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Delay master stability of inertial oscillator networks
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Time lags occur in a vast range of real-world dynamical systems due to finite reaction times or propagation
speeds. Here we derive an analytical approach to determine the asymptotic stability of synchronous states
in networks of coupled inertial oscillators with constant delay. Building on the master stability formalism,
our technique provides necessary and sufficient delay master stability conditions. We apply it to two classes
of potential future power grids, where processing delays in control dynamics will likely pose a challenge as
renewable energies proliferate. Distinguishing between phase and frequency delay, our method offers an insight
into how bifurcation points depend on the network topology of these system designs.

DOI: 10.1103/PhysRevResearch.2.023409

I. INTRODUCTION

The study of nonlinear dynamics on complex networks
has received full interdisciplinary attention in recent years
due to its potential for modeling the complexity of real-world
dynamical systems. An intrinsic feature of such systems is that
their time evolution generally depends on past states. Time
delays, caused by finite propagation speeds or processing
times, induce retarded reactions of variables to changes in
the system. For example, delays occur in lasers because of
the finite speed of light [1,2]; population dynamics depends
on maturation and gestation times [3], and the exchange of
information between neurons requires time for both signal
transmission as well as processing [4].

Mathematically, continuous delay problems are described
by delay differential equations (DDEs) [5,6]. From their anal-
ysis, it is known that delays can substantially alter a sys-
tem’s asymptotic behavior [7]. However, asymptotic stability
analysis of DDEs is challenging because the corresponding
spectrum contains an infinite number of complex roots. In
fact, exact conditions for stability pose an open problem in re-
search, especially regarding networks. Most previous studies
have been limited to numerical investigations of characteristic
equations or restricted to simple network topologies, often
yielding only sufficient stability criteria.

Recent work has led to a thorough analytical understanding
of the spectrum in the limit of large delay, with applications
in, e.g., optoelectronics [8–11]. In many cases, however, time
lags may match the system’s dynamical timescales and may
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play a critical role for stability. Particularly in systems of
coupled oscillators such as the paradigmatic Kuramoto model
[12], delays often become comparable to the oscillation pe-
riod. There, the asymptotic stability of a synchronous regime
is a central property with crucial implications for applications.

Pecora and Carroll have developed a powerful method
known as the master stability formalism to determine the
stability of synchronization for identical oscillators without
delay [13]. The main idea is to project the state vector into the
eigenspace of the coupling matrix, yielding a block diagonal
form that defines the associated master stability function
(MSF). This way, dynamical parameters of the system are
separated from topological information about the network.

Several studies have calculated MSFs for specific models
with time-delayed couplings [14–17]. Here, we generalize the
formalism to DDE inertial oscillator models containing an
arbitrary constant discrete delay τ > 0 that may appear in the
local dynamics as well as in a diffusive coupling term. While
the master stability formalism requires complete synchroniza-
tion of oscillators, we merely assume phase synchronization
where oscillators may have constant phase differences [18].
Our analytic approach leads to a decomposition into second-
order DDEs in terms of the eigenvalues of the graph Laplacian
matrix. Based on results from Bhatt and Hsu [19], we derive
necessary and sufficient conditions for the asymptotic stability
of synchronized inertial oscillator networks with delay. The
corresponding delay master stability function (dMSF) is given
in terms of the graph Laplacian spectrum, the delay τ , as well
as dynamical parameters of the model.

For delays caused by processing times, our results offer
a complete analytic solution to the question of asymptotic
stability. The dMSF comprises a finite number of easily evalu-
ated critical conditions that hold for any network topology. In
particular, in an important case that covers our central appli-
cation of renewable inverter-based power grids, the conditions
further simplify to a single stability criterion involving just the
maximum graph Laplacian eigenvalue.
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II. MAIN APPLICATION

We begin with a Kuramoto-type inverter-based power grid
model to exemplify how we obtain a concise condition for
a major application of oscillator networks. Due to the energy
transition, power grids currently undergo substantial structural
and dynamical changes, threatening stable synchronization of
the AC voltage frequency [20,21]. Characterized by a large
share of volatile distributed generation units, e.g., solar or
wind power plants, future energy networks will require novel
control approaches such as grid-forming power inverters to
maintain stability [22,23]. As this involves measurements and
processing, delays are expected to play a critical role [24–26].
Understanding their influence on stability is thus vital to
ensure security of supply and prevent blackouts.

