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Zusammenfassung

Die Lokalisierung des eigenen Fahrzeugs und die Assoziation der Pose in beste-
hendem Kartenmaterial ist eines der zentralen Aufgaben und Grundpfeiler der
automatischen Fahrzeugführung. In städtischen Gebieten kommt es dabei zu be-
sonderen Herausforderungen, die sich aus den unterschiedlichsten Verdeckungen
und Reflexionen der Satellitensystemsignale ergeben. Die Störungen führen zum
Teil zu stark verfälschten Lösungen für die Berechnung der eigenen Position. Diese
Effekte treten abhängig vom Bebauungszustand der Umgebung auf, so dass lokal
geltende Korrektursignale das Problem nicht lösen.
In dieser Arbeit wird ein Lokalisierungssystem für urbanes Umfeld vorgestellt und
untersucht. Es basiert auf der alleinigen Verwendung heute üblicher Serienkameras.
Kombiniert man diese zu einem vereinheitlichten Bild der Umgebung ist es durch
Zuhilfenahme der Fahrzeugodomometriedaten möglich, Lokalisierungsaufgaben in
urbanem Gebiet mit einer Präzision zu lösen, die eine spurgenaue Zuordnung des
Fahrzeugs ermöglicht. Die Kameras werden genutzt, um die für die Positionsschät-
zung notwendigen Landmarken zu detektieren und klassifizieren. Dieser Prozess-
schritt wird im Detail in dieser Arbeit dargestellt und ausgewertet. Die Ergebnis-
se werden im Folgenden zur Positionsbestimmung des Fahrzeugs genutzt. Dazu
wurden für diese Arbeit OpenStreetMap-Daten derart angereichert, dass sie zur
Lokalisierung über die gewonnenen Landmarken genutzt werden können. Welche
Form der Datenerweiterung dabei erfolgen muss, wird in dieser Arbeit vorgestellt.
Das Nutzen der Initialposition, Positionsupdates über die Fahrzeugodometrie und
schließlich die Nutzung der Landmarken für die spurgenaue Lokalisierung werden
ebenfalls detailiert präsentiert und ausgewertet. Kern des Lokalisierungsmoduls
ist ein Partikelfilter mit dem Bayessches Tracking umgesetzt wird. Es wird ange-
strebt, dass die durch die Partikel beschriebene Wahrscheinlichleitsverteilung ein
guter Repräsentant für die tatsächliche Position ist. Das Modell der Schätzung in
einem normalverteilten Prozess wird zu einem multimodalen Ansatz erweitert. Die
Vorteile des Partikelfilters können somit bestmöglich genutzt werden.
Die Charakteristika des Landmarken-Messsystems werden dargestellt und es wird
gezeigt, wie Ausreißer identifiziert werden können. Darüberhinaus wird dargestellt,
wie die Anordnung mehrerer Kameras dabei helfen kann Verfügbarkeitslücken in
der Wahrnehmung zu minimieren. Eine Methode zur Assoziation der aktuellen
Messung zum Kartenmaterial über eine Kostenfunktion wird dargestellt. Es wird
dargestellt, wie eine typische Resamplingmethode dahingehend erweitert werden
kann, dass sie den multimodalen Ansatz bestmöglich stützt und die Verstärkung
der Wahrscheinlichkeitsdichte im Zustandsraum optimiert. Es wird gezeigt, dass
die typischen Mechanismen zur Bewertung eines Partikelfilter-Zustands in urba-
nem Umfeld nicht ausreichend sind, warum dies so ist und Lösungsmöglichkei-
ten vorgeschlagen. Die Performanz des Systems wird durch Testfahrten und deren
Auswertung in urbaner Umgebung nachgewiesen. Dies schließt dichte Bebauung,
Kreisverkehre und Tunnel ein.



Abstract

The localization of the vehicle and the association of the estimated pose is one of
the essential tasks in automated driving. Within urban environment, this task is
a challenging one, due to the disturbances that interfere the satellite navigation
system signals like reflections or multipath propagation. The disturbances result
into an erroneous estimation of the ego pose. The effect and its impact depend on
the city structure around the vehicle and therefore local correction signals are not
useful.
In this thesis, a precise localization system is introduced and investigated. A main
goal for the developed system is to combine all information the car could provide by
its serial hardware and using this information for a stable and precise localization
in challenging surroundings. Combining the signals of the cameras to a joined view
on the surrounding and using cars odometry information, the localization problem
within urban areas is solvable. With the cameras it is possible to detect and
measure the relative position of lane segment markings, arrow markings, pedestrian
crossings and stop lines. The detection process is presented and evaluated in detail.
The landmark information is used with enhanced map data based on Open Street
Map (OSM). Thereby, a landmark based estimation can be established. The GNSS
information is used for an initial pose guess, the vehicle odometry for position
updates and finally the detected landmarks for pose corrections. All information
is aggregated within a particle filter for Bayes tracking. It is ensured, that the
probability dense function from the particles is a good representation of the actual
pose and its probability. The estimation from normal distributed processes is
enhanced to a multimodal method. Thereby, the particle filter can demonstrate
its benefits.
The characteristic of the landmark measurement system is presented and it is
shown, how outliers can be identified. Furthermore, the advantage of using multiple
cameras in order to improve system availability is presented. A method to associate
current measurements with map data by cost function is shown. Additionally it
is shown, how the typical resampling method is enhanced, that it supports the
multimodal shape of the probability density in best possible way and to optimize
it in the state space. It is presented in detail why typical mechanisms to evaluate
the particles sets state are not sufficient for urban environment and how to solve
this issue. The potential performance of the system is evaluated in test drives in
real urban environment, including dense development, roundabouts and tunnels.
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1. Introduction and Motivation

1.1. Motivation

In recent years, many efforts were made to push the trend to highly automated
driving from a highway piloting function into urban areas. Along with this, new
challenges came into focus. One of these challenges, is the position estimation
for vehicles to achieve lane accurate driving in cities. Due to multi-path signal
propagation, reflections and even blackouts, a single Global Navigation Satellite
System (GNSS) solution will not be sufficient to face the challenges for a high
precise localization and driving. Differential GPS (DGPS) platforms combined
with an Inertial Measurement Unit (IMU) are a step forward, but currently they
are expensive and at longer blackouts the position estimation will fail [32] either.
Furthermore, they are not a solution for the multi-path propagation problem,
which impact is very fine granular in urban surroundings. For this reasons, further
methods were proposed and are currently investigated. One research field is the
landmark based visual localization and derivatives of it. With this method, special
features - retrieved from the cars surrounding by optical sensors - are used to gen-
erate an estimation of where inside the map the car is or was located for a specific
time. Such systems must rely on a very precise measurement of these landmarks.
In this work, one of the best measurable landmark is used to get a hint were the
car is: road markings. This thesis will show that road markings of any type are an
excellent option to perform ego-position estimation. One challenge in this work,
is to correctly classify road markings, even if their shape is distorted or classifi-
cation must be performed under challenging environmental conditions. It can be
shown, that the use of multi-camera sensor setup can give more reliable results for
classification, than single sensors and thus help to interpret the vehicles driving
situation. It is shown, that line segments - integrated to a higher interpretation
level - lead to a meaning, that helps to relocate inside a street-map. The system
should distinguish between

• lane border

• stop line

• pedestrian crossing

• arrow marking type

Further categories are feasible, as long as registered in the street-map.
The detections retrieved from cameras, must be aggregated and evaluated within
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1.1. Motivation

a structure, that represents the cars environment at a specific time. A special
marking map is introduced to provide this functionality. After aggregation and
fusion of all gathered information from road surface, it must be interpreted. An
interpretation layer is presented in this work, to get reliable information about the
currently driven lane and its direction type.
The information and measurements retrieved from urban streets could be immense,
versatile and inconsistent. Furthermore, the measurement precision differs propor-
tional to the distance and type of camera it was measured. To model this behavior
as process with Bayes properties, a particle filter is presented. It is shown, how to
model such filter for a well approximation of the cars position on map. The filter is
furthermore supported through a vehicle motion-model based on wheel movement.
To achieve lane level localization and allocation, the position estimation must meet
sub-meter precision for most of the cases.
For the localization process a handcrafted highly detailed map (so called HD-map)
is used. It is obvious, that for future applications such maps will be indispensable.
HD-maps are a profitable business model for card supplier. Therefore, from the
beginning of this work, there were no free access road-models available. This issue
will certainly be a matter of time. In this work, it is shown how a map must
be adjusted and extended to be associated with the position estimation process,
exemplary with an Open Street Map (OSM) including parts of Berlin, Germany.
A further goal is to implement a combined detection and localization system, that
is based on mass production sensors and hardware, already integrated in nowadays
cars. Neither exotic nor expensive hardware should be used.

Figure 1.1.: Diagram of the localization process. The system gets an initial position by
GNSS (1). Ego-motion estimation is calculated from wheel movement (2). The system
uses a highly detailed map to reference landmarks(3). The cameras detect landmarks like
pedestrian crossings. The car relative position of the landmark is calculated and its global
position is derived from the street map (4). All information sources are deduced to a final
position estimation.
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1.2. Structure of this thesis

1.2. Structure of this thesis

This work is separated into sequential chapters to give the reader a golden thread,
that allows easy comprehension.
Chapter 3 is an introduction to theoretical principles which are helpful to under-
stand this work. The chapter provides the basics for feature calculation of road
markings, the different coordinate systems, the ego-motion estimation and finally
an introduction to particle filter and therefore Bayes tracking. An introduction
to the used classifiers Support Vector Machine (SVM) and ’random forest’ is pre-
sented in appendix. In chapter 2 the related works are introduced. It points out,
that there is already several academical work focused on road marking extraction
and classification. And furthermore the use of extracted landmarks for position-
ing tasks. The section is followed by chapter 4, describing the methods for image
processing to extract the landmark features. In chapter 4.2 the used classifiers and
preparation of features for the classification step is presented. Moreover, general
principals are introduced to evaluate classifier performances and the descriptiveness
of features. Chapter 4.3 shows, how different sensor inputs (e.g. marking contours)
can be synchronized and aggregated to a consistent view of the surrounding envi-
ronment on a moving platform (vehicle). In chapter 4.4, the models are introduced
to push environment information to a higher abstraction layer. It presents, how
lanes could be modeled especially in urban surroundings with regards to the typ-
ical polynomial representation. The lane border model is extended appropriately.
Alongside, it is shown how arrow marking information must be processed to get a
reliable information about the lanes driving prescription and thus, being a base for
lane level localization. Chapter 5 introduces the localization principles this work
is based on. It is shown in detail, how the gathered information from the cars sur-
rounding is used for the localization process. The following chapter 5.2, presents
the implemented position estimation based on the detected landmarks. In chapter
6, an extensive evaluation of the systems detection and localization performance
is given. The single layers perception and localization are assessed separately. The
chapter points out system limitations, also. The last chapter 7 gives a summary
about the implemented system at a glance. The results are discussed in detail.
The contribution of this work is presented and open topics are shown.

1.3. Contributions

This work will show, that improvements for current localization methods are nec-
essary, to make lane level localization possible. All evaluations will be performed
on recorded scenes from the area of Berlin (Germany), a city with comparably lot
of free space and relatively low buildings. Nevertheless, the effects of multi-path
propagation and the permanent leaving and approaching of satellites in sight are
remarkable. Furthermore, tunnels and large bridges cause signal blackouts. Issues
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1.3. Contributions

that make lane level localization a challenge. Regarding dense populated areas
with higher buildings, large bridges and even streets on different levels, it becomes
clear, that new localization approaches are necessary.
The following list points out the contribution of this thesis at a glance.

• Lane boundary detection and measurement with machine learning approach,
based on lightweight contour classification.

• Two methods for marking arrow classification, including a detailed evaluation
of both approaches. Good classification results are shown, even when using
small sample sets for training.

• Methods for temporal and spacial fusion of asynchronous lane information
from multiple cameras with different lens distortions.

• Therefore, a low cost road perception and interpretation module, usable at
systems with small processing capacity.

• Detailed presentation of enhancements to estimate a particle filters effective-
ness. And furthermore the detection of failed filter states.

• Presentation of approaches to evaluate and process lane information for par-
ticle filter updates. Furthermore, the evaluation of different strategies to
trigger update and correction with motion and lane information.

• Introduction of methods for lane segment selection and its assessment at
ambiguous lane information.

• A position estimation module with capability for lane level localization.

• A localization method suitable for dense lateral and sparse longitudinal lane
information as well.

This thesis shows, that extracted road markings are well suited to reference street
maps, and thus to estimate a precise vehicle pose. For streets with multiple lanes,
this can be performed at lane level. Two approaches of marking extraction and
classification will be introduced and compared. Afterwards, it will be demonstrated
how to use the classifier results for localization. Different strategies to manage
the set of pose hypotheses within a particle filter are introduced - considering an
optimal representation for the actual vehicle pose. As result, a vehicle localization
system with lane level precision (ε < 1m) is presented. It is completely based on
mass production and low cost sensors, already available in nowadays cars.

4



2. Related work

The detection of lane and arrow markings was investigated in several papers. Shi-
gang Li und Y. Shimomura introduced a lane detection for laterally mounted fish-
eye cameras [46]. In their paper they used the fact, that lane markings on straight
lanes have the same direction as the car drives. They use epipole calculation as
initial position for the lane vanishing point. With the subsequent edge detection
on markings, they presented a method to detect lane borders. A classifier for arrow
markings or other line types was not presented.
To increase the detection robustness under challenging weather conditions, in [28],
Kum et al. introduced the fisheye lane detection as an improvement for front-
camera-systems performance. They used four orthogonal mounted cameras and
transformed the images to a bird view perspective. Afterwards, they detect line
candidates and tracked them with a linear Kalman filter. They did not present a
detection of arrows or other road markings. A system with combined lane detec-
tion and arrow marking recognition was introduced by Vacek et al. in 2007 with
the paper [51]. They used a typically mounted front camera to detect lanes by
a scan line approach and the arrows by a template matching method. Therefore
they remapped the arrow templates to ground plane and checked candidates and
template for congruence. As validation data set, three scenes including a crossing
were used. Thus, the overall number of validation samples was very small (46, with
36 arrows). The capability of their classifier for generalization and which matching
method they used was not mentioned.
Another method to detect road markings was described by Danescu and Nedevschi
in [34]. They used a scan line based approach combined with grey level segmenta-
tion to detect arrow hypotheses. In classification step, a decision tree and geomet-
rical features like size-relations were used. In [30] a geometric approach for arrow
marking detection that is based on class prototypes, modeled with arc splines, was
presented. Afterwards contour extraction, the arrow candidates were classified
by comparison to class-models. Typical classification result tables were not pre-
sented. Instead, one contour was evaluated exemplary. Nevertheless, the method
reveals the effectiveness of model based geometrical approaches to detect (special)
lane markings. N.Wang et al. presented a method to detect arrow markings from
ground plane projected images in [52]. They showed, that shape classifying algo-
rithms like Haar wavelets are suitable to detect markings in urban environment.
For classification, a multi-class SVM was used. The introduced method showed
robustness against occlusion and poor visibility. In [45] a landmark localization -
based on lane markings from highly accurate maps - was introduced. The localiza-
tion accuracy was evaluated on test track and rural roads. In both cases, accuracy
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in centimeter-range was achieved by combining map and landmarks.
Most of the studies, focus only one goal out of processing speed, detection accuracy
and robustness. Often a separation is made between lane-segments and road ob-
jects like arrows. Lane segments are extracted by the typical edge-based methods,
but not by a machine learning process. What means, edge groups are classified as
lane borders by passing plausibility and logic checks. The method reveals known
problems like wrong classified lines, that are not lane borders. The presented al-
gorithms did not learned the ’gestalt’ of lane segments. Thus, they are less robust
and not adaptable to new types (e.g. border of bike paths). Often, test- and vali-
dation sets are very small and no general conclusions about the performance can
be made, because the different methods are not compared.
The largest group of input samples, when analyzing urban surroundings, is residual
data. In the papers often called ’other objects’ or ’negative samples’. The papers
often show good recall rates. For real world applications it is not only important
to have a high sensitivity on the target class, but a very low sensitivity on the
negative class to avoid false positives. Therein, the presented results are often not
clear or no information about this issue is provided.
A detailed analysis and comparison of geometrical and image feature based classi-
fication methods was presented in [37] and the consecutive publication [38].
The localization problem in this thesis can be abstracted to a sequential state
estimation, where the state is the current position, estimated from a sequence of
measurements. The measurement process can be modeled with a Bayes filter - in-
vestigated and evaluated in many publications. A detailed introduction to Bayes
filtering and its use for localization problems can be found in [9]. In practice, often
Kalman filter and particle filter are used. A detailed introduction to Kalman and
Extended Kalman filter can be found in [53]. For the sequential Monte Carlo sam-
pling methods, commonly known as particle filter, an introduction can be found
in [13]. Furthermore, comparisons of these filters were published in [2] and [50].
There are a few papers that propose the sequential monte carlo sampling for lo-
calization, while merging different signal sources. The combination of street-map
data, containing visual landmarks, and the Global Positioning System (GPS) sig-
nal was proposed by [32]. In their work, they used lane markings and stop lines
together with a high precision map from a test track. For data fusion, a particle
filter was used. With an initialization period of five minutes (GPS data from the
test site) and a thirty minutes long test drive, they get a mean error of 11.6cm
(σ = 30.4 cm) and 2.1 cm (σ = 44.0 cm) for the easting and northing values.
Within this time, the test track (l = 2.5 km) was driven around multiple times.
During another evaluation, they forced a GPS blackout for about thirty minutes
and get a mean error of 1.91 m. Another work on urban localization problems
was published by [21]. They merged GPS, the car odometry and the position of
landmarks within a combination of Kalman- and particle filter. As landmarks,
they used house corners detected by a laser scanner (Light Detection And Rang-
ing (LiDAR)). The house corners were noticed inside an OSM. At their test run
about l = 860 m, they get a mean position error of 4.9 m and a maximum error
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of 14.95 m.
In [49] GPS, car odometry and lane markings were combined within an extended
Kalman filter. For the map-look-up a high precision map was used, containing the
marking positions. The map was created handcrafted from a previous drive. They
do not used any special high-definition-maps and worked with car series sensors
like the Electronic Stability Control (ESC). On their test drive about ten minutes,
they get a mean position deviation about 1.21 m (σ = 0.75 m) and a maximum
error of 3.04 m.
In [39] a method for lane level positioning on downtown roads was proposed. There-
fore, a particle filter was extended with a novel step, combining importance weight
update and sampling. The method uses a mapping of the detected markings and
measurements from multiple-lane scenarios to a high definition street map. There-
fore, the probability distribution of the particles was modeled according to the
measured distance to the markings with maximum at the closest lane. In the
sampling step, the particles were sampled from the posterior belief. Thus, the
particles converge to a probable position inside the lanes. It was shown, that this
combination of weight update and sampling gives a more stable solution than tra-
ditional measurement updates. The evaluation was focused on system availability
and correct lane assignment, no statements about a metrical positioning perfor-
mance was made. For measurement inputs, only signals from nowadays available
series sensors were used.
Using a set of multiple cameras to perform lane level localization and the advan-
tages of this method was shown in conference paper [36]. Additionally, it was
presented, how to deal with data fusion and the parallel processing of large sensor
data.
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3. Introduction to methodology

3.1. Coordinate systems

In this thesis, various coordinate systems are used. They will be introduced in
this chapter. For global position references, the Universal Transverse Mercator
(UTM) system is used in this work. This is applicable, especially for coordinates in
street maps and elements of it. For car-relative positions, the DIN ISO 8855:2013-
10 [12] is used. The standard defines terms regarding vehicle dynamics. The
corresponding coordinate system is introduced in 3.1.2.

3.1.1. Universal Transverse Mercator

The UTM is a standardized global coordinate system. It is based on the projec-
tion of the earths surface on cylindrical and equator-parallel slices. This type of
projection is called Transverse Mercator Projection. The system covers the earths
surface from 80◦ south to 84◦ north, where each hemisphere is divided into 60
zones from east to west, with a zone width of 6◦. Every zone has its own specific
coordinate system with corresponding projection. The UTM coordinate center is
the intersection between equator line and the zones meridian. To avoid negative
coordinate values, the zones meridian coincides with 500.000 m east. Coordinates
with an easting-value of 400.000 m would be 100 km west from the zones merid-
ian and due to a small projection error nearly 100 km on the earths surface. To
distinguish between northern and southern hemisphere, UTM coordinates include
a hemisphere designator (N,S). Germany is almost completely covered by UTM
zone 32 and 33. Berlin is completely covered by zone 33, Figure 3.1
The spatial division in the UTM system is fine enough to have only small projection
errors [43]. The advantage of the system is, that global positions can be described
with cartesian coordinates and therefore the euclidean distance and other geome-
try calculations can be done straight forward with high precision.
Remember, that every zone uses its own projection of the Cartesian grid and there-
fore every transformation in or from UTM is only valid for a specific zone. This
circumstance must be considered when passing from one zone to another. There
is no relation between inter-zone-coordinates. At the border between zones, it can
be a good solution to determine which one is mainly used and let its grid overlap
into the other. Generally, the error would be small. For long distance travels, a
smooth handover between zones must be implemented.
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3.1. Coordinate systems

Figure 3.1.: Germany is almost completely covered by UTM zones 32 and 33, Berlin com-
pletely by zone 33. The U describes the position in the south to north slice, where U is a
slice from northern hemisphere.

3.1.2. Vehicle and sensor related coordinate systems

Car coordinates

The detected objects from the cars sensors are generally referenced in car relative
coordinates. The system is fixed to the car and therefore it moves with the car.
Moreover, detected objects can easily be shifted for a period, not only by their
own movement, but additionally with motion of the car. The origin of the car
coordinate system, is the middle of the rear axle at ground level. For a planar
road, Z = 0 will correspond to the road surface. The X-axis points along the cars
longitudinal axis to the front. The Y -axis is orthogonal to X and points to the
cars left side along the rear axle. Because it is a right-handed coordinate system,
the Z-axis points upwards from the rear axle center (origin), 3.2. We use the index
F for a point PF = (xF , yF , zF ), given in car relative coordinates.
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3.1. Coordinate systems

Figure 3.2.: Views of the cars coordinate system from birdview (XY plane/driving plane)
and side view (XZ plane/car profile)

Camera coordinates

The camera coordinate system is relevant for projections from the cars surrounding
into camera image. It means that object positions are referenced relative to the
camera. The systems origin is the camera center. The direction of the axes can
depend on the used camera projection model (pinhole camera vs. fisheye lens), but
it is - in our case - right-handed. The pinhole model uses an alignment where Z
points along the line of sight away from the camera and thus it is a scale for depth.
According to this determination and with right-hand-criterion, the X-axis points
to the right and the Y -axis downwards. The used fisheye model differs from that in
a way, that it is rotated 180◦ around the Y -axis. X then points to the right and Z
backwards from camera view. We use the index K for a point PK = (xK , yK , zK),
given in camera coordinates.

Image coordinates

The image coordinate system is a two dimensional Cartesian system. It is used to
reference the pixels of an image. For axes naming, u and v has been established.
The origin in this system is the upper left image corner. The u-axis runs parallel
to the image rows from left to right. The v-axis runs from top to bottom along
parallel to the image columns. All pixels of an image are situated in the first
quadrant of the image coordinate system. For an image coordinate p = (u, v) we
use lower case letters for distinction.

3.1.3. Transformations between coordinate systems

For localization systems, which associate image related objects (pixels) with a po-
sition on a map, it is necessary to define transformations between the coordinate
systems for both directions. The illustration in Figure 3.3 shows the transforma-
tions that must be used. To transform a point PF from car coordinate system
to camera coordinate system, we use equation 3.1. Where R is a 3 × 3 rotation
matrix and ~t a translation vector, describing the rotation and shift between the
coordinate systems. In our case, it describes the mounting position and orientation
of the camera to the car and therefore is called extrinsic camera parameters. They
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3.1. Coordinate systems

must be determined with a camera calibration procedure.

PK = R · PF + ~t (3.1)

The equation for the opposite direction then is

PF = R−1 · (PK − ~t).

The transformation between camera and image coordinates is given by the models
in 3.1.4. In this transformation, from three-dimensional space to a (image-)plane,
the third component (depth or z) get lost. For the inverse mapping from image
to camera coordinates, that component is missing. Therefore, a projection ray
is assigned to every image coordinate. A specific solution can be calculated by
intersect this ray with a given reference plane.

car coordinates camera coordinates image coordinates

mapping 

inverse mapping

UTM coordinates

Figure 3.3.: Transformation between coordinate systems from a global metric position to
image pixels and vice versa.

(a) (b) (c) (d)

Figure 3.4.: Illustrations of the relevant coordinate systems. (a) Universal Transversal
Mercator. (b) Car coordinate system. (c) Camera coordinate system. (d) Image coordinate
system.

