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Highlights: 25 

• An interface of the LOTOS-EUROS CTM to the COSMO-CLM model was developed 26 

• Planetary boundary layer conditions were significantly improved by the COSMO-CLM 27 

model compared to the ECMWF reference data, but no clear bias correction was found 28 

when applying different parametrization simulations 29 

• Higher resolved model simulations lead to a more realistic representation of the urban-30 

increment, with the impact on the PM mass concentration of the refined vertical layering 31 

is much larger compared to the meteorological input-data 32 

• Ammonium and Nitrate responded highly sensitive to different simulation set-ups 33 
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Abstract 46 

Particulate matter (PM) remains as one of the most relevant air-quality concerns in urban 47 

environments. The Berlin agglomeration area is still affected by exceedances of the daily limit 48 

value of the PM concentration, especially during wintertime PM episodes. In this study, we present 49 

test-case studies with the LOTOS-EUROS CTM to improve the representation of PM episodes in 50 

the Berlin agglomeration area. A variety of simulations were compared for two winter episodes 51 

characterized by cold stagnant conditions, using different meteorological input data (from the 52 

European Centre for Medium Weather Forecast (ECMWF) and the Consortium for Small-Scale 53 

Modelling-Climate Limited-area Modelling (COSMO-CLM)) and horizontal and vertical 54 

resolutions of the LOTOS-EUROS CTM. The LOTOS-EUROS CTM indicates too high mixing 55 

from the planetary boundary layer (PBL) to higher layers, leading to an underestimation of the PM 56 

mass concentration in the Berlin agglomeration. As major impact factor the mixing-layer height 57 

(MLH) can be identified. Through applying the COSMO-CLM model the meteorological 58 

representation of the PBL and MLH can significantly be improved, whereas sensitivity studies 59 

only exhibit a small variation of the PBL meteorology and did not further improve the MLH. As 60 

the MLHs of both models are underestimated compared to observations and their derivation is 61 

questionable, we advise not to use this quantity any longer in CTMs. By contrast, applying a multi-62 

level approach excluding the MLH, provides a considerable increase in the total PM mass 63 

concentration amount. The redistribution and increased nitrate and ammonium concentration can 64 

be mentioned as the main culprit. However, the best-fit simulations were obtained for the multi-65 

level configuration fed by COSMO-CLM input data, additionally representing a more realistic 66 

urban increment. 67 
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1 Introduction 73 

Poor air quality is one of the most important environmental concerns of the 21st century 74 

(Lim et al., 2012). Exposure to particulate matter (PM) is thought to dominate the health impacts 75 

of air pollution (Boldo et al., 2006; Brook et al., 2010; Costa et al., 2014). According to the 76 

European Environment Agency each year about 62.300 premature deaths in Germany are caused 77 

by fine particulate matter (PM2.5) (EEA, 2018). Although a large part of the urban population in 78 

Germany is exposed to concentrations above the PM target value of the World Health Organization 79 

(WHO, 2005), the annual limit values for both PM2.5 and PM10 as introduced by the European 80 

Ambient Air Quality Directive (EC, 2008) are currently not exceeded across Germany (UBA, 81 

2019). In practice, the daily mean limit value for PM is more stringent than the annual mean limit 82 

values (Engler et al., 2012) and is still exceeded at traffic sites throughout Germany (UBA, 2019). 83 

To enable the development of cost-effective mitigation strategies to further reduce the health 84 

impacts by PM and the number of limit value exceedances it is required to understand the sources 85 

and processes leading to the enhanced concentration levels in episodes as compared to normal 86 

conditions (Belis et al., 2020). 87 

PM concentrations are the result of processes involving direct emissions, chemical 88 

transformations, vertical mixing, long-range transport and dry and wet deposition, all depending 89 

on meteorological parameters (H. Zhang et al., 2015). Hence, establishing the origin of PM is 90 

complex as the contributions from local and distant, natural and anthropogenic, as well as 91 

individual source sectors vary largely with season and synoptic situation (Tai et al., 2010; Mues et 92 

al., 2012; H. Zhang et al., 2015). High concentrations of PM are often associated with cold and 93 

stagnating weather conditions (Tai et al., 2010). Although the exceedances of limit values occur 94 

especially at the local urban scale (van Pinxteren et al., 2019), the regional background provides 95 

the most important mass contribution to observed PM levels in European cities (Beekmann et al., 96 

2015; Garg & Sinha, 2017). Berlin, and East Germany in general, are affected by air masses from 97 

different European regions, i.e. western Europe through westerly air masses and central Europe 98 

through (south-) easterly air masses (Lenschow et al., 2001). In winter, the latter are associated 99 

with cold, stagnant weather conditions (Spindler et al., 2004; Brüggemann et al., 2009; Engler et 100 

al., 2012). Recent receptor modelling results showed combustion and secondary inorganic 101 

aerosols, e.g. ammonium, nitrate and sulphate, to be the main source groups during such cold spells 102 

(van Pinxteren et al., 2019). The same conditions also cause large trans-boundary contributions 103 



 

from Eastern European countries (van Pinxteren et al., 2019; Timmermans et al., 2020). As 104 

methodologies combining measurements and back trajectories as well as receptor models usually 105 

provide a limited number of source sectors and are less suitable to quantitively identify the source 106 

regions (Belis et al., 2020), one cannot rely on observations alone to quantify the relevant 107 

(geographic) source contributions. 108 

Chemistry transport models (CTMs) are deterministic and can provide quantitative source 109 

attribution estimates, which is an advantage above qualitative results based on empirical studies 110 

(Potier et al., 2019). Numerous model studies have been carried out to point out the sources of PM 111 

and their composition (Hendriks et al., 2013; Garg & Sinha, 2017; Potier et al., 2019; Thunis et 112 

al., 2018). However, a prerequisite for using these modelling results is that they reproduce the 113 

observed concentration levels and their variability. Previous studies have highlighted the 114 

challenges of modelling PM episodes under stable conditions. Underestimation of the observed 115 

PM concentration can be related to insufficient treatment of temporal emission variability (Mues 116 

et al., 2014) or underestimation of residential wood combustion emissions (Spindler et al., 2004; 117 

van der Gon et al., 2015). In addition, the reliability of simulations with CTMs to quantify 118 

concentrations strongly depends on the quality of the meteorological input data (Vautard et al., 119 

2012). A multi-model comparison for an winter episode in 2003 revealed a characteristic 120 

underestimation of the PM concentrations in modern CTMs (Stern et al., 2008). Parametrizations 121 

of the mixing layer height (MLH) in meteorological models are identified as one source of the 122 

underestimation of PM under stable conditions and shallow boundary layers as shown by Seibert 123 

et al. (2000). Still, only a few studies have addressed the improvement of planetary boundary layer 124 

(PBL) variables for use in air quality model simulations (Hu et al., 2010; Buzzi et al., 2011; Banks 125 

& Baldasano, 2016). 126 

In this study we explore if we can improve the modelling of PM episodes during winter in 127 

east-Germany by high resolution nonhydrostatic meteorological modelling (dynamical 128 

downscaling) using the COSMO-CLM model. Sensitivity studies were conducted to investigate 129 

the representation of the PBL conditions. Meteorological quantities as the MLH were evaluated 130 

against radiosonde observations. The impact of different PBL parameterizations on modelled PM 131 

concentrations was analyzed. In addition, we investigated the impact of using two different vertical 132 

structures in the LOTOS-EUROS CTM. The impact of the dynamical downscaling was compared 133 

to the operational set-up of the LOTOS-EUROS CTM using the ECMWF meteorological driver. 134 



 

2 Methodology 135 

A dynamical downscaling approach with the COSMO-CLM model has been applied to generate 136 

high resolution meteorological input data for the LOTOS-EUROS CTM. First, we performed 137 

sensitivity studies to investigate the representation of the PBL conditions on the modelled PBL 138 

height and PM concentrations for January 2016. Accounting for the lessons learned, we applied 139 

the system to the next winter (September 2016 to March 2017) to further investigate and validate 140 

the impact of different horizontal and vertical set-ups. To assess the added value of the dynamical 141 

downscaling we used a simulation with meteorological input data of the ECMWF forecast model 142 

system (Flemming et al., 2009) as reference. 143 

2.1 Study Area and Periods 144 

The Berlin metropolitan area is the largest conurbation of Germany covering an area of 145 

891 km². With more than 3.75 million inhabitants Berlin is densely populated. Berlin's dynamic 146 

population increase combined with a pronounced tourist impact of about 13.50 million visitors per 147 

year is reflected in the air pollution management plan by targeting e.g. the construction 148 

(agglomeration) and traffic sectors (SenStadt, 2019). Berlin is situated in the North German Plain 149 

Fig. 1 Domain configuration of the model area. Three zooming domains are used for the 

LOTOS-EUROS CTM simulations (red). Meteorological boundary datasets are 

provided by the ECMWF model (green) and the COSMO-CLM (blue) model. As the 

COSMO-CLM model is applying a dynamical downscaling approach, two set-up areas 

are needed. The investigation area of Berlin Brandenburg (BB) is attached on the right-

hand side and contains the location of the rural- (orange), suburban- (blue) and urban-

background observation sites. 