Specifically, we consider frequency dynamics in a droop-
controlled inverter grid [27] where the steady-state power
flow between two nodes depends on the sine of their phase
difference,

ϕ̈i = −α̃ϕ̇i + β̃

(
Pd

i −
N∑

j=1

Ki j sin
(
�ϕτ

ji

))
. (1)

Here ϕi(t ) denotes the phase angle of the ith inverter (oscil-
lator) and �ϕτ

ji := ϕi(t − τ ) − ϕ j (t − τ ). α̃ > 0 and β̃ > 0
are the inertia-specific damping and droop constants, respec-
tively; Pd

i represents the desired active power set points.
Elements of the weighted adjacency matrix (Ki j ) may be
interpreted as the maximally transmittable power values along
transmission lines in the network [28] (details in Appendix C).

We find that a synchronous state of Eq. (1) is asymptoti-
cally stable if and only if

λN <
1

β̃

√(y1

τ

)4
+ α̃2

(y1

τ

)2
, y1 = α̃τ cot y1, (2)

where y1 ∈ (0, π ]. This exact stability condition depends on
network structure only via the largest eigenvalue λN of the
effective Laplacian matrix L (see below). Notably, it suffices
to compute precisely one unique characteristic root y1 of the
linearized spectrum associated with Eq. (1). We discuss this
result further after deriving the general approach.

III. DERIVATION

We consider a nonlinear dynamical system of N coupled
oscillators on a network. All oscillators (nodes) have inertia,
obeying a Newtonian law of motion. The state of the ith
oscillator at time t is given by the phase angle ϕi(t ) and
angular frequency deviation ωi(t ) ≡ ϕ̇i(t ) in a reference frame
corotating with a coherent frequency 
. Let the time evolution
of the global state be governed by a set of second-order DDEs
containing a discrete, constant delay τ > 0,

ϕ̈i = fi(ϕi, ϕ̇i ) + f τ
(
ϕτ

i , ϕ̇τ
i

)
+

N∑
j=1

Ai j
[
g(�ϕi j,�ϕ̇i j ) + gτ

(
�ϕτ

i j,�ϕ̇τ
i j

)]
, (3)

for i ∈ {1, . . . , N}. Here time arguments are abbreviated as
ϕi ≡ ϕi(t ) and ϕτ

i ≡ ϕi(t − τ ); furthermore �ϕi j ≡ ϕ j − ϕi

and �ϕτ
i j ≡ ϕτ

j − ϕτ
i . The real scalar functions fi and f τ

represent undelayed and delayed isolated dynamics, respec-
tively. Unlike identical oscillators, fi may differ from node
to node by an additional constant ci ∈ R, which accounts
for heterogeneous driving forces. In the interaction term, g
denotes undelayed coupling dynamics, whereas gτ describes
interactions with a coupling processing delay. The strength of
the coupling as well as the network topology are stored in the
weighted adjacency matrix A ∈ RN×N , with Ai j > 0 if nodes
i and j are connected and 0 otherwise. Here, we consider
undirected graphs without self-loops.

The delay considered in Eq. (3) is a processing delay
that arises, for example, in engineered systems with feedback
control due to measurement and processing times. Contrar-
ily, transmission or communication delays in diffusive cou-
pling of the form gτ (xτ

j − xi ) require separate treatment (see
Appendix B).

To assess asymptotic stability, we linearize our DDE model
near the phase synchronization manifold Z , defined by Z :=
{(ϕi, ωi ) ∈ R2 : ωi = ω̇i = 0 ∀i}. Physically, this means that
all oscillators are entrained to a coherent frequency 
 but
possibly with fixed phase differences between them. A syn-
chronous solution ϕ∗ = (ϕ∗

1 , . . . , ϕ∗
N ) with ω∗ = (0, . . . , 0)

lies on Z and corresponds to a fixed point of Eq. (3).
Traditional MSFs require complete synchronization, i.e., all

oscillators move in phase with frequency 
. Then, Jacobians
evaluated on the synchronization manifold are identical for
all nodes [13]. To achieve a block decomposition similar to
MSF for phase synchronization, we assume (i) the Jacobian
matrices of all local functions fi and f τ , evaluated on Z , are
identical, and (ii) the Jacobians of all coupling functions g
and gτ , evaluated on Z , are edge-independent except for a
prefactor wi j (�ϕ∗

i j ) = w ji(�ϕ∗
ji ) ∈ R, which may depend on

the fixed point ϕ∗. We note that the following procedure also
holds for more general coupling functions g(ϕi, ϕ̇i, ϕ j, ϕ̇ j ) and
gτ (ϕτ

i , ϕ̇τ
i , ϕτ

j , ϕ̇
τ
j ) if their first partial derivatives are antisym-

metric with respect to the exchange of i and j. Nonetheless,
we present the widely applied diffusive form here and refer to
Appendix B for more information.

