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CHAPTER 1

Introduction

The assessment of constructs via questionnaires has a long tradition in psychological research.

For example, Gault (1907) provides an overview of the history of questionnaire-based assessment

in 1907, indicating a long standing tradition even then. And despite the numerous discussions

on advantages and disadvantages of the questionnaire as an assessment method, it is still widely

utilized in psychological assessment and research today. Especially closed-response questionnaires

have been at the center of many psychological investigations, even when they are combined with

other assessment methods, such as behavioral observation or, more recently, imaging techniques.

The reliance on questionnaires has spawned a great deal of guidelines, best-practices, and

gold-standards for the construction of a psychological scale (e.g Clark & Watson, 1995; Dawis,

1987; Furr, 2011; Simms, 2008). A large number of these classical standards for scale construction

are based on the trifecta of (a) the substantive component, (b) the structural component, and

(c) the external component, as proposed by Loevinger (1957) in her seminal paper on scale

construction. Roughly put, the three components can be thought of as corresponding to the

three large phases in scale construction, though none of the three phases should be completely

void of considerations regarding the other two components.

The first phase of scale construction is mainly concentrated on the substantive component

and thus aimed at maximizing content validity. Content validity concerns the degree to which

the contents of a scale represent the entirety of behavior which they are intended to allow con-

clusions about (Cronbach & Meehl, 1955). In this sense, its absence leads to wrong conclusions

about the relation of the intended construct to other constructs and behaviors (e.g. Raykov &

Marcoulides, 2011), and may thus jeopardize claims about any other type of validity. Loevinger

(1957) extended this concept to substantive validity, to ensure the emphasis on inclusion of the

broadest reasonable area of content into a scale. This is further differentiated by Allen and Yen
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(1979) into face validity and logical validity, with the former indicating the extent to which the

relation of a scale to its intended construct is obvious, and the latter indicating a more thorough

definition of a constructs and the behaviors it is manifested in, as well as its integration into a

more general nomological net. While these aspects are of critical importance to a scale’s quality,

Allen and Yen (1979, p. 96) note that “the determination of this type of validity is more subject

to error than are other types of validity”, further complicating this part of scale conceptualization.

The focal point of the substantive phase is the generation of a pool of potentially useful items

from theory and knowledge about the psychological concepts involved in the constructs which

the scale is bound to assess. This means that it includes the strict definition of the construct

and its manifestations in behavior, as well as an operationalization of the assessment of these

manifestations. In this phase it is important to cover all possible areas which are part of the

intended scope of the scale sufficiently, even at the expense of risking inclusion of irrelevant items

and facets.

The second phase revolves around the structural component, aiming at selecting items from

the pool in such a way that the scale fulfills a number of criteria about the desired structure.

The focal points during applications are often the reliability and adherence to the theoretically

derived factorial structure, be they classic unidimensionality or more complex structures. As

formulated by Loevinger (1957, p. 664), items should be selected “on the basis of empirical

properties, in particular, that those items be selected which best conform to an appropriate

structural model”. It is, however, of critical importance to consider that the empirical properties

do not equate to statistical criteria alone, but may also encompass other experiences made in the

application of the initial item pool. For example, items which were originally deemed acceptable

by the experts constructing the item pool, may be unclear to respondents, resulting in confusion

and non-response.

Finally, the third phase is focused on the validation of the scale on external criteria. These

external criteria may either by assessed simultaneously, thus being indicators of concurrent va-

lidity, or be available only at a later time, thus making their predictability by the scale indicators

of predictive validity. Concurrent validity is often subdivided further into convergent and dis-

criminant validity, with the idea being that a scale should show significant overlap (convergence)

with other indicators of the same construct or indicators of similar constructs and be appreciably

different from indicators of different constructs.

Table 1.1 gives an overview of this extremely brief introduction into the general phases of

scale construction. The focus in this thesis lies on the second phase, more specifically on the step

of item selection. A great deal of attention has been given to aspects regarding item selection,

because they are often deemed generalizable across a multitude of settings, allowing for the

development of techniques independently of the construction of specific scales.

There are some basic contradicting interests inherent to any item selection, the most promi-

nent of which is associated with the reliance on measures of internal consistency as indicators of
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Table 1.1: Overview of the phases of scale construction.