 

at 52°30' N and 13°30' E (Fig. 1). The neighboring republic of Poland is about 80 km from the 150 

eastern edge of the city. Berlin's conurbation is characterized by low orography features and 151 

intersected by the Spree valley. The average altitude above sea level is about 35-70 m increasing 152 

towards the border of the city. The maximum elevation is about 115 m. According to the prevailing 153 

season, Berlin is dominated by maritime climate in summer and continental climate in winter. The 154 

ambient air pollution in Berlin and its vicinity can be regarded as moderate. Annual average PM10 155 

concentrations in 2016 ranged between 22.0 μg/m3 and 26.8 μg/m3 for urban background and 156 

traffic stations, respectively (SenStadt, 2019). Levels in the surrounding rural area are typically 157 

about 17.0 μg/m3 and thus about 5.0 μg/m3 lower than recorded in the urban background (LFU, 158 

2018). In recent years, exceedances of daily mean limit values of the PM concentration were 159 

limited and have only been recorded at traffic locations (LFU, 2018; SenStadt, 2019). 160 

This study focuses on two periods, i.e. January 2016 and September 2016 to March 2017. 161 

These periods were selected as they contain episodes exceeding the daily PM limit value, caused 162 

by cold and stable weather conditions (Fig. 2). January 2016 was selected as this month is split 163 

into two major periods differing in their meteorological conditions. The first cold spell in the first 164 

week (2nd to 7th) was characterized by an easterly wind inflow. Temperature minima down to -165 

10.0° C were observed at the surface. A second (19th to 22nd) took place with a low-pressure system 166 

crossing inducing inversion layering. Temperatures during the westerly wind period reflect the 167 

typical variation of a frontal passage and therefore vary between 0°C and -10.5°C. Apart from the 168 

differing wind direction the meteorological conditions during both periods were quite similar. Low 169 

wind speeds were recorded for both periods resulting in a monthly mean of about 3.4 m/s at the 170 

surface. The MLH derived from radiosonde data was on average about 647 m and showed a large 171 

day-to-day variability. A PM episode with concentrations reaching values well above 90 ug/m3 172 

was observed from the 2nd to the 7th, (see Fig. 2). Despite similar meteorological conditions, during 173 

the westerly wind inflow period (19th to 22nd), no exceedances of the daily limit values were 174 

identified. 175 

As the period of January 2016 is quite short, a second investigation period containing a 176 

winter PM episode has been examined. Therefore, the September 2016 to March 2017 was 177 

selected, with similar meteorological conditions compared to the reference period of January 2016 178 

during wintertime of January to February 2017. The January to February 2017 was affected by low 179 

mixing and a mean mixing layer height of about 545 m. Mean temperatures were close to zero 180 



 

with minima of about -10° C. The average wind speed below 3 m/s is quite low, whereas 181 

exceedances of the daily limit values again only occur during easterly wind periods. An advantage 182 

of investigating this winter is that we could use the data of the PM-OST campaign (van Pinxteren 183 

et al., 2019) for evaluating the modelled PM composition. 184 

Fig. 2 Time series of investigation periods, representative for January 2016 (a) and 

January to February 2017 (b) for the Berlin agglomeration. PM mass concentration 

levels (black) are plotted on top with meteorological fields, as the mixing layer height 

(blue), the 2m-temperature (red), the 10m-wind-speed (green) and the 10m-wind-

direction above. Red dots indicate exceedances of the daily limit value. Parameters 

representing the spatial average of all observation sites. 

 



 

2.2 Nonhydrostatic Meteorological Modelling 185 

A dynamical downscaling of the ERA-Interim reanalysis (Dee et al., 2011) was performed 186 

using the COSMO-CLM version 5.00 (Consortium for Small-Scale Modelling-Climate Limited-187 

area Modelling) model (Doms et al., 2011; Doms & Baldauf, 2018) by using a double nesting 188 

approach. The first nested domain of the COSMO-CLM model (Fig. 1) covers Europe from 4° W 189 

down to 40° E and 42° N - 59° N with a horizontal resolution of 0.0625° (7 x 7 km²). The second 190 

nested domain covers Germany and Poland between 8° E - 25° E to 48° N - 57° N with a resolution 191 

of 0.025° (2.8 x 2.8 km²). Independent of the spatial resolution 40 vertical levels were used, with 192 

at least 11 levels below 1 km to be able to represent the vertical behavior in the PBL. The domain 193 

configuration was chosen to resemble the DWD COSMO-DE configuration to allow for future 194 

operational use of COSMO-DE to provide air quality forecasts. 195 

The convective scale operational numerical weather prediction model COSMO-LM, was 196 

originally developed at the German Weather Service (DWD). The aim was to be able to simulate 197 

nonhydrostatic processes which appear on the meso-β and meso-γ scale. The model focuses on 198 

deep moist convection and severe weather events. In Rockel et al. (2008) a documentation of the 199 

COSMO-CLM, the climate mode of the COSMO-LM, is given. The climate mode is designed for 200 

longer simulation periods using numerous lateral boundary conditions (e.g. sea surface 201 

temperatures, vegetation parameters). COSMO-CLM is a limited-area model defined on spherical 202 

rotated geographical coordinates, following a generalized terrain height coordinate in the vertical. 203 

A staggered Arakawa C-grid is used to represent the orthogonal discretization (ARAKAWA & 204 

LAMB, 1977), with a Lorenz hybrid z-layering applied in  the vertical (Herzog, Schubert, et al., 205 

2002). 206 

The representation of the PBL was investigated for January 2016 by an ensemble of turbulence 207 

parameterization schemes of the COSMO-CLM model (Tab. 1). Ranging from basic meso-β flow 208 

systems to more sophisticated ones, the spectra of turbulent closure approaches is broad. Three 209 

closure approaches of the vertical diffusion and two surface flux schemes are available in the 210 

COSMO-CLM model. A detailed description of the implemented parameterizations can be found 211 

in (Doms et al., 2011). In this study a combination of all 6 parameterizations have been applied 212 

(Tab. 1). The most simple closure approach  as shown by Muller (1981) (1-D Diagnostic Closure) 213 

is based on the assumption of the boundary layer approximation neglecting horizontal turbulent 214 



 

fluxes. Mellor & Yamada (1974) developed a more extensive second-order parameterization (1-D 215 

TKE-Based Diagnostic Closure), extended by Louis (1979) with a surface flux formulation for the 216 

Prandtl-layer dependent on stability and roughness-length. The most sophisticated closure 217 

approach (3-D TKE-Based Prognostic Closure) focuses on highly resolved LES-like model 218 

simulations of subgrid-scale processes to avoid current boundary layer approximations (Herzog, 219 

Schubert, et al., 2002; Herzog, Vogel, et al., 2002). According to Louis (1979) analytical functions 220 

are applied to solve the transfer coefficients of roughness length and stability parameters of the 221 

surface flux formulation based on the Businger relations (Businger et al., 1971) (Standard Bulk-222 

Transfer Scheme). Based on the coefficients of the Mellor-Yamada closure, the second surface 223 

flux scheme applies two layers by using a transport resistance of the laminar turbulent roughness 224 

layer and a constant Prandtl-layer. As described in Doms et al. (2011) an advanced surface layer 225 

scheme (TKE-Based Surface Transfer Scheme) is implemented into COSMO-CLM relating to the 226 

Mellor-Yamada closure approach (Mellor & Yamada, 1974). The surface layer is sub-divided into 227 

roughness layer and Prandtl-layer. Additional control parameters like as the turbulent length and 228 

