$\gamma\text{-}\mathbf{Spektroskopie}$ deformierter Kerne mit binären Reaktionen

Im Fachbereich Physik der Freien Universität Berlin eingereichte Dissertation zur Erlangung der Doktorwürde

von

Severin Thummerer

aus München

Dezember 1999

Gutachter:

Prof. Dr. Wolfram von Oertzen Prof. William Brewer, PhD

Inhaltsverzeichnis

1	Ein	führun	g und Motivation	1
2	Methodik der Teilchen- γ -Spektroskopie			
	2.1	Zielset	zung und allgemeine Methodik der γ -Spektroskopie	3
	2.2	Entwi	cklung der γ -Detektor-Anordnungen	5
	2.3	Zugän	gliche Reaktionstypen	9
3 Theoretische Grundlagen der Kerndeformation und Compoundkern dung		che Grundlagen der Kerndeformation und Compoundkernbil-	13	
	3.1	Comp	oundkernbildung und -Zerfall	13
		3.1.1	Schwerioneninduzierte Reaktionen	13
		3.1.2	Zustände mit hohem Drehimpuls	14
		3.1.3	EHFM-Methode für Compoundkern-Zerfall	17
	3.2	Kernd	eformation	19
		3.2.1	Das Nilsson-Modell	19
		3.2.2	Nilsson-Strutinsky-Rechnungen	23
		3.2.3	Das α -Cluster-Modell	25
		3.2.4	Die Harvey-Regeln	27
		3.2.5	Ergänzende Bemerkungen zur Auswahl geeigneter Reaktionen zur Untersuchung hyperdeformierter Zustände in α -Cluster-Kernen	27
4	Unt	ersuch	ung binärer Reaktionsmechanismen I: $^{36}\mathrm{Ar} ightarrow ^{24}\mathrm{Mg}$	31
4.1 Experimente		Exper	imenteller Aufbau	31
		4.1.1	Das Binary Reaction Spektrometer (BRS)	32
		4.1.2	Das γ -Spektrometer OSIRIS	37
	4.2	Daten	aufbereitung und Eichungen	38
		4.2.1	Eichung der BRS-Detektoren	38
		4.2.2	Eichung der OSIRIS-Detektoren	43

	4.3	4.3 Ergebnisse für 36 Ar + 24 Mg			
		4.3.1	Binäre und nicht-binäre Reaktionskanäle	48	
		4.3.2	Ladungs-Verteilungen	49	
		4.3.3	Massen-Verteilungen	51	
		4.3.4	<i>Out-of-Plane</i> -Winkel-Korrelationen	51	
		4.3.5	Variation des 2-Körper-Q-Wertes	57	
		4.3.6	Teilchen- γ -Koinzidenzen	58	
	4.4	Zusan	nmenfassung	61	
5	Untersuchung binärer Reaktionsmechanismen II: ${}^{32}S \rightarrow {}^{24}Mg$ 63				
	5.1	Wahl	des Streusystems	63	
	5.2	Exper	imenteller Aufbau	67	
		5.2.1	Das γ -Spektrometer Euroball	68	
		5.2.2	Der BRS-Aufbau	68	
	5.3	Daten	aufnahme, Datenauswertung und Eichungen	71	
		5.3.1	Datenaufnahme	71	
		5.3.2	Datenauswertung	72	
		5.3.3	Eichung der Teilchen-Detektoren	72	
		5.3.4	Eichung der γ -Detektoren	73	
	5.4	Identi	fikation binärer Kanäle	76	
		5.4.1	$^{24}Mg(^{32}S, ^{46}Ti + 2p)^{8}Be$	77	
		5.4.2	$^{24}Mg(^{32}S, ^{44}Ti)^{12}C$	81	
		5.4.3	$^{24}Mg(^{32}S, ^{36}Ar)^{20}Ne$	83	
	5.5	Rekon	struktion der Kinematik des nicht-detektierten Kerns	83	
	5.6	Überle	egungen zum detektierbaren Wirkungsquerschnitt	85	
	5.7	Zusan	nmenfassung	87	
6	Unt	ersuch	ung der ⁸ Be-Emission aus binären Reaktionen	89	

