

(not shown here). Important regulatory RNA elements are shown in the top panel (left to right): cap 

structure, 5´ UTR (for untranslated region), Leader TRS (for Transcription Regulatory Sequence; see 

chapter below), RNA stem-loop causing a -1 ribosomal frameshift to govern ORF1b expression, nine 

body TRS, 3´UTR and the poly(A)tail. Bottom panel: viral polyprotein expression and maturation. Both 

polyproteins are translated from the viral genome, 1ab via a -1 ribosomal frameshift. The numbers 

indicate respective non-structural proteins (nsps). Triangles indicate cleavage sites in the viral 

polyprotein, with matching color code (PLpro sites in dark; 3CLpro sites in white). Functional protein 

domains that are mentioned in this or following sections of the main text are highlighted. PLpro, Papain-

like protease (nsp3); 3CLpro, chymotrypsin-like protease 3 (nsp5); RdRp, RNA-dependent RNA 

polymerase (nsp12); ExoN, 3′-to-5′exoribonuclease (nsp14); N7-MTase, N7-guanine methyl transferase 

(nsp14); endoU, uridylate-specific endoribonuclease (nsp15); 2′-O-MTase, 2′-O-methyl transferase 

(nsp16). Structural and accessory proteins expression follows translation from sgmRNAs, produced by 

discontinuous transcription (see chapter 1.5).  
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1.5 – CoV life cycle and replication strategy 

 

CoV follow a unique replication and transcription strategy, summarized in Figure 4 and 

reviewed in [87].   

Attachment to host cells is mediated by protein-protein interactions between viral spike and 

cellular receptor proteins, dipeptidylpeptidase 4 (DPP4) in MERS- [81] and angiotensin-

converting enzyme 2 (ACE2) in SARS- and SARS-CoV-2 infection [67, 88]. Attachment may 

be augmented by additional binding to cellular sugar residues, sialic acids in the case of 

MERS-CoV [89] or additional cellular proteins, DC-SIGN in SARS-CoV infection, respectively 

[90]. Receptor recognition triggers conformational changes in the spike protein that drive the 

fusion of viral envelope and cellular membranes [91]. In the classical pathway, fusion occurs 

inside cellular endosomes following receptor-mediated endocytosis of receptor bound viral 

particles [91]. An alternative pathway that allows for fusion directly at the plasma membrane in 

dependence of additional proteolytic spike protein procession by cellular proteases could be 

demonstrated for all three highly pathogenic CoVs (MERS-, SARS- and SARS-CoV-2) [92-

100]. Following receptor-mediated entry, the viral genome is uncoated and released into the 

host cytoplasm. As detailed above, viral nsps are translated directly from the viral genome. 

Following their expression and proteolytic procession, the nsps rearrange host membranes to 

form double-membrane vesicles, the putative platform of virus replication and transcription [74, 

101, 102]. Here, the replication-transcription complex replicates the viral genome and 

transcribes structural and accessory protein encoding sgmRNAs, detailed below. Nascent 

virus particles are formed by interaction of expressed structural proteins and nucleocapsid-

mediated interaction of replicated genomes at ER-Golgi intermediate compartments (ERGIC) 

and follow export and maturation over the trans-Golgi route [82, 103-106] (Figure 4A).  

Genome replication requires the transcription of full-length (genomic) negative-strand (minus-

strand) RNA, which serves as the template for the production of full-length (genomic) positive-

strand (plus-strand) RNA (Figure 4B). The production of sgmRNAs is governed by a process 

called discontinuous transcription and is fundamentally different to genome replication 

(reviewed in [72, 107]). In essence, the viral replication-transcription complex uses genomic 

positive-strand RNA as template and starts the transcription of negative-strand RNA from the 

3´end of the viral genome. When a body TRS, located 5´ of each structural or accessory gene, 

is encountered, negative-strand transcription either continuous to the next TRS, or the 

replication-transcription complex dissociates to transfer the nascent RNA to the leader TRS at 

the 5´ end of the genome, guided by sequence complementarity of body TRS and leader TRS. 

Transcription of negative-strand RNA continuous over the leader until the 5´end of the genome 
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is reached. Fused leader-body negative-strand RNAs are transcribed to yield positive-strand 

sgmRNAs, the template for viral protein translation (Figure 4B). Discontinuous transcription is 

a hallmark of the Nidovirales family and the resulting production of a set of 3´ coterminal, or 

“nested” sgmRNAs has coined their name (“nido” is the Latin word for “nest”).  Of note, the 

process also allows for a passive control over the abundance of transcripts, as the ORFs 

towards the 3´end of the genome will be transcribed more frequently. 

 

a) full length minus-strand synthesis 

genome replication 
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anti-genome

CoV genome 

5 UTR
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b) minus-strand sgmRNA synthesis
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Figure 4: CoV life cycle and replication strategy. A) CoV life cycle. After receptor-mediated entry (1), 

the viral RNA is uncoated in the cytoplasm (2). Viral nsps are translated and proteolytically processed 

directly from the viral genome (3). The nsps rearrange cellular membranes to form double-membrane 

vesicles (DMV) (4) which host the viral replication and sgmRNA transcription (5) and detailed in B). 

sgmRNAs are translated to structural proteins (6) that are assembled into the nucleocapsid and viral 

envelope at the ER–Golgi intermediate compartment (ERGIC) (7), followed by Golgi-mediated release 

(8) of the nascent virion from the infected cell (9) B) CoV Replication strategy. a) genome replication, 

full-length negative-strand (- sense) RNA copies of the genome are produced that serve as templates 

for full-length positive-strand (+ sense) RNA genomes. b-d) discontinuous transcription of structural and 

accessory proteins sgmRNAs. b) sg minus-strand RNAs are transcribed starting from the 3´end of the 

genome until a body TRS is encountered. Transcription either continues to the next TRS or c) the 

nascent strand is transferred to the leader TRS. Transcription continues over the leader TRS sequence. 

d) The produced leader-fused negative-strand sgmRMAs are transcribed into positive strand sgmRNAs, 

the template for translation.   

 

1.6 – Interaction of CoVs with the innate immune system 

The complex interactions between viruses and their hosts has driven metazoan evolution to 

develop sophisticated immune systems to fight virus infections. In turn, in an “evolutionary 

arms race,” viruses have evolved innumerable strategies to overcome these systems [108-

111].  

Vertebrate immune systems comprises two subtypes that are acting and interacting in 

complementing ways to fight  infections: adaptive (or antigen-specific) immunity and innate (or 

antigen-non-specific) immunity, reviewed in [112]. In essence, adaptive immunity comprises 

“tailor-made,” specific responses to a specific antigen and primarily acts via subsets of cells, 

the leukocytes, including antibody producing B-cells and cytotoxic (cell killing) T-cells. The 

adaptive immune response is launched in a time-delayed fashion, as the activation and 

maturation of these cells requires previous antigen recognition and processing [113].  

In contrast, components of innate immunity are present in all cell types and can immediately 

engage in a rather unspecific response by a mechanism called “pattern recognition”. 

Fundamentally, distinct “non-self” structural motives, called pathogen associated molecular 

patterns (PAMPs), are detected by a number of sentinel proteins, or pattern recognition 

receptors (PRRs) [114]. The detection of PAMPs activates a signaling cascade leading to 

downstream activation and nuclear translocation of transcription factors, in the case of viral 

infections most notably interferon (IFN) regulator factors (IRF3 and IRF7) and nuclear factor 

kB (NF-kB) [114]. In CoV infection, the innate immune response is primarily launched by the 

cellular helicase melanoma-differentiation antigen 5 (MDA5) that binds to double-stranded 
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RNA replication intermediates, produced during negative-strand synthesis [115]. The 

activation of NF-kB and IRFs exemplifies two complementary antiviral strategies: NF-kB 

induces the transcription of chemokines that primarily act in the recruitment and activation of 

leukocytes, while IRFs induce the transcription of type I and type III IFNs (IFN-I, comprising 

IFNα and IFNβ subtypes and IFN-III, respectively, comprising IFNλ subtypes). In a paracrine 

manner, secreted IFNs induce IFN-stimulated genes (ISGs) by binding to cellular IFN 

receptors and activating the Janus kinase/ signal transducers and activators of transcription 

(JAK/STAT) signaling cascade (also called IFN signaling cascade) [116]. ISGs encode for over 

300 proteins with antiviral properties that can be broadly categorized as proteins immediately 

impeding virus replication (e.g. Mx1, ISG56, proteins of the IFIT and IFITM family), sentinel 

proteins (e.g. TLRs, the RIG-I-like receptor family, including MDA5), transcription factors (e.g. 

the STAT family or IRFs) and proteins functioning in immune regulatory signaling [117, 118]. 

CoVs are highly sensitive to the antiviral action of IFN signaling, in vitro and in non-human 

primate models [119-125]. IFN treatment can abolish CoV infections and mouse-adapted 

SARS-CoV-infected STAT1-knockout mice show higher viral loads and pathology than wild-

type mice [126]. In the course of the evolutionary arms race, CoVs have therefore evolved 

multiple strategies to evade and antagonize the induction of IFNs and IFN signaling.  

Multiple viral nsps are implicated in evading pattern recognition. 2´O methyltransferase activity 

of nsp16 together with N7-methyltransferase activity of the nsp10/14 complex produces a 5´ 

cap structure that mimics host mRNAs and significantly reduces recognition of viral RNAs by 

MDA5 [78, 80, 127-130]. Nsp15 encodes for a domain with EndoU (uridylate-specific 

endoribonuclease) activity that cleaves viral polyuridine sequences (produced in negative- 

strand poly(A) tail transcription) to avoid recognition by MDA5 [131, 132]. Analogously, nsp14 

contributes a second mechanism to recognition evasion, by ExoN-mediated degradation of 

RNA PAMPs [75, 133]. The formation of double-membrane vesicles, a hallmark of CoV 

replication, likely contributes to evasion of pattern recognition by shielding viral replication from 

cytosolic sensor proteins, as particularly the interior of these compartments stains positive for 

dsRNA [101, 102]. In accumulation, these multidimensional strategies of pattern recognition 

evasion probably contribute to the phenotype of very low IFN induction in CoV-infected ex vivo 

lung cells [121, 134].  

In addition to the above-mentioned strategies of evading pattern recognition, CoV have 

evolved strategies to directly antagonize the activation of antiviral signaling cascades. Nsp1 of 

SARS- and MERS-CoV has been demonstrated to induce the degradation of host mRNA 

synthesis, including that of IFN-I mRNAs [135-138]. Two different motives contribute to nsp3-

mediated to immune antagonism: For SARS-CoV, the removal of the macrodomain in nsp3 

that has a ADP-ribose-1′-phosphatase domain results in an increased IFN and ISG induction 
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in infected cells by a yet unknown mechanism [139]. MERS- and SARS-CoV nsp3 further 

encode for a deubiquitinating domain, which seems to counteract the antiviral function of a 

major ISG, ISG15, and the transcriptional activity of IRF3 [140-143]. ISG and IFN promotor 

activation assays suggest an antagonistic function of SARS-CoV protein 3b, protein 6, protein 

9 and the nucleocapsid protein [144, 145]. Recently, promotor activation assays implicated 

SARS-CoV-2 nsp13, nsp14, nsp15 and protein 6 to have similar antagonistic capacity as their 

SARS-CoV homologues [146]. Promotor activation assays need to be interpreted with care, 

as artificial overexpression of single viral proteins does not reflect endogenous protein 

expression during infection. However, for SARS-CoV protein 9 additional evidence 

demonstrated protein 9-induced degradation of an important PRR signaling molecule, called 

MAVS [145]. SARS-CoV protein 6 function in IFN signaling antagonism has been clarified by 

immunoprecipitation assays that demonstrated binding and sequestration of importin alpha 1 

and beta 1, required for nuclear translocation of the ISG-inducing transcription factor STAT1 

[147]. An analogous function has evolved for MERS-CoV protein 4b, which contains a nuclear 

localization signal that competes with the transcription factor NF-kB for binding to importins 

and nuclear import [85]. MERS-CoV accessory protein 4a antagonizes IFN induction by 

binding to dsRNA and inhibiting MDA5 activation, possibly by binding to its activator PACT [86, 

148]. While initial evidence was gathered from promotor activation assays, the antagonistic 

properties of endogenous protein 4a and 4b have been clarified in the context of virus infection 

[149, 150].  
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1.7 – Drivers of CoV evolution and population dynamics 

In principle, virus populations are subject to the same evolutionary drivers that shape all 

kingdoms of life: natural selection, random genetic drift and recombination. The force of natural 

selection, genetic drift and recombination correlates with the subjected population´s mutation 

rate, population size and fluctuation therein. As all of these determinants are extremely high in 

RNA viruses, RNA viruses exhibit overall evolutionary rates much higher than other organisms 

[151].  

Natural selection acts on the viral quasispecies and will select for mutations that confer the 

greatest increase in fitness, i.e. replicative success. It is therefore non-random and 

deterministic. Particularly when selection pressure is high, e.g. upon adapting to a new host, 

or upon exposure to antiviral treatment, beneficial mutations will increase in frequency and 

eventually become fixed in the virus population (positive selection or adaption), while 

deleterious mutations will decrease in frequency (negative or purifying selection). Importantly 

and frequently misunderstood, mutations themselves are stochastically more likely to exhibit 

neutral or even deleterious than beneficial effects to virus fitness [152-154].  

Genetic drift describes the random, non-deterministic process that can lead to fixation of 

random mutations by a sampling error in transmission. In viruses, genetic drift is particularly 

conceivable, since only a random minority (possibly not the representing the consensus of the 

quasispecies, therefore constituting a sample error) will infect a new cell or host to produce 

progeny and fix the transmitted genotypes [24, 151].  

Both the effect of natural selection and genetic drift are dependent on population size, which 

stringently fluctuates in virus life cycles [155]. Particularly inter-host, but also cell-to-cell 

transmission events exhibit severe bottlenecks through which only a random minority of the 

viral quasispecies will pass, followed by phases of massive population expansion in a naïve 

host. These frequent fluctuations in population size significantly expedite the effects of genetic 

drift [151, 155]. Virus population dynamics in an environment with unchanged selection 

pressure (e.g. in the same host species or not exposed to antiviral treatment) therefore tend 

to be more strongly determined by random genetic drift than by positive selection. Because of 

the stochastically increased likelihood of neutral or deleterious mutations over beneficial 

mutations, virus populations face the dilemma of a “genetic meltdown”, i.e. the continuous 

random fixation of neutral or deleterious mutations. This idea of advancing loss in fitness by 

genetic drift was particularly emanated by the geneticist H. J. Muller (†1967) in his famous 

1964 paper, in which he coined the term Muller´s ratchet as a metaphor for the unidirectional, 

stepwise loss of fitness [156-158].  
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Unsegmented RNA viruses overcome Muller´s ratchet by the process of genomic 

recombination [159, 160]. Analogously to meiotic crossing-over events in sexual reproduction, 

recombination provides asexual organisms with a tool to purge deleterious mutations from 

debilitated genomes. Mechanistically, recombination occurs upon co-infection with a related 

virus, but also within the viral quasispecies, upon random template switches of the viral 

polymerase during replication (template switch, or copy choice mechanism) [161-163]. In CoV 

evolution, the process of discontinuous transcription in sgmRNA production that involves 

template switches from the body TRS to the leader TRS, may have selected for a replication 

complex particularly prone to template switching. An additional substantial evolutionary 

advantage of recombination events, other than avoidance of Muller´s ratchet, is the possibility 

to combine unlinked beneficial mutations, in consequence creating a genome with higher 

overall replicative fitness. Linkage of beneficial mutation is of particular relevance for 

quasispecies dynamics, as individual beneficial mutations would otherwise compete with each 

other for fixation, in a process referred to as “clonal inference” [159, 161, 162, 164].  

Recombination appears to be a central aspect of RNA virus biology that has shaped the 

genomes of many RNA viruses [45, 50, 165-175]. Its importance on CoV evolution has recently 

been visualized by demonstrating that the 2002 SARS-CoV genome could have been formed 

by sequential recombination events within SARS-related CoV lineages circulating in a single 

bat colony [45].    
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2.1 – Comprehensive phenotypic  
analysis of MERS-CoV lineages 

 

2.1.1 – Introduction 

MERS-CoV phylogeny currently comprises three major clades, provisionally named clades A, 

B and C [173, 176, 177]. Whereas clades A and C contain extinct strains and strains not 

circulating in the Arabian Peninsula, clade B strains currently infect humans and camels in this 

area. Clade B is subdivided into five phylogenetic lineages. A presumed recombination 

between lineage 3 and 4 resulted in the formation of a recombinant lineage (lineage 5, also 

termed NRC for novel recombinant clade) during or before the year 2014 [172-174, 178]. As 

detailed above, recombination is a hallmark of CoV evolution and has been described for 

different CoVs infecting humans and animals [42, 44, 165, 166, 168, 169, 175]. Given that the 

current human-to-human transmission rate for MERS-CoV is close to the critical threshold for 

sustained transmission (R0 ≈ 0.6-1) [58], the emergence of a recombinant MERS-CoV lineage 

deserves critical attention. As described in chapter 1.7, recombination events may have 

beneficial effects on the recipient genome that may increase transmissibility, particularly by 

contribution of epistatic effects in linking beneficial mutations [179, 180]. 

From a public health perspective, the enzootic distribution of MERS-CoV in camels across the 

Middle East is a complex and difficult subject. Because seroprevalence studies show that 

MERS-CoV was prevalent before its incidental discovery in 2012 [53, 54], the sudden increase 

of notified cases after 2013 must be ascribed to the introduction of diagnostic tools. Reduced 

availability of diagnostics and reduced commitment of affected countries to surveillance and 

hospital infection control may have caused an apparent decline of notified cases after 2015 

[181]. Whereas the availability of notification data over a timespan of seven years (2013-2020) 

now enables a better assessment of health security risks, functional knowledge about MERS-

CoV, particularly concerning phenotypical differences between circulating lineages, is limited. 

Virological studies have been largely restricted to the reference strain EMC (for Erasmus 

Medical Centre), which pertains to a genetic lineage that was never again isolated after 2012. 

Sequencing activities and data sharing have surged since some time into 2015. Based on 

more recent studies it now emerges that since 2015 the recombinant lineage 5 has essentially 

replaced all other endemic strains [182] (Figure 5).  
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Figure 5: MERS-CoV sequences uploaded to NCBI GenBank between 2013 and 2020. All available 

GenBank entries for MERS-CoV with a sequence length ≥5,000 nucleotides were included (n = 561). 

The collection date provided in GenBank was used for assigning a year to each sequence.  

 

This continuous circulation of a single virus clade over several years is unusual, as prior to the 

emergence of lineage 5, frequent exchange and co-circulation of clades with co-detection of 

different virus lineages even in single hospital outbreaks was the norm. The novel dominance 

of a single viral lineage therefore deserves clarification, particularly because any change of 

phenotype might indicate alterations in the already existing potential for human-to-human 

transmission. Changes of phenotype in association with lineage 5 emergence have been 

suspected, but phenotypic studies of MERS-CoV strains are generally limited. Mutations in the 

spike protein positions I529T and D510G observed during the outbreak in South Korea were 

suggested to have contributed to antibody evasion [183]. However, these polymorphisms 

evolved during and not prior to the Korean MERS-CoV outbreak and hence cannot explain the 

dominance of lineage 5 since 2015 [184]. Earlier studies looking into functional differences 

between MERS-CoV clades other than lineage 5 found little evidence for phenotypic 

differences [176, 185-187]. One complicating feature of MERS-CoV is that the infection 

phenotype as seen in humans is difficult to reflect in small animal models [188].  

In this first part of the thesis, I aimed to understand phenotypic traits of lineage 5 virus isolates, 

in using different cell-, epithelial-, and ex-vivo human lung models to compare patient virus 

isolates belonging to lineage 5 as well as the parental lineages 3 and 4. As MERS-CoV is 

known to act against the induction of cytokines and overcome the effects of antiviral genes 
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(see chapter 1.6) [85, 86, 121, 132, 189], differences in immune gene activation and 

suppression of viral replication in response to IFN signaling were studied.  