 229 

Tab. 1 230 

List of planetary boundary layer sensitivity parameterizations used in this work. 231 

 PBL Parameterization 

 Turbulence Scheme Surface Scheme Tuning Parameter 

CCLM-TC-V1-1 

1-D Diagnostic Closure 

Standard Bulk-Transfer 

Scheme 
- 

CCLM-TC-V1-2 
TKE-Based Surface 

Transfer Scheme 
- 

CCLM-TC-V2-1 

1-D TKE-Based 

Diagnostic Closure 

TKE-Based Surface 

Transfer Scheme 

- 

CCLM-TC-V2-2 
lexpcor, ltmpcor, lcpfluc and 

ltkecon are applied 

CCLM-TC-V2-3 
Standard Bulk-Transfer 

Scheme 
- 

CCLM-TC-V3-1 

3-D TKE-Based 

Prognostic Closure 

TKE-Based Surface 

Transfer Scheme 

- 

CCLM-TC-V3-2 
Reduction of the turbulent 

length scale (50 m) 

CCLM-TC-V3-3 
Lowering of the diffusion 

coefficient of heat (0.1 m2s-1) 

CCLM-TC-V3-4 
Adopting both parameters 

used in V3-2 and V3-3 



 

the diffusion coefficients of heat enlarge the range of possible configuration options. Different 232 

setups such as the impact of the turbulent heat and moisture fluxes and their reliance to 233 

condensation processes (lexpcor), the computation of thermal sources (ltmpcor) as well as the 234 

consideration of the convective buoyancy (ltkecon) for the TKE equation and variations in the heat 235 

capacity of air (lcpfluc) have been used as further test properties (Tab. 1). A more detailed 236 

description of the applied control parameters are available in the COSMO-CLM users guide 237 

(Schättler et al., 2019). For the winter of 2016-2017 we performed a single dynamical downscaling 238 

using the advised setup using the “1-D TKE-Based Diagnostic Closure” and the “TKE-Based 239 

Surface Transfer Scheme”. 240 

2.3 Chemical Transport Modelling 241 

Air quality simulations were performed using the chemistry transport model (CTM) 242 

LOTOS-EUROS version 2.1 (Manders et al., 2017). LOTOS-EUROS is an open-source 3D CTM, 243 

developed at TNO (Netherlands Organisation for Applied Scientific Research) in cooperation with 244 

partners such as the FUB (Freie Universität Berlin). The aim of the model is to analyze and forecast 245 

air pollution concentrations in the lower troposphere. The model is part of the European regional 246 

ensemble of the Copernicus Atmospheric Monitoring Service (CAMS) (Marécal et al., 2015), 247 

providing operational forecasts and analyses for Europe. An important application of the model is 248 

for source apportionment in different regions worldwide, e.g. Netherlands, China, and Germany 249 

(Kranenburg et al., 2013; Timmermans et al., 2017, 2020). 250 

LOTOS-EUROS is based on a regular Eulerian grid with variable horizontal resolution 251 

over Europe (Manders et al., 2017) and terrain following vertical coordinates. The gas-phase 252 

chemistry is solved with the TNO CBM-IV scheme, a simplified version of the original scheme 253 

by Whitten et al. (1980). The hydrolysis of N2O5 (Schaap et al., 2004) and the cloud chemistry 254 

sulfate formation (Banzhaf et al., 2012) are explicitly treated. Computations for aerosol chemistry 255 

are performed with the ISORROPIA-II module (Fountoukis & Nenes, 2007). Dry deposition 256 

processes for the gas-phase are derived based on the DEPAC (DEPosition of Acidifying 257 

Compounds) module (Wichink Kruit et al., 2012; Van Zanten et al., 2010). Dry deposition of 258 

particles is implemented using the scheme of Zhang et al. (2001). Wet deposition processes are 259 

solved as described by Banzhaf et al. (2012). The horizontal advection of pollutants is calculated 260 



 

applying a monotonic advection scheme as shown by Walcek (2000). For a more detailed 261 

description of the LOTOS-EUROS model we refer to Manders et al. (2017) and references therein. 262 

For Europe, a regional inventory of the CAMS emissions developed by the TNO for 2015 263 

was applied. The GRETA (Gridding Emission Tool for ArcGIS, Schneider et al. (2016)) inventory 264 

is used for the German anthropogenic emission distribution (Tab. 2). A separate annual time profile 265 

for each source category represents the temporal variation that breaks down the annual emission 266 

totals. The CAMS fire product (Kaiser et al., 2012) provides information on wildfire emission 267 

sources. Chemical boundary conditions were taken from the Integrated Forecasting System 268 

provided by ECMWF (European Centre for Medium-Range Weather Forecasts) (C-IFS, Marécal 269 

et al. (2015)). 270 

 271 

Tab. 2 272 

Model runs and settings performed for the LOTOS-EUROS model. 273 

  COSMO-CLM ECMWF IFS 12h forecasts 

M
et

eo
ro

lo
g
ic

a
l 

In
p

u
t 

D
a
ta

 

Spatial  

Resolution 

0.0625° x 0.0625°  

@ 7 x 7 km² (LR) 

0.025° x 0.025°  

@ 2.8 x 2.8 km² (HR) 

0.14° x 0.14°  

@ 15 x 15 km² 

Vertical  

Resolution 
Lorenz hybrid z-level (40 layers) 

3-layer-interval-averaged product 

of the ECMWF-L91 hybrid-sigma 

pressure levels (20 layers) 

Domain 
4° W - 40° E to  

42° N - 59° N 

8° E - 25° E to  

48° N - 57° N 
46° W - 84° E to 26° N - 78° N 

PBL 

Sensitivity  
See Tab. 2 / 

C
h

em
ic

a
l 

T
ra

n
sp

o
rt

 

M
o
d

el
 S

et
-U

p
 

Spatial 

Resolution 

0.125° x 0.0625°  

@ 7 x 8 km² (D2) 

0.0625° x 0.03125°  

@ 4 x 4 km² (D3) 

Vertical 

Structure 

Multi layering  

approach @ 15 layers 

up to 2 km 

Mixed layer  

approach @ 5 layers 

up to 5 km 

Multi layering  

approach @ 15 layers  

up to 12 km 



 

 274 

The standard meteorological input data of the LOTOS-EUROS CTM is derived from the 275 

operational meteorological dataset of the IFS (Integrated Forecasting System) provided by the 276 

ECMWF (Flemming et al., 2009). The meteorological forecasts offer a spatial resolution of about 277 

0.14°, with hybrid-sigma pressure layers define the vertical coordinate system (Eckermann, 2009). 278 

The vertical resolution of the input data corresponds to a selection of 20 layers by vertical interval 279 

averaging of 3 layers derived from the ECMWF-L91 product, with the lowest level matching the 280 

initial layer of the ECMWF meteorology. The meteorological forecast is stored to enable re-281 

analyses of past periods. The ECMWF data cover Europe from 46° W down to 84° E and 26° N - 282 

78° N (Fig. 1). 283 

The standard approach for increasing resolution by nesting the LOTOS-EUROS air 284 

pollution modelling is performed by a statistical downscaling of the ECMWF meteorological input 285 

data. In this study an interface between COSMO-CLM and LOTOS-EUROS was developed to 286 

make further use of the dynamically downscaled COSMO-CLM meteorology. To implement the 287 

meteorological input data of the COSMO-CLM model, the spherical rotated horizontal and the 288 

hybrid z-layering vertical grid information’s has been described within the LOTOS-EUROS CTM. 289 

A corresponding specification of  the transformation of the available COSMO-CLM variables into 290 

the required fields within the LOTOS-EUROS CTM was performed like it was already 291 

implemented for the ECMWF model (Manders et al., 2017) and for the WRF model (Escudero et 292 

al., 2019). Both the horizontal and vertical grid configuration correspond to the model specification 293 

as provided by the DWD model family, avoiding interpolation of the data. The LOTOS-EUROS 294 

simulations were performed for three different regions and spatial resolutions using a one-way 295 

nesting approach (Fig. 1). The large scale European simulation (28 x 32 km²) was performed with 296 

Domain 5° E - 25° E to 47° N - 55° N  10° E - 12° E to 50° N - 54° N 

Period January 2016 September 2016 – March 2017 

Boundary 

Conditions 

LOTOS-EUROS climatological simulation with ECMWF IFS 12 h forecast 

conditions (0.5° x 0.25° @ 28 x 32 km²) 

Anthrop. 