	6.1	Experimenteller Aufbau		
		6.1.1	Das γ -Spektrometer GASP	9
		6.1.2	Der Teilchen-Detektor ISIS	0
6.2 γ -Yields für ⁸ Be- und 2 α -Trigger		ds für ⁸ Be- und 2α -Trigger	1	
		6.2.1	Abschätzung der zufälligen 2α -Koinzidenzrate 9	3
		6.2.2	$^{24}Mg(^{32}S, ^{48}Cr)^{8}Be$	5
		6.2.3	$^{24}Mg(^{32}S, ^{47}V + p)^{8}Be$	1
		6.2.4	$^{24}Mg(^{32}S, ^{44}Ti)^{12}C$	6
	6.3	EHFM	I-Rechnungen für die ⁸ Be-Emission	9
7	Zus	amme	nfassung und Ausblick 113	3
\mathbf{Li}	Literaturverzeichnis 115			

Abbildungsverzeichnis

1	Nachweiswahrscheinlichkeit für verschieden e $\gamma\mbox{-}{\rm Folds}$	5
2	Observational Limit I	6
3	Observational Limit II	7
4	Schematische Aufbauzeichnung von Euroball III	8
5	Winkelverteilungen von Verdampfungsrestkernen $\ . \ . \ . \ . \ . \ .$	10
6	Klassifizierung von Wechselwirkungsmechanismen	13
7	Schematische Darstellung der Compoundkernabregung	16
8	Stabilität des rotierenden Kerns gegenüber Spaltung	17
9	Einteilchenzustände im Schalenmodell mit Nilsson-Potential	21
10	Drehimpulsprojektionen des Nukleons	22
11	Energieniveaus für das Potential eines harmonischen Oszillators	23
12	Nilsson-Strutinsky-Rechungen für $^{20}\mathrm{Ne},^{24}\mathrm{Mg}$ und $^{32}\mathrm{S}$	24
13	Dichteverteilungen für verschiedene Konfigurationen in $^{56}\mathrm{Ni}$	26
14	Geometrische Anordnungen der α -Cluster in ⁵⁶ Ni	26
15	Harvey-Diagramm für die Reaktion $^{24}{\rm Mg}(^{32}{\rm S},^{40}{\rm Ca})^{16}{\rm O}$	28
16	Struktureller Übergang in Folgekernen nach α -Emission	29
17	Deformation von ${}^{48}\mathrm{Cr}$ für verschiedene Werte des Drehimpulses	29
18	Aufbau des OSIRIS $\gamma\text{-}\mathrm{Spektrometers}$	32
19	Aufbauzeichnung der BRS-Teleskope	33
20	Aufbauzeichnung der Niederdruckvieldrahtkammer	34
21	Schematische Darstellung der Bragg-Ionisationskammer	35
22	Funktionsweise der Bragg-Ionisationskammer	36
23	Querschnitt durch einen Ge-Detektor	37
24	Streuwinkel im Experiment	39
25	Ortseichung der MWC	40
26	$\bar{\Phi}$ -Verteilung	42

27	θ^l -Verteilung	42
28	Braggpeak-Range- und Braggpeak-Energie-Korrelationen	44
29	Energie-Eichung der Bragg-Kammern	45
30	Energie-Auflösung des OSIRIS-Spektrometers	45
31	Zeitsignale der Ge-Detektoren	46
32	Winkeldefinitionen für die Dopplerkorrektur	47
33	Braggpeak-Range-Korrelationen mit $Z_3 = 12$	50
34	Systematik des Ladungs defizits ΔZ	50
35	Verteilung der Kernladung Z_4 bei festem Z_3	52
36	Gemessene Massenverteilung	52
37	Out-of-plane-Winkelkorrelationen	53
38	Braggpeak-Range-Korrelation für $Z_3=18$	55
39	Summe der Streuwinkel θ_3^l und θ_4^l für $Z_3 = 12 \dots \dots \dots \dots \dots$	55
40	Verteilung der Streuwinkelsumme $\theta_3^l+\theta_4^l$	56
41	Q-Wert-Verteilung für den Kanal $Z_3=Z_4=15$	57
42	Teilchen-Teilchen- γ -Spektrum mit $Z_3 = 12$ und $Z_4 = 14$	58
43	Teilchen- γ -Spektrum für $Z_3=14$	59
44	Teilchen- γ -Spektrum für $Z_3=12$	60
45	γ -Spektren für $Z_3 = 12$ und $Z_4 = 14$ mit Q-Wert-Variation	60
46	Benutzter Reaktions mechansimus für das $^{32}\mathrm{S}+^{24}\mathrm{Mg}\text{-}\mathrm{Experiment}$	63
47	Banden in ⁴⁴ Ti	65
48	Viola-Systematik für das $^{32}\mathrm{S}+^{24}\mathrm{Mg}\text{-}\mathrm{Streusystem}$	66
49	Experimenteller Aufbau für das $^{32}\mathrm{S}+^{24}\mathrm{Mg}\text{-}\mathrm{Experiment}$	67
50	Seitliche Ansicht des Aufbaus	69
51	Energie-Braggpeak-Korrelation	73
52	Energie-Auflösung des Euroball-Spektrometers	75
53	Addback-Faktor als Funktion der γ -Energie	75