We define the effective Laplacian matrix L of the linearized
network model such that Li j := −wi jAi j + δi j

∑
j wi jAi j .

This matrix is symmetric, positive-semidefinite, and conse-
quently diagonalizable. In the spirit of MSF, we now trans-
form coordinates into the space spanned by the eigenvectors
of L, with corresponding eigenvalues λk , k ∈ {1, . . . , N}.
Diagonalization does not affect the Jacobians (which are
node-independent by assumption after absorbing wi j in the
adjacency matrix), such that the system of DDEs decomposes
into N blocks given in terms of λk ,

θ̈k = −ak (λk )θ̇k − bk (λk )θk − aτ
k (λk )θ̇ τ

k − bτ
k (λk )θτ

k . (4)

Here the set of θk denotes (small) phase angle deviations
from ϕ∗ expressed in the transformed coordinates. The co-
efficients are given by elements of the Jacobian matrices (see
Appendix A); in the following, we suppress their dependence
on λk .

The stability of a synchronous state ϕ∗ depends on the real
parts of the roots of the characteristic equation associated with
Eq. (4),

H(z) := (z2 + akτ z + bkτ
2)ez + aτ

k τ z + bτ
kτ

2 = 0. (5)
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The exponential polynomial H features an infinite number of
complex roots; all must have negative real parts for asymptotic
stability. We now assume that the delay τ appears either in
the time argument of the phases ϕi or of the frequencies ωi

but not in both. For these cases, Bhatt and Hsu [19] derive
necessary and sufficient stability conditions for scalar second-
order DDEs, determined by a finite number of decisive roots
within the infinite spectrum of H (see also [29,30]). After
the block decomposition outlined above, we may transfer
these conditions to inertial oscillator networks to obtain delay
master stability conditions.

If only the coupling is delayed ( f τ = 0), the longitudinal
eigenvalue λ1 = 0 describes dynamics within the synchro-
nization manifold, and asymptotic stability is determined by
the N − 1 transversal directions [13]. Contrarily, if f τ �= 0,
all k must be considered for stability analysis. We define
the transversal set N , which is {2, . . . , N} for f τ = 0 and
{1, . . . , N} otherwise.

Substituting z = iy in Eq. (5), H separates into a real and
an imaginary part. First, we consider the case of phase delay
(aτ

k = 0). Let ak > 0 and −ak < bkτ � 0. Then, for each
k, there exists precisely one decisive root y1,k ∈ (0, π ] that
solves the imaginary part of Eq. (5) [19]. A synchronous fixed
point of Eq. (3) with phase delay is asymptotically stable if
and only if, for all k ∈ N ,

−bk < bτ
k <

Rk (y1,k )

τ 2
, (6)

with Rk (y) :=
√

(y2 − bkτ 2)2 + (akτy)2.
In the frequency delay case (bτ

k = 0), we assume ak > 0
and bk > 0. Here we examine positive solutions yk of the
real part of Eq. (5). The first positive root yk,0 lies in the
interval (0, π/2), and one root yk,m is situated in each π -
interval (mπ − π/2, mπ + π/2) for m = 1, 2, . . . . Of these
roots, the decisive roots y∗

k and y∗∗
k are found according to

y∗
k = min

m odd
|yk,m − τ

√
bk| and y∗∗

k = min
m even

|yk,m − τ
√

bk|. Then,

it is necessary and sufficient for asymptotic stability of a
synchronous state that, for all k ∈ N ,

− Rk (y∗∗
k )

y∗∗
k

< aτ
k τ <

Rk (y∗
k )

y∗
k

, (7)

where Rk (y) is defined beneath Eq. (6).
Obtaining the decisive roots is central for practical im-

plementation. Regarding phase delay, there is one uniquely
defined decisive root for each k. Thus, the stability analysis
is generally based on calculating maximally N decisive roots
for a system of size N . In contrast, the frequency delay case
requires identification of two decisive roots y∗

k , y∗∗
k for each

k. The value of these roots depends on the delay and on the
coefficient bk .