3.1.4. Lens models

Pinhole model

For this thesis, I use the mathematical model from Heikkila and Silven [20]. The
idealized geometrical relations of a pinhole model is illustrated in figure 3.5. The
Y -coordinate of a point mapped to the image plane is given by the theorem on
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3.1. Coordinate systems

Figure 3.5.: Geometrical relations in the ZY -plane. Point PK is projected to the point p
on image plane. f is the focal length, depending on the used optics.

intersecting lines and the focal length fy in y′K = fy · yKzK . The focal length is the
distance between the center of projection and the image plane.
The optical center of the camera lens generally differs slightly from the image
center. It is described with the values cy and cx. Applying this shift and scaling
the camera coordinate by pixel height sy and pixel width sx, the image position is
given by

u = sx · (x′K + cx),

v = sy · (y′K + cy) (3.2)

Because of the idealization of this model, one important aspect is missing. Real
lenses generally come with distortion, especially when using enhanced field of view
optics. The most common types of lens distortion are radial distortion y′′Krad and
tangential distortion y′′Ktan. They can be mathematically defined separately and
their impact to the mapping function 3.2 is additive, y′′K = y′′Krad + y′′Ktan.
The radial part of the lens distortion is modeled by a polynomial function:

y′′Krad = y′K ·
(
1 + k1r

2 + k2r
4 + k3r

6
)
, (3.3)

where r = x′2K + y′2K is the distance to camera center and k1 to k3 the radial
distortion coefficients. For the X-component the calculation is in analog manner.
The tangential part of lens distortion for Y -component is

y′′Ktan = p1

(
r2 + 2y′2

)
+ 2p2x

′y′ (3.4)

and for the X-component

x′′Ktan = 2p1x
′y′ + p2

(
r2 + 2x′2

)
. (3.5)

Where p1 and p2 are the tangential distortion coefficients. The transformation to
image coordinates can then be done with substituting y′′K , x′′K in equation 3.2.
The inverse transformation from image to camera coordinates is quite special be-
cause of the missing depth information and the distortion, that must be reversed.
Considering the equations 3.3 to 3.5, it is obvious, that reversing the functions is
non trivial. Therefore, in practical use the un-distortion is done by approximation
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3.1. Coordinate systems

methods. This can be achieved by calculate mappings between two image planes,
one for the distorted and one for the undistorted pixels, with the equations above.
The un-distorted plane will have gaps, where no information about the origin from
the distorted plane is available. These gaps generally are filled via linear combina-
tions (bilinear filtering) from the adjacent pixels, where an information is available.
As mentioned earlier in this chapter, the back-projection of an image point to its
corresponding camera-coordinate is not unambiguous possible because of the miss-
ing depth information. Therefore, to every pixel a projection ray is assigned via
the idealized pinhole model and after un-distortion. With a known reference plane,
for this ray the intersection can be calculated to retrieve a corresponding world
coordinate.

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

7

entrance angle θ

F
(θ

)

← π/2

Figure 3.6.: Illustration of different mappings
F (θ) (f = 1mm) and their function at lens
aperture angles θ with 0 ≤ θ ≤ 180◦ and
above.

Figure 3.7.: Mapping functions.
projection type function
— equidistant F (θ) = f · θ
— conformal F (θ) = 2f · tan(θ/2)
— orthographic F (θ) = f · sin(θ)
— equal-area F (θ) = 2f · sin(θ/2)
· · · pinhole F (θ) = f · tan(θ)

Fisheye lens model

The distance r of an image point to the optical center for a pinhole model can
also be described with the angle θ of the projection ray to the optical axis and the
focal length f with r = f tan(θ). It is obvious, that for wide angle cameras, large
image planes (respectively sensor planes) are needed and there is no mapping for a
field of view larger than 180◦. Modeling the projection ray through fisheye optics
is a widely researched topic. Scaramuzza et al. [44], Kannala and Brandt [25], as
well as Basu and Licardie [4] propose a camera model that bases on a polynomial
function

F (θ) = k0 + k1θ + k2θ
2 + k3θ

3 + ...+ kNθ
N (N ...desired grade). (3.6)

Thus, it is possible to describe all mapping relations as shown in figure 3.6 with
only one polynomial function. Moreover, it is possible to use a unified model for
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3.1. Coordinate systems

all camera optics, independent from the field of view. In this thesis a polynomial
model with fourth degree and k0 = 0 is used.

3.1.5. Inverse perspective mapping

The view angle from a camera into a scene leads to a perspective mapping of the
three dimensional surrounding to the 2D image plane. The Inverse Perspective
Mapping (IPM) is inverse to this process. It is a special image to image trans-
formation, where the values of image coordinates are remapped into their world
representation, generally speaking, to car relative coordinates at height z = 0.
Thus, it is a 2D → 2D transformation, the z-information from the original scene
get lost. Especially, when analyzing the road surface, the IPM could be very use-
ful. The IPM includes a transformation from camera coordinates to sensor pixels,
which depends on the chosen camera lens model (pinhole vs. fisheye) and describes
the rays through the camera optics.
For the mapping process the following information of a camera must be known:

• cameras intrinsic and extrinsic calibration parameters

• the outer coordinates of the (world)area that should be mapped

• the desired resolution of the IPM-image

Figure 3.8 shows the mapping input and output for an inverse perspective mapping.
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3.1. Coordinate systems

(a) (b)

Figure 3.8.: a) Origin images and b) the result after inverse perspective mapping of the
red grid area. The IPM images are aligned to their corresponding outline coordinate.
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3.2. Descriptive features of road marking contours

3.2. Descriptive features of road marking contours

Contours are described as a sorted list of two-dimensional points

C = {P1, P2, ..., PN = (XF,N , YF,N )}, (3.7)

where N is the number of contour points. The third dimension ZF = 0 (height) can
be neglected, assuming planar road surface. Figure 3.9 illustrates road markings,
extracted by the implemented perception module.

(a) class 1 (b) class 2 (c) class 3

(d) class 4 (e) class 5 (f) class 6

Figure 3.9.: Illustration of several marking contours, extracted by the perception module.

For contour classification, a set of features must be defined, that are characteris-
tically for the contour classes. The proposed feature set consists of three groups:
moments, geometrical relations and Fourier descriptors.
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3.2. Descriptive features of road marking contours

3.2.1. Moments

Moments are a description for orientation and shape of weighted distributions.
The extracted contours can be taken as a two-dimensional distribution with value
1. Typically, moments are determined by integration over their distribution. For
contours, obviously no distribution is given, but its outline. Following the Green
theorem [18], the integration over an enclosed area can be transformed to an in-
tegration over the areas border. Hence, it is possible to calculate moments for
contours.
From moments mpq, where p and q describe the order of the moment, centralized
moments µpq can be derived. Therefore, the center of the contour is calculated by
P = (XF , YF ) with

XF =
m10

m00
, YF =

m01

m00
.

The result is not the geometrical center, but the mass center of the contour. With
the given point of the mass center, the centralized moments can be calculated with
use of equation 3.8. In the next step, the centralized moments can be normalized
using ηpq = µpq/µ

γ
00, where γ = 0, 5 · (p+ q) + 1. [17]

µpq =
∑
X

∑
Y

(X −XF )p · (Y − YF )q (3.8)

According to Hu [33], from normalized, centralized moments another group of
moments - the so-called Hu-moments - can be determined. The advantage of
Hu-moments is their in-variance against rotation, translation, and scaling. The
Hu-moments mH0 to mH6 and the normalized, centralized moments
η20, η11, η02, η30, η21, η12, η03 forming the first part of the proposed feature set.

3.2.2. Additional geometrical features

Geometrical features, that can directly be calculated from contours like area A
or length L, depend on the contours size and hence are not suitable for a feature
selection. A better choice is the use of relations between them. For example
roundness R = L2/A is a more shape describing feature. Another one is the
enclosing rectangle to contour area-ratio RRA = AR/A, where AR is the area of
the minimum enclosing rectangle of the contour. In similar way, an enclosing circle
to contour area-ration RCA = AC/A can be determined. Finally, the area of the
convex hull AH can be useful and the corresponding ratio (convex hull to contour
area-ration) can be calculated with RHA = AH/A.

With centralized moments, as defined in 3.2.1, the axes a and b of an ellipse can be
determined. The semi-major axis a and the semi-minor axis b forming the inertia
tensor of the contour. The ratio Rab = a/b (major to minor axis-ratio) describes
the contours spatial expansion.
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3.2. Descriptive features of road marking contours

a =

√
2

(
(µ20 + µ02) +

√
(µ20 − µ02)2 + 4µ2

11

)
and

b =

√
2

(
(µ20 + µ02)−

√
(µ20 − µ02)2 + 4µ2

11

)

Furthermore, mass center and geometrical center can be used to derive a new
feature. Generally, these points do not have a similar position and thus a vector
between them can be determined. The angle between this vector and the major
axis is an indicator for the position of the contours mass center relatively to the
contours orientation. The feature is called the contours gravity balance β.

3.2.3. Fourier descriptor

The two dimensional contours (closed sequence of 2D-points) can be described as
a set of complex numbers with zj = XF,j + iYF,j . From that sequence it is possible
to determine the discrete Fourier transform with the use of equation 3.9. z̃(u) is
called Fourier descriptor of the contour. Before transformation can be performed,
it is required to have the contour coordinates in an equidistant form. That can be
achieved with sub-sampling, 4.1.1.

z̃(u) =
1

N

N−1∑
n=0

zn exp

(
−2πiun

N

)
N ...number of points (3.9)

The first descriptor component z̃(0) is the contours offset and thus describes the
distance to system origin. Removing this component, will make the descriptor
translation invariant. The Fourier components can be described with magnitude
and phase. A rotation of the contour will lead to a corresponding rotation in its
Fourier descriptor. To get the descriptor rotation invariant, only magnitude is
used and phase is neglected. Scaling in-variance can be achieved by scaling the
descriptor with its first component. The descriptor is N -periodic and N elements
form the descriptor. A more thorough analysis shows, that the first Fourier com-
ponents carry the most important information about the gestalt of the contour
while higher components describe smaller details. This characteristic makes the
Fourier descriptor a good choice for the classification of shapes [23, S. 551 ff.] [17,
S. 655 ff.]. Figure 3.11 shows contours Fourier transformed and vice versa. Before
determination of the inverse Fourier transform, different subsets of the N compo-
nents are selected to show the impact.
The third and final part of the feature vector for contour classification, is formed
by the Fourier components u = −20,−19, ...,−1, 2, 3, ..., 20.
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3.2. Descriptive features of road marking contours

Figure 3.10.: Illustrated feature subset for Contour examples on the left side. Diagrams
on right side show the corresponding Fourier descriptors.
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3.2. Descriptive features of road marking contours

(a) contour from straight arrow

(b) contour from left arrow

(c) contour from straight-right marking

Figure 3.11.: Illustration of Fourier descriptors information for different marking classes,
with decreasing descriptor size from left (N=64) to right (N=16).
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3.3. The HOG descriptor

3.3. The HOG descriptor

The Histogram of Oriented Gradients (HOG) descriptor is a widely used method
to describe patterns by its edge orientations. The feature describes the counted
gradients for a specific image area (window). Inside this window, the edge orienta-
tions are assigned to a histogram. In practice, the window is divided into cells and
the edge orientations are counted in histograms for each cell. The histogram itself
is the HOG-feature. The sequence of all cell-histograms for a window, build the
feature vector of this window and therefore the feature vector of the image patch
to classify.
The basic idea to collect grouped edge orientations in histograms and use the
histogram for categorical separation of inputs (classification) was mentioned in a
patent from 1986 [31]. The inventor describes in detail, how the features are cal-
culated and how the histograms could be used for classification of patterns. He
explicitly mention the use of his invention with images and shows how edge group-
ing could be done. Furthermore, he shows classification result tables. Actually,
the inventor did not named the feature histogram of oriented gradients.
The breakthrough of this idea and the brand "HOG" came with a widely respected
article from 2005. In [10] the basics of HOG were described and its very powerful
use for pedestrian classification in images. Based on the work of [10], many appli-
cation possibilities for the feature were introduced in a large number of scientific
works. It was shown, that the HOG-feature is suitable for a wide field of pattern
classification tasks in images. Therefore, the original feature was often extended
to meet the specific classification problem.
In this thesis, the HOG descriptor is used in its original implementation, as intro-
duced in [10]. Thus, the following descriptions are orientated on this article. The
biggest change for this thesis, is the adjustment of the HOG cell- and block-size to
the specific classification problem and the use of a window size that meets better
the proportions of markings on urban streets, especially arrows. Therefore, the
feature vector has another size, than the one that was proposed in [10] for pedes-
trian classification. Another difference is the use of gray scale images to improve
the processing time. With the use of IPM, the main content of the image will
be road surface (gray) and road markings (white). Getting better classification
results with the use of color images, thus is not expected. The HOG descriptor

Figure 3.12.: Illustration of the processing chain to get HOG features from an input patch.
The chain is similar to [10] but shortened to the essential feature calculation steps.

bases on the idea to describe and recognize shapes by local gradients. Thereby, the
occurrence of gradient orientations is more important, then their positions. [10]
proposed a processing chain as shown in figure 3.12. For this thesis, no gamma
correction is applied to the input images. To calculate a feature vector from the
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3.3. The HOG descriptor

image, it is divided into cells. The implementation in [10] for example, uses a
cell size of 8 × 8 pixels. The cells are grouped to blocks, where 2 × 2 cells or
16 × 16 pixels are forming a block. This is more a data organizing scheme but
no processing is made up to that point. In the next step, the image is convoluted
with gradient filter masks to expose vertical and horizontal gradients. Dalal and
Triggs tried different types of gradient filters. Their conclusion was, that the mask
[−1, 0, 1] and its transposed give the best detection performance. The results after
convolution are two gradient images Gh and Gv. Afterwards, the magnitude and
angle for an image coordinate (x, y) can be calculated with

γ(x, y) =
√
Gh(x, y)2 +Gv(x, y)2

α(x, y) = arctan
Gv(x, y)

Gh(x, y)
. (3.10)

Figure 3.13.: Calculation scheme for a HOG feature vector X from image patch.

For each block, now the gradient space is divided into 9 bins between 0 and 180◦.
The value pairs (magnitude and angle) for each origin-pixel are collected into the
histogram bins. Magnitude is used to weight the angle votes. Each histogram cor-
responds to one cell (8×8) and therefore, consists of 64 value pairs at standard-cell-
size. One can expect, that illumination conditions have influence to the hardness
of the resulting edge magnitudes. Thus the histograms will be different, even if
image patches contain the same type of object. Thus, the histogram values must
be normalized. Therefore the cells are grouped into larger blocks and every block
is separately normalized. Dalal and Triggs showed, that detection performance
increases by overlapping blocks for normalization in a way, that each scalar cell
response, contributes several components to the final descriptor vector.
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3.4. Vehicles motion model

To understand why an odometry model - often called ’ego-motion-model’ - is im-
portant when dealing with sensor data of a moving vehicle, this section starts with
a short introduction to the problem. In the second part of this section, the ego-
motion model and its basic equations are shown. For this thesis, multiple camera
sensors are used to model a scene understanding. Therefore, no sensor data is used
as single snapshot, but fused. The output rate of a computer vision system may
correspond to the cameras frame rate. Often, this could not be guaranteed. In this
thesis, there are five cameras leading to five parallel processing chains. The com-
putation time for each processing chain is individual and even varies from frame
to frame for each sensor. The processing time for each chain depends on

• image size

• image type (color, gray, compressed)

• Region Of Interest (ROI) size

• image content (number of contours extracted)

For a moving vehicle, the task is to link the processed sensor data (contours) to its
original position. During process time the car has moved and measured positions
by camera projection must be combined with the car odometry for process time
span. Thus, it is obvious, that sensor data from moving platforms always should
be marked with a timestamp.
This section focuses on how the odometry is calculated for a fixed period of time.
To calculate the model, a set of signals from the Controller Area Network (CAN)
bus of the test vehicle is used. For example, the signals of the left and right rear
wheel tick sensor. For simplification, period of time means the cycle time of the
corresponding CAN signals. The odometry can be described as a sequence Xi

consisting of displacements in x and y direction and a yaw angle φ.

Xi =

δxδy
δφ

 (3.11)

The state X can be calculated according to the following equations between con-
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3.5. Tracking with particle filter

secutive timestamps and the given car geometry [26]

δφ =
δsl − δsr
dtrack

(3.12)

δr =
dtrack(δsl + δsr)

2(δsl − δsr)
(3.13)

δsa = 2δr · sin
(
δφ

2

)
(3.14)

δx = δsa · cos
(
δφ

2

)
(3.15)

= δr · sin(δφ)

δy = δsa · sin
(
δφ

2

)
(3.16)

= δr · (cos(δφ)− 1),

with δsl and δsr as the driven distance on left and right rear wheels, dtrack as the
cars track width, δr as the resulting curve radius and δsa as the driven arc length.

3.5. Tracking with particle filter

The particle filter is a method for Bayes tracking. Bayes tracking is a recursive
state estimation of xk, describing the evolution of a sequence {xk, k ∈ N}. It is
based on measurements

zk = hk(xk, vk), (3.17)

where h is a potentially nonlinear function with process noise vk. A filtered estima-
tion of xk, based on all available measurements z1:k = {zi, i = 1, ..., k} should be
found. Therefore, the probability density function (pdf) p(xk−1|z1:k) must be de-
termined. Assuming p(x0) is known, it is possible to determine the pdf recursively
with two steps: prediction and correction.

The particle filter is a sequential Monte Carlo method, where the probability den-
sity function for Bayes tracking is defined by a set of samples (particles) and
assigned weights. The particles and weights forming the quantized probability
density function of the process. With a large number of particles, it is possible to
have a sufficient representation for the actual pdf of the process. And therefore,
beeing an optimal solution for the Bayes’ estimation [2]. The advantage of this
method is, that no assumptions have to be made regarding linearity, nor requir-
ing normal distributed process and measurement model. Thus, particle filters and
other Monte Carlo algorithms became more and more useful in Bayes’ tracking
problems in recent years [13].

Having a random measurement
{xi0:k, ω

i
k}Ni=1, that describe the posterior pdf p(x0:k|z1:k), with {xi0:k, i = 0, ..., N}
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as particles set and {ωik, i = 1, ...N} as their normalized weights. Then the poste-
rior pdf of the measurement can be approximated with

p(x0:k|z1:k) ≈
N∑
i=1

ωikδ(x0:k − xi0:k). (3.18)

x0:k = {xi, i = 0, ...k} is the set of all states from zero to k and δ the Dirac-delta-
function. To determine the weights for this discrete approximation of the actual
pdf, often importance sampling is used [2].

The importance sampling uses a proposal distribution q(x), from which it is easier
to sample, than from the actual probability distribution p(x). If the samples xi0:k

are generated from a proposal distribution q(x0:k|z1:k), than the weights can be
assigned according to the rate between actual and proposed density:

ωik =
p(xi0:k|z1:k)

q(xi0:k|z1:k)
(3.19)

The proposal distribution can be factorized as:

q(x0:k|z1:k) = q(xk|x0:k−1, z1:k) q(x0:k−1|z1:k−1). (3.20)

Applying this factorization and the Bayes’ theorem on p(xi0:k|z1:k) from (3.19),
yields to a recursive equation for the weights:

ωik ∝ ωik−1

p(zk|xik) p(xik|xik−1)

q(xik|xi0:k−1, z1:k)
. (3.21)

Since Markov property is given, and with taking the proposal as prior

q(xk|xik−1, zk) = p(xk|xik−1), (3.22)

the recursive update term can be reduced to

ωik ∝ ωik−1 p(zk|xik). (3.23)

Note, that this is the most commonly used proposal density, because it can be
implemented very intuitively. Furthermore, there is a variety of densities that
might be used, also [2]. The filtered posterior probability density can now be
approximated with

p(xk|z1−k) ≈
N∑
i=1

ωikδ(xk − xik), (3.24)

while the weights are assigned according to (3.23). It can be shown, that for
N → ∞ (increasing number of particles) the equation (3.24) converges to the
actual probability density p(xk|z1:k) [2].
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3.5. Tracking with particle filter

The sequential importance sampling (SIS) method, as one possible implementation
of a particle filter, that calculates continuously the weights and particles according
to (3.23), with measurements arriving sequentially [2]. This implementation often
comes with a degeneration problem. The weights of all particles but one, converge
to null after only few iterations. Thus, much processing time is used for particles
that do not contribute substantially to the estimation. It can be shown, that
the variance of the weights, derived from a proposal distribution like (3.20), only
increases over time. Thus, it is impossible to prevent the degeneration problem.
[13].

One method to deal with the degeneration problem is resampling. The idea is,
that whenever the grade of degeneration passes a threshold, a new set {xi∗k }Ni∗=1 of
particles is generated. Therefore, the approximated pdf p(xk|z1:k) given by (3.24)
is used, so that Pr(xi∗k = xjk) = ωjk is given. Thus, the set of particles is con-
centrated in regions with high probability, while reducing the number of particles
in regions with less probability. Subsequently, the weights are reset to ωik = 1/N
[13]. Indeed, the degeneration can be reduced this way, but there is a trade-off
with diversity in the particle set. This is because the finite number of particles
and the concentration of them in regions with high probability. The phenomenon
is called sample impoverishment and is particularly immanent for processes with
low noise. In this case, the particle set collapses to a single point during a few
updates [2].

If resampling is used, it must be performed periodically. One option is, to deter-
mine the grade of degeneration and perform a resampling if necessary. An appro-
priate grade for the degeneration is theeffective sample size Neff , introduced by
[27]. It can not be determined exactly, but there is an efficient way for estimation:

Neff ≈
1∑N

i=1(ωik)
2

(3.25)

If Neff is below a specific threshold, resampling is necessary. The idea for Neff

is, that all weights would be identical, if the samples are derived from the actual
distribution. The worse the estimation for the distribution, the bigger the variance
in weights. So the effective sample size determines the variation of the weights and
thus how precise the particles approximate the actual pdf [19].

As a good threshold, in [19] Neff = N/2 is proposed. They evaluated this thresh-
old experimentally and showed that resampling was performed if necessary, while
minimizing the risk of replacing good particles.
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4. Landmark extraction and
classification

4.1. Landmark extraction

4.1.1. Contour extraction

Masking

Pre-processing

Feature extraction

Figure 4.1.: The computer vision
process for feature extraction, con-
densed to the essential steps.

The process of feature extraction is divided into
three parts 4.1. At first, a ROI is used to mask
the relevant parts of the image. This leads to
faster processing speed (less pixels to process)
and a more robust signal processing, because
a large part of the image is kept out and thus
interference from that part is prevented. For
example a camera mounted to the front of the
vehicle will not only capture the road surface,
but in urban areas houses and other traffic par-
ticipants. To avoid extracted contours from this
area, that might be wrong classified as road
markings, the image is masked.

In the pre-processing step, the image is optimized for feature extraction. Further-
more, distortions and disturbances are removed or weakened. Often, the image
color format is converted to an appropriate type for the subsequent extraction al-
gorithms - e.g. to gray-scale. To make a color-based classification of road markings
in construction sites, it is useful to keep the color information for the extracted
contours in a separate structure. For this thesis, color has no influence to the
implemented algorithm.

Image masking

A typical way to mask an image is to define a rectangular shape and place it on
the appropriate image region. All pixels inside the rectangle will be used in the
image processing chain. This way of masking will not be sufficient to map the road
surface correctly - especially when using fisheye cameras. Instead, the surface is
masked in real-world coordinates or more precise: car coordinates. Hence, every
camera of the sensor set has its own defined ROI depending on the view of the
camera to the road. The outline of this area is then projected to the corresponding
image. As result, there is a unique mask for each camera containing ones for every
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4.1. Landmark extraction

pixel which projection ray intersects with the defined rectangular area on road
surface and null else.

(a) (b) (c)

(d) (e) (f)

Figure 4.2.: Examples of image masking. Upper row (a) to (c) shows the image masks in
binary illustration and lower row with (d) to (f), the resulting masked area (red grid) for
the input images.

Image processing and contour extraction

Subject of the image processing chain is the extraction of contours belonging to
road markings. The markings are colored white and give a good contrast to the
road surface. This is desired for practice, but actually one has to deal with distur-
bances on real markings, figure 4.3, and image artifacts or blurring.
The fisheye cameras provide images per User Datagram Protocol (UDP) over au-
tomotive ethernet. Therefore, the images are JPEG-compressed. Generally, the
resulting image quality is sufficient to perform image vision tasks. But with a
more detailed view, there are artifacts like blockiness and ringing on the image
parts with higher frequency (sharp intensity transitions). For a contour extraction
process this will lead to errors and non-closed contour fragments. Figure 4.4 (left
image) shows this effect.
The computer vision platform in this thesis is a moving car and thus one has to
deal with motion blur. This effect occurs especially on fisheye cameras, because of
the mounting position and the special lens characteristic. The impact of motion
blur is depending on the cars speed and exposure time of the cameras. For this
work, the exposure time is adapted automatically by the camera system and is not
provided to the user.
For an optimal preparation of the images for the following feature extraction and
to reduce the mentioned effects like compression artifacts and motion blur, the
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4.1. Landmark extraction

(a) Thick boundary line (50 cm). (b) Special shape of an arrow.