54	Effizienzeichung der Ge-Detektoren
55	Teilchen- γ - γ -Spektrum für ⁴⁶ Ti bei $E_L = 163.5 \text{ MeV} \dots \dots \dots \dots \dots 78$
56	Niveauschema von 46 Ti $\ldots \ldots $
57	Teilchen- γ - γ -Spektrum für ⁴⁶ Ti bei $E_L = 130 \text{ MeV} \dots \dots$
58	Teilchen- γ - γ -Spektrum für ⁴⁴ Ti
59	Winkelverteilung für ⁴⁴ Ti und ⁴⁶ Ti 82
60	Teilchen- γ - γ -Spektrum für ³⁶ Ar
61	γ -Spektrum aus der Rekonstruktion der inversen Kinematik
62	Differentieller Wirkungsquerschnitt für ⁴⁴ Ti 86
63	Normiertes Teilchen- γ - γ -Spektrum für ⁴⁴ Ti
64	Schema-Zeichnung des ISIS-Detektorballs
65	Teilchenidentifizierung im ISIS- Δ E-E-Diagramm 91
66	γ -Projektionen für verschiedene Teilchen-Trigger
67	Niveauschema für 48 Cr
68	γ -Spektrum mit Teilchentrigger auf ⁸ Be
69	Verhältnisse der Übergangsstärken in 48 Cr, Teil I $\ldots \ldots \ldots \ldots $ 99
70	Verhältnisse der Übergangsstärken in 48 Cr, Teil II $\ldots \ldots \ldots \ldots $ 99
71	Summe der ΔE - und E-Signale
72	$\gamma\text{-}\mathrm{Spektren}$ für verschiedene Teilchenbedingungen
73	Niveauschema für ${}^{47}V$
74	Verhältnisse der Übergangsstärken in ${}^{47}V$, Teil I $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 104$
75	Verhältnisse der Übergangsstärken in ${}^{47}V$, Teil II
76	Niveauschema für ⁴⁴ Ti $\dots \dots \dots$
77	Übersicht über die Verhältnisse der Übergangsstärken für $^{44}\mathrm{Ti}$ $~\ldots$ $~\ldots$ $~108$
78	Verhältnis der Emissionsrate von $^8\mathrm{Be}$ und zwei $\alpha\text{-Teilchen}$

7 Zusammenfassung und Ausblick

Diese Arbeit beschäftigte sich mit der Teilchen- γ -Spektroskopie deformierter Kerne, insbesondere von α -Cluster-Kernen in der Massengegend A = 36 - 56. Hier wurden aufgrund theoretischer Modellrechnungen unter Verwendung des Bloch-Brink- α -Cluster-Modells [Zha94b, Zha94a, Rae92] und der Nilsson-Strutinsky-Methode [Lea75] starke Deformationen bis hin zur Hyperdeformation vorausgesagt. Diese stark deformierten Kerne können besonders selektiv in binären Reaktionen gemessen werden. Aufgrund der Harvey-regeln [Har75] läßt sich zeigen, daß diese Konfigurationen besonders gut in dem inversen Streusystem ${}^{32}S + {}^{24}Mg$ bevölkert werden.

Im Rahmen dieser Arbeit wurden in drei Experimenten zwei Streusysteme (36 Ar + 24 Mg und 32 S + 24 Mg) mit zwei unterschiedlichen Methoden untersucht. In den Experimenten mit dem Binary Reaction Spectrometer (BRS) wurden binäre Reaktionskanäle mit und ohne anschließender Emission von leichten Teilchen untersucht.