Assume the value
√

bkτ 2 is located in the interval ( jπ −
π/2, jπ + π/2), where j is a positive integer. If j is an odd
number, the closest decisive root y∗

k is in the same interval.
We then find the root y∗∗

k either in the π -interval to the right
( j + 1) or to the left ( j − 1). To find all decisive roots for a
given k, we must therefore calculate three roots and, among
them, compare the two possible candidates for y∗∗

k . If j is an
even number, then y∗∗

k is located in the same interval and y∗
k is

one of the two roots found in each of the adjacent intervals. In

K0

3

-1-1

-1

FIG. 1. Delay master stability functions for a four-node star
topology (a) with three consumers connected to one producer.
(b) dMSF as a function of delay τ for the inverter model with phase
delay. The system is asymptotically stable for all τ < τc ≈ 45 ms.
(c) dMSF for the DSGC model with frequency delay. Each Laplacian
eigenvalue λk contributes a curve σ (λk, τ ); the system is stable in
regimes where σmax < 0. Parameter values are P0 = 1s−2, K0 = 8s−2,
α̃ = α = 0.1s−1, β̃ = 0.07, and γ = 0.25s−1.

any case, all decisive roots must lie within a distance of 3π/2
from the value

√
bkτ 2. Hence, for frequency delays, we must

calculate at maximum 3N characteristic roots (within known
intervals) to find in total 2N decisive roots.

IV. PHASE DELAY

Our motivating example introduced in Eq. (1) illustrates
the case of phase delay. Here the root y1,k is k-independent
and we must only consider the largest eigenvalue λN of L.
We may write the resulting stability condition [Eq. (2)] as a
dMSF σ ,

σ (λN , τ ) = λN − 1

β̃

√(y1

τ

)4
+ α̃2

(y1

τ

)2
. (8)

A combination of λN and τ is stable if and only if σ <

0. Monotonicity arguments for y1(τ ) prove the existence of
precisely one critical delay τc = τc(α̃, β̃, λN ). A synchronous
state that is stable without delay will remain asymptotically
stable for all τ < τc and is unstable for all τ � τc.

To visualize σ , we first choose a star topology as
in Ref. [31]. A producer in the center with steady-state
power production P+ = 3P0 is connected to three consumers
with P− = −P0 via transmission lines of equal capacity K0

[Fig. 1(a)]. Due to the symmetry of the configuration, we
obtain three distinct Laplacian eigenvalues (λ1 = 0, λ2 =
λ3, λN ). The phase delay case depends on λN only; thus
we get a single curve with σ = 0 at τc [Fig. 1(b)]. For
typical parameter values, τc ≈ 40 ms is about twice the 50 Hz
oscillation period.
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FIG. 2. Decisive roots y∗
2 (dark blue dots) and y∗

N (orange dots) as
a function of delay τ for the DSGC model (frequency delay) on the
N = 4 star network (k = 2 and 3 are equivalent). The roots only lie
in odd intervals ( jπ − π/2, jπ + π/2), j odd. The solid lines show
the value

√
λkτ 2 for k = 2, 3 (blue) and k = N (orange). Dashed

lines have a vertical distance of 3π/2 from the corresponding solid
line, thus bordering the interval where the root, for given τ , could
be found. Parameter values for the calculation are P0 = 1 s−2, K0 =
8 s−2, α = 0.1 s−1, and γ = 0.25 s−1.

V. FREQUENCY DELAY

Stability in the presence of a frequency delay is quali-
tatively different. We show this by applying our approach
to the decentral smart grid control (DSGC) scheme [31,32].
The model incorporates electricity price dynamics by locally
relating the price to the current grid frequency, motivating
producers/consumers to adapt their feed-in/consumption to
the currently available power supply. The continuous mea-
surements required for this smart grid regulation induce a
local processing delay at each node. The model reads [31]

ϕ̈i = Pi − αϕ̇i − γ ϕ̇τ
i +

∑
j

Ki j sin(ϕ j − ϕi ), (9)

where Pi is the produced/consumed power at node i, and K =
(Ki j ) denotes the weighted adjacency matrix as before. Next to
the damping α > 0, the price elasticity γ > 0 acts as a second,
delayed damping term.

For the DSGC model, we obtain N delay master stability
conditions using Eq. (7),

0 < γτ <
1

y∗
k

√(
y∗

k
2 − λkτ 2

)2 + (ατy∗
k )2. (10)

Here it is not a priori identifiable which root y∗
k = y∗

k (λk, τ )
determines stability for a given τ ; we must regard all Lapla-
cian eigenvalues λk . As an example, Fig. 2 depicts y∗

k as a
function of τ for the star topology [Fig. 1(a)]. The root y∗∗

k is
not relevant because γ τ > 0. Analogous to the previous case,
we may formulate Eq. (10) as a dMSF σ (λk, τ ). Then, the sys-
tem is stable in all regions where σmax(τ ) := max

λk

σ (λk, τ ) <

0.
Calculating σmax for the star topology [Fig. 1(a)], we now

have contributions from all three distinct eigenvalues λk as
illustrated in Fig. 1(c). In addition to a stable regime beginning

at τ = 0, there exist further windows of stability for larger de-
lays, corroborating prior results based on numerical analysis
[31].

