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Abstract
A perfect Kr-tiling in a graph G is a collection of

vertex-disjoint copies of Kr that together cover all the ver-

tices in G. In this paper we consider perfect Kr-tilings in the

setting of randomly perturbed graphs; a model introduced

by Bohman, Frieze, and Martin [7] where one starts with a

dense graph and then adds m random edges to it. Specifi-

cally, given any fixed 0 < 𝛼 < 1 − 1∕r we determine how

many random edges one must add to an n-vertex graph G
of minimum degree 𝛿(G) ≥ 𝛼n to ensure that, asymptot-

ically almost surely, the resulting graph contains a perfect

Kr-tiling. As one increases 𝛼 we demonstrate that the num-

ber of random edges required “jumps” at regular intervals,

and within these intervals our result is best-possible. This

work therefore closes the gap between the seminal work of

Johansson, Kahn and Vu [25] (which resolves the purely

random case, that is, 𝛼 = 0) and that of Hajnal and Sze-

merédi [18] (which demonstrates that for 𝛼 ≥ 1 − 1∕r the

initial graph already houses the desired perfect Kr-tiling).
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1 INTRODUCTION
A significant facet of both extremal graph theory and random graph theory is the study of embed-

dings. In the setting of random graphs, one is interested in the threshold for the property that G(n, p)

asymptotically almost surely (a.a.s.) contains a fixed (spanning) subgraph F. Meanwhile, a classical

line of inquiry in extremal graph theory is to determine the minimum degree threshold that ensures

a graph G contains a fixed (spanning) subgraph F. A much studied problem in both the extremal and

random settings concerns the case when F is a so-called perfect H-tiling. In this paper we bridge the

gap between the random and extremal models for the problem of perfect clique tilings.

1.1 Perfect tilings in graphs
Given two graphs H and G, an H-tiling in G is a collection of vertex-disjoint copies of H in G. An

H-tiling is called perfect if it covers all the vertices of G. Perfect H-tilings are also referred to as

H-factors, H-matchings or perfect H-packings. Note that a perfect H-tiling is a generalization of the

notion of a perfect matching; indeed, perfect matchings correspond to the case when H is a single edge.

One of the cornerstone results in extremal graph theory is the Hajnal-Szemerédi theorem [18]

which determines the minimum degree threshold that ensures a graph contains a perfect Kr-tiling.

Theorem 1.1 (Hajnal and Szemerédi [18]). Every graph G whose order n is divisible by r and whose
minimum degree satisfies 𝛿(G) ≥ (1−1∕r)n contains a perfect Kr-tiling. Moreover, there is an n-vertex
graph G with 𝛿(G) = (1 − 1∕r)n − 1 that does not contain a perfect Kr-tiling.

Earlier, Corrádi and Hajnal [10] proved Theorem 1.1 in the case when r = 3. See [28] for a short

proof of Theorem 1.1.

Since the proof of Theorem 1.1 there have been many generalizations obtained in several direc-

tions. For example, Kühn and Osthus [38] characterized, up to an additive constant, the minimum

degree which ensures that a graph G contains a perfect H-tiling for an arbitrary graph H. Keevash and

Mycroft [27] proved an analogue of the Hajnal-Szemerédi theorem in the setting of r-partite graphs,

whilst there are now several generalizations of Theorem 1.1 in the setting of directed graphs (see

e.g., [11,12,48]). See [37] for a survey including many of the results on graph tiling. There has also

been significant interest in tiling problems in hypergraphs; the survey of Zhao [49] describes many of

the results in the area.

1.2 Perfect tilings in random graphs
Recall that the random graph G(n, p) consists of vertex set [n]:= {1, … , n} where each edge is present

with probability p, independently of all other choices. In the early 1990s, the problem of determining

the threshold for the property that G(n, p) contains a perfect H-tiling attracted the attention of Erdős

(see the appendix of [1]). Indeed, as well as raising the general problem, Erdős particularly focused

on the case when H =K3 stating that “the correct answer will be probably about n4/3 edges,” though

cautioned that “the lack of analogs to Tutte’s theorem may cause serious trouble.” This caution turned

out to be well-founded as for a number of years even the case of triangles remained quite stubborn,

despite some partial results towards it [29,33]. However, in 2008, spectacular work of Johannson, Kahn

and Vu [25] not only resolved the problem for perfect K3-tilings, but the general problem of perfect

H-tilings for all so-called strictly balanced graphs H. Below we state their result only in the case of

perfect clique tilings.

Theorem 1.2 (Johansson, Kahn and Vu [25]). Let n ∈ N be divisible by r ∈ N where r ≥ 3.

• If p = 𝜔(n−2∕r(log n)2∕(r2−r)) then a.a.s. G(n, p) contains a perfect Kr-tiling.
• If p = o(n−2∕r(log n)2∕(r2−r)) then a.a.s. G(n, p) does not contain a perfect Kr-tiling.



482 HAN ET AL.

1.3 The model of randomly perturbed graphs

Bohman, Frieze and Martin [7] introduced a model which provides a connection between the extremal

and random graph settings. In their model one starts with a dense graph and then adds m random edges

to it. A natural problem in this setting is to determine how many random edges are required to ensure

that the resulting graph a.a.s. contains a given graph F as a spanning subgraph. For example, the main

result in [7] states that for every 𝛼 > 0, there is a c = c(𝛼) such that if we start with an arbitrary

n-vertex graph G of minimum degree 𝛿(G) ≥ 𝛼n and add cn random edges to it, then a.a.s. the resulting

graph is Hamiltonian. This result characterizes how many random edges we require for every fixed

𝛼 > 0. Indeed, if 𝛼 ≥ 1∕2 then Dirac’s theorem implies that we do not require any random edges; that

is any n-vertex graph G of minimum degree 𝛿(G) ≥ 𝛼n is already Hamiltonian. On the other hand, if

0 < 𝛼 < 1∕2 then the following example implies that we indeed require a linear number of random

edges: Let G′ be the complete bipartite graph with vertex classes of size 𝛼n, (1 − 𝛼)n. It is easy to see

that if one adds fewer than (1 − 2𝛼)n (random) edges to G′, the resulting graph is not Hamiltonian.

In recent years, a range of results have been obtained concerning embedding spanning sub-

graphs into a randomly perturbed graph, as well as other properties of the model; see, for

example, [2,3,5,6,8,9,13,14,26,30,35,36]. The model has also been investigated in the setting of

directed graphs and hypergraphs (see e.g., [4,23,34,41]). Much of this work has focused on the range

where the minimum degree of the deterministic graph is linear but with respect to some arbitrarily

small constant 𝛼. In this range, one thinks of the deterministic graph as “helping” G(n, p) to get a cer-

tain spanning structure and the observed phenomenon is usually a decrease in the probability threshold

of a logarithmic factor, as is the case for Hamiltonicity as above. Recently, there has been interest in

the other extreme, where one starts with a minimum degree slightly less than the extremal minimum

degree threshold for a certain spanning structure and requires a small “sprinkling” of random edges to

guarantee the existence of the spanning structure in the resulting graph, see for example, [14,45].

Balogh, Treglown, and Wagner [3] considered the perfect H-tiling problem in the setting of ran-

domly perturbed graphs. Indeed, for every fixed graph H they determined how many random edges

one must add to a graph G of linear minimum degree to ensure that a.a.s. G∪G(n, p) contains a perfect

H-tiling. Again we only state their result in the case of perfect clique tilings.

Theorem 1.3 (Balogh, Treglown, and Wagner [3]). Let r ≥ 2. For every 𝛼 > 0, there is a C = C(𝛼, r) >
0 such that if p≥Cn−2/r and (Gn)n∈rN is a sequence of graphs with |Gn|=n and minimum degree
𝛿(Gn) ≥ 𝛼n then a.a.s. Gn ∪G(n, p) contains a perfect Kr-tiling.

Theorem 1.3, unlike Theorem 1.2, does not involve a logarithmic term. Thus comparing the ran-

domly perturbed model with the random graph model, we see that starting with a graph of linear

minimum degree instead of the empty graph saves a logarithmic factor in terms of how many ran-

dom edges one needs to ensure the resulting graph a.a.s. contains a perfect Kr-tiling. Furthermore,

Theorem 1.3 is best-possible in the sense that given any 0 < 𝛼 < 1∕r, there is a constant c = c(𝛼, r) > 0

and sequence of graphs (Gn)n∈rN where Gn is an n-vertex graph with minimum degree at least 𝛼n so

that a.a.s. Gn ∪G(n, p) does not contain a perfect Kr-tiling when p≤ cn−2/r (see Section 2.1 in [3]).

However, as suggested in [3], this still leaves open the question of how many random edges one requires

if 𝛼 > 1∕r.

In this paper we give a sharp answer to this question. Before we can state our result we introduce

some notation.

Definition 1.4. [Perturbed perfect tiling threshold] Given some 0 ≤ 𝛼 ≤ 1, and a graph H of order

h, the perturbed perfect tiling threshold p(H, 𝛼) satisfies the following.



HAN ET AL. 483

(i) If p = p(n) = 𝜔(p(H, 𝛼)), then for any sequence (Gn)n∈hN of n-vertex graphs with 𝛿(Gn) ≥ 𝛼n,

the graph Gn ∪G(n, p) a.a.s. contains a perfect H-tiling.

(ii) If p = p(n) = o(p(H, 𝛼)), for some sequence (Gn)n∈hN of n-vertex graphs with 𝛿(Gn) ≥ 𝛼n, the

graph Gn ∪G(n, p) a.a.s. does not contain a perfect H-tiling.

If it is the case that every sufficiently large n-vertex graph of minimum degree at least 𝛼n contains

a perfect H-tiling we define p(H, 𝛼) ∶= 0. We say the threshold p(H, 𝛼) is sharp if there are constants

C(H, 𝛼),D(H, 𝛼) > 0 such that (i) remains valid with p ≥ Cp(H, 𝛼) and (ii) is satisfied for any p ≤

Dp(H, 𝛼).

Thus, Theorem 1.1 implies that p(Kr, 𝛼) = 0 for all 𝛼 ≥ 1−1∕r whilst Theorem 1.2 precisely states

that p(Kr, 0) = n−2∕r(log n)2∕(r2−r) (actually Theorem 2.3 in [25] and Theorem 3.22(ii) in [24] imply

this threshold is sharp). Our main result deals with the intermediate cases (i.e., when 0 < 𝛼 < 1−1∕r).

Theorem 1.5. Let 2≤ k≤ r be integers. Then given any 1 − k
r
< 𝛼 < 1 − k−1

r
,

p(Kr, 𝛼) = n−2∕k.

Moreover, the threshold p(Kr, 𝛼) is sharp.

Thus, Theorem 1.5 provides a bridge between the Hajnal-Szemerédi theorem and the

Johansson-Kahn-Vu theorem. Notice that the value of p(Kr, 𝛼) demonstrates a “jumping” phenomenon;

given a fixed k the value of p(Kr, 𝛼) is the same for all 𝛼 ∈ ((r − k)∕r, (r − k + 1)∕r), however if 𝛼 is

just above this interval the value of p(Kr, 𝛼) is significantly smaller.

Note in the case when k= r, Theorem 1.5 is implied by the results from [3]; whilst finalizing

the paper we learned of a very recent result [45] concerning powers of Hamilton cycles in randomly

perturbed graphs which implies the case when k= 2 and r is even. To help provide some intuition for

Theorem 1.5, note that n−2/k is the threshold for the property that G(n, p) contains a copy of Kk in

every linear sized subset of vertices; this property will be exploited throughout the proof. Our proof

uses the absorption method, and in particular the novel “absorption reservoir method” introduced by

Montgomery [42,43], where we use a robust sparse bipartite graph, which we call a template, in order

to build an absorbing structure in our graph. We also use “reachability” arguments, introduced by Lo

and Markstöm [40], in order to build absorbing structures. We use various probabilistic techniques

throughout, such as multi-round exposure, and we appeal to Szemerédi’s regularity lemma in order to

obtain an “almost tiling.”

The paper is organized as follows. In the next section we introduce some fundamental tools that

will be applied in the proof of Theorem 1.5. Section 3 then contains the construction that provides the

lower bound on p(Kr, 𝛼) in Theorem 1.5. In Section 4 we give an overview of our proof for the upper

bound on p(Kr, 𝛼) in Theorem 1.5, which is given in Section 7 after developing the necessary theory

in Section 5 and Section 6. Finally some open problems are raised in the concluding remarks section

(Section 8).

Additional note: Since the paper was first submitted there have been some related results proven.

Indeed, Knierim and Su [30], expanding on work of Nenadov and Pehova [44], considered the so-called

Ramsey-Turán problem for clique tilings. They showed that for any 𝛼 > 1 − 2

r
, there exists an 𝜂 > 0

such that if G′ is a graph with 𝛿(G′) ≥ 𝛼n and independence number less than 𝜂n, then G′ contains a

perfect Kr-tiling. This implies Theorem 1.5 for k= 2 and all r as if G has minimum degree 𝛼n with 𝛼 as

above and p = 𝜔(n−1) then G(n, p) (and hence G′ =G∪G(n, p)) has sublinear independence number.

In a different direction, Antoniuk, Dudek, Reiher, Ruciński, and Schacht [2] explored the appearance
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of powers of Hamilton cycles in randomly perturbed graphs, building on the work of Nenadov and

Trujić [45]. As the kth power of a Hamilton cycle is a supergraph of a perfect Kk+ 1-tiling, their work

gives bounds for the existence of clique tilings. They focus solely on G with minimum degree 𝛼n
where 𝛼 = j∕(j + 1) + 𝜀 for some j ∈ N, j≥ 1 and they obtain tight results in certain cases. The only

range where their implied results on clique tilings is tight with regards to the threshold obtained and

the minimum degree condition is the case when k= 2 and r is even in Theorem 1.5, already implied

by [45] and [30] as mentioned above.

2 NOTATION AND PRELIMINARIES

We use standard graph theory notation throughout. In particular we use |G| to denote the number of

vertices of a graph G. Sometimes we will also write vG and eG to denote the number of vertices and

edges in G respectively. We write NG(v) to denote the neighborhood of a vertex v∈G. For a subset of

vertices V′ ⊆V =V(G), G[V′] denotes the graph induced by G on V′ and we use the shorthand G ∖V′

to denote G[V ∖V′]. If V′ = {x} we simply write G ∖ x. Furthermore, for disjoint subsets of vertices

V ′,V ′′ ⊆ V , G[V ′,V ′′] denotes the bipartite graph induced by G on V ′ ∪ V ′′ by considering only the

edges of G with one endpoint in V′ and the other endpoint in V ′′. If G′ is a graph on the same vertex

set as G we write G∪G′ to denote the graph on vertex set V(G) with edge set E(G)∪E(G′). We write

G−E(G′) to be the graph obtained from G by deleting any edges that also lie in G′. One key exception

to the use of standard notation is our use of H, to denote the complement of H with respect to a graph

which is not complete, see Definition 6.2.

We write Kr
m1,m2,… ,mr to denote the complete r-partite graph with parts of size m1, … , mr. For a

graph J on r vertices {v1, … , vr} and m1, … ,mr ∈ N, we define the blow-up of J to be the graph

Jm1,… ,mr with vertex set P1 ⊔P2 ⊔ … ⊔Pr, such that |Pi|=mi and for all i, j∈ [r] and w∈Pi, w′ ∈Pj we

have ww′ ∈ E(Jm1,… ,mr ) if and only if vivj ∈E(J). Given a set A and k ∈ N we denote by Ak the set of

all ordered k-tuples of elements from A, while
(

A
k

)
denotes the set of all (unordered) k-element subsets

of A. At times we have statements such as the following: “Choose constants 0≪ c1 ≪ c2 ≪ … ≪ ck”.

This should be taken to mean that one can choose constants from right to left so that all the subse-

quent constraints are satisfied. That is, there exist increasing functions f i for i∈ [k] such that whenever

ci ≤ f i+ 1(ci+ 1) for all i∈ [k− 1], all constraints on these constants that are in the proof, are satisfied.

Finally, we omit the use of floors and ceilings unless it is necessary, so as not to clutter the arguments.

Throughout, we will deal exclusively with ordered embeddings of graphs, which we also refer to

as labeled embeddings. Thus when we refer to an embedding of H in G, we implicitly fix an ordering

on V(H), say V(H) ∶= {h1, … , hvH} and say that there is an embedding of H onto an (ordered) vertex

set {v1, … , vvH} ⊆ V(G) if vivj ∈E(G) for all i and j such that hihj ∈E(H).

In what follows, we introduce the tools that we will use in our proofs. Most of these are well known

and so are stated without proof. One exception is Lemma 2.8, which is tailored to our purposes and

slightly technical (but follows from well-known techniques nonetheless).

2.1 A deterministic tiling result

Let 𝜒cr(H) ∶= (𝜒(H)−1) |H||H|−𝜎(H)
where 𝜎(H) is the smallest size of a color class over all colorings of H

with 𝜒(H) colors. The following result of Komlós [31] is a crucial tool in the proof of Theorem 1.5. It

determines the minimum degree threshold for the property of containing an “almost” perfect H-tiling.



HAN ET AL. 485

Theorem 2.1. For every graph H and every 𝛼 > 0, there exists n0 such that if G is a graph on
n≥ n0 vertices with 𝛿(G) ≥

(
1 − 1

𝜒cr(H)

)
n, then G contains an H-tiling which covers all but at most

𝛼n vertices of G.

