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ABSTRACT 

We investigate an excitonic peak appearing in low-temperature photoluminescence of 

monolayer transition metal dichalcogenides (TMDCs), which is commonly associated with 

defects and disorder. First, to uncover the intrinsic origin of defect-related excitons, we study 

their dependence on gate voltage, excitation power, and temperature in a prototypical TMDC 

monolayer, MoS2. We show that the entire range of behaviors of defect-related excitons can be 

understood in terms of a simple model, where neutral excitons are bound to ionized donor 

levels, likely related to sulphur vacancies, with a density of 7×1011 cm-2. Second, to study the 

extrinsic origin of defect-related excitons, we controllably deposit oxygen molecules in-situ 

onto the surface of MoS2 kept at cryogenic temperature. We find that in addition to trivial p-

doping of 3×1012 cm-2, oxygen affects the formation of defect-related excitons by 

functionalizing the vacancy. Combined, our results uncover the origin of defect-related 

excitons, suggest a simple and conclusive approach to track the functionalization of TMDCs, 

benchmark device quality, and pave the way towards exciton engineering in hybrid organic-

inorganic TMDC devices. 

 

INTRODUCTION  

Monolayer Transition Metal Dichalcogenides (TMDCs) are semiconductors with a direct 

bandgap in the visible range1,2. Due to the weak screening and strong electron-hole interactions 

in these materials, their optical properties are dominated by excitons, bound electron-hole pairs. 
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To date, the properties of free neutral excitons and exciton complexes such as charged excitons 

(trions) have been studied and largely understood3,4. Binding energies5–7, formation and 

dissociation mechanisms8,9, coherence effects10, and spin-valley effects11–17 of these excitons 

have been identified. In addition to neutral and charged excitonic peaks, a feature that is often 

attributed to localized, rather than free excitons appears in photoluminescence (PL) spectra of 

many TMDC devices at low temperatures18–26. While it is widely assumed that this feature is 

related to defects in TMDCs, multiple questions remain unanswered. 

First, what is the nature of the defect-related PL feature (D peak)? It has been attributed both to 

two- and three-particle states as well as to various defect types18,20,21,27–30. Second, can the D 

peak be used as an indicator of a sample quality, i.e. to determine the concentration and type of 

defects? Third, are defect-related excitons of an extrinsic or intrinsic origin? Previously, the D 

peak has been ascribed separately to intrinsic structural defects28,30,31 in TMDCs or to extrinsic 

impurities on TMDC surface32–35. The final and the most interesting question is whether the D 

peak can be used to gauge chemical functionalization of TMDCs. The field of TMDC 

functionalization has been quickly developing in recent years thanks to potential applications 

of functionalized materials as chemical- and bio-sensors36–39.  Defects are centers of chemical 

activity in otherwise inert TMDCs, and hence are critical for functionalization40–45. At the same 

time, simple techniques to determine the success and extent of functionalization are lacking46,47. 

Here, we address these questions and elucidate the nature of D excitons. 

We study the evolution of the PL spectra of a monolayer MoS2 in the region of the defect-

related peak while tuning multiple experimental variables. In addition to well-studied 

temperature and laser excitation power dependencies, we analyze the behavior of the D peak 

with gate voltage and surface functionalization due to oxygen molecules. We then show that all 

our observations can be understood within a simple mass-action law type model44,48. In this 

model, the defect-related exciton is described as a neutral exciton bound to ionized donor levels 

close to the edge of the conduction band of MoS2. These levels are likely related to sulphur 

vacancies28,29. Finally, by controllably depositing oxygen molecules onto MoS2 in-situ at 

cryogenic temperatures, we show that the D peak additionally has an extrinsic character, i.e. is 

influenced by the impurities on the surface of MoS2. We show that this influence is likely 

caused by oxygen functionalization of sulfur vacancies. 
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RESULTS 

Setup 

Our custom setup is designed both for gated low-temperature PL measurements as well as for 

measurements involving in-situ sample annealing and deposition of oxygen molecules. (Fig. 

