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Continuous Demixing Transition of Binary Liquids:
Finite-Size Scaling from the Analysis of Sub-Systems

Yogyata Pathania, Dipanjan Chakraborty,* and Felix Höfling*

A binary liquid near its consolute point exhibits critical fluctuations of local
composition and a diverging correlation length. The method of choice to
calculate critical points in the phase diagram is a finite-size scaling analysis,
based on a sequence of simulations with widely different system sizes.
Modern, massively parallel hardware facilitates that instead cubic
sub-systems of one large simulation are used. Here, this alternative is applied
to a symmetric binary liquid at critical composition and different routes to the
critical temperature are compared: 1) fitting critical divergences of the
composition structure factor, 2) scaling of fluctuations in sub-volumes, and 3)
applying the cumulant intersection criterion to sub-systems. For the last
route, two difficulties arise: sub-volumes are open systems, for which no
precise estimate of the critical Binder cumulant Uc is available. Second, the
boundaries of the simulation box interfere with the sub-volumes, which is
resolved here by a two-parameter finite-size scaling. The implied modification
to the data analysis restores the common intersection point, yielding
Uc = 0.201± 0.001, universal for cubic Ising-like systems with free
boundaries. Confluent corrections to scaling, which arise for small sub-system
sizes, are quantified and the data are compatible with the universal correction
exponent 𝝎 ≈ 0.83.

1. Introduction

The calculation of phase diagrams of fluid substances is of inter-
est for manifold applications. A particularly challenging task is
finding the loci of critical points, with the liquid–vapour critical
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point as a prominent example. Binary liquid
mixtures, in addition, exhibit phase separa-
tion and the coexistence of differently com-
posed liquid phases, which leads to a line of
critical points in the phase diagram.[1,2] In
the vicinity of these critical points, the fluid
is characterized by diverging length and
time scales,[3–6] which puts considerable dif-
ficulties on their simulation. The growth of
the correlation length interferes with the fi-
nite size of the simulation box, with the con-
sequences that the observed phase transi-
tion is rounded and shifted and critical di-
vergences are capped.
In the past decade, the seemingly never

ending growth in computing power was,
among other factors, driven by a shift to
massive parallelization, making molecular
simulations of unprecedented system sizes
and run lengths broadly available.[7–13] The
use of huge systems mitigates artifacts due
to a finite simulation box and allows, in
principle, probing the critical divergences
directly as one would do in an experiment.
Yet, an elegant and conceptually superior

alternative exploits the scale invariance of the critical fluid and
turns the limitation of a finite system size into an advantage by
explicitly following the divergences of certain fluid properties as a
function of the system size.[14,15] The latter approach requires that
the simulations at each thermodynamic state point are repeated
for a wide range of system sizes, including comparably small sys-
tems. However, on prevalent massively parallel hardware such
as high-performance graphics processing units (GPUs), it is not
possible to run a set of independent simulations concurrently,
and so the conventional finite-size scaling does not participate in
substantial advances of computing hardware.
Both aspects, a systematic finite-size scaling and the efficient

simulation of huge systems, can be combined in the finite-size
scaling analysis of sub-systems. This old idea was carried out
successfully for 2D and 3D Ising lattice models,[14,15] but its ap-
plication to 2D Lennard–Jones (LJ) fluids was limited by the com-
puting resources available 30 years ago and suffered from the in-
sufficient separation of the two length scales.[16–18] The approach
was revived only recently to determine critical points in the phase
diagrams of 3D active suspensions[19,20]; in these studies, addi-
tional countermeasures were needed to avoid biased sampling
by sub-volumes that contained an interface.
Compared to the conventional finite-size scaling, there are two

important differences: boundary conditions are not periodic, and
the system geometry is inherently described by two lengths: the
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simulation box L and the sub-system size 𝓁. In the limit of small
sub-systems relative to the simulation volume (𝓁 ≪ L), the sub-
systems realize open systems in the sense of statistical mechan-
ics; in particular, they can exchange heat and mass with a large
reservoir. Open sub-systems are receiving increasing interest in
the simulation community, motivated by studies of small-system
thermodynamics[21,22] but also liquid–vapour interfaces[23] and
by the finite-size scaling of Kirkwood–Buff integrals to calculate
chemical potentials.[24,25] On the other hand, methodological ad-
vances in adaptive resolution techniques permit the direct simu-
lation of an open system coupled to one[26–28] or many[29] reser-
voirs acting as a thermodynamic mean field. The free boundary
conditions, as realized by sufficiently small, open sub-systems,
modify the fluctuations of density and composition.[23]

In the context of critical phenomena, the critical ampli-
tudes are known to be different for free and periodic bound-
ary conditions,[30,31] which applies also to the critical Binder cu-
mulant Uc used to locate the critical temperature.[14,15] Specif-
ically, the value[32,33] Uc = 0.6236 ± 0.0002 is universal for cu-
bic Ising-like systems with periodic boundaries and thus rele-
vant for conventional finite-size scaling based on a sequence of
simulations.[34,35] For free boundary conditions, however, only a
rough estimateUc ≈ 0.21 exists,[14] and this lack of knowledge of
Uc constitutes an obstacle to the straightforward application of
sub-volume finite-size scaling. Another obstacle lies in the com-
petition of the two lengths 𝓁 and L, that is, the size of the sub-
system and that of the simulation box, which renders the effective
boundary conditions non-ideal, that is, neither free nor periodic.
In this work, we revisit the sub-system scaling analysis in the

vicinity of a critical point and compare different approaches to
estimate the critical temperature. We introduce a two-parameter
scaling ansatz that accounts explicitly for the two lengths 𝓁 and
L, thereby suggesting a finite-size protocol suitable for finite sim-
ulation boxes. As a by-product, we improve the estimate ofUc for
free boundaries by an order of magnitude. We demonstrate the
method for a symmetric binary liquid of Lennard–Jones parti-
cles, which has pair interactions that are symmetric with respect
to the two molecular species A and B. Thus, the critical compo-
sition is a 1:1 mixture that exhibits phase separation into sym-
metric A-rich and B-rich phases, occurring in close analogy to
the spontaneous symmetry breaking of the Ising model. This
model system (and slight variants thereof) was studied exten-
sively near consolute points using combinations of semi-grand
canonical Monte Carlo (SGMC) methods and molecular dynam-
ics (MD) simulations.[35–41] In particular, cuts of the phase dia-
gram in the temperature–composition and in the temperature–
density planes are available, and the critical fluctuations of the
local concentration were shown to scale as expected for the 3D-
Ising universality class. Moreover, the coarsening kinetics and
the critical singularities of the transport coefficients were charac-
terized in great detail, corroborating theoretical expectations and
being in agreement with the available experimental evidences.
After giving technical details on the model liquid and the sim-

ulations in Section 2, we analyze in Section 3 the critical behav-
ior of the structure factor Scc(k) of local concentration fluctua-
tions obtained from the whole, large simulation box for a range
of wavenumbers k. This is then contrasted in Section 4 by a scal-
ing analysis of the concentration susceptibility𝜒𝓁 calculated from
sub-volumes of different edge lengths 𝓁. Both approaches yield

already estimates of the critical temperature Tc. Binder’s cumu-
lant method based on sub-systems is carried out in Section 5
to improve these values and we show the necessity for the two-
parameter scaling ansatz.