This was later improved to a constant number of uncovered vertices by Shokoufandeh and Zhao

[46], but Komlós’ result suffices for our purposes. We will apply Komlós’ theorem to find an almost

perfect H-tiling in a reduced graph R of our (deterministic) graph G from Theorem 1.5; here H will be

a carefully chosen auxiliary graph (not Kr!). We discuss this further in the proof overview section.

2.2 Regularity

We will use the famous regularity lemma due to Szemerédi [47]. The lemma and its consequences

appeared in the form we give here, in a survey of Komlós and Simonovits [32], which we also rec-

ommend for further details on the subject. First we introduce some necessary terminology. Let G be

a bipartite graph with bipartition {A, B}. For nonempty sets X ⊆A, Y ⊆B, we define the density of

G[X, Y] to be dG(X, Y):= e(G[X, Y])/(|X||Y |). We say that G is 𝜖-regular for some 𝜀> 0 if for all sets

X ⊆A and Y ⊆B with |X| ≥ 𝜖|A| and |Y| ≥ 𝜖|B| we have

|𝑑G(A,B) − 𝑑G(X,Y)| < 𝜖.

It is also common, when the underlying graph G is clear, to refer to (A, B) as an 𝜀-regular pair.

We will use the following two well-known results in our proof. The so-called slicing lemma shows

that regularity is hereditary, with slightly weaker parameters.

Lemma 2.2 (Slicing lemma [32, Fact 1.5]). Let G be 𝜀-regular on parts {A, B} with density d and let
𝛼 > 𝜀. Let A′ ⊆A and B′ ⊆B with |A′| ≥ 𝛼|A| and |B′| ≥ 𝛼|B|. Then G[A′, B′] is (2𝜀∕𝛼)-regular with
density at least d − 𝜀.

The next lemma is an extremely useful tool, extending the control on the edge count in regular

pairs to be able to count the number of embeddings of small subgraphs.

Lemma 2.3 (Counting lemma [32, Theorem 2.1]). Given d >𝜀> 0, m ∈ N and H some fixed graph
on r vertices, let G be a graph obtained by replacing every vertex xi of H with an independent set Vi
of size m and every edge of H with an 𝜀-regular pair of density at least d on the corresponding sets.
If 𝜀 ≤

𝑑r

(2+r)2r =∶ 𝑑0, then there are at least (d0m)r embeddings of H in G so that each xi is embedded
into the set Vi.

We now turn to the regularity lemma, which tells us that there is a way to partition any large enough

graph in such a way that the graph induces 𝜀-regular pairs on almost all of the pairs of parts in this

partition. Actually, we apply a variant of the lemma which ensures that, ignoring a small number of

edges and a small exceptional set of vertices, all such pairs are 𝜀-regular.

Lemma 2.4 (Degree form of the regularity lemma [32, Theorem 1.10]). Let 0<𝜀< 1 and m0 ∈ N.
Then there is an N = N(𝜖,m0) such that the following holds for every 0≤ d < 1 and for every graph G
on n≥N vertices. There exists a partition {V0, V1, … , Vm} of V(G) and a spanning subgraph G′ of
G satisfying the following:
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1. m0 ≤m≤N;
2. |V0| ≤ 𝜖n and |V1| = · · · = |Vm| =∶ n′ ≤ 𝜖n;
3. for each v∈V(G), dG′(v)> dG(v)− (d + 𝜀)n;
4. for all pairs Vi, Vj, where 1≤ i< j≤ k, the graph G′[Vi, Vj] is 𝜀-regular and has density either 0

or greater than d.

The sets V1, … , Vm are called clusters, V0 the exceptional set and the vertices in V0 are exceptional
vertices.

The degree condition (3.) in Lemma 2.4 guarantees that the majority of the edges of G lie in G′. To

make this more transparent it is useful to focus on the dense 𝜀-regular pairs and define the following

auxiliary graph. The (𝜖, 𝑑)-reduced graph R is as follows: The vertex set of R is the set of clusters

{Vi : i∈ [m]} and for each U, U′ ∈V(R), UU′ is an edge of R if the subgraph G′[U, U′] is 𝜖-regular and

has density greater than d. The following then follows easily from Lemma 2.4.

Corollary 2.5. Suppose that 0<𝜀≤ d ≤ c are constants. Let G be a graph on n vertices and
𝛿(G) ≥ cn. Suppose that G has a partition  = {V0,V1, … ,Vm} and a subgraph G′ ⊆G as given by
Lemma 2.4 and corresponding (𝜖, 𝑑)-reduced graph R. Then 𝛿(R) ≥ (c − 𝑑 − 2𝜖)m.

2.3 Supersaturation

The following phenomenon was first noticed by Erdős and Simonovits in their seminal paper [15]. It

states that if there are many copies of a given small subgraph in some host graph, then we can also

find many copies of a blow-up in the host graph. It can be proven easily, for example, by induction.

Lemma 2.6. Let r,m1,m2, … ,mr ∈ N, let J be some graph on r vertices {v1, … , vr} and c> 0.
Then there exists c′ = c′(r, m1, m2, … , mr, c)> 0 such that the following holds. Suppose G is a graph
on n vertices with n sufficiently large such that there are subsets V1, … , Vr ⊂V(G) and G contains at
least cnr labeled copies of J with vi ∈Vi for i= 1, … , r. Then G contains at least c′nm1+…+mr labeled
copies of Jm1,m2,… ,mr with parts P1, … , Pr such that Pi ⊂Vi and |Pi|=mi.

2.4 Subgraph counts in random graphs

We first recall Janson’s inequality (see e.g., [24, Theorem 2.14]). Let Γ be a finite set and let Γp be a

random subset of Γ such that each element of Γ is included independently with probability p. Let  be

a family of nonempty subsets of Γ and for each S ∈  , let IS be the indicator random variable for the

event S ⊆ Γp. Thus each IS is a Bernoulli random variable Be(p|S|). Let X ∶=
∑

S∈ IS and 𝜆 ∶= E(X).
Let ΔX ∶=

∑
S∩T≠∅E(ISIT ), where the sum is over not necessarily distinct ordered pairs S,T ∈  . Then

Janson’s inequality states that for any 0 ≤ t ≤ 𝜆,

P(X ≤ 𝜆 − t) ≤ exp

(
− t2

2ΔX

)
. (2.1)

Consider the random graph G(n, p) on an n-vertex set V . Note that we can view G(n, p) as Γp with

Γ ∶=
(

V
2

)
. Following [24], for a fixed graph F, we define ΦF = ΦF(n, p) ∶= min{nvH peH ∶ H ⊆

F, eH > 0}. This parameter helps to simplify calculations of ΔX in the context of counting the number

of embeddings of the graph F in G(n, p). We will also be interested in the appearance of graphs in
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G(n, p) where we require some subset of vertices to be already fixed in place. Therefore, for a graph

F, and some independent1 subset of vertices W ⊂V(F), we define

ΦF,W = ΦF,W (n, p) ∶= min{nvH−vH[W]peH ∶ H ⊆ F, eH > 0}.

Note that ΦF = ΦF,∅ and ΦF∖W ≥ ΦF,W for any F and independent set W ⊂V(F). If W = {w} for a

single vertex w∈V(F), we drop the brackets and simply write ΦF,w and ΦF∖w. Let us collect some

more simple observations concerning ΦF and ΦF,W which will be useful later.

Lemma 2.7. The following hold:

1. Let C > 1 be some constant, k ∈ N ∖ {1} and p = p(n) ≥ Cn− 2

k . Let k′ ≤ k and F1:=Kk′ , then we
have that ΦF1

≥ Cn.

2. As above, let C > 1 be some constant, k ∈ N ∖ {1} and p = p(n) ≥ Cn− 2

k . Suppose now
that 3≤ k′ ≤ k and let F2 ∶= K−

k′ be the complete graph on k′ vertices with one edge missing
and let w∈V(F2) be one of the endpoints of the missing edge. Then ΦF2

≥ Cn and ΦF2,w ≥

min{Cn1− 2

k ,Cn
2

k } ≥ Cn
1

k .

3. Let F3, F4 be graphs with vertex subsets W3 ⊂V(F3), W4 ⊂V(F4), let Φ3 ∶= ΦF3,W3
and Φ4 ∶=

ΦF4,W4
and suppose that Φ3,Φ4 ≥ 1. Let F5 be the graph formed by the union of F3 and F4

meeting in exactly one vertex x∈ (V(F3) ∖W3)∩ (V(F4) ∖W4), and let F6 be the graph obtained
by taking a disjoint union of F3 and F4. Then letting W5:=W3 ⊔W4, we have that ΦF5,W5

≥

min{Φ3,Φ4,Φ3Φ4n−1} and ΦF6,W5
= min{Φ3,Φ4}.

Proof. For parts 1 and 2, it suffices to consider the case k′ = k. For part 1, we have a simple

calculation. Let H be a subgraph of Kk with vH vertices and eH edges. As vH ≤ k, we obtain

nvH peH ≥ nvH (Cn− 2

k )
vH (vH−1)

2 ≥ CnvH−(vH−1) = Cn.

For part 2 first note that as F2 ⊆Kk =F1 we have that ΦF2
≥ ΦF1

≥ Cn. Let H be a subgraph of K−
k . If

w∉H, the calculation from part 1 gives that nvH peH ≥ Cn. So suppose w∈H. Now let us distinguish

two cases, depending on whether the vertex u is in H, where u is the vertex in K−
k such that uw is a

nonedge. If u∈H, we have that

nvH−1peH ≥ nvH−1Cn− 2

k

(
vH (vH−1)

2
−1

)
≥ CnvH−1−(vH−1− 2

k
)
≥ Cn

2

k ,

again using that vH ≤ k. Likewise, if u∉H, we have that

nvH−1peH ≥ nvH−1p
(

vH
2

)
≥ Cn(vH−1)

(
1− vH

k

)
≥ Cn1− 2

k ,

where the last inequality follows as (vH−1)
(

1 − vH
k

)
is minimized in the range 2≤ vH ≤ k− 1 at vH = 2

and vH = k− 1. This shows that ΦF2,w is bounded as desired.

Part 3 also follows from the definition. Indeed, note that one subgraph H of F6 that is a minimizer

of the term in the definition of ΦF6,W5
must be a subgraph of F3 or a subgraph of F4. This ensures

ΦF6,W5
= min{Φ3,Φ4}. Similarly, one subgraph H of F5 that is a minimizer of the term in the definition

1With respect to F, that is, E(F[W])=∅.
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of ΦF5,W5
must be a subgraph of F3, a subgraph of F4, or a subgraph of F5 that contains x. This ensures

ΦF5,W5
≥ min{Φ3,Φ4,Φ3Φ4n−1}. ▪

We now apply Janson’s inequality in order to give a general result about embedding constant sized

graphs into G(n, p). The following lemma provides the basis for a greedy process in which we find

some larger (linear size) graph in G(n, p). We will require that the embedding of our larger graph has

certain vertices already prescribed and repeated applications of Lemma 2.8 will then allow us to embed

the remaining vertices of the graph in a greedy manner. So it is crucial that we can apply the lemma to

any subset of s (remaining) indices while avoiding any small enough set of (previously used) vertices

from being used.

For future applications, we state and prove the following lemma in the context of r-uniform hyper-
graphs (r-graphs), and the definition of ΦF extends naturally to r-graphs F and G(r)(n, p). Recall that

G(r)(n, p) is an r-graph on n vertices where each r-tuple of vertices forms an edge with probability p,

independent of all other r-tuples.

Lemma 2.8. Let n, t(n), s(n) ∈ N, 0 < 𝛽 < 1∕2 and L, v,w, e, r ∈ N such that r ≥ 2, Lt, sw ≤
𝛽n
4v

and
(

t
s

)
≤ 2n. Let F1, … , Ft be labeled r-graphs with distinguished vertex subsets Wi ⊂V(Fi) such

that |Wi|≤w, |V(Fi ∖Wi) |=v, e(Fi)= e and e(Fi[Wi])= 0 for all i∈ [t]. Now let V be an n-vertex set and
let U1, … , Ut ⊂V be labeled vertex subsets with |Ui|= |Wi| for all i∈ [t]. Finally, suppose there are
families 1, … ,t ⊂

(
V
v

)
of labeled vertex sets such that for each i∈ [t], |i| ≥ 𝛽nv.

Now suppose that 1≤ s(n)≤ t(n) and p= p(n) are such that

s ⋅Φ ≥

(
2v+7v!
𝛽2

)
min{Lt log n, n} and Φ′ ≥

(
2v+7v!
𝛽2

)
n, (2.2)

where Φ ∶= min{ΦFi,Wi ∶ i ∈ [t]} and Φ′ ∶= min{ΦFi∖Wi ∶ i ∈ [t]} with respect to p= p(n).
Then, a.a.s., for any V′ ⊆V, with |V′|≥n− Lt and any subset S⊆ [t] such that |S|=s and Ui ∩Uj =∅ for
i≠ j∈ [s], there exists some i∈ S such that there is an embedding (which respects labeling) of Fi in
G(r)(n, p) on V which maps Wi to Ui and V(Fi) ∖Wi to a labeled set in i which lies in V′.

Note by “labeled” here we mean that for all j, the jth vertex in Wi is mapped to the jth vertex in Ui;

moreover the jth vertex in V(Fi) ∖Wi is mapped to the jth vertex in some labeled set from i.

Proof. Let us fix S⊂ [t] with |S|=s and a vertex subset V′ ⊂V as in the statement of the lemma. Let

U:=∪i∈ SUi and fix V ′′ ∶= V ′ ∖ U. Note that (V ∖V′)∪U intersects at most
𝛽

2
nv of the elements of i

for each i and so we can focus on a subset  ′
i of each i of at least

𝛽

2
nv sets which are all contained in

V ′′. For each i∈ S and each labeled subset X ∈  ′
i , let IX, i denote the indicator random variable that

X ∪Ui hosts a labeled copy of Fi where Wi is mapped to Ui. To ease notation sometimes we write IX
instead of IX, i. Note that Z ∶=

∑
{IX,i ∶ X ∈ ∪i∈S

′
i } counts the number of suitable embeddings in

G(r)(n, p). (So here if X is in a of the collections  ′
i , then there are a indicator random variables in this

sum corresponding to X.)

An easy calculation (using the first part of (2.2)) gives that E[Z] > 2 for large enough n. We will

show that

ΔZ ≤
E[Z]2

16 min{Lt log n, n}
(2.3)
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and thus by Janson’s inequality (2.1), P[Z ≤ E[Z]∕2] ≤ exp(−2 min{Lt log n, n}). If Lt log n ≤ n,

taking a union bound over the (at most 2t) possible sets S and the
(

n
Lt

)
≤ exp(Lt(1 + log n)) possible

V′, we have that a.a.s., Z ≥ 1 for all such S and V′; if Lt log n > n, we instead bound both the number of

V′ and the number of S by 2n and draw the same conclusion. So in both cases Z ≥ 1 a.a.s. for all such

S and V′ and we are done.

Now it remains to verify (2.3). First let Zi ∶=
∑

X∈ ′
i
IX,i. Then

E[Z]2 =

(∑
i∈S

E[Zi]

)2

=
∑
i,j∈S

E[Zi]E[Zj]. (2.4)

To ease notation, let  ∶= ∪i∈S
′
i and for X,X′ ∈  , we write X ∼X′ if, assuming X ∈ i,

X′ ∈ j, the labeled copies of Fi on X ∪Ui and Fj on X′ ∪Uj intersect in at least one edge. We split

ΔZ as follows:

ΔZ =
∑

{(X,X′)∈2∶X∼X′}
E[IXIX′ ]

=
∑
i∈S

ΔZi +
∑

{(i,j)∈S2∶ i≠j}

∑
{(X,X′)∈ ′

i ×
′
j ∶X∼X′}

E[IXIX′ ], (2.5)

where ΔZi is defined analogously to ΔZ for the random variable Zi.

For integers a and b, write (a)b:= a(a− 1) … (a− b+ 1). Fix 1≤ k≤ v. There are
(

v
k

)
(v)k ≤(

v
k

)
v! ways that two labeled v-sets share exactly k vertices. Fixing two such v-sets, there are at most

(n)2v− k ≤ n2v− k ways of mapping their 2v− k vertices into V . Let f k denote the maximum number of

edges of a k-vertex subgraph of Fi ∖Wi, taken over all i∈ [t]. As we explain in the next paragraph, we

have that for i≠ j,

∑
{(X,X′)∈ ′

i ×
′
j ∶X∼X′}

E[IXIX′ ] ≤
v∑

k=1

(v
k

)
v! n2v−kp2e−fk ≤

2vv! n2vp2e

Φ′ ≤
2v+2v!E[Zi]E[Zj]

𝛽2Φ′ .

Here, we crucially used that any copy of Fi on X ∈  ′
i does not have edges intersecting Uj for j≠ i. Note

that the penultimate inequality follows by definition of Φ′. The last inequality follows as 𝛽nvpe∕2 ≤

E[Zi] for all i∈ S.