The presented studies demonstrated that lineage 5 MERS-CoV isolates replicate more 

efficiently, show decreased antiviral IRF3- and NF-kB-dependent signaling, and are less 

susceptible to the IFN response.  
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2.1.2 – Results 

2.1.2.1 Generation of MERS-CoV isolates from clinical samples 
obtained from Saudi Arabian patients 

Between March 2014 and November 2015 over 3,000 clinical samples were obtained from 

Saudi Arabian MERS patients. Virus isolations were attempted on 99 samples with a high virus 

load (CT-value > 25), as determined by quantitative real-time PCR (chapter 3.26) [190]. These 

99 samples were used to inoculate Vero B4 and Caco-2 cells in parallel. In 31/99 samples 

virus replication could be detected, evident by cytopathic effects (CPE) of the inoculated cells 

after 3-4 days. Virus replication was confirmed by real-time PCR, and the culture supernatant 

of these 31 samples was used to produce passage 2 working stocks (chapter 3.2). Virus stocks 

were purified using vivaspin columns 72 hours post infection (hpi) and virus titers were 

quantified by plaque titration (chapter 3.6). No plaque purification was performed to avoid the 

introduction of virus selection bottlenecks. The complete workflow for MERS-CoV isolate 

generation as applied here, including subsequent genomic analyses (chapter 2.1.2.2-2.1.2.3), 

phylogenetic analyses (chapter 2.1.2.4) and phenotypical characterizations (chapter 2.1.2.5-

2.1.2.14) is illustrated in Figure 6.  

 

Figure 6: Overview of the workflow to isolate and characterize MERS-CoV isolates, as applied in 

this thesis.  
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2.1.2.2 Deep sequencing of generated MERS-CoV isolates 

Viral RNA was isolated from the 31 purified virus stocks and subjected to ultra-deep 

sequencing on a MiSeq platform (chapter 3.11). Using the Geneious software, all obtained 

NGS reads were mapped to the EMC reference genome. For 5/31 virus stocks, the NGS read 

count was insufficient to cover the full genome sequence. These samples showed an average 

of 80,000 reads, of which only 300-6,000 mapped to the EMC reference genome. Of note, 

these five virus stocks also showed the lowest viral load, which suggests that sequencing failed 

due to insufficient viral template. For 26/31 virus stocks, NGS read coverage was sufficiently 

high to assemble full genome sequences, with read counts between 1,000,000 and 1,500,000 

reads of which 600,000 to 1,200,000 reads mapped to the EMC genome.     

2.1.2.3 Genome analysis of generated MERS-CoV isolates 

No deletions/insertions or changes in ORFs were observed in any of the sequenced genomes. 

Genetic nucleotide identity was 99.8% between the assembled sequences and EMC. The 

position of single nucleotide polymorphisms (SNPs) in comparison to the reference strain EMC 

is illustrated in supplementary Figure 1. Nucleotide alignments with MERS-CoV full-genome 

sequences available in the NCBI GenBank in August 2017 were used to scan for non-silent 

SNPs in the assembled genomes, with monthly updates of sequences published later than 

August 2017. The majority of SNPs present in the generated MERS-CoV sequences mapped 

to previously published sequences. All differences in amino acid expression that are shared 

by all isolates within their respective phylogenetic lineages (see chapter 2.1.2.4) are listed in 

supplementary table 1. Five non-silent SNPs in three MERS-CoV isolates did not map to 

published sequences. One unique SNP in Riyadh-1732 2015 encodes for an amino acid 

substitution from aspartic acid to histidine at position 510 in the spike protein. D510 is located 

in the receptor-binding domain and is predicted to directly interact with the MERS-CoV 

receptor, DDP4 [191]. Changes other than histidine in that position (D510A and D510G) have 

been described to reduce receptor-binding affinity in a proposed tradeoff for reduced antibody 

recognition [183]. A second unique spike protein mutation, from glutamine to histidine at 

position 522, was identified in isolate Jeddah-9313 2014. Q522H is also located inside the 

receptor-binding domain, however it is not predicted to interact with DPP4 [191]. Two unique 

mutations mapped to nsp3 (E1050D in isolate Riyadh-1764 2015 and R859V in Riyadh-1147 

2014). In isolate Riyadh-1764 2015, a S64L substitution was identified in the envelope protein.  

  



22 
 

2.1.2.4 Phylogeny and recombination analysis of generated MERS-CoV 
isolates  

For taxonomic classification phylogenetic trees based on whole-genome sequences were 

inferred (Figure 7). All virus isolates clustered with either lineage 3, lineage 4 or the 

recombinant lineage 5. As expected, lineage 5 sequences branched from lineage 3 in a tree 

based on a whole-genome alignment [172, 173, 178]. Seven isolates, originating from a 

MERS-CoV outbreak in Riyadh in 2014 [192], pertained to lineage 3. In whole-genome 

alignments, these isolates showed 98.6% average nucleotide identity with published lineage 3 

strains. Eight isolates pertain to lineage 4 and originate from a 2014 outbreak in Jeddah [186] 

with 99.1% average nucleotide identity to published lineage 4 sequences. Another eight 

isolates belong to lineage 5 and stem from patients treated in Riyadh between September and 

November 2015. These lineage 5 isolates are 98.9% identical to published lineage 5 

sequences.  

Figure 7. MERS-CoV isolates from Saudi Arabian patients cluster with three distinct phylogenetic 

lineages. RaxML phylogenetic trees including reference sequences and coding-complete genomes of 

newly generated virus isolates (red). Phylogenetic lineages 1 and 2 are collapsed only to focus the 

figure. 
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As detailed in chapter 2.1.1, MERS-CoV lineage 5 originates from a recombination event 

between lineage 3 and lineage 4 [172-174, 178]. Methodologically, detection of recombination 

between genomes is based on observation of conflicting topologies in phylogenetic trees. 

Because phylogenies give an account of similarity between sequences, recombinant genomes 

will cluster incongruently with related sequences, relative to their recombination breakpoint. 

Two different methods were used to confirm the recombination event for the MERS-CoV 

lineage 5 isolates. First, BootScan (implemented in SimPlot) was applied to construct several 

maximum likelihood phylogenetic trees for several frames of a nucleotide alignment. For each 

frame in the alignment the program indicates the percentage of congruency in each of the 

calculated trees (reported as percent of permuted trees), for each frame in the alignment. In 

an alignment with MERS-CoV EMC, lineage 3, lineage 4 and lineage 5 sequences, the 

BootScan analysis detected a clear signature of recombination for lineage 5. Lineage 5 

genomes clustered with lineage 3 sequences at genome sites 1 to 16,174 and 23,953 to 

29,714 bp, and with lineage 4 sequences from 16,175 to 23,952 bp (Figure 8A), in accordance 

with previous recombination analyses of the recombinant lineage 5 [172, 173]. As a second 

method of recombination detection, phylogenetic trees were inferred with the previously 

proposed outer and inner non-recombinant segments [173]. Both phylogenies show the typical 

pattern of topological incongruence when inferring trees from alignments that cover different 

genome portions relative to the two recombination breakpoints (Figure 8B). As expected, 

lineage 5 sequences cluster with lineage 3 sequences in trees inferred from the outer 

recombinant region, whilst they cluster with lineage 4 sequences in the inner recombinant 

region.    
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Figure 8. In depth analysis of the recombination event in MERS-CoV isolates confirm 

recombination in lineage 5 A) BootScan recombination analysis based on a whole-genome alignment. 

Riyadh-1764 (lineage 5) was set as query and compared to Riyadh-146 (lineage 3), Jeddah-10306 

(lineage 4) and EMC/2012 (outlier) sequences (GenBank accession number JX869059). B) Bayesian 

phylogenetic tree based on alignments comprising concatenated 5´-proximal and 3´-distal sequences 

as indicated in the figure (left), as well as the central fragment situated between recombination 

breakpoints (right). Posterior support values are only shown if below 0.85. Viruses isolated in the present 

study are highlighted in red.    
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2.1.2.5 Enhanced Replication of MERS-CoV lineage 5 in cell culture 

To avoid cell culture-derived selection biases, all quantitative experiments were done on 

different representative isolates per viral clade with subsequent pooling of results. 

To compare viral replication of the different MERS-CoV lineages, multi-cycle growth curves in 

Vero B4 monkey kidney cells that are widely used for diagnostic isolation of MERS-CoV were 

performed. No significant growth differences between isolates were found (Figure 9A). 

Because of the known deficiency of Vero cells in type I IFN induction, multi-cycle growth curve 

experiments were additionally performed in human lung- and colon carcinoma cell lines Calu-

3 and Caco-2, respectively. These experiments yielded up to 10-fold increased replication 

levels for all tested isolates pertaining to lineage 5. Growth was enhanced over that of the EMC 

reference strain, but also over that of all tested isolates pertaining to parental lineage 3 and 4 

(Figure 9B-C).  

Two representative isolates per lineage were tested in these experiments initially. In order to 

minimize any influence of possible inter-isolate phenotypic variability an extended range of 

virus isolates was used for the experiment in Calu-3 cells (Figure 9C). In each of four 

independent experiments summarized in the figure, infections were performed with different 

sets of two viral isolates for each lineage, resulting in each lineage to be represented by eight 

different viral isolates in the experiment (refer to supplementary Table 2 for virus isolates 

used in each experimental repetition). Overall, the tested MERS-CoV isolates pertaining to 

lineage 5 produced viral titers at least 5-fold higher than lineage 3 and lineage 4 isolates at 24 

hpi (Figure 9B and 9C). Within individual experiments, representatives of lineage 5 reached 

up to 10-fold higher infectious titers than those of lineage 3 and 4. The highly replicated 

experiment in Figure 9B yielded an average concentration of 1.23x10e5 plaque forming 

units/ml (PFU/ml) for lineage 5 isolates compared to 2.2x10e4 PFU/ml for lineage 3 and 

2.4x10e4 PFU/ml for lineage 4. All of these differences were highly significant. In addition the 

difference against MERS-CoV EMC was highly significant (p <0.0006). To better represent the 

conditions of viral replication at respiratory epithelia, polarized Calu-3 cells grown under air-

liquid interface conditions were infected, resulting in the same viral phenotypes (Figure 9D).  
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Figure 9. Enhanced replication of lineage 5 virus isolates on permanent and primary cells. Cells 

were infected at MOI = 0.002 and virus progeny in supernatant quantified by plaque assay in cell culture 

supernatants. A) Vero B4 cells, 24 and 48 hpi; B), Caco-2 colon cells, 24 hpi; C) Calu-3 lung cells, 24 

hpi; D) polarized Calu-3 lung cells grown as air-liquid interface culture, 24 hpi. Every dot constitutes the 

average of triplicate infections, performed in four (Calu-3) or two (Caco-2, Vero B4 and polarized Calu-

3 cells) independent experiments on different days. Statistical significance in difference of PFU/ml 

between MERS-CoV lineage 5 and other lineages was determined by Krustall-Wallis test in A) (*P > 

0.0332, ns P < 0.05), and by two-tailed t-test in B), C) and D)  (**P < 0.0021; ***P < 0.0002; ****P < 

0.0001). 

2.1.2.6 MERS-CoV lineage 5 has enhanced competitive replicative 
fitness  

Cell culture growth kinetics can be limited by systematic and random errors, which can be 

partially controlled for by competitive replication studies in which viral isolates compete in a 

single culture dish [193, 194]. A given virus is likely to have superior relative fitness if it can 

become dominant in a virus population in spite of starting as a minority population in the initial 

virus seed dose [24]. To test this, Calu-3 cells were infected with a mixture of representative 

virus of lineage 5 and lineage 3, serving as the competitor, in two different ratios (1:1 and 9:1; 

lineage 3 : lineage 5). The total infectious dose in these cultures was 10,000 PFU, 

corresponding to an intermediate MOI = 0.04 which enables a short multi-cycle growth 

experiment while avoiding stochastic errors in the seed dose. As the total virus amplification 

may be too limited to detect shifts in lineage ratios when starting from this seed dose, four 

additional amplification cycles were done. In preliminary experiments, such as multi-cycle 

infection experiment detailed in chapter 2.1.2.5, the yield of infectious virus progeny when 

infecting Calu-3 cells at MOI = 0.04 was determined to be in the range of 10e4-10e5 PFU/ml 

at 24 hpi. Therefore, 24 hpi supernatants were diluted to a new seed dose of approximately 
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1,000-10,000 PFU and used as an inoculum for a second passage. This process was repeated 

until a completion of five passages. Viral RNA was isolated from the initial inoculum (p0) and 

from the supernatant after five passages (p5) and directly sequenced with two different single 

nucleotide polymorphisms (SNP) sites that were each amplified from the virus population in 

three separate RT-PCR reactions to control for PCR-based artifacts.  

Based on Sanger sequencing, peak heights of the sequencing reaction was analyzed with the 

web-based Chromat Quantitator (Mullins lab, University of Washington; chapter 4.12) to 

quantify how much of each virus lineage was present at p0 and p5 (Figure 10A). The ratio of 

virus progeny at p5 was found to shift in favor of lineage 5 (Figure 10B) in all cases, which 

strongly argues for an increased replicative fitness of lineage 5 MERS-CoV isolates. 

 

 

Figure 10:  Lineage 5 outcompetes a parental virus strain of lineage 3 in an in-vitro fitness 

competition assay. Calu-3 cells were infected in duplicates with 10,000 PFU containing the indicated 

ratios of a lineage 3 : lineage 5 virus isolate at the time of initial infection (p0). 1,000-10,000 PFU were 

transferred in 5 subsequent passages. A) At p0 and p5, viral RNA was isolated from the 

inoculum/supernatant and two RT-PCRs over two SNP that discriminate lineage 3 and lineage 5 were 

performed. RT-PCR amplicons were subjected to Sanger sequencing over the respective SNPs to 

investigate changes in sequencing chromatograms. B) average peak heights in sequencing 

chromatograms at each SNP were analyzed using the Chromat Quantitator server and compared 

between p0 and p5 populations 
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Analysis of stages of viral replication cycle 

Multiple factors could be responsible for enhanced MERS-CoV growth in cell cultures, 

including improved virus attachment, entry, transcription, replication, infectious particle 

production, or innate immune counteraction.  

In the following sections, it was delineated which parts of the virus life cycle contributes to the 

increased replication observed in the lineage 5 isolates.  

2.1.2.7 MERS-CoV EMC and lineages 3, 4 and 5 show similar host cell 
entry 

The spike protein mediates attachment and entry into host cells via the host receptor DPP-4 

[81]. Its N-terminus additionally mediates virus attachment via sialic acid domains [89]. 

Comparison of viral sequences provide no indications for the involved spike proteins to differ 

in their sialic acid-binding and receptor-binding properties. All spike sequences are identical to 

each other with the following exceptions (Supplementary Figure 2): lineage 3 genomes 

uniquely encode for a L411F substitution, situated in the receptor-binding domain (RBD). The 

RBD domain is responsible for binding to the entry receptor, consequently mutations in the 

RBD may influence receptor binding. However, previous studies of the L411F polymorphism 

demonstrated unaltered binding affinity and entry efficiency for this polymorphism [183].  

Lineage 4 genomes uniquely encode for a Q833R substitution. Position 833 lies outside of the 

RBD and is therefore unlikely to have phenotypic consequences. All three lineages are distinct 

from the EMC reference strain by the Q1020R mutation that is shared among all MERS-CoV 

sequences pertaining to phylogenetic clade B. The spike protein N-terminus is identical in all 

four lineages and no differences in glycosylation that could influence sialic acid binding affinity 

were predicted in silico, using the NetNGlyc and NetOGlyc server (see chapter 4.12). All three 

lineages are predicted to have three O-glyocsylations in total, two at the N-terminal domain 

and one at the C-terminal domain. Nine significant hits were detected for N-glycosylation in all 

three lineages, with the majority being present in the N-terminal domain, as expected [89].  

2.1.2.8 MERS-CoV EMC and lineages 3, 4 and 5 show similar host cell 
entry capacity and DPP4-binding  

In order to verify the sequence-informed hypothesis that the spike proteins of lineage 3, 4 and 

5 do not differ in their capacity to mediate host cell entry and receptor-binding, expression 

vectors carrying the spike proteins of lineage 3, lineage 4 and lineage 5 were cloned and 

incorporated into a rhabdoviral vesicular stomatitis virus (VSV)-based pseudotyping system 

[183]. The VSV system enables a quantitative assessment of entry capacity, as each 

pseudotyped particle transduces target cells with a firefly luciferase (fLuc) gene upon cell entry. 
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Fluc activity in transduced cells therefore serves as a direct correlation of how efficiently the 

transfected spike protein gene facilitates host cell entry.  

No significant differences in host cell entry capacity was observed between the pseudotyped 

VSV particles (Figure 11A-C). Entry capacity was tested in cell lines expressing high and low 

amounts of TMRPSS2 (high: Calu-3 and Caco-2, Figure 11A and 11B; low: Huh7, Figure 

11C) to account for entry capacity with protease primed and non-primed spike protein [195]. 

In order to determine differences in DPP4-binding capacity of each spike, lineage-specific 

spike genes were expressed in 293T cells and incubated with varying concentrations of soluble 

human DDP4. Subsequently, bound DPP4 was incubated with a Fluorophore-conjugated anti-

human antibody, which was quantified by flow cytometry. No significant differences in DPP4-

binding capacity between the spike proteins of each lineage were found (Figure 10D). 

 

 

Figure 11: lineage specific MERS-CoV spike proteins show no difference in host cell entry and 

DPP4-binding capacity. A-C) rhabdoviral particles harboring MERS-CoV spike proteins of the EMC 

isolate, lineage 3, lineage 4 and lineage 5, VSV-G (positive control), or eGFP (negative control) were 

inoculated onto TMPRSS2 expressing Calu-3, Caco-2 and TMRPSS2 negative Huh7 cells. 

Transduction efficiency was quantified at 18 hours post transduction by measuring the activity of virus-

encoded luciferase in cell lysates. Transduction mediated by EMC spike protein was set as 100%. The 

averages from three individual experiments performed with quadruplicate samples are shown; error bars 
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indicate SEMs. Statistical significance was analyzed by paired two-tailed Student´s t-tests. D) 293T cells 

transfected to express MERS-CoV lineage-specific spike proteins or empty expression vector (pCG1) 

were detached and incubated with human Fc-tagged, soluble DPP4 (solDPP4-Fc), diluted 1:50, 1:200 

and 1:1,000 and an Alexa Fluor 488-conjugated anti-human antibody before DPP4-binding was 

quantified by flow cytometry. For normalization, binding of 1:200 solDPP4-Fc to EMC spike was set as 

100%. For background subtraction of samples incubated with just Alexa Fluor 488-conjugated 

antibodies (control) was performed for each sample. EMC spike carrying the I529T SNP was included 

as an internal control, since this SNP has been previously shown to reduce DPP4-binding [183]. The 

results of a single representative experiment carried out with triplicate samples are shown and were 

confirmed in a separate experiment. Error bars indicate SDs. 

 

As viral proteins other than the spike protein may influence the entry process, infection assays 

in Calu-3 cells using virus isolates were performed, in a single-cycle infection (MOI = 1). 

Intracellular genomic RNA uptake 1 hour and 4 hours after virus absorption was quantified by 

real-time PCR. All cell cultures were infected at 4°C to ensure that cell entry initiation is 

simultaneously achieved by a temperature shift to 37°C. Genomic RNA as well as sgmRNA N 

were quantified as an early and sensitive indicator of the onset of transcription after the 

conclusion of the entry process. As a control, several stages of MERS-CoV entry were 

simultaneously blocked using inhibitors of clathrin-mediated endocytosis (classical entry 

pathway), host membrane serine proteases (alternative entry pathway via direct fusion with 

the plasma membrane), as well as endosomal proteases (downstream endosomal fusion). 