2. Model System and Simulation Details

The model of a symmetric binary mixture considered here[35,39]

employs pair interactions given by the truncated and force-shifted
Lennard–Jones potential

u𝛼𝛽 (r) = uLJ;𝛼𝛽 (r) − uLJ;𝛼𝛽 (rc) − (r − rc) u
′
LJ;𝛼𝛽 (rc) (1)

for r ≤ rc with uLJ;𝛼𝛽 (r) = 4𝜖𝛼𝛽 [(r∕𝜎𝛼𝛽 )−12 − (r∕𝜎𝛼𝛽 )−6] as usual for
particle species’ 𝛼, 𝛽 ∈ {A, B}. All particles have the same diam-
eter, 𝜎𝛼𝛽 =: 𝜎, and mass m, but different interaction strengths,
𝜖AA = 𝜖BB = 2𝜖AB =: 𝜖. The number density 𝜌 of the fluid is fixed
at 𝜌𝜎−3 = 1 in order to reduce interferences with the liquid–
vapour critical point. At critical composition (NA = NB), this bi-
nary fluid exhibits a continuous demixing transition at the critical
temperature[35,39] Tc ≈ 1.421𝜖∕kB. Dimensionless quantities are
indicated by an asterisk and are formed with 𝜖, 𝜎, 𝜏 :=

√
m𝜎2∕𝜖

as units of energy, length, and time; for example, 𝜌∗ := 𝜌𝜎3 and
T∗ := kBT∕𝜖.
A typical MD workflow consists of thermalization and equi-

libration runs, followed by one or several production runs. For
temperature control, we used a Nosé–Hoover thermostat as de-
scribed in ref. [42] for the initial equilibration in the canonical en-
semble (NA, NB, V , T fixed). Then, the thermostat was switched
off and the system evolved microcanonically, that is, at fixed to-
tal energy, with a time step of 𝛿t = 0.001𝜏. The subsequent pro-
duction run was performed microcanonically as well and parti-
cle configurations and observables such as Fourier modes of the
density field were recorded every 105 integration steps. A single
simulation run comprised an initial thermalization for 20 000𝜏,
followed by microcanonical equilibration and production runs
(at fixed total energy E) over 50 000 and 30 000𝜏, respectively.
Further, for each temperature, the data were averaged over two
independent runs and the error bars shown in the figures repre-
sent the standard errors of these means. The microcanonical en-
semble was used because we have also calculated transport coef-
ficients and time correlation functions (not discussed here) from
the same set of simulations; the intermediate equilibration step
is needed for proper temperature control in the NVE ensemble.
For the cubic simulation box, periodic boundary conditions and
an edge length of L ≈ 44.4𝜎 were chosen, corresponding to a total
of 87 808 particles. The home-grown code takes advantage of the
massively parallel architecture of high-end graphics processing
units (GPU),[43–45] and simulations were run on a GPU of type
Tesla K20Xm (Nvidia Corp.).
Simulations for Figure 4 were performed at the anticipated

critical temperature T∗ = 1.421 with N = 108 000 particles (L ≈
47.6𝜎) using the software HAL’s MD package.[46,47] Particle con-
figurations were stored every 10𝜏 in the structured, compressed,
and portableH5MD format.[48] Statistical data were averaged over
three independent simulation cycles. Each cycle started with an
initial thermalization at the target temperature over 1.5 × 105𝜏
and a subsequentmicrocanonical equilibration of the same dura-
tion. Then the velocities of the final configuration were rescaled
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to impose a total (or: internal) energy of Etot = −0.616𝜖, which
corresponds to Tc. After further equilibration over 105𝜏, a data
production run of the same length followed. This procedure al-
lowed us to control the temperature of the microcanonical sim-
ulation with an accuracy of ΔT = 0.0003∕kB. Each cycle required
about 47 h on a single GPU of type Tesla V100-PCIe.

3. Correlation Length and Concentration
Susceptibility

The structural properties of the system arise from two fluctuat-
ing fields: the density field 𝛿𝜌(r) = 𝛿𝜌A(r) + 𝛿𝜌B(r) and the con-
centration field 𝛿c(r) = xB𝛿𝜌A(r) − xA𝛿𝜌B(r), where 𝛿𝜌𝛼(r) denotes
the fluctuations of the microscopic, partial density of species 𝛼,
x𝛼 = N𝛼∕N is the mole fraction of the species, andN = NA + NB.
The relevant order parameter is 𝜑 = ⟨|xA − xc|⟩, where the criti-
cal composition is xc = 1∕2 due to the symmetry of the mixture
under investigation.
Critical fluctuations of the composition are quantified by

the generalized static structure factor, Scc(k) = N⟨|𝛿c(k)|2⟩ with
𝛿c(k) := ∫V eik⋅r 𝛿c(r) d3r, which far away from the critical point is
of the Ornstein–Zernike form for small wavenumber k,

Scc(k) ≃ 𝜌kBT𝜒
[
1 + (k𝜉)2

]−1
; k𝜎 ≪ 1. (2)

This asymptotic expression serves as definition for the (second-
moment) correlation length 𝜉(T) and the concentration suscepti-
bility 𝜒(T). Upon approaching the consolute point, the two quan-
tities exhibit the familiar algebraic divergences[49]

𝜉(T) ≃ 𝜉0𝜀
−𝜈 and 𝜒(T) ≃ 𝜒0𝜀

−𝛾 ; T ↓ Tc, (3)

as functions of the reduced temperature 𝜀 := |T − Tc|∕Tc. These
critical laws are governed by the short-ranged Ising universal-
ity universality class for three dimensions, which fixes the ex-
ponents to their precisely known values, 𝜈 ≈ 0.630 and 𝛾 ≈
1.237, respectively[50]; the non-universal amplitudes 𝜉0 and 𝜒0 are
system-specific.[51] Moreover, the static structure factor assumes
the scaling form

Scc(k) = k−2+𝜂s(k𝜉) ; k𝜎 ≪ 1, 𝜉∕𝜎 ≫ 1, (4)

where the anomalous dimension 𝜂 = 2 − 𝛾∕𝜈 ≈ 0.036 charac-
terises the spatial decay of the OP correlations and s(x) is a
universal scaling function, which interpolates from the critical
power-law, s(x ≫ 1) = const, to the convergence of Scc(k) at small
wavenumber, s(x → 0) = x2−𝜂 ; the latter encodes the scaling of
the susceptibility. The anomalous scaling of Scc(k) requires a
modification of Equation (2) to the form,[52]

Scc(k) ≃ 𝜌kBT𝜒
[
1 + (k𝜉)2

]−1+𝜂∕2
. (5)

Our simulation data for Scc(k) are well described by relations
Equations (2) and (5), respectively, for temperatures ranging
from T∗ = 1.70 down to 1.43, see Figure 1a. Linear regression
of Scc(k)

−1 as function of (k𝜎)2 for k𝜎 ≲ 1 yields values for 𝜉

and 𝜒 (see inset); Equation (5) was used for T∗ ≤ 1.60. The data

Figure 1. a) Static structure factor Scc(k) of the binary fluid at critical
composition studied for selected temperatures approaching the conso-
lute point from above. The reduced temperatures T∗ = kBT∕𝜖 are given
in the legend. The data are shown on double-logarithmic scales, the in-
set displays a rectification of the data according to Equation (2). Solid
lines are fits to Equations (2) and (5), respectively (see text), and the
dashed line indicates the critical divergence, Scc(k → 0) ∼ k−2+𝜂 at T = Tc.
b–d) Critical divergences of the correlation length 𝜉(T) and the concen-
tration susceptibility 𝜒(T), the data points along with their uncertainties
were obtained from linear regressions to Scc(k)

−1 versus k2 as shown in
the inset of panel (a). Solid lines are power-law fits using the known critical
exponents 𝜈 and 𝛾 (see main text) to estimate the critical temperature Tc
and the non-universal amplitudes 𝜉0 and 𝜒0, respectively.

nicely follow the expected critical singularities over more than
one decade in magnitude and for 𝜀 ≲ 0.1 (see Figure 1b–d). Fit-
ting both power laws to the respective data set provides us with
first estimates of the critical temperature Tc as well as the ampli-
tudes 𝜉0 and 𝜒0. Using the correlation length data, we obtained
T∗
c = 1.421 ± 0.001 and 𝜉0 = (0.365 ± 0.009)𝜎, while the data for

the concentration susceptibility yielded T∗
c = 1.421 ± 0.001 and

𝜒∗
0 = 0.092 ± 0.011. The results for Tc and 𝜉0 are in excellent

agreement with known results.[35,39] Merely, our value for 𝜒∗
0 is

somewhat larger than the previously reported value[35] of 𝜒∗
0 =

0.076 ± 0.006.