Using the above calculation (and the second part of (2.2)) to compare (2.5) and (2.4), we see that

the right hand summand of (2.5) is less than E[Z]2∕(32n). We now estimate the left hand summand

of (2.5) in a similar fashion. For a fixed i∈ S, let 1≤ k≤ v. We let gk denote the maximum number of

edges of a subgraph of Fi which has k vertices disjoint from Wi. We have, similarly to before, that

ΔZi ≤

v∑
k=1

(v
k

)
(v)k(n)2v−kp2e−gk ≤

v∑
k=1

(v
k

)
v! n2v−kp2e−gk ≤

2vv! n2vp2e

Φ
.

Thus,

∑
i∈S

ΔZi ≤
s2vv!n2vp2e

Φ
(2.2)
≤

(s𝛽nvpe∕2)2
32 min{Lt log n, n}

≤

(∑
i∈SE[Zi]

)2

32 min{Lt log n, n}
= E[Z]2

32 min{Lt log n, n}
.

So bringing both summands together, (2.3) holds and we are done. ▪
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In its full generality, Lemma 2.8 will be a valuable tool in our proof. However, we will also have

instances where we do not need to use the full power of the lemma. For instance, setting r = 2, s= 1 and

Wi =Ui =∅ for all i∈ [t], we recover a more standard application of Janson’s inequality to subgraph

containment which we state below for convenience.

Corollary 2.9. Let 𝛽 > 0, 1≤ t≤ 2n and F some fixed labeled graph on v vertices. Then there exists
C > 0 such that the following holds. If V is a set of n vertices, 1, … ,t ⊂

(
V
v

)
are families of labeled

subsets such that |i| ≥ 𝛽nv and p= p(n) is such that ΦF ≥ Cn, then a.a.s., for each i∈ [t], there is an
embedding of F onto a set in i, which respects labeling.

3 LOWER BOUND CONSTRUCTION FOR THE PROOF OF THEOREM 1.5

In this section we give a construction that provides the lower bound in the proof of Theorem 1.5. Our

construction is a generalization of that used for the lower bound in Theorem 1.3 (see Section 2.1 of [3]).

We will make use of the following result.

Theorem 3.1 ([24], part of Theorem 4.9). For every k≥ 2 and for every 0<𝜀< 1 there is a positive
constant c= c(r, 𝜀) such that if p≤ cn−2/k,

lim
n→∞

P(G(n, p) contains a Kk-tiling of size 𝜀n) = 0.

Let k and r be in the statement of Theorem 1.5. Consider any 1 − k
r
< 𝛼 < 1 − k−1

r
and let 𝛾 > 0

such that (1− 𝛾)(1− k−1

r
) = 𝛼. Let n ∈ N be divisible by r. Suppose G is an n-vertex graph with vertex

classes A and B such that |B| = (1− 𝛾)(1− k−1

r
)n and |A|=n− |B|, where there are all possible edges in

G except that A is an independent set. So 𝛿(G) ≥ 𝛼n.

Choose c′ = c′(𝛾, k, r) = c′(𝛼, k, r) sufficiently small so that, if p = c′n−2∕k a.a.s.

G(n, p)[A]≅G(|A|, p) does not contain a Kk-tiling of size 𝛾|A|∕r ≤ 𝛾n∕r. The existence of c′ is

guaranteed by Theorem 3.1 since A has size linear in n.

Observe that any copy of Kr in G∪G(n, p) either contains a Kk in A, or uses at least r − (k− 1)

vertices in B. Thus, a.a.s., the largest Kr-tiling in G∪G(n, p) has size less than |B|∕(r−k+1)+𝛾n∕r =
n∕r and we are done.

4 OVERVIEW OF THE PROOF OF THE UPPER BOUND OF THEOREM 1.5

In this section we sketch some of the ideas in the remainder of our proof of Theorem 1.5. We use

the by now well-known absorbing method, which reduces the problem into finding a small absorbing

structure on some vertex subset A and finding a Kr-tiling that leaves a set U of o(n) vertices uncovered.

The property of the absorbing structure on A is that for any small set U with |U| ∈ rN, one can find a

perfect Kr-tiling in (G∪G(n, p))[A∪U], which will finish the proof.

Let p≥Cn−2/k and let G be an n-vertex graph with 𝛿(G) ≥ (1 − k
r
+ 𝛾)n. Note that it might be true

that both G and G(n, p) are Kr-free (a.a.s. for G(n, p)). Thus, to build even a single copy of Kr, we

may have to use both deterministic edges (from G) and random edges (from G(n, p)). We will use the

following partition of the edge set of Kr.

Definition 4.1. For r ∈ N and k ∈ N such that 2≤ k≤ r, let r∗, q ∈ N be such that k(r∗ − 1) + q = r
and 0< q≤ k. Then Hdet =Hdet(r, k) is the complete r*-partite graph with parts V1,V2, … ,Vr∗ such
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Hdet

Hdet

(a) (b) (c)

FIGURE 1 Some examples of the graphs Hdet and Hdet from Definition 4.1 for each case: 1. (a) r = 9, k= q= r* = 3,

2. (b) r = 11, k= 3, q= 2, r* = 4, 3. (c) r = 6, k= 4, q= r* = 2

that |V1| = |V2| = · · · = |Vr∗−1| = k and |Vr∗ | = q, that is, Hdet ∶= Kr∗
k,… ,k,q. We also define Hdet to be

Kr −E(Hdet), that is, the complement of Hdet on the same vertex set.

Some examples are given in Figure 1. Note that when k= r, Hdet is simply an independent set of size

k= r and Hdet is an r-clique. The motivation for this partition comes from the following observation.

We can build a copy of Kr in G∪G(n, p) by taking Ω(nr) copies of Hdet in G and then applying Janson’s

inequality to conclude that we can “fill up” the independent sets in some copy of Hdet by Kk’s and a Kq
and obtain a copy of Kr. With a few more ideas, one can repeatedly apply this naive idea to greedily

obtain an almost perfect Kr-tiling (see Theorem 5.1).

To build the absorbing set, we use the reachability arguments introduced by Lo and Markström [40].

The main part of the reachability arguments rely on the following notion of reachable paths. Given

two vertices u, v, a set P of constant size is called a reachable path for u, v if both P∪ {u} and P∪ {v}

contain perfect Kr-tilings. Then we meet the same problem as above, and thus need to build certain

structures by deterministic edges and “fill up the gaps” by random edges. We need much more involved

arguments, including building copies of Kr in a few different ways and making sure that we can recover

the missing edges by G(n, p). Moreover, when k> r/2 we cannot prove the reachability between every
two vertices and have to pursue a weaker property, namely, building a partition of V(G) such that the

reachability can be established within each part.

Once we have established the existence of reachable paths, we piece these together to form what we

call “absorbing gadgets” (Definition 6.14) and then further combine these absorbing gadgets to define

our full absorbing structure in G∪G(n, p). We use an idea of Montgomery [42,43] in order to define

our absorbing structure, using an auxiliary “template” to dictate how we interweave our absorbing

gadgets, which will ensure that the resulting absorbing structure has a strong absorbing property, in

that it can contribute to a Kr-tiling in many ways. We will introduce the random edges of G(n, p) only in

the last stage, when proving the existence of the full absorbing structure in G∪G(n, p). Thus, we will

first be occupied with finding many reachable paths and absorbing gadgets which use these reachable

paths, restricting our attention only to the deterministic edges which will contribute to our eventual

absorbing structure.

Our analysis splits into three cases depending on the structure of Hdet or equivalently, the values

of r and k. The cases are as follows:

1. Hdet is balanced, that is, q= k and so r∕k ∈ N,

2. 𝜒(Hdet) = r∗ ≥ 3 and Hdet is not balanced, that is, k< r/2 and r∕k ∉ N,

3. 𝜒(Hdet) = r∗ = 2 and Hdet is not balanced, that is, r/2< k< r.

Examples of each case can be seen in Figure 1.
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5 AN ALMOST PERFECT TILING

In this section we study almost perfect tilings and prove Theorem 5.1 below. As is the case throughout,

in this almost perfect tiling, the edges of G which contribute to the copies of Kr will be copies of Hdet as

defined in Definition 4.1. We will rely on G(n, p) to then “fill in the gaps,” providing the missing edges,

that is, Hdet, to guarantee that each copy of Hdet is in fact part of a copy of Kr in G∪G(n, p). Note that

𝜒(Hdet) = ⌈r∕k⌉ and recall the definition of 𝜒cr discussed in Section 2.1. When k divides r, we have

𝜒cr(Hdet) = r∕k = 𝜒(Hdet) and when k does not divide r, we have 𝜒cr(Hdet) = ⌊r∕k⌋ r
r−(r−k⌊r∕k⌋) = r∕k.

Thus, the almost perfect tiling result of Komlós, Theorem 2.1, guarantees the existence of an

Hdet-tiling in G which covers almost all the vertices. However, given such a tiling we cannot guarantee

that the correct edges appear in G(n, p) in order to extend each copy of Hdet in the tiling to a copy of

Kr. We aim instead to greedily build a Kr-tiling and guarantee that at each step there are Ω(nr) copies

of Hdet. To achieve this, we use the regularity lemma and apply Theorem 2.1 to the reduced graph of

G. Then by the counting lemma, each copy of Hdet in the reduced graph will provide many copies of

Hdet in G.

Theorem 5.1. Let 2≤ k≤ r and 𝛼, 𝛾 > 0. Then there exists C = C(𝛼, 𝛾, r, k) > 0 such that if
p≥Cn−2/k and G is an n-vertex graph with 𝛿(G) ≥ (1 − k

r
+ 𝛾)n, then G∪G(n, p) a.a.s. contains a

Kr-tiling covering all but at most 𝛼n vertices.

Proof. Apply Lemma 2.4 to G with 0 < 𝜀 ≪ 𝑑 ≪ 𝛾∕4, 𝛼∕4, 1∕r and m0 ∈ N large, such that

𝑑0 ∶= (𝑑−𝜀)r

(2+r)2r ≥ 4𝜀∕𝛼. We may assume that n is sufficiently large. Note that by Corollary 2.5, the

resulting (𝜖, 𝑑)-reduced graph R has m≥m0 vertices and satisfies 𝛿(R) ≥ (1− k
r
+𝛾∕2)m. Let the size of

the clusters in the regularity partition be n′ and note that n∕N(𝜀,m0) ≤ n′ ≤ 𝜖n. Now by Theorem 2.1,

as m≥m0 is sufficiently large, there exists an Hdet-tiling  covering all but at most 𝛼m∕4 vertices of

R. Let 1, … ,t ∈
(

V(R)
r

)
such that the j span disjoint copies of Hdet in .

Next, let  be the collection of subsets W ⊆V(G) such that there exists some j∈ [t] for which W
intersects each U ∈ j in at least 𝛼n′∕2 elements (and W contains no vertices of clusters from outside

of j). Here we say that j corresponds to W. Moreover, we call a copy of Kr in W crossing if it

contains precisely one vertex from each cluster in the class j.

We claim that a.a.s., every W in  contains a crossing copy of Kr in G∪G(n, p). Indeed, fix some

W ∈  and suppose j corresponds to W. Then there are subsets W1, … , Wr ⊂V(G) and clusters

{U1, … ,Ur} = j such that Wi ⊆Ui,

|Wi| = 𝛼n′

2
≥

𝛼n
2N(𝜀,m0)

,

∪i∈ rWi ⊆W and U1, U2, … , Ur form a copy H of Hdet in R. By Lemma 2.2, for every UiUj ∈E(H),

we have that G[Wi, Wj] is a (4𝜀∕𝛼)-regular pair with density at least d − 𝜀. Thus by Lemma 2.3 G[W]

contains at least (𝑑0𝛼n′∕2)r = Ω(nr) copies of Hdet where in each such copy of Hdet precisely one vertex

lies in each of W1, … , Wr; let W denote this collection. Now noting that F ∶= Hdet = Kr −E(Hdet) is

a collection of disjoint cliques of size at most k, Lemma 2.7 (part 1 and 3) implies that ΦF ≥ Cn. Also,

we have that | | ≤ 2n. Thus for C > 0 sufficiently large, Corollary 2.9 gives that for every W ∈ 

there is a copy of Hdet from W which hosts a labeled copy of Hdet in G(n, p); thus the claim is satisfied.

One can now use the claim to greedily build the almost perfect Kr-tiling in G∪G(n, p). Indeed,

initially set  ∶= ∅. At each step we will add a copy of Kr to  whilst ensuring  is a Kr-tiling in
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G∪G(n, p). Furthermore, at every step we only add a copy K of Kr if there is some j∈ [t] such that

each vertex in K lies in a different cluster in j (recall each j consists of r clusters).

Suppose we are at a given step in this process such that there exists some cluster Ui ∈ j (for

some j) that still has at least 𝛼n′∕2 vertices uncovered by . This in fact implies that every cluster in

j contains at least 𝛼n′∕2 vertices uncovered by ; these uncovered vertices correspond precisely to

a set W ∈  . Hence by the above claim there is a crossing copy of Kr in (G∪G(n, p))[W]. Add this to

. Thus, we can repeat this process, increasing the size of  at every step, until we find that for every

j∈ [t], all the clusters in j have at least (1 − 𝛼∕2)n′ vertices covered by .

That is, a.a.s. there is a Kr-tiling in G∪G(n, p) covering all but at most

(𝛼n′∕2 × m) + (𝛼m∕4 × n′) + |V0| ≤ 𝛼n

vertices, as desired. Note that the first term in the above expression comes from the vertices in clus-

ters from the classes j; the second term comes from those vertices in clusters that were uncovered

by . ▪

Note that one can in fact establish the case k= r in a much simpler way because the copies of Kr
that we look for can be completely provided by G(n, p), see for example [24, Thorem 4.9].

6 THE ABSORPTION

The aim of this section is to prove the existence of an absorbing structure  in G′:=G∪G(n, p). The

main outcomes are Corollaries 6.22, 6.24 and 6.25, which will be used in next section to prove our

main result.

The key component of the absorbing structure will be some absorbing subgraph F ⊂G′. We will

define F so that it can contribute to a Kr-tiling in many ways. In fact we will define F so that if we

remove F from G′ and we tile almost all of what remains (Theorem 5.1), then no matter which small

set of vertices remains, the properties of F allow us to complete this tiling to a full tiling of G′. There

are some complications, and the absorbing structure will have different features depending on the exact

values of minimum degree and the size of the cliques that we look to tile with.

Our absorbing subgraph will be comprised of two sets of edges, namely the deterministic edges in

G and the random edges in G(n, p). Initially, we will be concerned with finding (parts of) the appro-

priate subgraph in G (Section 6.1). In fact, we will need to prove the existence of many copies of the

deterministic subgraphs we want, as we will rely on there being enough of these to guarantee that one

of them will match up with random edges in G(n, p) (Section 6.2) to give the desired subgraph. There-

fore it is useful throughout to consider, with foresight, the random edges that we will be looking for to

complete our desired structure, as this also motivates the form of our deterministic subgraphs.

6.1 The absorbing structure—deterministic edges

The smallest building block in our absorbing graph will be K−
r+1, the complete graph on r + 1 vertices

with one edge missing, say between w1 and w2. This is useful for the simple reason that it can contribute

to a Kr-tiling in two ways, namely K−
r+1 ∖ {wi} for i= 1, 2. We introduce the following notation to keep

track of the partition of the edges between the deterministic graph and the random graph.

Definition 6.1. Suppose t, r, r1, r2, … , rt ∈ N such that
∑t

i=1 ri = r + 1. We use the notation

H ∶= (Kt
r1,r2,… ,rt , i, j),



494 HAN ET AL.

for not necessarily distinct i, j∈ [t], to denote the (r + 1)-vertex graph Kt
r1,r2,… ,rt with two distinct

distinguished vertices: w1 in the ith part (which has size ri) and w2 in the jth part (which has size rj).

Definition 6.2. Let r ∈ N and consider an (r + 1)-vertex graph F with two distinguished vertices w1

and w2. (Typically we will take F =H as in Definition 6.1.) We then write2 F to denote the graph on

the same vertex set V(K−
r+1) = V(F) such that E(F) ∶= E(K−

r+1) ∖ E(F), where we take the nonedge of

K−
r+1 to be w1w2. Thus K−

r+1 ⊆ F ∪ F.

We think of H,H and K−
r+1 as all lying on the same vertex set throughout with the two distinguished

vertices w1, w2 being defined for all three. The following graph gives the paradigm for how we split

the edges of K−
r+1 between the deterministic and the random graph.

Definition 6.3. For r ∈ N and k ∈ N such that 2≤ k≤ r, let r∗, q ∈ N be such that k(r∗ − 1) + q = r
and 0< q≤ k. Then H0 ∶= (Kr∗

k,… ,k,q+1, r∗, r∗).

Some examples of H0 and H0 can be seen in Figures 3 and 4. Note that if w1 and w2 are the distin-

guished vertices of H0, then H0 ∖wi for i= 1, 2 are both copies of the graph Hdet from Definition 4.1.

Also note that H0 is a disjoint union of k-cliques as well as a disjoint copy of K−
q+1. Thus, when

q≤ k− 1, it follows from Lemma 2.7 and Corollary 2.9 that the graph H0 is abundant3 in G(n, p) when

p≥Cn−2/k for some large enough C. Furthermore, as we will see, the minimum degree condition for

G along with Lemma 2.6 will imply that there are Ω(nr+1) copies of H0 in G. This suggests the suit-

ability of this definition as a candidate for how to partition the edge set of K−
r+1 between deterministic

and random edges. We remark that the case when q= k is slightly more subtle and we have to adjust

our decomposition accordingly. We will discuss this is more detail in the next section.