No significant differences in genomic and sgmRNA quantities among all virus lineages were 

detected 1 and 4 hours post binding (Figure 12). Chemical blocking of virus entry revealed 

that all four lineages had entered into the stage of sgmRNA transcription by 4 hours post 

adsorption, without discernible difference in transcription levels.  

 

Figure 12. All tested MERS-CoV strains show similar host cell entry. Calu-3 cells were infected in 

duplicates with one virus isolate of all each phylogenetic lineage (EMC, lineage 3, lineage 4 and lineage 

5) at MOI = 1 in the presence or absence of CoV entry inhibitors. Entry inhibited samples were pre-

incubated for 1 hour with a cocktail of 25 µM Cathepsin L inhibitor, 25 µM Pitstop II, and 100 µM 

Camostat mesylate. The inhibitor cocktail remained on the cells during the whole course of infection. To 

allow for a synchronized virus entry, virus attachment was performed at 4°C for 1 hour, followed by four 
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washing steps with PBS. After virus attachment, infected Calu-3 cells were either immediately lysed (0 

hpi), or incubated at 37°C for 1 hour or 4 hours, respectively (1 hpi and 4 hpi, respectively). Total RNA 

was isolated from lysed cells and viral genomic RNA (ORF1a) and sgmRNA N was quantified by real-

time qPCR and plotted relative to the amount of the housekeeping gene TBP. The inocula of each 

phylogenetic lineage were back-titrated by plaque assay to confirm that highly similar amounts of 

infectious particles were used to infect the cells. 

2.1.2.9 All MERS-CoV lineages are comparably neutralized by anti-
MERS-CoV-positive human and camel sera 

Because neutralizing antibodies may act via proteins or domains other than the spike N-

terminus and RBD, serum neutralization based on a highly sensitive plaque reduction 

neutralization assay (PRNT) on live viruses was tested. If antibody-mediated virus 

neutralization was different between the lineages, this would imply that different dilutions of 

sera are required for a 50% reduction in plaques. However, all virus isolates were neutralized 

with equal efficiency, i.e. the same serum dilution factor, by human (N=2) and camel (N=3) 

sera as summarized in Table 1 [11].  

Table 1. Plaque reduction neutralization assays (PRNT50 dilutions) with five sera for four MERS-

CoV isolates.  

Reference serum designation Virus strain* 
 

EMC/2012 

(clade A) 

Riyadh-

1147 

(lineage 3) 

Jeddah-

9313 

(lineage 4) 

Riyadh-

1732 

(lineage 5) 

Munich-1  

(MERS patient, Germany 2014) [196] 

1:1,280 1:1,280 1:1,280 1:1,280 

SA278 

 (MERS patient, KSA 2014) [187] 

1:2,560 1:2,560 1:2,560 1:2,560 

Dubai-S1  

(camel, UAE 2014) [197] 

1:10,240 1:10,240 1:10,240 1:10,240 

Kenia-ILRI  

(camel, Kenya 2017) [54] 

1:5,120 1:5,120 1:5,120 1:5,120 

Pakistan-493 

 (camel, Pakistan 2015) [198] 

> 1:10,240 > 1:10,240 > 1:10,240 > 1:10,240 

 

*indicated viruses were neutralized with two human sera and three camel sera as indicated. The data 

indicate serum dilutions at which 50% of plaque forming units are neutralized as compared to control.  



32 
 

2.1.2.10 MERS-CoV lineage 5 shows an earlier commencement of 
replication 

The above-mentioned experiments used synchronized infections at high MOI. Next, multi-

cycle, low MOI replication experiments were performed in Calu-3 and Vero B4 cells, to ensure 

that the early phase of replication is less masked by input viral RNA. Virus inoculation of cells 

was done at 4°C to allow virus particle attachment to the cellular receptors before simultaneous 

cell entry was induced by shifting the temperature to 37°C. sgmRNA transcripts of the 

nucleocapsid gene (sgRNA N) were quantified as an indicator for early virus transcription 

whereas genomic ORF1a-specific RNA was detected to monitor the onset of full virus genome 

replication. Additionally, PFU/ml were quantified in the supernatant to analyze differences in 

virus particle formation and egress (Figure 13). 

Overall, there was little difference between sgRNA N and genomic ORF1a transcript 

quantification, which is plausible considering that both are copied from the same template and 

replicative intermediates accumulate in parallel [121]. Virus infections in Calu-3 cells showed 

an earlier onset of replication than in Vero B4 cells, which may be attributable to the availability 

of TMPRSS2 providing an additional entry pathway in Calu-3 cells [199]. Already from the 

beginning of detectable replication, lineage 5 viruses showed a higher level of RNA 

transcription than the parental lineages 3 and 4. Enhanced infectious virus production of 

lineage 5 was only seen in Calu-3- but not in type I IFN-deficient Vero B4 cells, which 

corresponds to the previous observations in multi-cycle infection experiments (Figure 9). 

Figure 13. sgmRNA N, ORF1a and PFU quantification at early stages of infection. A) Calu-3 and 

B) Vero B4 cells were infected at an MOI of 0.002 with one virus isolate of each phylogenetic lineage in 
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duplicates for each indicated time point. At the indicated time points, cell culture supernatant was 

collected and subjected to virus quantification by plaque assay. Infected cells were lysed and total RNA 

was isolated to be subjected to quantification by real-time PCR of sgRNA N and ORF1a RNA. Cycle 

thresholds were normalized to the housekeeping gene TBP and the amount of RNA at 0 hpi.  Statistical 

significance of differences in virus replication was analyzed by Mann-Whitney test (p-value <0.0332;*). 

2.1.2.11 MERS-CoV lineage 5 shows reduced cytokine induction  

Results up to this point suggested that lineage 5 has a higher intrinsic replication level than 

viruses belonging to parental lineages. To explore if higher replication triggers a higher 

cytokine induction, Calu-3 cells were infected with two viruses of each phylogenetic lineage in 

a single-cycle, high MOI infection. mRNA expression levels were analyzed for a set of immune-

related genes at 12 hpi. IRF3-regulated genes IFNB1 and IFNL1, NFkB-regulated genes CCL5 

and TNFA, as well as IFN-stimulated gene Mx1 were included to reflect various common 

pathways in antiviral innate immunity. To enable single-cycle virus infection, cells were infected 

at MOI = 2 (Figure 14A). Under these conditions, the two lineage 5 isolates used in the 

experiment replicated to a higher 4.4- and 7.7-fold level than the MERS-CoV isolates of lineage 

3 and 4, respectively (two strains each). Intriguingly, lineage 5 induced significantly lower levels 

of IFNs and CCL5 mRNA compared to isolates pertaining to lineage 3 and 4 (Figure 14B). 

Immune gene mRNA induction in general seemed to be highest with lineage 3 strains. Average 

IFNB1 levels were reduced 12.4 and 3.1-fold and average IFNL1 mRNA expression was 

reduced 3.7- and 1.4-fold in Calu-3 cells infected with lineage 5, over Calu-3 cells infected with 

lineage 3 and 4 virus isolates, respectively. Average CCL5 transcripts were induced 2.9- and 

2.1-fold in cells infected with lineage 5, over cells infected with lineage 3 and 4 virus isolates, 

respectively. 

Figure 14. Lineage 5 MERS-CoV strains show reduced immune gene induction. Calu-3 cells were 

infected with two isolates of each phylogenetic lineage with a high multiplicity of infection (MOI = 2) for 

subsequent quantitative real-time PCR (q-RT-PCR) analysis of key immune genes. A) infectious virus 
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production as quantified by plaque assay 12 hpi. B) immune gene induction as quantified by real-time 

RT-PCR on lysed Calu-3 cells 12 hpi, expressed as fold induction over the non-infected control cells, 

normalized to the housekeeping gene TBP. Statistical significance of differences in virus replication was 

analyzed by Mann-Whitney test (p > 0.05, ns; p ≤ 0.05, *; p ≤ 0.01, **; p ≤ 0.001, ***).  

2.1.2.12 MERS-CoV lineage 5 is less sensitive to IFN treatment 

Previous studies have shown that MERS-CoV EMC is highly sensitive towards type I IFN pre-

treatment [52]. To analyze IFN sensitivity among the different MERS-CoV lineages, virus 

replication was monitored in Calu-3 cells pre-treated with type I IFN for 16 hours. IFN 

concentrations were chosen to induce mainly an upregulation of cellular helicases (2.5 units 

IFN), as well as IFN concentrations high enough to induce a complete antiviral state (25 units) 

in treated Calu-3 cells.  

Replication of the reference strain EMC was already suppressed by low level IFN pretreatment, 

in accordance to published results [120]. Lineage 3 strains showed similarly high IFN 

sensitivity, while lineage 4 and lineage 5 strains were not suppressed by 2.5 units of IFN 

(Figure 15). 25 units of IFN markedly reduced virus replication of all lineages. The reduction 

of replication caused by this dose was 6.5-fold for lineage 5 and 23- and 18-fold for virus 

isolates pertaining to lineage 3 and 4, respectively. 

 

Figure 15. Lineage 5 MERS-CoV isolates show decreased IFN sensitivity. Calu-3 cells were 

incubated for 16 hours with 2.5 or 25 units type-I IFN prior to infection at MOI = 0.002 with two MERS-

CoV isolates of each indicated lineage in triplicates. Inocula, as well as virus progeny in supernatant 24 

hpi were quantified by plaque assay. Shown are the combined data of two independent experiments 

with error bars indicating the SD.  Statistical significance of differences in virus replication was analyzed 

by Mann-Whitney test (ns, P > 0.1234; **P ≤ 0.0021).  
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2.1.2.13 Increased replication of MERS-CoV lineage 5 is not exclusively 
correlated to antagonism of JAK/STAT signaling  

To investigate if lineage 5 viruses show a lower IFN sensitivity due to increased antagonism 

of IFN signaling alone, Calu-3 cells were infected with lineage 3, 4 and 5 virus isolates in the 

presence of the JAK/STAT inhibitor Ruxolitinib (Figure 16A). Additionally, virus replication was 

compared in MERS-CoV-susceptible T84 cells carrying an IFN-alpha and -lambda receptor 

double knock-out (Figure 16B). Whereas control experiments confirmed the higher replication 

levels of lineage 5, both approaches to IFN receptor inactivation caused lineage 5 strains to 

lose a minor part of their replicative prominence. Overall, lineage 5 strains retained a 

significantly higher replication level than strains pertaining to lineage 3 and 4, suggesting that 

IFN signaling alone does not explain the observed differences.  

  

Figure 16: Replication of MERS-CoV isolates in JAK/STAT signaling inhibited and IFN receptor 

knock-out cells. Higher replication of lineage 5 MERS-CoV is additionally linked to IFN action via the 

JAK/STAT signaling pathway. A) Calu-3 cells were treated with 50 nM of the JAK/STAT inhibitor 

Ruxolitinib 1 hour prior and during the infection with two viruses per phylogenetic lineage (lineage 3, 

lineage 4 and lineage 5) in duplicates. Virus progeny in the supernatant was quantified by plaque assay 

at 24 hpi. Statistical significance of differences in virus replication was analyzed by Mann-Whitney test 

(**P ≤ 0.0021, ***P ≤ 0.0002). B) T84 wt and type I and III IFN receptor knock-out cells (IFNAR/IFNLR 

KO cells) were infected in triplicates. Virus progeny in the supernatant was quantified by plaque assay 

at 24 hpi. Statistical significance of differences in virus replication was analyzed by Mann-Whitney test 

(***P ≤ 0.0002; ****P ≤ 0.0001).  
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2.1.2.14 MERS-CoV lineage 5 shows increased replication in models of 
the human respiratory tract  

To more closely reflect virus replication in the respiratory tract [41], fully differentiated human 

airway epithelia (HAEs) were infected with two representative isolates from each phylogenetic 

lineage. According to previous observations supernatants were samples exclusively from the 

apical site of differentiated HAE were sampled and virus progeny was quantified every 24 

hours for four subsequent days [45]. Lineage 5 isolates reached average titers up to 15-fold 

higher compared to lineage 3, lineage 4 and the EMC reference strain, with significant 

differences at 24 and 48 hpi (Figure 17A). To provide a model of infection that most closely 

resembles infection of the human lung, ex-vivo infections were performed in human lung 

explants, derived from patients that have undergone lung resection. One representative virus 

isolate per phylogenetic lineage was included to infect lung explants derived from three 

different donors (Figure 17B). Supernatants of infected lung explants were harvested at 16, 

24, 48 and 72 hpi. Similar to HAEs, lineage 5 reached titers up to 5-fold higher compared to 

lineage 3, lineage 4 and the EMC reference strain, with significant differences at 24 and 48 hpi 

(Figure 17B).  

    

Figure 17. Growth kinetics of MERS-CoV isolates in models of the human respiratory tract. A) 

Replication on primary human airway epithelium (HAE) of a single donor. Two isolates of each 

phylogenetic lineage were used for infection in triplicates. Virus progeny in apical washes was quantified 

by plaque assay every 24 hours by plaque assay. Statistical significance in difference of PFU/ml 

between lineage and other lineages was determined by two-tailed Mann-Whitney test (**P < 0.0021). 

Statistical significant differences in PFU/ml were found at 24 hpi for lineage 5 between lineage 3 (**) and 

EMC (*); at 48 hpi between lineage 5 and lineage 3 (**), lineage 4 (**) and EMC (*); at 72 hpi between 

lineage 5 and lineage 3 (*) and lineage 4 (**). B) Growth kinetics of MERS-CoV isolates on lung explants, 

derived from three different patients that have undergone lung resection. One isolate of each 

phylogenetic lineage was used for infection in triplicate for each explant and virus progeny in the 

supernatant was quantified by plaque assay. Differences in PFU/ml between lineage 5 and other 

lineages was tested for significance using Krustall-Wallis test (**P < 0.0021).  
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2.1.3 – Discussion 

The present comprehensive in vitro and ex vivo studies with clinical MERS-CoV isolates 

reflecting virus lineages prior to and past the shift towards the recombinant lineage 5, 

demonstrate a higher replicative fitness of MERS-CoV lineage 5 isolates over previously 

circulating lineages, as a function of lower level of cytokine induction and IFN resilience.  

Since 2015, lineage 5 was highly prevalent in sampled dromedary camels and humans in 

Saudi Arabia, and caused a major outbreak in South Korea [172-174, 200]. This upsurge 

triggered speculations as to the transmissibility of the novel virus variant. Nevertheless, the 

phenotype of these viruses, as opposed to viruses circulating earlier, has not been studied to 

date. The data presented in this part of the thesis provide the first comprehensive phenotypical 

assessment of lineage 5 isolates, and reveal changes that likely correlate with transmissibility 

and pandemic potential. Primarily, higher relative fitness and increased replication levels may 

translate into higher excreted virus doses during infection. Transmission of higher average 

doses will inevitably increase the viral capability to adapt to humans [24, 201]. As detailed in 

chapter 1.7, virus transmission from one host to another constitutes a bottleneck through which 

only the excreted minority of the virus population will pass [202]. If a higher average virus dose 

is excreted, the chances that a more adaptive variant will pass through the bottleneck are 

increased. Secondly, reduced cytokine induction as observed here is considered an indicator 

of increased virulence and major determinant in overcoming species barriers (reviewed in 

[203]). 

One can conclude from the performed experiments that the increased fitness of members of 

lineage 5 does not result from changes affecting viral entry and is unlikely to be based on an 

altered interference with IFN receptor-dependent signaling. Most likely, the differences in this 

part are caused secondarily due to clear differences in either infection sensing or downstream 

elements of cytokine induction cascades. Any functional diversity of circulating MERS-CoVs 

on the Arabian Peninsula is somewhat surprising given that earlier studies found little indication 

for phenotypic differences between viral lineages [176, 178, 186, 204]. A study of African 

viruses found functional diversity [176] that could be attributed to deletions in ORF4b encoding 

a suppressor of RNAse L that acts via an active phosphodiesterase function [85, 150, 189]. 

However, the present viruses have a full gene repertoire and thus provide little angle to link 

changes of phenotype to any defined gene target. Viral proteins that have previously been 

associated with innate immune antagonism in MERS- and related CoVs, including nsp1, nsp3, 

nsp14, nsp15, nsp10/16, p4a and p4b are fully conserved in the present lineages or show 

amino acid substitutions unlikely to affect protein function (i.e. no addition/loss of charge or 

polarity or bulkiness, supplementary Table 1 [85, 86, 132, 135, 141, 150, 189]. 
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The further search for mechanisms to explain the viral phenotype and host response will 

therefore have to involve comprehensive studies such as shuffling of gene portions based on 

reverse genetics. Identifying causal mutations will help to understand whether and how 

cooperating mutations may have been assembled into one genome following recombination, 

and how the recombinant virus phenotype was selected for. Mapping those causal mutations 

to functional domains within the viral genome might even be used to assess the pathogenicity 

of future emerging MERS-CoV. Novel reverse genetic systems, such as in yeast cloning by 

transformation associated recombination (TAR cloning) may help to overcome the technical 

hurdles of shuffling large genome sections and have been already been initiated [205].  

It should be clearly understood that the observed phenotype of lineage 5 does not constitute 

evidence for selection in humans. Analyses of viral populations have led to the conclusion that 

human-to-human transmission does not currently play a relevant role in MERS-CoV 

evolutionary dynamics, and selection therefore will have taken place in the animal reservoir 

[180]. However, the reduced induction of cytokine expression is compatible with selection in 

dromedary camels as immune sensors and appending signal transduction cascades triggering 

cytokine induction are conserved among mammals [206, 207]. Selection for virulence in 

dromedary camels may involve a collateral benefit for the virus once transmitted to humans. 

Importantly, increased virus dose in the camel population increases the likelihood of spillover 

events and hence heightens the zoonotic potential of the recombinant MERS-CoV lineage 5 

over previously circulating lineages.   

In the light of virus population dynamics, the emergence of a recombinant virus lineage with 

increased fitness is an intriguing piece of evidence that recombination events may have 

functional relevance on virus populations, other than purging deleterious mutations from the 

genome (chapter 1.7) [151]. An example of recombination between CoV lineages giving rise 

to a more pathogenic strain has been provided by the cases of feline CoVs and IBV [34, 35]. 

To the best of my knowledge, the present study is the first report of a recombinant CoV lineage 

with a change of phenotype in humans. Its occurrence in MERS-CoV is particularly relevant 

from a public health perspective, as the current human-to-human transmission rate for MERS-

CoV is close to the critical threshold for sustained transmission (R0 ≈ 0.6-1) [58, 59]. As detailed 

in the chapter 1.7, recombination events may introduce shifts in a population´s fitness 

landscape that are of larger scale than genetic drift alone, and may therefore increase the 

stochastic potential for a more transmissible stain to emerge. Future studies should address 

which viral factors are responsible for the increased fitness of lineage 5. The recombination 

event may itself be causal if individually neutral or beneficial mutations from donor lineages 

were shuffled together to increase fitness though epistasis. Virus population dynamics are 

driven by clonal inference, i.e. the within a quasispecies occurring competition of beneficial 
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mutations for the fixation in the population, rendering changes in fitness sequential [208]. 

Conceivably, beneficial variants were already competing for fixation in lineage 3 and 4 and the 

recombination event alleviated these variants from clonal inference in fusing beneficial 

mutations, resulting in overall increased fitness. In that line, there is some evidence from the 

data presented here that members of the parental lineage 4 show an attenuated cytokine-

based immune response, but these viruses do not show increased overall fitness (chapter 

2.1.2.11 and 2.1.2.12). Alternatively, fitness-increasing mutations might have occurred after 

the recombination event. It is conceivable that the recombination event caused drastic 

alteration in fitness landscape that enabled the exploration of secondary mutations, which may 

have diversified the viral quasispecies and therefore may have increased the probability for a 

fitter variant to be selected for (survival of the flattest theory) [209]. However, for most RNA 

virus species an upsurge of mutations is deleterious to fitness [26-29]. Yet, there is some 

evidence that natural selection works on viral quasispecies as a whole, opposed to single 

mutant variants of the “cloud”, and that a diversified quasispecies itself may grant fitness 

advantages [210]. For all lineage 5 genomes that were sequenced here, I obtained a 

sequencing read coverage deep enough to detect minority variants (chapter 2.1.2.2). However, 

in highly stringent NGS read consensuses, there was no evidence for a diversified 

quasispecies that may have been detectable as an increase of nucleotide ambiguities in 

lineage 5 sequencing data over other lineages. To exclude quasispecies diversity as the driver 

for increased fitness in lineage 5, in depth analysis of existing sequencing data should be 

performed and complemented with sequencing techniques that enable discrimination between 

false reads and real minorities [211-213].   