Phase Core Steps Goal

Substantive

• Construct definition

General item pool
• Literature Review
• Item formulation
• Response format selection

Structural
• Data collection

Potential scale• Assessment of item properties
• Item selection

External
• Data collection

Scale validation• Assessment of predictive and concurrent validity
• Cross-Validation of item selection

measurement reliability. Clark and Watson (1995) refer to this as the attenuation paradox, mean-

ing that there is a paradox in the fact that increasing internal consistency becomes detrimental

to a scale’s construct validity after a certain point. Boyle (1991) goes even further, referring to

internal consistency as a misnomer, indicating that it simply relates to redundancy of the as-

sessed items. This, in turn, means that scales with high internal consistencies may simply assess

a very narrow, specific facet of the much wider, originally intended construct. Thus, when oper-

ationalizing reliability as the consistency of multiple items in the same scale, there is a conflict

in the balance between high reliability (in order to make “clean” assessments of a construct) and

high substantive validity as put forth by Loevinger (1957). Falling too far into either extreme

can render a scale unusable as it may either become too noisy and broad or too narrow and

clean. This is, however, related only to the concept of reliability as internal consistency. The

pure definition of reliability in classical test theory as the proportion of variance that is due to

true-score differences, does not imply this conflict.

Eid and Schmidt (2014) describe six criteria, which should guide every item selection. These

criteria are shown in Table 1.2 and relate (mostly) to qualities of the final selection, not the

items themselves. Beyond these criteria guiding the empirical part of item selection, Eid and

Schmidt (2014) explicate two additional steps in item selection: (a) utilizing expert ratings of an

item’s adequacy in terms of substantive validity and (b) using process analysis to determine the

acceptance and understanding of items by subjects. As noted above, Loevinger (1957) believes

the former part of the construction of the item pool, not part of the item selection, showing how

closely these phases of scale construction are intertwined.

While stated relatively simply in Table 1.2, the criteria summarized by Eid and Schmidt

(2014) have potentially far-reaching implications. For example, the criterion of test fairness

implies that there are no consistent cultural effects on the assessment, thereby implying that

any scale used for assessing people from different cultural backgrounds must be, to some extent,
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Table 1.2: Criteria guiding item selection, according to Eid and Schmidt (2014).

Criterion Description

Adherence to mea-
surement model

Select only those items adhering to the proposed theoretical dimen-
sionality of the scale.

Accuracy Select items which increase the accuracy of the estimation of the
latent construct. This is related, but not limited, to the reliability
of an item.

Economy Construct a scale only as resource consuming as is strictly necessary.
Reasonability The measurement process is not unreasonably difficult or stressful

for participants.
Fairness The scale results do not systematically discriminate against certain

groups.
Integrity Results cannot be manipulated by the participant.

measurement invariant. This can, however, be an extremely difficult task to achieve. Some

constructs may be more relevant in one culture than in another, thus making the representation

much more fine-grained, necessitating more specific sub-domains in a questionnaire.

Thus, to allow for the potential fulfillment of the criteria, the assumption must be made that

items with the relevant properties exist in the original pool of items. Note, that this assumption

can be wrong for a wide array of psychological constructs and that there is potentially no way

of fulfilling the criteria set towards good item selection when the item pool is inadequate. In

such cases it would be necessary to either expand the item pool, thus also expanding the original

definition of the content area of the scale, or the exact opposite, reduce the assessment to those

sub-domains for which appropriate quality can be achieved.

In recent years especially, the criterion of economy has become more central in psychological

research. Due to increasing focus on studies concerned with a multitude of interrelations between

different constructs, longitudinal studies, ambulatory assessments, and online assessments, the

economy of each single scale is often decisive to the inclusion of an entire construct in a study.

This, in turn, has lead to wide usage of short scales. Kruyen, Emons, and Sijtsma (2013)

reviewed six psychological journals between 2005 and 2010 and found 7.48% to report the use

shortened scales. Despite this development having been met with a substantial degree of criticism

(e.g. Kruyen, Emons, & Sijtsma, 2012; Kruyen, 2012; Kruyen et al., 2013; Smith, McCarthy,

& Anderson, 2000), the usage of short-scales in psychological research has steadily increased

(Ziegler, Kemper, & Kruyen, 2014). To minimize shortcomings of the reduced versions of scales

a multitude of guidelines and clarifications have been proposed (e.g. Marsh, Ellis, Parada,

Richards, & Heubeck, 2005; Stanton et al., 2002; Ziegler et al., 2014).