4. Scaling Analysis of Sub-System Fluctuations

4.1. Concentration Susceptibility

In a typical semi-grand canonical Monte Carlo simulation, the
fluctuations in the concentration are sampled by switching the
particle identities at a predefined rate while keeping the total
particle number fixed. Then by linear response theory, the sus-
ceptibility 𝜒 in the mixed phase is proportional to the variance
of the fluctuating mole fraction xA = NA∕N of, for example,
species A:

𝜌kBT𝜒 = N
⟨
(xA − xc)

2
⟩
gc
, T > Tc, (6)
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Figure 2. Scaling plots of the reduced susceptibility 𝜒∗(T) := 𝜒(T) 𝜖∕𝜎3 according to Equation (7) with the correlation length 𝜉 = 𝜉(T) obtained from
the static structure factor as in Figure 1. The data collapse onto the scaling function 𝜒0Z(y) is tested for four different choices of the critical temperature
Tc as written in each panel, which enters the reduced temperature 𝜀 := (T − Tc)∕Tc. Black solid lines represent the critical asymptote as y → 0, amended
by the leading universal correction (Equation (9)), which employs the amplitudes z0, z1 from the fit to f2 in Figure 3. The black dashed line in panel (c) is
a fit to the large-y approximation (Equation (8)) of 𝜒0Z(y) and indicates the approach to the Gaussian fixed point, y → ∞. The amplitude 𝜒0 (horizontal
black line) estimated from this fit and its uncertainty (gray shaded region) are indicated.

provided that the symmetric mixture is at critical composition,⟨xA⟩gc = ⟨xB⟩gc = xc = 1∕2; in practice, the averages are taken in
the semi-grand canonical ensemble.[35,36,39,41] The standard pro-
cedure for the finite-size scaling analysis is then based on a se-
quence of simulations for different boxes of linear extent L to
determine 𝜒(T ; L) for each value of L and to study the behavior
as L → ∞.
Above, we extrapolated the composition structure factor by

virtue of its specific wavenumber dependence, Equation (5), to
access the susceptibility, Scc(k → 0) ≃ 𝜌kBT𝜒 . Such a systematic
change of the wavenumber has a close analogy to the described
finite-size scaling analysis. A finite system of size L does not sup-
port fluctuations on length scales larger than L and, likewise, the
correlations contained in Scc(k) for given k stem essentially from
fluctuations on length scales≲ 2𝜋∕k. Thus, the value Scc(k)∕𝜌kBT
may be interpreted as the effective susceptibility of a finite sys-
tem of size 2𝜋∕k. Observing that a single simulation yields data
for different wavenumbers suggests to perform the conventional
scaling analysis but for a sequence of finite sub-systems.[14,15]

The idea is easily linked to Equation (6) by noting that sub-
volumes of a large system represent open systems coupled to a
(finite) particle reservoir. Within each sub-volume, particle num-
ber and concentration exhibit similar fluctuations as in the grand
canonical ensemble, although they are still locally conserved
quantities.[23,25] Specifically, we partitioned the simulation box of
linear extent L intom3 cubic sub-systems of edge length𝓁 = L∕m,
and recorded the fluctuating particle numbers N(𝓁)

A and N(𝓁)
B for

each sub-system; the total number of particles is denoted by
N𝓁 := N(𝓁)

A + N(𝓁)
B . The susceptibility 𝜒𝓁 is then calculated from

Equation (6) by substituting xA = N(𝓁)
A ∕N𝓁 for the instantaneous

concentration and replacing N by the average particle number⟨N𝓁⟩ = N∕m3 in each sub-system.
The standard finite-size scaling of the susceptibility[35,49] sug-

gests that 𝜒𝓁 for T > Tc asymptotically obeys the scaling ansatz

𝜒𝓁(T) ≃ 𝜒0 𝜀
−𝛾 Z(𝓁∕𝜉) , 𝓁, 𝜉 ≫ 𝜎, (7)

where 𝜀 = 𝜀(T) as before and 𝜉 = 𝜉(T) serves as a short-hand for
the power law divergence given in Equation (3). The function

Z(⋅) is the appropriate scaling function that interpolates between
the thermodynamic critical divergence (𝓁 → ∞, 𝜉 fixed) and the
finite-size scaling at criticality (𝜉 → ∞, 𝓁 fixed).[53] In the first
limit, the scaling variable y := 𝓁∕𝜉 → ∞ and the scaling function
approaches unity exponentially fast,[35] and a satisfactory descrip-
tion of the data for y ≳ 3 follows the form

Z(y → ∞) ≃
(
1 − z∞e

−a1y
)
, (8)

including the leading correction to scaling with z∞ and a1 being
system-specific parameters (see Figures 2 and 3).
For the opposite limit y → 0, we recall that for a finite system,

all physical observables are analytic in the temperature, also at Tc.
For the susceptibility, it implies 𝜒𝓁(T) = 𝜒𝓁(Tc) +O(𝜀) as 𝜀 → 0
such that by comparing with Equation (7) the scaling function
behaves as

Z(y → 0) ≃ z0y
𝛾∕𝜈(1 − z1y

1∕𝜈), (9)

which introduces the universal amplitudes z0 and z1. Combining
with 𝜉 ≃ 𝜉0𝜀

−𝜈 and specializing to T = Tc, one recovers the finite-
size scaling form well-known for periodic boundaries,

𝜒𝓁(Tc) ≃ z0𝜒0

(
𝓁
𝜉0

)𝛾∕𝜈

, 𝓁 ≫ 𝜎. (10)

More generally, one finds for the critical region near Tc a linear
dependence on T :

𝜒𝓁(T) ≃ 𝜒0 𝓁
𝛾∕𝜈[1 − z̃1𝓁

1∕𝜈 (T − Tc)
]

(11)

with coefficients 𝜒0 := z0𝜒0𝜉
−𝛾∕𝜈
0 and z̃1 := z1𝜉

−1∕𝜈
0 T−1

c for the
regime 𝜎 ≪ 𝓁 ≪ 𝜉(T). Confluent corrections to scaling are rel-
evant for small 𝓁; their discussion is deferred to Section 4.3.
The scaling form Equation (7) can be used to determine the

critical temperature Tc, the amplitude 𝜒0, and the scaling func-
tion Z(y). Plotting the data for 𝜀𝛾𝜒𝓁(T) for a range of tempera-
tures and sub-system sizes as a function of y = 𝓁∕𝜉 should yield
data collapse onto the function𝜒0Z(y). Figure 2 shows a sequence
of such plots for different estimates of Tc, which are informed by
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Figure 3. Scaling of the 2nd and 4th moments of the concentration fluctua-
tions 𝜙 = xA − xc within the sub-volumes. The data collapse onto the scal-
ing functions fk(y) is tested by plotting ak𝓁k𝛽∕𝜈⟨𝜙k⟩𝓁 against y = 𝓁∕𝜉(T)
for k = 2 and k = 4, respectively, with the critical exponents 𝛽 and 𝜈 given
by the Ising universality class (see text), the correlation length 𝜉 = 𝜉(T)
obtained from Scc(k) (Figure 1), and a being a constant factor (Equa-
tion (13)). The different symbols refer to data from the sub-volume sizes
𝓁∕𝜎 specified in the legend. Lines show the small- and large-y asymptotes
of the scaling functions f2(y) = y−𝛾∕𝜈Z(y) and, within the Gaussian approx-
imation, of f4(y) ≃ 3f2(y)

2; the latter becomes exact as y → ∞. Equation (8)
was used for the large-y behavior of Z(y) (solid lines), whereas the critical
asymptote Z(y → 0) is given in Equation (9) (broken lines); see also the
lines in Figure 2c.