VI. NETWORKS

For frequency delays, we conjecture that the length of
the first stability window, extending from τ = 0 to a critical
delay τc, is determined by λN . In the limit of an infinite,
heterogeneous graph, its Laplacian spectrum may be expected
to become quasicontinuous, such that further stability win-
dows vanish. Thus, in both frequency and phase delay, the
maximum eigenvalue of the effective graph Laplacian plays a
crucial role. Several bounds and estimates in terms of network
characteristics have been published for the largest Laplacian
eigenvalue of a weighted graph, e.g., [33]. Therefore, our
method may provide insight even without explicitly diago-
nalizing L, which could be practical particularly for large
systems.

Finally, we explore how the critical delay τc (end of the first
stability window) depends on the network structure in both
models. As a versatile example, we generate Watts-Strogatz
networks [34] with different rewiring probabilities p, mean
degrees k, and number of nodes N [e.g., Fig. 3(a)]. Consumers
and producers are placed alternately on the initial ring graph.
The results for varying p, k, and N [Figs. 3(b)–3(d)] show
that the critical delay decreases with an increasing number

FIG. 3. Critical delay τc on Watts-Strogatz networks. Part
(a) shows a network example for N = 100 nodes, degree k = 4,
and rewiring probability p = 0.5. Consumers/producers with equal
power input/output, connected via lines of equal admittance, are
placed alternately on the original ring graph. Plots (b)–(d) illustrate
how τc depends on p, k, N for the inverter model (phase delay, green
circles) and for the DSGC model (blue triangles). Parameter values
not explicitly given are N = 100, k = 4, p = 0.5; model parameters
are as in Fig. 1. Vertical axes are normalized for each series; data
points are averaged over 10 realizations.
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of nodes and edges as well as randomness of the system,
which emphasizes the significance of delays for the design
and control of real-world dynamical systems. However, the
decline is smaller for the DSGC model compared to the droop-
controlled inverter model.

VII. CONCLUSION

In this paper, we present an analytical approach to assess
the asymptotic stability of synchronized inertial oscillator
networks with delayed dynamics. Specifically, we consider
processing delays either in the phase or in the frequency.
We show how to extend the master stability formalism to an
arbitrary lag time, obtaining dMSFs in terms of the delay τ

and eigenvalues of the effective graph Laplacian L. Unlike
MSF, we more generally consider phase synchronization and
allow for constant inhomogeneities in the local dynamics of
otherwise identical oscillators. A block decomposition of the
linearized model yields necessary and sufficient stability con-
ditions that deliver an analytic expression for the dependence
on the network structure. These criteria involve maximally
2N decisive roots. In contrast, previous numerical asymptotic
stability analyses rely on randomly computing a significantly
larger number of characteristic roots without being certain that
all decisive roots have been found. Illustrating our approach,
we consider two concrete models for renewable power grids
as our main applications. Notably, we are able to boil down
the problem of stability to a single condition in the case of
the droop-controlled inverter model. This model is a delayed
version of the widely used second-order Kuramoto model,
suggesting similarly concise results for other applications
from flashing fireflies to coupled Josephson junctions [35].
With respect to future power grids, we believe that our
method can contribute to the development of design criteria
for inverter-based systems and smart grids. Generally, our
results advance the stability analysis of dynamical systems on
complex oscillator networks complying with Eq. (3).

Due to its increasing importance in real-world applica-
tions, delay stability in complex systems remains an impor-
tant topic with many open challenges. Our work paves the
way for a different analytic approach on this subject. From
the perspective of power grids, it is crucial also to tackle
nonidentical oscillators, to consider multiple delays, and to
consider combined phase and frequency delays. In the wider
context of physical systems, it is also highly interesting to
study more general stability criteria for diffusive coupling
with transmission delays.
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APPENDIX A: COEFFICIENTS OF SECOND-ORDER
DDE BLOCKS

The coefficients in Eq. (4) are given by

ak = Fω − λkGω, aτ
k = F τ

ω − λkGτ
ω,

(A1)
bk = Fϕ − λkGϕ, bτ

k = F τ
ϕ − λkGτ

ϕ,

where

Fϕ := ∂ fi(ϕi, ϕ̇i )