1a). The samples are studied inside an optical cryostat at temperatures ranging from 7 to 300 

K. For optical characterization, we use Nikon 50x SLWD objective with NA = 0.5 and the laser 

excitation wavelength of 532 nm, with power between 0.15 and 30 µW. For gate-dependent PL 

measurements, we use monolayer MoS2 field effect transistors (FETs) (Fig. 1b, Inset), 

fabricated on 300 nm SiO2/p-Si substrate. 

In general, two complications can arise in any experiment attempting controlled deposition of 

molecules onto a TMDC. First, the surface of an as-prepared TMDC is always covered by a 

layer of contaminants (e.g. water and organic molecules). Second, deposited molecules may 

diffuse and merge into clusters on the surface. We developed an approach tackling these 

difficulties. To remove the layer of contaminants, we microfabricated a Cr/Au (3 nm/70 nm) 

heater and a thermometer on the same chip in proximity to our sample (Fig.1b). This allows in-

situ high-temperature annealing (> 400 K) within a few seconds, while the rest of the cryostat 

is kept at a base temperature (T = 7 K). To avoid problems associated with molecule diffusion 

and clustering, we added a feed-through nozzle with a 100 µm diameter aperture to our cryostat 

(Fig. 1a). Oxygen is deposited in-situ through this nozzle on top of the sample kept at the base 

temperature, thus promoting the sticking of oxygen molecules to the surface of MoS2. 

 

Figure 1: Experimental setup and a typical measurement. (a) A cryogenic PL setup 

customized for in-situ annealing and gas deposition. (b) An optical image of the device 

showing an electrically contacted MoS2 flake as well as an on-chip resistive thermometer and 

heater. (c) Typical PL spectrum of MoS2 at cryogenic temperatures showing peaks due to 

neutral excitons, trions, and defect-related excitons.  
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Evolution of the low-temperature PL spectra of MoS2 

We study defect-related excitons using low-temperature PL spectroscopy. From the family of 

TMDCs, we have chosen MoS2 as a prototypical material with a significant density of intrinsic 

defects18,28,29. A typical PL spectrum of MoS2 at cryogenic temperatures exhibits three peaks 

(Fig. 1c). The peak at 1.96 eV, labelled “X”, is associated with neutral excitons, while the peak 

at 1.93 eV, labelled “T” is related to negatively charged excitons (trions). In addition, the peak 

at 1.77 eV appears in many (but not all) measured samples. This peak, labelled “D”, is assumed 

to relate to disorder21–23,49–53. It is the main subject of this work. 

In order to elucidate the nature of defect-related excitons in MoS2, we systematically tune three 

experimental variables: temperature T, laser excitation power P, and the position of the Fermi 

level EF controlled by the backgate voltage VG (Fig. 2a). We notice that the area under the D 

peak increases for negative gate voltages, low temperatures, and low illumination powers (Fig. 

2b). Conversely, it decreases at high positive gate voltages and completely disappears (at any 

VG) for temperatures above 240 K (Fig. 2b). Overall, the D peak changes by over three orders 

of magnitude with VG and over four orders of magnitude with T. 

 

Figure 2: Gate (VG), temperature (T), excitation power (P) dependence of monolayer 

MoS2 photoluminescence. (a) PL spectra of monolayer MoS2 as a function of VG (top), P 

(middle) and T (bottom). The inset shows the region of neutral and charged excitons. (b) Color 

map showing VG and T dependence of the area under the D peak. 

Defect-related exciton analysis 

Different physical models for defect-related excitons are expected to produce different VG -, P- 

and T-dependencies of X, T, and D peaks. We will now show that the dependencies we observe 
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(Fig. 2) are consistent with a single model: neutral excitons bound to ionized shallow donor 

levels. Such levels may originate from sulphur vacancies. We start by developing a simple 

description of our data that is based on mass action law type equations. In this description, the 

co-existence of neutral excitons (X), trions (T) and free electrons (e) can be viewed as a 

chemical reaction that has reached its equilibrium, 𝑋 + 𝑒 ↔ 𝑇 (Supplementary Information and 

Ref. 48). Similarly, the formation and dissociation of a defect-related exciton (D) from an 

ionized donor (d), and a neutral exciton can be viewed as a reaction 𝑋 + 𝑑 ↔ 𝐷. The equality 

of the rates of forward and reverse reactions leads to the following equations: 𝑛𝑇/𝑛𝑋 = 𝐾𝑇 ⋅ 𝑛𝑒  (1) 𝑛𝐷/𝑛𝑋 = 𝐾𝐷 ⋅ 𝑁𝐷 (2) 