However different the perception, the basic problem in scale shortening is the same as it is in

any form of psychometrically sound scale construction. Looking at the stages of scale construction

as proposed by Loevinger (1957) and summarized in Table 1.1, the only notable difference is in the
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origin of the item pool during the substantive phase. While a full scale construction requires the

explication of the psychological constructs and the nomological net surrounding it, this step has

already been performed in a situation in which an existing scale is shortened. The original scale

is equated to an original item pool and the remaining steps must be performed from there on.

The very first of the nine specific sins of short form development presented by Smith et al. (2000)

is the insufficiently validated original, indicating that even the first steps of scale construction

cannot be disregarded in short-form construction. Instead of deriving the substantive validity

of the item pool, an investigator shortening a scale must investigate the substantive validity of

the original scale. The remaining steps must also be followed in short-form construction, just

as they would be in the construction of a new, full scale. As Smith et al. (2000, p. 103) point

out “many investigators assume that all of the reliability and validity evidence of the original,

full-length measure applies automatically to the abbreviated version. This is false.”

Because of this fundamental equality of short-form and original scale construction, they are

not principally differentiated in this thesis. Instead, strategies to select items in the initial

construction of a scale and those designed for short-scale construction are generally deemed

suitable for both situations and the process is simply called “item selection”.

The criteria shown in Table 1.2 all relate to internal properties of the scale. While Loevinger

(1957) also explicitly separates the item selection (within the substantive phase) from scale

validation (within the external phase), there is good reason to include external criteria into the

process of item selection. In fact, some scales are defined primarily in relation to external criteria

(e.g. scales used in selection processes of potential employees or scales used to assess recidivism

risk in clinical psychology), making item selection based purely on internal criteria nonsensical.

Instead, criteria often linked to the external phase - predictive, concurrent, convergent, and

discriminant validity - may not only be relevant in evaluating a scale, but also be of central

importance in item selection.

The following section will provide a brief overview over classical and modern approaches

to item selection, before the conceptual representation of item selection used in this thesis is

presented. Finally, this chapter will close with an introduction into Ant Colony Optimization.

1.1 Methods of Item Selection

According to Dawis (1987), classic techniques of item selection strategies can be separated into

four distinct categories:

1. stimulus-centered methods,

2. subject-centered methods,

3. response scale methods, and
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4. external criterion methods.

Stimulus-centered scales are based on an individual application, meaning that they aim at

assessing the scaling of items within a single individual. These item can relate to a vast array

of things - e.g. relationships, specific life events, fear inducing pictures - the relevance of the

items is the meaning to the assessed individual. Thus, stimulus-centered scales do not aim at

comparing individuals with each other, but rather aim at comparing stimuli within the specific

representation of each individual. Because of this, they require much different approaches of item

selection than scales aimed at assessing interindividual differences. While many early approaches

of item selection focus on stimulus-centered scales (e.g. the Thurstone method or Q-sort; cf.

Dawis, 1987), these approaches are not of interest here. Within this thesis, the main focus lies

on the item selection in subject-centered scales.

Perhaps the first widely recognized item selection technique for subject-centered item selec-

tion was presented by Likert (1932). Herein, those items are chosen from the item pool which

best discriminate between the groups of participants, which score highest and lowest on the total

sum score across all items in the item pool. As Dawis (1987) points out, this approach was later

translated into selecting items based on the item-total correlation. Neill and Jackson (1970) eval-

uated seven different approaches utilizing this item-total correlation to select items, concluding

all seven to lead to solutions of equivalent psychometrical quality.

Because these methods are limited to unidimensional scales, factor analytical approaches were

adapted for the use in item selection. The earliest of these approaches are based in exploratory

factor analysis (EFA) and aim at selecting those items most clearly associated with each of the

identified facets. As is the case with methods based on item-total correlations, these approaches

heavily favor items which assess subdimensions in a similar fashion, irrespective of their substan-

tive importance. To remedy this critique, Dawis (1987) proposed the identification of anchor

items followed by the elimination of items which show too low correlations with these anchors.

Factor analytical strategies can then be applied to this reduced item pool.