∂ϕi

∣∣∣∣
ϕ∗

,

Fω := ∂ fi(ϕi, ϕ̇i )

∂ϕ̇i

∣∣∣∣
ϕ∗

,

Gϕ := 1

wi j (ϕ∗)

∂g(�ϕi j,�ϕ̇i j )

∂ (�ϕi j )

∣∣∣∣
ϕ∗

,

Gω := 1

wi j (ϕ∗)

∂g(�ϕi j,�ϕ̇i j )

∂ (�ϕ̇i j )

∣∣∣∣
ϕ∗

. (A2)

Elements of the delayed Jacobians are written analogously as
F τ

ϕ , etc.

APPENDIX B: GENERAL DERIVATION

We outline the derivation of our approach based on the
inertial oscillator model described by Eq. (3) of the main text.
Here we present a more elaborate variant. (Ref. [36] provides
further discussions, figures, and a software implementation in
the Julia language.) This allows us to illuminate the under-
lying assumptions of our method and discuss why including
communication delays involves a strong restriction.

Recall that we formulate the oscillators’ dynamics in a ref-
erence frame corotating with the frequency 
. A synchronous
state where all oscillators are entrained to frequency 
 corre-
sponds to a fixed point characterized by ωi = ω̇i = 0 ∀i.

Instead of the second-order form stated in Eq. (3), we
may equivalently express our inertial oscillator network model
as a set of first-order DDEs by treating the phase angles
ϕi(t ) and angular frequency deviations ωi(t ) = ϕ̇i(t ) as two
independent variables for each node. We thus define the vector
xi ≡ (ϕi, ωi )	 and write

ẋi = f i(xi ) + f τ
(
xτ

i

)
+

N∑
j=1

Ai j
(
g00(xi, x j ) + gττ

(
xτ

i , xτ
j

) + g0τ
(
xi, xτ

j

))
,

(B1)

where we have abbreviated xi ≡ xi(t ) and xτ
i ≡ xi(t − τ ).

Here we denote vector-valued functions (R2 → R2) by bold
letters, while fi, f τ , g, and gτ will remain the scalar functions
introduced in the main text; e.g., f i(xi ) = (ωi, fi(ϕi, ωi ))	. In
contrast to Eq. (3), this form now includes a communication
delay via the function g0τ (xi(t ), x j (t − τ )). Furthermore, note
that the coupling functions g00, gττ , and g0τ may depend on xi

and x j in an arbitrary fashion.
A communication delay of the type mentioned above may

describe transmission or propagation lags between nodes. The
intuition is that a change of node i at time t depends on the
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history of connected nodes because it takes the time τ until a
signal from a node j reaches node i.

We now linearize Eq. (B1) around a fixed point x∗ =
(x∗

1, . . . , x∗
N )	 defined by the conditions ẋ∗

i = (0, 0) for all i.
The set of fixed points constitutes the phase synchronization
manifold Z ,

Z := {xi ∈ Z ⊂ R2 : i = 1, . . . , N and ẋi = (0, 0) ∀i}.
Substituting xi = x∗

i + ηi, with ||ηi|| small for all i, yields

η̇i ≈ Di f iηi + Di f τ ητ
i

+
N∑

j=1

Ai j
[(

D1
i jg

00ηi + D2
i jg

00η j
)

+ (
D1

i jg
ττ ητ

i + D2
i jg

ττ ητ
j

) + (
D1

i jg
0τ ηi + D2

i jg
0τ ητ

j

)]
,

(B2)

where Jacobian matrices, all evaluated at the fixed point, are
written in short notation,

Di f := ∂ f (xi )

∂xi

∣∣∣∣
x∗

i

, D1/2
i j g := ∂g(xi, x j )

∂xi/ j

∣∣∣∣
x∗

i ,x∗
j

and ητ
i ≡ ηi(t − τ ). Due to the relation ωi = ϕ̇i between

coordinates of the vector xi, some elements of the Jacobians
are immediately 0 or 1. In particular,

Di f i =
[

0 1
∂ϕi fi ∂ωi fi

]
, Di f τ =

[
0 0

∂ϕi f τ ∂ωi f τ

]
, (B3)

where ∂m f denotes the partial derivative of the function f
by the argument m, evaluated at the fixed point. In the same
manner,

D1
i jg

00 =
[

0 0
∂ϕi g ∂ωi g

]
, D2

i jg
00 =

[
0 0

∂ϕ j g ∂ω j g

]
, (B4)

and so on. We emphasize that these Jacobians depend on
the fixed point. For the phase synchronization manifold, this
implies that the Jacobians may differ for different i and j.