Here, 𝑛𝑋 , 𝑛𝑇 , 𝑛𝑒 , are the concentrations of neutral excitons, trions, and of free electrons 

respectively, while 𝑛𝐷  and 𝑁𝐷  are concentrations of defect-related excitons and unoccupied 

ionized defect levels. The rate constants 𝐾𝑇~𝑇 ⋅ 𝑒𝑥𝑝(−𝐸𝑇/𝑘𝐵𝑇) and 𝐾𝐷~𝑇 ⋅ 𝑒𝑥𝑝(−𝐸𝐷/𝑘𝐵𝑇) 

are related to the trion binding energy 𝐸𝑇 and the binding energy of the defect-bound exciton 𝐸𝐷. While Eq. 1 was used before to describe exciton/trion equilibrium in TMDCs44,48, Eq. 2 has 

not been previously considered, to the best of our knowledge. Both equations can be viewed as 

a limiting case of a more complex system of equations describing more processes (e.g. creation 

of free electrons from exciton recombination) in the limit of low excitation powers and long 

defect exciton lifetime54. 

Equations 1 and 2 provide a simple approach to directly extract the carrier density ne and the 

concentration of ionized levels ND from our experimental data. We fit the spectra in Fig. 2a 

using Gaussian peaks for defect-bound and neutral excitons. For trions, we use and a more 

complex fitting function taking into account the electron recoil effect62 (see Fig. 1c). We then 

extract the spectral areas under the trion, defect-related, and neutral exciton peaks, 𝐴𝑇, 𝐴𝐷, and 𝐴𝑋, and assume that they are proportional to the respective exciton densities44. We extract the 

experimental dependencies of area ratios 𝐴𝑇/𝐴𝑋 and 𝐴𝐷/𝐴𝑋 on VG, P, and T from the data in 

Fig. 2, and plot the resulting analysis in Fig. 3. Finally, from Eqs. 1 and 2 we get 𝑛𝑒 ~ 𝑛𝑇/𝑛𝑋 ~ 𝐴𝑇/𝐴𝑋 and 𝑁𝐷~ 𝑛𝐷/𝑛𝑋 ~ 𝐴𝐷/𝐴𝑋. 

We will now show that complex VG -, P-, and T- dependencies of 𝑛𝑒 ~ 𝐴𝑇/𝐴𝑋 and 𝑁𝐷 ~ 𝐴𝐷/𝐴𝑋 

seen in Fig. 3 have a simple explanation assuming that the density of electrons is controlled by 

gating and the D peak corresponds to neutral excitons bound to ionized donor levels. 
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Figure 3: Analysis of defect related excitons. (a) VG-dependence of AD/AX, the ratio of areas 

between defect-related and neutral excitonic peaks (full blue circles, left axis), and AT/AX, the 

ratio of areas between charged and neutral excitonic peaks (open red circles, right axis). The 

black dashed line is a linear fit. The insets depict the model for defect-bound excitons proposed 

here: a neutral exciton bound to an ionized donor level. These levels are only ionized when the 

Fermi level is below these donor levels. (b) AD/AX vs. excitation power at T = 7 K. Data at 

different VG is shown in different colors. Full circles are the experimental points, the solid lines 

are the power-law fits. (c) Arrhenius plot of AD/AX for P = 150 nW at different VG shown in 

different colors. Full circles are experimental points and the solid lines are linear fits. 