It is a limitation of the present study that a deeper mechanistic investigation cannot be 

provided. It should be noted that the observed differences in virus-host interaction may 

originate outside the direct infection sensing and cytokine induction mechanisms, so that 

changes in cytokine induction as well as the partial differences in IFN sensitivity might be 

collateral effects. Particularly a functionally increased replication complex that changes the 

expression pattern of viral immune antagonists is conceivable. Early or increased expression 

of viral antagonists could promote overall fitness by increased reduction of the antiviral host 

responses. Comprehensive studies of the replication complexes of each MERS-CoV lineages 

could delineate a possible correlation of increased replication and reduced antiviral signaling 

induction. Such studies would require the establishment of complex reporter-coupled replicon 

systems for each MERS-CoV lineage by reverse genetics.    

Under the impressions of an ongoing SARS-CoV-2 pandemic, the emergence and 

epidemiological dominance of a more replicative strain of MERS-CoV should be acknowledged 

by public health authorities and warrants an increased surveillance of circulating MERS-CoV 
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species. Comprehensive studies on the biology and evolution of pre-pandemic CoV species 

as provided in this thesis can contribute to our understanding of the dynamics of emergence 

and epidemiology of this important RNA virus family.  
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2.2 – Phenotypic comparison of SARS-CoV- and 
SARS-CoV-2-specific IFN antagonism 

 

2.2.1 – Introduction 

SARS- and SARS-CoV-2 pertain to the same virus species, the SARS-related CoVs, within 

the genus Betacoronavirus [52]. However, SARS-CoV-2 shows features distinct to SARS-CoV 

in its clinical and epidemiological presentation, with lower pathogenicity and case fatality rate 

but substantially higher human-to-human transmission rate and incidence [68]. Both viruses 

show an identical genomic architecture with a homologous set of ORFs, however the amino 

acids encoded in the ORFs are not identical in sequence [66]. Consequently, putative 

determinants of differential pathogenicity and transmission capacity might be linked to the 

amino acid divergence of these ORFs.  

There is good evidence that the increased human-to-human transmission rate of SARS-CoV-

2 is a function of tissue tropism [67, 93, 214]. Clinical observations suggest that SARS-CoV-2 

is replicating in –and importantly is shed from- the upper and lower respiratory tract, while 

SARS-CoV mainly replicates in the lower respiratory tract, despite identical receptor usage 

[214]. Recent studies imply that the differential tissue tropism correlates with spike protein 

divergence. As detailed in chapter 1.5, the SARS-CoV spike protein might interact with the 

host protease TMPRSS2 to employ the preferred and more efficient cell entry route of particle 

fusion at the plasma membrane [67, 92, 95]. A striking feature of the SARS-CoV-2 spike protein 

is a polybasic amino acid stretch (RRAR) at position 813 to 816, upstream of the S2 domain 

that mediates membrane fusion. Nascent SARS-CoV-2 spike proteins probably undergo furin-

mediated pre-cleavage at this polybasic amino acid stretch, which primes the SARS-CoV-2 

spike proteins for preferential TMPRSS2-mediated entry at the plasma membrane [93]. 

Further, an overall higher binding affinity of SARS-CoV-2 spike protein to the cellular receptor 

ACE2 was demonstrated, yet the contribution of divergent amino acids in the RBD remains to 

be clarified [215]. In synopsis, the altered tropism and increased transmissibility of SARS-CoV-

2 might be a function of spike protein divergence and cellular co-factor distribution, particularly 

of TMRPSS2, which is highly abundant in the upper respiratory tract [67, 93, 216]. Of note, a 

similar mechanism of pre-egression furin-mediated spike cleavage is also employed by the 

MERS-CoV spike protein [99], yet DDP4 expression, in contrast to ACE2 expression, is limited 

to the lower respiratory tract [217].  

If and how broader host tropism of SARS-CoV-2 contributes to pathogenicity remains elusive. 

A major driver of virus pathogenicity other than cell entry capacity is the evasion of innate 
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immunity. As detailed in chapter 1.6, type I IFNs are among the first cytokines to be 

upregulated in virus-infected cells and play a key role in determining the outcome of infections 

by orchestration of the antiviral and inflammatory response. IFN signaling triggers the 

expression of over 300 antiviral proteins and chemokines, inducing an antiviral state in host 

cells [116]. Resilience towards IFN-mediated innate immunity seems to be associated with 

virulence and pathogenicity in many virus families [218]. As detailed in chapter 1.6, SARS-CoV 

is highly sensitive towards IFN treatment and evolved multiple mechanisms to counteract the 

induction of IFN and IFN signaling [122, 123]. Therefore, protein sequence divergence 

between described (and unknown) viral IFN antagonist may exhibit effects on the immune 

evasion phenotype of SARS-CoV-2 that might account for the distinct clinical presentation of 

SARS- and SARS-CoV-2.  

In this part of the thesis, the IFN evasion phenotypes of SARS-CoV and SARS-CoV-2 were 

compared by focusing on differences in IFN induction and signaling. Evidence for a relatively 

lower IFN induction antagonism by SARS-CoV-2 could be functionally correlated to protein 6, 

as infection studies with mutant viruses, produced by reverse genetics, implicated that SARS-

CoV-2 protein 6 is less efficient in antagonizing IFN signaling than SARS-CoV protein 6 [147].  
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2.2.2 – Results 

 

2.2.2.1 Replication kinetics of SARS-CoV-2 and SARS-CoV in IFN 
competent and incompetent cell lines 

In search for suitable cell culture systems to study the newly emerged and largely unknown 

SARS-CoV-2, the human bronchial cell line Calu-3 and the primate kidney cell line Vero E6 

were tested for their capacity to support replication of both SARS-CoV and SARS-CoV-2.   

Intriguingly, there was a striking cell line specificity in the ability to support replication of SARS-

CoV and SARS-CoV-2. In Vero E6 cells that lack type I IFN genes [219], SARS-CoV grew to 

36-fold higher titers than SARS-CoV-2 when inoculated with an MOI of 0.001. In Calu-3 cells 

that have a functional IFN response [220], SARS-CoV-2 infection yielded 5-fold higher titers 

compared to SARS-CoV at 24 hpi (Figure 18A). SARS-CoV and SARS-CoV-2 induced 

stronger cytopathic effect in Vero E6 and Calu-3 cells, respectively, which corresponded to the 

differential viral growth (supplementary Figure 3). 

To shed light on these cell line-specific observations, the impact of a blunted type I IFN 

signaling was determined for both viruses. Treatment with the STAT1 phosphorylation inhibitor 

Ruxolitinib enhanced infection by both viruses in Calu-3 cells, as judged by quantification of 

double-stranded RNA replication intermediates and infectious particle production, suggesting 

that both viruses are sensitive to a naturally induced IFN-mediated antiviral response (Figure 

18B and C).  
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Figure 18. SARS-CoV-2 and SARS-CoV are sensitive to the IFN response. A) Multi-cycle infections 

(MOI = 0.001) of SARS-CoV-2 (strain Munich/2020/984; BetaCoV/Munich/BavPat1/2020 

|EPI_ISL_406862) and SARS-CoV (strain Frankfurt (Fra); GenBank accession number AY310120) in 

the primate kidney cell line Vero E6 (left) and the human bronchial epithelial cell line Calu-3 (right). Viral 

titers in the culture supernatant were quantified by plaque titration on Vero E6 cells at 0, 24 and 48 hpi. 

Four experiments in duplicate infections were pooled. Statistical significance in difference of PFU/ml 

between SARS-CoV-2 and SARS-CoV PFU/ml was determined by two-tailed t-tests (p-value 

<0.0001;****). B and C) Virus replication under the influence of 100 nM of the JAK STAT inhibitor 

Ruxolitinib (Invivogen) as determined by plaque titration of SARS-CoV-2 and SARS-CoV in Calu-3 cells 

24 hpi (MOI = 0.001). Immunofluorescent dsRNA staining was performed in Calu-3 cells at an MOI of 

0.01 at 16 hpi. dsRNA signal intensity quantification was performed in ImageJ using six microscope 

picture frames per condition. 
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2.2.2.2 SARS-CoV-2 is more sensitive towards IFN treatment than 
SARS-CoV 

For a quantitative assessment of IFN sensitivity, virus replication was compared in both cell 

lines after pre-infection or post-infection treatment with IFN-beta in increasing concentrations 

(Figure 18). To account for the cell line-specific differences in virus propagation capacity 

detailed in chapter 2.2.2.1, replication levels were normalized to untreated samples.  

SARS-CoV-2 was more sensitive to IFN pre-treatment than SARS-CoV in particular in Vero 

E6 cells (Figure 19A and B). 1,000 IU/ml IFN reduced average SARS-CoV-2 replication to 

1.31% ± 1.01% of replication levels in untreated Vero E6 cells, while SARS-CoV replication 

remained unchanged. In Calu-3 cells, pretreatment with 1,000 IU/ml IFN reduced average 

SARS-CoV-2 replication to 0.68% ± 0.11% and SARS-CoV replication to 6.02% ± 4.14% of 

replication levels in untreated control cells.  

Differences were generally less pronounced with IFN applied at 1 hpi (Figure 18C and D), 

pointing to IFN evasion by a virus-encoded antagonist that has to be available in the infected 

cell prior to the start of IFN signaling. 1,000 IU/ml IFN posttreatment reduced average SARS-

CoV-2 replication to 58.26% ± 13.39% and SARS-CoV replication to 17.08% ± 5.61% in Calu-

3 cells. In Vero E6 cells, average SARS-CoV-2 replication was reduced to 11.24% ± 8.49% 

and SARS-CoV replication to 81.42% ± 52.74%.  
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Figure 19. SARS-CoV-2 is more sensitive towards IFN treatment. A and B) IFN pretreatment. Calu-

3 and Vero E6 cells were pretreated with 500 µl of the indicated concentrations of recombinant human 

IFN-β1 18 hours prior to infection with SARS-CoV-2 strain and SARS-CoV at an MOI of 0.001. C and 

D) IFN posttreatment. Calu-3 and Vero E6 cells were posttreated with 500 µl of the indicated 

concentrations of recombinant human IFN-β1 at 1 hpi with SARS-CoV-2 and SARS-CoV at an MOI of 

0.001. Viral titers in the culture supernatant were quantified by plaque titration on Vero E6 cells at 24 

hpi. Average of duplicate infections of four experiments are shown. PFU/ml were normalized to 

untreated samples and plotted as relative PFU/ml. Statistical significance in difference of PFU/ml 

between normalized SARS-CoV-2 and SARS-CoV PFU/ml was determined by Mann-Whitney tests test 

(p-value <0.0332;*; >0.1234; ns). Samples devoid of significance stars are statistically non-significant.  
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2.2.2.3 SARS-CoV-2 is less efficient in antagonizing cytokine and IFN-
stimulated gene induction than SARS-CoV 

The differences in IFN sensitivity described in chapter 2.2.2.2 encouraged an investigation 

towards differences in the capacity to antagonize the induction of cytokine expression between 

the two CoVs. SARS-CoV and other CoVs actively antagonize expression of antiviral cytokines 

[86, 144, 147, 221]. Therefore, the mRNA induction of type I IFN and other cytokines were 

investigated in Calu-3 cells infected with two distinct strains of SARS-CoV-2 at early time points 

after infection. The induction of the IRF3-regulated genes IFNB1 and IFNL1, as well as of the 

IRF3- and NF-kB-regulated gene CCL5 was markedly higher following SARS-CoV-2-, as 

compared to SARS-CoV infection (Figure 20A), indicating a less efficient counteraction of 

infection-triggered cytokine induction by SARS-CoV-2.  

In accordance with other reports, IRF3, an activator of IFN gene transcription, was retained in 

the cytoplasm of SARS-CoV-infected cells [120, 222] (Figure 20B). In contrast, upon SARS-

CoV-2 infection, IRF3 readily translocated into the nucleus, suggesting that the mechanism of 

SARS-CoV-mediated retention of IRF3 is not conserved in SARS-CoV-2. Low IRF3 

cytoplasmic retention may explain the higher induction of the IRF3-regulated genes IFNB1 and 

IFNL1 in SARS-CoV-2 infected cells.   

To obtain more insight into the interference of SARS-CoV-2 with IFN-related signal 

transduction, the downstream activation of essential signaling pathways was tested by 

Western blot analysis of infected Calu-3 cells. In accordance with efficient IRF3 translocation, 

phosphorylated IRF3 was readily detected in lysates of SARS-CoV-2-, but not SARS-CoV, or 

uninfected cells (Figure 20C). Lower levels of the NFkB inhibitor, IkBα, were detectable in 

lysates of SARS-CoV-2 infected cells, which is in line with increased CCL5 mRNA induction. 

Probing NFkB in nuclear and cytosolic cell fractions showed more efficient NFkB nuclear 

translocation in cells infected with SARS-CoV-2 than SARS-CoV (Figure 19D). In accordance 

with the increased mRNA induction of the ISGs MX1 and ISG56, STAT1 was more efficiently 

translocated to the nucleus in cells infected with SARS-CoV-2 than SARS-CoV (Figure 19B). 

In line with this result, the IFN-sensitive genes Mx1 and ISG56 were induced more efficiently 

after infection with SARS-CoV-2 than SARS-CoV (Figure 20E).  
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Figure 20. SARS-CoV-2 induces more strongly antiviral signaling pathways than SARS-CoV A) 

quantitative real-time RT-PCR analysis of cytokine mRNA induction in Calu-3 cells infected with two 

strains of SARS-CoV-2 (strain Munich and strain Victoria; BetaCoV/Australia/VIC01/2020; GenBank 

accession number MT007544) and SARS-CoV at MOI = 1. Target gene transcription levels were 

determined at 12 hpi, 16 hpi and 24 hpi and are expressed as fold induction over non-infected control 

cells, normalized to the housekeeping gene TATA-box-binding protein (TBP) using the ΔΔCT method. 

B) IRF3 translocation in SARS-CoV-2 and SARS-CoV infected Calu-3 cells. Cells were infected with 

SARS-CoV-2 and SARS-CoV at MOI = 1, fixed and stained for dsRNA and IRF3 at 16 and 24 hpi IRF3 

signal intensity was measured in ImageJ inside (nuclear) and outside (cytosolic) of the cell nuclei in 

dsRNA positive cells and plotted as a ratio of nuclear to cytosolic signal intensity.  

C and D) Western blot analysis of protein of Calu-3 cells infected with a MOI of 0·5 with SARS-CoV-2 

and SARS-CoV 16 hpi C) Calu-3 whole cell protein lysates were probed for IRF3, phosphorylated IRF3, 

IkBa, cross-reactive SARS-CoV-N and beta actin. D) Calu-3 cell protein lysates were separated using 

the NE-PER kit (Thermo Scientific). Nuclear and cytosolic fractions were probed for NFkB p65, 

STAT1,with GAPDH and Histone H3 as cytosolic and nuclear fraction controls, respectively, and beta 

actin as a loading control. E) q-RT-PCR analysis of Mx1 and ISG56 mRNA induction in Calu-3 cells 

infected with SARS-CoV-2 and SARS-CoV at an MOI = 1, 24 hpi. 
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2.2.2.4 Availability of the host protease TMPRSS2 is a major driver for 
SARS-CoV-2, but not SARS-CoV replication 

The less efficient counteraction of SARS-CoV-2 against IFN induction does not correspond to 

the initial observation of more efficient growth of SARS-CoV-2 over SARS-CoV in fully IFN-

competent Calu-3 cells. Recent research demonstrated that SARS-CoV-2 makes more 

efficient use of spike protein priming by the transmembrane protease TMPRSS2 than SARS-

CoV [67]. Therefore, the contribution of TMPRSS2 to the replication of both viruses was 

investigated by employing its inhibitor Camostat mesylate in a multi-cycle infection experiment. 

Importantly, Calu-3, but not Vero E6 cells express TMPRSS2 [199]. Pharmacological inhibition 

of TMPRSS2 by Camostat mesylate [67] resulted in a more pronounced reduction of SARS-

CoV-2 infection as compared to SARS-CoV, suggesting that the general growth advantage of 

SARS-CoV-2 in Calu-3 cells might be determined rather by its preferential utilization of 

TMPRSS2-dependent entry than by immune evasion (Figure 21).  

 

 

 

Figure 21. The TMPRSS2-mediated entry route accounts for higher replication of SARS-CoV-2 

over SARS-CoV in IFN-competent Calu-3 cells. A) replication as determined by plaque titration in 

Vero E6 of SARS-CoV-2 and SARS-CoV in Calu-3 cells 24 hpi (MOI = 0.001) under the influence of 100 

nM of the TMRPSS2 inhibitor Camostat mesylate. B and C) Replication as determined by dsRNA 

staining in fixed Calu-3 cells, 16 hpi with an MOI of 0.01. dsRNA signal intensity quantification was 

performed in ImageJ of six microscope picture frames per condition per virus. 
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2.2.2.4 SARS-CoV-2 protein 6 has reduced function in antagonizing IFN 
signaling  

All results up to this point suggested that SARS-CoV-2 is less efficient than SARS-CoV in 

antagonizing the induction of cytokine genes as well as ISGs, despite the shared genome 

architecture and expression of homologous viral proteins. Among all previously described 

SARS-CoV IFN antagonists (nsp1, nsp3, nsp14, nsp15, nsp16, protein 6, protein 8, protein 9 

and N), protein 6 (encoded by ORF6) shows the highest amino acid sequence divergence 

between SARS-CoV and SARS-CoV-2. SARS-CoV protein 6 binds importin alpha 1 and beta 

1, which are required for STAT1 nuclear translocation, and thereby prevents ISG induction via 

ISRE (IFN-stimulated response elements) promoter elements [147]. To analyze the ISG-

dependent antagonistic function of protein 6 in the context of SARS-CoV infection, 

recombinant SARS-CoV virus mutants in which SARS-CoV ORF6 was replaced with full-length 

ORF6 of SARS-CoV-2 (rSARS-CoVORF6-SARS-2) were constructed by reverse genetics. In brief, 

a SARS-CoV cDNA clone was subjected to mutagenesis via en passant Red-mediated 

recombination, as previously published [223, 224]. Further, ORF6 knockout mutants (rSARS-

CoV ΔORF6), in which the 4th and 5th codon of ORF6 were replaced with stop codons (Figure 

22A), were included in the study. All rescued recombinant viruses were replication-competent. 

In multi-cycle infections in IFN-competent Calu-3 cells (MOI = 0.001), both rSARS-CoVORF6-

SARS-2 and rSARS-CoVΔORF6 replicated more than 10-fold less than wt rSARS-CoV (Figure 

22B). These data confirm that SARS-CoV protein 6 is not essential for replication but enhances 

replication in IFN-competent cells. To confirm that SARS-CoV-2 protein 6 has reduced function 

in antagonizing IFN signaling as compared to SARS-CoV ORF6, single-cycle infection 

experiments (MOI = 1) were performed in Vero E6 cells. Virus replication and viral protein 

expression was allowed for 16 hours, before exposition of cells with type I IFN for 30 minutes 

to mount JAK/STAT-mediated induction of ISGs. Induction of the ISG MX1 whose induction is 

strictly dependent on IFN signaling [225] was tested after 8 hours (Figure 22C). Whereas the 

chimeric virus suppresses MX1 induction to a lesser degree than wild type, induction is 

strongest in cells infected with rSARS-CoV ΔORF6, suggesting that a residual antagonistic 

function is preserved in SARS-CoV-2 ORF6. Intriguingly, the induction phenotype of ISG56 

showed less pronounced differences between rSARS-CoVORF6-SARS-2 and rSARS-CoV ΔORF6. 