(c) Disturbed and polluted stop line. (d) Disturbed lane marking segment.

(e) Specially curved lane marking segment. (f) Missing line segment.

Figure 4.3.: Road markings in practice.

images are applied with a median filter at first. The median filter calculates the
intensity-median out of a desired number of adjacency pixels. That means, the
pixels must be sorted. See figure 4.4, the median filter removes the compression
artifacts, but keeps the shape and intensity-transition on road markings.
For feature extraction in lane detection systems, often a method based on an edge-
detection is used. Thus, the use of an edge-based method is examined for this
work. The edge extraction is implemented according to Canny [7]. The algorithm
from Canny is known as an optimal edge extraction method [23, S. 366]. One
disadvantage of this method is the complex parameterization of the two thresholds.
Especially, for a continuously changing environment. For this thesis, an adaptive
method was implemented to find the best fit for the threshold. It is obvious,
that some statistical values, representing the middle intensity of an image area,
might help for this problem and that the thresholds should be derived from that
value. The threshold finding for T1 and T2, can then be based on mean-intensity
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4.1. Landmark extraction

Figure 4.4.: Comparison of input and output of a median filtered image. At left, the input
image before filter. Clearly visible are the compression artifacts like blockiness and ringing
at the contour border (light to dark transition). At right, the result after median filter.
The dark and light areas are flattened and can be well separated from each other.

or median-intensity of the investigated pixel area I(u, v) with

T1 = a ·Mean(I(u, v)), T2 = b ·Mean(I(u, v))

or
T1 = a ·Median(I(u, v)), T2 = b ·Median(I(u, v)) a, b ∈ R

The values a and b - represent an intensity scale to find the upper and lower Canny-
threshold - must be chosen by hand. In practical use, this method has weaknesses
using it for the fisheye cameras. With faster vehicle speed, the motion blur leads
to softened edges and hence to an insufficient edge extraction with the Canny
method. Moreover, the cameras have a very close view on the road surface and
thus are prone to disturbed and polluted markings. That leads to extracted edges
that do not belong to the actual marking. The result is a non-closed, fragmented
set of contour-parts, that must be joined within an additional plausibility step.
To avoid this circumstance, a method was implemented that is not based on edges
but on image regions. The idea is, to divide the image into light and dark regions,
representing markings and road surface. A marking then is considered as a coherent
area of light pixels. Its boundary might be disturbed or polluted, but without
heavy impact to the contour extraction. In figure 4.5 the results of both methods,
edge-based and region-based, are compared. It is clear, that with region-based
method the boundaries of the markings can be extracted more reliably.
To separate light from dark regions, a threshold must be found again. The result is
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4.1. Landmark extraction

a binary-image Ibin(u, v) calculated from the original image I(u, v), with threshold
T and the equation

Ibin(u, v) =

{
0 for I(u, v) < T
1 for I(u, v) ≥ T (4.1)

The problem of a best-fitting threshold T must be solved. Since there is no con-
stant illumination and the varying color of road surface, a fix threshold will not
be sufficient. One way to find an appropriate threshold, is to derive it from an
intensity histogram of the gray-scale image. The result can be ambiguous, if there
are no markings inside the considered image area or there are differently colored
road surfaces inside the investigated area. Furthermore, lightning effects like shad-
ows can lead to ambiguous thresholds. A way to solve this, is the use of adaptive
thresholding. In this case not a global threshold is found, but local threshold Tu,v
for a adjacency region around a pixel p(u, v). Hence, T is no longer constant, but
depends on the actual pixel and the region around it. With adding an additional
constant to scale the threshold, the separation can be enforced.
The resulting binary image can furthermore be improved with the use of morpho-
logical operations [23, S. 529-531]. Small fringed structures can be removed with
erosion and gaps like in figures 4.3b and 4.3d can be closed via dilatation. The
last step, is to extract the contours from the binary image. This is implemented
with border finding algorithm according to Suzuki [48].

(a) region based (b) edge based (Canny)

Figure 4.5.: Comparison of the contour extraction methods a) edge based and b) region
based. The finally extracted contours are colored red. Weakness of the edge based method
is visible: Not all markings are covered. The disturbed stop line is not detected and only
surrounded by some contour fragments. One disadvantage of the region based method can
be seen at the bottom left corner of (b): Shiny asphalt (light region) can lead to false
extractions.

Contour subsampling

The extracted contours, defined as sequences of pixels c = ({u1, v1}, ..., {un, vn})
describe the boundaries of the markings at the image plane. Because every camera
has special orientation to the road surface and own lens distortion, the contour
sequences vary in shape and size, even if they have the same origin in real world. To
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4.1. Landmark extraction

overcome this effect, the pixel sequences are transformed into the car-coordinate-
system 3.1.2. Contours with the same origin will now have the same shape, height
and width, but not necessary the same number of points and same point density
along the outline. Figure 4.7 illustrates this effect. The shown contour is mapped
from adjacent pixels. After transformation into car-coordinate-system, there is a
varying distance in X- and Y -direction between the contour points, figure 4.7b.
To make the contour an equidistant sequence of points, the algorithm 1 is used.
A resulting contour after normalization is exemplary shown in 4.7c and has the
following characteristic:

• All points have the same (constant) distance d to predecessor and successor
(except distance between last and first point, that is ≤ d) - thus, the sequence
is equidistant.

• The number of points in a contour can be smaller, larger or the same as
on its origin-contour from image, depending on the pixel density on ground
plane for each camera (figure 4.6).

• All points are from a segment of the origin-contour.

Figure 4.6.: Pixel to area ratio for the camera sensor setup. Red color means e+3 ≈ 20
camera square pixels representing one square centimeter on the ground plane. Blue color
means e−3 ≈ 0.5 pixels representing one square centimeter on ground.
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4.1. Landmark extraction

Algorithm 1 Unify the inter-point-distance of a contour
contour: C = {P1, P2, ..., PN}, number of points: N
normalized contour: Cnorm = {P1}
current point: X = P1

i = 2, d unified distance
while i ≤ N do

if XPi > d then
add points from

−−→
XPi with distance d to Cnorm

X = last point (XPi is now smaller then d)
else if XPi = d then
Cnorm = {Cnorm, Pi} , i = i+ 1

else
j = i+ 1
while j ≤ N do

if ∃Pnew(XPneu = d ∧ Pnewis from
−−−−→
Pj−1Pj) then

Cnorm = {Cnorm, Pnew}, X = Pnew, i = j
leave loop

else
j = j + 1

end if
end while
i = j

end if
end while
if XP1 > d then
add points from

−−→
XP1 with distance d to Cnorm

end if
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Figure 4.7.: Contours subsampling. (a) Contours image representation. (b) Transformed
contour pixels into ground plane. The varying resolution in distance leads to different
distances between the contour points in u- and v-direction. (c) Contour from (b) after
subsampling as a sequence of equidistant contour points.
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4.1. Landmark extraction

4.1.2. HOG feature calculation

In this section - as second extraction method - the HOG feature extraction is
shown. In section before it was shown, that the contour extraction follows a proce-
dure, that starts with retrieving contours from masked images. Thus, some effort
is required to prepare the images for a well working contour extraction. Those
contours are mapped by camera projection functions into the driving plane and
hence into the car coordinate system. A list of equidistant points describing the
shape, is finally the contour and ready for classification.

With the use of HOG features it is necessary to rearrange this procedure. The
incoming images from the cameras are now used without any pre-processing, like
tone balancing or blur-filter. With use of the cameras projection model, an IPM
image is generated according to the cameras mounting positions. The process of
the IPM is explained in section 3.1.5. In short words: It is an image to image
transformation that maps the image from origin view to a plane. Typically, the
driving plane of the vehicle is used as target. For road marking detection, this
plane is adjusted in a way that the current lane and at least the neighbor lanes
are covered. With the boundaries of that mapping plane and a chosen resolution,
one can generate an image, where each pixel represents a region on road surface.
The actual mapping is done by selecting the corresponding camera pixel for every
ground pixel. The result is an image that gives the bird-view perspective onto
road surface. If the calibration of the camera extrinsic is precise enough, it would
be possible to arrange the five images (the sensor set includes five cameras) to one
single image. This might be one method for low level data fusion. However, in
practice an extrinsic calibration with such a precision is not granted and the images
would not fit together without artifacts at the stitching regions. Therefore, the
fusion is made in the consecutive marking map module uses the extracted markings.

The task is, to detect and classify the road markings out of the IPM-images. This
is done by a scanning algorithm - so called sliding window. The parameters of
the detection window depend on the object size and IPM image resolution. The
classification by HOG features bases on the idea, that the shape of an object
could be derived and classified with the use of its orientated edges. This implies
a resolution that is fine enough to display a detailed outline of the object. The
detection window size is adjusted, that it covers a complete marking with additional
space in height and width. The image is scanned by shifting the detection window
along the image rows and columns. At every step, the HOG feature vector is
calculated for the image area covered by the detection window. The feature vector
length is depending on window size, the selected block size and the number of
histogram channels:

n = nc · nh ·
(w
b
− 1
)
·
(
h

b
− 1

)
, (4.2)
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...

Figure 4.8.: Illustration of the sliding window and the HOG feature vector calculation of
an image patch.

with nc as number of histogram channels, nh the number of histograms per nor-
malization block (standard: nc = 9, nh = 4 ), w, h as window width and height
and finally b the selected block size. It is essential, that the block size matches the
spatial extent of the descriptive object parts.
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4.2. Landmark Classification

4.2. Landmark Classification

Referring section 4.1.1, for the first case, the output of the image processing chain
is a closed contour as sequence of equidistant 2D-points in driving plane. Using
second method, there is the output of the HOG processing chain, already as a
set of feature vectors from the IPM-images. Where each vector represents the
descriptor for an image patch from the sliding window. That means, that for the
HOG-based classification no further processing to generate features is needed and
the descriptor can be used as it is for classifier input. For geometrical analysis, the
task is now to find appropriate, optimal descriptive features out of the contours.
The contours input is exemplary shown in figure 4.9.

Figure 4.9.: Contour examples, showing all relevant arrow marking classes, as extracted
and classified by the image processing module.

For a proper interpretation of the vehicles environment, the classification step must
separate all incoming contours into classes. The first class is line segments. The
width and height of these segments should be insignificant for classification. As
well as the orientation of the line segments. This will help to classify stop lines as
line and move the understanding of them into the scene interpretation layer. The
arrow markings

• straight,

• left,

• right,

• straight-left and

• straight-right

will be distinguished in separate classes. Furthermore, there are a lot of contours,
that do not fit into one of the defined classes. This occurs, when having false-
extracted contours (e.g. other traffic participants) and signs on road-surface like
bus-lanes, writings and so on. These contours should be classified as residual
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data. In the following section the used features will be introduced. The features
have a varying share on the classification result, hence a feature selection must be
performed, to find the best feature set for the classification problem. The procedure
is presented in section 4.2.1.
With the feature vectors from the geometrical analysis on one hand and the HOG-
feature vectors on the other side, it is possible to use a classifier for separation
into the different classes. In section 4.2.2 the parameterization of the classifier is
presented.

4.2.1. Feature calculation and selection

In 3.2 the contour is introduced as a sorted list of two-dimensional points from
ground plane K = {P1, P2, ..., PN = (XF,N , YF,N )}. Furthermore, different groups
of features were introduced, from which a descriptive feature set for contours can
be build. The three groups of features are: moments, geometrical features and
Fourier descriptors. Table 4.1 summarizes the features from 3.2.

Group Description

Moments: normalized, centralized moments η20, η11, η02, η30, η21,
η12, η03

Hu-moments mH0 to mH6

Geometrical features: Roundness R
enclosig rectancle to contour-area ratio RRA
convex hull to contour area ratio RHA
circle to contour area ratio RKA
major to minor axis ratio RAB
gravity balance β

Fourier descriptor: z̃(u)

Table 4.1.: Summary of all features (69 in total).

From the collection of features which should subjectively build a descriptive feature
set, now a method is introduced to set the decision to an objective base. Moreover,
the metrics will help to reduce the set from features with only small impact to
classification. The goal is to have a small number but highly descriptive features
for optimal calculation performance and sufficient classification results.

Normalization of the feature vector

Using a classifier, where every feature has the same unscaled impact on the class
result (e.g. for SVM), the classification result will be unbalanced and biased to
features with greater values.
To have all features having the same contribution to the regression problem of the
SVM, they need to be normalized. The normalized feature x∗ik can be calculated
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with
x∗ik =

xik − xk
σ̂k

(4.3)

with the mean value of a feature over all measurements i

xk =
1

N

N∑
i=1

xik (4.4)

and the standard deviation

σ̂k =

√√√√ 1

N − 1

N∑
i=1

(xik − xk)2. (4.5)

The normalization is applied to every of the k feature variables while preparing the
training set. To have the normalization factors for each variable in a representative
manner, the training set size should not be too small. The vector of normalization
factors, including the mean xk and the standard deviation σ̂k can be used (recycled)
to normalize feature vectors of incoming contours in validation phase.
When using decision trees for classification, a normalization of the feature vector
is not necessary. The tree does not try to find a separation function with optimal
distance like SVM. Instead, at every node of the (random) tree(s) a binary decision
over the corresponding variable is made. A scaling of the feature-variable would
not have effect to the node-decision at all.

Feature selection

The goal of the feature selection is to find features with a high separation quality.
One evaluation method, is to identify the Fisher discriminant f for features.

f =
(µ1 − µ2)2

σ2
1 + σ2

2

(4.6)

A degree for the class overlapping can be determined by maximizing 4.6. With the
mean value of the measurement µ1 for class 1, respectively µ2 for class 2 and the
corresponding standard deviations σ1 and σ2, a value for separation or overlapping
can be calculated. It is clear, that the metric is suitable for evaluation of two class
problems with only one feature. But, from that base, more metrics could be derived
for multivariate classes and features.
Therefore, the distribution of the classes itself, as well as the distribution of features
in classes must be considered. Because features can correlate, additionally the co-
variances must be take into account. To evaluate the features, two matrices are
essential: the intra-class-co-variance-matrix W and the inter-class-co-variance-
matrix B.

W =
1

K − 1

K∑
l=1

(E{(xi − µi) · (xi − µi)
T }) (4.7)
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B = E{(µ− 1

K

K∑
l=1

µ
i
) · (µ− 1

K

K∑
l=1

µ
i
)T } (4.8)

W is the co-variance matrix over all features and their combinations. The variances
for the features are on the matrix diagonal and the other elements are filled with
their corresponding co-variances. B holds the relation of the classed to each other,
by their co-variance on the class-mean.
To derive a numeric value for the separation importance, the trace-criteria can be
used. The trace of a matrix is the sum of its diagonal elements.

tr(X) =
n∑
i=1

xii (4.9)

One can distinguish between two types of trace criteria. For the first trace crite-
rion J1, the traces of B and W , and hence the summed diagonals of the matrices
(summed variances) are used to derive an evaluation metric. For the second cri-
terion J2, first the two matrices are multiplied and the trace-operation is applied
afterwards. Thus, not only the variance, but co-variances will affect the final result
for evaluation.

J1 =
trace(B)

trace(W )
(4.10)

and
J2 = trace(W−1 ·B) (4.11)

For feature selection, J2 is used in this thesis. The trace criterion helps to evaluate
the separation importance of features. But it is not a method to minimize the
number of features in the feature set. For an optimal feature selection, one has to
assess all feature permutations. With an increasing number of features this can
be an enormous task and not feasible for practical use. Instead, a non-optimal
procedures is used to reduce the number of features, for example the knock-out-
method or add-on-method.
Within the knock-out-method, at first the separation importance of all features is
aggregated. After that, the lowest performing feature is removed. This procedure
is repeated until the desired number of features is reached. The add-on-method
works in complementary direction. Thus, the feature with the highest importance
is added to the feature vector until the desired number of features is reached. The
result of the feature selection for this work can be found in 6.1

4.2.2. Classification of road markings

The typical way to build a classifier, is to determine descriptive features, for the
object that needs to be categorized. This can be achieved, by manually calculated
and selected sets as performed for contour classification or with use of an image
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related descriptor like HOG. Of course, many more descriptors exist. Another way,
can be the use of neural network and derivatives of it. Actually, the hardware in
the test car did not meet the requirements that come with greater neural networks.
Furthermore, the parametric adjustment and arrangement of neural network layers
is an own wide field of research and not the target of this work.
With the found descriptive features, the classifier-creation is divided into training
and validation phase. Therefore two separated sets of samples are used, but all
have in common, that they are already categorized. During the learning phase,
the training set is used to feed the classification-machine with input samples. The
procedure is like practicing a small child with sentences like: "This is a flower.
This is a car. This is a house." and so on, where "this" means the feature vector
representing the object. The classification machine finds an optimal relation for
separation, according to its principles and its parameterization, see appendix A.4.1
and A.4.2 . To evaluate the classifier performance, the second set of samples, called
validation set is used. As mentioned, the validation set is already categorized. To
evaluate the performance, one usually use a tabular metric where all predictions-
and-truth-combinations are registered. Prediction is the value that the classifier
predicts for a sample, truth the a priori known category for it. Out of the tables
it is possible to derive classification performance indicators like true positives or
false negatives and several ratios like the detection-rate.
The focus used for parameterizing a classifier depends on its application. For
example, a high false positive rate might be acceptable, since it comes with high
detection rates. False positives might be removed in later steps or their influence to
a system is low due to its architecture. For this work, an optimal balance between
the performance indicators precision and recall should be found. This can be
done, by using the F-score of a classifier as a weighted value of the performance
indicators,

recall : r =
ci

ci + wn

precision : p =
ci

ci + wp

F − score : F = 2 · r · p
r + p

, (4.12)

where ci for number of correct classification (prediction i meets sample category i),
wn for number of wrong missed samples (prediction 6= i does not meet the sample
category i) and wp for false positive (prediction is i, but sample category 6= i).

The data-set content for contour classification is presented in 4.2 and for HOG-
based approach in 4.3. It is essential for meaningful results in evaluation, to have
no relations between the samples from training and validation. The data-sets must
be separated considering that issue.
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Table 4.2.: Data set content for contour
based classification.
class type number of samples
residual data 11233
line segment 9079
straight arrow 1601
left arrow 864
right arrow 864
straight left 839
straight right 839

Table 4.3.: Data set content for HOG
based classification.
class type number of samples
residual data 3594
straight arrow 160
left arrow 52
right arrow 54
straight left 42
straight right 42

The two data sets, created for this thesis bases on a large amount of measurement
files, captured during drives in urban area at diverse environmental conditions.
For learning procedure, all contours were extracted from several independent video
frames and in a second step they were categorized manually. The output of this
procedure was a set of contours, that build a representative data-set for the clas-
sification task. The HOG data-set was created by cutting several samples for all
classes out of the measurement data base. The samples were taken to teach a
base classifier. This classifier was used to run over further measurement files. The
output contained a lot of correct classified samples, but of course a much greater
set of wrong classified samples. The wrong class was corrected manually and the
- now extended - training set was used to re-learn. This procedure was repeated
several times, until the output was precise enough to use the classifier model for
road marking categorization in the context of this work. For HOG based classifica-
tion, the training was focused on arrow markings. Thus, no class for line segments
was reserved. There is an obvious reason for this. With the use of the sliding win-
dow method, one cannot directly determine the line segments position. The only
information is: the line is elsewhere inside the window. This is not sufficient for a
precise lane border estimation and thus for lane level localization. In contrast, the
arrow marking position needs to be assigned to lanes to determine their category.
The center point of the sliding window is precise enough for the lane assignment
of arrows.
With the introduced metrics, it is possible to get optimal classification results for
the desired use case. The next step, is to evaluate the different configuration pa-
rameters of the classifier, for example C for a C-SVM or the number of trees in a
random forest. Changing the parameters, often affects the loss minimization prob-
lem inside the classifier algorithms in a way, that is not transparent to the user.
The validation results may vary a lot, even on small parameter changes. Espe-
cially, when heaving multi-class categorization problems. A solution to overcome
this problem, is the grid search on model parameters or at least the promising
parameters with reasonable values. Therefore, one can derive a set of parameter
permutations and validate them with randomly selected subsets from validation
data. The classification result must then be evaluated. For example with the av-
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4.2. Landmark Classification

erage F-score over all classes. More complex cross-validation methods are feasible.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.10.: Exemplary extractions from contour and HOG data sets. The upper row -
(a) to (d) - shows examples from the contours training set. The lower row shows image
patches for training with HOG features. A class c = 1 for line segments as shown in (a),
is only available in the contours data set. Patch (e) shows data for residual class c = 0
(non-relevant patch).
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4.3. Sensor data synchonization and fusion

This chapter strongly refers to the explanations in section 3.4 about the vehicles
ego-motion-model and why synchronization is essentially important for moving
computer vision platforms like the test car used for this thesis.
As the system consists of un-synchronized sensors, there is a need to compensate
the vehicles motion between the signal occurrences. Furthermore, it is not granted,
that every processing chain, from input image to the list of extracted markings
has similar duration. Neither for the different cameras, nor for a single camera on
consecutive images.
The task is, to assign the classified contours to its original position in car coordinate
system. To solve this task, an environment map is used that keeps all collected data
(classified contours) and therefore represents the current surrounding of the car.
Within this map, mechanisms are implemented to store, fuse, track and manage
the incoming markings. These will be introduced in the following sections.

4.3.1. Synchronized data registration and tracking

The incoming map data is five streams of classified contours from the five cameras.
Additionally, the map has access to an ego motion module, from where the motion
vector for a specific time-span can be requested. The ego motion module calculates
the vehicle motion states according to the signal period of the ESC-CAN-messages
and with the equations given in 3.4. Within the motion-module, the motion states

Xi =

δxδy
δφ

 (4.13)

are buffered to realize interpolated output states with the same form, but includ-
ing the fractional parts of the requests. This is needed, because of the varying
occurrence and period of CAN- and camera-signals.
Next to the category (line segment, straight arrow etc.), every contour holds its
values from the feature calculation before. Some of the features are useful for the
fusion task in the environment map:

mass center P = (XF , YF )

major and minor axis of the enclosing ellipse A und B

angle of the major axis θ

enclosing (rotated) rectangle center c = (XFc, YFc), width w, height h, angle
θrect

The contour processing and the communication between map and ego motion
server is illustrated in figure 4.11.
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4.3. Sensor data synchonization and fusion

The following explanations consider one incoming list of classified contours. This
represents the classification results from one input image. This is for exemplary
reasons and an easier reading. The procedure is the same for every input from a
set of n cameras.
Incoming contours are tagged with the time-stamp of the origin image. When a
contour list arrives the map, the first task is determine, whether the maps data or
the incoming list must be motion compensated. The compensation process always
follows a positive time line, and data is always moved to the newer time-stamp.
The compensation itself is done by applying the motion state to every contour:

f : Ct0 → Ct1>t0 (4.14)

where f is a function that updates the contour : Ct0 at time t0 with δX(t0, t1)
to a new position and orientation Ct1 . The function is a combined rotation and

Figure 4.11.: Scheme of the marking map processes and its interacting with ego-motion
service. Incoming contours positions will be motion compensated. Afterwards, they are
spatially and logically fused with the map content. For motion compensation, the map
interacts with an ego-motion service which is able to retrieve the interpolated rotation
and translation of the vehicle between two timestamps (out of CAN ESC signals). The
interaction is arranged as a client server architecture.
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4.3. Sensor data synchonization and fusion

translation on a plane (road surface). It can be described with

Ct1 = Ct0 ·R+ ~t

= Ct0(x, y, φ) ·

cos (−δφ) −sin (−δφ) 0
sin (−δφ) cos (−δφ) 0

0 0 1

−
δxδy
δφ

 (4.15)

As mentioned, a contour C consists of the contour points and a collection of fea-
tures. Hence, the compensation may affect a feature completely, but often the
2D-coordinates only. Since the vehicle motion should be compensated, the equa-
tion is used inverse.
After motion compensation was applied (incoming ⊕ map), all the data corre-
spond to a common time-stamp. With spatial data fusion, the two lists must now
be joined. Therefore, the mechanism explained in the next section 4.3.2 is used.
The join will result in three different states a contour from the map can have.

• overlap with new contour → confirmed

• not touched → not confirmed

• new contour

To avoid the transfer of uncertain data to consecutive modules, the map contours
are extended with statistical values to indicate the contours track status. The
combination of hit counting with occurrence-age and a plausibility threshold, re-
sults in an optimal solution between stability and confidence of the map output. A
combination of separated hit-miss-counting was tested, but provided too flickery
content at the map output. For map contours, that can be confirmed with the
current input, the hit counting increases and the occurrence-age is updated to the
current common time-stamp. If there is a new detected marking in input list, it is
registered in the map with a unique ID.
For the output cycle, the map content is motion compensated to the current system
time. The map is furthermore cleaned from old unconfirmed data. All contours
that succeed a plausibility threshold, consisting of a weighted score of their hits
and age, are collected for output.
The combination of motion compensation, updating and supervising makes the
map to the central object tracking instance of the system. It holds all relevant
marking data of the cars surrounding with additional statistics describing the con-
fidence and likelihood for contours existence. Output of the map, is a fused list of
contours - out of all tracked contours - with desired confidence.