The VG-dependence of both 𝐴𝑇/𝐴𝑋 and 𝐴𝐷/𝐴𝑋 is plotted in Fig. 3a. This data is taken at T = 

130 K and P = 1 µW to ensure that the defect-related peak does not dominate the spectrum and 

that Eq. 1 applies (Fig. 2a and Supplementary Information). We see that 𝐴𝑇/𝐴𝑋 is small and 

approximately constant below VG ≈ -25 V while increasing roughly linearly with VG above this 

value (Fig. 3b, open red circles). This is exactly the behavior expected for 𝑛𝑒: it is zero when 

EF is inside the bandgap and  𝑛𝑒 ~ 𝐶𝐺𝑉𝐺 , where 𝐶𝐺 is the gate capacitance, when EF is above 

the conduction band minimum (Supplementary Fig. S3). This suggests that the conduction band 

minima are located at about VG ≈ -25 V (Supplementary Information). At the same time, 𝐴𝐷/𝐴𝑋 

increases with decreasing VG (Fig. 3a, full blue circles). The behavior of 𝐴𝐷/𝐴𝑋 matches the 

expected VG-dependence of ND for a specific defect type: ionized donor level. For large negative 

VG, EF is deep inside the bandgap, and all impurity levels are ionized. In this case, 𝑁𝐷 is simply 

the defect density. In contrast, large positive VG corresponds to EF in the conduction band (Fig. 

2a, inset). In this case, most of the impurity levels are neutral and hence are unavailable for 

exciton binding. The rapid increase of 𝐴𝐷/𝐴𝑋 close to the point of EF crossing into the band 

edge, VG ≈ -25 V, suggests that the defects are relatively shallow ionized donors. This defect 

type is consistent with sulphur vacancies which lie 0.3—0.7 eV below the conduction band 

minimum according to DFT calculations20,29,52. 
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Next, we analyze the behavior of 𝐴𝐷/𝐴𝑋 and 𝐴𝑇/𝐴𝑋 with P (Fig. 3b and Supplementary Fig. 

S1a). 𝐴𝑇/𝐴𝑋 is constant at low powers while growing for P > 1 µW. This is also the behavior 

expected for ne. At small excitation powers, ne is equal to the density of background carriers in 

the sample, while at higher P additional carriers are generated by recombination processes48.  

In contrast, 𝐴𝐷/𝐴𝑋 decreases with P roughly following the power law 𝐴𝐷/𝐴𝑋 ~ 𝑃𝑎 with the 

exponent ranging from 𝑎 ~ 0.7 at VG = -80 V to 𝑎 ~ 0.3 at VG = 80 V. In addition, a saturation 

region is observed at large negative VG at the smallest P < 0.5 µW. This behavior is also 

consistent with that expected for 𝑁𝐷. For low excitation powers, ionized defect sites become 

bound by excitons and 𝑁𝐷 is close to the defect density. As P increases, there are more excitons 

generated than the defect sites available, leading to an overall drop in 𝑁𝐷 ~ 𝐴𝐷/𝐴𝑋 (see also 

Supplementary Fig. S5). One can show that under our experimental conditions, the illumination 

power at which the crossover between the two regimes occurs is related to the defect density 

(Supplementary Information). From the experimentally-observed crossover at around 0.5 µW, 

we estimate 𝑁𝐷 = 7 × 1011𝑐𝑚−2, close to the density of the sulphur vacancies obtained by 

other experimental methods20,30. Evolution of the saturation point with VG, evident in Fig. 3b, 

is also expected in our model, since 𝑁𝐷 decreases with increasing VG (see Fig. 3a). The power 

law dependence seen in Fig. 3b is consistent with results of calculations54 and experimental 

observations20,26,55.  

Finally, we discuss the temperature dependence of 𝐴𝐷/𝐴𝑋  and 𝐴𝑇/𝐴𝑋  (Fig. 3c and 

Supplementary Fig. 1b). 𝐴𝑇/𝐴𝑋  is weakly temperature-dependent and the trion peak is still 

visible at room temperature. This is consistent with temperature-independent ne and large trion 

binding energy entering into the rate constant 𝐾𝑇5. In contrast, 𝐴𝐷/𝐴𝑋strongly decreases with 

temperature, disappearing for temperatures above 240 K (Fig. 3c). One possible source for the 

temperature dependence of 𝐴𝐷/𝐴𝑋 is the rate constant 𝐾𝐷 in Eq. 2. The activation energy, 𝐸𝐷, 

entering into it, should relate to the energy difference between neutral and defect-related 

excitons, ≈ 150 meV. However, a much smaller activation energy, ≈ 17.6 meV at VG = -80 V, 

is extracted from Fig. 3c, in agreement with earlier observations25. Therefore, we believe that 𝑁𝐷  is the dominant source of the T-dependence of 𝐴𝐷/𝐴𝑋 . Sulphur vacancies have been 

calculated to produce a nearly degenerate doublet with an energy spacing of an order of ≈ 14 

meV51. We speculate that the redistribution of carriers between these levels contributes to the 

T-dependence seen in Fig. 3c. 