The induction of ISG56 is mediated not only by JAK/STAT, but also by IRF3 signaling [226]. 

Therefore, subtle differences in ISG56 induction by JAK/STAT signaling alone may be masked 

by IRF3-mediated ISG56 induction, which is not impeded by the antagonistic functions of 

protein 6.  

 



51 
 

  

 

Figure 22. SARS-CoV and SARS-CoV-2 protein 6 are functional homologues with SARS-CoV-2 

protein 6 displaying reduced capacity in antagonizing IFN signaling. A) left panel: cloning strategy 

of recombinant SARS-CoV ORF6 deletion (rSARS-CoVΔORF6) and SARS-CoV-2 ORF6 chimeric variant 

(rSARS-CoVORF6 SARS-2). B) multi-cycle infections (MOI = 0.001) of rSARS-CoV-wt, -ΔORF6 and -ORF6-

SARS-CoV-2 recombinant viruses in Calu-3 cells. Virus titers were determined at 48 hpi by plaque 

titration on Vero E6 cells. The average of two experiments in duplicates is shown. Statistical significance 

in differences of PFU/ml between rSARS-CoV-wt and -ΔORF6 and -ORF6-SARS-CoV-2 recombinant 

viruses was determined by Mann-Whitney tests test (p-value <0.0332;*; >0.1234; ns). C) IFN pulse 

assay. The outline of the experiment is depicted in the top panel. Vero E6 cells were infected at MOI = 

1. At 16 hpi, cells were treated with the indicated amounts of pan-species type I IFN for 30 minutes. 7.5 

hours later (accounting for 24 hpi in total) cells were lysed and isolated total RNA subjected to 

quantitative real-time PCR for Mx1 and ISG56 mRNA induction. 
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2.2.3 – Discussion 

The overall results of this study suggest SARS-CoV-2 suppresses cytokine induction as well 

as IFN signaling with lower efficiency than SARS-CoV. Studies employing a SARS-CoV 

reverse genetics clone that expresses SARS-CoV-2 ORF6 implicate that IFN signaling is 

antagonized to a lesser degree in SARS-CoV-2 infection, as function of reduced protein 6 

activity.  

As detailed in chapter 1.6, multiple viral proteins facilitate IFN antagonism in CoVs. Specifically 

for SARS-CoV, nsp3 and nsp1 prevent IRF3 phosphorylation, which is essential for nuclear 

translocation, thereby preventing IFN induction [135, 143, 227]. Nsp1 additionally prevents 

STAT1 phosphorylation upon IFN receptor binding. However, these genes are highly 

conserved between SARS-CoV and SARS-CoV-2. The less conserved protein 6 binds importin 

α1 and β1, thereby preventing STAT1 nuclear translocation and the activation of ISG promoter 

elements [147]. The data of this thesis demonstrate that SARS-CoV-2 protein 6 is less efficient 

in interfering with IFN signaling. A striking difference between SARS- and SARS-CoV-2 protein 

6 is the loss of two charged residues (Q51E and Q56E) at the C-terminal domain, which has 

been shown to be essential for importin binding [147]. Loss of charge in SARS-CoV-2 protein 

6 may reduce the capacity to interact with importins and warrants for further clarification by 

pulldown studies with tagged protein 6. These studies might help to address the question if 

SARS-CoV-2 protein 6 interacts with the same importins as SARS-CoV and if importin binding 

is conserved among different host species. As SARS-CoV-2 evolution is likely to take place in 

bats [46, 52], protein 6 might have undergone functional adaptation in binding to bat importins.  

Under the impression of an ongoing SARS-CoV-2 pandemic, reduced antagonistic capacity of 

SARS-CoV-2 protein 6 in human cells conveys a warning to the course of the pandemic. As 

protein 6 of both SARS- and SARS-CoV-2 are structurally homologous and seem to evade 

IFN signaling via the same mechanism of action, the function of SARS-CoV-2 protein 6 may 

undergo adaptive evolution in humans. As the intense circulation of SARS-CoV-2 in the human 

population continues, potential increases of anti-IFN functions, as mediated by protein 6, may 

trigger increases of replication level that are ultimately selected for in virus evolution. As virus 

transmission continues, sequence-based surveillance combined with experimental 

assessment of phenotypic change should involve studies of ORF6 and other presumed IFN 

antagonists and monitor for possible changes in IFN signaling antagonism.   

A recently published study compiled further evidence that both SARS- and SARS-CoV-2 

protein 6 are IFN antagonists [146]. Intriguingly, the authors did not detect a reduced 

antagonistic capacity of SARS-CoV-2 protein 6. The authors further claim an additional 

antagonism of IRF3-mediated type I IFN induction by protein 6, which is not in line with data 
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obtained from wild-type SARS-CoV-2 infection (Figure 20) and could not be detected in 

rSARS-CoVORF6 SARS-2 infection. However, there is a key difference in the applied methodology 

between the two studies. While Yuen et al. conducted promotor activation assays based on 

overexpression of protein 6, we investigated the effects of endogenous protein 6 in the context 

of virus replication. Unfortunately, the authors did not detail their exact methodology, e.g. which 

(and if the identical) expression vector backbones were used for each construct, or how much 

plasmid was transfected, which are key determinants for the outcome of promotor activation 

assays. Furthermore, results based on overexpression of single viral proteins suffer from 

systemic pitfalls, as they do not reflect endogenous protein levels in the context of virus 

infection and cannot account for interactions between several viral proteins.  

A tempting extrapolation of the in vitro data presented here towards in vivo clinical presentation 

is that the less efficient innate immune evasion by SARS-CoV-2 correlates with the less severe 

clinical manifestation of COVID-19 over SARS. Increased cytokine and ISG induction by 

SARS-CoV-2 may enable quick virus clearance and halt disease progression in patients with 

a largely functional immune system. Intriguingly, a recently published study employed single 

cell sequencing on SARS-CoV-2 infected ex vivo lung explants and found SARS-CoV-2 to not 

induce significant amounts of IFNs, juxtaposed to increased NF-kB-mediated genes, as 

observed here [228]. Contrasting to that, a single cell study performed by members of our 

institute observed a similar phenotype of SARS-CoV-2-mediated IFN mRNA upregulation, as 

observed here [229]. It should be added that the host response may vary as a function of 

applied MOI, of the timing of mRNA quantification, of the model system used for infection and 

possibly as a function of virus isolate used for infection. Consequently, extrapolations towards 

any clinical phenotype have be confirmed by more data to clarify SARS-CoV-2 IFN evasion 

and antagonism, particularly in ex vivo systems.           

Functional diversity in protein 6 and other accessory proteins may help to elucidate the 

zoonotic potential emanating from Coronaviridae. Previous studies have shed some light on 

the functional diversity of protein 8 [230] and nsp3 [227] in SARS-CoV, and protein 4b in 

MERS-CoV [176] and the data for protein 6 provided here add to that line of thought. Functional 

differences in the ability to counteract innate immunity seems to appear as a marker for 

pathogenicity of CoVs. The suppression of innate immunity, whose protein components are 

largely conserved among mammals, may help to explain why CoVs seem to be able to 

overcome species barriers so frequently. Considering SARS-CoV and SARS-CoV-2 as 

conspecific viruses with an overall homologous genome structure and receptor usage [52, 66, 

67] the results presented here highlight that functional diversity may exist in members of closely 

related virus species, analogously to the results presented for MERS-CoV.  
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In sum, the results of both parts of the thesis at hand underline the urgency to intensify CoVs 

surveillance. Particularly in their animal reservoirs where diversity is largest, surveillance 

should be extended from purely sequence- and phylogeny-informed research towards 

phenotypical studies, as functional diversity seems to be present among closely related CoV 

species. The identification of causal networks between CoV genomic loci and their 

phenotypical traits might help to identify risk markers for CoV virulence and provide a better 

assessment of the pandemic potential of circulating CoVs. 
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3 – Methods 

 

3.1 - General cell culture procedures 

MERS-CoV plaque titrations (chapter 3.6) and virus stock production (chapter 3.2) were 

conducted using Vero B4 cells. For SARS-CoV and SARS-Cov-2 Vero E6 cells were used. In 

virus infection studies (chapter 3.4), Vero B4, Vero E6, Calu-3, Caco-2, Huh-7, T84 wild-type 

and T84 IFN alpha and lambda receptor double knockout cells were used. For the production 

of MERS-CoV spike protein-pseudotyped VSV particles, HEK-293T cells were used (chapter 

3.17). All cells were maintained at 37°C, 5% CO2 in Dulbecco’s Modified Eagles Medium 

(DMEM), high glucose (4.5 g/L) supplemented with 5% Penicillin/Streptomycin, 5% non-

essential amino acids, 5% sodium pyruvate, 5% L-glutamine and 10% FCS (lot number 

2058470) (all Gibco). For freshly thawed Calu-3 cells, FCS supplement was increased to 20% 

for two passages. Culture vessels for T84 cells were coated with type I collagen for 1 hour prior 

to seeding. Passaging of cells was performed when cells reached a confluency of 80% or 

higher, in a 1:10 ratio for all cells, expect for Calu-3 and T84 cells, which were passaged in a 

1:3 ratio. For passaging, cells were washed with twice with PBS and exposed to 0.25% Trypsin 

solution until cell detachment was completed. Detached cells were counted in a Neubauer 

chamber and diluted to the appropriate concentration (chapter 3.4) prior to cell seeding.  

3.2 - MERS-CoV isolate stock production 

Generation of primary MERS-CoVs isolates from anonymous patient respiratory samples was 

performed by Doreen Muth in late 2015 [187]. In brief, qRT-PCR positive samples were diluted 

in OptiPro to reduce mucous viscosity and subsequently used to infect Caco-2 and Vero B4 

cells, seeded in a 6-well format. Infections were performed as described in chapter 3.4. Cells 

were monitored daily and at the onset of CPE the culture supernatant was collected and stored 

at -80°C for working stock generation.   

For MERS-CoV working stock production, Vero B4 cells seeded in a T162 flask format were 

infected with primary MERS-CoV isolates. To avoid carry-over of potential fungus 

contaminations, frequently observed in primary isolates from respiratory samples, inocula were 

passed through a 0.22 µm filter prior to inoculation. In addition, Amphotericin B was 

supplemented in the culture medium at a concentration of 1 µg/ml. Infected Vero B4 cells were 

incubated at 37°C, 5% CO2 and monitored daily for CPE. Once complete CPE was observed 

after approximately 3-4 days, the culture supernatant was collected and centrifuged at 4,000 

rpm for 30 minutes to remove cellular debris. Debris-free supernatants were collected and 

concentrated using Vivaspin 20 ml concentrator columns. In brief, supernatants were loaded 
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onto PBS equilibrated columns and centrifuged at 4,000 rpm at 4°C for 1 hour. The remaining 

volume was collected from the column filters by washing with 10 ml PBS. The resulting high 

titer virus solution was mixed in a 1:2 ratio with 0.5% gelatin-containing OptiPro medium and 

aliquots of 500 µl were stored at -80°C. 

3.3 - IFN, Ruxolitinib and Camostat mesylate treatment 

Prior to infection, Vero E6 (SARS and SARS-CoV-2) and Calu-3 cells (the former, plus MERS-

CoV) were incubated with 500 µl of the indicated human IFN-β (Biochrom, Germany) or pan-

species type I IFN (PBL Biomedical Laboratories) concentrations, diluted in culture medium, 

for 18 hours (chapter 2.1.2.12 and 2.2.2.2). For IFN posttreatment, culture medium was 

changed to full DMEM supplemented with the indicated concentrations of IFN-β one hour after 

infection. For IFN pulse experiments (chapter 2.2.2.4), pan-species type I IFN was diluted in 

culture medium at the indicated concentrations. At 16 hpi, the culture medium was replaced 

with IFN-supplemented culture medium for 30 minutes. Subsequently, IFN-containing medium 

was removed and composite DMEM without IFN was added to the cells.  

Camostat mesylate (Sigma-Aldrich) and Ruxolitinib (Invivogen) treatment (chapter 2.1.2.8 and 

2.2.2.4) was performed by supplementing complete DMEM with 100 µM Camostat mesylate 

or 100 nM Ruxolitinib, or DMSO (as a control for Ruxolitinib treated cells) and by pretreating 

Calu-3 cells 2 hours prior to infection. After infection, cells were maintained in Camostat 

Mesylate-, Ruxolitinib-, or DMSO-supplemented DMEM.  

3.4 - MERS-, SARS- and SARS-CoV-2 infections 

Detached cells were counted and seeded 16 hours prior to infection studies. Seeding densities 

were used as detailed below. 500 µl and 2,000 µl culture medium were used for 24-well and 

6-well cultures, respectively. 

 
Seeding density (cells/well): 

Cell line: 24-well: 6-well: 

Calu-3  3.0x10e5 1.2x10e6 

Caco-2  1.5x10e5 Not applicable 

T84 (wild-type and KO) 2.5x10e5 Not applicable 

Vero (B4 and E6) 1.5x10e5 6.0x10e5 

 

Virus stocks were thawed and diluted in OptiPro (Gibco) to the desired MOI (e.g. 500 PFU for 

2.5e5 Calu-3 cells to reach an MOI of 0.002). Culture medium was removed and the cells were 

washed once with PBS, prior to inoculation with virus dilutions for 1 hour at 37°C. Following 
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incubation, cells were washed twice with PBS and 500 µl (24-well format) or 2 ml (6-well 

format) culture medium was added to each well. Infected cells were further incubated at 37°C.  

All experiments with MERS-CoV, SARS-CoV-2 and SARS-CoV were executed under BSL-3 

conditions.  

3.5 - Synchronized MERS-CoV infections 

To investigate early steps in virus infections, virus attachment to host cells was performed at 

low temperatures, at which the energy barrier for efficient host cell fusion and cell entry is high 

[231]. After an particle attachment incubation period at 4°C, the temperature was rapidly shifted 

to 37°C to allow for synchronized virus entry into the cells (chapter 2.1.2.8 and 2.1.2.10).  

Virus stocks were thawed and diluted in 4°C cold OptiPro to the desired MOI. Calu-3 and Vero 

B4 cells, seeded in 24-well format, were kept on ice, the culture medium was removed and the 

cells were washed once with cold PBS. After the addition of virus dilutions, the cells were 

incubated at 4°C for 1 hour and subsequently shifted to 37°C for 30 minutes. Cells were 

washed five times with PBS and 500 ml culture medium was added to each well. Further 

incubation was carried out at 37°C.  

3.6 - Plaque titration assay  

The amount of infectious particles in a virus containing dilution can be quantified by the plaque 

assay technique [232]. This technique applies the principle that virus progeny of a single 

infected cell can only infect immediately neighboring cells when the cell monolayer is overlaid 

with a viscous medium. Consequently, each infectious particle forms a so-called plaque, a 

hole, in the cell monolayer. The number of formed plaques positively reflects the amount of 

PFU present in the dilution used to infect the cell monolayer.  

Samples with unknown virus concentration were 10-fold serially diluted and applied to Vero B4 

or E6 cells (1.5e5 cells/well) in duplicates. After a 1-hour incubation period at 37°C, sample 

dilutions were removed and overlaid with a 1:2 solution of 2.4% Avicel (Sigma-Aldrich) and 

double-concentrated DMEM (Gibco). Four days post infection cells were washed once with 

PBS and fixed in 6% formaldehyde solution for 30 minutes. The cell monolayer was stained by 

adding a 6% formaldehyde solution containing crystal violet for 15 minutes. Stained and fixed 

plates were washed twice with water, dried at room temperature. Formed plaques were 

counted in duplicate wells to calculate the PFU/ml using the following equation:  

Virus titre [
PFU

ml
] =  

∑ plaques × dilution factor

∑ applied volume
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3.7 - Primary human airway epithelium infection and culture procedures 

Prof. Dr. Ronald Dijkman, Institute for Virology and Immunology, at the University of Bern, 

provided fully differentiated primary human airway epithelia (HAE). HAE cells were seeded on 

transwell inserts that allow cells to be supplied by medium from the apical (top) and basolateral 

(bottom) side. After reaching confluency and establishing a tight junction barrier (monitored by 

measuring the electrical resistance between apical and basolateral compartment), apical 

medium was removed to drive differentiation of HAEs by exposure to air on the apical site 

(creating an air-liquid-interface (ALI) culture). HAEs were fully differentiated in Bern and 

shipped to Berlin with an agarose overlay. Upon arrival, the agarose overlay was removed, 

and the inserts washed twice with HBSS (Gibco) to remove excess agarose. HAEs were further 

incubated for one week prior to infection, to allow the cells to recover from the shipment. ALI 

medium (produced in house by R. Dijkman) was exchanged from the basolateral site every 

second day [233].  

For infection with MERS-CoV (chapter 2.1.2.14) HAEs were washed twice with HBSS to 

remove excess mucous and infected with 4,000 PFU diluted in HBSS for 1.5 hours. 

Subsequently, cells were washed three times with HBSS and further incubated. At 24, 48, 72 

and 96 hpi supernatants were collected from the apical site. Viral loads were quantified by 

plaque titration on Vero B4 cells as described in chapter 3.6. 

3.8 - Lung explants infection and culture procedures 

Lung explant infections with selected MERS-CoV isolates were performed in cooperation with 

Christin Mache under Thorsten Wolff´s supervision at the Robert Koch Institute, Unit 17, 

Influenza and other Respiratory Viruses, in Berlin, Germany.  

Lung explants were obtained from patients undergoing lung resection. Written informed 

consent was obtained from all patients and the study was approved by the ethics committee 

at Charité- Universitätsmedizin Berlin (projects EA2/050/08 andEA2/023/07). For each 

experiment tumor-free, human lung tissue was cut into small pieces (weight approx. 0.1 - 0.2 

mg per piece) and incubated in RPMI 1640 (Gibco) medium at 37°C with 5% CO2. After 

overnight incubation, lung organ cultures were inoculated with 1x10e5 PFU MERS-CoV for 1.5 

hours, washed once with PBS and further incubated on a tissue culture shaker with 50 rpm 

(chapter 2.1.2.14). Lung tissue was incubated for up to 72 hpi in RPMI 1640 medium containing 

10% FCS and 2 mM L-glutamine (both Gibco). Supernatants of infected lung tissue were 

collected at 0, 16, 24, 48 and 72 hpi and were titrated on Vero B4 cells by plaque titration assay 

as described in chapter 3.6.  
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3.9 - Plaque Reduction Neutralization Test (PRNT) 

The plaque reduction neutralization test (PRNT) quantifies virus-specific neutralizing 

antibodies. The technique is based on the assumption that viruses do not form plaques when 

specific antibodies neutralize them. Serial dilutions of five serum samples (Table 1 chapter 

2.1.2.19), containing antibodies against MERS-CoV were incubated for 1 hour with 25 PFU 

prior to performing a plaque assay as described in chapter 3.6. After fixation and staining, as 

described in chapter 3.6, plaques were counted and the reduction of plaques in samples pre-

incubated with serum dilutions was calculated. The standard measure for neutralization 

capacity is given as the PRNT50, i.e. the serum dilution step at which half of the 25 input PFUs 

are neutralized. 