6.1.1 Reachability
In this subsection, we define reachable paths and show that we can find many of these in our determin-

istic graph G, when the graphs used to define such paths are chosen appropriately. The main results

are Propositions 6.6, 6.7 and 6.12 which deal with Case 1, 2 and 3 respectively. We first define a

reachable path which is a graph which connects together (r + 1)-vertex graphs as follows.

Definition 6.4. Let t, r ∈ N and let H = (H1,H2, … ,Ht) be a vector of (r + 1)-vertex graphs Hi

such that each Hi has two distinguished vertices, wi
1 and wi

2. Then an H-path is the graph P obtained

by taking one copy of each Hi and identifying wi
2 with wi+1

1 , for i∈ [t− 1]. We call w1
1 and wt

2 the

endpoints of P.

In the case where H1 =H2 = … =Ht =H for some (r + 1)-vertex graph H, we use the notation H =
(H, t) and thus refer to (H, t)-paths. For H = (H1,H2, … ,Ht), we also define H ∶= (H1,H2, … ,Ht)
where Hi is as defined in Definition 6.2.

We give some explicit examples of H-paths later in Figure 6. In the following, as we look to find

embeddings of H-paths and larger subgraphs in G and G(n, p), we will always be considering labeled
embeddings. Therefore, implicitly, when we define graphs such as the H-paths above, we think of

these graphs as having some fixed labeling of their vertices. Again, the motivation for the definition

2Note that our use of the notation F is nonstandard here.
3Specifically, one can see that any linear sized set in V(G(n, p)) contains a copy of H0 a.a.s..
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H1

H1

FIGURE 2 An example of H1 and H1 for Case 1 (a) r = 9, k= q= r* = 3 (see Definitions 6.1-6.2 and Proposition 6.6 for the

definitions)

of H-paths comes from considering K−
r+1, with vertices w1, w2 such that w1w2 ∉ E(K−

r+1). Indeed, then

a (K−
r+1, t)-path P has two Kr-tilings missing a single vertex; one on the vertices of V(P) ∖ w1

1, and one

on the vertices of V(P) ∖wt
2. Our first step is to find many H-paths in the deterministic graph G, for an

appropriately defined H. In particular, we are interested in the images of the endpoints of the paths.

Definition 6.5. Let 𝛽 > 0, t, r ∈ N and H = (H1, … ,Ht) be a vector of (r + 1)-vertex graphs (each

of which is endowed with a tuple of distinguished vertices). We say that two vertices x, y∈V(G) in

an n-vertex graph G are (H; 𝛽)-reachable (or (H, t; 𝛽)-reachable if H = (H, … ,H) = (H, t)) if there

are at least 𝛽ntr−1 distinct labeled embeddings of the H-path P in G such that the endpoints of P are

mapped to {x, y}.

As discussed before, the graph H0 from Definition 6.3 will be used to provide deterministic edges

for our absorbing structure. That is, we look for (H0, t)-paths in G for some appropriate t. However, for

various reasons there are complications with this approach. Sometimes using a slightly different graph

H will allow more vertices to be reachable to each other. Also, as is the case below when r∕k ∈ N,

it is possible that H0 is not sufficiently common in the random graph G(n, p). Therefore, we have to

tweak the graph H0 in order to accommodate these subtleties. This is the reason for using a vector of

graphs H as we will see. We will look first at Case 1, when r∕k ∈ N and so H0 contains a copy of

K−
k+1. This is too dense to appear in the random graph G(n, p) with the frequency that we require and

thus we define H1 as in the following proposition.

Proposition 6.6. Let 𝛾 > 0, n, r, k ∈ N such that r∕k =∶ r∗ ∈ N, 2≤ k≤ r and n is sufficiently
large. Let H1 ∶= J1 ∩ K−

r+1 where J1 ∶= (K(r∗+1)
k,k,… ,k,1, r∗ + 1, 1), as defined in Definition 6.1, and we

consider K−
r+1 to be on the same vertex set as J1 with a nonedge between the distinguished vertices of J1.

Likewise, let H′
1 ∶= (K(r∗+1)

k,k,… ,k,1, 1, r∗ + 1) ∩K−
r+1 be the same graph with the labels of the distinguished

vertices switched. See Figure 2 for an example of H1 (and H′
1 which is identical).

Then there exists a 𝛽1 = 𝛽1(r, k, 𝛾) > 0 such that for any n-vertex graph G of minimum degree
𝛿(G) ≥ (1− k

r
+𝛾)n, any pair of distinct vertices in V(G) are (H1; 𝛽1)-reachable where H1 ∶= (H1,H′

1).

Proof. Let w1, w2 be the distinguished vertices of H1 = (K(r∗+1)
k,k,… ,k,1, r∗ + 1, 1) ∩ K−

r+1 as defined in

Definition 6.1. Fix a pair x, y∈V(G).

We will show that for any z∈V(G) ∖ {x, y}, there are at least 𝛽′1nr−1 labeled embeddings of H1

which map w1 to x and w2 to z, for some 𝛽′1 = 𝛽′1(r, k, 𝛾) > 0. Once we have established this property,

this implies the proposition. Indeed, by symmetry, we can also find 𝛽′1nr−1 embeddings of H1 which

map w1 to y and w2 to z. Set 𝛽1 ∶= 𝛽′21 ∕2. Thus there are at least

(n − 2) × 𝛽′1nr−1 × (𝛽′1nr−1 − r2nr−2) ≥ 𝛽1n2r−1
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H0

H0

H0

H0

FIGURE 3 An example of H0, H0, H′
0

and H′
0

for Case 2 (b) r = 11, k= 3, q= 2, r* = 4 (see Definitions 6.1-6.3 and

Proposition 6.7 for the definitions)

distinct embeddings of the H1-path in G such that the endpoints are mapped to {x, y}, as desired. This

follows as there are n− 2 choices for z; at least 𝛽′1nr−1 choices for the copy of H1 containing x and z; at

least (𝛽′1nr−1 − r2nr−2) choices for the copy of H′
1 containing z and y that are disjoint from the choice

of H1 (except for the vertex z).

So let us fix x, z∈V(G). The proof now follows easily from Lemma 2.6. As kr* = r, we can express

the minimum degree as 𝛿(G) ≥ (1− 1

r∗
+𝛾)n. Thus any set of at most r* vertices has at least 𝛾n common

neighbors. Therefore we have at least (𝛾n)r∗ labeled copies K of Kr∗ where V(K) = {x1, … , xr∗} ⊂

NG(x) and {x2, … , xr∗} ⊂ NG(x) ∩ NG(z). This follows by first choosing {x2, … , xr∗} and then x1

with the right adjacencies. Thus, by Lemma 2.6 we have 𝛽′1nr−1 labeled embeddings of the blow-up,

H1 ∖ {w1,w2} = Kr∗
k,… ,k,k−1, of these cliques, crucially within the correct neighborhoods (NG(x) and

NG(x)∩NG(z)) to ensure that together with {x, z} they give us the required embeddings of H1. ▪

Note that an H1-path P1 has endpoints which are isolated. The other vertices of P1 lie in copies of

Kk and these copies are disjoint from each other except for a single pair of Kks that meet at a singular

vertex. See Figure 6 for an example. We now turn to Case 2, as described in Section 4. Here we

can use the graph H0 from Definition 6.3. We also use a slight variant of H0 where we redefine the

distinguished vertices.

Proposition 6.7. Suppose 𝛾 > 0, n, r, k ∈ N, such that n is sufficiently large, 2≤ k< r/2 and r∕k ∉
N. Furthermore, let r*, q and H0 be as defined in Definition 6.3 and let H′

0 = (Kr∗
k,… ,k,q+1, 1, 2) be the

same graph as H0 with distinguished vertices in distinct4 parts of size k (see Figure 3).
Then there exists 𝛽2 = 𝛽2(r, k, 𝛾) > 0 such that for any n-vertex G of minimum degree

𝛿(G) ≥ (1 − k
r
+ 𝛾)n, every pair of distinct vertices x, y in V(G) are (H2; 𝛽2)-reachable where

H2 ∶= (H0,H′
0,H′

0,H0).

Proof. We know that 𝛿(G) ≥ (1 − k
r
+ 𝛾)n ≥ (1 − 1

r∗−1
+ 𝛾)n. Therefore every set of at most r* − 1

vertices has a common neighborhood of size at least 𝛾n. We will appeal to Lemma 2.6 to give us the

whole H2-path in one fell swoop. Let J be a graph with vertex set

V(J) = {x1, … , xr∗−1, z1,w1, … ,wr∗−2, z2, u1, … , ur∗−2, z3, y1, … , yr∗−1},

and E(J) consisting of r*-cliques on {x1, … , xr∗−1, z1}, {z1,w1, … ,wr∗−2, z2}, {z2, u1, … , ur∗−2, z3}
and {z3, y1, … , yr∗−1}. We claim that if we can find (𝛾n)4r∗−3∕2 copies of J in G such that xi ∈NG

4Note that this is possible as we are in the case where the number of parts, r* of H0 is at least 3.
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(x) and yi ∈NG(y) for i= 1, … , r* − 1, then we are done. Indeed, consider a blow-up J′ of J with parts

{X(k)
1 , … ,X(k)

r∗−1,Z
(k+q−1)
1 ,W (q+1)

1 ,W (k)
2 , … ,W (k)

r∗−2,Z
(2k−1)
2 ,

U(q+1)
1 ,U(k)

2 , … ,U(k)
r∗−2,Z

(k+q−1)
3 ,Y (k)

1 , … ,Y (k)
r∗−1},

where the parts correspond to the vertices of J in the obvious way and the size of each part is indicated

by the superscript. Now if we have a copy of J′ in G ∖ {x, y} with Xi ⊂NG(x) and Yi ⊂NG(y) for all

i= 1, … , r* − 1, then this gives us an embedding of an H2-path. Indeed for i= 1, 3, arbitrarily partition

Zi ∶= {z′i} ⊔ Z′
i ⊔ Z′′

i with |Z′
i | = q − 1 and |Z′′

i | = k − 1 and partition Z2 ∶= {z′2} ⊔ Z′
2 ⊔ Z′′

2 with|Z′
2| = |Z′′

2 | = k − 1. Then {x, z′1} ∪ Z′
1 ∪r∗−1

i=1 Xi and {y, z′3} ∪ Z′
3 ∪r∗−1

i=1 Yi both give copies of H0 whilst

{z′1, z′2} ∪ Z′′
1 ∪ Z′

2 ∪r∗−2
i=1 Wi and {z′2, z′3} ∪ Z′′

3 ∪ Z′′
2 ∪r∗−2

i=1 Ui both give copies of H′
0 where in all cases

the distinguished vertices appear in the first set of the union.

It suffices then, by Lemma 2.6, to find (𝛾n)4r∗−3∕2 embeddings of J in G with the xi ∈NG(x) and

yi ∈NG(y). We can do this greedily. Indeed if we choose the xi and yi first, followed by z1 and z3, then

z2 ∈NG(z1)∩NG(z3) and then the remaining vertices, we are always seeking to choose a vertex in G
which has at most r* − 1 neighbors which have already been chosen. Thus, by our degree condition,

we have at least 𝛾n choices for each vertex with the right adjacencies. To ensure that these choices

actually give an embedding of J we then discard any set of choices with repeated vertices, of which

there are O(n4r∗−4), and thus the conclusion holds as n is sufficiently large. ▪

Consider an H2-path which we denote P2 (see Figure 6 for an example). It is formed by copies of

Kk and K−
q+1 which intersect in at most one vertex and such that the endpoints of P2 lie in copies of

K−
q+1. Furthermore, note that the endpoints of P2 are in distinct connected components. This will be

an important feature when we start to address the random edges of our absorbing structure as it will

allow us to use Lemma 2.7 to conclude certain statements about the likelihood of finding our desired

random subgraph in G(n, p). This motivated the introduction of H′
0 in the previous proposition.

In Case 3, we cannot hope to prove reachability between every pair of vertices. Indeed our minimum

degree in this case is 𝛿(G) ≥
(

1 − k
r
+ 𝛾

)
n and k> r/2 and so it is possible that 𝛿(G) < n∕2 and G is

disconnected. Thus, as in [19,22], we use a partition of the vertices into “closed” parts, where we can

guarantee that two vertices in the same part are reachable, with some set of parameters. We adopt the

following notation which also allows us to consider different possibilities for what vectors we use for

reachability.

Definition 6.8. Let  be a set of vectors, such that the entry of each vector in  is an

(r + 1)-vertex graph endowed with a tuple of distinguished vertices. We say that two vertices in G are

(; 𝛽)-reachable if they are (H; 𝛽)-reachable for some H ∈ .

We say that a subset V of vertices in a graph G is (; 𝛽)-closed if every pair of vertices5 in V is

(; 𝛽)-reachable. We denote6 by N,𝛽(v) the set of vertices in G that are (; 𝛽)-reachable to v.

Thus, in this notation, the conclusion of Proposition 6.6 states that V(G) is (H1; 𝛽1)-closed for all G
satisfying the given hypothesis (and similarly for Proposition 6.7). Notice that if a set V is (; 𝛽)-closed

in a graph G it may be the case that two vertices x, y∈V are (H; 𝛽)-reachable whilst two other vertices

z, w∈V are (H′; 𝛽)-reachable for some distinct H, H′ ∈  of different lengths.

5Note that we do not require the vertices of the H-paths which give the reachability to lie in V .
6If  consists of just one vector H, we simply refer to sets being (H; 𝛽)-closed and use NH,𝛽 (v) to denote the closed neighborhood

of a vertex.
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It will be useful for us to consider the following notion.

Definition 6.9. Let , ̃ be two sets of vectors as in Definition 6.8. Then

 + ̃ ∶=  ∪ ̃ ∪ ( ⋅ ̃),

where  ⋅ ̃ is defined to be the set

⋅̃ ∶= {(H, H̃) ∶= (H1,… ,Ht, H̃1
, … , H̃t̃) ∶ H ∶= (H1, … ,Ht) ∈ , H̃ ∶= (H̃1

, … , H̃t̃) ∈ ̃}.

That is,  + ̃ comprises of all vectors that lie in , ̃, or that can be obtained by a concatenation

of a vector from  with a vector from ̃.

As an important example, defining (H,≤ t) ∶= {(H, s) ∶ 1 ≤ s ≤ t}, we have that

(H,≤ t1) +(H,≤ t2) = (H,≤ t1 + t2).

In what follows we will apply the following simple lemma repeatedly.

Lemma 6.10. Let r ∈ N and let x,y be two sets of vectors of (r + 1)-vertex graphs, each of which
is endowed with a tuple of distinguished vertices and suppose that tx ∶= |x| and ty ∶= |y| are both
finite. Suppose G is a sufficiently large n-vertex graph and x, y∈V(G). Suppose there exist 𝛽x, 𝛽y, 𝜖 > 0,
and some subset U ⊆V(G) with |U| ≥ 𝜖n such that for every z∈U, x and z are (x; 𝛽x)-reachable
and z and y are (y; 𝛽y)-reachable. Then x and y are (x +y; 𝛽)-reachable for 𝛽 ∶= 𝜖𝛽x𝛽y

2txty
> 0.

Proof. By the pigeonhole principle, there exists some U′ ⊆U such that |U′| ≥
𝜖n
txty

and some

Hx ∈ x, Hy ∈ y such that for every z∈U′, z and x are (Hx; 𝛽x)-reachable and z and y are

(Hy; 𝛽y)-reachable. Suppose Hx has length sx and Hy has length sy. Thus, fixing z∈U′, there are at least

𝛽x𝛽yn(sx+sy)r−2 pairs of labeled vertex sets Sx and Sy in G such that there is an embedding of an Hx-path

on Sx ∪ {x, z} mapping endpoints to {x, z} and an embedding of a Hy-path on the vertices Sy ∪ {y, z}

which maps the endpoints to {y, z}. Of these pairs, at most

sxsyr2n(sx+sy)r−3

are not vertex disjoint or they intersect {x, y}. Hence, as n is sufficiently large we have at least
𝛽x𝛽y

2
n(sx+sy)r−2 vertex disjoint pairs which together form an embedding of an (Hx,Hy)-path. As we have

at least
𝜖

txty
n choices for z, this gives that x and y are ((Hx,Hy); 𝛽)-reachable and (Hx,Hy) ∈ x +y.

▪

We now turn to proving reachability in Case 3. The following two lemmas together find the partition

we will work on. Similar ideas have been used in [19,22].

Lemma 6.11. Suppose 𝛾 > 0 and n, r, k, q ∈ N such that r/2< k≤ r − 1, r = k+ q and n is sufficiently
large. Let c ∶= ⌈r∕q⌉ and for t ∈ N define 

t ∶= (H0,≤ 2t) = {(H0, s) ∶ 1 ≤ s ≤ 2t}, where
H0 = (K2

k,q+1, 2, 2) is as defined in Definition 6.3 with distinguished vertices w1 and w2.