Overall, we see that the dependence of the defect-bound exciton peak on all experimental 

variables is consistent with that of neutral exciton bound to an ionized donor level likely related 
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to sulphur vacancies. To the best of our knowledge, no other model for defect-related excitons 

reported in the literature fits the data of Figs. 2 and 3. First, the carrier density-dependent 

screening of defect-bound excitons can potentially explain the data similar to Fig. 3a. However, 

the screening is only effective at carrier densities of order a-2, where a is the real-space exciton 

size56,57. Available estimates put this density at 1013 cm-2. In contrast, the largest effect is seen 

in our data when the Fermi level is inside the bandgap and the density of delocalized electrons 

is zero. Second, various acceptor levels may be present in MoS2
25. However, such defects could 

not explain the data of Fig. 3a, where the defect peak appears immediately after EF crosses from 

the conduction band into the bandgap. Finally, it has been suggested that the defect-related PL 

peak may result from a two-particle state related to recombination between a free hole and a 

neutral donor impurity27. However, such a state should be favored when EF is in the conduction 

band, opposite to what we observe in Fig. 3a. 

Extrinsic contribution 

Our data so far suggests that the defect-related PL feature stems from neutral excitons bound to 

an ionized donor level. Such a level may be intrinsic, e.g. originate from a lattice defect in 

TMDCs such as sulphur vacancies28,30,31. However, the defect level may also be extrinsic, and 

originate from an impurity molecule32–34. DFT calculations do suggest that shallow states are 

affected by adsorbed organic molecules and gases51,53,58–60. To further understand the extrinsic 

vs. intrinsic character of the defect level, we controllably deposited a common molecule, 

oxygen34,58, onto the surface of MoS2 kept at cryogenic temperature and examined the evolution 

of the defect-related peak, D, with time-resolution. 

We observe that the PL spectra change dramatically due to annealing and oxygen deposition, 

especially in the region of the D peak (Fig. 4a). To quantify these changes, we plot 𝐴𝐷/𝐴𝑋  and 𝐴𝑇/𝐴𝑋 at a constant VG = 0 V vs. time with 1 min steps during the deposition process (Fig. 4b). 

During the first 15 minutes, we observe a drop of 𝐴𝑇/𝐴𝑋  and a rise of 𝐴𝐷/𝐴𝑋 followed by 

saturation in both quantities. We note that the normalization of 𝐴𝑇  and 𝐴𝐷  by the neutral 

exciton area, 𝐴𝑋, accounts for possible changes in PL due to the transparency of deposited 

layers of molecules. Using the data presented in Fig. 3a,b, we suggest a simple explanation to 

these trends. Given that our MoS2 is n-doped, time-dependent behavior of both 𝐴𝑇/𝐴𝑋  and 𝐴𝐷/𝐴𝑋 is consistent with EF decreasing and moving into the bandgap (Fig. 3a). That, in turn, is 

indicative of the charge transfer from the TMDC to O2 molecules. Such charge transfer has been 

previously seen experimentally34,61 and predicted computationally58. The saturation of charge 

transfer after 15 minutes suggests that the interaction between the oxygen molecules and a 
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TMDC becomes negligible after full surface coverage. Two questions remain, however. What 

is the total density of the transferred charge, and can we explain the spectral changes observed 

in Fig. 4a simply by a charge transfer model? 

To address these questions, we compare the VG-dependence of the PL spectra before and after 

O2 deposition. We pick the spectra of as-exfoliated, annealed, and functionalized states of the 

sample for which 𝐴𝑇/𝐴𝑋 is the same. We find that the spectra with VG = -60 V for as-exfoliated, 

VG = -40 V for annealed and VG = 0 V for the spectrum after O2 deposition have equal 𝐴𝑇/𝐴𝑋 

ratios (Fig. 4c). As matching of 𝐴𝑇/𝐴𝑋 indicates equal carrier densities, we conclude that 

additional carriers produced by the field effect exactly compensate for charge transfer due to 

the presence of molecules. Therefore, we can calculate the amount of charge transfer in each 

case using the relation ∆𝑛 = 𝐶𝐺∆𝑉𝐺, where 𝐶𝐺 = 7.8 × 1010𝑉−1 𝑐𝑚−2 is the gate capacitance. 