4.3.2. Spatial data fusion

For the merging process, the new arrived contours, must be collated with the
existing contours. This is achieved by evaluating the incoming contours for causal
and logic conditions in a binary decision tree, with its leaves ’match’ and ’no
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4.3. Sensor data synchonization and fusion

Figure 4.12.: Fusion of two partial marking detections. The left image shows the camera
view of the left fisheye camera. The right image shows the camera view from the front
fisheye camera. Both contours (center image, blue color) are merged into one contour
in the marking-map with a new enclosing rectangle (red). The green marking shows the
masked area on ground for each camera, where the algorithm is active.

match’. The first condition for merging is the class match. In the next step, the
angle of the major axis A is checked. Due to the fact, that this angle might be in
opposite direction, the criterion is defined as

| cosα| > T, (4.16)

where α is the angle between the major axes and T ∈ [0, 1] the threshold for
coherence. If this is given for two objects, the final step is to check, whether the
enclosing rectangles of both objects overlap or not. The enclosing rectangles can be
rotated and thus, the values for height and width combined with a rotation can have
a different meaning. Especially, when comparing contours of lane border segments
with contours from crossing lines. To solve this issue, a more universal strategy
for the overlapping-check must be found. In this thesis, the line clipping algorithm
from Cohen and Sutherland [14, S. 113] is used. The idea of the algorithm, is
to check, if a line - given by two points - crosses an upright standing rectangle.
To use this method for any rectangle both must be rotated, up to one of them is
in upright position. Next step is to check, if one of the bounding lines from the
other rectangle crosses the upright rectangle. If this is true, the rectangles overlap.
Thus, the last condition of the decision tree is passed. If merging is indicated, the
objects can be merged to a single object. The enclosing rectangle of the merged
object is adjusted in a way, that it represents the common outer border of the two
original objects.
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4.4. Scene Interpretation

From the object level of contours in the marking map, the markings must be inter-
preted to get an understanding of the cars surrounding and current driving state.
The first task, is to find a model that describes the lane borders sufficiently. There-
fore, the single line segments (contours) must be grouped to a lane border (line).
The used method is described in 4.4.1. Over the grouped contours, a model must
be established to interpret and track the lines. The model based lane border esti-
mation and tracking is orientated on nowadays lane detection systems and shown
in section 4.4.1.
The next task for scene interpretation, is the determination of the driving prescrip-
tion from of the detected arrow-markings. When achieved, the lanes - especially
at multi-lane-crossings - can be categorized and thus the lane-level assignment to
street map is less ambiguous. The lane categorization is introduced in 4.4.2.
Finally, in section 4.4.3, the landmark interpretation and classification is described.
Furthermore, it is presented how landmarks can be filtered to consider the mea-
surement noise depending on distance to camera and to furthermore stabilize the
measured position.
The results of the scene interpretation are used afterwards for position estimation
described in chapter 5.2.

4.4.1. Lane border estimation

Line segment grouping

Figure 4.13 illustrates the objective of the segment grouping. The output from the
marking-map is a list of objects (the classified contours). All objects are treated
independently. To determine the lane border, all segments from the contour list
must be extracted, that relate to it. All segments, but those from the stop line,
have a length to width ratio of 2:1. Thus, the longer side of the segment describes
its orientation. This is assured by the marking map.
From the orientation-angle and the width and height of the marking, a direction
vector for each marking is determined. With orientation vector and center point
of the markings, start- and end-points can be calculated. The calculated values
for each marking are used in the following line finding algorithm, as illustrated in
figure 4.14.
It starts with a randomly selected object (marking) from the list. From the first
object a search range is defined, according to the markings orientation. Subse-
quently, by iterating over the entire set of markings, the start and end points of
all markings in the list are examined. The start and end points within a defined
distance to the first object are collected and sorted. In the next step, the marking
orientation is checked with the criterion from equation 4.16 for coherent direction.
If the examined marking passed the orientation check, it joins the group and the
search is resumed from this marking in a similar way. The previous steps are re-
peated until no further marking can be added to the group. Now, a new search
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Figure 4.13.: Tracked marking segments (red) in the marking map. For lane border esti-
mation the line segments must be grouped (green).

range from the first object of the group (the random one) into opposite direction
must be defined and the steps must be repeated. If a resulting set contains at
least two markings, it represents a group and thus a line candidate. The process is
repeated until every marking was either the start point of a line search or belongs
to a line candidate. Markings can be assigned to multiple candidates.

Figure 4.14.: Line finding: Starting point is the randomly selected marking M1. According
to its orientation, a search range is defined from M1. All other marking start- and end-
points inside this area are examined with increasing distance. M2 will be neglected, because
of the difference in orientation. While M3 is grouped with M1.

Model based lane interpretation and tracking

In this thesis, lane borders are interpreted separately. Since lane borders have
a continuous path, at least within a limited section, the lane constraint can be
estimated between consecutive timestamps with a specific model. The model pa-
rameters are estimated with the use of a Kalman filter [24]. A model derived from
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the lane model introduced in [11] is used. It is defined as

y(l) = y0 + ψF · l +
C0 l

2

2
+
C1 l

3

6
. (4.17)

The curvature is modeled with a polynomial function with the two parameters c0

(curvature) and c1 (curvature change) as

c(l) =
c0l

2

2
+
c1l

3

6
. (4.18)

With c0 = c1 = 0 the border is a straight line. It is important to know, that the
function 4.17 is an approximation for a clothoid. Clothoids are generally used for
the planning and realization of (well constructed) roads. The approximation is
based on the relation sin(x) ≈ x. Hence, it is only valid for small angles between
lane border and vehicle. For driving situations in urban areas, this approximation
premises cannot be obtained. Therefore, the function c(l) with ψ must be rotated
around the coordinate systems origin. The lateral offset to border is determined
by y0. In figure 4.15 the model is shown. A point P on the lane border can be
calculated using equation

P =

(
0
y0

)
+

(
cosψ − sinψ
sinψ cosψ

)
·
(

l
c0l2

2 + c1l3

6

)
. (4.19)

To model the state vector x of the Kalman filter, the distance to the border y0 is
needed and furthermore the rotation angle ψ and the parameters for curvature c0

and c1. The equation for the Kalman state transition (4.20) describes the process.
With A being an identity matrix the model is constant. The state is straightly
innovated with data u = (δy, δψ)T from the ego-motion-service 3.4, (B is 4 × 2
matrix, with B1,1 = B2,2 = −1, remaining elements = 0) and the process noise
w = (w1, w2, w3, w4)T .

xk = Axk−1 +Buk−1 + wk−1 (4.20)

XF

YF

ψ

y0

v

c(|v|)
1

2

3

Figure 4.15.: The path oft the lane model is described with a polynomial function (1). The
function values are rotated around the coordinate systems origin (2) and shifted along the
YF axis (3).
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The measurement step is realized with points along the (curved) path, calculated
from 4.19. Since the relation is non-linear, an Extended Kalman Filter must be
used. The measurement relation is linearized via a Taylor polynomial of second
degree. Therefore, the Jacobian matrix H of the measurement equation is needed.
It contains the partial derivatives:

H =

0 −l · sinψ − cosψ ·
(
c0l2

2 + c1l3

6

)
−sinψ·l2

2
−sinψ·l3

6

1 l · cosψ − sinψ ·
(
c0l2

2 + c1l3

6

)
cosψ·l2

2
cosψ·l3

6

. (4.21)

The Kalman filter steps for one cycle in the scene interpretation module, is ex-
plained in the following paragraph. The initial model parameters must be defined
previously and should represent a common state. For example, one can suppose
that the car is centered on a straight lane (→ all parameters = 0, but y0). Even
if this is incorrect, the elements of state vector will converge to the correct values.
Constraining the parameters can help to detect false convergence and to initiate
a new initialization of the Kalman filter. At first, the state transition is applied
with equation 4.20, where w is unknown and neglected. With the new state, one
can predict several new measurement points z̃k ( where k = 1, 2, ..., N and N as
number of measurement points) for a lane border. The generated measurement
points are used to select an appropriate line candidate (see section 4.4.1). There-
fore, the average orthogonal distance between predicted measurement points and
candidate is calculated and the nearest one is selected. The candidate will be
dropped, if the distance exceeds a limit. The measurement process is shown in
figure 4.16. The found corresponding points from the candidate are finally used
for the measurement update of the Kalman filter.

Figure 4.16.: Kalman measurement for lane model estimation. The nearest candidate to
prediction is selected. The measurement is the orthogonal projected points from prediction
to candidate.

4.4.2. Lane direction prescriptions

To determine the driving prescription of lanes with arrow markings, at least one
estimated lane border must be present. The second can be projected parallel to
it, assuming a typical lane width. The classification is implemented, by assigning
the detected arrows and their classes to the detected lanes. Therefore, the center
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coordinate of the marking object (arrow) is used. For every detected lane, the
class assignments are counted. This is done for all possible classes. If there was
no assignment to a lane for an update cycle, all class counters from that lane
decrease. It is obvious, that the number of detections and thus, the level of the
class counters, depend on the current vehicles speed. While waiting at a crossing,
the counters might be updated permanently with detections around the car. For
the class decision, this behavior is acceptable, because of the majority vote. There
is the issue, that the decision will last as long as the counters have fully decreased.
To avoid such behavior, a miss-counter is implemented, that increases when no
detection is registered. After a defined period or number of miss-counts, the lane
category is resetted to unknown.

(a) (b)
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(c)

Figure 4.17.: Lane direction prescription estimation. (a) shows the incoming set of all
classified arrow markings. (b) The lane assignment is realized with the object center points.
If the center point of the marking is inside a lane, it belongs to this lane. (c) Category
vote over all assignments for each lane.
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(a) (b)

Figure 4.18.: Illustrated example for stop line detection. a) View from the windshield
camera with the stop line in sight. b) Plot of the detected markings in this scene in car
coordinate system. The conditions for stop line categorization are shown.

4.4.3. Pedestrian crossings and stop lines extraction

The extraction of stop lines and pedestrian crossings, is based on the contour list
provided by the marking-map 4.3. At first, the stop line extraction and verification
is explained. Stop lines are extracted from the object list using spatial analysis.
Therefore, each marking is evaluated by its two major axes for a minimum length
of 2, 0m and a width between 0, 4 and 0, 8m (figure 4.18). These conditions are
orientated to the specifications in [41] (German guide for road markings) for stop
lines, with a required width of 0, 5m and a minimum length of 2, 7m. In practice,
it is useful to apply tolerances to the spatial constraints for extraction. From the
detected stop lines, the center points are used for further processing. Because no
angle is used for classification, it is possible to extract stop lines not only from the
currently driven lane, but from other lanes.

The extraction of pedestrian crossing is performed in similar way, but with adapted
constraints. In [41] the specifications for pedestrian crossings are defined as a width
of 0, 5m and a length of at least 3, 0m. Therefore, the spatial analysis uses con-
straints for width between 0, 4 and 0, 8 meters, and a length minimum of 2, 5m
(figure 4.19) for selection. The output from this selection, is a subset of the incom-
ing markings that meet the requirements. This subset is investigated for parallel
markings, by comparing the major axis for a tolerance of two degrees and determin-
ing the relative distance between the elements. Therefore, the distance between
center points along the two principle axes is evaluated (because of parallelism,
the orientation is similar). If the distance for the first component is less than one
meter, respectively between 0, 8m and 1, 2m along the second component, the sub-
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(a) (b)

Figure 4.19.: Example for pedestrian crossing extraction. a) View from the windshield
camera with the pedestrian crossing in sight. b) Plot of the detected markings in the cars
coordinate system. The conditions for pedestrian crossing categorization are visualized.

set is classified as pedestrian crossing. The selected thresholds require parallelism
and allow slightly shifted arrangement of lines and their distance and width [42].
Similar to stop line extraction, it is not assured, that the markings always comply
specification and thus, additional tolerance is given to the constraints. The result
of the extraction, is the center point of the validated line-subset in car coordinate
system.
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5. Landmark based position
estimation

5.1. Landmark based localization in urban environment

The landmark based localization is a recent field of research. With automatic driv-
ing functions, its importance increases especially for complex driving maneuvers
in urban areas. For example driving in a desired lane, driving through multi-lane
roundabouts, as well as turning maneuvers at multi-lane crossings are some of the
probable situations the systems must face.
Several methods were presented to deal with those complex situations. Often,
the sensor set of the test car pre-defines which kind of objects can be a useful
landmarks. 3D-measurement as given by LiDAR or stereo cameras, for example,
provide the opportunity to detect object outlines. Many research papers deal with
the problem of detecting poles from lanterns, signs or trees and use them to es-
timate a position with use of high density maps. Another approach, is to use
walls and corners from houses. An advantage is, that these objects are numerously
present when driving through urban areas. A disadvantage of using raised objects
as landmarks, is generally the danger of confusion, if objects are too dense and not
sufficiently unique. Moreover, there is a danger for ambiguity, especially if reference
objects / house corners are occluded by parking vehicles or new infrastructure.

5.1.1. Using road markings for localization

Using road markings for localization has one big advantage against other methods.
There is a direct link between the source signals and the final position on road.
While using trees or house corners for localization, this link does not exist, because
landmarks have no logic connection to the currently driven lane. The localization
result is generally applied to the reference-map without further relations as a pure
geometry problem. A final assignment to the correct lane, can only be performed
afterwards with additional logics.
In this thesis, the position estimation is performed with the use of detected road
markings and vehicle motion estimation. Thus, the direct link between the map
data and the observed markings is given. For position estimation, one can distin-
guish between lateral and longitudinal correction. The correction is not related
to the easting or northing component of the current position, but to the current
driving direction. Lateral correction is the position correction inside a lane and the
correct assignment to a lane in a multi-lane situation. The longitudinal correction
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is the correction along driving direction. It is performed when passing stop lines
or pedestrian crossings. Figure 5.1 shows the position estimation as a schematic
illustration with the position variances from longitudinal and lateral correction and
the final estimation result marked with X.

currently associated
map lane segment with
start end end point

landmarks from map data
estimated lane model
from detections

variance ellipse from a landmark
based correction step X final position estimate

X

Figure 5.1.: Scheme of the localization process with street map interaction. The superim-
posed variance ellipses for the probable position from landmarks and lane segments are
shown in blue. The final (most probable) position estimate is marked with X.

5.1.2. The reference map

To perform the localization, a street map is necessary, where the relevant landmarks
are registered with an appropriate precision. To perform lane level positioning and
correction the street map must provide data for each lane, driving prescription
information and the precise position of landmarks (pedestrian crossings and stop
lines).
When starting this thesis, a street map that fulfills these requirements, was not
available and must be created by hand. Therefore, an OSM of Berlin, Germany
was used as a start and enhanced with the necessary additional information. To
make clear, that extended data is meant, the prefix e is defined for eOSM in this
thesis. The enhancements consider the map modeling guidelines of the Deutsches
Zentrum für Luft- und Raumfahrt (German Aerospace Center) (DLR), that have
been proposed parallel to this work 2016 in [40]. The work was done in coop-
eration with major German car manufactures. The guidelines provide a format
for detailed street maps, with separately modeled lanes and several landmarks
like road markings, traffic signs and -light. The reference points for street nodes
and landmarks are given in a global 3D-coordinate. Thus, it is possible to model
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three-dimensional road-courses and raised landmarks. Figure 5.2 illustrates how
the urban surrounding is modeled in the proposal of the DLR.

Figure 5.2.: Illustrations from the Road2Simulation Guidelines. Each lane and lane bor-
der is modeled separately. Intersections are modeled with connection-lines. Additional
information from pedestrian crossings, stop lines, traffic lights and arrows is included. All
images taken from [40].

Lane border markings

Lanes are modeled as a sequence of points forming connected segments. Thus,
an orientation of the segments is given. A segment is an approximation of the
lane course in a constraint area. Each lane is modeled with a sequence of segment
points (see Figure 5.1, PsegStart(e, n)) containing the corresponding easting and
northing components. It is important, to have a sufficient segment point density
when describing curves.

Arrow markings

The driving prescription is an attribute of the way definitions in OSM. It is
coded as a sequence of direction-notes, separated by a vertical bar character in the
turn:lanes attribute. For example, the attribute-value for turn:lanes of a street
with three lanes and the driving prescription left, through, right - marked with
arrows in real world - is defined in OSM with the value left | through | right
Because there is a modeled lane for every lane in real world, the turn:lanes attribute
must be adjusted to have exactly one direction prescription per lane in the eOSM
data.
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Pedestrian crossings and stop lines

Pedestrian crossings and stop lines for longitudinal correction must be noticed in
the map, also. For pedestrian crossings, this is already provided with the attribute-
value-pair highway : crossing. A street in OSM generally has a key highway and
its rank (secondary,motorway, etc.) is given by the corresponding attribute. The
crossing position is a data point assigned to a position on the highway with the cor-
responding attribute-value crossing. Distinguishing different lanes, a pedestrian
crossing on multi-lanes has multiple intersections (one with each lane). Every in-
tersection is modeled separately. The definition of stop lines is quite similar. The
attribute value instead, is not unique in OSM. Typically, for stop lines one of the
values give_way | stop | traffic_signals is assigned. To give stop lines a unique
key-value-pair the value marked is assigned to the key highway for describe a stop
line marking. Analogical to the pedestrian crossing, each intersection of the stop
line with a lane is modeled separately. Figure 5.3 shows the part of a map at a
multi-lane intersection with stop lines and all extensions done for this work.

Figure 5.3.: Illustration of the extended OSM-data at a multi-lane-crossing. All lanes are
modeled separately with the use of the lane-middle-path. The stop lines intersections with
lanes are shown as red diamonds. Connections on (multiple)turning lanes are modeled in
a way, that they describe a natural path and according to guidance-markings, if available.
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5.1.3. Map server and local street model

In practice, the localization-module and the map-lookup is realized by a client
server architecture. According to the current localization estimate, the localization-
model request the server for the current probable lane segments and landmarks.
Because of the special requirements, there is no relation between this map server
and current available OSM map servers. It was fully designed and implemented
according to the requirements of this thesis.

lane borders (model)

and prescription

eO
S

M

Map Server

Position Estimation

marking positions

and class

lane information struct

landmark positions

resample

respond

find landmark 

find lane segements

update

Figure 5.4.: Scheme of the visual localization module. Further explanations, how interac-
tion works between the components can be found in this section.

The architecture of the visual localization module is shown in 5.4. The upper left
part of the image (Ego-Motion-Service) is explained in 3.4. The lower left part
contains the extraction and tracking of the landmarks and a re-arrangement of the
polynomial model data (e.g. coefficients). The landmark extraction is explained
in 4.4.3, the lane model and determination of driving prescriptions in 4.4.1 and
4.4.2. The essential tasks of the map server are

• load and keep updated current map data

• find landmarks

• find probable lane segments.

To prevent long search procedures, the look-up is performed in a small sub-map,
that is cyclically updated according to the current position. It is essential, to keep
look-up time low. Otherwise, responds from map server might be out of date.
All events influencing the position estimation must be queued, including interim
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requests to the map server. Afterwards, if correction is performed with use of
the responded landmarks, the buffered events can be processed. This yields to
the vehicle position (real) drifts away from the estimated system position. To
recognize out of date responses from the server, requests and responses must be
time stamped. If the response is too late, it should be rejected.
In practice, for a position P the request(R)-respond(R) relation for landmarks and
lane segments maps to

R
(
P (e, n, σ2)

)
7→ R (L,S) (5.1)

with

L = {L! | min(dPL)}
S = {S | dP⊥S ≤ tS}

with

dPL = |P − L|
tS = n× σa + r

where σa is the standard deviation of the first principal component of position
estimate P and r a free but fix radius for map look-ups. The respond provides (if
exist) the nearest landmark L and a sequence of i lane segments
S = {S1(Pstart Pend c)

T , ..., Si(Pstart Pend c)
T } matching the n × σ -distance

threshold tS , along with meta information c. The distance evaluation for each lane
segment is performed with orthogonal projection from the current position estimate
to each segment. Since the segments are constrained by end and start point, the
projection can yield to different cases, whether the projected point falls between
start and endpoint or outside the segment. If it falls outside, the shortest distance
between estimated position and start or end point is provided. The landmark and
segment selection is the input for the position estimation, described in chapter 5.2.
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5.2. Position Estimation

5.2.1. Particle filter

The objective of the Bayes position estimator is to provide a distribution that
represents the probability dense function for the current vehicles position. In this
thesis the dense function can be multi-modal and thus can express multiple peaks.
Input for this module, is the vehicle motion and the landmark positions from
map, provided by the map-server. To build the error co-variance matrices for
the system inputs, the model uses pre-defined measurement variances as described
in the corresponding sections 5.2.2 and 5.2.3. The measurement noise for every
input is modeled with a normal distribution p(zk|xik) ∼ N(xik,Σ). The co-variance
matrices Σ must be adapted to the characteristics of the measurement system
(sensors and modules measurement behavior) and the expected precision of map
data.
The representation of the probability dense function is realized with SIS, as particle
filter. It contains a set of particles and its weights. Each particle stands for
a probable state of the process to approximate. Consequently, it represents the
realization of an actual state

xk =

e(k)
n(k)
h(k)

 . (5.2)

It describes a position in UTM coordinates (easeasting and nasnorthing) with
a heading component h. The probability for each realization is defined by the
corresponding weight wk. Usually, the particles are spread over a certain state-
space, to have particles near all possible realizations of the process. It is obvious,
that the number of particles in the filter correspond to the quantization of the state-
space and furthermore of the probability dense function. Therefore, the number
of particles should have an appropriate size. Otherwise, an increasing number of
particles leads to proportional increasing processing effort. This is typically the
trade-off for particle filter. The advantage, and therefore the reason to chose this
kind of filter is, that it approximates a probability dense function for the complete
state space and furthermore, this function do not need to be Gaussian, but can be
multi-modal.
Output of the module is the current estimate for position, as the weighted state
of all particles. This is equivalent to the minimum mean square error (MMSE)
estimate of the system state.

x̂k =

N∑
i=1

ωik x
i
k (5.3)
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The corresponding variance for this estimate is the weighted co-variance matrix
Σ̂k of the particle set. It is equivalent to the mean squared error (MSE) matrix.

Σ̂k =

N∑
i=1

ωik (xik − x̂k)T (xik − x̂k). (5.4)

The variance of the heading component is the third entry on the diagonal of Σ̂k.
For position variance in easting and northing, the eigenvalues of the upper left
2× 2 sub-matrix from Σ̂k have to be determined. The two eigenvalues correspond
to the two major components of an ellipse. The ellipse outline describes the σ2

distance to the MMSE estimate.

5.2.2. Position prediction with vehicle motion

The prediction step of the particle filter is realized with the vehicles motion in-
formation. As described in 4.3.1, the vehicle motion for a specific period can be
requested from the ego motion service. The cycle time for the particle filters up-
date is adjustable and motion vectors can be interpolated. With the responded
vehicle motion (δx δy δφ)T every particle is updated in its position and direction.
Therefore, the latest estimate for direction (h) is used to transform the motion
vector from car coordinates to UTM coordinates.

xk = xk−1 +

sinhk−1 − coshk−1 0
coshk−1 sinhk−1 0

0 0 1

 δx
δy
−δφ

+ e (5.5)

The yaw-part δφ is negatively signed, because ’heading / yaw’ in the UTM mean-
ing is defined in opposite direction to the vehicle coordination system.
Additionally, an error e is added, according to the measurement noise of the ego
motion estimation process. The noise is modeled as multivariate normal distribu-
tion p(e) ∼ N(0,Σ) with co-variance Σ.

Σ =

σ2
e 0 0

0 σ2
n 0

0 0 σ2
φ

 (5.6)

To generate discrete samples from distribution N(0,Σ), a Cholesky factorization
is used. The sampling process is explained in appendix A.5.

5.2.3. Position correction

The correction step of the particle filter is realized with the use of GNSS, the posi-
tion of landmarks and lane segments. Therefore, the particle weights - representing
the probability dense function - must be adapted with the recursive update rule
from (3.23). The result is, that particles gain an increasing weight, if it is more
probable, that with the current measurement they represent the actual state.
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Each single measurement and its variance is modeled with a specific normal dis-
tribution. The variance modeling for the different types of measurements will be
described in 5.2.3 to 5.2.3. The probability p(zk|xik) ∼ N(xik,Σ) of the particles xik
belonging to a measurement zk is calculated from the dense function of multivariate
normal distributions

p(zk|xik) =
1√

(2π)dim |Σ|
exp

(
−1

2
(zk − xik)T Σ−1 (zk − xik)

)
. (5.7)

Where |Σ| is the determinant of Σ and dim the dimension of the measurement. For
landmarks dim = 2, because the detection system can not extract an orientation
from landmark measurements. For GNSS and lane segment measurements an ori-
entation is present and therefore dim = 3 in this case. To determine the difference
between measurement and particle for the state component h it is recommended
to use vector geometry. Because, when h describes the circular orientation with
0◦ ≤ h < 360◦ there exists a discontinuity at 0. For example a measurement zk
next to state xk with orientations zk(h) = 358 and xk(h) = 2 should cause a weight
increase from (5.7). Instead, the straight way to determine the difference by angle
subtraction, will overestimate the difference and thus, leads to wrong weight for
the particle xk. After updating all particle weights with (5.7), the weights in the
particle set must be normalized to meet the requirement

N∑
i=1

ωik = 1, (5.8)

with N as number of particles.
Afterwards, the particle set is examined for an indicated resampling, 5.2.5.