Then there exists constants 0 < 𝛽′3 = 𝛽′3(r, k, 𝛾) ≪ 𝛼 = 𝛼(r, k, 𝛾) such that any n-vertex graph G
of minimum degree 𝛿(G) ≥ (1 − k

r
+ 𝛾)n can be partitioned into at most c− 1 parts, each of which is

(c; 𝛽′3)-closed and of size at least 𝛼n.
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Proof. First, observe that there is some 𝜂 = 𝜂(r, k, 𝛾) > 0 such that in every set of at least

c vertices, there are two vertices which are ((H0, 1); 𝜂)-reachable. Indeed, fix some arbitrary set

of vertices S= {v1, … , vc}⊂V(G), and for v∈V =V(G), define dS(v):= |{i∈ [c] : vvi ∈E(G)}|. Let

𝑑S ∶=
∑

v∈V𝑑S(v)∕n be the average. Then we have that

∑
v∈V

𝑑S(v) =
∑
i∈[c]

𝑑G(vi) ≥ c
(

1 − k
r
+ 𝛾

)
n ≥ (1 + c𝛾)n.

Thus
∑

v∈V

(
𝑑S(v)

2

)
≥ n

(
𝑑S
2

)
≥

(c𝛾)2

2
n by Jensen’s inequality. By averaging over all pairs we have that

there exists a pair i≠ j∈ [c] so that both vi and vj are in the neighborhood of at least 𝛾2n vertices. That

is, |NG(vi) ∩ NG(vj)| ≥ 𝛾2n.

Therefore there are at least 𝛾3n2 edges in G with one endpoint in NG(vi)∩NG(vj). Applying

Lemma 2.6 this ensures that there is 𝜂 = 𝜂(r, k, 𝛾) > 0 so that there are 𝜂nr−1 copies of K2
k,q−1 where

the first vertex class lies in NG(vi)∩NG(vj). Thus together they form copies of H0 with distinguished

vertices vi and vj; so vi and vj are ((H0, 1); 𝜂)-reachable in G.

Note also that there is some fixed 𝛼′ = 𝛼′(r, k, 𝛾) > 0 such that |N(H0,1),𝛼′ (v)| ≥ 𝛼′n for every

v∈V(G). Indeed, this follows as there are at least (𝛾n)2∕2 edges in G with one endpoint in NG(v). So,

by Lemma 2.6, there is a fixed 𝛼′′ = 𝛼′′(r, k, 𝛾) > 0 such that there are at least 𝛼′′nr embeddings of

H0 which map w1 to v. Setting 𝛼′ ∶= 𝛼′′∕3, this implies that there are at least 𝛼′n vertices which are

((H0, 1); 𝛼′)-reachable to v.

Now let 0 < 𝜖 ≪ 𝛼′, 𝜂 =∶ 𝜂0 and 𝜂i ∶= 𝜖4

22i+1 𝜂i−1 for i= 1, … , c. Set 𝛽′3 ∶= 𝜂c. As in the statement

of the lemma, define 
t ∶= (H0,≤ 2t) for values of t≤ c and note that t + 

t = 
t+1. We will

be interested in (t; 𝜂t)-reachability and so we will use the shorthand notation Ñt(v) ∶= N
t ,𝜂t
(v).

Let 𝓁 be the maximal integer such that there exists a set of 𝓁 vertices, v1, … , v𝓁 with vj and vj′ not
(c−𝓁; 𝜂c−𝓁)-reachable for any pair j≠ j′ ∈ [𝓁].

Suppose 𝓁 = 1. Then V(G) is (c−1; 𝜂c−1)-closed. As c−1 ⊆ 
c and 𝜂c−1 > 𝛽′3, the lemma holds

in this case.

We also have that 𝓁 ≤ c− 1 from our observations above, so we can assume 2≤𝓁 ≤ c− 1. Now fix

such a set of 𝓁 vertices, v1, … , v𝓁 . We make the following two observations:

(i) Any v∈V(G) ∖ {v1, … , v𝓁} is in Ñc−𝓁−1(vj) for some j∈ [𝓁] from our definition of 𝓁, as

otherwise v could be added to give a larger family contradicting the maximality of 𝓁.

Indeed, this follows because two vertices that are not (c−𝓁; 𝜂c−𝓁)-reachable are certainly not

(c−𝓁−1; 𝜂c−𝓁−1)-reachable by definition.

(ii) |Ñc−𝓁−1(vj) ∩ Ñc−𝓁−1(vj′ )| ≤ 𝜖n for every pair j≠ j′ ∈ [𝓁]. This follows from Lemma 6.10 as

otherwise we would have that vj and vj′ are (c−𝓁; 𝜂c−𝓁)-reachable, a contradiction.

We define Uj ∶= (Ñc−𝓁−1(vj)∪{vj})∖(
⋃

j′∈[𝓁]∖{j}Ñc−𝓁−1(vj′ )) for j∈ [𝓁], and U0:=V(G) ∖ ∪j∈ [𝓁]Uj.

Now for j∈ [𝓁], we have that Uj is (c−𝓁−1; 𝜂c−𝓁−1)-closed. Indeed, if there was a j∈ [𝓁] and u1, u2 ∈Uj

not reachable, then {u1, u2}∪ {v1, … , v𝓁} ∖ {vj}, is a larger family contradicting the definition of 𝓁.

Thus, the Uj almost form the partition we are looking for except that it remains to consider the vertices

in U0. For these, we greedily add them to the other Uj: We have that for each u∈U0,

|N(H0,1),𝛼′ (u) ∖ U0| ≥ 𝛼′n − |U0| ≥ 𝛼′n −
(
𝓁
2

)
𝜖n ≥ 𝓁𝜖n. (6.1)
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Here the second inequality holds due to (i), (ii) and the definition of the Uj; the final inequality

holds by our choice of 𝜖. Thus, there is a j such that |N(H0,1),𝛼′ (u) ∩ Uj| ≥ 𝜖n, and we add u to this Uj,

arbitrarily choosing such a j if there are multiple choices. Let V1, … , V𝓁 be the resulting partition.

Applications of Lemma 6.10 show that each Vj is (c; 𝜂c)-closed. Indeed suppose, for example,

that w1 and w2 are two vertices that lie in U0 and are added to Uj in the process of defining Vj. Then

for each i= 1, 2, taking Wi = N(H0,1),𝛼′ (wi) ∩ Uj, an application of Lemma 6.10 with U =W1 gives

that for any x∈Uj, w1 and x are (′; 𝜂′)-reachable where 
′ = (H0,≤ 2c−𝓁−1 + 1) and 𝜂′ =

𝜀𝛼′𝜂c−𝓁−1∕2c−𝓁 . Another application of Lemma 6.10, this time with U =W2 then gives that w1 and w2

are (′′; 𝜂′′)-reachable with 
′′ = (H0,≤ 2c−𝓁−1+2) ⊆ 

c and 𝜂′′ = 𝜀𝜂′𝛼′∕(2c−𝓁+2) > 𝜂c−𝓁 > 𝛽′3.

Showing other cases of reachability within each Vj are similar. We are now done since for each j∈ [𝓁],

|Vj| ≥ |Uj| ≥ |N(H0,1),𝛼′ (vj) ∖ (N(H0,1),𝛼′ (vj) ∩ U0)| (ii)
≥ 𝛼′n − 𝓁𝜖n = 𝛼n,

where 𝛼 ∶= 𝛼′ − 𝓁𝜖 ≫ 𝜂c−𝓁 ≥ 𝜂c = 𝛽′3. ▪

The rough idea for how to handle Case 3 is to run the same proof as in the other cases on each part
of the partition given by Lemma 6.11. The point of Lemma 6.11 is that we recover the reachability

within each part, albeit at the expense of allowing a family of possible paths used for reachability.

However, in the process, we lose the minimum degree condition within each part. The purpose of

the next proposition is to fix this, by adjusting parameters and making the partition coarser. Thus, we

recover a minimum degree condition which is not quite as strong as what we had previously but good

enough to work with in what follows.

Proposition 6.12. Suppose 𝛾 > 0 and n, r, k, q ∈ N such that r/2< k≤ r − 1, r = k+ q and n is
sufficiently large. Let c ∶= ⌈r∕q⌉ and let H0 = (K2

k,q+1, 2, 2) as defined in Definition 6.3 and H′
0 =

(K2
k,q+1, 1, 2) be the same graph with distinguished vertices in distinct parts of the bipartition7 (see

Figure 4). We define the following family of vectors of (r + 1)-vertex graphs (endowed with tuples of
vertices):

3 ∶=
c(2c+1+1)⋃

t=3

{H ∈ {H0,H′
0}t ∶ H[1] = H[t] = H0 and H[i] = H′

0 for some 2 ≤ i ≤ t − 1},

where H[i] denotes the ith entry of H.

Then for all 𝜀> 0, there exists constants 0 < 𝛽3(r, k, 𝛾, 𝜀) ≪ 𝛼(r, k, 𝛾) such that for any n-vertex
graph G with minimum degree 𝛿(G) ≥ (1 − k

r
+ 𝛾)n there is a partition  of V(G) into at most c− 1

parts such that each part U ∈  satisfies the following:

(i) |U| ≥ 𝛼n;
(ii) All but at most 𝜀n vertices v∈U satisfy |NG(v) ∩ U| ≥ (1 − k

r
+ 𝛾

2
)|U|;

(iii) U is (3; 𝛽3)-closed.

Proof. This is a simple case of adjusting the partition already obtained after applying Lemma 6.11.

Let 𝛼, 𝛽′3 be defined as in the outcome of Lemma 6.11 and let  ′ be the partition of V(G) obtained,

with vertex parts denoted V1, … , Vs. Fix 𝜇 ∶= 𝜀𝛼𝛾∕2c3. We create an auxiliary graph J on vertex

7This is analogous to the graph H′
0

defined in Proposition 6.7.
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H0

0H

H0

H0

FIGURE 4 An example of H0, H0, H′
0

and H′
0

for Case 3 (c) r = 6, k= 4, q= r* = 2 (see Definitions 6.1-6.3 and

Proposition 6.12 for the definitions)

set {V1, … , Vs} where for i≠ j∈ [s] we have an edge ViVj in J if and only if there are at least 𝜇n2

edges in G with one endpoint in Vi and one in Vj. Then our new partition  in G will come from the

connected components of J. That is, if C1, … , Ct are the components of J, then for i∈ [t], we define

Ui ∶= ∪j∶Vj∈Ci Vj and let  consist of the Ui with i∈ [t]. Then certainly point (i) of the hypothesis is

satisfied for all Ui. Also (ii) is satisfied. Indeed, suppose there exists i∈ [t], with 𝑑Ui(v) ∶= |NG(v) ∩
Ui| < (1− k

r
+ 𝛾

2
)|Ui| for at least 𝜀n vertices of Ui. Thus, for such vertices |NG(v) ∩ (V(G) ∖Ui)| ≥ 𝛾𝛼

2
n

and by averaging there exists some Vj(v) ∈  ′ such that Vj(v) ∩Ui =∅ and 𝑑Vj(v) (v) ≥
𝛾𝛼

2c
n. We average

again to conclude that there is some j, j′ ∈ [s] such that Vj ⊂Ui, Vj′ ∩Ui =∅ and Vj contains at least

𝜀n/c2 vertices v which have degree into Vj′ 𝑑Vj′ (v) ≥
𝛾𝛼

2c
n. This contradicts our definition of J as then

VjVj′ should be an edge of J and thus in the same part of  .

Thus it only remains to establish reachability. We begin by proving the following claim which is a

slight variation of Lemma 6.10.

Claim 6.13. Let c be as defined in Lemma 6.11. Suppose x, y∈V(G) and that there exist (not
necessarily disjoint) sets Sx, Sy ⊂V(G) such that for any zx ∈ Sx, x and zx are (c; 𝛽′3)-reachable and
for any zy ∈ Sy, y and zy are (c; 𝛽′3)-reachable. If there exists at least 𝜇n2 edges with one endpoint
in Sx and one endpoint in Sy, then x and y are (H; 𝛽′′3 )-reachable for some 𝛽′′3 = 𝛽′′3 (𝜇, 𝛽′3, c) > 0 and
H ∈ 3 of length at most 2c+ 1 + 1.

Indeed letting w′
1,w′

2 be the distinguished vertices of H′
0, we have, by Lemma 2.6, that there are

at least 𝜇′nr+1 embeddings of H′
0 into G which map w′

1 to Sx and w′
2 to Sy for some 𝜇′ = 𝜇′(𝜇) > 0.

By averaging, there exists Hx,Hy ∈ 
c such that there are

𝜇′

22c nr+1 embeddings of H′
0 such that the

image of w′
1 and x are (Hx; 𝛽′3)-reachable and the image of w′

2 and y are (Hy; 𝛽′3)-reachable. By con-

sidering the embeddings of Hx, Hy and H′
0 which join to give an embedding of an (Hx,H′

0,Hy)-path

(that is, ignoring choices of embeddings which are not vertex disjoint), we see that x and y are

((Hx,H′
0,Hy), 𝛽′′3 )-reachable with 𝛽′′3 ∶= 𝜇′𝛽′2

3

22c+1 . This completes the proof of the claim.

Recall the partition  ′ = {V1,V2, … ,Vs}. Further consider any part U ∈  . First suppose U =Vj
for some j. Now given any x, y∈U, by Lemma 6.11, x and y are already (H0, s)-reachable for some

s≤ 2c. However, (H0, s) does not contain a copy of H′
0 and so is not a valid vector in the family 3. We

therefore apply Claim 6.13 with Sx = Sy =Vj ∖ {x, y}, to conclude that x and y are (H; 𝛽′′3 )-reachable for

some H ∈ 3 of length at most 2c+ 1 + 1. Indeed since Vj sends fewer than 𝜇n2 edges out to any other

part Vi of  ′ and |Vj| ≥ 𝛼n, the minimum degree condition on G ensures that there are at least 2𝜇n2

edges in G[Vj] and hence 𝜇n2 edges in Sx = Sy allowing Claim 6.13 to be applied.

Next suppose U is the union of more than one part from  ′. If x∈Vi ⊆U and y∈Vj ⊆U, for

i≠ j∈ [s] and ViVj ∈E(J) as defined above, we can again can apply Claim 6.13 to conclude x and

y are (H; 𝛽′′3 )-reachable for some H ∈ 3 of length at most 2c+ 1 + 1. Therefore, we just need to
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w1

w2

w3

w4

FIGURE 5 An (H,K3)-absorbing gadget with H ∶= {Hi,j ∶ i ∈ [3], j ∈ [4]} such that each Hi,j = (K−
4
, 3). The base set of the

absorbing gadget is W:= {w1, w2, w3, w4}

establish reachability for vertices x, y such that x∈Vi, y∈Vj with ViVj ∉E(J) but such that Vi and

Vj are in the same component of J. If i≠ j, there is a path of (at most c) edges from Vi to Vj in J; if

i= j there is a walk of length 2≤ c in J that starts and ends at Vi =Vj (i.e., traverse a single edge in J).

In both cases we can repeatedly apply Lemma 6.10 to derive that x and y are (3; 𝛽3)-reachable with

𝛽3 ∶=
(

𝛼𝛽′′
3

2(2
c+1+2)

)c
. It is crucial here that we apply Claim 6.13 in all cases to establish the reachability

here (even when i= j) in order to guarantee that the vectors witnessing the reachability contain a copy

of H′
0 and hence indeed lie in 3.

▪

We remark that the reason for the introduction of H′
0 in Proposition 6.12 is two-fold. First, it allows

us to establish reachability between parts from Lemma 6.11 which have many edges between them.

Moreover, as in Proposition 6.7, we have that for every H ∈ 3, if P is an H-path, then the endpoints

of P are in distinct connected components on P (see Figure 6 for an example), which is something that

we will require later.

6.1.2 Absorbing gadgets
In this section, we will focus on larger subgraphs which we look to embed in our graph and which will

be used as part of an absorbing structure. These are formed by piecing together the H-paths of the pre-

vious section and the aim will be to obtain subgraphs with even more flexibility, in that they will be able

to contribute to a tiling in many ways. The key definition is a graph which we call an absorbing gadget.

Definition 6.14. Let r, s ∈ N, let H be an r-vertex graph and let H ∶= {Hi,j ∶ i ∈ [r], j ∈ [s]}
be a labeled family of vectors of (r + 1)-vertex graphs (with tuples of distinguished vertices). Then an

(H,H)-absorbing gadget is a graph obtained by the following procedure. Take disjoint Hi,j-paths for

1≤ i≤ r and 1≤ j≤ s and denote their endpoints by ui, j and vi, j. Place a copy of H on {vi, j : i∈ [r]} for

each j∈ [s]. For 2≤ i≤ r, identify all vertices {ui, j : 1≤ j≤ s} and relabel this vertex ui. Finally relabel

u1, j as wj for j∈ [s] and let W:= {w1, w2, … , ws}, which we refer to as the base set of vertices for the

absorbing gadget.

An example of an absorbing gadget is given in Figure 5. Recall that we always consider K−
r+1 to

have two distinguished vertices which form the only nonedge of the graph. In the previous section we
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commented on how a (K−
r+1, t)-path P with endpoints x and y has two Kr-tilings covering all but one

vertex; the first misses x, the other misses y. The point of the absorbing gadget is to generalize this

property, giving a graph which can use any one of a number of vertices (the base set) in a Kr-tiling.