our previous result from Section 3. The quality of the data col-
lapse for the different choices of Tc gives us a fairly good esti-
mate of the critical temperature. Comparing panels (b) and (c) of
Figure 2, in particular close to y = 𝓁∕𝜉 ≈ 0.8, suggests that the
critical temperature is close to T∗

c = 1.422 (Figure 2c).
A more quantitative estimate is obtained by using the form of

Z(y) as y → 0. However, this requires knowledge of the param-
eters z0 and z1, which can independently be obtained from the
sub-system scaling of the second moment of the order parame-
ter𝜙 := xA − xc as discussed in Section 4.2. Specifically, the quan-
tity a2𝓁2𝛽∕𝜈⟨𝜙2⟩𝓁 in the limit of y = 𝓁∕𝜉 → 0 has the scaling form
z0(1 − z1y

1∕𝜈); for the definition of a see Equation (13) below. Fit-
ting this functional form to the data for ⟨𝜙2⟩𝓁 , scaled by a2𝓁2𝛽∕𝜈 ,
within the range 0.34 ≤ y ≲ 0.78 yields z0 = 0.095 ± 0.004 and
z1 = 0.16 ± 0.05 (Figure 3). Equipped with these values, we plot
the scaling function Z(y) for y → 0 (solid black lines in Figure 2),
which guides the assessment of the quality of the data collapse.
The definition of a contains the critical temperature Tc, why our
estimate T∗

c = 1.421 from the susceptibility data given in Sec-
tion 3 was used to fix a. It is worth noting that from the data col-
lapse of𝜒𝓁 , the value ofTc obtained here agrees very well with that
obtained from the critical divergences of the correlation length
and the susceptibility, given the measurement uncertainty of the
values of 𝜉 entering the scaling plots in Figure 2.
For this value of Tc, the rescaled data represent the function

𝜒0Z(y) (Figure 2c). For values of y = 𝓁∕𝜉 ≳ 20, the data indeed

converge and, in principle, one could read off 𝜒0 directly. How-
ever, a more robust approach should allow for corrections to scal-
ing, Equation (8), which suggests to fit this form to the data with
𝜒0, z∞ and a1 as parameters. Even though the range of values for
large y is severely limited, we performed an asymptotic fit as y →
∞ to estimate the amplitude 𝜒0, yielding 𝜒0 = 0.080 ± 0.002 and
thereby improving our earlier estimate of 𝜒0 = 0.092 ± 0.011.
The value of a1 from the best fit comes out to be a1 = 0.11 ± 0.02
and that of z∞ = 1.0 ± 0.3.

4.2. Order Parameter Distribution

The concentration susceptibility 𝜒 is essentially the variance of
the fluctuating order parameter 𝜙 := xA − xc, see Equation (6),
and thus merely one characteristic of the statistical distribution
of 𝜙. A more general description is in terms of the probability
density P𝓁(𝜙;T) of 𝜙 for sub-system size 𝓁 and temperature T ,
which also admits a finite-size scaling hypothesis[14,15]:

P𝓁(𝜙;T) ≃ a𝓁𝛽∕𝜈(
a𝓁𝛽∕𝜈𝜙,𝓁∕𝜉(T)

)
, 𝓁, 𝜉(T) ≫ 𝜎 (12)

with a universal scaling function (ŷ, y), where ŷ := a𝓁𝛽∕𝜈𝜙 and
y := 𝓁∕𝜉(T), and a scale factor a such that

a−2 = kBTc𝜒0𝜉
−𝛾∕𝜈
0 (13)

as usual, the critical exponent[50] 𝛽 ≈ 0.326 describes the scaling
of the order parameter as T ↑ Tc.
By normalization of P𝓁 , it holds ∫ ∞

−∞ (ŷ, y) dŷ = 1 for all y. At
critical composition of the mixture, ⟨xA⟩𝓁 = xc, the first moment
of P𝓁 vanishes due to symmetry, ⟨𝜙⟩𝓁 = 0. The second moment
encodes the scaling of the susceptibility,

𝜒𝓁(T) =
𝓁d

kBT ∫ d𝜙𝜙2 P𝓁(𝜙;T) (14)

≃ 𝓁d−2𝛽∕𝜈

a2kBT ∫ dŷ ŷ2 (ŷ,𝓁∕𝜉) (15)

by virtue of the definition of 𝜒𝓁 analogous to Equation (6), with⟨N𝓁⟩ = 𝜌𝓁d, and using Equation (12) in the second step. For ev-
ery value of y = 𝓁∕𝜉, the ŷ-integral yields a constant f2(y). Invok-
ing the hyper-scaling relations[50] 𝛾∕𝜈 = 2 − 𝜂 = d − 2𝛽∕𝜈, we re-
cover Equation (7):

𝜒𝓁(T) ≃
𝓁𝛾∕𝜈

a2kBT
f2(𝓁∕𝜉) (16)

≃ 𝜒0
𝜀−𝛾

1 + 𝜀
Z(𝓁∕𝜉) , 𝓁, 𝜉 ≫ 𝜎, (17)

upon identifying the scaling function as Z(y) = y𝛾∕𝜈 f2(y), substi-
tuting 𝜉 = 𝜉0𝜀

−𝜈 and kBT = kBTc(1 + 𝜀), and due to our choice
of a.
Similarly, one readily obtains for the kth moment of the order

parameter the scaling form

⟨
𝜙k

⟩
𝓁
:= ∫ d𝜙𝜙k P𝓁(𝜙;T) (18)
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≃ a−k𝓁−k𝛽∕𝜈 ∫
∞

−∞
dŷ ŷk (ŷ,𝓁∕𝜉) (19)

=: a−k𝓁−k𝛽∕𝜈 fk(𝓁∕𝜉), (20)

which defines universal scaling functions fk for k = 1, 2,… If
P𝓁(𝜙) is symmetric,

⟨
𝜙k

⟩
𝓁
= 0 for k odd. In Figure 3, we test

this scaling prediction for k = 2 and 4 on the sub-system anal-
ysis of the present binary fluid: plotting ak𝓁k𝛽∕𝜈⟨𝜙k⟩𝓁 against 𝓁∕𝜉
the data collapse nicely onto the functions fk over the full range
0.05 ≲ 𝓁∕𝜉 ≲ 20.
In the regime y ≫ 1, that is, for large, near-critical sub-

systems, the distribution P𝓁(𝜙) is Gaussian, which is inherited to
the scaling function (⋅, y) being Gaussian in its first argument
with zero mean and variance f2(y). In this case, the moments and
thus the functions fk are related to each other since all cumu-
lants except the first two vanish. Specifically, ⟨𝜙4⟩𝓁 ≃ 3⟨𝜙2⟩2𝓁 for
𝓁 ≫ 𝜉 ≫ 𝜎, which implies

f4(y → ∞) ≃ 3f2(y)
2 = 3y−2𝛾∕𝜈Z(y)2. (21)

For comparison, the functions f2 and f4 as predicted from the
small- and large-y approximations to Z(y) (Figure 2) have been
included in Figure 3. Both functions describe the 2nd and 4th mo-
ments very well for the whole range of y-values available. Merely
for y ≲ 1, the data for k = 4 deviate visibly from f4(y), indicating a
non-Gaussian distribution as expected close to criticality.