Im ersten Experiment ³⁶Ar + ²⁴Mg bei $E_L = 195$ MeV am HMI wurde das γ -Spektrometer OSIRIS in Verbindung mit dem Teilchenspektrometer BRS verwendet. Im Gegensatz zu Experimenten mit anderen Triggerdetektoren wie ISIS oder Parallelplattenzählern, konnten durch den simultanen Nachweis zweier schwerer Reaktionsfragmente in kinematischer Koinzidenz bei gleichzeitiger Messung der Kernladungen und Energien beider Ejektile binäre Reaktionskanäle in Verbindung mit γ -spektroskopischen Methoden wesentlich selektiver untersucht werden. Gemessen wurden hierbei Teilchen-Teilchen- γ -Koinzidenzen. Es zeigte sich eine starke Korrelation der Reaktionsfragmente in der durch die Strahlachse und die Reaktionsfragmente definierten Ebene im Falle des Verlustes von vier oder sechs Kernladungen bei koinzidenter Detektion der beiden schweren Fragmente. Dies entspricht der Verdampfung von zwei oder drei α -Teilchen. Der Effekt wurde nicht nur bei in der Ladung geradzahligen Fragmenten (z.B. $Z_3 = 12$; $Z_4 = 14$ (²⁴Mg + ²⁸Si) oder $Z_3 = 10$; $Z_4 = 16$ (²⁰Ne + ³²S)), sondern auch in Kanälen wie $Z_3 = 15$; $Z_4 = 11$ (³⁰P + ²²Na), $Z_3 = 15$; $Z_4 = 9$ (³⁰P + ¹⁸F) oder $Z_3 = Z_4 = 13$ (²⁶Al + ²⁶Al) beobachtet.

Die Kombination des BRS-Spektrometers mit dem z.Z. leistungsfähigsten Ge-Detektor-Array, Euroball III, wurde zur Untersuchung des Streusystems ${}^{32}S + {}^{24}Mg$ bei $E_L =$ 163.5 MeV genutzt. Das Experiment fand am LNL, Legnaro (Italien) statt. Hierbei wurde unter Verwendung eines der beiden BRS-Detektoren Spektroskopie von binären Reaktionskanälen betrieben. Insbesondere wurde der binäre Ausgangskanal mit zusätzlicher 2-Protonen-Emission ${}^{24}Mg({}^{32}S, {}^{46}Ti + 2p){}^8Be$ untersucht. Dieses Experiment war der Test des gesamten Setups für ein geplantes Experiment an Euroball IV, mit dem hyperdeformierte Zustände in α -Cluster-Kernen nachgewiesen werden sollen. Der minimal beobachtbare Wirkungsquerschnitt wurde zu $\sigma = 21\,\mu$ b aus den Daten ermittelt. Bei der Verwendung beider BRS-Detektoren wird von einer Erniedrigung diese Wertes um mindestens eine Größenordnung aufgrund der wesentlich höheren Selektivität des Aufbaus bei der Messung zweier schwerer Reaktionsfragmente in kinematischer Koinzidenz ausgegangen. Damit wird dann der bislang beste bekannte Wert von $\sigma = 5 - 10\,\mu$ b deutlich unterschritten. Das dritte hier besprochene Experiment, ³²S + ²⁴Mg bei $E_L = 130 \text{ MeV}$, wurde durchgeführt am LNL, Legnaro, unter Verwendung des γ -Spektrometers GASP und des Si-Balls ISIS zum Nachweis leichter geladener Teilchen. Es diente zur Spektroskopie von f7/2-Kernen aus Fusions-Verdampfungs-Reaktionen und lieferte Daten zur Untersuchung der ⁸Be-Emissionen aus dem ⁵⁶Ni-Compoundkern. Si-Bälle wie der ISIS-Ball werden üblicherweise zum Nachweis von leichten geladenen Teilchen (p,d und α), nicht aber zur Detektion schwererer Teilchen verwendet. So ist die Identifizierung von ⁸Be als Pile-Up-Signal zweier α -Teilchen eine sehr ungewöhnliche Art der Spektroskopie, auch wenn ein solches Verfahren schon 1972 von Wozniak et al. verwendet wurde [Woz72]. Im Rahmen dieser Arbeit wurde festgestellt, daß im Falle von deformierten Seitenbanden in ⁴⁸Cr und ⁴⁷V die Emission von ⁸Be, d.h. die binäre Spaltung des Compoundkerns ⁵⁶Ni in ⁴⁸Cr + ⁸Be, bevorzugt wird gegenüber der Emission von zwei unkorrelierten α -Teilchen. Eine unterschiedliche Population der Grundzustands- und Seitenbande wurde auch in ⁴⁴Ti beobachtet, diese aber aufgrund der eingeschränkten Statistik nicht eindeutig als Verstärkung des binären Spaltkanals identifiziert.