The initial position estimation

The use of GNSS in this thesis is separated into two operation modes. On the
one hand, the GNSS can be used to perform a periodical correction update on the
particle set, like other periodical or event-triggered inputs. On the other hand,
the input can be used to only perform an initial position guess and without any
further updates.
The initial guess, is the most important reason to use GNSS information in this
thesis and consequently the normal operation mode of the positioning module is
the second without periodical GNSS updates.
When system starts, no information about position exists. This is called ’the lost
robot problem’. For a constrained area, it would be possible to retrieve this infor-
mation solely from the particle filter with a sufficient large number of correction
cycles. For a vehicle based system, with its large possible state space, another op-
tion should be chosen. In this thesis, the initialization for the first state (position
and heading) is performed with GNSS information. Hence, the error variances for
this input is modeled separately and with knowledge of the typical deviations of
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the signal, all existing internal filters and motion models inside the GNSS hard-
/software should be switched off. The information, received from the GNSS hard-
ware should contain the triangulated localization solution without any additional
filters. The messages, received from the hardware follows the National Marine
Electronics Association (NMEA) 0183 standard, [3]. The essential information for
a measurement update is given with

zGNSS =

en
φ

 , (5.9)

referring to the state space with easting, northing and heading. Subsequently, the
initial position measurement is used to sample the first set of particles and set the
local map radius of the street map for the following look-ups.

The expected noise of an GNSS measurement is modeled with

ΣGNSS =

σ2
e 0 0

0 σ2
n 0

0 0 σ2
φ

 , (5.10)

where each component should use a typical deviation for the solutions received
from the GNSS hardware, eg. σe = σn = 20.0 m and σφ = π/18 ≡ 10◦.

Static landmarks - longitudinal correction

For longitudinal correction of the vehicles position the landmarks stop line and
pedestrian crossing are used. At first, it must be defined which position on these
landmarks should be the reference point for corrections. As shown in figure 5.5
and 5.1, the reference point of a landmark is defined as its center. In multi-lane
situations, the reference point is the intersection of the landmark with the lanes
center.
The error modeling for landmarks must consider different varieties of errors, con-
stant and dynamic. Thus, for every landmark based correction update, a separate
co-variance matrix Σlm must be determined. The constant part σc, to model the
measurement noise is the maps precision. The high density parts of the street map
were modeled handcrafted, using Digital Orthophotos (DOP)-20 areal photos. It
means, that the width of one pixel on the photo equals 20 centimeters in real world.
Assuming an error for the hand crafted part of one pixel, the constant part can be
taken as σc = 0.2 m.
The dynamic part of noise modeling is the distance-dependent precision of the
optical measurement system, σd. It is obvious, that the precision decreases with
increasing distance to the landmark. The relation between image row vi and
distance is inverse proportional, di ∝ 1/vi. Considering a flat world, with camera
parallel to the surface and without lens distortion, the row to row deviance mapped

66



5.2. Position Estimation

(a) (b)

Figure 5.5.: Reference points of landmarks. a) Shows a stop line as detected (green) and
the related reference point (red cross). b) Shows detection (green) and reference point (red)
of a pedestrian crossing. Additionally, in (a) the measured lane center is shown (orange).

to ground plane can be determined with

tan αi =
di
hi

=
fx

vi − c
(5.11)

di =
fx hi
vi − c

σd = di − di+1

=
fx hi
vi − c

− fx hi+1

vi+1 − c
with vi > c,

with fx [px] as focal length, vi as image row greater than c, the v-coordinate of
the principal point and hi the height of an image row over surface. With the
scales of an automotive camera system, one can say h ≈ hi ≈ hi+1 without making
noticeable error. See figures in A.1, to get a detailed view to the relations between
image plane and ground plane. In sum, the error in driving direction or x in car
coordinates, can be described as co-linear error σcol with

σcol = σd + σc. (5.12)

Additionally to the co-linear error, an orthogonal error σorth exists. This error
component depends on the standard deviation of the current heading estimate
and the measured distance to the landmark.
The reason is: within the longitudinal correction step with landmarks, the current
estimated heading component is used. A deviation σh on this value will lead to
a distance (d) depending error in orthogonal direction. The error σorth can be
determined with the trigonometric relation

σorth = σcol + tan(σh) · d. (5.13)

The two error components ecol and eorth can be used to model the variance ellipsoid
for a landmark measurement. As the position estimation is performed in the UTM
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system, the matrix must be rotated from car coordinates to UTM coordinates with
rotation matrix R

R =

[
cosφ − sinφ
sinφ cosφ

]
, (5.14)

where φ is the angle between the major component of the ellipsoid and the east-
ing axis in the UTM system. Finally, the co-variance matrix of the landmark
measurement, describing a rotated variance ellipsoid, is given with

Σlm = R ·
[
σ2
orth 0
0 σ2

col

]
·RT . (5.15)

Lane borders - lateral correction

Consider the request to the map server for current probable lane segments. The
response is a list of map-lane-segments around the current estimate with position
and meta information. There are two open tasks. Model the variance ellipsoid

E ∼ N(ε,Σlane), ε ∼ zk (5.16)

with the ellipsoids position and orientation ε (zk) and c-ovariance matrix Σlane for
each lane segment.
And as a second task, validate and score the ellipsoids before applying them to the
particle set.

To model the variance ellipsoids, the currently measured deviation from lane center
is determined, using the lane model provided by scene interpreter module. The
current estimate is used to perform an orthogonal projection to the map segment.
That point on projection, which distance to segment equals the determined lateral
deviation, defines the center of the variance ellipse. The measurement error σlon
in longitudinal direction, is modeled using the minimum from map-segment-length
and n× σe of the current position estimate. It describes the first component a of
the variance ellipse and thus the first dimension of the probability density function.
The lateral error σlat is the second component b of the ellipsoid. It is determined,
using the current lateral process noise, or the given lane width wmap from map
as maximum value. Finally, the orientation angle inside the lane, as given by the
lane model, defines the ellipsoids rotation. Figure 5.6 illustrates this procedure
and values.
To consider a map defined road model error, that describes the precision of the
map data, the three error dimensions σlon, σlat and σΦ can be extended by adding
a corresponding constant σc. According to the given propositions and equations,
the error co-variance matrix for lateral correction updates is given with

Σ =

σ2
lon 0 0
0 σ2

lat 0
0 0 σ2

Φ

 . (5.17)
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image plane

UTM plane

Figure 5.6.: Position error modeling for lane measurements. The upper image shows the
image plane. The map reference is colored orange. y0i are the deviations to the left and
right lane border as measured by the system. cv is the vehicles center position and cl
the center of the map lane. The difference δ(cv, cl) is used for the orthogonal projection
onto the map lane segment in UTM plane (lower image). The resulting point (X) is the
center of the probable positions variance ellipsoid. The length of the ellipsoid components
depends on the current estimates uncertainty and the predefined map error. The ellipsoids
rotation Φ is given by measured vehicles angle to lane border ψ.

Rotated to the UTM system with

R′ =

cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

 , (5.18)
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yields to

Σlane = R′

σ2
lon 0 0
0 σ2

lat 0
0 0 σ2

Φ

 R′ T , (5.19)

with φ as angle between the variance ellipsoids major component and the easting
axis of the UTM system.
When performing lateral correction updates, the particle weights describe the prob-
ability density function for state xk. The density function can be multi modal
(figure 5.7), if there are multiple updates.

Figure 5.7.: Multi modal density function for state xk after applying multiple correction
updates. The example shows an environment with three parallel lanes and the resulting
position hypothesis (X) at left image in UTM plane. The image on the right illustrates
the resulting superimposed, multi-modal probability density function for states xk.

This leads to the second task. The determined ellipsoids and thus, the density
functions for each probable segment must be sorted and scaled according to the
recent estimated state. This can be achieved, with use of a cost function, that
describes the distance between ellipse ε and current estimated state x̂. Therefore,
the current states position and orientation is compared to center and angle of the
modeled ellipsoids. The distance part of score si is normalized with the current
standard deviation of the states first position component. It can be determined by
the eigenvalues from the upper left 2 × 2 sub matrix of Σ̂. The angle deviance is
normalized by the third entry of the diagonal from Σ̂, that represents the standard
deviation of the states angle component.

si =

[
|x̂(e, n)− εi(e, n)|
|x̂(Φ)− εi(Φ)|

]
·

[
1

λ1(Σ̂2×2)
1

Σ̂3,3

]
(5.20)

The evaluation of each ellipsoid according to the current state, yields to a sorted
set of variance ellipsoids. Considering a distance-based metric, the best-fit ellipsoid
is the first entry of the ascend sorted list (the lower the score/cost, the better the
match). If multiple and ambiguous lane correction updates must be performed,
the ellipsoids score can be used to scale the corresponding co-variance matrix

Σlane(s) = s · Σlane (5.21)
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Using this method for the illustrated example in 5.7, the result for density p is
illustrated in 5.8.

Figure 5.8.: Multi modal probability density function for state xk after applying scaled
multiple correction updates.

To prevent ambiguous correction updates, the lane class can be used, if provided
by the scene interpreter. The lane class is the most probable driving prescription,
as result from detection, classification and interpretation. As described in chapters
4.2 and chapter 4.4, the system distinguishes five different arrow classes and thus
lane classes. If class information is available, it is possible to apply additional scale
to the variance ellipsoids before using them for correction update. In best case,
the ambiguity can be solved and the one appropriate ellipse is used for correction.
The selection is done in a straight forward manner. The lane class information
from scene interpretation module for own and adjacent lanes, is verified against
the available map lane information. This can be performed with kind of sliding
window containing three cells. The three window cells hold the detected classes for
own and adjacent lanes. If no lane class was detected, the corresponding cell stays
empty. A verification for the provided classes is not made and may be wrong.
Only the confidence value for detected arrow-classes is used to reject the class
information. For each window shift, the matches over all lanes are counted. The
result is a score for each map lane being the one, the vehicle currently drives on,
according to the perceptual information of the system. The information can be
used to extend the distance based weighting from (5.21) to

Σlane(si, hi) =
si
hi
· Σlane, (5.22)

with hi as hit count from arrow class verification at each step and si the corre-
sponding score from distance based evaluation. In case of three observed lanes, it
can have one or up to three hits. Hypothesis with no hits are neglected.
The result of this procedure is a distance-class-combined enlargement or narrowing
of the hypothesis variance ellipsoid, by adjusting the corresponding σ. To decide,
whether to trust more distance score or classification results, the weight compo-
nents can be scaled (cs, ch;∈ R). For this thesis, both variables have equal scale,
cs = ch = 1.0.

71



5.2. Position Estimation

0

0

1

3

1

0

map information

measured sequence 1

0-1-0-1-0-0
measured sequence 2

with ambiguous result

Figure 5.9.: Evaluation of map lanes by detected lane classes as correlation test. The
table header shows the information as retrieved from map. The measured sequence 1 of
lane classes results into an unique assignment of the measured data to the map (most hits
at one position, colored red). The sequence 2 instead, would lead to an ambiguous lane
assignment. There are two lane assignments with equal probability (number of hits). The
positions are colored red.

5.2.4. Hypothesis tests - outlier identification and suppression

One of the crucial but hardest tasks, is the outlier identification in the measure-
ments zk, to avoid updating the particle set with wrong hypothesis and thus caus-
ing unstable estimations. Therefore, all measurement must be evaluated before
correction update. This procedure is called hypothesis test. If a measurement is
unlikely, it will be neglected after passing the test. Such tests are necessary, if
the input data is noisy and thus, measurements can occur that are not covered
by the error model. With detailed view to the position estimation modules input
data, there is first the GNSS. Using the GNSS solution for periodical updates, can
produce jumpy position updates. This can be caused by multipath propagation
effects and varying number of satellites in sight, especially in urban surroundings,
see figure 6.28 c). Second, there is the landmark detection, that is influenced by
environmental conditions like lightning, weather or infrastructural disturbances
(distorted markings). The strongest interference is caused by the moving camera.
If driving on bumpy roads, when accelerating and braking, measurements from a
static calibrated camera can be heavy interfered. The third disturbance source
at estimator input is map errors. The system relies on maps as reference. What
means, that map information is taken as truth. It can not be granted that all land-
marks are noticed with the expected precision, not even that a detected landmark
is registered at all.
All these types of erroneous inputs should be recognized and neglected by the
system, before correction update is performed. To avoid, being to hard at this de-
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cision and rejecting to many measurements, a compromise must be found. Simply
put, seriously wrong measurements should be neglected, but the overall number of
rejected measurements should be as small as possible.
An applicable method to compare the measurements (and their variances) with the
current state (and its variance), is the chi square test. A similar way to perform
the hypothesis tests, was introduced in [32]. The chi square test (χ2), provides a
statistical metric for the relation between two distributions in form of a significance
assessment. Therefore, the current MMSE estimate x̂k (5.3) and the corresponding
MSE matrix Σ̂k (5.4) is used. Additionally, there is the measurement zk and its
error covariance matrix Σz, that needs to be evaluated. With use of the χ2 test
(5.23), now a statistical approximation εk for the innovation (goodness of fit) of zk
can be determined:

εk = (zk − x̂k)T (Σ̂k + Σz)
−1 (zk − x̂k). (5.23)

. Assuming, measurements and particle set being normal distributed, εk is a χ2

random variable with three (GNSS, lane information) or two (landmarks) degrees
of freedom. For a given number of degrees of freedom, pre-calculated tables exist,
to select the appropriate threshold for εk for a desired significance level α. Varying
this value correspond to the compromise between neglecting wrong measurements,
but keeping as much as possible, mentioned earlier in this section. A good com-
promise, is to adjusting the threshold to a value, that the probability for rejecting
an actually correct measurement is smaller than p = 0.05 ' α. This yields to a
threshold for εk with ∼3.84 at two degrees of freedom and ∼5.99 at three degrees
of freedom. Be aware, when using χ2 tables for tests with probability distributions,
the degree of freedom f is n− 1, with n as the number of random variables.
For instance, a hypotheses-test with a normal distributed position guess and the
two variables easting and northing, has a degree of freedom of f = n− 1 = 1.
Remember at this point: To evaluate the hypotheses for correction, an approxi-
mation is used with preconditions and assumptions, that might not be satisfied,
e.g. normal distributed position probability. Hence, the significance evaluation for
measurements within the process of landmark-based position estimation, stays a
challenge. Further investigations are presented in chapter 6.

5.2.5. Particle re-sampling

The goal for resampling is, to concentrate most of the particles in that part of
state space with the highest probability, and thus to avoid degeneration problems
3.5.
The occurrence of only few or no measurements in parts of the state space, let
particles move to regions with high probability over time. Hence, this space is
leaved underrepresented (sample impoverishment). If then, measurements propose
the actual position inside this leaved area, it will take a long time, to let the MMSE
estimate converge to that point.
To avoid this behavior, resamplings must be invoked, indicated by the effective
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sample size NEff of the particle set. At every resampling, a number of particles
is spread inside areas with low state probability. Initially, only a negligible weight
is applied to these particles. If measurements inside this area occur, the MMSE
can converge quickly into this region, because particles are already available and
weights can increase.
The implementation of the resampling procedure is described hereafter. For re-
sampling, as proposal distribution the initial pdf is chosen. Therefore, at first the
cumulative probability distribution q(n), 1 ≤ n ∈ N ≤ N of a sorted particle
set is calculated and stored in a vector. In the next step, for every new particle
an equally distributed number 0 < r ∈ R ≤ 1 is generated. The corresponding
particle of the prior pdf has now the index n of the vector, where q(n) exceeds r.
On this particle, a noise e according to e ∼ N(0,Σc) is applied. To sample from
this normal distribution, the method introduced in A.5 is used. At the next step,
three different subsets of particles are sampled, with varied error co-variance and
with varied contribution to the overall weight of the particle set. Within a sub-
set, all weights are equal. The error co-variances and subsets fulfill the following
requirements:

Σc =

σ2
c.1 0 0
0 σ2

c.2 0
0 0 σ2

c.3

 , 1 ≤ c ∈ N ≤ 3 (5.24)

• subset 1: 0.75 of all particles with small noise σ1.1 = 0.5m, σ1.2 = 0.5m and
σ1.3 = 2◦ and 0.99 of total weight

• subset 2: 0.2 of all particles with medium noise σ2.1 = 2.5m, σ2.2 = 2.5m
and σ2.3 = 10◦ and 0.0099 of total weight

• subset 3: 0.05 of all particles with σ3.1 = 25.0m, σ3.2 = 25.0m and σ3.3 = 90◦

and 0.0001 of total weight.

With this method, the modeled noise on every fourth of all sampled particles leads
to a larger deviation of the state, as if it would if generated only from prior pdf.
Consequently, particles will spread into less probable regions of the state space.
With their small weight, they will not influence the estimation negatively. But
if measurements occur in this region, their impact on the estimation will increase
quickly. This method yields to robust and stable estimations, but without being
slow at changing conditions.
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In this chapter, the system components for landmark retrieval and position es-
timation are evaluated. In the first section 6.1, the results for the implemented
computer vision algorithms are discussed. Additionally, the results from feature
selection is presented.
To evaluate the classifier performances, data sets were created to evaluate and
compare the marking classification based on geometrical features and the HOG
approach. Furthermore, the classifier performance results and a summary is pre-
sented.
The second section is split into lane level position measurement 6.1.6 and 6.2. In
the first subsection - as an essential input for the pose estimation - the performance
of the lane measurement is shown. It is presented, that the use of a camera set (in
comparison to single sensor), improves the availability of lane information.
In the second subsection, the global pose estimation is evaluated. The adjustments,
needed to make the estimation capable for the special characteristics of urban sur-
roundings, are introduced. Furthermore, it is shown how lane measurements can
be used to perform single corrections and how to treat multiple options for cor-
rection. The creation of multi-modal density functions with particle weights, is
presented in detail. The impacts of this multi-modal approach on resampling, lane
assessment and mapping, error modeling and finally pose estimation, is presented.
Additionally, the creation process for ground truth data is explained and the test
tracks are introduced in detail.

6.1. Landmark retrieval and classification

6.1.1. Evaluation of marking extraction

The detection performance is essential for the geometrical approach to classify
road markings. If no contour is extracted, no hypothesis exists and no classifica-
tion can be performed. Extracted contours, representing non-marking parts of the
image, can lead to wrong classification output. For quantitative evaluation of the
detection and classification part, the data must be categorized (labeling). For the
extraction step, this can be a pixel-wise categorization into marking and negative.
This process is very slow and causes - typically non automatized - efforts. Never-
theless, the significance is small, because the detection part is implicitly evaluated
with separation in residual data and contour classes later in this section. There is
a subset that stays unknown. It contains markings, which are not extracted (false
negatives) by the system, e.g. faded or blinded road markings.

75



6.1. Landmark retrieval and classification

(a) (b)

Figure 6.1.: Extraction, influenced by objects in field of view. The objects inside the
detection area violating the basic assumption, that only street surface and markings occur
inside this area. The local average intensity value for contour threshold is disturbed by the
two cars. (green: observed area for detection, red: extracted contour)

For direct image features like HOG, it is possible to evaluate the detection perfor-
mance with hypotheses matched to residual data, but actually containing markings
(false negatives). There is no dedicated extraction step, but a feature calculation
step for the entire image with a subsequent scan process.
For contour extraction, the region based method shows best results. The method
is robust to different types and disturbed markings. Small cracks and gaps on
the marking outline can be closed with morphological operations. For markings,
separately applied to the road surface, this ensures a continuous border around all
of its parts. In A.6 illustrations are presented to show results.
Surroundings, where markings not differentiate from street surface stay challeng-
ing, e.g. non-asphalt surfaces, side walks, roadside structures and other traffic
participants. The assumption, that white markings can be differentiated explicitly
from darker surface is violated in this case and false detection occur. This situation
is shown in figures 6.1a and 6.1b, where light and dark colored vehicles influencing
the local average intensity in different ways. To solve this issue, the detection area
should be generated adaptive to the vehicles surrounding. This can be achieved
with the use of an upstream object recognition. The expanded detection area of
the windshield camera, causes increased probability for false detections, compared
to fisheye cameras, observing the near field. There are generally more disturbing
objects in a wider field of view. Because, the same processing chain is applied to
every camera for system scale reasons, different parameters must be used, espe-
cially for image pre-filtering. Additionally, the automotive fisheye cameras images
have compression artifacts. For the front camera (windshield) a 3×3 median filter
is used and a 7× 7 median filter for the fisheye cameras.
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Figure 6.2.: Impact of ground resolution. Along with the strong varying ground resolution
for different distances to the fisheye camera, the same morphological operations yield to
different results. (green: observed area, red: extracted contours)

6.1.2. Contour data set and feature selection

The feature selection is based on labeled contours extracted from recorded scenes
in urban environment. Table 6.1 shows the content of the contours data set and
the number of samples for each class. To expand the data set for arrow class
types, the classes left and right arrow, as well as straight-left and straight-right
were mirrored axis-symmetric on y and additionally registered for the opposite
class type. Subsequently, the data set was divided into two parts, for training
and for validation. The training data set is used for feature selection and classifier
training and the validation data set to evaluate the classifiers performance. Because
contours in the validation data set are unknown to the classifier, the evaluation
with them gives a good measurement for generalization capabilities.

Table 6.1.: The contours data set.
class count mirrored
residual data 11233 -
line segment 9079 -
straight arrow 1601 -
left arrow 532 864
right arrow 332 864
straight-left arrow 133 839
straight-right arrow 706 839
Σ 23616 25319

Before starting the selection procedure, all features must be normalized as de-
scribed in section 4.2.1. This must be done over the full training set. Goal of the
following feature selection, is to select a small descriptive set of features out of all
feasible features. This should result in low processing time, but robust performance
for classification. The Knock-Out-Method is not suitable to process all features at
once, because of correlations between features and thus the fail for determine the
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trace-2 criterion. Hence, the following feature groups are combined and checked
for descriptiveness.

• geometrical features

• Fourier Descriptors

• Hu-Moments

• normalized, centralized moments

The results are shown in table 6.2.

Table 6.2.: Results from feature selection.
feature group result from 10 selected features
Fourier Descriptor
+ norm. centr. moments Fourier descriptors remain

Fourier Descriptor
+ Hu-Moments Fourier descriptors remain

Fourier Descriptor
+ geom. features Fourier descriptors remain

norm. centr. moments
+ Hu-Moments

not used, because HU-Moments
can be derived from norm.
centr. moments, and thus
being correlated

norm. centr. moments
+ geometrical features feature mix, J2 ≈ 5, 5

Hu-Moments
+ geometrical features feature mix, J2 ≈ 4, 4

Fourier Descriptor J2 ≈ 10

The dominating group in this set is Fourier coefficients. It is - under both methods
- the strongest feature group for the separation task. In figure 6.3 the separability
value is shown over the number of coefficients. A saturation can be determined
around the use of ten coefficients. A lager set will not lead to a substantially better
separation performance.

The selected features were tested with the validation data set, using a SVM with
a radial basis function kernel and default parameters for γ and C. Contrary to the
expectation, the result was an overall class performance (true positives) of 70%.
It can be shown, that the additional use of geometrical features and moments,
increase the classification precision above 80%. The following features were used
for second test run:

• normalized, centralized moments: η11, η02, η30
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Figure 6.3.: Increase of separability value J2 over number of Fourier descriptors. For
definition of J2 see 4.11. The value for Add-On-Method (red) and Knock-Out-Method
(blue) only differ for less then 15 features.

• major to minor axis ratio Rab

• enclosing rectangle to contour area ratio RRA

• convex hull to area ratio RHA

• gravity balance β

For the Add-On-Method η12 and η03 were additionally selected. For the Knock-Out-
Method η21 and roundness R were selected. The results for pure Fourier descriptor
based classification and the classification based on additional features, is shown in
table 6.3. The reason for better classification results, despite a smaller theoretic
separability value, is that J2 is a pure statistical value of the feature set. It is an
indication, but not an absolute degree for the expectable classifier performance.
Parameter tuning and class weight adaption showed, that with chosen feature
set, the class line segments has high inter-covariance with the class for residual
data. This is not surprising, because of the simple and therefore less descriptive
shape of a line segment. The desired true positive rate is a trade-off and one has
to decide, whether to perform better on residual data and thus cause less false
positives, or to reach higher true positive rate on the line segment class. That
gives the opportunity, to perform a dedicated ’traditional’ lane border detection
using scan line approach, and to focus on precise detection and classification of
arrow markings.