In more detail, suppose s, t∗ ∈ N and  = (K−
r+1,≤ t∗) = {(K−

r+1, t) ∶ 1 ≤ t ≤ t∗} as defined in the

previous subsection. Let H ∶= {Hi,j ∶ i ∈ [r], j ∈ [s]} where each Hi,j is an element from . Then an

(H,Kr)-absorbing gadget F with base set W = {w1, … , ws} has the property that for any j∈ [s], there

is a Kr-tiling covering precisely (F ∖W)∪ {wj}. Indeed, we have that for all j′ ≠ j and i∈ [r], there is a

Kr-tiling of the Hi,j′ -path Pi, j′ which uses8 vi, j′ and not the other endpoint of Pi, j′ . Then there is a tiling

of the H1,j-path which uses wj, a tiling of the Hi,j-path for 2≤ i≤ r which uses ui and a copy of Kr on

{vi, j : i∈ [r]} which completes the desired Kr-tiling.

As in the previous subsection, we begin by showing that there are many absorbing gadgets in

the deterministic graph. Again, although we are interested in (H,Kr)-absorbing gadgets for some H
consisting of vectors, all of whose entries are K−

r+1, we split the edges of our absorbing gadget and rely

on the deterministic graph to provide many copies of a subgraph of the gadget. In particular, we will

use here our paradigm Hdet, defined in Definition 4.1. The following general proposition allows us to

show that we can find many absorbing gadgets if all the vertices which we hope to map the base set

to, are reachable to each other.

Definition 6.15. Let r, s ∈ N. Let  be a finite set of vectors, such that each entry of each vector in

 is an (r + 1)-vertex graph with a tuple of distinguished vertices. We write (r× s) for the collection

of all ordered labeled sets H ∶= {Hi,j ∶ i ∈ [r], j ∈ [s]} where each Hi,j is an element from . If 

consists of a single vector H we write H(r × s) ∶= (r × s). That is, H(r × s) is the ordered labeled

(multi)set with each element a copy of H.

Proposition 6.16. Let 𝛼, 𝛾, 𝛽′ > 0, q, k, r ∈ N and let  be a finite set of vectors, such that each
entry of each vector in  is an (r + 1)-vertex graph with a tuple of distinguished vertices.

Then there exists 𝛽 = 𝛽(𝛼, 𝛾, 𝛽′, q, k, r,) > 0, such that for sufficiently large n, if G is an n-vertex
graph with vertex subset U ⊆V(G) such that U is (; 𝛽′)-closed, |U| ≥ 𝛼n and 𝛿(G[U]) ≥ (1 − k

r
+

𝛾)|U|, then for any set X = {x1, … , xs}⊂U with |X|≤q, there exists some H ∈ (r × s) and some
(H,Hdet)-absorbing gadget F with base set W = {w1, … , ws} such that there are at least 𝛽nv(F)−s

embeddings of F in G which map wi to xi for i∈ [s].

Proof. First notice that for a fixed s≤ q, there is a finite number (i.e., ||rs) of (H,Hdet)-absorbing

gadgets F such that H ∈ (r × s) and F has a base set of size s. Let s be the set of all such absorbing

gadgets, let f ∶= |s| and set Q ∶= max{|F| − s ∶ F ∈ s}. We claim that there is some 𝛽′′ =
𝛽′′(𝛼, 𝛾, 𝛽′, q, k, r,) > 0 such that with G and U as in the statement of the proposition and X ⊂U of

size s, there are at least 𝛽′′nQ subsets S⊆V(G) ∖X of Q ordered vertices such that there is an embedding

of some F ∈ s in G which maps the base set of F to X and the other vertices to a subset9 of S. Given

this claim, the conclusion of the proposition follows easily. Indeed, by averaging we get that there is

some F ∈ s and at least (𝛽′′∕f )nQ ordered subsets S of Q vertices in V(G) as above, that correspond to

an embedding of F. Then setting 𝛽 ∶= 𝛽′′∕(Q!f ), we get that there must be at least 𝛽n|F|−s embeddings

of F in G which map the base set to X. Indeed for each such embedding F′ of F, the vertex set V(F′) ∖X
lies in at most Q!nQ− (|F|−s) different ordered sets of vertices S⊆V(G).

So it remains to find these 𝛽′′nQ ordered subsets S. We will show that S can be generated in a

series of steps so that every time we choose some a vertices, we have Ω(na) choices. We will use the

8We label all vertices in this discussion as in Definition 6.14.
9In particular, if |F|<Q then not all of the vertices of S are used in this embedding.
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notation of Definition 6.14. First we select r − 1 vertices Y = {y2, y3, … , yr} in U ∖X which we can

do in
(|U∖X|

r−1

)
= Ω(nr−1) many ways. Now repeatedly find disjoint copies of Hdet in U ∖ (X ∪Y) and

label these {zi, j : 1≤ i≤ r, 1≤ j≤ s} such that {zi, j : 1≤ i≤ r} comprise a copy of Hdet for each j∈ [s].

In order to do this we repeatedly apply Lemma 2.6 and the degree condition which we can take to be

𝛿(G[U]) ≥ (1 − k
r
+ 𝛾

2
)|U| (ignoring any neighbors of vertices that have already been chosen in S).

Hence there are Ω(nrs) choices for these copies of Hdet.

Now for 2≤ i≤ r and 1≤ j≤ s, we have that yi and zi, j are (Hi,j, 𝛽
′)-reachable for some Hi,j ∈  of

length ti, j say. Thus there are 𝛽′nrti,j−1 embeddings of an Hi,j-path P in G which map the endpoints of P
to {yi, zi, j}. We ignore those choices of embeddings of P which use previously chosen vertices of S, of

which there are O(nrti,j−2). Similarly, for 1≤ j≤ s, xj and z1, j are (H1,j, 𝛽
′)-reachable for some H1,j ∈ ,

so select an embedding of an H1,j-path in G which maps the endpoints to {xj, z1, j} and has all other

vertices disjoint from previously chosen vertices. This gives an embedding of an (H,Hdet)-absorbing

gadget in G which maps the base set W to X, ui, j to zi, j for i∈ [r], j∈ [s] and maps ui to yi for i∈ [r].

Choosing unused vertices arbitrarily until we have a set S of Q vertices, the claim and hence the proof

of the proposition are settled. ▪

6.2 The absorbing structure—random edges

In this section, we will introduce the edges of G(n, p) and show that G∪G(n, p) contains the absorbing

structure we desire. The absorbing structure will be formed by choosing absorbing gadgets rooted on

certain prescribed sets of vertices. The absorbing gadgets will be (H,Kr)-absorbing gadgets F* for

some H consisting of vectors whose entries are all K−
r+1. In order to obtain these absorbing gadgets,

we consider the absorbing gadgets of just deterministic edges which we looked at in the previous

section and show that with high probability, one of these matches up with random edges to get the

required subgraph F*. We begin by investigating the absorbing gadgets that we look for in the random

graph.

6.2.1 Absorbing gadgets in the random graph
Recalling Definitions 4.1 and 6.14, let H ∶= {Hi,j ∶ i ∈ [r], j ∈ [s]} be a labeled family of vectors of

(r + 1)-vertex graphs and suppose that there is an embedding 𝜙 of an (H,Hdet)-absorbing gadget F′ in

G which maps the base set of the gadget to some U ⊂V(G), with |U|=s. Recalling Definition 6.4, define

H ∶= {Hi,j ∶ i ∈ [r], j ∈ [s]}. Now in order to complete this absorbing gadget F′ into one which has

the form that we require, we have to find a labeled embedding of an (H,Hdet)-absorbing gadget F onto

the ordered vertex set 𝜙(V(F′)) in G(n, p). The following lemma will be used to show that there are

sufficiently many embeddings in G(n, p) of the necessary Fs defined as above. It is worth noting that

as F is uniquely defined by F′, it is in fact the way that we chose our deterministic absorbing gadgets,

that guarantees the following conclusions.

Lemma 6.17. Let k, r, s ∈ N and C > 1, with 2≤ k≤ r and suppose p= p(n)≥Cn−2/k. Suppose H is
such that:

1. H ∈ H1(r × s) if r∕k ∈ N, recalling the definition of H1 from Proposition 6.6;
2. H ∈ H2(r × s) if r∕k ∉ N and k< r/2, recalling the definition of H2 from Proposition 6.7;
3. H ∈ 3(r × s) if k> r/2, recalling the definition of 3 from Proposition 6.12.

Then if F is an (H,Hdet)-absorbing gadget with base set W such that |W |=s, we have that ΦF∖W ≥ Cn
and ΦF,W ≥ Cn1∕k.
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(a) (b) (c)

FIGURE 6 Some examples of H-paths for various H (see Definition 6.4 and Propositions 6.6,6.7 and 6.12 for relevant

definitions): 1. (a) An H1 path with r = 9 and k= q= r* = 3. 2. (b) An H2 path with r = 11, k= 3, q= 2 and r* = 4. 3. (c) An

H3-path where H3 = (H0,H′
0
,H′

0
,H0) ∈ 3 and we have r = 6, k= 4 and q= r* = 2

Proof. We recommend that the reader refers to the examples in Figure 6 to help visualize some of

the ideas in this proof. Note that as the endpoints of an H1-path are isolated, we have that the base set of

an (H1(r×s),Hdet) absorbing gadget F is also an isolated set of vertices and so ΦF,W = ΦF∖W . Defining

Kk +Kk as two copies of Kk which meet in a singular vertex, we have that F ∖W consists of disjoint

copies of Kk and r × s disjoint copies of Kk +Kk, one for each H1-path used in F. Therefore Lemma 2.7

(1) shows that ΦKk ≥ Cn, and repeated applications of Lemma 2.7 (3) show that ΦKk+Kk ≥ Cn and in

turn ΦF∖W ≥ Cn as required.

Case 2 is similar. Here we have that q= r − k⌊r/k⌋< k and each of the base vertices w of F lie in

a copy, say Fw, of the graph defined as follows. Take a copy of K−
q+1 and a copy of Kk that meet in

exactly one vertex, which is one of the vertices of the nonedge in K−
q+1. Furthermore, we have that the

base vertex w is the other vertex in the nonedge of this copy of K−
q+1. We have that each of the Fw is

disconnected from the rest of F and an application of Lemma 2.7 (1), (2) and (3) gives that ΦFw∖w ≥ Cn
and ΦFw,w ≥ Cn1∕k if q≥ 2. If q= 1, then Fw is an isolated vertex w and a copy of Kk so we have

ΦFw,w = ΦFw∖w ≥ Cn. Now note that F ∖ (∪w∈WFw) consists of copies of Kk, K−
q+1, Kq+ 1 and a copy

of Kq (in the copy of Hdet in F) which intersect each other in at most one vertex. Furthermore, one can

view F ∖ (∪w∈WFw) as being “built up” from these copies in the following way: there is an ordering

(starting with Hdet) on these copies of Kk, K−
q+1, Kq+ 1 and Kq such that, starting with the empty graph

and adding these copies in this order, each new copy shares at most one vertex with the previous copies

already added, and at the end of the process we obtain F ∖ (∪w∈WFw). Each time we add a copy, we

can apply Lemma 2.7 (3) and then again to add in the Fw (to obtain F). This leads us to conclude that

ΦF∖W ≥ Cn and ΦF,W ≥ Cn1∕k as required.

In Case 3, let q= r − k< k and let us fix some H ∈ 3(r × s) which then defines our F. For each

w∈W, let Fw be the connected component of F which contains w. Due to the definition of 3, and in

particular the fact that each H ∈ 3 contains a copy of H′
0 as defined in Proposition 6.12, we have that

Fw ≠Fw′ for all w≠w′ ∈W. Also, for q≥ 2, it can be seen that Fw is a graph obtained by sequentially

“gluing” copies of K−
q+1 to vertices of degree q− 1 and that w is a vertex of degree q− 1 in the resulting

graph. Similarly to the previous case, applications of Lemma 2.7 (2) and (3) imply that ΦFw∖w ≥ Cn
and ΦFw,w ≥ Cn1∕k if q≥ 2 and if q= 1, we see that Fw is an isolated vertex, namely w itself. Also

as before, we have that F ∖ (∪w∈WFw) consists of copies of Kk, K−
q+1, Kq+ 1 and a copy of Kq which
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intersect each other in at most one vertex. Thus, introducing the ordering of these copies as in Case 2,

we can apply Lemma 2.7 repeatedly to obtain the desired conclusion. ▪

We will use Lemma 6.17 to prove the existence of our desired absorbing gadgets in

G′ =G∪G(n, p). Before embarking on this however, we need to know how we wish our absorbing

gadgets (in particular their base sets) to intersect in G′. This is given by the notion of a template in the

following subsection.

6.2.2 Defining an absorbing structure
A template T with flexibility m ∈ N is a bipartite graph on 7m vertices with vertex classes I and J1 ⊔ J2,

such that |I|=3m, |J1|= |J2|=2m, and for any J ⊂ J1, with |J| = m, the induced graph T[V(T) ∖ J] has a

perfect matching. We call J1 the flexible set of vertices for the template. Montgomery first introduced

the use of such templates when applying the absorbing method in his work on spanning trees in random

graphs [42,43]. There, he used a sparse template of maximum degree 40, which we will also use.

It is not difficult to prove the existence of such templates for large enough m probabilistically; see,

for example, [42, Lemma 2.8] . The idea has since be used by various authors in different settings

[16,17,20,21,39,44]. We will use a template here as an auxiliary graph in order to build an absorbing

structure for our purposes.

Definition 6.18. Let m, t∗ ∈ N and T = (I = {1, … , 3m}, J1 ⊔ J2 = {1, … , 2m}⊔ {2m+ 1, … ,

4m}, E(T)) be a bipartite template with maximum degree Δ(T) ≤ 40 and flexibility m as defined

above. Furthermore, let

 ∶= (K−
r+1,≤ t∗) = {(K−

r+1, t) ∶ 1 ≤ t ≤ t∗}

be the set of vectors of length at most t* whose entries are all K−
r+1.

A (t*-bounded) absorbing structure  = (Φ,Z,Z1) of flexibility m in a graph G′ consists of a

vertex set Z = Z1 ⊔Z2 ⊂V(G′) which we label Z1:= {z1, … , z2m} and Z2:= {z2m+ 1, … , z4m} and a set

Φ ∶= {𝜙1, … , 𝜙3m} of embeddings of absorbing gadgets into G′. We require the following properties:

• For i∈ [3m], setting N(i):= {j : (i, j)∈E(T)⊂ I × J} and n(i):= |N(i)|, we have that 𝜙i is an embed-

ding of some (H,Kr)-absorbing gadget Fi such that H ∈ (r × n(i)) and the base set of Fi, which

we denote Wi, is mapped to {zj : j∈N(i)}⊆Z by 𝜙i.

• The embeddings of the absorbing gadgets are vertex disjoint other than the images of the base sets.

That is, for all i∈ [3m], 𝜙i(V(Fi) ∖ Wi) ⊆ V(G′) ∖ Z and 𝜙i(V(Fi) ∖ Wi) ∩ 𝜙i′ (V(Fi′ ) ∖ Wi′ ) = ∅ for

all i≠ i′ ∈ [3m].

We call Z1 the flexible set of the absorbing structure.

Thus the absorbing structure is an embedding of a larger graph which is formed of 3m disjoint

absorbing gadgets whose base vertices are then identified according to a template of flexibility m. We

will refer to the vertices of  which are the vertices which feature in the embedding of this larger

graph. That is,

V() ∶ =
⨆

i∈[3m]
𝜙(V(Fi) ∖ Wi)

⨆
Z.

Remark 6.19. If  is a t*-bounded absorbing structure of flexibility m, then it has less than 125t*r2m
vertices in total.
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In our proof, we will bound t* by a constant and look for an absorbing structure on a small linear

number of vertices. The key property of the absorbing structure is that it inherits the flexibility of the

template that defines it, but in the context of Kr-tilings, as detailed in the following remark.

Remark 6.20. If G′ contains an absorbing structure  = (Φ,Z,Z1) of flexibility m, then for any

subset of vertices Z ⊂ Z1 such that |Z| = m, there is a Kr-tiling in G′ covering precisely V() ∖ Z.

Indeed given such a Z, letting J be the corresponding indices from J, we have that T ∖J has a perfect

matching. The matching then indicates, for each i∈ [3m], which vertex zji of Z to use in a tiling of the

corresponding absorbing gadget. That is, for each i, if 𝜙i is “matched” to zji by the perfect matching,

then we take the Kr-tiling covering 𝜙i(Fi ∖Wi)∪{zji} (which exists by the key property of the absorbing

gadget mentioned after Definition 6.14) and then take their union.

6.2.3 The existence of an absorbing structure
In order to prove the existence of an absorbing structure, we must find embeddings of absorbing gad-

gets in our graph. In the previous section we found many embeddings of certain absorbing gadgets

with deterministic edges and thus it remains to find embeddings of complementary absorbing gadgets,

using only random edges. Therefore we will turn to Lemma 2.8, which is a general result regarding

embeddings in random graphs. However, there is still some work to do in the application of this lemma

and the following proposition shows how we can use Lemma 2.8 repeatedly in order to embed a larger

graph. We state the proposition in a more general form than just for showing the existence of absorbing

structures as we will also use the result at other points in the proof. As the statement of the proposition

is somewhat technical, we recommend that the reader sees how it is applied in Corollaries 6.22,6.24

and 6.25 to help digest the statement.