3.10 - Virus competition assay 

Calu-3 cells were infected in 24-well format with a mixture of two MERS-CoV strains, using 

two ratios (1:1 and 9:1) (chapter 2.1.2.6). The total infectious dose used to infect passage 0 

cultures was set to 10,000 PFU, corresponding to an MOI = 0.04. All passaging infections were 

performed by sampling the supernatant of the previous passage at 24 hpi and inoculating a 

new Calu-3 culture with a 1:50 dilution of that sample. This process was repeated until the 

completion of five passages. Viral RNA was isolated from the initial inoculum (p0) and from the 

supernatant after five passages (p5) and subjected to Sanger sequencing of three different 

single nucleotide polymorphisms (SNP) sites that were each amplified from the virus 

population in separate RT-PCR reactions to control for PCR-based artifacts. The following 

PCR products were generated: amplicon 1 (300 bp): forward primer: 5´-

TACCTGGTTGAGAGGCTCAT-3´; reverse primer 5´-CTTAAGCAGATTCTGGGCATATT-3´; 

amplicon 2 (541 bp): forward primer 5´-TGAGTGTGGAAGTTGTGGTAAT-3´; reverse primer 

5´-ACCTTTGAGAAGCTGGCGTATT-3´; amplicon 3 (560 bp): forward primer 5´-

TCGAGCCGCATAAGGTTCAT-3´; reverse primer 5´-GCTGAGCTGCGTCCTGTTT-3´. For 

peak height analysis, the web based Chromat Quanitator (Mullins lab, University of 

Washington, chapter 4.12) was used and obtained peak heights were averaged for all 

duplicates and calculated as a percent of the total height. 

3.11 - Deep sequencing of MERS-CoV virus stocks 

3 µg viral RNA, extracted from high titer MERS-CoV stocks (passage 2) as described in chapter 

3.2 and 3.21, was subjected to cDNA synthesis using the SuperScript® One-Cycle cDNA Kit 

(Invitrogen) according to the manufacturer's protocol. 1 ng cDNA was fragmented and 

supplemented with adapter sequences using the Nextera® XT DNA Library Prep (Illumina), 

subsequently processed with the MiSeq Reagent Kit v3 (Illumina) and subjected to NGS on a 

MiSeq™ System (Illumina), all according to the manufacturer’s protocol. 
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3.12 - Sequence assembly of NGS reads 

Using the Geneious software, version 9.1.8, NGS reads were trimmed and mapped to the EMC 

MERS-CoV reference genome (accession number JX869059). Reads shorter than 50 bp were 

excluded from the mapping. Trimming of reads was set to 5%. The threshold for generation of 

the consensus sequence of all reads was initially set to 90%. Each obtained consensus 

sequence was manually screened for ambiguous nucleotides. If ambiguous nucleotides were 

identified, the consensus sequence threshold was lowered to 75%. Sequences that did not 

yield unambiguous consensus sequences at 75% reads were excluded from further studies 

(chapter 2.1.2.2).  

3.13 - Phylogenetic analysis of MERS-CoV genome sequences  

Phylogenic analyses were estimated applying a Maximum-likelihood approach, implemented 

in RaxML, version 8.0.0, with a general time reversible (GTR) model of nucleotide substitution 

with 4 category gamma distributed rate variation and a proportion of invariant sites. 10,000 

bootstrap replicates were set. No further changes to the default settings of RaxML were 

applied. Calculation were performed on the BIH server cluster, to allow for the replicates to be 

calculated in a reasonable time scale. Input alignments for all trees were created by ClustalW, 

implemented in the Geneious software, version 9.1.8. Calculated trees were edited for better 

graphical display, using FigTree v1.4.4 (chapter 2.1.2.4).  

3.14 - In-depth recombination analysis 

For detailed recombination analysis, we performed a BootScan analysis with 500 bootstraps 

in SimPlot, version 3.5.1., with a sliding window of 5,000 bp and 200 bp steps. An alignment 

of four sequences, comprising phylogenetic clade A (EMC-2012) and three clade B lineages,  

lineages 3, 4 and 5 (Riyadh-146 2014, Jeddah 2014 10306 and Riyadh 2015-1734) was used 

for the BootsScan analysis, with Riyadh 2015-1734, the suspected recombinant, set as query 

sequence (chapter 2.1.2.5).  
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3.15 - Cloning of MERS-CoV lineage-specific spike gene expression 

vector by mutagenesis PCR 

For the generation of lineage-specific spike gene expression vectors, the previously cloned 

EMC-2012 isolate spike plasmid (pCG1-MERS-S) was used as a template for site-directed 

mutagenesis PCR. Lineage-specific nucleotide changes were introduced into the EMC spike 

plasmid by a set of specific primers, listed in chapter 4.8.3. Phosphorylated primers were used 

to allow for efficient ligation of the circular PCR product. The reaction as set up as a two-mix, 

hotstart PCR, using Phusion polymerase as described below: 

Mix 1: 

H2O 27.5 µl 

HF buffer (5x) 7.5 µl 

dNTPs 2 µl 

Primer Fwd 1 µl 

Primer Rev  1 µl 

Template (10 ng) 1 µl 

Total volume: 40 µl 

 

Mix 2: 

H2O 7 µl 

HF buffer (5x) 2.5 µl 

Phusion Polymerase  0.5 µl 

Total volume: 10 µl 

 

The reaction was conducted in a PCR cycler with the following cycling conditions: 

Add Mix 1 template denaturation 98°C 30 sec 1x 

 template denaturation 80°C 1 min 

Add Mix 2 Denaturation 98°C 10 sec 

35x  Primer annealing 66°C 20 sec 

 Extension 72°C 200 sec 

 Final Extension 72°C 10 min 1x 

 4°C Storage ∞  

 

Amplification of DNA was verified by agarose gel electrophoresis. Successful amplicons were 

subjected to background template digestion employing 2 µl Dpn1 restriction enzyme (NEB) in 



62 
 

50 µl total volume with 1x CutSmart buffer (NEB) at 37°C for 20 minutes. Subsequently, 

amplicons were column purified (Machery&Nagel) and 5 µl PCR product was ligated at room 

temperature using 1µl T4 Rapid enzyme (Thermo Scientific) in 1x RapidLigation buffer 

(Thermo Scientific) in a total volume of 10 µl for 30 minutes. Subsequently 3µl ligation product 

were used to transform E. coli One Shot Top10 bacteria (Thermo Scientific) as described in 

chapter 3.25.  

Initially the mutation Q1020R was introduced into the EMC backbone and the obtained plasmid 

DNA was isolated from transformed bacteria using the Machery&Nagel Plasmid Purification 

Kit (chapter 3.16). The mutagenesis reaction was verified by Sanger sequencing, and the 

isolated plasmid subsequently used as a as PCR template for the subsequent introduction of 

L411F and Q833R by a second round of mutagenesis PCR as described above. In total, three 

MERS-CoV spike gene plasmids were generated: L411F and Q1020R in combination, Q833R 

and Q1020R in combination, as well as Q1020R alone (chapter 4.9). All plasmids were isolated 

and purified as described in chapter 3.16.   

3.16 - Isolation of plasmid DNA  

For small scale DNA purification, the Machery&Nagel Plasmid purification kit was used. For 

large-scale DNA purification the Machery&Nagel Extra Midi EF kit was used, both according 

to the manufacturer´s instructions. For small-scale DNA isolation, a single bacterial colony was 

inoculated in 5 ml LB broth supplemented with the required antibiotic. For large-scale DNA 

isolation, an overnight small-scale bacterial culture of a single bacterial colony was inoculated 

in 300 ml LB broth supplemented with the required antibiotic. Elution of purified plasmids was 

performed with 50 µl and 200 µl 50°C Tris-HCl buffer, pH 8, for small-scale and large-scale 

DNA purification, respectively.  

3.17 - Generation of MERS-CoV spike protein-pseudotyped VSV 

particles (VSVpp) and virus transduction studies 

Cell entry capacity of MERS-CoV-S proteins can be quantified by the VSVpp system [234, 

235]. The system is based on a recombinant Vesicular Stomatitis Virus (rVSV) in which the 

gene mediating cell entry, VSV-G, was replaced by genes encoding for eGFP and firefly 

luciferase (fLuc). rVSV particles can be trans-supplemented with overexpressed viral 

glycoproteins, including MERS-CoV-S. These trans-supplemented MERS-CoV-S VSVpp can 

be used to infect MERS-CoV susceptible cell lines. MERS-CoV-S- VSVpp transduces infected 

cells with the eGFP and fLuc genes, than can subsequently be quantified.   

In brief, 293T cells seeded in 6-well format were transfected with 6 µg pCG1 expression vectors 

(chapter 4.9) carrying MERS-CoV spike protein variants produced as by mutagenesis PCR as 
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described in chapter 3.15) [183], and VSV-G (positive control) or empty pCG1 expression 

vector (negative control). 16 hours post transfection, the 293T cells were inoculated with 1 ml 

VSV*ΔG-fLuc diluted in OptiPro at an MOI = 3 at 37°C for 1 hour, washed twice with 1 ml cold 

PBS and further incubated at 37°C with 2 ml culture medium, supplemented with 1:1,000 anti-

VSV-G antibody (except for cells expressing VSV-G). After 16-18 hours incubation, 2 ml of the 

VSVpp containing culture supernatant was collected and the cell debris removed by 

centrifugation (4,000 rpm, 4°C, 10 min). Aliquots of 250 µl were stored at -80°C.   

For transduction of target cells, Calu-3, Caco-2 and Huh-7 cells were seeded into 96-well cell 

culture plates for 16 hours, the culture medium was removed and cells were inoculated with 

100 µl MERS-CoV-S VSVpp. At 18 hours postinoculation cells were lysed for 15 minutes at 

room temperature in 50 µl Luciferase Cell Culture Lysis Reagent (Promega). Lysates were 

diluted 1:10 in water and 20 µl were transferred into white, opaque-walled 96-well plates and 

activity of virus-encoded fluc was measured using 50 µl of the Luciferase Assay System 

substrate (Promega) and a Hidex Sense plate reader (Hidex). 

3.18 - Quantification of MERS-S binding to DPP4 by flow cytometry 

Analysis of spike protein binding to the host receptor DPP4 was analyzed by flow cytometry 

employing a previously published protocol and was performed by Hannah Kleine-Weber at the 

German Primate Center (DPZ) in Göttingen [183]. In brief, 293T cells were transfected with 

the overexpression vector pCG1 carrying the MERS-CoV Spike protein of clade A (EMC, 

accession number JX869059), lineage 3 (L411F/Q1020R), lineage 4 (Q833R/Q1020R), or 

lineage 5 (Q1020R), as well as empty vector for negative control. At 48 hours post transfection, 

cells were resuspended in PBS, centrifuged (5 minutes at 600x g at 4 °C) and resuspended in 

PBS containing 1% bovine serum albumin (1% BSA/PBS) for washing. The cells were 

centrifuged again and incubated in 1% BSA/PBS containing soluble DPP4 equipped with a C-

terminal human Fc-tag (solDPP4-Fc,1:50, 1:200 and 1:1,000; ACROBiosystems) at 4 °C in an 

overhead shaker for 1 hour. Afterwards, the cells were pelleted and incubated in 1% BSA/PBS 

containing an AlexaFluor488-conjugated anti-human antibody (1:500), for 1 hour at 4 °C in an 

overhead shaker. Subsequently the cells were pelleted, washed with 1% BSA/PBS and fixed 

in 4% paraformaldehyde (PFA) solution for 20 minutes at room temperature. Prior to analysis 

via flow cytometry, the cells were pelleted again and washed with 1% BSA/PBS. Flow 

cytometry was conducted on an LSR II Flow Cytometer (BD Bioscience). Data was further 

processed in the FCS Express 4 Flow research software (De Novo software). Assessment of 

entry and DDP4-binding capacity of pseudotyped VSV particles was performed in collaboration 

with Hannah Kleine-Weber, a member of Stefan Pöhlmann´s group at the DPZ in Göttingen.   
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3.19 - IRF3 translocation assays 

1.5e5 Calu-3 cells were seeded in 8-well µ-slides (80826, ibidi) and infected with SARS-CoV 

FFM-1 or SARS-CoV-2 Munich 984 at the indicated MOI. 16 or 24 hpi, cells were fixed in 6% 

PFA, permeabilized in 0.1% Triton-X and blocked with 2% BSA in PBS. Antibody-staining was 

performed with a 50 µl dilution of mouse anti-dsRNA (J2, English and Scientific Consulting, 

Hungary, 1:200) and rabbit anti-IRF3 (FL-425, sc-9028, Santa Cruz Biotechnology, 1:200) in 

PBS, 2% BSA for 2 hours. For secondary staining, 50 µl of a goat anti-mouse Alexa Fluor-647 

(A-21235, Thermo Fisher Scientific, 1:300 with 1:1000 Dapi solution (Thermo)) dilution and a 

goat anti-rabbit Alexa Fluor-488 (A-11008, Thermo Fisher Scientific, 1:300) dilution were 

applied for 1 hour. Cells were washed three times in PBS following blocking, as well as primary 

and secondary antibody incubation. Imaging was performed using the Zeiss LSM800 Airyscan 

confocal microscope. Signal intensities were analyzed using ImageJ 2. 

3.20 - Western blot analysis 

Calu-3 cells were lysed in Pierce RIPA lysis buffer (Thermo Scientific) supplemented with 

PhosStop (Roche) and complete Protease Inhibitor mix (Roche) at 16 hpi. For nuclear and 

cytosolic fraction analysis, protein lysates were separated using the NE-PER kit, according to 

the manufacturer´s instructions (Thermo Scientific). Cell lysates were resolved on 14% SDS-

PAGE gels and blotted onto nitrocellulose membranes using a Trans-Blot Turbo system 

(BioRad). Subsequently, membranes were blocked with 5% milk powder in TBS with 0.05% 

Tween-20 (TBST) for 1 hour, prior to overnight incubation at 4°C with the respective primary 

antibodies, diluted 1:1,000 in TBST, 5% milk powder as follows: p-IRF3 (cs#4947s); IRF3 

(cs#4302s); IκBα (cs#4812s); SARS-CoV-N (GTX632269); ß-Actin (Sigma A5316); NFkB p65 

(cs#6956s); STAT-1 (cs#9172); GAPDH (cs#5174s) and Histone H3 Sigma (H0164). After 

overnight incubation, membranes were washed with TBST and probed with secondary HRP-

conjugated antibodies (Thermo Scientific), diluted 1:20,000 in TBST, 5% milk powder, for 1 

hour at room temperature. Protein band visualization by autoradiography was performed by 

addition of SuperSignal West Pico Plus (Thermo Scientific) chemiluminescence substrate.   

3.21 - Manual isolation of viral RNA 

Viral RNA was isolated from culture supernatants of infected cells using the Machery&Nagel 

viral RNA kit according to the manufacturer´s instructions. 50 µl of cell culture supernatant 

were added to 300 µl RAV1 lysis buffer, supplemented with carrier RNA. Samples were either 

stored at -80°C or processed immediately. Virus containing RAV1 samples were heat-

inactivated for 10 minutes at 70°C, before being exported from the BSL-3. RNA was eluted in 

50 µl H2O and stored at -80°C.  
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3.20 - Manual isolation of total cellular RNA 

At the respective time point post infection, cell culture supernatant was removed and the cells 

were lysed in 350 µl RA1 buffer, supplemented with 2-mercaptoethanol. Samples were either 

stored at -80°C or processed immediately. Virus-containing RAV1 samples were incubated for 

10 minutes at 70°C before being exported from the BSL-3. RNA was isolated using the 

Machery&Nagel total RNA kit according to the manufacturer´s instructions. RNA was eluted in 

50 µl H2O and stored at -80°C.  

3.21 - Automated isolation of viral RNA 

Large-scale cellular RNA isolations were performed on an automated nucleic acid isolation 

extraction platform (MagNAPure (Roche)). In brief, cells were lysed in 350 µl MagNA Pure cell 

lysis buffer, transferred to Eppendorf tubes and either stored at -80°C or processed 

immediately. Lysed samples were incubated for 10 minutes at 70°C, before being exported 

from the BSL-3. After BSL-3 export, 300 µl of each samples were transferred to 96 deep-well 

plates and the nucleic acid isolation was performed using the small volume nucleic acid kit 

(Roche), and following the manufacturer’s preset protocol for blood samples. Elution was done 

in 100 µl H2O and the eluate was stored at -80°C.  

3.22 - Purification of PCR products  

PCR products intended for cloning or sequencing were UV visualized after electrophoresis on 

1% agarose gels to check for the presence of unspecific PCR byproducts. PCR products that 

displayed no unspecific PCR products were purified using the Machery&Nagel NucleoSpin Gel 

and PCR clean-up system, according to the manufacturer´s protocol. PCR products with 

unspecific products and PCR products obtained from plasmid templates were separated from 

unspecific products by low voltage (70V) 1% agarose TAE gel electrophoresis, excised with a 

disposable scalpel and subsequently subjected to purification using the Machery&Nagel 

NucleoSpin Gel and PCR clean-up system, according to the manufacturer´s protocol. Exised 

agarose gel pieces were incubated with 400 µl NTI buffer at 50°C and 1,000 rpm for 10 

minutes. 

3.23 - Photometric quantification of nucleic acid concentration  

A NanoDrop 1000 (Thermo Fisher Scientific) spectrophotometer was used for nucleic acid 

concentration measurements, blanked with the same solvent that nucleic acids were 

resuspended in, usually H2O or Tris-HCl buffer. 
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3.24 - Bacterial transformation, colony PCR and glycerol stock 

production  

Ligation reactions were transformed into 50 µl chemically competent TOP10 (Invitrogen) or 

NEB 10-beta E. coli (NEB) according to manufacturer’s protocol. In brief, 50 µl of TOP10 or 

NEB 10-beta E. coli cells were thawed on ice. 5 µl ligation reaction was incubated on ice for 

20 minutes, subjected to a heat shock at 42°C for 30 seconds, placed on ice for another 2 

minutes before recovery in 250 µl SOC medium (NEB) at 37°C 300 rpm for 1 hour. 300 µl 

transformed bacterial cells were in SOC medium were spread out in on LB agar plates 

containing the respective selection antibiotic (30 µg/ml Kanamycin, 50 µg/ml Carbenicillin, or 

10 µg/ml Chloramphenicol, all from Thermo Scientific) and incubated overnight at 37°C or for 

two days at 32°C.  

Single bacterial colonies resuspended in 15 µl H2O were used as a template for colony PCR 

using Taq Polymerase (Thermo Scientific) according to manufacturer´s protocol. For 

mutagenesis PCR control, a set of primers was used that generates a 500 bp PCR amplicon, 

which comprises the respective area of mutagenesis. For each mutated region (L411F, Q833R 

and Q1020R), four PCR reactions with four individual colonies were sent for Sanger 

sequencing to distinguish mutagenesis and background template constructs. Confirmed 

positive colonies were inoculated in 200 ml LB medium, supplemented with the respective 

selection antibiotic, and incubated at 37°C, 300 rpm for 14-16 hours. Saturated LB medium 

cultures were subjected to plasmid preparation as described in chapter 3.16. In addition, 500 

µl of the bacterial culture was mixed with 500 µl of 50% glycerol in water and stored at -80°C 

for long-term storage.   

3.25 - Sanger Sequencing 

Sanger sequencing of purified PCR products was outsourced to MicroSynth Seqab in 

Göttingen. Sequencing primers (500 nM final concentration) and PCR products were provided 

according to the company´s recommendations, with 40-100 ng/µl final plasmid concentration 

and 4-30 ng/µl final PCR product concentration in 12 µl total volume. Ab1 files with obtained 

sequencing reads were mapped to their respective template in Geneious v9.1.8.  

3.26 - Quantitative real-time PCR (q-RT-PCR) 

Quantitative real time RT-PCR analysis was to quantify viral RNA in the cell culture 

supernatants of infected cells, or to quantify transcriptional regulation of cellular mRNAs. For 

quantification of viral RNA, 50 µl cell culture supernatant were isolated using the 

Machery&Nagel viral RNA kit (chapter 3.21). For quantification of cellular mRNAs, total RNA 
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of virus-infected cells was isolated using either Machery&Nagel total RNA kit, or by using the 

automated MagNAPure platform (chapter 3.21).  