6.1.3. Classification with geometrical features

Classification of contours was investigated for SVM and random forest classifiers.
Both designed as multi-class and single-class detectors. See 6.4 for the training set
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Table 6.3.: Classification results for Fourier coefficient and mixed feature sets.
class recall

0 1 2 3 4 5 6
Fourier desc. 0.70 0.83 0.59 0.60 0.71 0.78 0.77
mixed features 0.72 0.81 0.96 0.86 0.86 0.93 0.91

and its containing contours for classification by geometrical features and results
afterwards. Optimal classifier parameters were selected by a grid search process.

class sample count

0: residual 8417
1: line segment 6808
2: straight arrow 1198
3: left arrow 647
4: right arrow 647
5: straight-left arrow 629
6: straight-right arrow 629

Table 6.4.: Training data set for geometrical classification.

In the following tables, the results of the geometrical approach is presented. For
both type of classifiers,

• the confusion matrix for all classes (6.5),

• the single class performance (6.6),

• followed by a figure (6.4) that illustrates the increasing detection rate on
expanded training set sizes (learning curve) is presented.

In the confusion matrix, each row represents the actual class (ground truth) and
each column the predicted class. Thus, the diagonal represents the correct match-
ing rate (true positive rate) and all other values the misclassification rates. For
example, see table 6.5, row 3 (results for left arrow). 86% of all left arrow samples
were classified correctly. 7% of them were classified as class 4 (right arrow) and
6% as residual data (false negative). The single class detection performance was
evaluated exclusively for arrow classes (class 2 – 6). The classifier was trained in
a way, that all inputs except the selected class were treated as residual data. The
FP-rate (false positive) indicates the rate for the misclassification. For example,
in table 6.6 the results for class 2 show a false positive rate of 0.007. That means
that 0.7% of all non-class-2-samples were predicted incorrect as a class-2 sample.
For random tree based classification, the detector was optimized regarding the
overall class performance and an acceptable false positive rate. The same training
and evaluation sets as for SVM evaluation were used.
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Table 6.5.: Confusion matrix for multi-class classifier based on C-SVM (Radial Base Func-
tion (RBF)) with full training set in geometrical classification.

prediction
rates 0 1 2 3 4 5 6

gr
ou

nd
tr
ut
h

0 0.72 0.24 0.01 0.01 0.01 0.01 0.00
1 0.18 0.81 0.01 0.00 0.00 0.00 0.00
2 0.03 0.01 0.96 0.00 0.00 0.00 0.00
3 0.06 0.00 0.00 0.86 0.07 0.01 0.00
4 0.11 0.00 0.00 0.02 0.86 0.01 0.00
5 0.03 0.00 0.00 0.00 0.00 0.93 0.03
6 0.04 0.00 0.00 0.00 0.00 0.04 0.91

Table 6.6.: Single class detector performance (C-SVM) on arrow classes [2,...,6] with ge-
ometrical features and radial base function kernel.

class TP-rate FP-rate

2 0.95 0.007
3 0.85 0.004
4 0.84 0.002
5 0.96 0.004
6 0.92 0.002
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Figure 6.4.: TP-rates for varying training set sizes on geometrical features (SVM)

6.1.4. Classification with HOG descriptors

This section shows the results of the HOG based classification process using SVM
and random forest classifiers. The data set and the meaning of the class labels is
introduced in table 6.9. The result tables (table 6.10 and 6.11) are presented in a
similar way, as introduced in section 6.1.3.
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Table 6.7.: Confusion matrix for multi-class classifier based on random forest and geomet-
rical features.

prediction
rates 0 1 2 3 4 5 6

gr
ou

nd
tr
ut
h

0 0.88 0.09 0.01 0.01 0.00 0.00 0.00
1 0.10 0.90 0.01 0.00 0.00 0.00 0.00
2 0.03 0.02 0.95 0.00 0.01 0.00 0.00
3 0.03 0.00 0.00 0.95 0.06 0.00 0.00
4 0.08 0.00 0.00 0.02 0.92 0.02 0.00
5 0.01 0.00 0.00 0.00 0.00 0.98 0.01
6 0.02 0.00 0.00 0.00 0.00 0.00 0.97

Table 6.8.: Single class detector performance (random forest) with geometrical features.
class TP-rate FP-rate

class TP-rate FP-rate

2 0.95 0.003
3 0.91 0.002
4 0.92 0.004
5 0.95 0.003
6 0.94 0.005
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Figure 6.5.: TP-rates for varying training set sizes on geometrical features (random forest)

6.1.5. Discussions on results

Detection performance vs processing time

The computation time is very depending on the size of the ground area that is
used for detection. The wider the area is selected, the more contours come into
detection range and the more computations must be done. Therefore, this section
shows the results for feature calculation and prediction of one contour. Separately,
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class sample count

0: residual (includes line segments, class 1 1912
2: straight arrow 106
3: left arrow 35
4: right arrow 35
5: straight-left arrow 27
6: straight-right arrow 27

Table 6.9.: Data set for HOG feature training.

Table 6.10.: Confusion matrix for multi-class classifier based on C-SVM (linear kernel)
andHOG features.

prediction
rates 0 2 3 4 5 6

gr
ou

nd
tr
ut
h 0 0.99 0.01 0.00 0.00 0.00 0.00

2 0.15 0.85 0.00 0.00 0.00 0.00
3 0.12 0.11 0.77 0.00 0.00 0.00
4 0.18 0.00 0.00 0.82 0.00 0.00
5 0.01 0.00 0.00 0.00 0.99 0.00
6 0.07 0.00 0.00 0.00 0.00 0.93

Table 6.11.: Single class rates (SVM, linear kernel) with HOG features class TP-rate FP-
rate

class TP-rate FP-rate

2 0.82 0.003
3 0.77 0.000
4 0.82 0.000
5 0.93 0.000
6 0.92 0.000

Table 6.12.: Confusion matrix for multi-class classifier (random forest) with HOG features.
prediction

rates 0 2 3 4 5 6

gr
ou

nd
tr
ut
h 0 0.91 0.06 0.02 0.00 0.00 0.00

2 0.09 0.87 0.02 0.02 0.00 0.00
3 0.12 0.00 0.82 0.06 0.00 0.00
4 0.06 0.12 0.06 0.76 0.00 0.00
5 0.21 0.00 0.00 0.00 0.79 0.00
6 0.00 0.14 0.00 0.00 0.00 0.86
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the results for a whole classification process on an input image, from first computer
vision component up to the classified object list output is presented. The second
is a more relevant value for practical use, 6.13. The results are separated for each
classifier type and feature combination. Test machine was a multi core processor
with one activated core at 2.90 GHz.

Table 6.13.: Evaluation results arrow-classes. FP means non-arrow sample (negative)
miss-classified as arrow.

Method Geometric Model HOG

Classifier SVM
RBF RTree SVM

LINEAR RTree

Avg recall rate 0.92 0.95 0.87 0.82
FP rate 0.04 0.03 0.01 0.08
Avg feature
calculation time [ms] 0.198 0.336

Avg prediction
time [ms] 0.08 0.01 0.03 0.01
number of calculations
per frame 19.02 (avg) 180 (fix)

Avg processing time
(complete process
chain) [ms]

16.4 15.2 47.1 45.4

It is obvious, that the main difference between the two approaches is neither the
rare classification result, nor the calculation time for one sample to classify. It is
more a question of how often the methods need to run to get an understanding for
the whole input image. The segmentation step of the geometrical approach lead to
a small number of samples to classify (∼ 20) and therefore to a fast processing, to
complete the work on an input image. One big advantage of geometrical analysis,
is the complete scaling and rotation in-variance. That makes it possible to natively
detect other rotated or combined marking types like stop-lines or pedestrian cross-
ings. The HOG based method shows very good results, even when using small
training sets ( 6.9). Using the SVM, it is the best way to avoid false positives.

A low false positive rate has tremendous importance to make algorithms available
for real world applications, while slightly decreased true positive rates can be
handled with tracking methods. The processing time of HOG for one sample is
nearly the same to the contour based approach. However, when processing the
whole image – depending on the chosen ground patch size and the sliding window
configuration – a much increased number of calculations is needed to get sufficient
and dense detection results as precondition to understand the scene.
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(a) (b)

Figure 6.6.: Images from the evaluation. (a) The IPM image from left mirror camera. The
size of the ground patch is 15× 6.15 m and the resolution is 20 px/m. The resulting IPM
image size is thus 300×123 px. The classifier result for the image sub-patch including the
arrow is shown (purple colored window, class 3 for left arrow). (b) View of the left mirror
camera. The result from contour finding process is visualized. Contour edges marked red.

Robustness of the detection process

One goal of every sensor based detection system is high robustness against dis-
orders. Especially on road markings the disturbances mentioned in section 4.1.1
in this work become relevant. Because a set of cameras was used for this work,
most of occlusion problems can be handled. Beside the occluded area on one cam-
era, there is often enough free space around the car to get lane information from
the other cameras of the set. At least while passing, the markings are visible to
the system. The influence of shadows can be minimized with adaptive threshold
techniques. Nevertheless, it is a system boundary especially when using the ge-
ometrical approach for detection. The HOG based method however, shows more
robustness on shadows and avoids the problem of finding good thresholds.
Distorted markings can be dealed with morphological operations after thresholding
and before contour finding. It is important that the distorted marking still have
its characterizing shape. Heavy distortions will result to miss-classifications.

6.1.6. Landmark availability and classification of driving prescriptions

The recorded scene for evaluation is about 19.5 seconds and causes 589 processing
cycles. The drive maneuver starts at the left of three lanes and changes to the
middle lane. The speed is ≈ 50 km/h. The left lane border is defined by a center
strip made of cobblestones. A marked lane border is not present. At the end of
the scene, traffic appears without any influence to the system (false detection).
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(a) (b)

Figure 6.7.: Examples for heavy (a) and light (b) distorted markings.

The scene was investigated with three camera configurations. The first with front
camera only, second with fisheye cameras and the third with complete set. Fig-
ure 6.10 shows the measured border deviation and lane width for all tests. In all

(a) Front camera (b) Front fisheye camera

(c) Left fisheye camera (d) Right fisheye camera

Figure 6.8.: Comparison of availability for lane information in urban surroundings, using
different types of camera on varying mounting positions.

cases, if lane borders are available, the resulting lane width is b ≈ 3m. This is
congruent to the expected lane width. Considering the plots, the measurements
from the fisheye camera have lower oscillation and are more stable than from front
camera. The disadvantage of the front camera is caused by lower image reso-
lution, but particularly from the larger distance to measured lane borders. The
scene interpreter-module sets the measurement to a valid state after five effective
detection cycles. This is granted for both camera settings. At lane change, the
delay time for front camera is five cycles. The fisheye cameras lose the right lane
border after 2.9 s, as lane border moves underneath the car. The front fisheye
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camera does not contribute enough measurements for a sufficient detection and
tracking in that case. Passing additional 1.3 s, the left and right lane border from
the new lane (middle) are available. Using the complete set of cameras, yields in
higher availability with more stable measurements. Figure 6.10c shows a smooth
plot with increased availability. As mentioned, the traffic in this scene was low.
With dense traffic or even jams, the availability for the front camera can be sub-
stantially limited, see figure 6.8a. In this case, the fisheye cameras contribute
the essential information for a valid and stable output of lane information, see
figure 6.8b to 6.8d). The evaluation of class availability for arrow markings was

(a) (b)

Figure 6.9.: Evaluation of lane type classification. (a) Shows a snapshot from one of the the
used scene for evaluation. (b) Shows a false detection on right adjacent lane. The arrow
is not fully covered by the observation area (green), what leads to a miss-classification

performed on a recording with the following specification. The test vehicle ap-
proaches a multiple-lane crossing. The velocity is about 50 km/h. At left adjacent
and current lane, there are arrows of class straight. At the right adjacent lane the
markings are from type straight+right. The evaluation was performed with same
camera setting as from previous section. Figure 6.11 shows the results from lane
type classification with the use of complete camera set. The recognized lane types
are plotted for every lane. Beginning at time t = 2s, the front cam is able to detect
the markings. Due to traffic on currently driven lane (ego-lane), the detection is
slightly delayed. The classification result for the left lane is continuous and cor-
rect. Up to the point, as the last arrow leaves the covered area of the front camera
and still no arrow is in sight of the left mirror-camera (blind spot). This results
in a briefly interrupted typification for the left adjacent lane. For ego-lane, the
classification is continuous and correct, because the covered area of front camera
and front fisheye camera overlap. For right adjacent lane, the result is somewhat
different. There are temporally interrupted and even false classifications. With
a detailed view (figure 6.9b), a miss-classification on the front fisheye camera is
shown. At the right border, the visible arrow marking is truncated and compares
to a halved straight arrow. The classification module provides class straight for it.
In appendix A.7 the results for other camera sets are presented. It is shown that
with both, front camera and fisheye cameras, it is possible to detect and decide
the lane type. However, the combination of all cameras gives the best availability
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(a) Using front camera (windshield)

0 5 10 15

-2

-1

0

1

2

3

t [s]

de
vi
at
io
n
y 0
/l
an

e
w
id
th
b[
m
]

(b) Using fisheye cameras
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(c) Using front camera and fisheye camera

Figure 6.10.: Deviation (left: blue, right: red) and lane width (black): The lane measure-
ment of the fisheye camera leads to more stable output with less oscillation. Compared to
that, the measurements from the front camera are available earlier. A combination to an
integrated set of camera sensors, leads to boosted detection accuracy and availability.

and most stable result for lane class information.
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Figure 6.11.: Evaluation of lane classification, when using the full camera set. The dia-
grams show the class availability for each lane over time.

89



6.2. Preliminary remarks to the evaluation of position estimation

6.2. Preliminary remarks to the evaluation of position
estimation

The position estimation - as its name implies - is the attempt to make a (positions)
guess, that meets reality as far as possible. Therefore, the estimation process is a
conglomeration of several assumptions and concepts for combining multiple, often
inconsistent, information to a stable and reliable result. For this thesis, as Bayes
filter a particle filter is used, where the filter weights give a quantized shape of the
positions probability density function. The particle filter is influenced by multiple
inputs and must aggregate them to a single output. The main definitions that
must be set for the interaction of updates and corrections are:

• Quantization of the estimators state space and the time domain,

• Trigger-Strategy for incoming events (detections),

• Concept for event assessment (e.g. lane assignment, outlier identification),

• Quantification of the events error margin,

• Concept to manage the particle set, in terms of being an optimal filter to
represent the process of consecutive position guesses.

These main definitions will be investigated in the current section and the influence
of different concepts and adjustments is shown.
Before going into details, there is an important preliminary note: All evaluations
were performed with GNSS signal switched off after the initial positions guess.
The position estimation is solely based on landmarks, detected by the image vision
module and the odometry derived from cars power-train CAN messages according
to 3.4. The evaluation was performed with two recordings, representing a wide
spectrum of possible environment and traffic situations. Evaluation of different
weather and lightning conditions was excluded. It is more a sensor specific issue,
that evince the limitations of a sensor set and therefore the quality and availability
of information. Discussions on boundaries of the detection module - hence for input
of landmarks, signals and odometry - is presented in chapter 7.
The first scene was recorded in Berlin and proceeds from Königin-Louise-Platz
via Grunewaldstraße to Schlossstraße. The data is from summer 2017. It is day
and the weather is dry and clear. The sun produces cast shadows from trees and
buildings on the road surface. In some cases the surface is shiny or overexposed
so that markings disappear. The constructions are medium dense, but continuous
like in a mid- or small-town. It becomes more dense at the end of the scene,
having a more city-like characteristic. The vegetation is dense, with mainly a
closed line of treetops. The road is hilly and bumpy and mostly the outer lane
border is missing. There are only few detectable stop lines. At the end of the
scene, the vehicle approaches a big crossing with multiple lanes and detectable
arrow markings. The last maneuver is a left turn on that crossing. The length
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of the driven path is around 1,2 km. In table 6.14, the provided input signals
are presented. The following figures illustrate the content of the used test-scene.

Signal Frames/Packets
per second Specification

fisheye cameras 33 1280x800 color image
front camera 25 752x480 grayscale image

CAN 50 odometry relevant
CAN message cycle

GPS 1 unfiltered solution
from acGNSS receiver

Table 6.14.: Recorded signals for evaluation and test.

The second test sequence was recorded in Berlin on the way from Tegeler Weg to
freeway A111. Thereby, a roundabout with multiple lanes (up to four) and driving
prescriptions must be passed at Jakob-Kaiser-Platz. The weather was clear and
the sun produces several cast shadows on the road surface. On the way from
roundabout to freeway (Kurt-Schumacher-Damm), the road surface appears shiny
and no marking can be detected for several seconds (≈ 10). Next to this, a more
detailed perspective from mirror cameras shows, that the markings are demolished
at the right and soiled up to complete occlusion on the left side of the car. The
construction in this scene is not dense, but special. There is a wide bridge at the
beginning and later in that scene, a curved tunnel (l = 967m) beneath the Tegel
airport, including a turn maneuver. A second tunnel ’Ortskern Tegel’ (l = 755m)
is passed later in that scene.
Leaving the roundabout, no further arrow markings appear, but a stop line at
the last crossing before freeway. At the end of the scene (after the tunnel) the
vehicle is stopped by a traffic jam. There are high walls for noise prevention next
to the freeway, which cause demonstrably multipath errors on the GPS-solution.
Generally, there a a few junctions and exits into and from the freeway in this
recording.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 6.12.: Impressions and map from the first test track. [35]

92



6.2. Preliminary remarks to the evaluation of position estimation

(a) (b) (c)

(d) (e) (f)

(g)

Figure 6.13.: Impressions and map of the second test track. [35]
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6.3. Strategies on updates and corrections in spacial,
time and semantic domain

The questions to answer in this section are: How often an update/prediction should
be applied to the particle set. In which way corrections should be done. And
finally: What are the special conditions that must be considered? At first, the
trigger strategy is presented. The following trigger modes are conceivable

• event based

• timer based

• and distance based.

The event based trigger, effects as an immediate interrupt to the current state.
Each time, the detection module outputs a landmark, it will be used for correc-
tion immediately. This leads to a permanently changing state of the set. The
state changes depend on the cadence of the detection-modules output. For exam-
ple: When having a 50 Hz output of current stop line measurements, the particle
weights are adjusted with the same cycle. The resulting weight from correction
step must be determined for each particle, what causes an immense computation
effort if using a large set of particles. Furthermore, there is the effect of a very
fast particle weight concentration. This can be moderated with re-sampling. This
yields in a permanent alternation between correction and re-sampling and leads
to a very jumpy, less stable output. Measurement errors or jumps at detection
side interfere directly the estimated pose. Adding space between updates, leads
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Figure 6.14.: Event triggered correction results.

to a smoother output and smaller error. Because the particle set represents more
history now, instead of permanent re-sampling. With less correction updates, the
prediction step gains more importance. Since the odometry is more precise to de-
termine than landmark positions, it should have more influence to the estimation
process. The added space between updates can be in time domain and/or spacial.
A time based correction trigger has the advantage, that it continuously causes cor-
rections, where the distance based trigger depends on the cars speed. Thus, the
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time based correction should be preferred, especially for the lateral correction with
lanes. For sparse information like stop lines, no difference between the methods
could be determined. In figures 6.14 to 6.16 the errors between reference path and
test path is shown. The test starts with the first erroneous GNSS pose for initial-
ization, driving along a left curve to a traffic sign with stop line. From t = 20s to
t = 30s, the vehicle is waiting and in standstill. As the stop line is visible to the
detection system, the correction is performed. Thus, there is a smaller error from
t = 31s. The internal filter state is different at each performed evaluation test,
because the corrections were caused by different measurements and the interac-
tion between correction and re-sampling differs. This yields in different correction
points, as the first accepted measurement of the stop line occurs.
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Figure 6.15.: Timer triggered correction results. Update trigger was at 2 Hz (500 ms)
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Figure 6.16.: Distance triggered correction results. Update trigger was every 10 m

The prediction step is to pursue the current estimated position with odometry.
The prediction and all correction cycles work asynchronous. In terms of vehicle
positioning and thus for this thesis, it is by far the portion with the biggest influence
to the estimation result. In the prediction step, the particle set is moved, along with
a modeled movement error, according to the odometry. Therefore, a translation
vector with movement and yaw deltas (5.5) is applied to all particles.
The process is time triggered. It is essential, that additional motion prediction
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steps are applied as precondition for every correction. Otherwise, the particle set
and the state it represents, becomes out of date and the correction is applied to
obsolete data (see synchronizing topics in chapter 4.3). Another opportunity to
guarantee recent data, is to take care of a sufficient high cadence of prediction
steps. This comes with a highly increased amount of additional computations,
because motion deltas must be applied to all particles separately.
With the predicted motion, representing a movement along map lane data, emerged
that modeled map data, needs 3D-information or better an additional attribute,
describing the lever of the segment. In hilly environment, there is an effect if
applying the vehicle motion data (determined from wheel movement) to flat map
data, causing noticeable errors. Simply put: The traveled path on surface could be
substantially longer than map-data implies. See figures 6.17 and 6.18 for profiles
of the test tracks. The effect causes an increasing longitudinal error when driving.
With sparse landmark information for longitudinal corrections, the measurement
to map allocation can fail the χ2 test in this case. Correct allocated landmarks will
be rejected and no corrections performed. The effect can be seen particularly at
long straights, but is moderate on curved paths, when having a sufficient number
of corrections by lane segments.
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Figure 6.17.: Profile of first test track.
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Figure 6.18.: Profile of second test track.
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The next point to evaluate, is the semantic term of corrections. Therefore, the lane
selection process and assessment will be investigated. Furthermore, lane changes
and their impact on the position estimation and thus for the particles states will
be evaluated.
As introduced in 5.2.3, for each lane segment candidat,e a weighted score/cost func-
tion containing distance and angle differences and further the lane direction type,
if available, is calculated. In practical use it was shown, that sort the candidates
by score only, leads to a mainly distance-influenced particle weight at correction
step. Preceding and consecutive lane segments cause a substantially weight gain.
Parallel lanes, e.g. at multiple lane crossings instead, suffer from a much to less
weight gain. As result, the estimated pose moves along one of the map lanes, often
the nearest, but not necessary the correct one, especially at multiple lanes. The
filter behavior is often too rigid, to react properly on multiple lane situations. The
defined scaling options for the cost function, were not sufficient to solve this issue
by parameterization.
I decided, to add a lane scope cost term to the score functions. The scope term
describes a measure for the spacial relation of a lane segment to the current posi-
tion. This can be done straight forward, with projecting the current estimate ~pc
orthogonal to lane candidates and evaluating the value t from the linear equation
through start ~ps and end ~pe of segment

g : ~q = ~ps + t~pe

t =
(~pc − ~ps) · (~pe − ~ps)

|~pe − ~ps|
t ∈ R = [0..1] 7−→ inside lane scope (6.1)

The procedure cause only few additional computations, because the projection
must be done for the distance to map lane evaluations anyway. Using the addi-
tional scope score, extracts the parallel lanes for multi modal correction and pre-
vents unintended multiple corrections on lane-segment-transitions. The weights
for distance and angle of a lane segment should be adjusted to a balanced impact.
In some cases, corrections should be suppressed for a specific period. This is espe-
cially important during lane changes. Corrections during a lane change causes miss-
alignments on the multivariate density function formed by the particle weights.
The resulting position guess, tends to keep the estimate at the lane it was. It
causes the correction (landmark) contradicting the prediction (odometry), because
lane measurements are not clear, when passing the lane border. The leaved lane is
already measured and the opposite lane border of the adjacent lane is newly mea-
sured. In this situation, left and right lane border are available, but the estimator
has no knowledge, about the information comes from adjacent lanes and not from
a single lane.
Performing only prediction steps and suppress corrections in such situations solves
this issue. Detecting the lane change, is realized by evaluation of first coefficient
in lane models polynomial, representing the lane border deciation (4.19). An in-
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creasing standard deviation on this value for a specific period, indicates either a
lane change or unstable measurements. Both cases suppress any correction steps.
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Figure 6.19.: a) Event triggered corrections lead to jumpy path due to the direct impact
of measurement variances. b) Shows a time triggered correction behaviour (200 ms) with
smoother path and more confidence to odometry.[5].
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6.4. Strategies on re-sampling

Regarding section 5.2.5, the goal for re-sampling is to concentrate the set of par-
ticles in a region of the state space with highest probability and to avoid degener-
ation problems. As proposed in related work, this can be achieved with the use of
effective sample size

Neff ≈
1∑N

i=1(ωik)
2

(6.2)

as described in 3.5, with N the number of particles and ωik as their weights. Gen-
erally, the Neff is a good indicator, for a degenerated particle set. It is suitable
for pose estimation systems, with a correction rate, that is high enough and with
only small errors contributed from prediction cycles. This can be guaranteed with
integration of an IMU and/or LiDAR to the sensor set.
With the given sensor set and the sparse landmarks, the confidence on that single
value reveals an insufficient re-sampling strategy. The most important limitation
is, that Neff only gives an indication for the distribution of weights, but not for
the distribution of states. A filter state, with a good balanced weight distribution
can allow very large differences between the positions guess and actual position.
Actually, incoming corrections will be rejected if this gap becomes to large. The be-
havior is shown, when the particle set suffers on absence of corrections, for example
when lane information is missing for longer period of time. This is immanent for
every localization system, that uses sparse or uncertain information for correction.
To deal with this problem, I pointed out two strategies:

• A situation based adaptive re-sampling in spatial and probability domain,
with option to keep particles.