Emissions 

CAMS-RWC-AP 2015 (v1.1) and  

CAMS-2015-RWC-update-GrETa-gridding (v.1.1) 



 

ECMWF meteorology, the higher resolution nests over Germany-Poland (7 x 8 km²) and East-297 

Germany (4 x 4 km²) were performed by both meteorological drivers (Fig. 1). 298 

Two concepts of the vertical structure were tested in the LOTOS-EUROS CTM. The 299 

current operational LOTOS-EUROS model set-up uses a dynamic mixed layer approach (MIX) 300 

consisting of 5 layers extending up to 5 km above sea level to determine the vertical (Manders et 301 

al., 2017). The vertical is structured by using a static surface layer of 25 m followed by a dynamic 302 

layer. The height of the dynamic layer equals the MLH, derived by the meteorological input data. 303 

Up to 3.5 km two equally thick dynamic reservoir layers are implemented. Hence, the depth of the 304 

vertical layers varies in time and space. To resolve free tropospheric transport processes like 305 

mineral dust transport, a fifth layer exceeding the 3.5 km altitude is used. As prerequisite for 306 

applying the dynamic mixed layer approach a homogenous pollutant distribution is presumed 307 

within the PBL. However, assuming a well-mixed PBL can lead to a wrong representation of the 308 

vertical mixing in the model system. Due to deep reservoir layers overestimated mixing, particular 309 

during stable weather conditions with low MLHs, occurs. Therefore, recent model developments 310 

apply a much larger number of vertical layers in the LOTOS-EUROS CTM to reproduce the 311 

vertical structure of the planetary boundary layer (Escudero et al., 2019) and to provide a better 312 

understanding of the vertical distribution of pollutants, the multi-level version (MUL) negates the 313 

assumption of a well-mixed PBL and better accounts for the residual layer dynamics. The multi-314 

level model version uses the vertical level information as provided by the meteorological input 315 

data. Here, the multi-level approach of LOTOS-EUROS was applied using the lowest 15 hybrid 316 

z-level of COSMO-CLM and hybrid-sigma pressure layers of the ECMWF as input data. 317 

2.4 Observational Data and Metrics 318 

The meteorological simulations were evaluated compared to radiosonde observation from 319 

Lindenberg, Schleswig, Greifswald in Germany and Leba, Legionowa and Wroclaw in Poland. To 320 

compare to both meteorological model systems, the radiosonde observations were vertically 321 

interpolated to the corresponding model layering. To derive the MLH for both, observations and 322 

model results, the bulk Richardson method was used (Seibert et al., 2000). Defined as an 323 

dimensionless quantity and used in the turbulent kinetic energy (TKE) equation, the bulk 324 

Richardson number describes the bulk-ratio of the buoyant consumption term and the mechanical 325 

production term (Stull, 1988). The MLH refers to the altitude at which the bulk Richardson number 326 



 

is reaching a pre-set threshold, known as the critical Richardson number. Critical values of 0.2 to 327 

1.0 are indicated in literature. Here we used the COSMO-CLM thresholds of 0.33 at stable 328 

conditions (Wetzel, 1982) and 0.22 during convection (Vogelezang & Holtslag, 1996) to determine 329 

the MLH based on the thermo-dynamical parameters and moisture variables. 330 

To evaluate the modelled PM mass concentrations, observation data were collected from 331 

the ground-based monitoring networks in Germany collected by the German Environment agency 332 

UBA (www.uba.de). As we evaluated relatively short time periods, we chose to ensure full data 333 

coverage by using monitoring sites with 99% data availability. Traffic sites were neglected as these 334 

are not representative for the model resolution. The monitoring sites were clustered into rural-335 

background (6), suburban-background (10) and urban-background (4). To determine the 336 

contribution of individual components to the total PM concentration, data from the PM-OST 337 

monitoring campaign were used (van Pinxteren et al., 2019). The spatial-temporal mass 338 

concentration characteristics were illustrated by box plots. Mean diurnal and weekly cycles were 339 

calculated for all sites clustered by station type to examine the temporal variability of modelled 340 

and measured mass concentration. When analyzing the mass concentration per station type the 341 

data for all stations within a type were averaged in advance. To quantify the impact of 342 

meteorological conditions on the PM mass concentration level, a classification was carried out. 343 

The classification is based on three meteorological quantities. 2m-temperature (TC ≤ 273.15 K and 344 

TW > 273.15 K), 10m-wind speed (WS10L ≤ 3.3 m/s and WS10H > 3.3 m/s) and 10m-wind 345 

direction (WD10 [0°…360°, 90°]). Equally sized clusters were defined by using a bootstrapping 346 

algorithm. To include vertical mixing, the classified PM concentration data were plotted against 347 

the MLHs of both meteorological input data sets. To assess the different model configurations 348 

used in this study, model statistics based on Chang & Hanna (2004) were used. 349 

3 Results 350 

3.1 January 2016 351 

A comparison of both meteorological data from COSMO-CLM and ECMWF against 352 

radiosonde data was carried out for January 2016 before investigating the impact on the chemical 353 

transport modelling. Here we focus on thermodynamic parameters such as the MLH, temperature 354 



 

and wind speed. To evaluate the COSMO-CLM model, an ensemble of the PBL parameterization 355 

simulations is used. 356 

Observed temperature profiles of the lower PBL are rather well captured by both 357 

meteorological input datasets (Fig. 3, left). The ensemble of the COSMO-CLM model predicts 358 

systematically lower temperatures in the model domain compared to the ECMWF model, with an 359 

underestimation of observed values increasing towards the surface. The ECMWF model 360 

overestimates the temperatures compared to observations, most pronounced above the 700 m 361 

altitude. The structure of the vertical profile in the observations is considerably better reflected by 362 

the COSMO-CLM ensemble than the ECMWF model. Both models do not represent the cold 363 

easterly wind inflow period as well as the westerly wind inflow period. 364 

For wind speed both meteorological datasets show a striking underestimation (of up to a 365 

factor of three) of the measured values (Fig. 3, right). The underestimations are visible over the 366 

entire vertical of the PBL and are most pronounced at about the 700 m altitude. The ensemble of 367 

the COSMO-CLM model provides higher wind speeds and a closer resemblance of the observed 368 

profile than the ECMWF model. 369 

In general, the MLHs (Fig. 4) derived from both model simulations are lower compared to 370 

those derived from radiosonde measurements. The monthly mean bias of the ECMWF model is 371 

about -226 m and about -123 m for the COSMO-CLM ensemble mean. This could be attributed to 372 

an insufficient representation of the sensible and latent heat flux of the used model systems in the 373 

target area, which leads to lower near surface temperature estimates compared to the observations 374 

and the subsequent formation of inversion layers. Further research studies are required to 375 

investigate this issue. Deviations from the mean provide information of the variability and the 376 

temporal evolution. With this respect a large spatial variability between observation sites can be 377 

recognized, with the largest variation appearing in Leba. A rather good representation of the 378 

temporal evolution, with a correlation coefficient of 0.76, can be achieved using the COSMO-379 



 

CLM ensemble. The ECMWF model, on the other hand, has weaknesses representing the temporal 380 

Fig. 3 Profiles of the temperature (left hand side) and the wind-

speed (right hand side) for January 2016, split into sub-periods of 

01.-31., 03.-07. and 19.-22. 01. 2016. Observation data are 

selected out of radiosonde measurements at Schleswig, Leba, 

Greifswald, Legionowa, Lindenberg and Wroclaw and color-

coded in black. Model simulations are color-coded in green 

(ECMWF) and blue (COSMO-CLM). The COSMO-CLM model 

data is plotted as ensemble mean of the boundary layer 

parameterizations with their related spread marked as grey area. 

 



 

evolution (correlation coefficient 0.13) of the MLH. The main weakness of both models is 381 

indicated by the standard deviation of the MLH. Even though the standard deviation of the 382 

Fig. 4 Time series of the mixing layer height and deviation 

from mean, for January 2016. Observations are derived from 

radiosonde data in Schleswig, Leba, Greifswald, Legionowa, 

Lindenberg and Wroclaw is color-coded in black. 

Meteorological boundary data is color-coded in green 

(ECMWF) and blue (COSMO-CLM). The COSMO-CLM data 

is plotted as ensemble mean of the boundary layer 

parameterizations, the related spread marked as grey area and 

with the standard deviation coded as dashed line. 