For host mRNA quantification, a two-step PCR protocol was used. First, cDNA was prepared 

from 5 µl of a 100 ng/µl viral RNA dilution using the iScript™ cDNA synthesis kit (Bio-Rad), 

according to the manufacturer's protocol. Second, cDNA was amplified and quantified using 

Taq-polymerase (Invitrogen) and a set of real time primer and probes for each transcript under 

investigation (chapter 4.8.4). For quantification of sgmRNA N and genomic ORF1a transcripts, 

cells were lysed at 0, 2, 4, 6, 8, 10, 12 and 24 hpi. Total RNA was isolated and subjected to 

quantitative real-time PCR using the one-step SuperScript III kit (Invitrogen) according to the 

manufacturer´s protocol. PCR cycler conditions were set as follows: a single cycle of 20 

minutes at 55°C and 3 minutes at 98°C, followed by 40 cycles of 15 seconds at 98°C and 30 

seconds at 58°C.  

3.27 - Cloning of recombinant rSARS-CoVORF6-SARS-CoV-2 and rSARS-
CoVΔORF6 cDNA constructs by red-mediated recombination 

SARS-CoV carrying SARS-CoV-2 ORF6 (rSARS-CoVORF6-SARS-CoV-2) and the ORF6 deletion 

virus (rSARS-CoVΔORF6) were constructed from a rSARS-CoV cDNA clone [224] by red-

mediated recombination [223, 236]. The transfer constructs required for recombination and 

selection were generated as follows: For the generation of the ORF6 deletion transfer cassette, 

the I-SceI-aphAI transfer cassette was amplified, containing 5´and 3´ 37 bp homologous hooks 

to the SARS-CoV genome with the forward primer 5´- 

GCTTTGCTAGTACAGTAAGTGACAACAGATGTTTCATTAATAGGGATAACAGGGTAATC

GATTT-3´ and the reverse primer 5´- 

TGATAATCAATATCTCTGCTATTGTAACCTGGAAGTCTCAGCCAGTGTTACAACCAATTA

ACC-3´. Bold sequences indicate the mutagenesis to stop codons. Sequences in italics 

indicate the I-SceI-aphAI transfer cassette primer binding part. For the generation of the 

SARS-CoV-2 ORF6 chimeric virus, we ordered a synthetic dsDNA construct (IDT), designed 

as a 1349bp transfer cassette for red-recombination with the following build-up: the first 5´ 65 

bp provide the 5´homologous hook to our rSARS-CoV cDNA clone upstream of ORF6 (i.e. the 

last 55 bp of the M gene and the following 10 bp constituting TRS6), followed by the first 141 

bp of SARS-CoV-2 ORF6 sequence (Severe acute respiratory syndrome coronavirus 2 isolate 

Wuhan-Hu-1; accession number MN908947), followed by the the I-SceI-aphAI transfer 

cassette, followed by a 50 bp repeat of the ORF6 sequence (bp 92-142; required for the second 

recombination step) and the last 44 bp of SARS-CoV-2 ORF6, followed by a 65 bp 3´ 

homologous hook to our rSARS-CoV cDNA clone, comprising the sequence immediately 

downstream of ORF6. Electroporation of the transfer constructs, and both recombination steps 

were performed as described in Muth et al., 2017. Bacterial clones carrying the correct insert 
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size after first and second recombination, were identified by PCR using the primers SARS-F-

26918 5` GATCACTGTGGCTACATCACGAAC-3´ and SARS-R-28182 5´ 

GGGTCCACCAAATGTAATGCGG-3´.  

Virus rescue from purified full-length SARS-CoV cDNA clones was performed as described in 

Muth et. 2017 and in chapter 3.28-30. In brief, 5-10 µg extracted cDNA plasmids were 

linearized by 5 µl NotI digestion in 200 µl for 30 minutes. 1 µg of phenol chloroform extracted, 

linearized cDNA was in-vitro transcribed and capped using the mMESSAGE mMACHINE T7 

Transcription Kit (Invitrogen), detailed in chapter 3.28. 1-10 µg in vitro transcripts were 

electroporated into 4x10e6 BHK-J cells (chapter 3.29). 24 hours post electroporation, the 

supernatant was transferred to susceptible Vero E6 cells and virus replication monitored by 

quantitative real-time PCR [237]. Recombinant viruses were harvested three days post 

infection and subjected to virus purification, as described for MERS-CoV.  

3.28 - Linearization and phenol-chloroform extraction of rSARS-CoV 

cDNA 

Prior to in vitro transcription, the 5-10 µg of clones pBelo vectors carrying full SARS cDNA 

genomes were linearized by digestion with 5 µl NotI in 200 µl volume for 1 hour at 37°C. 

Completeness of linearization was confirmed by agarose gel electrophoresis. Linearized 

plasmid was purified by phenol-chloroform and ethanol extraction. In brief, 200 µl 

Phenol/Chloroform/Isoamyl (25:24:1) was added to 200 µl diluted, linearized pBelo vector, 

mixed by inversion and centrifuged for 5 minutes at 11,000x g to allow for phase separation. 

The upper aqueous phase was transferred to a fresh tube and mixed with 200 µl 

Chloroform/Isoamyl (24:1), mixed by inversion and centrifuged for 5 minutes at 11,000x g. The 

upper aqueous phase was transferred to a fresh tube, mixed with 20 µl 3M NaOAc and 400 µl 

ethanol and incubated at -20°C for 30 minutes or overnight. Subsequently, plasmid DNA was 

centrifuged for 30 minutes at 14,000x g, washed and precipitated with 70% ethanol and dried 

for one minute. Linearized plasmids were resuspended in 15 µl RNAse-free H2O. 
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3.29 - Generation of infectious rSARS-CoV in vitro transcripts 

In vitro transcription (IVT) and capping of purified, linearized pBelo BAC vectors was done by 

using the mMESSAGE mMACHINE T7 Transcription Kit (Invitrogen) using the following 

reaction. 

2x NTP/CAP 10 µl 

10x T7 Buffer 2 µl 

30mM GTP 2 µl 

T7 enzyme mix 2 µl 

Template (concentration 250 ng/µl) 4 µl 

Total volume: 20 µl 

 

The IVT reaction was incubated at 37°C for 4 hours. Residual input DNA template was digested 

by the addition of 1 µl DNase for 15 minutes. IVT RNA was precipitated by the addition of 30 

µl 7,5M LiCl and 30 µl H2O, followed by a 60 minutes incubation at-20°C, centrifugation at 

14,000x g, 4°C for 30 minutes and subsequent ethanol precipitation. Dried viral RNA 

transcripts were resuspended in 12 µl nuclease free H2O and RNA concentration was 

quantified on a NanoDrop spectrometer (Chapter 3.23). Aliquots of 10 µg were stored at -80°C.  

3.30 - Generation of recombinant virus from in vitro transcripts 

Recombinant viruses are produced by a two-step protocol. 10 µg capped in vitro transcribed 

full genome rSARS-CoV RNA and 2 µg SARS-CoV N transcript were electroporated into a 100 

µl dilution of 4x10e6 BHK-J cells in OptiPro. Pre-cooled 2 mm gaps cuvettes (VWR) were used 

for electroporation. SARS-CoV nucleocapsid transcript is co-electroporated in order to improve 

translation efficiency of viral proteins [238]. The suspension was carefully resuspended on ice 

and electroporated on a Gene Pulser Xcell (Bio-Rad) using a single 140 V pulse for 25 

milliseconds. After electroporation, BHK-J cells were resuspended in 5 ml culture medium and 

transferred to a T25 flask. Hamster kidney derived BHK-J cells can efficiently be electroporated 

and serve as an initial host cell for virus particle production, but hamster cells are not 

susceptible for SARS-CoV infection. For virus stock production, the supernatant of the 

electroporated BHK-J cells was transferred to SARS-CoV susceptible Vero E6 cells 24 hours 

post electroporation. Vero E6 cells were grown to 90% confluency and passaged 1:2 into a 

T162 flask with DMEM culture medium containing 2% FCS, 1 prior to infection. At 0 and 72 hpi 

50 µl supernatant were subjected to isolation of viral RNA (chapter 3.21). Virus replication, as 

a function in increase in viral RNA, was monitored by quantitative real-time PCR (chapter 3.26). 

Upon confirmation of virus replication, the whole culture medium was subjected to virus stock 

production (chapter 3.2).  
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4 – Materials 

 

4.1 - Cell Lines  

Name: Species and tissue: Source: 

293T 

(ATCC-CRL-3216) 
Human fetal liver cell line 

Bernhard Nocht Institute, 

Hamburg 

BHK-J 

(derived from ATCC-CCL-10) 
Baby hamster kidney cell line 

Bernhard Nocht Institute, 

Hamburg 

Caco-2 

(ATCC-HTB-37) 

Human colon epithelium 

 
ATCC 

Calu-3 

(ATCC-HTB-55) 

Human bronchial epithelium 

 
ATCC 

Huh-7 

(ATCC-CCL-185) 

Human liver epithelium 

 
ATCC 

T84 wild-type 

(CCL-248) 
Human colon cell line 

Steeve Boulant, 

University of Heidelberg 

T84 IFNA/LR KO 

(derived from CCL-248) 

CRISPR knockout of IFN alpha 

and IFN lambda receptor 

Steeve Boulant, 

University of Heidelberg 

Vero (B4 and E6) 

(derived from CCL-248) 

African green monkey 

kidney cell line 
ATCC 
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4.2 - MERS-CoV viruses isolates 

Name 
Collection 

date 

Phylogenetic clade and 

lineage 

GenBank accession 

number 

EMC-2012 2012 A JX869059 

Riyadh_58_2014 2014 B, lineage 3 MN481964 

Riyadh_150_2014 2014 B, lineage 3 MN481965 

Riyadh_146_2014 2014 B, lineage 3 MN481966 

Riyadh_1734_2015 2015 B, lineage 5 MN481979 

Riyadh_1147_2014 2014 B, lineage 3 MN481967 

Riyadh_586_2014 2014 B, lineage 3 MN481968 

Riyadh_1735_2015 2015 B, lineage 5 MN481980 

Riyadh_1737_2015 2015 B, lineage 5 MN481981 

Riyadh_1340_2014 2014 B, lineage 3 MN481969 

Riyadh_1760_2015 2015 B, lineage 5 MN481982 

Riyadh_1758_2015 2015 B, lineage 5 MN481983 

Riyadh_1757_2015 2015 B, lineage 5 MN481984 

Riyadh_1769_2015 2015 B, lineage 5 MN481985 

Jeddah_9042_2014 2014 B, lineage 4 MN481970 

Jeddah_9055_2014 2014 B, lineage 4 MN481971 

Jeddah_9278_2014 2014 B, lineage 4 MN481972 

Jeddah_8965_2014 2014 B, lineage 4 MN481973 

Jeddah_9313_2014 2014 B, lineage 4 MN481974 

Riyadh_1764_2015 2014 B, lineage 5 MN481986 

Jeddah_9289_2014 2014 B, lineage 4 MN481975 

Riyadh_167_2014 2014 B, lineage 3 MN481976 

Jeddah_9355_2014 2014 B, lineage 4 MN481977 

Jeddah_10306_2014 2014 B, lineage 4 MN481978 

 

All virus sequences were uploaded to GenBank and are publically available under the provided 

accession numbers. All viruses were generated from anonymous respiratory swabs of Saudi 

Arabian MERS patient. The collection date refers to the time point of sample taking. 

  



72 
 

4.3 - SARS- and SARS-CoV-2 isolates 
SARS-CoV-2 strain Munich/2020/984 (BetaCoV/Munich/BavPat1/2020|EPI_ISL_406862) was 

isolated from a respiratory swab obtained from the early 2020 Munich patient cohort [214], 

SARS-CoV-2 strain Victoria (BetaCoV/Australia/VIC01/2020; accession number MT007544). 

SARS-CoV strain Frankfurt (accession number AY310120) was isolated in 2003 from a 

respiratory swab of a SARS patient in Germany 2003 [6]. Recombinant SARS-CoV strain 

Frankfurt (NC_004718), was cloned and rescued by Susanne Pfefferle at the Institute of 

Virology, University of Bonn Medical Center [224]. rSARS-CoV ΔORF6
  was cloned by Dr. Doreen 

Muth at the Institute of Virology, University of Bonn Medical Center, in 2016. 

4.4 - Bacteria strains  

Name Source 

E. coli GS1783 Klaus Osterrieder, FU Berlin 

E. coli One Shot Top10 Life Technologies/ made in-house 

E. coli NEB-10 beta NEB 

4.5 - Bacteria medium and supplements  

Name Source 

Carbenicillin (50 µg/ml) Sigma Aldrich-Aldrich 

Kanamycin (30 µg/ml) Sigma Aldrich-Aldrich 

Chloramphenicol (10 µg/ml) Sigma Aldrich-Aldrich 

Lysogeny Broth (LB) broth Carl Roth, Karlsruhe 

Lysogeny Broth (LB) agar Carl Roth, Karlsruhe 

S.O.C Medium NEB 

Stable Outgrow Medium NEB 

4.6 - Enzymes 

Name Application Source 

Antarctic Phosphatase cloning New England Biolabs 

Dpn1 FastDigest cloning Thermo Fisher Scientific 

NotI FastDigest BAC linearization Fermentas 

Phusion High-Fidelity DNA polymerase PCR Thermo Fisher Scientific 

RNAseH PCR Thermo Fisher Scientific 

Superscript III Reverse Transcriptase q-RT-PCR Thermo Fisher Scientific 

TaqPolymerase Colony PCR Thermo Fisher Scientific 

T4 DNA Ligase Cloning Thermo Fisher Scientific 
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4.7 - DNA markers for agarose gel electrophoresis 

Name Source 

1 kb Plus DNA Ladder Invitrogen 

1 kb DNA Ladder Promega 

4.8 - Oligonucleotides (Primers) 

This section contains all primers that were not explicitly mentioned in the methods section. 

Many of these primers were designed by former members of the institute, including Dr. Doreen 

Muth and Dr. Benjamin Meyer. Primer sequences that were obtained from published research 

articles by other research groups are referenced. Primers were either manually designed in 

using the Geneious software, or designed using the primer design tool (Geneious), or using 

the IDT primer design web tool (PrimerQuest Tool). All sequences are provided in the 5´ to 

3´direction.   

4.8.1 - Forward primers for MERS-CoV Sanger sequencing 

Name Sequence 

47 Fwd CAGAACTTTGATTTTAACGAACTTA 

428 Fwd GGATGGCGAAAATGCCTATGAA 

1286 Fwd TGAGTGTGGAAGTTGTGGTAAT 

2640 Fwd GTATCCAGTAACATGGTTGAAACT 

3609 Fwd TTGTCCAATTTTGAACATAAGGTTAT 

4593 Fwd CTCCTGCATTGGTCTGATCAAA 

5669 Fwd GGTATTCTTTGGACGGTAATTTCA 

6092 Fwd CAATAGAGCTAGTTTGCGTCAAAT 

6710 Fwd CGTTGTGACAGGTAATGTTGTAA 

7652 Fwd TTATGTGGATTCCGTTACAGTTAA 

8210 Fwd CAATAATTATGTACCCTCATATGTTAA 

9020 Fwd ATACTGCCATGATCCTACTGTTT 

9827 Fwd AACTAATGATGCCTATTCACGATTT 

10599 Fwd CACCAAGTTCAGTTAACAGACAAA 

11332 Fwd GATTGTACAACCCATCACTTTCTAA 

12558 Fwd GAAATTGTTAAGTCTTCAGATGTTGTA 

13862 Fwd TGCTGTGATGTTACCTACTTTGAA 

15198 Fwd GTGGCTGGGATTTCATGCTTAAA 

16581 Fwd CTACAACAGAACCACTCAAACTT 

17477 Fwd TGTCACTAGATTGATGTGTAACTTA 

18254 Fwd AGCTGGATAGGCTTCGATGTT 

19197 Fwd CACGTGTGCATTCTGAGTTCAAT 

20021 Fwd GGTCCTGATTATGCTTACTTCAAT 
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21015 Fwd ATGTAACAGGTAGTAATGAGTCAAA 

21826 Fwd CCAATTCCACTGGCACTGTTA 

22208 Fwd AGAGTGGTTTGGCATTACACAAA 

22588 Fwd CTGAAGGTGTTGAATGTGATTTT 

23455 Fwd CTAAAACCCACGCTACTCTATT 

24329 Fwd TGGCTGGACTGCTGGCTTAT 

24817 Fwd CACATATAGTGTCCTTTGTTGTAA 

25489 Fwd TCGAGCCGCATAAGGTTCAT 

26767 Fwd GTCTTCCAATCAGGGTAATAAACAA 

28176 Fwd TGGTCATTCAATCCTGAGACTAA 

29503 Fwd AACTTACCCATCAGAACAATGAT 

 

4.8.2 - Reverse primers for MERS-CoV Sanger sequencing  

Name Sequence 

842 Rev CTTAAGCAGATTCTGGGCATATT 

1826 Rev ACCTTTGAGAAGCTGGCGTATT 

2841 Rev GTGCACCTCCCTTAAGTCTAAA 

3278 Rev AGTCTCATGAGAAACGTCAACTT 

3745 Rev ATACCACCGCCATGCTTAAGA 

4074 Rev CTTGGGAATTAACGACGACTAAA 

4719 Rev GTGTCGTGCGTGAATCCAAAT 

5856 Rev CAGACGATACAAGGCAGCTATT 

6839 Rev CAATACCATAGTTGTGCATAACATAA 

8327 Rev ACCATTAGAATTACGCAAGACAATT 

9169 Rev GACAGAGTTCTAGTAATCCTAAGT 

9963 Rev CAGTCTCGCTGTATGTTTGTAA 

10707 Rev CACTAGTGCGATTAGGTTTTACAA 

11489 Rev AGTAACAAAGACTGTAATCGTATAA 

12261 Rev CCTGATCAGCCATACGTTCTAA 

13595 Rev CATCTAATTCTACAAACCTACAAGTAT 

14837 Rev CAACTTCCATGCAGAACAACATT 

15780 Rev TTCTGATAATACAGCGTTTCCTTAA 

16821 Rev TACTCACCGAGCTGCACTTT 

17662 Rev GCTAGCATCATGCGTCACATT 

18375 Rev ACAACACCAACTGGCTGAACAA 

19351 Rev CACTTCACATGGTGTAGTAGAATA 

20138 Rev ACTCAGTAGGATCAATAAACTCATT 

21550 Rev TCAATACAAGCAGACTTAACAGAAT 

22360 Rev GAACGAATACTGTGAGGAATGATA 

23196 Rev GTCTGTACCATATTGAACTGTAAT 



75 
 

24057 Rev CACCTCCAAAACCTGGTATGATA 

24917 Rev ACCATAAGCAGAAACAACCTCAAT 

25679 Rev CAGCTTGGGCAGTTTTAATACAA 

26480 Rev AGGCGAACTCATGTAGCTCAAAT 

27587 Rev GACATTATGAAGGAGTTCGTTAAA 

28679 Rev CAGTGTACCAAGAGACAGTGTTA 

29142 Rev CTGATCTTGAACCTTGTGAACTA 

29621 Rev CTCAAGAAGCTCCAACCACTTA 

 

4.8.3 - MERS-CoV Spike mutagenesis primer  

Name Mutation Direction Sequence 

MERS S QS 

L411F Fwd 
L411F Forward 

CCAATTGCAATTATAATTTTACCAAATTGCTTTCA

CTTTTTTCTGT 

MERS S QS 

L411F Rev 
L411F Reverse 

TAAAAACCAAACGCTTGAAATTATAAACCTGAGG

AGGT 

MERS S QS 

Q833R Fwd 
Q833R Forward TTCCAAAATAAACCGGGCTCTCCATGGTGC 

MERS S QS 

Q833R Rev 
Q833R Reverse CAAAACTGGCCATACTCGCGCAGTAATTGC 

MERS S QS 

Q1020R Fwd 
Q1020R Forward TAATGAAGCTTTTCGGAAGGTTCAGGATGC 

MERS S QS 

Q1020R Rev 
Q1020R Reverse GTTGTAGTGAAGCCTGTTTGCATAGCTCCC 

 