Proposition 6.21. Let 𝜅𝑑, 𝜅w, 𝜅e, 𝜅v, k,∈ N and 𝛽 > 0. Then there exists 𝜂0 > 0 and C > 0 such that
the following holds for any 0 < 𝜂 < 𝜂0, n ∈ N and t = 𝜂n ∈ N.

Suppose that F1, … , Ft are labeled graphs with distinguished base vertex sets Wi ⊂V(Fi) such
that |Wi| ≤ 𝜅w, vi ∶= |V(Fi) ∖ Wi| ≤ 𝜅v, e(Fi[Wi])= 0 and e(Fi) ≤ 𝜅e for all i∈ [t]. Suppose that
p= p(n) such that ΦFi∖Wi = ΦFi∖Wi(n, p) ≥ Cn and ΦFi,Wi = ΦFi,Wi(n, p) ≥ Cn

1

k for all i∈ [t]. Let V be
an n-vertex set, and U1, … , Ut ⊂V be subsets such that |Ui|= |Wi| for each i∈ [t], and defining

𝑑(i) ∶= |{j ∈ [t] ∶ Ui ∩ Uj ≠ ∅}|,
we have that 𝑑(i) ≤ 𝜅𝑑 . Finally, suppose that 1,2, … ,t are families of vertex sets such that each
i contains 𝛽nvi ordered subsets of V of size vi.

Then a.a.s. there is a set of embeddings 𝜙1, 𝜙2, … , 𝜙t such that each 𝜙i embeds a copy of Fi into
G(n, p) on V with Wi being mapped to Ui and V(Fi) ∖Wi being mapped to a set in i which does not
intersect ∪i∈ [t]Ui. Furthermore for i≠ i′, we have that 𝜙i(V(Fi) ∖ Wi) ∩ 𝜙i′ (V(Fi′ ) ∖ Wi′ ) = ∅.

Proof. Fix 𝜅′
v ∶= 𝜅v + 2𝜅e and let 𝜂0 < 𝛽22−(𝜅′

v+2𝜅e+9)(𝜅′
v!(𝜅′

v + 𝜅e + 𝜅w))−1. The idea here is to

greedily extract the desired embeddings, finding them one at a time in G(n, p). To achieve this, we use

the multi-round exposure trick, having a constant number of phases such that in each phase we find a

collection of embeddings. At the beginning of each phase we “reveal” another copy of G(n, p) on the

same vertex set and focus only on the indices for which we have not yet found a suitable embedding,

showing that in any sufficiently large subset of these indices there is an index for which we can find
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a suitable embedding. At each phase, we will apply Lemma 2.8 and so we first need to slightly adjust

the sets we are considering in order to be in the setting of that lemma.

First let us adjust each Fi so that it has 𝜅′
v nonbase vertices and 𝜅e edges. To each Fi add 𝜅e − e(Fi)

isolated edges. Then add isolated vertices until the resulting graph has 𝜅′
v + |Wi| vertices and redefine

Fi as the resulting graph. Note that if p= p(n) is such that ΦFi∖Wi(n, p) ≥ Cn and ΦFi,Wi (n, p) ≥ Cn
1

k

for the original Fi as in the statement of the proposition, then these conditions are preserved under the

above changes to Fi for each i, by Lemma 2.7. We also arbitrarily extend each set in each i to get

sets of size 𝜅′
v. As we can extend with any vertices not already in the set, it can be seen that we can

have families i of size at least 𝛽′n𝜅′
v for some 𝛽′ > 𝛽∕(2𝜅′

v) which we now fix. Clearly, a set of valid

embeddings of these new Fi (where the new vertices of Fi are mapped to the new vertices from a set

in i
10) will also yield a set of embeddings of the original graphs we were interested in.

Now let us turn to the phases of our algorithm. We will generate G(n, p) in k+ 1 rounds

so that G(n, p) = ∪k+1
j=1 Gj with each Gj an independent copy of G(n, p′), where p′ is such that

(1− p)= (1− p′)k+ 1. Note that for any graph F, vertex subset W ⊂V(F), constant c> 0 and prob-

ability p, one has that ΦF∖W (n, cp) = c′ΦF∖W (n, p) for some constant c′ = c′ between 1 and ce(F ).

Likewise, multiplication of the probability by some constant c> 0 results in multiplication of ΦF,W by

some constant factor. Hence, choosing C > 0 sufficiently large, we can guarantee that if ΦFi∖Wi(n, p) ≥
Cn and ΦFi,Wi(n, p) ≥ Cn

1

k as in the statement of the proposition, then ΦFi∖Wi(n, p
′) ≥ C′n and

ΦFi,Wi (n, p
′) ≥ C′n

1

k with C′ such that C′ ≥
2k′v+9𝜅′

v!𝜅
′
v

𝛽′2
. We fix such a C > 0 and for j= 1, … , k, we

define tj ∶= 𝜂n1− j−1

k ((𝜅𝑑 + 1) log n)j−1 and sj ∶= tjn− 1

k log n = 𝜂n1− j
k (𝜅𝑑 + 1)j−1(log n)j. We also define

tk+1 ∶= (𝜅𝑑 + 1)sk = 𝜂((𝜅𝑑 + 1) log n)k, sk+ 1:= 1 and tk+ 2:= 0.

Now, as discussed, we look to choose embeddings one by one in order to reach the desired conclu-

sion. Therefore, for the sake of brevity, at any point in the argument let us say that an embedding 𝜙i of

Fi is valid if it maps Wi to Ui and maps V(Fi ∖Wi) to a set in i which is disjoint from U:=∪i∈ [t]Ui
and also disjoint from 𝜙i′ (V(Fi′ ∖ Wi′ )) for all indices i′ ∈ [t] for which we have already chosen an

embedding. Our claim is that a.a.s. (with respect to G(n, p)) we can repeatedly choose valid embed-

dings until we have found embeddings for all t indices in T:= {1, … , t}. We therefore need to show

that we never get stuck and that this greedy algorithm always finds a valid embedding. In order to do

this, we split the algorithm into k+ 1 phases and rely on the edges of Gj in the jth phase where we will

find tj − tj+ 1 valid embeddings. We will show that for all j∈ [k+ 1], conditioned on the fact that the

algorithm has succeeded so far, we have that a.a.s (with respect to Gj =G(n, p′)) the algorithm will

succeed for a further phase. The conclusion then follows easily as there are constantly many phases.

So let us analyze the jth phase and condition on the fact that the process has been successful so far

and so there are tj indices that remain for us to find embeddings for. Let us further fix a specific set11

of tj indices Tj ⊆T that remain and some set of already chosen valid embeddings {𝜙i ∶ i ∈ Rj} where

Rj:=T ∖ Tj. By the law of total probability, it suffices to condition on this fixed set of embeddings so far

and show that a.a.s. (with respect to Gj) we can repeatedly find valid embeddings, each time removing

the corresponding index from Tj, until there are tj+ 1 indices remaining. So let V ′′
j ∶= ∪i∈Rj𝜙i(V(Fi))∪U

and for i∉Rj, define 
(j)
i ∶= {S ∈ i ∶ S ∩ V ′′

j = ∅}. We have that | (j)
i | ≥ 𝛽′

2
n𝜅′

v as |V ′′
j | < 𝛽′

2
n

due to our condition on 𝜂0. We then apply Lemma 2.8 to the sets 
(j)
i such that i∈ Tj, and where

tj, sj,
𝛽′

2
, 𝜅′

v, 𝜅
′
v, 𝜅w, 𝜅e and p′ play the role of t, s, 𝛽,L, v,w, e and p respectively. Let us check that the

conditions needed for the lemma are satisfied. Indeed, we certainly have that 𝜅′
vtj ≤ 𝜅′

vt ≤ 𝛽′n
8𝜅′

v
, sj𝜅w ≤

10This will be guaranteed in applications of Lemma 2.8 as the lemma is concerned with labeled embeddings.
11Note that when j= 1 we must have that T1 = T .
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𝛽′n
8𝜅′

v
and

(
tj
sj

)
≤

(
n
sj

)
≤ 2n. Moreover, when 1≤ j≤ k,

C′sjn
1

k = C′tj log n ≥

(
2k′v+9𝜅′

v!𝜅′
v

𝛽′2

)
tj log n and C′n ≥

(
2𝜅′

v+9𝜅′
v!

𝛽′2

)
n,

by our definition of C′ whilst for j= k+ 1, C′sk+1n
1

k = 𝜔(tk+1 log n). This verifies the conditions in

(2.2) in all cases and so we conclude that a.a.s., given any set V ′
j of at most 𝜅′

vtj vertices and any set Sj
of sj indices in Tj such that the sets Ui with i∈ Sj are pairwise disjoint, there is an index i* ∈ Sj and a

valid embedding of Fi∗ in Gj which avoids V ′
j . This then implies that the greedy process will succeed

throughout this phase. Indeed, we can now initiate with V ′
j = ∅ and repeatedly find indices i∈Tj

for which we have a valid embedding 𝜙i. We add this embedding to our chosen embeddings, add the

vertices of it to V ′
j and delete the index i from Tj. The conclusion that we drew from Lemma 2.8 above

asserts that we continue this process until we have tj+ 1 indices remaining in Tj, which is precisely what

we need. Indeed, for 1≤ j≤ k, if we have more than tj+ 1 indices in Tj left then by the upper bound on

d(i) for i in Tj taking a maximal set S⊂ Tj such that Ui are all pairwise disjoint for i∈ S, we have that|S| ≥ tj+1∕(𝜅𝑑 +1) ≥ sj. In the final phase when j= k+ 1 we can simply find embeddings one at a time

as sk+ 1 = 1. This concludes the proof. ▪

As corollaries, we can conclude the existence of absorbing structures in G∪G(n, p). We split the

cases here as Case 1 and 2 are much simpler.

Corollary 6.22. Let k, r ∈ N such that either 2≤ k≤ r/2 or k= r and let 𝛾 > 0. There exists 𝜂0 > 0

and C > 0 such that if p≥Cn−2/k and G is an n-vertex graph with minimum degree 𝛿(G) ≥ (1− k
r
+𝛾)n,

then for any 0 < 𝜂 < 𝜂0 and any set of 2𝜂n vertices X1 ⊆V(G), a.a.s. there exists a 4-bounded
absorbing structure  = (Φ,Z,Z1) in G′:=G∪G(n, p) of flexibility m ∶= 𝜂n, which has flexible set
Z1 =X1.

Proof. We look to apply Proposition 6.21 and simply need to establish the hypothesis of the propo-

sition. Consider a bipartite template T = (I = {1, … , 3m}, J1 ⊔ J2 = {1, … , 2m}⊔ {2m+ 1, … ,

4m}, E(T)) as in Definition 6.18; recall such a template exists [42]. Fix Z1 =X1 = {z1, … , z2m} and

choose an arbitrary set of 2m vertices Z2 ⊂V(G) ∖ Z1 which we label {z2m+ 1, … , z4m}. Now towards

applying Proposition 6.21, we set t:= 3m and for i∈ [t] we define the sets Ui:= {zj : j∈N(i)} where

N(i) is as in Definition 6.18. Note that we can set 𝜅𝑑 ∶= 1600 as we start with a template T with

Δ(T) ≤ 40, so for any set N(i)⊂ J (of at most 40 vertices), there are at most 1600 indices i′ ∈ I = [3m]

such that N(i′)∩N(i)≠ ∅.

Now, fixing i, the collectioni, which we will use when applying Proposition 6.21, will be obtained

from Proposition 6.16. Indeed, this proposition implies, along with Propositions 6.6 and 6.7, that there

is some 𝛽 > 0 such that the following holds with a= 1 if r∕k ∈ N (Case 1) and a= 2 otherwise (Case 2).

Claim 6.23. For any set U of at most 40 vertices, there is an (Ha(r × |U|),Hdet)-absorbing gadget12

F′ such that there are at least 𝛽n|F′|−|U| embeddings of F′ in G which map the base set of the absorbing
gadget to U.

12Recall here the definition of H1 from Proposition 6.6, of H2 from Proposition 6.7 and Hdet from Definition 4.1. The notation

Ha(r × |U|) is also defined as in Definition 6.15.
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For each i, apply Claim 6.23 with Ui playing the role of U to obtain a collection i of ordered

vertex sets from V(G) that combined with Ui each span such an absorbing gadget F′
i = F′. For each

such embedding of F′
i , if we have an ordered (Ha(r × |Ui|),Hdet)-absorbing gadget Fi (in G(n, p)), on

the same vertex set, then we obtain the desired embedding 𝜙i of a (Ka(r × |Ui|),Kr)-absorbing gadget

in G∪G(n, p), where Ka is a (K−
r+1, 2a)-path. Applying Proposition 6.21 with small enough 𝜂 > 0 thus

gives us the absorbing structure, upon noticing that the conditions on ΦFi,Wi and ΦFi∖Wi are satisfied

by Lemma 6.17. ▪

The third case, when r/2< k≤ r − 1, follows the exact same method of proof. The main difference

comes from the fact that we do not have many absorbing gadgets for all small sets of vertices in the

deterministic graph but only for sets which lie in one part of the partition dictated by Lemma 6.12.

Therefore we look to find an absorbing structure in each part of the partition. Thus when we apply

Proposition 6.21, we do so to find all these absorbing structures at once, in order to guarantee that

these absorbing structures are disjoint. The conclusion is as follows.

Corollary 6.24. Let r/2< k≤ r − 1 be integers, and define q:= r − k, c ∶= ⌈r∕q⌉ and 𝛾 > 0. Then
there exists 𝛼 > 0 such that the following holds for all 0 < 𝜀 < 𝛼𝛾∕4. There exists C = C(r, k, 𝛾, 𝜀) > 0

and 𝜂0 = 𝜂0(r, k, 𝛾, 𝜀) > 0 such that if p≥Cn−2/k and G is an n-vertex graph with minimum degree
𝛿(G) ≥ (1 − k

r
+ 𝛾)n, then for any 0 < 𝜂 < 𝜂0 there is a partition  = {V1,V2, … ,V𝜌,W} of V(G)

into at most c parts with the following properties:

• |Vi| ≥ 𝛼n for i ∈ [𝜌];
• |W |≤𝜀n;
• 𝛿(G[Vi]) ≥ (1 − k

r
+ 𝛾

4
)|Vi| for each i ∈ [𝜌];

• For any collection of subsets Xi ⊂Vi such that 1.8𝜂|Vi| ≤ |Xi| ≤ 2𝜂|Vi| for all i ∈ [𝜌], there
a.a.s. exists a set of c(2c+ 1 + 1)-bounded absorbing structures {i = (Φi,Zi,Zi1) ∶ i ∈ [𝜌]}
in G′:=G∪G(n, p) such that each i has flexibility mi:= |Xi|/2 and has flexible set Zi1 =Xi.
Furthermore V(i) ∩ V(i′ ) = ∅ for all i ≠ i′ ∈ [𝜌].

Proof. We begin by applying Proposition 6.12 to get a vertex partition  with at most c− 1 parts

and in each part U ∈  we remove any vertex v which has internal degree 𝑑U(v) = |NG(v) ∩ U| <
(1 − k

r
+ 𝛾

2
)|U|, and add v to W. The resulting partition is the partition we will use. Choosing ϵ6.12

in the application of Proposition 6.12 to be less than 𝜀/c, we have that the first three bullet points are

satisfied. Below we show the last bullet point, and to aid readability we temporarily fix i= 1.

Now given a set of X1 ⊂V1 we choose a set Z2 ⊂V1 ∖X1 such that |Z2|=2m1. Furthermore, accord-

ing to some template T = (I = {1, … , 3m1}, J1 ⊔ J2 = {1, … , 2m1}⊔ {2m1 + 1, … , 4m1}, E(T)) as in

Definition 6.18, we label X1 according to J1 and Z2 according to J2 and identify sets Ui′ ⊆X1 for each

i′ ∈ [3m1] according to the neighborhood of i′ in T . As in Corollary 6.22, by Propositions 6.12 and 6.16

there exists some 𝛽 > 0 such that for each i′ ∈ [3m1], fixing si′ = |Ui′ | the following holds. There is

some Hi′ ∈ 3(r × si′ ) and some (Hi′ ,Hdet)-absorbing gadget F′′
i such that there are at least 𝛽n|F′i′|−si′

embeddings of Fi′′ in G which map the base set of F′′
i to Ui′ . Each of these embeddings gives a can-

didate vertex set for which we could embed an (Hi′ ,Hdet)-absorbing gadget, say Fi′ to get a copy of a

(K,Kr)-absorbing gadget in G′, with base set Ui′ , where K ∈ (r×si′ ) and = (K−
r+1,≤ c(2c+1+1)).

Using Lemma 6.17, we can now apply Proposition 6.21 (provided 𝜂 > 0 is sufficiently small) to get

the desired embeddings of all the Fi′ which an absorbing structure 1 as in the statement of the corol-

lary. We in fact apply Proposition 6.21 for all i ∈ [𝜌] at once which gives the collection of absorbing

structures as required. ▪
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Before proving the upper bound in our main result, Theorem 1.5, we give one last consequence of

Proposition 6.21 which will be useful for us.