We obtain a carrier density of ≈ 2.9 × 1012 𝑐𝑚−2 due to saturated O2 deposition. This is close 

to the density of the full surface coverage obtained from DFT calculations34,58. The removal of 

adsorbates from the surface of MoS2 extracts 1.4 × 1012 𝑐𝑚−2  carriers. Therefore, the 

adsorbates are n-dopants. 

 

Figure 4: The extrinsic nature of the defect-related excitonic peak. (a) PL spectra of MoS2 

at VG = 0 V at the beginning of measurements (top) after in-situ thermal annealing (middle) 

and after in-situ O2 deposition (bottom). (b) Changes in AD/AX (full blue circles, left axis) and AT/AX (open red circles, right axis) with time during in-situ O2 deposition. (c) PL spectra of 

as-exfoliated at VG = -60 V, after annealing at VG = -40 V, and after O2 deposition at VG = 0 V. 

Same AT/AX indicates that all three curves correspond to same carrier density in MoS2. 

The most interesting feature of Fig. 4c is that although all curves are matched in the region of 

the neutral and charged excitons, they starkly differ in the region of the D peak. Specifically, 

the concentration of unoccupied defect sites 𝑁𝐷 ~ 𝐴𝐷/𝐴𝑋 increases after annealing and then 

drops after O2 deposition. Therefore, our data cannot be simply explained as a result of charge 



10 

 

transfer. Instead, this observation indicates that the defect-related peak has at least partially 

extrinsic character. We speculate that defect-related excitons interact with oxygen molecules 

on the surface of MoS2 through passivation of a sulfur vacancy by an oxygen molecule, known 

to eliminate the midgap states accessible for excitons35. The increase of ND after annealing and 

its subsequent drop after functionalization is consistent with removing and then depositing 

molecules. 

In conclusion, we investigated the dependence of the defect-related feature in the PL spectrum 

of MoS2 on multiple experimental variables: temperature, excitation power, gate voltage, and 

surface coverage. Our data is consistent with a single model for the defect-related exciton: a 

neutral exciton bound to a shallow ionized donor level close to conduction band minimum. This 

level likely originates from a sulphur vacancy, but is influenced by oxygen passivation of the 

defect. To reveal the extrinsic contribution to the defect-related excitons, we developed an 

approach distinguishing the effects of doping from that of excitons interacting with the defects. 

Our results have several interesting implications. First, our data allows discriminating between 

multiple models for the defect-related excitons discussed in the literature. It is inconsistent with 

the models involving acceptor levels or valence band-midgap state transitions. Second, we 

show that the presence and the height of the D peak cannot be directly used as an indicator of 

sample quality, despite the appeal of that simple metric. Instead, a comparison between the 

samples with the same Fermi level is required. Finally, we prove that molecules on the surface 

of a TDMC influence midgap states of the TMDC. On one hand, this highlights the necessity 

of pristine device to study excitonic physics in TMDCs. On the other hand, surface 

functionalization may open interesting avenues towards controlled defect-engineering of 

excitonic properties. 
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Supplementary Figure S1: Temperature and excitation power dependence of the AT/AX 

ratio. (a) The ratio between spectral areas below the trion peak (AT) and neutral exciton peak 

(AX) of monolayer MoS2 plotted vs. excitation power. Curves for different backgate voltages 

(VG) are shown in different colors. A saturation region below 1 µW is visible. (b) AT/AX vs. 

temperature, for several different VG. 
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Supplementary Figure S2: Extracting Fermi level position from spectral positions of 

neutral and charged excitons. PL spectra of monolayer MoS2 vs. backgate voltage (VG), 

plotted as color map. Distinct features corresponding to neutral (X), charged (T) and defect-

related (D) excitons are marked. The spectral positions of X and T are denoted with dashed 

lines. Merging of X and T peaks for VG < -40 is consistent with the EF reaching the bottom of 

the conduction band. We use the analysis of Ref. S1 to extract gate dependence of the Fermi 

level (EF). Quantitatively, EX-ET=EF+ET, where ET ≈ 22 meV is the trion binding energy. The 

numerical value of the slope d[EX(VG)-ET (VG)]/dVG ~ 0.166 meV/V corresponds to the 

effective mass, m* = 0.52m0, close to numerically calculated effective mass for MoS2, 0.35m0 

(Ref.S2). 