4.8.4 - Quantitative real-time PCR primers and probes 

Name Direction Sequence 

TBP  fwd Forward CTGCGGTAATCATGAGGATAAG 

TBP prb Probe TGTGCACAGGAGCCAAGAGTGAAG 

TBP rev Reverse TTCTTGCTGCCAGTCTGGAC 

IFNb1 fwd Forward AGGATTCTGGATTACCTGAAGG 

IFNb1 prb Probe TCCACTCTGACTATGGTCCAGGCA 

IFNb1 rev Reverse GGCTAGGAGATCTTCAGTTTCG 

IFNL1 fwd Forward CTCTGTCACCTTCAACCTCTTC 
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IFNL1 prb Probe CACGCGAGACCTGAATTGTGTTGC 

IFNL1 rev Reverse ATCTCAGGTTGCATGACTGG 

CCL5 fwd Forward TGCCCACATCAAGGAGTATTTC 

CCL5 prb Probe TCACCCGAAAGAACCGCCAAGT 

CCL5 rev Reverse CCATCCTAGCTCATCTCCAAAG 

Mx1 fwd Forward TTCAGCACCTGATGGCCTATC 

Mx1 prb Probe CAGGAGGCCAGCAAGCGCCATC 

Mx1 rev Reverse TGG ATG ATC AAA GGG ATG TGG 

ISG56 fwd Forward CCTGGAGTACTATGAGCGGGC 

ISG56 prb Probe ACAGAGTTCTCAAAGTCAGCAGCCAGTCTCAGT 

ISG56 rev Reverse TGGGTGCCTAAGGACCTTGTC 

TNFa fwd Forward TGGCCCAGGCAGTCAGA 

TNFa prb Probe CATCTTCTCGAACCCCGAGTGACAAGC 

TNFa rev Reverse TGTAGCCCATGTTGTAGCAAACC 

sgN RNA fwd [239] Forward CTCGTTCTCTTGCAGAACTTTG 

sgN RNA prb [239] Probe CACGAGCTGCACCAAATAACACTGTCTC 

sgN RNA rev [239] Reverse GTAAGAGGGACTTTCCCGTGTTG 

MERS ORF1a fwd [190] Forward CCACTACTCCCATTTCGTCAG 

MERS ORF1a prb [190] Probe CAGTATGTGTAGTGCGCATATAAGCA 

MERS ORF1a rev [190] Reverse TTGCAAATTGGCTTGCCCCCACT 

E_Sarbeco_F [237] Forward ACAGGTACGTTAATAGTTAATAGCGT 

E_Sarbeco_P1 [237] Probe ACACTAGCCATCCTTACTGCGCTTCG 

E_Sarbeco_R [237] Reverse ATATTGCAGCAGTACGCACACA 
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4.9 - Plasmids 

Name Source Application 

pCG1 (empty) M. Hoffman; DPZ Göttingen VSVpp 

pCG1-VSV-G M. Hoffman; DPZ Göttingen VSVpp 

pCG1-MERS-S Cloned by B. Meyer VSVpp 

pCG1-MERS-S-Q1020R This thesis VSVpp 

pCG1-MERS-S-Q1020R-L411F This thesis VSVpp 

pCG1-MERS-S-Q1020R-Q833R This thesis VSVpp 

pBelo-rSARS-wt Cloned by S. Pfefferle [224] rSARS-CoV cloning 

pBelo-rSARS-ORF6-SARS-2 This thesis rSARS-CoV cloning 

pBelo-rSARS-delORF6 Cloned D. Muth and A. Siemens rSARS-CoV cloning 

 

4.10 - Commercial Kits  

Name Application Source 

Nextera® XT DNA Library 

Prep 
Library preparation for NGS Illumina 

MagNA Pure 96 DNA and Viral 

NA SV  
RNA extraction 

Roche 

Diagnostics 

MiSeq Reagent Kit v3 NGS Illumina 

mMessage mMachine T7  In vitro RNA transcription 
Thermo Fisher 

Scientific 

NE-PER Nucleus cytosol fractionation 
Thermo Fisher 

Scientific 

NucleoBond Xtra Midi EF DNA extraction Macherey&Nagel 

NucleoSpin Gel and PCR 

clean-up 
PCR clean-up, gel extraction Macherey&Nagel 

Renilla Luciferase Assay 
System 

VSVpp quantification Promega 

Superscript III/TaqPol OS kit Real-time PCR 
Thermo Fisher 

Scientific 

SuperScript® One-Cycle 

cDNA Kit 
cDNA synthesis for NGS Invitrogen 
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4.11 - Antibodies 

Antibody Source Application* 

Anti VSV-G, from CRL-2700 ATCC VSVpp 

AlexaFlour488-conjugated anti-human  Thermo Fisher Scientific VSVpp 

Soluble DPP4 C-terminal human Fc-tag ACROBiosystems VSVpp 

p-IRF3 cs#4947s Cell Signaling Technology Western blot 

IRF3 cs#4302s Cell Signaling Technology Western blot 

IκBα cs#4812s Cell Signaling Technology Western blot 

SARS-CoV-N GTX632269 Genetex Western blot 

ß-Actin A5316 Sigma Aldrich Western blot 

NFkB p65 cs#6956s Cell Signaling Technology Western blot 

STAT-1 cs#9172 Cell Signaling Technology Western blot 

GAPDH cs#5174s Cell Signaling Technology Western blot 

Histone H3 H0164 Sigma Aldrich Western blot 

Goat anti-Rabbit IgG, HRP, 65-6120 Thermo Scientific Western blot 

Goat anti-Mouse IgG, HRP, 62-6520 Thermo Scientific Western blot 

*Applied dilutions are provided in chapter 3.17-20 

4.12 - Software 

Name: Application Source 

BioRender Figure 4A preparation  Biorender.com  

Chromat 

Quantitator  

Sanger Sequencing 

peak high 

quantification 

Mullins lab, open access; 

https://indra.mullins.microbiol.washington.edu/cgi-

bin/chromatquant.cgi  

FigTree 

v1.4.4 

Display and editing of 

phylogenetic trees 

Andrew Rambaut; open access 

tree.bio.ed.ac.uk  

Geneious 

v9.1.8 with 

MrBayes 

and RaxML 

plugins 

Planning of cloning 

strategy; primer 

design; alignment 

calculations; 

phylogenetic trees 

(RaxML and MrBayes); 

NGS read assembly 

and editing; Sanger 

sequencing evaluation   

Geneious 

https://indra.mullins.microbiol.washington.edu/cgi-bin/chromatquant.cgi
https://indra.mullins.microbiol.washington.edu/cgi-bin/chromatquant.cgi
file:///C:/Users/schroesi/Desktop/thesis/tree.bio.ed.ac.uk


79 
 

GraphPad 

Prism v8.2.1 

Plotting of all data; 

statistical analysis of all 

data 

GraphPad 

PrimerQuest 

Tool 

Primer design IDT, open access; 

https://www.idtdna.com/pages/tools/primerquest 

Promega 

Image Lab 

Gel electrophoresis 

imaging and extraction 

Promega 

NetNGlyc 

and 

NetOGlyc 

Glycolysation 

prediction 

Open access; [240] 

http://www.cbs.dtu.dk/services/NetOGlyc/ and 

[241] http://www.cbs.dtu.dk/services/NetNGlyc/  

SimPlot 

3.5.1 

Bootstrap analysis for 

recombination 

detection 

[242], open access https://omictools.com/simplot-

tool 

4.13 - Technical Equipment 

Equipment Model Source 

Autoclave S2 VS-100 Systec 

Autoclave S3 Custom made Matachana 

BSL3 respirator OptimAir 3000 MSA 

Blotting system TransBlotTurbo BioRad 

Balance Kern 572 Kern 

Centrifuge Eppendorf 5424 Eppendorf 

Centrifuge Eppendorf 5430R Eppendorf 

Centrifuge Eppendorf 5810R Eppendorf 

Electroporation System Gene Pulser Xcell Bio-Rad 

Freezer -20er Liebherr 

Freezer -80er, Model U725 New Brunswick 

Gel electrophoresis System 41-1325 Peqlab 

Gel documentation Universal Hood II Bio-Rad 

Heating block TS pro CellMedia 

Hood (Sterile bench) Safe2020 Thermo Fisher Scientific 

Incubator C170 Binder 

Microscope cell culture CK30 Olympus 

Microscope BSL3 Axio Oberserver Zeiss 

Microscope (confocal) LSM800 Airyscan Zeiss 

Multistep Pipette HandyStep Brand 

Multichannel Pipette Xplorer Eppendorf 

http://www.cbs.dtu.dk/services/NetOGlyc/
http://www.cbs.dtu.dk/services/NetNGlyc/
https://omictools.com/simplot-tool
https://omictools.com/simplot-tool
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NGS sequencing platform MiSeq System Illumina 

PCR cycler Nexus Gradient Eppendorf 

Photometer Nanodrop 1000 Thermo Fisher Scientific 

Pipettes 
Research Plus, 100-1000 µl, 

10-100 µl, 0.5-10 µl, 0.1-2 µl 
Eppendorf 

Power supply Standard Power Pack P25 Biometra 

Real-time PCR Cycler LightCycler 480 II Roche Diagnostics 

Vortexer VV2 VWR 
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5 - Abbreviations 

Abbreviation Full name 

3CLpro chymotrypsin-like protease 3 

ACE2 Angiotensin-converting enzyme 2 

ALI Air liquid interface 

bp basepairs 

CoV Coronavirus 

CoVs Coronaviruses 

CPE Cytoplasmic effect 

CT Cycle treshold 

CTD C-terminal domain 

DPP4 Dipeptidylpeptidase 4 

DMEM Dulbecco's Modified Eagle's Medium 

dsRNA Double-stranded RNA 

E Envelope protein 

EndoU uridylate-specific endoribonuclease 

ExoN Exonuclease  

GTR  general time reversible 

HAE Human airway epithelium 

hpi hours post infection 

IFIT Interferon-induced protein with tetratricopeptide repeats 

IFITM Interferon-induced transmembrane proteins 

IFN Interferon 

ISG Interferon stimulated gene 

ISRE Interferon stimulated response element 

IVT in vitro transcription 

JAK Januskinase 

KO Knock out 

kbp kilobasepairs 

LB Lysogeny broth 

M Membrane protein 

MAVS Mitochondrial antiviral-signaling protein 

MERS Middle East respiratory syndrome 

MOI Multiplicity of infection 

N Nucleocapsid protein 

NF-kB nuclear factor 'kappa-light-chain-enhancer' of activated B-cells 

nsp Non-structural protein 

NTD N-terminal domain 

ORF Open reading frame 

p.  Passage 
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p Protein 

PBS Phosphate buffered saline 

pp polyprotein 

PACT Protein activator of the interferon-induced protein kinase 

PAMP Pathogen associated molecular patter 

PCR Polymerase chain reaction 

PFU Plaque forming unit 

PLpro Papain-like protease  

PRNT Plaque reduction neutralization test 

PRR Pattern recognition receptor 

q-RT-PCR Quantitative real-time PCR 

RBD Receptor-binding domain 

RdRp RNA dependent RNA polymerase 

rSARS-CoV Recombinant SARS-CoV 

S Spike protein 

SARS Severe acute respiratory syndrome 

sg subgenomic 

sgmRNA Subgenomic messenger RNA 

TMPRSS2 transmembrane protease serine subtype 2 

TRS Transcription regulatory sequence 

UTR Untranslated region 
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6 - Supplements 

 

Supplementary Figure 1: Overview of SNPs in coding regions of MERS-CoV isolates 

generated in this thesis (relative to the reference strain EMC). Green arrows indicate the 

gene in which the SNP is located. Each black dash indicates a SNP in comparison to the 

reference strain (EMC). SNPs that encode for amino acid exchanges between the MERS-CoV 

lineages are listed in supplementary Table 1.  
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Supplementary Table 1: Amino acid divergence of generated MERS-CoV isolates reflecting 

changes found in all isolates of the respective phylogenetic lineage. AA = amino acid; the AA 

positions for nsp1-15 are provided relative to the start of ORF1ab. An overview of amino acid 

divergence in the spike protein is provided in supplementary figure 2.  

 
nsp1 

AA position 8 158 

lineage 3 I F 

lineage 4 T F 

lineage 5 I V 

 

 nsp2 

AA position 219 519 

lineage 3 E L 

lineage 4 K L 

lineage 5 K I 

  

 nsp3 

AA position 1000 1040 1045 1072 1110 1236 

lineage 3 V A A Q L A 

lineage 4 I A A Q P A 

lineage 5 V V V R P T 

  

 nsp3 

AA position 1700 1794 1835 1964 2003 2119 2215 2426 

lineage 3 C P E A A M K T 

lineage 4 R S E E A M K T 

lineage 5 R P A A V I E I 

 

 nsp4 

AA position 2747 

lineage 3 A 

lineage 4 A 

lineage 5 V 

  
 

nsp6 

AA position 3785 

lineage 3 L 

lineage 4 F 

lineage 5 L 

 
 

nsp8 

AA position 3947 

lineage 3 Q 

lineage 4 Q 

lineage 5 R 
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Supplementary Table 1 (continued): 

 nsp10 

AA position 4373 

lineage 3 A 

lineage 4 A 

lineage 5 V 

 
 

nsp13 

AA position 5574 

lineage 3 N 

lineage 4 S 

lineage 5 S 

 

 nsp14 

AA position 5957 6368 6381 

lineage 3 V I T 

lineage 4 V I A 

lineage 5 I V A 

 

 nsp15 

AA position 6580 

lineage 3 M 

lineage 4 M 

lineage 5 I 

 

 protein 3 

AA position 17 85 

lineage 3 L G 

lineage 4 L G 

lineage 5 F L 

  
 

protein 4b 

AA position 6 47 85 

lineage 3 M F F 

lineage 4 M L L 

lineage 5 T L L 

  

 M 

AA position 123 

lineage 3 F 

lineage 4 F 

lineage 5 I 

 
 

N 

AA position 11 126 144 283 

lineage 3 S D L L 

lineage 4 S H S L 

lineage 5 F D S F 
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Supplementary Table 2: Summary of MERS-CoV isolates that were used in each experiment 

and their respective phylogenetic lineage (accession numbers are provided in chapter 4.2). 

 

Figure MERS-CoV isolate lineage 

8A Riyadh-146 2014 3  
Riyadh-1147 2014 3  
Jeddah-9278 2014 4  
Jeddah-10306 2014 4  
Riyadh-1734 2015 5  
Riyadh-1764 2015 5   

 

8B Riyadh-58 2014 3  
Riyadh-146 2014 3  
Riyadh-150 2014 5  
Riyadh-167 2014 5  
Riyadh-586 2014 3  
Riyadh-1147 2014 3  
Riyadh-1340 2014 3  
Jeddah-8965 2014 4  
Jeddah-9042 2014 4  
Jeddah-9055 2014 4  
Jeddah-9278 2014 4  
Jeddah-9313 2014 4  
Jeddah-9355 2014 4  
Jeddah-9355 2014 4  
Jeddah-10306 2014 4  
Riyadh-1734 2015 5  
Riyadh-1735 2015 5  
Riyadh-1737 2015 5  
Riyadh-1757 2015 5  
Riyadh-1758 2015 5  
Riyadh-1760 2015 5  
Riyadh-1764 2015 5  
Riyadh-1769 2015 5 

   

8C Riyadh-146 2014 3 

 Riyadh-1147 2014 3 

 Jeddah-9278 2014 4 

 Jeddah-10306 2014 4 

 Riyadh-1734 2015 5 

 Riyadh-1764 2015 5 

   

8D Riyadh-1147 2014 3 

 Jeddah-10306 2014 4 

 Riyadh-1764 2015 5 
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Supplementary Table 2 (continued): 

 

Figure MERS-CoV isolate Lineage 

9 Riyadh-1147 2014 3  
Riyadh-1764 2015 5  
  

   

10 VSVpp 3 

 VSVpp 4 

 VSVpp 5 

   

11 Riyadh-1147 2014 3 

 Jeddah-10306 2014 4 

 Riyadh-1764 2015 5 

   

12 Riyadh-1147 2014 3 

 Jeddah-10306 2014 4 

 Riyadh-1734 2015 5 

   

13 Riyadh-146 2014 3 

 Riyadh-1147 2014 3 

 Jeddah-9289 2014 4 

 Jeddah-10306 2014 4 

 Riyadh-1734 2015 5 

 Riyadh-1737 2015 5 

   

14 Riyadh-146 2014 3 

 Riyadh-167 2014 3 

 Jeddah-9278 2014 4 

 Jeddah-9289 2014 4 

 Riyadh-1734 2015 5 

 Riyadh-1737 2015 5 

   

15 Riyadh-1147 2014 3 

 Riyadh-146 2014 3 

 Jeddah-8965 2014 4 

 Jeddah-9278 2014 4 

 Riyadh-1764 2015 5 

 Riyadh-1734 2015 5 

   

16A Riyadh-1147 2014 3 

 Riyadh-146 2014 3 

 Jeddah-10306 2014 4 

 Jeddah-9278 2014 4 

 Riyadh-1764 2015 5 

 Riyadh-1734 2015 5 

   

16B Riyadh-1147 2014 3 

 Jeddah-10306 2014 4 

 Riyadh-1764 2015 5 



88 
 

 

Supplementary Figure 2: Differences in the spike protein amino acid sequence of the MERS-

CoV isolates investigated in this study. The EMC reference spike protein sequence was used 

as a reference for the alignment. Numbers indicate the respective amino acid position. S1/2 = 

subunit 1/2; SP = signal peptide; NTD = N-terminal domain; RBD = receptor-binding domain; 

HR1/2 = Heptad repeat 1/2; TM = transmembrane domain 

  

Phylogenetic 

lineage
strain 411 833 1020

EMC L Q Q

lineage 3 Riyadh-58 2014 F ∙ R

lineage 3 Riyadh-146 2014 F ∙ R

lineage 3 Riyadh-150 2014 F ∙ R

lineage 3 Riyadh-167 2014 F ∙ R

lineage 3 Riyadh-586 2014 F ∙ R

lineage 3 Riyadh-1147 2014 F ∙ R

lineage 3 Riyadh-1340 2014 F ∙ R

lineage 5 Riyadh-1734 2015 ∙ ∙ R

lineage 5 Riyadh-1735 2015 ∙ ∙ R

lineage 5 Riyadh-1737 2015 ∙ ∙ R

lineage 5 Riyadh-1757 2015 ∙ ∙ R

lineage 5 Riyadh-1758 2015 ∙ ∙ R

lineage 5 Riyadh-1760 2015 ∙ ∙ R

lineage 5 Riyadh-1764 2015 ∙ ∙ R

lineage 5 Riyadh-1769 2015 ∙ ∙ R

lineage 4 Jeddah-8965 2014 ∙ R R

lineage 4 Jeddah-9042 2014 ∙ R R

lineage 4 Jeddah-9055 2014 ∙ R R

lineage 4 Jeddah-9278 2014 ∙ R R

lineage 4 Jeddah-9289 2014 ∙ R R

lineage 4 Jeddah-9313 2014 ∙ R R

lineage 4 Jeddah-9355 2014 ∙ R R

lineage 4 Jeddah-10306 2014 ∙ R R
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Supplementary Figure 3: CPE induction by SARS- and SARS-CoV-2 in Calu-3 and Vero E6 

cells, with IFN treatment as indicated. Images were taken on a Zeiss Axio Observer with 20x 

magnification   

A Calu-3 IFN-β pretreatment (SARS-CoV-2 moi = 0.001)  

B

C

IFN-β[IU/ml]0 400 1,000

Vero E6 IFN-β pretreatment (SARS-CoV-2 moi = 0.001)

Calu-3 IFN-β posttreatment (SARS-CoV-2 moi = 0.001) 

D Vero E6 IFN-β posttreatment (SARS-CoV-2 moi = 0.001) 

2,000

IFN-β[IU/ml]0 100 400 1,000

IFN-β[IU/ml]0 1,000 2,000 4,000

IFN-β[IU/ml]0 100 400 1,000
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