1. Antisymmetric coupling

Assume now that the following hold true:
(i) There is no communication delay (i.e., g0τ = 0).
(ii) The linearized coupling between two nodes i and j is

antisymmetric, that is, D1
i jg

00(x∗
i , x∗

j ) = −D2
i jg

00(x∗
i , x∗

j ) and
D1

i jg
ττ (x∗

i , x∗
j ) = −D2

i jg
ττ (x∗

i , x∗
j ).

This is fulfilled by the model discussed in the main text
[Eq. (3)], where we have diffusive coupling. The antisymme-
try requirement will allow us to write the problem in terms of
the effective graph Laplacian matrix L.

Our goal is to decouple local information about the dy-
namics of single nodes from global terms characterizing the
network as a whole. Mathematically, this is achieved when
local 2 × 2 matrices and global N × N matrices factorize into
a Kronecker product (symbolized by ⊗).

If we have complete synchronization (i.e., all nodes os-
cillate with identical frequency and phase angle), the Jaco-
bians are homogeneous for all i, j, resulting in immediate
Kronecker factorization. This is not true for the more general

case of phase synchronization. Nonetheless, to achieve a de-
composition we impose the following restrictions in analogy
to the main text:

(iii) The Jacobians of the local functions f and f τ , respec-
tively, evaluated on the phase synchronization manifold, are
identical for all nodes:

F := D1 f = D2 f = · · · = DN f ,

F τ := D1 f τ = D2 f τ = · · · = DN f τ .

(iv) The Jacobians of the coupling functions g00 and gττ ,
respectively, evaluated on the phase synchronization mani-
fold, are identical for all i, j up to a prefactor wi j (x∗

i , x∗
j ) ∈ R,

which contains all dependencies on the fixed point. It has the
property wi j = w ji > 0,

wi j (x
∗
i , x∗

j )G00 := D2
i jg

00(x∗
i , x∗

j ),

wi j (x
∗
i , x∗

j )Gττ := D2
i jg

ττ (x∗
i , x∗

j ).

With these assumptions, all dependencies on the fixed
point may be absorbed in the effective adjacency matrix A
with entries Ai j := wi jAi j . Since we assume antisymmetric
coupling [assumption (ii)], we may furthermore replace A
by the effective graph Laplacian matrix L given by Li j :=
δi j

∑
j Ai j − Ai j . Now, the set of linearized DDEs reads

η̇i = Fηi + F τ ητ
i −

N∑
j=1

Li j
(
G00η j + Gττ ητ

j

)
, (B5)

or, in vector notation for the entire system, η = (η1, . . . , ηN )	,

η̇ = [IN ⊗ F − L ⊗ G00]η + [IN ⊗ F τ − L ⊗ Gττ ]ητ .

(B6)

Here IN is the N-dimensional unit matrix. According to
assumption (iv), L is symmetric and therefore diagonal-
izable. Switching to a basis B of eigenvectors via the
coordinate transform ξ = [TB ⊗ I2]η, we diagonalize L =
T −1
B �TB to obtain the diagonal matrix of its eigenvalues,

� = diag(λ1, . . . , λN ). This leads to a block-diagonal form;
each two-dimensional block is given by the equation

ξ̇k = (F − λkG00)ξk + (F τ − λkGττ )ξ τ
k , (B7)

where k ∈ 1, . . . , N . (Note that we have switched the index
from i to k to emphasize that ξ represents the state vector in
the eigenbasis B.)

Similar to the master stability formalism, we have thus
decomposed the problem into blocks that vary only in the
effective Laplacian eigenvalue λk . All eigenvalues are non-
negative and λ1 = 0 because, according to the properties
of an undirected graph’s Laplacian matrix, L is positive-
semidefinite.

Recalling that the two components of the vector xi are
related via ωi = ϕ̇i, we may write Eq. (B7) in second-order
form. The vector φ of all phase angles is given by the linear
combination φ = ∑

k vkθk , where vk is an eigenvector of L.
In terms of the phase angles in the transformed coordinates,
θk , we obtain the second-order DDE given in Eq. (4) with
coefficients stated in Appendix A. Following Bhatt and Hsu
[19], we state stability criteria in terms of these coefficients,
as discussed in the main text.
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2. Communication delays

The derivation above relies on the assumption of anti-
symmetric coupling between connected nodes i and j [as-
sumptions (i) and (ii)]. This permits rewriting the problem in
terms of the effective Laplacian matrix L, which leads to a
decomposition in its eigenvalues.