4.3. Confluent Corrections to Scaling

In the preceding sections, we discussed the asymptotic behav-
ior for large sub-system sizes 𝓁 ≫ 𝜎. However, large sub-system
sizes are challenging to reach in simulations and a question
of practical importance is how quickly does an observable such
as 𝜒𝓁(T) approach its leading power-law asymptote as 𝓁 is in-
creased? Renormalization group (RG) theory explains how these
so-called confluent corrections to scaling emerge from irrelevant
scaling variables.[50,54] These variables encodemicroscopic details
of the system that fade out upon coarse-graining by the RG flow;
yet, the confluent corrections are associated with universal crit-
ical exponents. This type of corrections was analysed in simu-
lation studies of, for example, the 3D Ising model,[55,56] the 3D
Heisenberg model,[57] the statistics of percolation clusters,[58,59]

and critical transport on such structures.[59,60]

For the susceptibility, we include the leading confluent cor-
rection in our discussion by extending the scaling ansatz Equa-
tion (7) by an irrelevant scaling variable u

𝜒𝓁(T) ≃ 𝜒0 𝜀
−𝛾 (𝓁∕𝜉, u𝓁−𝜔) , 𝓁, 𝜉 ≫ 𝜎, (22)

with the 3D-Ising correction exponent[50,55,56,61] 𝜔 ≈ 0.83; here,
y = 𝓁∕𝜉 means y = (𝓁∕𝜉0)𝜀𝜈 . For finite systems, the function 𝜒𝓁

is analytic in T , but also in u; in particular, the scaling function
 is analytic in its second argument and obeys (y, 0) = Z(y). As
a consequence, the amplitudes z0, z1, and z∞ in Equations (8)
and (9) depend on u𝓁−𝜔 and can be expanded in this parameter
for large 𝓁 (keeping u fixed). At leading order, this amounts to

Figure 4. Confluent corrections to scaling of the critical susceptibility
𝜒𝓁(Tc). Data were obtained at T

∗ = 1.421 for a simulation box of L ≈ 47.6𝜎
and were rectified by factoring out the leading power-law divergence. The
solid line depicts the asymptotic law, Equation (24), using z0 = 0.085 and
c0 = 2.8 for the amplitudes, and the broken line indicates the value of z0.

replacing zi by zi(1 + c̃i𝓁
−𝜔) for i = 0, 1,∞; the value of u has been

absorbed in the amplitudes c̃i. The procedure turns Equation (9)
into

(y, u𝓁−𝜔) ≃ z0y
𝛾∕𝜈

(
1 − z1y

1∕𝜈 + c̃0𝓁
−𝜔 − z1c̃0y

1∕𝜈𝓁−𝜔
)

(23)

for y → 0 and 𝓁 ≫ 𝜎. Clearly, there are two types of leading cor-
rections to the critical divergence of 𝜒𝓁 : one type scales as y

1∕𝜈 and
is removed by fine-tuning of the temperature to its critical value.
Second, the confluent corrections, ∼ 𝓁−𝜔, which disappear for
sufficiently large sub-system size 𝓁. Analytic correctionsO

(
𝓁−1),

for example, due to the non-linear mixing of scaling fields, do not
contribute at leading order. Corrections due to a finite simulation
box will be discussed in Section 5.4.
The situation is clarified by focussing on the behavior at the

critical point (y = 0). In this case, Equation (23) implies for the
susceptibility at T = Tc:

𝜒𝓁(Tc) ≃ z0𝜒0

(
𝓁
𝜉0

)𝛾∕𝜈[
1 + c0(𝓁∕𝜉0)−𝜔

]
, 𝓁 ≫ 𝜎, (24)

which is an extension of Equation (10); the correction amplitude
in dimensionless form is defined as c0 = c̃0𝜉

−𝜔
0 . The equation

suggests to divide the data for 𝜒𝓁(Tc) by the critical divergence,
𝜒0(𝓁∕𝜉0)−𝛾∕𝜈 , so that the results would approach the constant z0
for large 𝓁 and the confluence is controlled by the term ∼ 𝓁−𝜔.
Figure 4 shows such a plot of the simulation data for 𝜒𝓁(Tc)

as function of the sub-system size 𝓁, with the rectified data actu-
ally calculated from the equivalent expression a2𝓁2𝛽∕𝜈⟨𝜙2⟩𝓁 (see
Equation (20) and Figure 3). However, the data do not converge
for large 𝓁, rather they decay to zero. This reveals a limitation
of the sub-system analysis: the simulation box L puts an upper
limit on the accessible sub-system sizes 𝓁, and we anticipate de-
viations from Equation (24) unless 𝜎 ≪ 𝓁 ≪ L. Away from the
critical point, this type of finite-size correction was shown to de-
cay as 𝓁−1e−𝓁∕𝜉 (see Equation (30) in ref. [23]); the ideas used
there appear suitable to be transferred to the critical point, though
the detailed analysis remains to be worked out. Taking this issue
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into account, we have fitted Equation (24) to the data in Figure 4
with only z0 and c0 as free parameters. The fit was restricted to
3.5 ≲ 𝓁∕𝜎 ≲ 7.5 and yielded z0 = 0.085(5) and c0 = 2.8(3), where
the errors were estimated from varying the bounds of the fit win-
dow by ±0.5𝜎. Note that this value of z0 is slightly smaller than
the one obtained previously from fits to the temperature scaling
of the 2nd moment (Figure 3). The obtained curve is a reasonable
description of the data and compatible with confluent corrections
that scale as 𝓁−𝜔 at leading order. In Figures 2 and 3, this type of
correction appears to be of minor importance, it would be visible
as deviations from the data collapse for small 𝓁 and arbitrary 𝜉.

5. Binder Cumulant for Sub-Systems

The data collapsing approach to determine Tc as described in Sec-
tion 4.1 has some subjective component. A superior method to
locate a continuous phase transition was established by[14,15] and
is based on the 4th normalized cumulant U𝓁(T) of the order pa-
rameter distribution; it is closely related to the kurtosis used in
descriptive statistics. Close to criticality, the composition fluctua-
tions 𝜙 = xA − xc are symmetric under sign change and one de-
fines the dimensionless ratio

U𝓁(T) = 1 −
⟨
𝜙4

⟩
𝓁

3⟨𝜙2⟩2𝓁 , (25)

where the subscript 𝓁, as before, denotes the linear extent of
the (sub-)system. At high temperature, the fluctuations are of
Gaussian nature, and thus U𝓁(T ≫ Tc) → 0. Far below the crit-
ical temperature, the distribution has two sharp peaks at the
coexisting compositions, and the Binder cumulant tends to
U𝓁(T ≪ Tc) → 2∕3. As the critical temperature is approached
from either side of Tc, the correlation length in the system di-
verges and the critical divergences of the moments cancel (cf.
Equation (20)) so that U𝓁(Tc) =: Uc remains finite and becomes
independent of the sub-system size 𝓁. The critical Binder cu-
mulant Uc = 1 − f4(0)∕3f2(0)2 is a universal property of the crit-
ical renormalization group fixed point and as such depends only
on the boundary conditions and the geometric shape of the sub-
system.[14,15,30,31,62,63]

The analyzed open sub-systems mimic a grand canonical en-
semble in the limit of an infinitely large reservoir, L → ∞, which
is relaxed in practice to the condition that the sub-system size 𝓁
does not compete with the finite extent L of the whole simulation
box, 𝓁 ≪ L; see ref. [23] for a quantitative estimate. We consider
the idealized case L → ∞ first, corrections due to the finite sim-
ulation box are studied in Section 5.4.

5.1. Common Intersection Point

The basis of our discussion of the 4th cumulant is the general
scaling ansatz[15]

U𝓁(T) =  (
𝓁1∕𝜈𝜀

)
, 𝜀 = (T − Tc)∕Tc, (26)

employing a scaling function  (⋅) that is analytic since U𝓁(T)
describes finite (sub-)volumes and depends smoothly on temper-

ature. Scaling is expected to hold when all length scales are suffi-
ciently large, in particular, when 𝓁 ≫ 𝜎; the ratio 𝓁∕𝜉(T) is con-
trolled by the scaling variable x := 𝓁1∕𝜈𝜀. Moreover,  (x) fulfills
 (0) = Uc and interpolates between the limits  (x → ∞) = 0
and  (x → −∞) = 2∕3. Expanding Equation (26) for small ar-
gument shows that, near criticality, the quantityU𝓁(T) varies lin-
early with temperature around Uc:

U𝓁(T) ≃ Uc + u1𝓁
1∕𝜈(T − Tc) , T → Tc, (27)

where u1 :=  ′(0)T−1
c is a non-universal constant.