• Implementing a time- and plausibility-triggered re-sampling, additionally to
the existing by Neff .

An effective way to keep the particle set being a good representation for the real ve-
hicles position state and variance, is probability dense function shaping. Therefore,
the following options were investigated:

• Use distributions mean or most probable state for sampling-center,

• sampling along lanes vs. centralized sampling,

• definition of a history-proportion for the particle set.

The first option is an opportunity, to make the particle set more responsive to new
observations, especially after a longer period (t > 5.0s) without correction steps.
Furthermore, it prevents the whole particle state to drift away from real position,
by sampling new particles around the latest corrections. The disadvantage is a
jumpier output pose.
The second option, is to give the particle set a pre-shaping, by sampling along map
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segments. This should make the set a better representation of the state space, by
concentrating the position estimation on driveable path options. The idea is not
new and proposed in related work. This was tested for both recorded scenes and
showed divergent results. On one hand, it showed good results at multi-lane cross-
ings and other nearly straight multi-lane roads. On the other hand, at multi-lanes
with strong curvature, it reveals some problems. It can be illustrated, passing the
roundabout in test track two. Sampling new particles according to lane segments
at high lane curvature, is a good representation of the state space for quite a short
time. With the interaction and more often caused prediction - based on vehicle
motion - the particles states do not fit the lane course already after short time.
The particle set and its weights, is then an inappropriate representation of the ac-
tual probability dense function of the vehicles motion process. Because, the more
a particle is distanced from real position, the more the vehicle motion does not
fit the lane course. The set drifts apart, further corrections could not be applied
properly and the deviation of positions estimate increases.
The method with the most positive impact on stability and precision to the output
pose, is to keep a part of the particle set as history during resampling. Contrary
and new to the proposals in other works, a particle management is required. The
particle management must ensure, that the strongest particles are kept, weak or
drifted particles are substituted against new ones and the distribution and proba-
bility density stays balanced and consistent (Σpi = 1). To have a sufficient number
of free floating particles, the subset for history should be essentially smaller then
the floating particles. I choose a 4:1 relation (f = 0.2 : Nsub = 0.2 ∗ Nall). This
showed a good balance between the capability to aggregate state and weights along
multiple lane options and being flexible to re-sample a significant amount of parti-
cles into new states, when incoming corrections indicate a new position. A further
task, is to keep the weights of the history subset in balance to the whole set.
With multiple applied corrections, affecting the history subset, the weights tend
to Σpsub ' 1. It is clear, that re-sampling 75 percent of the particles with weights
near null is far away from being balanced. To avoid this, the strategy is to not let
the summed weights of the history set overrun a specific probability. For the given
problem, I choose a maximum probability of σpsub = 3× f = 0.60. In words: the
history set should hold 0.6 of the overall weight as maximum, but can be lower. In
a simple set of 5 particles, with one history- and four sampled particles, the state
of the one history sample can reach a maximum probability of p = 0.60. Generally
speaking, the particle weights in history set must be normalized to p = 3f . The
remaining weight is sampled into states, according to the following error model
(covariance matrix) for re-sampling.

Σ =

σ2
a 0 0

0 σ2
b 0

0 0 σ2
φ

 (6.3)

The set is therefore divided into two parts (each Nsub = 0.4 · N), the first part
holds 90 percent of the remaining weight (p ≥ 0.54), and the second part 10 per-
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cent (p ≥ 0.06). The error model for the fist part is σa = 1.5m as error on first
principal component, σb = 1.5m as error on second principal component of the
multivariate distributed position and σφ = 5◦ as model error for vehicles heading.
For the second part, the σ is doubled. The goal is, to have a large amount of parti-
cles next to the current pose with medium weight, and samples to fill a wider state
space properly, but low weighted. A distinction in standard deviation on principal
components for the multivariate distribution is not necessary. One of the advan-
tages using this method is, that keeping a subset of particles and applying multiple
corrections, leads to an enrichment of particles along the lane segment path with
highest probability, figure 6.20. The density function, the particle weights rep-
resent, becomes multi-modal. It is obvious, that this requires another strategy
for position estimations out of this set. Using the whole set, leads to a weighted
mean somewhere between the local maximums of the probability dense function.
Therefore, a subset of particles around the global maximum is selected and the
positions guess from this subset of particles is determined in known manner. The
aggregation of strong particles around the real pose, ensures at roads with strong
curvature, a particle set motion, that is common with the lane segment course and
therefore with the real driven path.
The behavior of particles drifting apart and interfere the positions guess in curvy
lanes, as mentioned for direct path sampling, is at least moderated with this
method. The estimated position is more stable and the motion of it, is smooth
and a well representation for the vehicles motion.

Next to the probability dense function shaping, I decided to implement a time
and plausibility based re-sample indication. The time based indication is straight
forward. If activated, the re-sampling is performed according to Neff , but with
minimum duration between re-sample activities. This prevents the filter to re-
sample after corrections with stable measurements. A low cost (good fit) from
lane selection process, leads to small sigmas for correction and thus to an unbal-
anced distribution of weights. The effective sample size would indicate re-sampling,
but in fact, the particle weights represent the real state very precise. In the case
of corrections with good matching measurements, a permanent re-sampling is pre-
vented by applying a minimum time span. A plausibility check over all particles
can solve this. Therefore, single particle states can indicate an invalid overall state.
It can be shown, that in some cases, when having poor landmark information and
simultaneously increased error on prediction (wet, bumpy or slippery ground), the
estimated pose drifts away from real position. Nevertheless, correction updates
cause an increasing weight to some of the particles in the near of the actual posi-
tion. Depending on the number of particles affected by this correction, the impact
to Neff is small. The situation can be recognized, by detecting large gaps between
the position estimate (based on MMSE) and the area with the strongest particles.
Therefore, the particle set is sorted by weight and a MMSE-pose from the strongest
particles is determined. The poses must be compared. I defined a distance ≥ 3.0
m as indication for re-sampling, what corresponds approximately to typical lane
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(a) (b)

(c) (d)

Figure 6.20.: Illustrations for enrichment of particles along map lane segments at different
situations. The visualization shows the concentration of particles (shown as pins) along
(black) lane segments.

width on urban streets.

The impact, the way of re-sampling has to correction cycles, should not be under-
estimated. The ’shape’ of the multivariate distribution embodied by the particle
weights has a significant impact on the χ2 tests. Generally spoken, the more the
set weights converge, the more the filter becomes unresponsive for further correc-
tions, up to a complete blockage. Otherwise, a widely balanced distribution, that
converge fast into new states, often shows jumpy behavior. Spontaneous reactions
on correction updates, especially from lane segments, cause the risk to ’follow a
wrong lane segment path’. In 6.6 discussions on that issue and the interaction of
predictions, corrections and re-sampling are presented.
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(a)

(b)

Figure 6.21.: a) Shows failed χ2 test. The measured landmark was near the car, and
therefore the projected pose modeled with small variance (blue circle). The particle set
converged to small variance as well. As result, the projected pose from landmark is ne-
glected from the χ2 test. b) Illustration of the particle set and after a longer period of
time without correction updates due to sparse landmark information. The actual course
is the left of the two parallel lanes (black). The effective sample size is Neff = 1212.2
(max 2000). Thus, it indicates that the particle set seems to be effective and estimation
is reliable. Actually, the estimation it is around five meters away from correct position.
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Figure 6.22.: The illustration shows the estimated path (red) at driving around a round-
about. The driven direction is from south to north (bottom to top in image). Lane infor-
mation inside the roundabout is sparse and is completely missing at the exit. The map
data is shown with black color. One can see diverse effects: An increasing error (enlarging
variance ellipses) by odometry updates. A path deviation, that is corrected short before
leaving the roundabout. The actual path was on middle lane. And finally the missing lane
information at exit, that causes a heading error and therefore a wrong path (top of image).

104



6.5. Precision

6.5. Precision

To perform an precision evaluation, a path reference is needed. On test sites it
is the normal choice to use DGPS signal in combination with an IMU. In urban
surroundings, DGPS validity is given only in a small area around the DGPS station,
where multi-path scattering does not interfere. Actually, this work was dedicated
to do research on this issue and think about solutions. A localization system for
urban areas cannot be based on DGPS in a sensible way. Hence, another method
to get a reference path must be found.
I decided to use a method for this work as described in the following sentences. I
used IPM to generate a local image around vehicle. This image was used to match
into image data from digital orthographic photos and to derive the pose, from
where the IPM image was shot. The process is handcrafted and even for humans
it can be challenging to align the IPM image according to the areal image data. The
precision, one can achieve with this method depends on grade of detail of the areal
photos. In this thesis, one pixel corresponds to 0.2× 0.2 m, what can be assumed
as minimal error for the reference path. In future work, this process should be
automated, using alignment methods from computer vision, that can achieve sub-
pixel precision and therefore a smaller error. At each full second in the recording,
one reference point was set. The estimated pose, is interpolated if necessary, to
meet exactly the equidistant 1.0 s - resolution of the reference path. There is an
advantage, in using image signals to generate the ground truth. Reference path
and test subject, bases on the same input. No further synchronization efforts are
needed. The problem of synchronizing reference sensor data (e.g. from IMU) with
test data does not exist.

To evaluate the differences between estimated pose and reference point, not only
the easting and northing coordinates from the UTM system is used, but car rel-
ative coordinates. This is more intuitive and considers the vehicles heading. For
example, a pose error in car coordinates with εx = 10.0m and εy = 0.5 can be
read as a good lateral pose estimation, but with serious error on longitudinal com-
ponent. Compared to that, the easting and northing differences would be quite
cumbersome, except the driven path would have exactly east-west or north-south
alignment.

For precision evaluations, one must keep in mind, that the estimation process de-
pend on the measurement precision of input data, the error of that input data and
particularly, if the error model meets that data. Since real input data is disturbed
or even missing, the estimated pose will always be different to real pose and stays
an approximation. A best guess, as far as the known history combined with new
information allows. Using a particle filter, the state space is quantized by the
particles and the particle set with weights embodies the multivariate distribution,
or rather the probability dense function for the observed process: The change of
vehicle pose over time.
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Figure 6.23.: A crossing scene in practice. Reprojected map lane segments shown in yellow.
Information from lane measurement is shown inside the highlighted boxes.

Figure 6.24.: Visualized particle set in front of the multiple lane crossing (three lanes).
Same scene as in figure before, 6.23.

It is obvious, that the first screw to adjust the process is manipulating the number
of particles. There is a trade-off between a good representation of the dense func-
tion, where fine granularity is desired, and the computational efforts that comes
with it.

The number of corrections that can be performed depends on the availability of
landmarks, real existing and detectable. Therefore, one has to consider, that er-
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Figure 6.25.: Particle convergence afterwards passing the intersection.

ror determination is not disassociated from the track conditions at every reference
point. It is not like on test site, where one can expect an error that is nearly
constant on the whole course with consistent track characteristic. Thus, the pre-
sented tables distinguish between overall values, without consideration of varying
conditions and the positions on track, where corrections were performed. Finally,
the resulting position error is shown, immediately afterwards correction.

The way of error modeling and especially the assumed errors on differently mea-

Table 6.15.: Position estimation results. The error is determined between estimation and
reference.All values in meters [m]. The results are from a stable system. E.g. waiting at
crossings. Thus, it corresponds to an ideal system state and shows the best possible results
on perfect track conditions. There is no maximum longitudinal error, because it increases
without correction on straight tracks, until arrive to next landmark. See table 6.17 for
correction capability of longitudinal errors.

nb of particles max |εy| |εy| σ2
εx σ2

εy σεx σεy
100 1.004 0.421 0.065 0.042 0.242 0.203
500 0.778 0.332 0.011 0.005 0.103 0.074
1000 0.853 0.416 0.035 0.010 0.136 0.095
2000 0.730 0.340 0.001 0.001 0.036 0.038
3000 0.741 0.526 0.001 0.001 0.033 0.028
5000 0.809 0.492 0.002 0.001 0.039 0.034
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Table 6.16.: Position estimation results. Lateral error between estimation and reference,
in [m], is shown during a drive through urban environment. Longitudinal positioning error
increases between longitudinal corrections, as expected.

nb of particles max εy |εy| σ2
εy σεy

100 3.368 0.560 0.719 0.848
500 4.493 0.662 1.069 1.034
1000 2.829 0.429 0.396 0.629
2000 4.539 0.559 0.807 0.898
3000 3.400 0.601 0.837 0.915
5000 4.841 0.493 0.814 0.902

Table 6.17.: Position estimation results. Longitudinal positioning error before and after
longitudinal correction at stop lines. The last two columns show the error after whole track
was driven in absolute value and in percentage over track length. All values in [m].

before after
nb of particles |εx| |εx| |εxy|track error over track length [%]

100 8.820 0.150 2.699 0.225
500 8.263 0.324 6.192 0.516
1000 5.835 0.229 2.364 0.197
2000 9.041 0.041 2.560 0.213
3000 6.516 0.050 1.747 0.146
5000 5.252 0.075 2.622 0.219
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Figure 6.26.: Availability of lane information on test track. If curves fall to zero, there is
no lane border information available.

sured landmarks and odometry inputs, further the difference in occurrence for each
input, affect the position estimation process massively. It could be observed, that
error modeling on corrections, with real practical values, leads into two troubles.
The first is the very fast converge of particle weights into states, where corrections
have its maxima, and thus to a very jumpy output for estimated pose. The second
- more serious - issue is the fact, that the strong aggregation leads to problems
in hypothesis significance test. As showed in section before, the parameters for
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Figure 6.27.: Deviations between reference and estimation. The different scene states and
events are colored and explained inside legend. The longitudinal correction capability is
shown on x error falling back to an error near null.

the χ2 test can not be used as known from mathematical problems. The upper
boundary has to be set in a way, that more acceptance is achieved. For example,
using a standard deviation of 0,10 m to model the lane measurement error, leads
to comparison of a 0-hypothesis (the position estimate and its Σ) and a position
hypothesis for correction, with at least one very narrow probability dense function.
The significance test will fail, even though the new position hypothesis is correct
and should be accepted.
To prevent the described behavior, error modeling becomes a more experimental
task, than using observed signal deviations. I decided to adjust the error modeling
in a way, that filter output stays smooth, but corrections have enough impact, to
prevent the filter drifting apart.
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Figure 6.28.: Track plots of reference, estimation and GNSS path. Illustration aa) shows
the deviation of pure GNSS positioning and estimated pose to reference path in detail. b)
Shows the paths at the multiple lane crossing near the end of the track. The jumps on
GNSS path when entering the crossing due to changes in signal propagation are visible,
as well as multiple corrections on the estimated path. Furthermore, a temporary miss-
alignment to wrong lane, when entering the crossing is visible on the estimated path.
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Figure 6.29.: Correction step and re-projections. Reprojected map lane segments shown in
yellow (lane) and red (stop line).
a) At the stop line, a longitudinal correction is performed. The longitudinal error is visible.
The red colored stop line (map data) does not meet its actual position.
b) Shows the situation after correction is performed. Map structure and environment are
aligned.
c) Illustrates the error of the GNSS path (green) against the map-corrected path (red) from
the localization system in this thesis.
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6.6. Concluding remarks

At the end of this section it is clear, that the interaction between prediction, cor-
rection, resampling and its timings is a complex process and hard to control. The
influence of the different set screws is shown exemplary in 6.28. There, a probable
positions guess and a (landmark) measurement are shown along with their mul-
tivariate density functions. Both states are described with the state variables µ
and their co-variances Σ. For more clarity, only the first two dimensions (easting
and northing) of the state is visualized. The shown situation is derived from a
realistic event as it occurs permanently. There is the estimated position described
by the particles distribution at coordinates origin and the measurement (derived
position from landmark) at µmeas = (1,−2) with a distance of d = |(e, n)|. The
distance between current guess and hypothese is

√
5 = 2.24m and the distribu-

tion parameters meet practical values. One can take this constellation for a valid
measurement, especially, when last correction on particles was several time ago.
Using the χ2 criterion with a high upper bound at p = 0.9, yields for the given
example to χ2 = 3.583, what is outside the acceptance area. The measurement
would be classified as outlier. The area of acceptance for this special constellation
of current guess and hypotheses, is shown with the bottom ellipse in the lower
image of figure 6.28. The plot illustrates the χ2 test results for distances up to
d = |(4, 4)| = 5.66m and the given distribution parameters. The result for the
exemplary performed test is marked with a stem.
One can observe, that the suggested χ2 test [32], as used for mathematical ques-
tions, is not directly applicable for the outlier problem in position estimation tasks
with sparse landmarks. The upper bound of the χ2 test must be used in a more
open way. However, it is a statistical value to face (normal) distributions and can
be used with adjustments.
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Figure 6.28.: Distribution of χ2 test results for different distances d between landmark
and current particle average, for exemplary multivariate distributions Nset(µset,Σset) and
Nmeas(µmeas,Σmeas) with µset = (0, 0), Σset = diag(2.0, 1.0) ; µmeas = (1,−2), Σmeas =
diag(2.0, 0.2). The bottom line marks the area where X2

(0.9,1) = 2.71, with p = 0.9 and
f = 1. The measurement µmeas = (1,−2), shown as red pin, is outside the acceptance
area and thus neglected as outlier for this example.
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7. Conclusions and future work

I have shown in this thesis, that extracted road markings can improve localization
substantially, through investigating two approaches. The first classification ap-
proach is based on contour extraction and the determination of geometrical values
like moments and relations, on the other hand, the second classification approach
is based on HOG descriptor for road markings.
The geometrical method is a fast and reliable way to classify markings. One advan-
tage is, that this method not only detects arrows, but line segments too. Thereby,
stop lines and pedestrian crossings can be detected in a straight forward way with
additional spatial analysis.
The HOG method shows more robustness against disturbances and combined
with a linear kernel SVM a very good relation between recall and precision (F-
score=0.93). A detailed view on strengths and weaknesses of the methods is pre-
sented in Table 7.1
The influence of the classifier type (SVM vs. random forest) is not as big as ex-
pected. Both methods have nearly similar results, when using the same training
and validation sets. The random forest classifier processes slightly faster and there-
fore it should be preferred together with use of geometrical features.
Generally, understanding the road markings by its shape has advantage over classi-
cal lane detection approach. It is typically based on gradient grouping and finding
light-dark-transitions. But especially in urban areas, where the shape of road
markings often violate the desired model restrictions, the approach of understand-
ing shapes leads to more robust detection performance.
A sufficient marking detection and classification is a good base for landmark based
position estimation. Specially at the moment when the vehicle passes the mark-
ings, a high measurement precision can be achieved. With increasing vehicle speed,
rolling shutter effects and motion blur become relevant. For typical driving veloc-
ity in urban areas, no disturbing influences were noticed. In the following steps,
the provided information were used to estimate the pose of the car. With switched
of GNSS, promising results for position accuracy could be achieved while driving
in urban environment. Within this process, lane boundary information is used for
lateral correction, stop lines and pedestrian crossings for longitudinal path correc-
tion. Furthermore, the detected arrow markings are usefull to get the correct lane
at crossings with multiple lanes.
The comparison of multi-class detection and single class detection did not show
potential, that warrants the additional computation efforts.
Beyond positioning, road markings can provide the meaning of a lane. The detec-
tion of bicycle lanes, parking spots for disabled people and other special markings
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can be a useful information for manifold driving tasks.

geometrical HOG
+ +

fast strong increasing recall rates
(good results on small training sets)

good recall rates avoids the thresholding problem
of contour finding

rotation invariant,
without additional
algorithm specialization

detection of complex shaped
markings possible
(e.g. wheelchair or bicycle signs)

better robustness
towards disturbances

rotated line segments
can directly be interpreted
as stop lines or
pedestrian crossings

better robustness
towards disturbances

- -
Thresholding problem
(prone to changing
environment, shadows)

slow, when using a
dense sliding window

Not scale or rotation
invariant in standard
implementation

Table 7.1.: A brief results sum up for classification of road markings

It is was shown, that the extracted road markings can be used to perform cor-
rections in a particle filter, that is updated with vehicle motion. The achieved
precision is presented in table 7.2. Lane level localization needs a positioning error
below 1,0 meter for well working lane association. That is derived from a typ-
ical lane width of minimum 3,0 m and a remaining alternation on driving path
around 0,5 m to every direction. Passing that restriction means passing the lane
border. As shown, the presented localization method typically stays below the 1,0
meter constraint, even with a small number of particles. Furthermore, it is not
essential to have much particles for a sufficient precision, because in practice the
localization error depends more on availability of landmark information, a precise
motion model for vehicle, suitable error modeling and the driven road itself with
its specific properties like flatness and surface. Nevertheless, at time of correction
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or with enduring availability of landmark information, the number of particles
matters a lot. This is important for systems equipped with sensors that support
a more dense information from environment (e.g. LiDAR), on test tracks and on
well constructed roads, fully provided with excellent markings. This can be seen,
on the MSE and standard deviation in ideal situations (durable lane information
at stand still), 6.15. The more particles, the more stable the localization solution.
In transition from 1000 to 2000 particles, the errors standard deviation falls from
>0,1 m to <0,04 m. For longitudinal correction, the number of particles always
influences the correction capabilities of the systems. After longitudinal correction
occurs, the error always decreases to a low sub-meter level. With 2000 and more
particles below 0,05 m, 7.2.

Table 7.2.: Results overview for pose estimation precision with various number of particles.
All values are metric.

particles 100 500 2000 3000
best case

σεx 0.242 0.103 0.036 0.033
σεy 0.203 0.074 0.038 0.028

practical values
|εy| 0.560 0.662 0.559 0.601
σεy 0.848 1.034 0.898 0.915

ε after lon correction
|εx| 0.150 0.324 0.041 0.050

It could be shown, that the used landmarks (lane borders, stop lines, crossings)
are typically not available in a density, that is needed for an optimal estimation
process in real urban environment. Methods were shown to bridge these lacks of
track information. Furthermore, the thesis showed, that the error modeling must
be adjusted to this issues in a sophisticated way. It is not sufficient to determine
error covariance matrices with typically expected precision on each variable. An
assessment for landmarks is needed, not only to detect outliers, but to score each
landmark and lane proposal and perform variance modeling related to landmark
score. An approach for lane assessment and validation during the mapping proce-
dure was introduced.
It could be revealed, that the effective sample size is an indication to resample the
particle set, but not sufficient since one has to deal with missing road informa-
tion in combination with the absence or a wrong GPS signal. Even a particle filter
with a high effective particle distribution can drift apart due to missing corrections.
Different ways to prevent this behavior, were shown in this thesis. Furthermore,
the resampling should be extended to a procedure with history, where a set of
strong particles is kept. In combination with positions guess from strong particles
subset, the converge of particles to multiple lane segments, and thus modeling
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multi-modal density functions for multi-lane streets could be achieved. The direct
sampling into multiple parallel lane segments is suitable for crossing situations,
but has disadvantages on roads with strong curvature and roundabouts. Further-
more, the occurrence of ’special’ situations when moving in urban environment
was shown. One of these challenging situations is the lane change, because update
and correction can work in antagonistic way. At the moment, when the leaved
lane still gets highest mapping score and the new lane position (in adjacent lane)
is not yet determined, or a lane model determined from left border of new lane and
right border of old lane, the correction step let converge the particle weights back
to the lane that is currently leaved. This is contrary to the vehicle motion used
for particle updates. The result is, that particles (and weights) and therefore the
estimated pose can not follow lane changes beyond this point. To deal with this,
such situation must be detected and the corrections temporally suppressed. When
the change is complete and the new lane measurement is established, corrections
to the particle set can be applied.
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Figure 7.1.: Estimation and GNSS information at blackout. The figure shows the complete
path on second test track. Inside the airport tunnel the GNSS signal get lost (middle).
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Figure 7.2.: A detailed view to the path during the GNSS blackout inside the airport tunnel.
The estimated path follows the actual path on lane, while GNSS signal shows a jump
between tunnel entrance and exit.

A localization system that relies on sensor data, has always the strengths and weeks
of the sensor set within. The introduced system, estimates its relation to the urban
environment by the use of landmarks, extracted from cameras. Therefore, it suffers
on the same disadvantages as other cameras based systems. Furthermore, the
system is prone to the availability of landmarks and additionally to the performance
of landmark detection. The following situations can lead to a reduced performance
or complete loss:

• challenging illumination (night),

• heavy cast shadows on road surface,

• reduced visibility depending on weather conditions,

• missing or heavy disturbed markings,

• fragile wheel tick based odometry (slippy or bumpy surface),

• and ambivalent kind of road markings (shape, color, classes).

It is essential for the system to perform at least one initial pose guess with the use
of a GNSS. The maximum error that can be handled on initialization procedure
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was investigated and is presented in table 7.3. It has to be remarked, that this
evaluation cannot be generalized and depend on local road structure, availability
of landmarks and filter parametrization (responsive vs. conservative).

error correction success/failed
±25m

√

±30m −
]± 45◦

√

]± 45◦ and ±10m −

Table 7.3.: Correction on different initialization errors, applied as offset on initial GNSS
pose. The first landmark (pedestrian crossing) was reached after 100 m path length.