 

 

Supplementary Figure S3: Probing defect level position using gate-dependent 

photoluminescence and electrical transport measurements. (a) PL spectra vs. backgate 
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voltage VG, plotted as color map for a different sample B. Features related to neutral (X), 

charged (T) and defect-related (D) excitons emission are marked. The D peak appears only for 

VG < -50 V. (b) The drain-source current (IDS) vs. VG for the sample is measured in a field-

effect transistor (FET) geometry. At VG < -50 V the FET switches off. This indicates that EF 

reaches the bottom of the conduction band at this voltage. The data of (a) and (b), taken together, 

suggest that defect-related levels lie inside the bandgap, close to the top of the conduction band. 

 

 

Supplementary Figure S4: Backgate-dependent PL spectra of MoS2 at room 

temperature. (a) A color map of PL spectra, showing the backgate dependence of neutral (X) 

and charged (T) exciton features. The dashed lines indicate the spectral positions of X and T. 

(b) Corresponding individual PL spectra. Different colors correspond to different backgate 

voltages. 

 

 

Supplementary Figure S5: The laser excitation power dependence of the spectral areas 

under neutral (a), charged (b) and defect-related (c) excitons. Different colors indicate 

different backgate voltages. The data is taken at the temperature of 7 K. 
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Trion/neutral exciton analysis 

The behavior of the neutral exciton and trion can be understood within a simple rate-equation 

model, as has been first shown in Supplementary Ref. S3. The co-existence of neutral excitons 

(X), trions (T), and free electrons (e) can be viewed as a chemical reaction that has reached its 

equilibrium. The equality of the rates of forward and reverse reactions 𝑋 + 𝑒 ↔ 𝑇 leads to the 

mass-action law type equation: 𝑛𝑇/𝑛𝑋 = 𝐾𝑇 ⋅ 𝑛𝑒  (S1) 

Here 𝑛𝑋 , 𝑛𝑇 , 𝑛𝑒  are the concentrations of neutral excitons, trions, and of free electrons 

respectively, and 𝐾𝑇~𝑇 ⋅ 𝑒𝑥𝑝(−𝐸𝑇/𝑘𝐵𝑇)  is the rate equation constant related to the trion 

binding energy 𝐸𝑇.  

We use Supplementary Eq. S1 to analyze the spectra presented in Fig. 2 of main text. To 

accomplish this, we obtain the areas and spectral positions of excitonic peaks through fitting 

(see Main text). We then extract the spectral areas under the trion and neutral exciton peaks, 𝐴𝑇 and 𝐴𝑋, and assume that they are proportional to the respective exciton densitiesS4. From 

Eq. 1 we get 𝐴𝑇/𝐴𝑋  ~ 𝑛𝑇/𝑛𝑋  ~ 𝑛𝑒. It is important to note that in general 𝑛𝑒 in this equation is 

the sum of the background electron density, 𝑛𝑏, and the density of photo-excited carriers that 

is excitation power dependent. However, when the illumination intensity is small enough, 𝑛𝑒~𝑛𝑏 (Supplementary Fig. S1a) and the analysis of the Eq. S1 is especially simple. 