Accordingly, a family of curves U𝓁(T) for different sub-system
sizes 𝜎 ≪ 𝓁 ≪ 𝜉(T) has a common intersection point at (Tc,Uc)
in an asymptotic sense, which suggests a procedure to locate the
critical temperatureTc. It requires the simulation of one large sys-
tem for a number of temperatures sufficiently close to Tc, which
in itself is challenging due to critical slowing down. Our simu-
lation results for sub-system sizes 𝓁 = L∕m with m = 6, 8, 10, 12
and L ≈ 44.4𝜎 are shown in Figure 5a,b. The data exhibit a com-
mon intersection point as anticipated from Equation (27), and we
read off T∗

c = 1.419, in reasonable agreement with our previous
result; the critical value of the Binder cumulantUc = 0.22 ± 0.01
is close to the earlier reported value in ref. [14] for Ising spins on
a lattice.

5.2. Scaling Function

A more physics-adapted way of writing the scaling form Equa-
tion (26) for T > Tc is U𝓁(T) = ̂+(𝓁∕𝜉) with ̂+(y ≥ 0) :=
 ((𝜉0y)

1∕𝜈), noting that 𝜀 ≃ (𝜉∕𝜉0)−1∕𝜈 in the critical region. In-
deed, plotting our results for U𝓁(T) against y = 𝓁∕𝜉(T) for dif-
ferent values of 𝓁 yields data collapse onto the scaling function
̂+(y) (see Figure 6). For small arguments, that is, taking T → Tc
for 𝓁 fixed, the data converge to ̂+(y → 0) = Uc. Near 𝓁∕𝜉 ≈ 1, a
crossover occurs to the high-temperature regime (which implies
small 𝜉, that is, 𝓁∕𝜉 → ∞), where the fluctuations are Gaussian
and thus ̂+(y → ∞) → 0.
What can be said about the convergence to the Gaussian

regime, that is, the asymptotics of ̂+(y → ∞)? An intuitive ar-
gument assumes that the sub-volume of linear extent 𝓁 can be
divided into independent “correlation blobs” of size 𝜉 and invokes
a standard proof of the central limit theorem: consider the sum
Y =

∑n
i=1 Xi of n independent random variables Xi that are iden-

tically distributed according to some characteristic function 𝜑X (⋅)
with variance 𝜎2X < ∞. Then Y has the characteristic function
𝜑Y (⋅) = 𝜑X (⋅)

n and its cumulants 𝜇k are generated by n log𝜑X (⋅),
which shows that 𝜇k ∝ n for all k = 1, 2,… The normalized vari-
able Y∕𝜎Y , with 𝜎2Y := n𝜎2X , becomes Gaussian as n → ∞ since its
cumulants follow 𝜇k𝜎

−k
Y ∝ n1−k∕2 and vanish for k ≥ 3.

In the present context, we have to consider Y∕n instead of Y
since the concentration xA in a sub-volume of size 𝓁 is given
by the arithmetic mean of the values of xA in each of the n =
(𝓁∕𝜉)d correlation blobs. The cumulants of Y∕n are proportional
to n1−k, such that the normalized cumulant (Equation (25)) van-
ishes asU𝓁 ∝ n−3∕(n−1)2 = n−1. Thus, we expect that ̂+(y) ∼ y−d

for y = 𝓁∕𝜉 → ∞, here d = 3. Despite the limited availability of
data for U𝓁 in this regime, there is numerical evidence for the
scaling U𝓁 ∼ y−3 for y ≳ 3 as shown in Figure 6. This scaling co-
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Figure 5. a) Simulation results for the Binder cumulant U𝓁(T) for different sub-system sizes 𝓁 as indicated in the legend, with the same edge length
L ≈ 44.4𝜎 of the overall simulation box. The data are based on the moments shown in Figure 3, and solid lines are fits of a tanh(⋅)-shape serving as a
guide to the eye. b) Close-up of the critical region of the same data as in panel (a). Black lines indicate the common intersection point at the critical
values (Tc, Uc). c) Cumulant ratiosU𝓁∕U𝓁′ as a function of temperature for different pairs of sub-system sizes: (𝓁,𝓁′) denoted by circles (7.41𝜎, 5.56𝜎),
squares (7.41𝜎, 4.44𝜎), diamonds (7.41𝜎, 3.70𝜎), and triangles (7.41𝜎, 3.18𝜎). Colored lines are linear fits according to Equation (28), and the horizontal
black line marks the fixed point U𝓁 = U𝓁′ .

Figure 6. Test of the scaling form Equation (26) of the Binder cumu-
lant U𝓁(T) plotted against y = 𝓁∕𝜉(T) for the data in Figure 5 but only
for temperatures above Tc. The dashed line indicates an algebraic decay
U𝓁(T) ∼ [𝓁∕𝜉(T)]−3. Inset: Data collapse onto the scaling function (x)
is obtained by plotting the same data with x = (𝓁∕𝜉0)1∕𝜈𝜀 as the abscissa
(Equation (26)).  (x) is analytic in x = 0, and the linear extrapolation of
the data (solid line, Equation (27)) intersects the vertical line x = 0 at the
universal value Uc := U𝓁(Tc) ≈ 0.20.

incides with the behavior derived for conventional finite-size scal-
ing UL ∼ L−d (see Equation (14) of ref. [14]).
Eventually, using x = (𝓁∕𝜉)1∕𝜈 as the scaling variable rectifies

the critical power-law ̂+(y) −Uc ∼ y1∕𝜈 for y → 0 as a straight
line,  (x) −Uc ∼ x (Equation (27)), which is supported by the
inset of Figure 6.

5.3. Cumulant Ratios

An alternative method for estimating Tc from U𝓁(T) that does
not depend on the value of Uc is to consider the ratio U𝓁∕U𝓁′

as function of temperature, where 𝓁 > 𝓁′ are two different sub-
system sizes. For any choice of 𝓁 and 𝓁′, the ratio U𝓁∕U𝓁′ = 1 at
T = Tc, since U𝓁(T) is independent of 𝓁 at the critical point, see
Figure 5(c). The behavior for T → Tc follows from Equation (27)

U𝓁(T)
U𝓁′ (T)

≃ 1 +
u1
Uc

𝓁1∕𝜈[1 − (𝓁∕𝓁′)−1∕𝜈
]
(T − Tc), (28)

which allows for a linear regression of the data for U𝓁∕U𝓁′ near
Tc to find the intersection with unity. A larger slope is achieved
for a larger sub-system size 𝓁 and a larger ratio 𝓁∕𝓁′, whereas
𝓁′ ≫ 𝜎 must not be chosen too small. From this, we inferred
kBTc∕𝜖 = 1.4204 ± 0.0008, consistent with and slightly improv-
ing our previous estimates of Tc given above.
The determination of the critical Binder cumulant Uc follows

a similar approach. From the foregoing discussion, it is clear that
the graph of U𝓁(T) versus U𝓁′ (T) for a given choice of 𝓁 and 𝓁′

displays a fixed point at Uc. Thus, Uc can be determined from
the intersection of this graph with the diagonal, U𝓁 = U𝓁′ . Close
to criticality, solving Equation (27) for T and substituting into
U𝓁′ (T) yields a linear relationship between U𝓁′ and U𝓁 (at the
same temperature):

U𝓁′ = Uc + (𝓁∕𝓁′)−1∕𝜈 (U𝓁 −Uc) ; U𝓁 → Uc. (29)