 

COSMO-CLM ensemble MLH is closer to the observation, modelled values (about 340 m) are 383 

lower than observed (424 m). A noticeable lower standard deviation around the mean MLH is 384 

computed for the ECMWF model (189 m). Hence, the dynamical downscaling using COSMO-385 

CLM provides improved meteorological information compared to the standard dataset from 386 

ECMWF. 387 

The impact of different PBL parameterizations of the COSMO-CLM model can be 388 

regarded as small (grey area in Fig. 3). Main impact can be noted in the lower atmosphere, with 389 

largest differences near the surface compared to the ensemble mean, which can be explained by a 390 

lower vertical layer thickness near the surface. Lowering the diffusion coefficient of heat leads to 391 

cooler conditions with increased wind speeds, whereas e.g. the 3-D TKE-based prognostic closure 392 

approach leads to a warming in the PBL. Largest differences with a temperature variance of about 393 

1 K can be observed especially during cooling events. Changes in wind speed are about 1 m/s 394 

during the PM episode and about 0.5 m/s for the entire month. The MLH and the corresponding 395 

temporal evolution are not significantly affected (see grey area in Fig. 4). Although the spread 396 

between members is up to 200 m and thus comparatively large, no single ensemble member 397 

provides a consistent indication of a better performance in representing the PBL meteorology. 398 

Below, the COSMO-CLM ensemble and the reference ECMWF data are used to drive the 399 

LOTOS-EUROS CTM. 400 

Monthly mean PM mass concentration levels in the rural background during January 2016 401 

were about 24 μg/m3 (see Fig. 5 and Tab. 3). The LOTOS-EUROS CTM simulations fed with the 402 

COSMO-CLM ensemble underestimate the observed concentrations by 8.1 μg/m3 on average. The 403 

modelled variability is much lower than observed in reality. This can be explained by an 404 

overestimation during the westerly wind period of about 0.5 μg/m3, and a relatively large 405 

underestimation during the easterly wind regime (up to -43.6 μg/m3). Despite of a similar 406 

meteorological situation with a stagnant weather condition, this discrepancy can be explained by 407 

a high transboundary PM contribution. The simulations with the COSMO-CLM ensemble of PBL 408 

parameterizations do not provide large differences in the modelled PM mass concentration (Tab. 409 

3). On average, PM levels modelled by individual members are deviating less than 0.4 μg/m3 from 410 

the ensemble mean (Fig. 5). The model performance statistics for the ensemble mean of all 411 

LOTOS-EUROS simulations show small positive impacts on the temporal correlation and the 412 



 

normalized mean squared error compared to the individual simulation members (Tab. 3). In Table 413 

3 we also compare the validation statistics of simulations using ECMWF and different model 414 

resolutions. Using ECMWF meteorological data instead of COSMO-CLM provides larger 415 

correlation coefficients and lower error statistics. Independent on meteorological driver the vertical 416 

structure leads to a substantial increase in levels and modelled variation. The increase in horizontal 417 

resolution (D3 vs D2) leads to a slightly larger increment between rural and urban sites. 418 

In short, the impacts of the COSMO-CLM ensemble (members) is small compared to the 419 

use of different meteorological input data (COSMO-CLM vs ECMWF) and using different vertical 420 

model resolutions. The latter are discussed in more detail below for the winter 2016-2017, for 421 

which we did not pursue to perform the full ensemble calculations. 422 

 423 

 424 

Fig. 5 PM mass concentration of the LOTOS-EUROS CTM dependent on the 

meteorological boundary conditions, the boundary layer parameterization, the horizontal 

resolution, and the vertical grid structure for the Berlin agglomeration. Three sub-periods 

have been investigated and are presented from top to bottom (01.-31., 03.-07. and 19.-

22. 01. 2016). 



 

 425 

Tab. 3 426 

Statistics on modelled and observed means (µ), standard deviation (σ), temporal correlation 427 

coefficient (RT), spatial correlation coefficient (RS), geometric mean bias (MG), normalized mean 428 

square error (NMSE), geometric variance (VG), fractional bias (FB) and number of sites (NoS) 429 

for January 2016. 430 

 µmod ± σmod µobs ± σobs RT RS VG MG NMSE FB NoS 

C
O

S
M

O
-C

L
M

 

M
IX

 

D
2
 15.70 ± 06.43 

15.23 ± 06.20 

20.08 ± 09.47 

23.99 ± 21.76 

27.26 ± 25.61 

31.88 ± 35.17 

0.53 

0.50 

0.24 

0.52 

0.53 

0.88 

1.68 

1.74 

1.80 

1.25 

1.46 

1.36 

1.16 

1.64 

2.03 

0.42 

0.57 

0.45 

6 RUBG 

10 SUBG 

4 URBG 

D
3
 14.77 ± 06.19 

14.16 ± 05.50 

21.31 ± 10.74 

23.99 ± 21.76 

27.26 ± 25.61 

31.88 ± 35.17 

0.55 

0.51 

0.17 

0.59 

0.58 

0.94 

1.72 

1.82 

1.82 

1.34 

1.57 

1.28 

1.27 

1.82 

1.96 

0.48 

0.64 

0.40 

6 RUBG 

10 SUBG 

4 URBG 

E
N

S
 15.93 ± 06.63 

15.55 ± 06.36 

20.18 ± 09.49 

23.99 ± 21.76 

27.26 ± 25.61 

31.88 ± 35.17 

0.58 

0.51 

0.26 

0.53 

0.57 

0.89 

1.62 

1.69 

1.76 

1.24 

1.44 

1.35 

1.09 

1.57 

2.00 

0.40 

0.55 

0.45 

6 RUBG 

10 SUBG 

4 URBG 

M
U

L
 D

2
 20.20 ± 11.41 

19.75 ± 11.29 

23.32 ± 13.14 

23.99 ± 21.76 

27.26 ± 25.61 

31.88 ± 35.17 

0.56 

0.50 

0.36 

0.65 

0.64 

0.90 

1.42 

1.42 

1.42 

1.06 

1.24 

1.24 

0.70 

1.02 

1.55 

0.17 

0.32 

0.31 

6 RUBG 

10 SUBG 

4 URBG 

D
3

 21.33 ± 11.31 

20.92 ± 10.99 

26.09 ± 14.07 

23.99 ± 21.76 

27.26 ± 25.61 

31.88 ± 35.17 

0.51 

0.47 

0.28 

0.71 

0.74 

0.94 

1.43 

1.38 

1.48 

0.98 

1.15 

1.08 

0.70 

0.95 

1.43 

0.12 

0.27 

0.20 

6 RUBG 

10 SUBG 

4 URBG 

E
C

M
W

F
 I

F
S

 M
IX

 D
2
 20.15 ± 06.69 

16.72 ± 06.66 

19.39 ± 08.51 

23.99 ± 21.76 

27.26 ± 25.61 

31.88 ± 35.17 

0.62 

0.57 

0.36 

0.64 

0.62 

0.88 

1.42 

1.46 

1.56 

1.17 

1.31 

1.35 

1.00 

1.35 

2.01 

0.37 

0.48 

0.49 

6 RUBG 

10 SUBG 

4 URBG 

D
3

 16.35 ± 06.76 

16.77 ± 06.67 

20.12 ± 08.98 

23.99 ± 21.76 

27.26 ± 25.61 

31.88 ± 35.17 

0.64 

0.60 

0.36 

0.72 

0.58 

0.95 

1.41 

1.45 

1.54 

1.17 

1.31 

1.31 

0.99 

1.30 

1.91 

0.38 

0.48 

0.45 

6 RUBG 

10 SUBG 

4 URBG 

M
U

L
 D

2
 23.02 ± 11.00 

22.91 ± 11.05 

24.61 ± 12.00 

23.99 ± 21.76 

27.26 ± 25.61 

31.88 ± 35.17 

0.67 

0.60 

0.46 

0.86 

0.69 

0.95 

1.35 

1.30 

1.33 

0.87 

1.00 

1.10 

0.50 

0.73 

1.32 

0.04 

0.17 

0.26 

6 RUBG 

10 SUBG 

4 URBG 

D
3
 22.95 ± 11.00 

23.00 ± 11.08 

24.98 ± 12.14 

23.99 ± 21.76 

27.26 ± 25.61 

31.88 ± 35.17 

0.67 

0.61 

0.46 

0.93 

0.61 

0.95 

1.35 

1.29 

1.33 

0.87 

1.00 

1.08 

0.50 

0.70 

1.30 

0.05 

0.18 

0.24 

6 RUBG 

10 SUBG 

4 URBG 

3.2 September 2016 to March 2017 431 

3.2.1 Meteorological Input Data 432 

Classifying the PM concentration by meteorological conditions for September 2016 to 433 