Corollary 6.25. Suppose that 2≤ k≤ r and 𝛾, 𝛽 > 0. Then there exists 𝛼 = 𝛼(r, k, 𝛾, 𝛽) > 0 and
C > 0 such that the following holds. Suppose G is an n-vertex graph with disjoint vertex sets U, W such
that |U| ≤ 𝛼n, |W| ≥ 𝛽n and for all v∈U ∪W, |NG(v) ∩ W| ≥ (1 − k

r
+ 𝛾)|W| and p= p(n) is such

that p≥Cn−2/k. Then a.a.s. in G∪G(n, p) there is a set of |U| disjoint copies Kr so that each copy of
Kr contains a vertex of U and r − 1 vertices of W.

Proof. First, let r∗ ∶= ⌈r∕k⌉. By the fact that |NG(v) ∩ W| ≥ (1 − k
r
+ 𝛾)|W| for all v∈U ∪W,

we have that each vertex u∈U is in at least ( 𝛽𝛾
2

n)r∗ distinct copies of K−
r∗+1 in G such that the other

vertices of each copy lie in W, and u is contained in the nonedge of each K−
r∗+1. Thus by Lemma 2.6,

there exists some 𝛽′ > 0 such that each u∈U is in 𝛽′nr−1 copies of Hdet with the other vertices

of each copy in W, and u in the part of size q:= r − (r* − 1)k in Hdet. Let u be the collection of

(r − 1)-sets of vertices in W that, together with u, give rise to these copies of Hdet containing u. Set

Fu ∶= Hdet = Kr − E(Hdet) with an identified vertex wu in the clique of size q in Hdet. Thus an

ordered embedding in G(n, p) of Fu which maps wu to u and V(Fu) ∖ {wu} to an ordered set in u
will give an embedding of Kr in G∪G(n, p) containing u and vertices of W. By Lemma 2.7 we have

that ΦFu,wu ≥ Cn1∕k and ΦFu∖wu ≥ Cn. Thus, provided 𝛼 > 0 is sufficiently small, an application of

Proposition 6.21 gives the desired set of embeddings of Kr in G∪G(n, p). ▪

7 PROOF OF THE UPPER BOUND OF THEOREM 1.5

In this section we prove the upper bound of Theorem 1.5. Fix some sufficiently large n ∈ rN and let G
be an n-vertex graph with 𝛿(G) ≥ (1 − k

r
+ 𝛾)n. We will show that there exists C = C(𝛾, k, r) > 0 such

that if p≥Cn−2/k, then G′:=G∪G(n, p) a.a.s. contains a perfect Kr-tiling. Again, we split the proof

according to the parameters. We first treat Cases 1 and 2 together (i.e., when 2≤ k≤ r/2 or k= r). Here

we avoid many of the technicalities which occur in Case 3 and the main scheme of the proof is clear.

Proof of Cases 1 and 2. Suppose 2≤ k≤ r/2 or k= r, and let C, C′ > 0 be chosen such that we can

express G(n, p) = ∪4
j=1Gj with each Gj a copy of G(n, p′) where p′ ≥ C′n−2∕k and C′ > 0 is large enough

to be able to draw the desired conclusions in what follows. Now fix 0 < 𝜂 < min{ 𝛾

2000r2
, 𝜂0} where 𝜂0 is

as in Corollary 6.22 and consider X′ ⊆V(G) to be the subset generated by taking every vertex in V(G)

in X′ with probability 1.9𝜂, independently of the other vertices. With high probability, by Chernoff’s

theorem, we have that 1.8𝜂n ≤ |X′| ≤ 2𝜂n and for every vertex v∈V(G), |NG(v)∩X′| ≥ (1− k
r
+ 3𝛾

4
)|X′|.

Take an instance of X′ where this is the case and let X:=X′ if |X′| is even and X:=X′ ∪ {x} for some

arbitrary vertex x∈V(G) ∖X′ if |X′| is odd. Apply Corollary 6.22 to get a 4-bounded absorbing structure

 = (Φ,Z,Z1) in G∪G1 with flexibility |X|/2 and flexible set Z1 =X. Remark 6.19 implies |V()| ≤
500r2𝜂n ≤ 𝛾n∕4.

Then letting V ′ ∶= V(G) ∖ V(), we have that 𝛿(G[V ′]) ≥ (1 − k
r
+ 𝛾

2
)|V ′|. Choose 𝛼 ∶=

min{𝛼6.25,
𝛾𝜂

4r
}, where 𝛼6.25 is the constant obtained when applying Corollary 6.25 with r, k, 𝛾∕2, 𝜂

playing the role of r, k, 𝛾, 𝛽 respectively.

Apply Theorem 5.1 to obtain a Kr-tiling 1 in (G∪G2)[V′] covering all but at most 𝛼n vertices

of V′. Let Y denote the set of those vertices in V′ uncovered by 1. Apply Corollary 6.25 to obtain a

Kr-tiling 2 in (G∪G3)[X ∪Y] which covers Y and covers precisely (r − 1)|Y| ≤ 𝛾𝜂n∕2 ≤ 𝛾|X|∕2

vertices of X. Let X̃ be the set of those vertices in X not covered by 2. We have that 𝛿(G[X̃]) ≥
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(1 − k
r
+ 𝛾

4
)|X̃| so we can apply Theorem 5.1 to obtain a Kr-tiling ′

3 in (G ∪ G4)[X̃] which covers all

but at most |X|/4 vertices of X̃.

By Remark 6.20 we know that for any subset X1 of X of size |X|/2, there is a Kr-tiling covering

precisely V() ∖ X1. Thus, |V()| − |X|∕2 is divisible by r. Therefore, as the only vertices in V(G)

uncovered by V(1 ∪ 2) are those from (V() ∖ X) ∪ X̃, there must be a subtiling 3 ⊆ ′
3 which

covers all but exactly |X|/2 vertices of X̃.

Let X be the set of vertices of X that are covered by cliques in 2 ∪3. Thus |X| = |X|∕2 and by

Remark 6.20 there is a Kr-tiling 4 in G∪G1 covering precisely V() ∖ X. Hence,  ∶= 1 ∪2 ∪
3 ∪4 gives a perfect Kr-tiling of G∪G(n, p) as required. ▪

If r/2< k≤ r − 1, we have to overcome a few technicalities. The idea is to apply Corollary 6.24 and

to apply the same approach as above in each of the parts of the resulting partition to find a Kr-tiling. Of

course we also have to incorporate the vertices of the exceptional class W into copies of cliques in our

tiling; this is straightforward using Corollary 6.25. So we cover these vertices first before embarking

on tiling the majority of the graph.

More subtle is a problem that arises from divisibility. That is, when we tile each part according to

the scheme above, we cannot guarantee that we are left with a subset of the flexible set of the right

size to apply the key property of the absorbing structure. Therefore we embed “crossing” copies of

Kr in our flexible sets in order to resolve this divisibility hurdle at the end of our process. We find

these copies in the following manner. Consider the graph F ∶= K⌈ r−1

2
⌉,⌊ r−1

2
⌋. Because of our minimum

degree condition and Lemma 2.6, every part Vi contains at least 𝛾 ′nr−1 copies of F for some 𝛾 ′ > 0.

Now let F be the graph consisting of a copy of K⌈ r−1

2
⌉+1 and a copy of K⌊ r−1

2
⌋+1 joined at a single

vertex x, say. If we consider F and F − x to have the same vertex set so that F − x = Kr−1 − E(F), then

F ∪ F is a copy of Kr. Also note that it follows from Lemma 2.7 that ΦF ≥ C′n for p ≥ C′n−2∕k. We

will look for embeddings of Kr = F ∪ F in G∪G(n, p) such that the vertex x is mapped to one part of

the partition and the r − 1 other vertices lie in another part of the partition.

Proof of Case 3. Suppose r/2< k≤ r − 1, q:= r − k and c ∶= ⌈r∕q⌉. Now let C, C′ > 0 be chosen so

that we can express G(n, p) = ∪4
j=1Gj∪c

i=1 (Gi1∪Gi2) with each Gj, Gi1 and Gi2 a copy of G(n, p′) where

p′ ≥ C′n−2∕k and C′ > 0 is large enough to be able to draw the desired conclusions in what follows.

We use our first copy of G(n, p′) to find the crossing copies of Kr discussed above. Apply

Corollary 6.24, letting 𝛼1 > 0 be the outcome of the corollary with input r, k, 𝛾 . Choose 0 <

𝜀 < min{𝛼1𝛾∕(8r), 𝛼6.25}, where 𝛼6.25 is the constant obtained when applying Corollary 6.25

with r, k, 𝛾∕4, 1∕2 playing the roles of r, k, 𝛾, 𝛽 respectively. Thus, Corollary 6.24 yields a partition

V1, … ,V𝜌,W of V(G) where 𝜌 ≤ c and |W |≤𝜀n. Note 𝛿(G[Vi]) ≥ (1 − k
r
+ 𝛾

4
)|Vi| for each i ∈ [𝜌].

Thus for each i ∈ [𝜌 − 1] and every subset V′ ⊆V(G) of at least n− c(r − 1)r vertices, Lemma 2.6

implies there exists some 𝛾 ′ = 𝛾 ′(r, k, 𝛾) > 0 such that there are at least 𝛾 ′nr choices of pairs

(S, v) ∈
(

V ′∩Vi+1

r−1

)
× (V ′ ∩Vi) such that S hosts a copy of the graph F ∶= K⌈ r−1

2
⌉,⌊ r−1

2
⌋ discussed above.

Therefore, using that ΦF ≥ C′n with the graph F as described above, we can apply Corollary 2.9

to conclude that for any subset V′ of vertices of at least n− c(r − 1)r vertices and any i ∈ [𝜌− 1], there

is a copy of Kr in G∪G1 which has r − 1 vertices in Vi+ 1 and one vertex in Vi. Therefore, we can

greedily choose copies of Kr so that we have a set  ∶= ∪i∈[𝜌−1]i of disjoint copies of Kr in G∪G1

such that i contains r − 1 copies of Kr with one vertex in Vi and r − 1 vertices of Vi+ 1. Let 𝜌 ∶= ∅
and Ri ∶= V() ∩ Vi for i ∈ [𝜌], where V() denotes the vertices which feature in cliques in . Note

that |R1|=r − 1, |R2| = |R3| = · · · = |R𝜌−1| = r(r − 1) and |R𝜌| = (r − 1)2. We will incorporate these
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Ri into our flexible sets in order to use the copies of Kr that they define to fix divisibility issues that

arise in the final stages of the argument.

Now fix 0 < 𝜂 < min{ 𝛾

4000c2cr2
, 𝜂0} where 𝜂0 is as in Corollary 6.24 and for each i ∈ [𝜌] consider

X′
i ⊆V(G) to be a subset selected by taking every vertex in Vi ∖Ri with probability 1.9𝜂, independently

of the other vertices. With high probability, by Chernoff’s theorem, we have that 1.8𝜂|Vi| ≤ |X′
i | ≤

2𝜂|Vi| − r(r − 1) and for every vertex v∈Vi, |NG(v) ∩ X′
i | ≥ (1 − k

r
+ 𝛾

8
)|X′

i |. Therefore, for each i,
take an instance of Xi′ where this is the case and let Xi ∶= X′

i ∪ Ri if |X′
i | + |Ri| is even and Xi ∶=

X′
i ∪ Ri ∪ {x} for some arbitrary vertex x∈Vi ∖ (X′

i ∪Ri) if |X′
i |+ |Ri| is odd. Apply Corollary 6.24 to

get a collection {i = (Φi,Zi,Zi1) ∶ i ∈ [𝜌]} of absorbing structures in G∪G2 such that each i has

flexibility |Xi|/2 and flexible set Zi1 =Xi. By Remark 6.19 we have that A ∶= ∪i∈[𝜌]V(i) is such that|A| ≤ 125c2c+2r2𝜂n ≤ 𝛾n∕8.

Therefore, setting V′:=V(G) ∖ (W ∪A), we have that for every w∈W ∪V′, |NG(w) ∩ V ′| ≥ (1 −
k
r
+ 𝛾

4
)|V ′| and so an application of Corollary 6.25 yields a Kr-tiling 1 in G∪G3 of |W | cliques,

each using one vertex of W and r − 1 vertices of V′. Setting V ′′ ∶= V(G) ∖ (A ∪ V(1)), we have that

𝛿(G[V ′′]) ≥ (1 − k
r
+ 𝛾

8
)|V ′′|. So, as in the previous proof, we let 𝛼2 ∶= min{𝛼6.25,

𝛾𝜂

16r
}, where 𝛼6.25 is

obtained from Corollary 6.25 (where 𝛾∕8 and 𝜂 play the roles of 𝛾 and 𝛽 respectively), and we apply

Theorem 5.1 to obtain a Kr-tiling 2 in (G ∪ G4)[V ′′] covering all but at most 𝛼2n vertices of V ′′. Let

Y be the set of vertices from V ′′ uncovered by 2 and set Yi:= Y ∩Vi for each i ∈ [𝜌].
Now for each i ∈ [𝜌] a simple application of Corollary 6.25 yields a Kr-tiling i1 in G∪Gi1 which

covers Yi and uses precisely (r − 1)|Yi| ≤ 𝛾𝜂n∕16 ≤ 𝛾|X′
i |∕16 vertices of X′

i . Note that we do not

use any vertices of R = ∪i∈[𝜌]Ri in these cliques. For each i ∈ [𝜌] let X̃i be the vertices of Xi ∖Ri not

involved in copies of Kr in i1. As 𝛿(G[X̃i]) ≥ (1 − k
r
+ 𝛾

16
)|X̃i|, we can apply Theorem 5.1 to obtain

a Kr-tiling ′
i in (G ∪ Gi2)[X̃i] which covers all but at most |Xi|/4 vertices of X̃i, for each i ∈ [𝜌].

Note that we will not use the full tilings ′
i in our final tiling. So (ignoring for now the tilings ′

i),

it remains to cover the vertices in (V(i) ∖ Xi) ∪ Ri ∪ X̃i for each i ∈ [𝜌]. We do so by means of the

following algorithm. We initiate with the ′
i ,i as above and set Zi ∶= V(i1) ∩ Xi and i2 ∶= ∅ for

all i ∈ [𝜌] and i′ = 1. Now whilst |Zi′ | ≤ |Xi′ |∕2 − r + 1, remove a clique from ′
i′ , add it to i′2 and

add its vertices to Zi′ . Once this process stops, add |Xi′ |∕2 − |Zi′ | copies of Kr in i′ to i′2, and add

all their vertices in Xj to Zj for j= i′, i′ + 1. If i′ ≤ 𝜌−1, repeat this process, setting i′ = i′ + 1. Note that

when i′ = 𝜌, i′ = ∅ and there are no cliques which we could add in this process. However, setting

0 = 1∪2∪i∈[𝜌](i1∪i2) we have that |V(0)|, n, and |V(i)|− |Xi|∕2 are divisible by r for each

i, so we can deduce that the algorithm takes no cliques from 𝜌 and terminates with |Zi| = |Xi|∕2 for

all i ∈ [𝜌].
Finally, by the key property of the absorbing structure (Remark 6.20), we have that for each i ∈ [𝜌],

there is a Kr-tiling i3 in G∪G2 covering V(i) ∖ Zi and thus ∪i∈[𝜌]i3 ∪ 0 is the desired perfect

Kr-tiling in G∪G(n, p). ▪

8 CONCLUDING REMARKS

In this paper we have almost completely resolved the perfect Kr-tiling problem for randomly perturbed

graphs. The only cases that Theorem 1.5 does not resolve is when 𝛼 = 1∕r, 2∕r, … , (r − 2)∕r. Note

however for 𝛼 ∶= 1 − k∕r where 2≤ k≤ r − 1 we know that

n−2∕k ≤ p(Kr, 𝛼) ≤ n−2∕(k+1).

In fact, one can slightly improve the lower bound, giving that p(Kr, 𝛼) ≥ p(Kk, 0) = n−2∕k(log n)
2

k2−k .

Indeed, as in our lower bound construction (Section 3), take G to be complete graph on n vertices with
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a clique of size kn/r removed. Letting A be the resulting independent set of vertices, if p= o(p(Kk, 0))

then a.a.s. we have that the number of copies of Kk+ 1 in G(n, p) is less than, say, (log n)3 by Markov’s

inequality, whilst the number of vertices in A which do not lie in copies of Kk is at least n1− o(1), as can

be seen by a second moment calculation (see e.g. [24, Theorem 3.22]). This precludes the existence

of a perfect Kr-tiling in G∪G(n, p), as the average intersection of a clique in such a tiling with the

vertex set A would be k and we cannot tile G(n, p)[A] with a family of cliques whose average size is

k given the restrictions above. This leaves a gap between the upper and lower bounds and it would be

very interesting to resolve the problem for these “boundary” cases.

It is also of interest to consider the analogous problem for perfect H-tilings for arbitrary graphs H.

Note that whilst the main result from [3] determines p(H, 𝛼) for all graphs H and 0 < 𝛼 < 1∕|H|, the

problem is still wide open for larger values of 𝛼. The methods from our paper are likely to be useful

for the general problem, though we suspect how p(H, 𝛼) “jumps” as 𝛼 increases will depend heavily

on the structure of H. Thus we believe it would be a significant challenge to prove such a general

result.
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