Let us briefly consider symmetric or asymmetric coupling,
which does not satisfy assumptions (i) and (ii). Notably, a
communication delay immediately destroys the antisymmetry
because the coupling function g0τ (xi, xτ

j ) evaluates its argu-
ments at different times. In this case, the problem cannot be
expressed in graph Laplacian form. Instead, we consider an
effective adjacency matrix A and an effective degree matrix
D. These matrices must then commute to allow a block
decomposition.

In the following, let g represent any of the functions g00,
gττ , or g0τ . When linearizing the inertial oscillator model, we
obtain one Jacobian D2

i jg(x∗
i , x∗

j ) containing derivatives with
respect to the jth node, and a second Jacobian D1

i jg(x∗
i , x∗

j )
with derivatives by xi. Replacing assumption (iv), we assume
the following:

(v) The adjacency matrix A and the Jacobian D2
i jg(x∗

i , x∗
j ),

evaluated on the phase synchronization manifold Z , factorize
into the direct product A ⊗ G(2) of an effective N × N adja-
cency matrix A and a universal 2 × 2 Jacobian G(2), such that
the local matrix G(2) is the same for all nodes and only A
depends on the indices i, j of the network.

Similarly, A and D1
i jg(x∗

i , x∗
j ) factorize into the direct prod-

uct A′ ⊗ G(1).
We require that A and A′ are symmetric matrices. Since A

and A′ are symmetric by assumption, they are diagonalizable.
We define the effective degree matrix D,

Di j :=
{

d̃i := ∑
l A′

il if j = i,

0 otherwise,
i, j, l ∈ 1, . . . , N.

Now we assume the following:
(vi) The matrices A and D commute, i.e.,

[A,D] = 0.

This implies that they are simultaneously diagonalizable.
In that case, the DDE [Eq. (B2)] decomposes into blocks in
terms of the eigenvalues of A and D. Then, the coefficients
in Eq. (4) are functions of these eigenvalues instead of the
eigenvalues λk of the graph Laplacian matrix L, and our
method can be applied in analogy to the antisymmetric case.

Regular graphs with homogeneous weights present a spe-
cial case in which [A,D] = 0. For more complex network
topologies, however, assumption (vi) is generally not satisfied.

APPENDIX C: DROOP-CONTROLLED INVERTER MODEL

Here we provide further details on the renewable inverter-
based power grid model with processing delay, considered as
a central application of the phase delay case. For additional
information on the theoretical study of power systems, we
refer the reader to [28,37–38].

To model a renewable power system with phase delay, we
describe the dynamics of grid-forming inverters (represented
by nodes of the network) using the swing equation [28,37],

miϕ̈i + αiϕ̇i = Pd
i − Pel

i . (C1)

Here ϕ(t ) denotes the phase angle, mi the inertia, ai the
damping constant, and Pd

i the desired power set point of the
ith node. The set point is positive for production and negative
for consumption. Furthermore, we write the electrical power
at node i as

Pel
i =

∑
j

U 2
0 |Bi j | sin(ϕi − ϕ j ), (C2)

where U0 denotes the AC voltage amplitude, which is assumed
constant throughout the system, i.e., U0 = Ui ∀i [36]. Bi j

represents the susceptance of the transmission line between
nodes i and j (we may choose its value to be zero if i and j are
not directly connected). Equation (C2) expresses a common
choice in the literature to model steady-state power flow [28].
It follows when neglecting losses (purely inductive power
lines) and assuming that all phase differences |ϕ j − ϕi| <

π/2.
According to Eq. (C2), the power flow along a transmission

line between two nodes depends on the phase angle difference
between them. Let us suppose that the state of this power line
(an edge in the network) enters the frequency control, yet with
a processing delay. One way to model this would be delayed
coupling, where the phase difference is evaluated at time
(t − τ ).

Furthermore, we introduce the weighted adjacency matrix
Ki j := U 2

0 |Bi j | and define α̃ = αi/mi, β̃ = 1/mi ∀i, assuming
homogeneous inertia-specific damping and droop constants.
This leads to

ϕ̈i = α̃ϕ̇i + β̃

(
Pd

i −
N∑

j=1

Ki j sin
(
�ϕτ

ji

))
, (C3)

which corresponds to the droop-controlled inverter model
presented in Eq. (1) of the main text.
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