Thus, Uc will be the only free parameter in a linear regression
of the data for (U𝓁 , U𝓁′ ). The procedure is illustrated in Figure 7
with three different choices of (𝓁,𝓁′). The data for U𝓁(T) plot-
ted againstU𝓁′ (T) for a range of temperatures T and fixed (𝓁,𝓁′)
do indeed fall on straight lines as inferred from Equation (27).
However, the slopes do not match with the prediction (𝓁∕𝓁′)−1∕𝜈

of Equation (29), which points at a deficiency of the ansatz Equa-
tion (26). Nevertheless, permitting both Uc and the slope as fit
parameters yields approximately a common intersection point
of the straight lines at Uc ≈ 0.22 (Figure 7b). A close-up of this
intersection region reveals appreciable differences between the
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Figure 7. a) Graph of U𝓁′ (T) versus U𝓁(T) in the vicinity of the fixed
point (Uc, Uc) for the investigated temperatures and for different pairs of
the sub-system sizes (𝓁,𝓁′) with 𝓁 = 7.41𝜎 fixed and 𝓁′ = 5.56𝜎 (discs),
4.44𝜎 (squares), and 3.18𝜎 (diamonds); the size of the simulation box
was L ≈ 44.4𝜎. Broken lines are fits of Equation (29) to the data points
for the same (𝓁,𝓁′) with Uc as only free parameter; the solid line indicates
U𝓁 = U𝓁′ . b) Same representation as in panel (a) with solid lines showing
linear fits to data with the slope and Uc as parameters. The inset provides
a close-up of the intersection of these lines with the diagonal U𝓁 = U𝓁′ ;
arrows indicate the range of an anticipated common intersection point.

intersection points of two of the colored curves (for different
choices of 𝓁′) and their intersection with the diagonal. The fail-
ure of Equation (29) and this observation led us to revisit our
scaling ansatz and to rederive Equation (27) in the next section.
The error stems from the coefficient u1, which was obtained as
u1 :=  ′(0)T−1

c , that is, as constant with respect to 𝓁. However,
taking into consideration the finite size of the simulation box
shows that in fact u1 depends on 𝓁∕L.

5.4. Finite-Size Corrections

So far, we have ignored the finiteness of the total simulation vol-
ume, which can taint the estimates of the critical point, includ-
ing both Tc and Uc. In particular, there is a competition between
the sub-system size 𝓁 and the length L of the whole simulation
box, leading to a kind of effective boundary conditions on the
sub-system as 𝓁 grows. (For example, consider 𝓁 = L∕2, which
implies boundary conditions that are neither free nor periodic.)
Further, the correlation length 𝜉 enters as a third length scale,
and it may be necessary to distinguish the regimes 𝓁 ≪ 𝜉 ≪ L
and 𝓁 ≪ L ≪ 𝜉, in addition to 𝜉 ≪ 𝓁, L. In the following, we will
assess the importance of these corrections for our results com-
bining theoretical arguments and simulation data for a range of
box sizes L.
Conventional finite-size scaling is based on the fact that near

Tc, the correlation length exceeds the system size by far. For the
sub-system analysis, the corresponding regime is 𝓁, L ≪ 𝜉 and
we expect that the predominant corrections due to finite L are
controlled by the aspect ratio 𝛼 := 𝓁∕L. This suggests to amend
the scaling ansatz (26) by the variable 𝓁∕L to

U𝓁(T ; L) = ̃ (
𝓁1∕𝜈𝜀,𝓁∕L

)
, 𝜀 = (T − Tc)∕Tc, (30)

which is expected to hold when all length scales are suffi-
ciently large, that is, for 𝓁, L, 𝜉(T) ≫ 𝜎. (An alternative to this

ansatz is discussed briefly in Appendix A.) Taking L → ∞
yields Equation (26), and in terms of the scaling functions:
 (x) = ̃ (x, 𝛼 → 0). The function ̃ (x, 𝛼) is analytic in x = 0 for
any fixed 𝛼 ≥ 0, which we infer from the fact, used before, that
in a finite system thermodynamic observables depend smoothly
on temperature. The dependence on 𝛼, on the other hand, is
not known albeit an exponentially fast approach to the thermo-
dynamic limit is not unlikely: ̃ (x, 𝛼) − ̃ (x, 0) = O

(
e−1∕𝛼

)
as

𝛼 → 0.
Expanding Equation (30) around x = 0 yields close to critical-

ity:

U𝓁(T ; L) ≃ Ũc(𝓁∕L) + ũ1(𝓁∕L)𝓁1∕𝜈(T − Tc) (31)

as T → Tc, where we introduced an effective critical cumu-
lant as Ũc(𝛼) := ̃ (0, 𝛼) and the geometry-dependent coefficient
ũ1(𝛼) := T−1

c 𝜕x̃ (x, 𝛼)|x=0. It becomes evident fromEquation (31)
that the curvesU𝓁(T ; L) vs. T for different 𝓁, but the same system
size L, do not have a common intersection point. Such a point
emerges only asymptotically for 𝓁∕L sufficiently small such that
Ũc and ũ1 do not depend appreciably on 𝓁∕L, that is, in the limit
L → ∞.
Nevertheless, a common intersection point at (Tc, Ũc(𝓁∕L)) is

achieved for fixed ratios 𝛼 = 𝓁∕L, since then the 𝓁-dependence
enters only the term proportional to T − Tc in Equation (31). In
practice, the reciprocal m = 1∕𝛼 is an integer number counting
the sub-volumes (along each axis) that fit into the whole system.
Thus, the refined analysis procedure accounting for finite system
sizes L < ∞ would be as follows: From a set of simulations for
a few system sizes L and many T values in the critical regime,
compute the sub-system statistics and U𝓁(T ; L) in particular for
selected values of 𝛼. Data for different 𝛼 are analyzed separately.
For given 𝛼, plotting U𝛼L(T ; L)∕U𝛼L′ (T ; L

′) as function of T , the
value of Tc(𝓁∕L) can be read off from the intersection with unity;
more precisely, it follows from the linear regression according to
(cf. Equation (28))

U𝛼L(T ; L)
U𝛼L′ (T ; L′)

≃ 1 +
ũ1(𝛼)
Uc(𝛼)

(𝛼L)1∕𝜈
[
1 − (L′∕L)1∕𝜈

]
(T − Tc) (32)

in the limit T → Tc.
Since Equation (32) follows directly from Equation (31), we

test this finite size scaling analysis on the measured data for
the Binder cumulant. To this end, we consider U𝛼L(T) as a func-
tion of temperature for different combinations of 𝓁 and L but
with 𝛼 fixed. We have carried out additional simulations with dif-
ferent box lengths varying from L ≈ 31.7𝜎 (32 000 particles) to
L ≈ 50.8𝜎 (131 072 particles), and the results of the analysis are
shown in Figure 8.
Since Tc(𝛼) and Uc(𝛼) are a priori not known, we fitted the

data U𝛼L near the critical temperature to a linear function (Equa-
tion (31)). For each value of 𝛼, this lines exhibit a well-defined
common intersection point, from which we have read off Tc(𝛼)
and Uc(𝛼) (Figure 8a,b). We note that for 𝛼−1 ≥ 10, no common
intersection point could be detected due to almost equal slopes,
why we restricted the analysis to 𝛼−1 = 3, 4,… , 9. The values ob-
tained for Uc(𝛼) and Tc(𝛼) show a considerable dependence on
𝛼, yet they converge as 𝛼 → 0 (Figure 8c,d). An extrapolation of
the data to this limit, that is, for L ≫ 𝓁, yields our final esti-
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Figure 8. a,b) Binder cumulant U𝓁(T; L) as a function of temperature for
fixed ratios 𝛼 = 𝓁∕L between the sizes of the sub-system (𝓁) and the simu-
lation box (L) as indicated in each panel. Linear fits (solid lines) in the crit-
ical region exhibit a common intersection point at

(
Ũc(𝛼), Tc(𝛼)

)
, which

determines effective, 𝛼-dependent values forUc and Tc according to Equa-
tion (31). c,d) Results for Uc(𝛼) and Tc(𝛼), respectively, obtained from
aspect ratios of 𝛼−1 = 3, 4,… , 9 for system sizes ranging from L ≈ 31.7𝜎
to 50.8𝜎. Solid lines are smooth interpolations of the data to guide the eye.

mates of i) the universal value for the critical Binder cumulant
Uc(0) = 0.201 ± 0.001 and ii) the critical temperature Tc =
1.421 ± 0.001 specific to the investigated binary liquid.