It could be shown, that the introduced positioning system is capable to perform
lane level localization and establish a relation between vehicle and street map.
Nevertheless, a few issues exist, that should be worked in future. In this section, I
will work out the parts of the system, that have the most promising potential for
further development.

The first point, is to optimize the computation efforts in the overall system. There
are a lot of procedures that must be done with all pixels, all contours, all particles
and so on. It is obvious, that greater parts of the processing chain can be paral-
lelized. This applies the detection module as well as the position estimation. With
the current implementation, this opportunity is not used. When speaking about
parallelization, the use of Graphics Processing Unit (GPU) is suggested, especially
if the central processing steps can be reduced to matrix operations. This is often
the case. The implementation on a GPU can furthermore enable the use of neural
networks to fulfill the task of retrieve street data out of the camera images. While
working on this thesis, deep learning and its use for image classification, became
state of the art for manifold computer vision tasks.
Having a look at the data fusion, strong efforts are necessary to synchronize the
data streams with contours to a unified view on environment. At the transition
zone between cameras, one have discontinuities in contours that belong together.
These must be dissolved by logical class and geometry checks. With a large number
of contours this comes with rapidly increasing computation efforts, because it is
needed to compare contours lists to each other and with all its permutations. The
idea is, to fuse the data very early at pixel level before the extraction of contours
is performed. Synchronizing images (shot at different times), can be achieved with
an affine transformation of the IPM images (translation and rotation according
to a common time-stamp). If provided, the stitching can be done with sufficient
precision and a unified view on road surface around the car can be achieved. The
resulting image would be the input for the known contour extraction. The cur-
rent data fusion module (marking map, 4.3.1) has to perform the assignment of
detections between image cycles and the related tracking over time. One must
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mention, hat this methods has a catch. There will be small discontinuities, caused
by a never perfect camera calibration and vehicle movements like roll or pitch, that
cannot be described with camera extrinsics only. Furthermore, one has to ensure
that all cameras capture with synchronized exposure or to equalize the intensity
differences on images with other methods.

The HOG descriptor was introduced to perform the classification of arrow markings
directly from IPM images. The HOG based classifier shows a good performance on
precision and recall (high F-score), but it is slow, due to much higher computation
efforts to provide the HOG feature vectors. With small restrictions, this process
can be accelerated rapidly. In current implementation, every sliding window is
threatened as a single image patch and the processing chain for classification is
performed for each patch completely. With the step-width being smaller than
window size (what is common), many operations are done multiple times for the
same image block. An adjustment of the window step corresponding to the HOG
cell grid (8× 8), would allow a single computation of HOG features for the whole
image. Then, the sliding window should no longer perform on the image itself, but
on the HOG vector grid out of the 8× 8 cells. The aggregated feature vector can
directly be used as input for classification. It stays open, if the HOG cell size and
the corresponding window size is sufficiently fine granular to achieve the desired
detection performance. Otherwise, the cells size have to be adapted. This is
paid, with eventually decreasing detector performance, because cell size and shape
characteristics of the object to detect must match, to get optimal classification
results.

The first point when thinking about further development on estimator, is the use
of its output to improve input. After establishing a stable pose output, one has
quite a good knowledge about the surrounding map information. For example the
lane path is known, where to expect stop lines or other landmarks and furthermore
the lane characteristics like multiple lanes, width and even the marking positions.
Summarized: one already knows where to expect detectable objects. This makes
completely new approaches possible for the detection module and furthermore for
modeling the environment. For example, one can get a very precise lane model
out of the street map, instead from sole detection by camera without a-priori
knowledge. Thus, a more stable and reliable position estimation can be established.

The map data for this thesis is modeled in a way, that lane center corresponds to
the track and a given lane width defines the position of lane borders. This width,
currently doesnt represent the real width, but the expected - with consideration
to the guidelines for lane construction - in Germany. If a lane border is missed
by detection or even do not exist, a pre-defined width is used. A better way, but
with bigger effort at map creation, would be to define the course of all lane borders
separately in the map. This corresponds to the proposals in [40]. The position
of the vehicle on the map-lane can then be performed with higher precision at
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every measurement point. Furthermore, the border type can be used to solve
the assignment problem at streets with multiple lanes. Especially, when arrow
markings are missing and one has to deal with re-positioning after larger lacks of
lane measurements. With lane border information like solid, dashed or even color,
a lane assignment can be performed with much better reliability.
As mentioned in 6 the χ2-test is defined for normal distributed measurements, but
not for multi-modal probability density functions as proposed in my method. I have
shown the fragility of the χ2-method, when evaluating landmarks concerning their
relevance and the adaptions that must be applied for its practical use. The next
step would be, to find a more reliable and particularly more practically relevant
way, to evaluate pose hypotheses with multi-modal probability dense functions.
The selection of landmarks is currently realized with a distance based test. The
nearest one wins - even if wrong. That can happen when having a couple of stop
lines at large crossings and a current estimated position with high variance. In
future work, one would use additional (meta-)information like the lane-relation
of landmarks for assessment. Additionally, the results should be weighted and
applied regarding the score/cost.For landmarks error modeling, I use semi-static
sigmas to create the error co-variance matrices. This is done under consideration
of distance based error approximations under specific assumptions. Actually, the
measurement variance for each object is known from object tracking and should
be used.
In the evaluation chapter (6), a method is presented to generate a ground truth
path by the use of IPM and digital areal images. The process is handcrafted. It
leads to the approach, using this method as a self-localization procedure. The
process chain would be: calculate and synchronize the IPM from each camera and
stitch them to one super-IPM image. Try to find a best fitting alignment of the
IPM to the areal photo. The result with minimized error is taken as positions
guess. The areal photo quality became more and more detailed over the last years,
so this seems to be a good opportunity. The images can be requested by worldwide
available image servers, what still needs some time nowadays, but can be bridged
with use of vehicle motion during download. If the mapping result is unique - what
can be expected - one can use a more simple Bayes filter than particle filter, e.g.
Extended Kalman Filter (EKF). The disadvantage, is the lack of a clear view on
road surface on areal images. This causes problems at dense vegetation, tunnels
or other surface covering constructions. Dealing with these ’blackout’ situations
stays a challenge.
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A. Appendix

A.1. Projection from vehicle camera to ground plane

 

Figure A.1.: Ground plane to camera projection. For illustration and the exemplary cal-
culations, the (windshield) camera and it’s parameters were used. Equidistant pixel rows
(20px) in different image areas give the projected error on ground plane. Hint for reading:
a measurement error of 20 px from image in the upper area, cause a measurement error
of 14.3 m in car coordinate system.
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A.2. Lens model equations for fisheye cameras
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Figure A.2.: Lens geometry of fisheye camera.

Figure A.2 illustrates the projection of a point Pc = (xc, yc, zc) from camera coor-
dinate system to image coordinates (pixels) p = (u, v). At first, Pc is projected to
the image plane, with zc = 0 in camera coordinate system. This can be done with

pc =

(
F (θ)
Rxy
· xc

F (θ)
Rxy
· xc

)
. (A.1)

F (θ) is the polynomial from equation 3.6 and Rxy =
√
x2
c + y2

c . The transforma-
tion to image coordinates can be performed with inversion of Y component and
shifting via cameras principle point (cx and cy) to the upper left image corner.
Thus, there is the equation

p = (u, v)T =


F (θ)
Rxy
· xc + cx

(−1) · F (θ)
Rxy
· yc + cy

0

 . (A.2)

For an extrinsic calibration, partial derivations are required from the projection
model to the corresponding extrinsic parameters in ~t and ~r. The vector ~t =
(x, y, z) describes the translation (shift) to the reference coordinate system and
~r = (r1, r2, r3) the rodrigues vector, a compact description for spatial rotations of
vectors in R3.

∂p

∂~t
=

(
∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

)
und

∂p

∂~r
=

(
∂u
∂r1

∂u
∂r2

∂u
∂r3

∂v
∂r1

∂v
∂r2

∂v
∂r3

)
All derivations are based on the partial derivations of the camera coordinates
(∂xc∂x ,

∂xc
∂y ...). For example, let perform this on ∂u

∂x . The remaining derivations can
be determined congruently, with the flipped sign for v component in consideration.
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∂u

∂x
=
∂
(
F (θ)
Rxy
· xc + cx

)
∂x

=
∂ F (θ)
Rxy

∂x
· xc +

F (θ)

Rxy
· ∂xc
∂x

cx is constant and can be neglected. Applying products rule on first term and
having the second addend consisting of known variables. Now applying quotients
rule to first addend yields to

∂ F (θ)
Rxy

∂x
=

xc
R2
xy

[
∂F (θ)

∂x
·Rxy − F (θ) · ∂Rxy

∂x

]
.

Furthermore, this leads to

∂F (θ)

∂x
=
∂
(
a1θ + a2θ

2 + a3θ
3 + a4θ

4
)

∂x
=
∂a1θ

∂x
+
∂a2θ

2

∂x
+
∂a3θ

3

∂x
+
∂a4θ

4

∂x

∂anθ
n

∂X
= an · (n− 1) · θn−1 · ∂θ

∂x

∂θ

∂x
=
∂ arcsin zc

Rxyz

∂x
=

1√
1− zc

Rxyz

·
zc
Rxyz

x
=

1√
1− zc

Rxyz

·
∂zc
∂x ·Rxyz − zc ·

∂Rxyz

∂x

R2
xyz

∂Rxyz
∂x

=
∂
√
xcK2 + y2

c + z2
c

∂x
=

1

2

∂x2c
∂x + ∂y2c

∂x + ∂z2c
∂x√

x2
c + y2

c + z2
c

∂x2
c

∂x
= 2xc

∂xc
∂x

as well for yc and zc

Rxy can be determined, corresponding to Rxyz, but without zc therms.

A.3. Extractions from "Richtlinien für Markierung von
Straßen (RMS)" (Guidelines for German road
markings)
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Table A.1.: Markings according to RMS [41]

Table A.2.: Line lengths according RMS [42]

A.4. Classifier for road markings

A.4.1. Support Vector Machines

The SVM is a classification method that is based on statistical learning. The
information provided in this section is oriented on [47]. The interested reader is
referenced to this book for a very detailed and comprehensible view into SVMs.
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At the end of this section the reader will have an understanding about the map-
ping of inputs to responses (prediction) and how the learning process of a SVM is
mathematically defined.
For example, in the given case a relation between an input vector x (contour fea-
tures) and its response y (class) should be found. The function f(x) describes
this relation and is called prediction. Often it is not possible to find a functional
relationship between an input and a desired response. To resolve this, statistical
learning or machine leaning principles are used for approximation. A finite set of
inputs and its corresponding responses must be known - the training set. Depend-
ing on the complexity of the mapping problem the function f(x) will cause errors.
The goal of the SVM learning is to find a good approximation for f(x), that maps
the response y to an arbitrary x with minimal error. To evaluate the mapping
quality a loss function L = (x, y, f(x)) is used. It is obvious that the average loss
for the whole training set should be small.

1

m− n

m∑
i=n+1

L (xi, yi, f(xi)) (A.3)

The learning process of a SVM does not generally produces a good approximation
for f(x), even if it minimizes L on a closed training set D := ((x1, y1), ..., (xn, yn))
up to 0. This phenomenon is called overfitting. The result of f(x) makes a mini-
mal error on D but a poor classification performance on future (unknown) data.
A common way to resolve this, is to increase the training set to an appropriate
size.
Considering a binary classification problem with responses y from space Y =
{−1,+1} and the inputs x from space X out of the Euclidean space Rd. Ad-
ditionally a closed training set D := ((x1, y1), ..., (xn, yn)) is assumed, for which
an element w ∈ Rd with ‖w‖2 = 1 and a real number b ∈ R exist such that

〈w, xi〉+ b > 0,∀ {i|yi = +1}
〈w, xi〉+ b < 0,∀ {i|yi = −1} . (A.4)

Thus, w and b describe a hyperplane that separates the training set D into the
two groups {(xi, yi) ∈ D : yi = +1} and {(xi, yi) ∈ D : yi = −1} with the decision
function

f(x) := sign(〈w, x〉+ b). (A.5)

The minimization problem becomes

minimize 〈w,w〉 over w ∈ R, b ∈ R
subject to yi(〈w, xi〉+ b) ≥ 1 i = 1, ..., n. (A.6)

The approach has two issues:
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1. A linear form of the decision function may not be suitable for the classification
task. The given training set D cannot be separated linearly.

2. In the presence of noise, it can be possible to misclassify a few training points
in order to avoid overfitting.

The first issue can be dealed, with mapping the input data (x1, ..., xn) into a
multi-dimensional space, called Hilbert space. This procedure is sometimes called
kernel-trick and an appropriate method to handle non-linear-separable input data
with linear classifiers. It is typically a non-linear map Φ : X → H0. The mapped
data set (Φ(xi), yi, ...,Φ(xn), yn) is then applied in H0 instead of X. The x from
(A.5) and the xi from (A.6), are replaced with Φ(x) and Φ(xi) receptively. The
hyperplane component w from (A.6) is now chosen from the Hilbert space H0.
With this knowledge it is now possible to define a kernel.
When X is a non-empty set, the function k : X ×X → K is called a kernel on X,
if the K-Hilbert space H and the map Φ : X → H exists. And furthermore

k(x, x′) =
〈
Φ(x),Φ(x′)

〉
;∀x, x′ ∈ X (A.7)

is given. Φ is called a feature map and H a feature space of k.
Next to the linear kernels a set of more flexible feature maps Φ exists. For example
the RBF is one of the mostly used kernel types in practice. Each kernel has different
classification behavior when applied to a training set and comes with different
calculation complexity.
The second issue is addressed with relaxing the constraints from (A.4) by allowing
errors on the training setD, with requiring only that (w, b) satisfy yi (〈w, xi〉+ b) ≥
1− ξi for some so-called slack variables ξi ≥ 0. This method is called soft margin
support vector machine, Figure A.3. The summed up quadratic minimization
problem then, is

minimize
1

2
〈w,w〉+ C

n∑
i=1

ξi for w ∈ H0, b ∈ R, ξ ∈ Rn

subject to yi(〈w,Φ(xi)〉+ b) ≥ 1− ξi, i = 1, ..., n (A.8)
ξi ≥ 0, i = 1, ..., n.

C > 0 is a free but fixed parameter to balance the first term of the objective func-
tion (A.8) with the second. Thus, it becomes possible to penalize not only wrong
classifications (predictions to a wrong half space of the hyperplane), but margin
errors for x lying inside the tube around the hyperplane.
With the SVM defined in this section it is possible to have an optimal solution for
the mapping problem (map contour feature to class labels). Additionally, there
are parameters to balance the classification behavior of the SVM. For example, it
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Figure A.3.: Illustration of the soft margin SVM and it’s slack variable ξi, [47]
.

might be necessary to accept lower detection rates on some input data, while min-
imizing false positive classification. The last sentence implies one of the greatest
drawbacks, when using SVM. Often it is difficult to find a good parameter set and
a kernel that solves the classification problem perfectly. Moreover, the optimal
hyperplane might not be found. In order to minimize this risk, a well selected
closed set of features with minimized inter-class correlation is needed. In other
words, the descriptive score of a feature should be high for each class In section
4.2.1 methods for optimal feature selection are shown. Another disadvantage is,
that the inputs must be normalized. Not only the training set, but future inputs.
Without knowing the future value range, the generated norm vector can only be
derived from the training set. Normalizing future inputs with the norm vector
obtained during training, will obviously lead to errors.
There are machine learning algorithms, that have advantages especially on these
issues. One of them is the Random Forest classifier, that is introduced in the next
section.

A.4.2. Random Forest

The Random Forest is a machine learning method based on the principles of deci-
sion trees. This section strongly orientates on chapter 5 of the collection Ensemble
machine learning, [8]. But it is more focused on using Random Forests for classi-
fication, compared to the original text that handles regression with same extent.
Random Forest were introduced by Leo Breiman in [6] as a competitor to boosting
1. His work was inspired by [1]. Random Forests can be used to generate cat-
egorical responses (classification) or a continuous response (regression). From a
computational point of view, Random Forest look attractive because they

• are relatively fast to train and to predict

• have small set of tuning parameters
1Boosting is a method of supervised learning with the idea, that a set of weak learners can be

ensembled to a strong one.
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• have built in estimate of generalization error

• are easy to parallelize.

Statistically, Random Forests provide features, such as

• measure of variable importance

• applying class weights for unbalanced training data

• unsupervised learning.

Especially the first point might be very useful, when having a set of features
without knowing the impact of them for prediction. The feature selection 4.2.1
could be done native during training. Furthermore, the features have not to be
normalized. Rather it helps for categorization to leave the features at their origin
values.
Obviously the name suggests, that Random Forests is a tree-based ensemble, with
each tree depending on a collection of random variables. Remember section A.4.1:
the goal of a classifier is to find a mapping from a random valued input vector x
to a random variable y, representing the class. The process is called prediction
and the training should find a good approximation for the prediction function (or
mapping function) f(x). The quality of the found function f(x) can be measured
with the average loss over all inputs.

Ex,y(L(y, f(x)) =
1

m− n

m∑
i=n+1

L (xi, yi, f(xi)) (A.9)

The loss function L is a measure how close f(xi) is to yi; it penalizes results, that
are fare away from corresponding y. Typical choice of L is the squared error loss
L(y, f(x)) = (y − f(x))2 for regression and the zero-one-loss for classification.

L = (yi, f(xi)) =

{
0 if yi = f(xi)

1 otherwise
(A.10)

This corresponds to the hyperplane idea in (A.4). In case of classification, if the set
of possible values of y is denoted by ϑ, minimizing the average loss Ex,y(L(y, f(x))
for zero-one loss method or in other words - maximizing the probability P for
correct classification on training set of size n - gives

f(x) = arg max P (y = yi|x = xi). for y ∈ ϑ; i = 1, ..., n (A.11)

In Random Forests the function f is constructed as a collection of trees. Each
tree itself is a predictor, a so-called base learner. The collection of all learners
h1(x), ..., hn(x) gives the ensembled predictor f(x). In case of regression, the learn-
ers are averaged

f(x) =
1

n

n∑
i=1

hi(x), (A.12)
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while in case of classification, f(x) is the most frequently predicted class (voting).

f(x) = arg max
n∑
i=1

I(y = hi(x)). y ∈ ϑ (A.13)

Every base learner is a tree denoted hi(x,Θi), where Θi is a collection of random
variables and independent for i = 1, ..., n.
Trees used in Random Forest are based on binary partitioning trees. These trees
divide the predictor space using a sequence of binary partitions (splits) on indi-
vidual variables. The root node of the tree comprises the entire predictor space.
Nodes that are not split are called terminal nodes and form the final partition of
the predictor space. According to the value of the predictor variable, each node
split into two descendant branches. Generally, the split is based on "smaller than
- greater than" decisions. A categorical predictor variable Xi takes values from a
finite set of classes Si = {si,1, ..., si,m}. The split sends a subset of these classes
to the left and the remaining classes to the right (binary split), Figure A.4. The
particular split the tree uses to partition a node into two descendants is chosen
by considering every possible split on every predictor variable and choosing the
"best" according to some criterion. In classification context where there are K
classes denoted 1, ...K, a typical split-criterion is the Gini index.

Q =
K∑
k 6=k′

p̂kp̂k′ , (A.14)

Where p̂k is the proportion of class k observations in the node:

p̂k =
1

n

n∑
i=1

I(yi = k). (A.15)

The splitting criterion gives a measure of purity for a node. Large values repre-
senting an impure node.
Once a split has been selected, the data is partitioned into the two child nodes and
each of these nodes is treated in the same way as the parent node. This procedure
continues recursively until a stop criterion is met. When the stop criterion is met,
the split stops and the unsplit node is called terminal node. The predicted value
in the terminal node is then obtained for all observations by computing the most
frequent class.
The randomness is injected implicitly in two ways. Remember, every base learner
is a tree hi(x,Θi), where Θ is a collection of random variables. Then the ran-
dom component θi as a particular realization of Θi. It is used to implicitly inject
the randomness. First, each tree is fit to an independent bootstrap sample from
the original data (training set). This bootstrap sampling is randomized and thus
the first part of θi. Second, when splitting a node, the best split is found over a
randomly selected subset of m predictor variables instead of all p predictors, inde-
pendently at each node. The randomization used to sample the predictors gives
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the second part of θ. As mentioned before, the final prediction (category) of the
forest, is an unweighted voting over all trees.

Figure A.4.: Binary recursive partitioning tree. Splitting on a categorical predictor variable
in Xi using subset S ⊂ Si.

A.5. Cholesky factorization for discretization of a
multivariate normal distribution

When modeling stochastic processes, typically noise is applied to the process equa-
tion in form of an error-element e. For implementation, the error element is a
function value out of a density function p(e), that describes the probability in the
error-space. For this work, the function corresponds to a multivariate normal dis-
tribution, defined with mean µ and the covariance matrix Σ. An efficient way to
generate such discrete samples out of distributions is to transform samples from an
unidimensional independent identically distributed (iid) sequence [16]. The proba-
bility of existence for all values in this sequence is equal and the generation process
for them is independent from each other.
If the covariance matrix is positive definite, the Cholesky factorization can be used
to perform the transformation of the iid sequence. A n × n matrix M is posi-
tive definite if xTMx > 0 is given for all n column-vectors x with x 6= 0. The
transformation itself is finally given with

X = A Y + µ, (A.16)

where A is the Cholesky factorization of Σ an Y is the vector containing the iid
sequence (unidimensional, idependent and normal distributed) [15]. The resulting
vector X is a sample of the multivariate normal distribution, defined by mean µ
and covariance matrix Σ.
In case the positive definite property is not given, the eigenvalues and eigenvectors
of the covariance matrix Σ have to be determined. The transformation can then be
performed via the matrix Q = Λ

1
2 Φ instead of A from (A.16). Φ are the column

wise normalized eigenvectors of Σ and Λ is the diagonal matrix of the eigenvalues
of Σ [22].
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A.6. Results from image processing

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.5.: Marking detection on ideal markings.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.6.: Marking detection on non-ideal markings.

A.7. Results from lane type classification
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Figure A.7.: Evaluation of lane type classification, using front camera only.
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Figure A.8.: Evaluation of lane type classification, using fisheye cameras only.
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A.8. Terms of use for data sets from Geoportal Berlin

[5]

 

Nutzungsbestimmungen 
 
 

§ 1 Nutzungen 
 

(1) Geodaten und Geodatendienste, einschließlich zugehöriger Metadaten, werden für 
alle derzeit bekannten sowie für alle zukünftig bekannten Zwecke kommerzieller und nicht 
kommerzieller Nutzung geldleistungsfrei zur Verfügung gestellt, soweit durch besondere 
Rechtsvorschrift nichts anderes bestimmt ist oder vertragliche oder gesetzliche Rechte 
Dritter dem nicht entgegenstehen. 
 

(2) Abweichend von Absatz 1 werden für die Bereitstellung von Daten auf 
maschinenlesbaren Datenträgern Gebühren erhoben. 
 

(3) Die bereitgestellten Geodaten und Metadaten dürfen insbesondere 

1. vervielfältigt, ausgedruckt, präsentiert, verändert, bearbeitet sowie an Dritte 
übermittelt werden; 

2. mit eigenen Daten und Daten Anderer zusammengeführt und zu selbständigen 
neuen Datensätzen verbunden werden; 

3. in interne und externe Geschäftsprozesse, Produkte und Anwendungen in 
öffentlichen und nicht öffentlichen elektronischen Netzwerken eingebunden werden. 

 
(4) Die bereitgestellten Geodatendienste dürfen insbesondere 

1. mit eigenen Diensten und Diensten Anderer zusammengeführt werden; 

2. in interne und externe Geschäftsprozesse, Produkte und Anwendungen in 
öffentlichen und nicht öffentlichen elektronischen Netzwerken eingebunden werden. 

 
§ 2 Quellenvermerke 

 
Die Nutzer haben sicherzustellen, dass 

1. alle den Geodaten, Metadaten und Geodatendiensten beigegebenen 
Quellenvermerke und sonstigen rechtlichen Hinweise erkennbar und in optischem 
Zusammenhang eingebunden werden; 

2. Veränderungen, Bearbeitungen, neue Gestaltungen oder sonstige Abwandlungen mit 
einem Veränderungshinweis im beigegebenen Quellenvermerk versehen werden. 

 
§ 3 Haftungsbeschränkung 

 
Verletzt die geodatenhaltende Stelle eine ihr gegenüber dem Nutzer obliegende 

öffentlich-rechtliche Pflicht, so haftet ihr Träger dem Nutzer für den daraus entstehenden 
Schaden nicht, wenn der geodatenhaltenden Stelle lediglich Fahrlässigkeit zur Last fällt. 
Dies gilt nicht im Falle einer Verletzung des Lebens, des Körpers und der Gesundheit. 
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