Zu letzterer Fragestellung wurden Rechnungen, basierend auf der von Matsuse et al. [Mat97] entwickelten *Extended-Hauser-Feshbach*-Methode (EHFM), durchgeführt. Dazu wurde das Verhältnis der Wirkungsquerschnitte für die Emission von ⁸Be- bzw. zwei α -Teilchen in Abhängigkeit von der Deformation sowohl des Mutter- als auch des Tochterkerns untersucht. In Übereinstimmung mit den Voraussagen aus Arbeiten von Blann und Komoto [Bla80, Bla81] wurde festgestellt, daß eine Verstärkung des ⁸Be-Emissions-Kanals bei höheren Drehimpulsen des Compoundkerns, als im durchgeführten Experiment erreicht, verbunden mit einer größeren Kerndeformation zu erwarten ist.

Die nächsten experimentellen Schritte dieser Untersuchungen sind zum einen die Durchführung des in Abschnitt 5 beschriebenen Experiments zum Nachweis der hyperdeformierten Zustände in α -Cluster-Kernen an Euroball IV mit dem BRS und einem zusätzlicher Teilchenzähler zum Nachweis leichter geladener Teilchen und zum anderen weiterführende Untersuchungen der ⁸Be-, aber auch ¹²C-Emission in Abhängigkeit von der Kerndeformation.

Lebenslauf

Persönliche Daten

Name:	Severin Thummerer
Adresse:	Celsiusstr. 8, 12207 Berlin
Geburtsdatum und -Ort:	08.11.1968, München
Familienstand:	ledig

Ausbildung

Schule	
1975-1979	Grundschule an der Fürstenrieder Straße München
1979-1989	Pestalozzi-Gymnasium München
Studium	
1989-1995	NWF II, Universität Regensburg, Diplomstudiengang Physik
1994-1995	Diplomarbeit: Bestimmung von natürlichen Radionuklidkon- zentrationen mit der in situ Gammaspektrometrie, GSF- Forschungszentrum für Umwelt und Gesundheit, Oberschleiß- heim
1996-	Doktorarbeit: γ -Spektroskopie deformierter Kerne mit binären Reaktionen, Hahn-Meitner-Institut Berlin

Danksagung

Ohne die Mitwirkung und Unterstützung vieler Personen wäre die Durchführung dieser Arbeit nicht möglich gewesen.

An erster Stelle möchte ich meinem Doktorvater Prof. W. von Oertzen für die Möglichkeit, diese Arbeit in seiner Arbeitsgruppe am Hahn-Meitner-Institut durchzuführen, danken. Die vielen Diskussionen mit ihm haben wesentlich zum Gelingen der Arbeit beigetragen.

Ohne die Hilfe von Dr. B. Gebauer hätte diese Arbeit erst gar nicht entstehen können. Ich danke ihm für die unzähligen ausführlichen und geduldigen Erklärungen der diversen bis dato für mich unbekannten Aspekte sowohl auf experimenteller als auch theoretischer Seite auf dem Wege zur Vollendung dieser Arbeit.

Den übrigen Kollegen aus der Arbeitsgruppe SF7 (seit 1.1.2000, vormals FK) danke ich für die gute Zusammenarbeit und die freundliche Aufnahme in ihre Reihen. Zu nennen sind hierbei: Dr. H.G. Bohlen, Dr. Thomas Wilpert, Dr. Martin Wilpert, Dr. Abel Blazevic, Dr. Christian Schulz, Boris Hermann.

Eine besondere Abwechslung waren meine Aufenthalte am Laboratori Nazionali di Legnaro. Für die herzliche Gastfreundschaft und die Zusammenarbeit dort gebührt Dank vor allem Dr. S.M. Lenzi, Dr. D.R. Napoli, Dr. A. Gadea, E. Farnea, Dr. A. Algora und vielen anderen (besonders dem Pizza-Bäcker im Orient-Express und den Weinbauern der Colli Euganei).

Allen, die zum Gelingen dieser Arbeit beigetragen haben und hier nicht namentlich erwähnt sind, möchte ich ebenfalls meinen Dank aussprechen.

Last but not least danke ich meinen Eltern, ohne deren Unterstützung dieser Weg nicht möglich gewesen wäre.