March 2017, more detailed information can be obtained on their relationship to thermodynamical 434 

quantities. Figure 6 illustrates the well-known feature of high PM concentration levels 435 



 

predominant during cold periods when a shallow mixing layer is observed. By contrast, a low mass 436 

concent ration is evident during relative mild winter periods. Periods with weak wind speeds are 437 

linked to local impacts like urban emissions, high wind speeds are associated to long-range 438 

transport. Concentration levels are higher at south-east wind directions than at north-west ones in 439 

the investigation area of Berlin. Summarizing, high concentration levels in Berlin can be linked to 440 

long-range transport of air masses from East-European countries, during cold stagnant conditions. 441 

PM concentrations during westerly wind periods are well represented while an underestimation of 442 

PM concentrations is present for all mixed-layer model versions during easterly wind periods with 443 

respect to the UBA measurements. Warm periods are better reproduced than colder episodes. 444 

Largest PM underestimations for September 2016 to March 2017 are obvious for conditions with 445 

Fig. 6 Modelled (left: mixed layer approach [MIX], middle: multi-layering concept [MUL]) and 

observed (right) PM mass concentration levels are plotted over the MLH (a-f) for September 2016 

to March 2017. Rural-background sites are used as evaluation sites, with the COSMO-CLM model 

(top) and ECMWF model (bottom) representing the meteorological boundary data. The PM mass 

concentration levels are divided into different classes depending on the meteorological condition. 

Anomalies of the different configurations are plotted on each side. The temperature impact is color-

coded: TC ≤ 273.15K as blue and TW > 273.15K as red. Wind speed is marked by the arrow length: 

WS10L ≤ 3.3m/s and WS10H > 3.3m/s. The wind direction is associated to the arrow direction: 

WD10 [0°...360°, 90°]. 



 

cold south-easterly high wind periods by up to 15.0 μg/m3 compared to the observation. LOTOS-446 

EUROS CTM simulations driven by the COSMO-CLM model and ECMWF input data differ, 447 

depending on the meteorological condition, in their mean MLH by about 75 m with the ECMWF 448 

model providing lower values for most of the time. Related PM mass concentration levels vary 449 

within 5.0 μg/m3, with largest deviations during cold periods. Simulation results of the LOTOS-450 

EUROS CTM using input data of the COSMO-CLM model are on average about -1.4 μg/m3 lower 451 

in rural areas than ones computed by using the ECMWF model, with the more striking difference 452 

of about -7.4 μg/m3 evident during cold stagnant PM episodes, which could be related to higher 453 

wind speeds of the COSMO-CLM model. 454 

Fig. 7 Map of the observed (dots) and the modelled (ECMWF-MIX: a, ECMWF-MUL: b, 

COSMO-CLM-MIX: c and COSMO-CLM-MUL: d) PM mass concentration level for 

December 2016 to February 2017. 



 

For winter December 2016 to February 2017, the monthly mean rural background 455 

concentration was 21.7 μg/m3, with the major impact attributed to urban agglomerations of about 456 

27.4 μg/m3 (Fig. 7 and Tab. 4). This corresponds to an urban increment of about 5.7 μg/m3. The 457 

rural background concentration levels for the mixed-layer model versions are underestimated by 458 

about -2.7 μg/m3 on average with respect to the UBA measurements. Especially urban background 459 

(-5.2 μg/m3) influenced areas cannot be captured by the LOTOS-EUROS CTM. Therefore, the 460 

modelled urban increment is underestimated by about 3.2 μg/m3 on average. The average urban 461 

increment of the COSMO-CLM model system, applying the dynamical downscaling approach, 462 

lowers the underestimation of the increment of modelled PM mass concentration levels in the 463 

LOTOS-EUROS CTM seen in UBA measurements (Fig. 7). This particularly affects the enhanced 464 

 465 

Tab. 4 466 

Statistics on modelled and observed means (µ), standard deviation (σ), temporal correlation 467 

coefficient (RT), spatial correlation coefficient (RS), geometric mean bias (MG), normalized mean 468 

square error (NMSE), geometric variance (VG), fractional bias (FB) and number of sites (NoS) 469 

for December 2016 to February 2017. 470 

 µmod ± σmod µobs ± σobs RT RS VG MG NMSE FB NoS 

C
O

S
M

O
-C

L
M

 

M
IX

 D
2
 18.55 ± 09.75 

18.39 ± 09.52 

23.01 ± 12.62 

21.67 ± 14.89 

24.71 ± 16.27 

27.36 ± 18.69 

0.72 

0.76 

0.65 

0.54 

0.29 

0.76 

1.37 

1.36 

1.36 

1.09 

1.25 

1.15 

0.29 

0.35 

0.35 

0.16 

0.29 

0.17 

6 RUBG 

10 SUBG 

4 URBG 

D
3

 17.50 ± 08.84 

17.24 ± 08.41 

23.86 ± 12.74 

21.67 ± 14.89 

24.71 ± 16.27 

27.36 ± 18.69 

0.71 

0.75 

0.57 

0.59 

0.24 

0.78 

1.38 

1.39 

1.38 

1.13 

1.30 

1.08 

0.35 

0.45 

0.39 

0.21 

0.36 

0.14 

6 RUBG 

10 SUBG 

4 URBG 

M
U

L
 D

2
 24.45 ± 15.64 

24.38 ± 15.54 

28.32 ± 18.42 

21.67 ± 14.89 

24.71 ± 16.27 

27.36 ± 18.69 

0.77 

0.80 

0.71 

0.74 

0.43 

0.78 

1.36 

1.28 

1.32 

0.93 

1.06 

1.03 

0.22 

0.17 

0.26 

-0.12 

0.01 

-0.03 

6 RUBG 

10 SUBG 

4 URBG 

D
3
 25.92 ± 15.43 

25.68 ± 15.04 

30.88 ± 18.32 

21.67 ± 14.89 

24.71 ± 16.27 

27.36 ± 18.69 

0.76 

0.79 

0.67 

0.80 

0.50 

0.79 

1.34 

1.24 

1.29 

0.85 

0.97 

0.90 

0.23 

0.17 

0.28 

-0.18 

-0.03 

-0.12 

6 RUBG 

10 SUBG 

4 URBG 

E
C

M
W

F
 I

F
S

 

M
IX

 D
2
 18.93 ± 09.49 

19.55 ± 09.68 

22.20 ± 11.68 

21.67 ± 14.89 

24.71 ± 16.27 

27.36 ± 18.69 

0.76 

0.80 

0.69 

0.63 

0.41 

0.66 

1.25 

1.23 

1.26 

1.06 

1.16 

1.17 

0.25 

0.28 

0.34 

0.14 

0.23 

0.21 

6 RUBG 

10 SUBG 

4 URBG 

D
3
 18.86 ± 09.45 

19.41 ± 09.52 

23.02 ± 12.33 

21.67 ± 14.89 

24.71 ± 16.27 

27.36 ± 18.69 

0.76 

0.80 

0.67 

0.68 

0.41 

0.78 

1.25 

1.22 

1.26 

1.06 

1.16 

1.13 

0.26 

0.29 

0.34 

0.14 

0.25 

0.17 

6 RUBG 

10 SUBG 

4 URBG 

M
U

L
 

D
2
 28.04 ± 16.54 

28.28 ± 15.86 

30.06 ± 18.45 

21.67 ± 14.89 

24.71 ± 16.27 

27.36 ± 18.69 

0.76 

0.81 

0.67 

0.84 

0.59 

0.79 

1.30 

1.20 

1.20 

0.74 

0.82 

0.88 

0.27 

0.16 

0.29 

-0.26 

-0.13 

-0.09 

6 RUBG 

10 SUBG 

4 URBG 



 

D
3
 27.70 ± 16.18 

27.98 ± 15.69 

30.44 ± 19.02 

21.67 ± 14.89 

24.71 ± 16.27 

27.36 ± 18.69 

0.76 

0.81 

0.64 

0.87 

0.61 

0.85 

1.30 

1.19 

1.21 

0.74 

0.83 

0.87 

0.26 

0.16 

0.32 

-0.24 

-0.12 

-0.11 

6 RUBG 

10 SUBG 

4 URBG 

PM mass concentration levels of urban agglomerations. More gradients are visible in the PM 471 

distribution across highly polluted areas such as Berlin. Whereas the rural background 472 

concentration estimates for winter December 2016 to February 2017 are slightly higher by using 473 

the COSMO-CLM model compared to the observations (bias of -3.1 μg/m3) than those of the 474 

ECMWF model system. In the urban background area, an underestimation of -4.4 μg/m3 is obvious 475 

with respect to the observations. This results in an urban increment of 4.4 μg/m3. 476 

Fig. 8 Diurnal (left) and weekly (right) cycle of the observed (black solid line) and the 

modelled (green: dashed line – ECMWF-MIX, dotted line – ECMWF-MUL; blue: 

dashed line – COSMO-CLM-MIX, dotted line – COSMO-CLM-MUL) PM mass 

concentration levels for December 2016 to February 2017, split into urban- (top), 

suburban- (mid) and rural-background (bottom) areas. 