6. Summary and Conclusions

Wehave given a comprehensive analysis of the local order param-
eter fluctuations in open sub-systems and compared different ap-
proaches to locate the critical temperature Tc. The applicability of
the procedures was demonstrated for a symmetric binary liquid
with known phase diagram, fully based on molecular dynamics
simulations of one large system. Thus, such simulations provide
an alternative to (semi-)grand canonical Monte Carlo schemes,
and arguably have the advantage of simultaneously probing the
dynamic properties of the system, for example, transport coeffi-
cients (which we have not discussed here). Complementary, the
study of the static structure factor calculated for a large system
size yields the critical divergences of the correlation length and
the susceptibility (Figure 1), which were found to be compatible
with the 3D-Ising universality class as expected and from which
we got a first estimate of Tc.
For the composition fluctuations, obtained from the particle

number statistics in cubic sub-volumes, we have shown that the
standard finite-size scaling procedures, as for a sequence of simu-
lations with periodic boundaries, are successful if the edge length
L of the simulation box is replaced by that of the of sub-volume
(𝓁). In particular, the data for the susceptibility 𝜒𝓁(T) and the
4th moment ⟨𝜙4⟩𝓁 collapse onto master curves after appropriate
rescaling (see Equations (7) and (20)) and if Tc is chosen properly
(Figures 2 and 3). Confluent corrections to scaling are compati-
ble with a decay ∼ 𝓁−𝜔 with 𝜔 ≈ 0.83 and are practically relevant
due to computational limitations on exploring the ideal scaling
regime 𝜎 ≪ 𝓁 ≪ L. For example, the susceptibility at T = Tc de-
viates from its critical power-law divergence by still 20% for a
sub-system size of 𝓁 = 10𝜎, which corresponds to 𝓁 ≈ L∕5 for
the comparably large simulation box used here (Figure 4).
Further, we have found that the Binder cumulant U𝓁(T) of

the sub-systems, plotted against temperature T , yields only an
apparent common intersection point (Figure 5). Nevertheless, it
yields Tc to an accuracy of about 0.2% in our example, where we
partitioned the simulation box into m3 cubes for m = 6,… , 12
with 𝓁 = 3.7𝜎 for the smallest sub-systems. Here, it was favor-
able to consider the cumulant ratios U𝓁∕U𝓁′ , which does not re-
quire knowledge of the critical value Uc. Due to the free bound-
ary conditions, the latter adopts a universal value[14] Uc ≈ 0.2 that
is very different from its 3D-Ising value for periodic boundaries
(Uper

c ≈ 0.624).
Extending the finite-size scaling ansatz (Equation (26)) for

U𝓁(T) by the aspect ratio 𝛼 = 𝓁∕L as a second scaling variable, we
have shown that a true common intersection point is predicted
asymptotically and observed in our simulation data, provided that
lines of constant 𝓁∕L are considered (Equation (31) and Figure 8).
A disadvantage of this more correct approach is that it requires
again a sequence of simulations for a number of large system
sizes, so that 𝓁 can be varied while keeping 𝓁∕L fixed. Despite
the existence of a common intersection point for aspect ratios
even close to unity (e.g., 𝛼 = 1∕3), we showed that its location
(Uc, Tc) can sensitively depend on 𝛼, but converged for 𝛼 ≲ 0.1
in our case. A similarly large aspect ratio between sub-system
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and overall simulation box is needed to establish free boundary
conditions on the surfaces of the sub-system as derived by one of
us recently.[23] From the extrapolation 𝛼 → 0, we improved pre-
vious estimates of the critical Binder cumulant to Uc = 0.201 ±
0.001; the value applies for physical systems in the short-ranged
3D-Ising universality class and if cubic domains with free bound-
aries are considered. Interestingly, our estimates for the critical
temperature, Tc = 1.421 ± 0.001, did not change appreciably for
the various approaches used here and are in agreement with pre-
viously reported values for this particular model system.[35,39]

In conclusion, we have shown that the analysis of open sub-
systems offers a reliable method to locate critical points, thereby
taking advantage of large-scale simulations facilitated by mas-
sively parallel computing hardware. A complication arises due
to the interference of the sub-system size 𝓁 with the size L of
the simulation box, which requires a finite-size scaling proce-
dure with 𝓁∕L fixed; the latter defeats the idea of sticking to a
single, large value of L. Only for 𝓁∕L ≲ 1∕10 or even less, free
boundary conditions are effectively realized on the sub-volume
surfaces and the dependence on L drops out. In many practical
situations, this allows resorting to the simplified analysis with L
fixed (Figure 5), that is, based on one or few simulation runs of
one large system. On the other end of the scale, we found that
sub-volume sizes as small as 𝓁 ≈ 3−4𝜎 still permit scaling, so
that the choice L ≈ 50−100𝜎 yields sufficient room for varying
the sub-system size 𝓁. A spin-off from a large ratio m = L∕𝓁 is
that the simulation data at a single instance in time permit a sta-
tistical average over m3 sub-systems, similarly as contributions
at small wavenumbers k to the structure factor Scc(k) are self-
averaging. Eventually, the presented sub-system analysis com-
bined with the two-parameter scaling should also be applicable to
the more challenging study of asymmetric, for example, colloid–
polymer mixtures.[19,64,65] Apart from specific applications to flu-
ids and taking advantage of universality,Monte Carlo simulations
of large 3D Ising lattices should provide a highly sensitive test of
the extended finite-size scaling of U𝓁(T ; L) (Equations (31) and
(32)) and a more precise estimate of Uc.

Appendix A: Alternative Scaling Ansatz for U𝓁(T; L)

It is tempting to propose as a natural extension of the scaling
ansatz Equation (26) that

U𝓁(T ; L) =
≈ (

𝓁1∕𝜈𝜀, L1∕𝜈𝜀
)
, 𝜀 = (T − Tc)∕Tc, (A1)

which is expected to hold when all length scales are sufficiently
large, that is, for 𝓁, L, 𝜉(T) ≫ 𝜎. Taking L → ∞ yields Equa-
tion (26), and in terms of the scaling functions, (x) =

≈ (x, X →

∞) with X := L1∕𝜈𝜀, so that limx→0

≈ (x, X → ∞) = Uc ≈ 0.20
recovers the universal Binder cumulant for open boundaries.
On the other hand, choosing 𝓁 = L reproduces the conven-
tional finite-size scaling with periodic boundaries,[32,33] and so
limx→0

≈ (x, x) = Uper
c ≈ 0.624. From a practical perspective, ef-

fective values of Uc are obtained from carrying out the data anal-
ysis described in Section 5.1 for various finite L. We thus define
Uc(𝛼) := limx→0

≈ (x, 𝛼−1∕𝜈x) where 𝛼 := 𝓁∕L fixes the aspect ra-
tio of the geometry. With this, the limit x → 0 becomes a func-
tion of 𝛼 and interpolates betweenUc for 𝛼 = 0 (free boundaries)

and Uper
c for 𝛼 = 1 (periodic boundaries). In particular, the scal-

ing function
≈ (x, X ) is not continuous at the origin, x = X = 0,

not even speaking of analyticity. Yet, the function is analytic in x
alone for any fixed L ≤ ∞, since U𝓁(T ; L) depends smoothly on
temperature in a finite (sub-)system. The standard treatment to
derive asymptotic scaling behavior, however, fails as it relies on a
Taylor expansion of the scaling function around the critical point
(𝜀 = 0), and at the bottom line the ansatz (A1) proves fruitless.
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