In the Supplementary Fig. S2 and Fig.3a from the main text, we see that the neutral and defect-

related excitons dominate the PL below VG ≈ -25 V, leading to a small and approximately 

constant 𝐴𝑇/𝐴𝑋 . From the combination of electrical and optical measurements in 

Supplementary Fig. S3 we know, that trions start to dominate the PL spectrum as soon as the 

Fermi level (EF) enters the conduction band. This is due to the VG-dependent behavior of 𝑛𝑒: it 

should depend on VG as 𝑛𝑒 ~ 𝐶𝐺𝑉𝐺, where 𝐶𝐺 is the gate capacitance when EF is above the 

conduction band minima, and 𝑛𝑒 = 0 when EF is inside the bandgap. In Supplementary Fig. S2 

and Fig. 3a the conduction band minima is located nearly at VG ≈ -25 V. Above this value, 𝐴𝑇/𝐴𝑋 increases roughly linearly with VG. The position of EF relative to the conduction band 

minima is further confirmed from the energy separation between the X and T peaks, indicated 

with dashed lines in Supplementary Fig. S2. The numerical value of the slope d[EX(VG)-ET 
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(VG)]/dVG ≈ 0.166 meV/V corresponds to the effective mass, m* = 0.52m0, close to numerically 

calculated effective mass for MoS2, 0.35m0 (Ref.S2).  

We also note that  𝐴𝑇/𝐴𝑋  has relatively weak T-dependence (Supplementary Fig. S1b), 

indicating that trions survive up to room temperature as was previously shown in 

Supplementary Refs. S3 and S5 and is confirmed in Supplementary Fig. S4. This relatively 

weak temperature dependence is consistent with the binding energy of the trion, 𝐸𝑇 ~ 𝑘𝐵𝑇 ~ 25 𝑚𝑒𝑉, entering the rate constant, KT. Finally, both 𝐴𝑇 and 𝐴𝑋 depend linearly 

on the excitation power (Supplementary Fig. S5), as expected for free excitonsS6. 

 

Estimating the concentration of defects from saturation measurements 

The concentration of defects can be estimated from the experimentally observed saturation in 𝐴𝐷/𝐴𝑋 excitation power dependence (Fig. 3b). Indeed, such saturation is expected when 

every photoexcited carrier binds to an empty defect level within a lifetime that level (the 

lifetime of defect-bound exciton). Assuming that all photoexcited excitons eventually bind to 

defects if they are available, we obtain the following simple estimate for the defect 

concentration nd:  𝑛𝐷 = 𝐶𝐴 × 𝑃𝑠𝑎𝑡𝐸𝑝ℎ × 𝑡 (S1), 

Where 𝐶~7% is the absorption coefficient in MoS2
S5; 𝐴 = 

𝜋4 × (1.22𝜆𝑁𝐴 )2 is the area of the laser 

illumination spot (NA = 0.5 is a numerical aperture of our objective and 𝜆 = 532 nm is the 

excitation wavelength); Psat is the laser excitation power corresponding to the on-set of 

saturation,  and 𝑡 ≈ 100 ps is the defect-related exciton lifetimeS7–9. From this equation we 

obtain nD = 7×1011 cm-2 for the experimentally observed onset of saturation at Psat = 500 nW. 

 

SUPPLEMENTARY REFERENCES 

S1. Chernikov, A. et al. Electrical Tuning of Exciton Binding Energies in Monolayer WS2. 

Phys. Rev. Lett. 115, 1–6 (2015). 

S2. Cheiwchanchamnangij, T. & Lambrecht, W. R. L. Quasiparticle band structure 

calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B 85, 205302 (2012). 

S3. Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer 



21 

 

semiconductor. Nat. Commun. 4, 1474 (2013). 

S4. Mouri, S., Miyauchi, Y. & Matsuda, K. Tunable Photoluminescence of Monolayer 

MoS 2 via Chemical Doping. Nano Lett. 13, 5944–5948 (2013). 

S5. Mak, K. F. et al. Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207–11 

(2013). 

S6. Schmidt, T., Lischka, K. & Zulehner, W. Excitation-power dependence of the near-

band-edge photoluminescence of semiconductors. Phys. Rev. B 45, 8989–8994 (1992). 

S7. Moody, G. et al. Microsecond Valley Lifetime of Defect-Bound Excitons in Monolayer 

WSe2. Phys. Rev. Lett. 121, 57403 (2018). 

S8. Robert, C. et al. Exciton radiative lifetime in transition metal dichalcogenide 

monolayers. Phys. Rev. B - Condens. Matter Mater. Phys. 93, 1–10 (2016). 

S9. Wang, H. et al. Radiative lifetimes of excitons and trions in monolayers of the metal 

dichalcogenide MoS2. Phys. Rev. B 93, 045407 (2016). 

 