 

Figure 8 provides observed and modelled diurnal and weekly cycles of surface PM 477 

concentration levels for winter December 2016 to February 2017. The observed diurnal cycle is 478 

characterized by a minimum during lunchtime and a maximum at night, caused by the natural 479 

development of the MLH. Whereas, in the urban area two peak values are observed during 480 

daytime, between 8-11 GMT and 19-22 GMT, mainly attributed to the impact of traffic rush hours 481 

and heating in conurbation areas. Diurnal cycles are too pronounced in the LOTOS-EUROS CTM 482 

simulations. Lower concentration levels are predominant in the early morning hours from midnight 483 

to 6:00 GMT, with about -5.5 μg/m3 in rural areas and about -6.8 μg/m3 in the urban background 484 

compared to the observation. Towards the evening the bias is reduced to about -3.5 μg/m3 in rural 485 

areas and about -2 μg/m3 in the urban background with respect to the UBA measurements. The 486 

mean correlation of the diurnal cycle for urban sites is 0.81, with simulations driven by COSMO-487 

CLM input data showing smaller correlation coefficients by about 0.07. The more pronounced 488 

overshooting of peak concentration levels in urban areas by using the COSMO-CLM model 489 

reduces the temporal correlation to 0.57. Overall higher correlations can be provided using the 490 

ECMWF input data in the rural and sub-urban background area by about 0.05. 491 

As the impact for different horizontal (D2 vs. D3) and vertical resolutions (MIX vs. MUL) 492 

of the LOTOS-EUROS CTM simulations is similar for varying meteorological input-data, we will 493 

focus on the COSMO-CLM model system. 494 

3.2.2 Model Resolution 495 

Differences by increasing the horizontal resolution are particularly evident when applying 496 

the dynamical downscaling approach of the COSMO-CLM model, with the major benefit of the 497 

higher resolution recognized in a more detailed representation of the spatial concentration 498 

distribution. For instance, increasing the horizontal resolution applying the zooming approach of 499 

the LOTOS-EUROS CTM (D2 to D3) is slightly affecting the PM mass concentration and reduces 500 

the rural background levels of the LOTOS-EUROS CTM model (Tab. 4 and Fig. 7). On average 501 

lower values of -1.1 μg/m3 were computed compared to the coarser resolution for winter December 502 

2016 to February 2017. In contrary, the concentration amount in the urban background of the 503 

LOTOS-EUROS CTM is increased by about 0.9 μg/m3 when increasing the resolution from 7 km 504 

to 2 km. This increases the urban increment to about 6.4 μg/m3. Simulation results show that 505 



 

different horizontal resolutions applying different vertical structures delivered similar results, thus 506 

for the remainder discussions we will stick with the higher resolved model version. 507 

Changing the vertical structure (MIX vs. MUL) of the LOTOS-EUROS CTM exhibits a 508 

larger impact than increasing the horizontal resolution. By applying the multi-level approach, 509 

higher levels of the PM mass concentration are obvious in almost all meteorological conditions 510 

with respect to the mixed layer approach (Fig. 6). The multi-level version leads to a considerably 511 

reduction of the underestimation during cold south-easterly high wind periods from -14 μg/m3 to 512 

about -4.0 μg/m3 compared to the observations. At the same time, an overestimation during cold 513 

westerly wind conditions is apparent by now of up to 10.0 μg/m3 with respect to the observations. 514 

Regarding warm westerly conditions a mean overestimation of about 4.0 μg/m3 system can be 515 

recognized applying the multi-layering concept compared to the UBA measurements. Increased 516 

PM mass concentration levels are predominant in the whole model domain when using the multi-517 

level model version (Tab. 4 and Fig. 7). In particular, the rural background concentration levels 518 

are increased by up to 8.4 μg/m3 on average compared to the mixed layer approach. This leads to 519 

an average overestimation of rural background concentrations of up to 4.3 μg/m3. The urban 520 

concentration levels are overestimated by up to 3.5 μg/m3. The urban increment is about 4,9 μg/m3 
521 

but is only slightly underestimated compared to the UBA measurements. 522 

3.2.3 Model Performance 523 

Model statistics show high agreement of the model simulations compared with 524 

observations (Tab. 4). An overall good representation of the observations can be achieved, with 525 

highest model performance evident for the multi-level version of the LOTOS-EUROS CTM. On 526 

average, high-resolution model simulations of the LOTOS-EUROS CTM show the best spatial 527 

performance with spatial and temporal correlation increasing with higher vertical model 528 

resolution. Best agreements can be observed for the dynamical downscaling approach of the 529 

COSMO-CLM input data combined with increased vertical resolution of the LOTOS-EUROS 530 

CTM, with spatial averaged model statistics of about 0.74 for the temporal correlation, 0.70 for 531 

the spatial correlation, -0.11 for the fractional bias, 0.23 for the normalized mean square error, 1.29 532 

for the geometric variance and 0.91 for the geometric mean bias. 533 



 

3.2.4 Composition of PM 534 

 In the following section, the comparison of the observed and modelled PM concentration 535 

is extended by chemical compounds (Fig. 9 and Fig. 10). This provides more information on the 536 

mechanisms causing to different results in the applied model configurations. The modelled and 537 

observed data were spatially averaged over the entire investigation area. 538 



 

 539 

Fig. 9 Time series of observed (PM-OST) and modelled PM 

mass concentration levels (on top) for January to February 

2017. Difference (black line) to the Observation (PM-OST) 

and the reference model (ECMWF-MIX-D2) are listed below 

and separated into their chemical composition (bar charts). 



 

 540 

The observed PM composition shows high levels of nitrate (18 %), ammonium (10 %) and 541 

sulfate (13 %) as well as organic matter (23 %) for January to February 2017. Lower contributions 542 

can be attributed to sodium (1 %) and elemental carbon (3 %). The predominant compound is 543 

classified as undefined (34 %) which includes mineral dust, oxides, and other trace materials. 544 

Fig. 10 Scatter plot of modelled (MOD) 

compared to of observed (OBS: PM-

OST) mass concentration levels of 

nitrate (on top) and sulfate (bottom) for 

January to February 2017. 



 

As mentioned in the previous section model simulations of the mixed-layer version indicate 545 

an overall underestimation of the total PM mass concentration especially during PM episodes in 546 

comparison to the observations. The largest part of the model bias can be attributed to an 547 

underestimation of sulfate, primary organic matter (POM), and the undefined fraction with 548 

estimated average underestimations ranging between -1.2 μg/m3 for Sulfate and POM and of -8.0 549 

μg/m3 for the undefined fraction, respectively. By contrast, the components sodium, and elemental 550 

carbon show positive biases up to 1.4 μg/m3 compared to the observations. Ammonium is slightly 551 

underestimated, whereas nitrate shows a small overestimation of (both about ±0.2 μg/m3). 552 

Simulations by using different model resolutions in the horizontal or the vertical grid 553 

structure and different meteorological input data, especially affects individual chemical 554 

components as e.g. nitrate, and sulfate, which are highly sensitive compounds in the used model 555 

systems (Fig. 10). These observed sensitivities and their related overestimation of PM 556 

concentration levels compared to observations are primarily induced by the multi-level version of 557 

the LOTOS-EUROS CTM. The largest gain in mass concentration in the order of about 4.5 μg/m3 558 

is evident for nitrate, leading to an averaged overestimation of the same order of magnitude 559 

compared to the observations. Similar results are obvious for ammonium, which results in an 560 

overestimation of the averaged fraction of about 1.3 μg/m3 compared to the measurements. 561 

Ammonium nitrate is a semi-volatile component and its formation depends a combination of 562 

factors including temperature, relative humidity, stability, and the precursor concentrations. In this 563 

case, the absence of the meteorological impact on ammonia emissions may increase the effects as 564 

the rise of ammonium nitrate occurs at (colder) moments when ammonia emissions are below 565 

average. The mass concentration of POM is increasing with higher vertical layering also by about 566 

0.6 μg/m3. By contrast, the sodium mass concentration was reduced and leads to a reduction of the 567 

model bias (0.2 μg/m3). In all simulations a below average performance is found for the formation 568 

of sulfate. Compared to the observations, the model bias (-0.4 μg/m3) for sulfate is considerably 569 

reduced on average, but still the temporal trend is difficult to capture. 570 

Using different meteorological input data is not as large reflected in the distribution of the 571 

chemical compounds. The results differ in the concentration mass corresponding to the conclusions 572 

mentioned above with small changes in the model bias of nitrate and POM ranging within 0.5 573 

μg/m3 when using the COSMO-CLM model. By contrast, the fraction of sulfate is changed for 574 



 

January to February 2017 and counteracts the model bias. In comparison to the ECMWF driven 575 

model system, a negative difference prior to and a positive one during the PM episode appears. 576 

The smallest variations in the component distribution can be observed by increasing the 577 

model resolution using the zooming approach in the LOTOS-EUROS CTM, with higher POM 578 

concentration and lower nitrate levels modelled for the observation sites for January to February 579 

2017. Averaged differences of up to 0.3 μg/m3 with respect to the lower resolution can be 580 

recognized. The impact of elemental carbon becomes more relevant with higher resolution 581 

increasing the mass concentration in the order of 0.1 μg/m3, which results in a larger 582 

overestimation of about 0.4 μg/m3 compared to the observation. 583 

4 Discussion and Conclusions 584 

We successfully developed an interface to the COSMO-CLM model and explored the 585 

impact of different meteorological input data and horizontal and vertical resolutions for the 586 

LOTOS-EUROS CTM. The quality of the meteorological input data are a major impact factor on 587 

chemical transport modelling and can thus be one reason for excessive mixing (Vautard et al. 588 

(2012)). Our study shows that meteorological conditions can significantly be improved by 589 

applying the dynamical downscaling approach of the COSMO-CLM model compared to the 590 

ECMWF reference data. Especially the comparison to observed MLHs, derived from radiosonde 591 

data using the bulk Richardson method (Seibert et al., 2000), exhibits a good agreement. 592 

Weaknesses are apparent representing the MLH top with a low bias, while the temporal evolution 593 

and the variability are well reflected. Previous studies also mentioned a systematic underestimation 594 

of the PBL height of the COSMO model during convective situations or frontal crossings, 595 

comparable to the prevailing conditions during the selected investigation period (Fay & 596 

Neunhäuserer, 2005). Baars et al. (2008) also published model simulation results of the COSMO 597 

model indicating a too low MLH of about 20%. In the study of Baars et al. (2008) the dependency 598 

to cloud cover was emphasized with highest underestimation appearing when clouds are predicted 599 

by the model but are not existent at all. By contrast, the study by Collaud Coen et al. (2014) 600 

indicates a general overestimation of the COSMO model caused by a too rapid increase in the early 601 

morning hours, with larger differences during cloudy conditions as well. As reason of these 602 

positive and negative model bias compared to the observations, differences in the stratification of 603 



 

atmospheric parameters can be regarded as the main impact factor, caused in particular by the 604 

orographic situation in the studies mentioned above. 605 

To provide reliable meteorological conditions of the PBL for the investigation area of 606 

Berlin, we attempted to improve the variability of the MLH by using different PBL 607 

parameterizations of the COSMO-CLM model. Neither the simulation of the mean nor the 608 

representation of the variability can be improved much by the sensitivity simulations of the 609 

COSMO-CLM model. The overall total variation caused by the parameterizations is small and no 610 

clear bias correction can be achieved. Previous studies already mentioned similar difficulties 611 

adopting parametrizations. Buzzi et al. (2011) for instance indicates a loss of information of the 612 

near-surface temperature inversion when too low diffusion coefficients are applied, with high 613 

values are required to avoid low mixing. A further study by Meissner et al. (2009) indicates minor 614 

impact of varying physical model parameters compared to changing meteorological driving data 615 

of the COSMO-CLM model. This may indicate that the downscaling domain of COSMO should 616 

be increased substantially in the future to widen the ensemble spread. 617 

In fact, the MLH is not a physical parameter, it is simply a diagnostic quantity and cannot 618 

be directly measured with the determination associated with certain limitations (Schäfer et al., 619 

2006). However, studies on the comparability of MLH retrievals deliver significant differences 620 

especially depending on the meteorological conditions. Based on the algorithm used to derive the 621 

MLH, such as temperature profiles, sodar results and lidar, various solutions can be obtained 622 

(Coulter, 1979; Seidel et al., 2010; Haeffelin et al., 2012; Beyrich & Leps, 2012). The differences 623 

even increase when complex methods are used to distinguish between several PBL types (Collaud 624 

Coen et al., 2014). This leads to a validation and implementation problem in CTMs. To avoid the 625 

issue of the derivation problem, we advise not to use the MLH as input or validation data for CTMs 626 

in contrast to previous recommendations by studies like as Geiß et al. (2017). In accordance with 627 

the suggestion of Hanna & Yang (2001) we therefore increased the vertical grid resolution of the 628 

model to better reflect shallow inversion conditions by applying the recent multi-layering version 629 

of the LOTOS-EUROS CTM. 630 

The impact on the PM mass concentration of the vertical layering in the LOTOS-EUROS 631 

CTM is much larger than the planetary boundary layer meteorology, with the multi-level approach 632 

of the LOTOS-EUROS CTM significantly increasing the concentration mass in the investigation 633 



 

area of Berlin. Major impact can be associated to cold stagnant weather conditions, especially 634 

easterly wind periods and a better representation of high transboundary PM contributions. By 635 

contrast, warm periods are not as large modified by using the high vertical grid structure. This can 636 

be attributed to a modified distribution of the chemical compounds, especially nitrate, and 637 

ammonium, which responded highly sensitive within the used model set-ups. Compared to the 638 

mixed-layer version the nitrate and ammonium concentration levels are increased and lead to an 639 

increased total PM mass concentration when applying the higher resolved vertical layering 640 

structure. 641 

This study and recent assessment for NO2 and ozone show that the multi-level approach of 642 

the LOTOS-EUROS CTM keeps the pollutants closer to the surface than the mixed layer approach 643 

(Escudero et al. (2019); Fallah et al (2020)). Fallah et. al. (2020) further reveals a seasonal 644 

relationship of the nitrogen oxide mass concentration levels dependent on the applied vertical set-645 

up, with an overestimated mixing in the mixed-layer version of the LOTOS-EUROS CTM. The 646 

similarity of the results for summer was large, where a better performance for the multi-level model 647 

version was found for the winter season compared to the mixed-layer approach. However, the 648 

refined vertical layering still results in too high PM concentration levels in urban areas and non-649 

polluted periods, thus further investigations of the model set-up must be carried out. 650 

Higher resolved model simulations and the use of the COSMO-CLM model as 651 

meteorological input data, leads to a more realistic representation of the urban-increment compared 652 

to coarser model simulations driven by the EMCWF model. Especially the spatial distribution of 653 

the PM background concentration is considerably improved. The higher horizontal resolution of 654 

the LOTOS-EUROS-CTM in combination with high resolution meteorological input data hence 655 

leads to less artificial dilution in urban areas. 656 

Individual chemical compounds should be examined and considered separately by 657 

applying a labelling approach. Underestimated processes like as resuspension due to traffic, 658 

construction or agriculture could then easily be identified to improve the emission inventory for 659 

the Berlin agglomeration. Further investigations based on source apportionment and receptor 660 

studies and their comparison to PMF observations should be carried out to further enhance the 661 

insight of long-range and local contributions in the investigation area of Berlin. 662 
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