The third group of item selection techniques is labeled response scale methods and is tradi-

tionally associated with item response theory (IRT). Because an in-depth introduction into IRT

is beyond the scope of this thesis, the reader is referred to Embretson and Reise (2000) and

Hambleton and Swaminathan (1985) for more information. Within IRT, items can be selected

from the original pool on the basis of their discrimination and difficulty parameters or by eval-

uating the item-information-function, to achieve a scale that provides a reliable assessment for

the desired range of the underlying dimension. In contrast to the two types described, this shifts

the focus of item selection from the scale to the items: items are selected due to their ability in

assessing the underlying construct.

Beyond IRT, response scale methods have also been used in item selection for scales con-

structed under classical test theory (CTT), which is the theory of measurement this thesis will

focus on. As a result of the wide spread of the use of confirmatory factor analysis (CFA) in
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psychological science during the early years of the 21st century, response scale methods and

the necessary modeling have become widely accessible to psychological researchers (for detailed

introductions to CFA see, e.g. Brown, 2015; Kline, 2011; Schumacker & Lomax, 2016). CFA

approaches allow - much like IRT approaches - for the definition of a theoretical measurement

model, which is assessed in its fit to a specific data setting. Thus, in contrast to EFA-based

techniques to item selection, they provide an inferential test as to whether the selected items

confirm to the proposed internal structure of the scale. In fact, under specific circumstances IRT

and CFA are proven to be equivalent (Takane & de Leeuw, 1987), leading many researchers and

modern textbooks to differentiate between IRT and CFA measurement models mainly due to

the item format (e.g. Eid & Schmidt, 2014; Furr, 2011; ten Holt, van Duijn, & Boomsma, 2010;

Raykov & Marcoulides, 2011). In CFA, items are most often selected due to two criteria: their

adherence to the proposed measurement model and some indicator of their reliability. The for-

mer is often operationalized via modification indices, which help identify the specific restrictions

imposed by a measurement model that lead to a discrepancy between the model and the empir-

ical evidence (e.g. Brown, 2015). This is comparable to techniques utilizing EFA, where items

are removed if they show cross-loadings above a certain threshold, thus undermining unidimen-

sionality (Dawis, 1987; Neill & Jackson, 1970). Reliabilities are often included more indirectly,

by selecting those items with the highest standardized factor loadings. While this may seem

counter-intuitive, these are not necessarily indicators of an item conforming to the measurement

structure. Instead, when assuming that an item measures only one construct (irrespective of the

number of constructs underlying a scale), the standardized factor loading is simply the square-

root of its reliability. Thus, these loadings indicate the reliability of an item given the assumed

measurement model is true.

In a literature review of articles presenting the construction of psychological scales by ten

Holt et al. (2010), only 6 of 46 studies used approaches other than factor analytical or IRT-based

approaches. Of the 40, only ten used techniques not classically categorized as a response scale

method, instead relying solely on EFA in item selection and validation of the measurement struc-

ture. Additionally, ten Holt et al. (2010) found that CFA approaches significantly outnumbered

IRT approaches in scale construction, though only few of the studies explained their choice of

one over the other.

The fourth large group of item selection methods are external criterion methods. As the

name suggests, these techniques are mainly concerned with the relation of items to external

criteria, thus leading to a selection process which maximizes predictive and concurrent validity.

Most often these criteria are correlations or regressions with variables outside the item pool, but

techniques aimed at maximizing group differences are also commonly found in clinical psychology.

The last is similar to the Likert approach described above, but differs in that the groups for which

differences in the scale are maximized are not derived from the item pool but are rather given by

some external criterion (e.g. a clinical diagnosis). Correlative and regression approaches can be
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applied either at the level of the scale or at the item-level (Goldberg, 1972), with quite different

results. Regression methods on the item-level use an external criterion as the dependent variable

in multiple regression and add items from the item pool until the quality of the prediction no

longer increases. As can be derived from the properties of multiple regression, this leads to

a very broad, heterogeneous scale. Goldberg (1972) concluded that these methods resulted in

scales that were not better - in terms of concurrent validity - than those arrived at solely by

theory-guided item selection.

Notably absent from Dawis (1987) classification are methods selecting items based on their

theoretical and substantive merit. This is due not to a proposed ignorance of theoretical criteria

during item selection, but rather due to the fact that these criteria are less readily formalized and

must therefore be defined on an application specific basis. Additionally, many ad-hoc impositions

are often placed on the item selection process (e.g. including a similar amount of positively and

negatively phrased items).

1.2 Strategies of Item Selection

The last section presented techniques to select items. Each single technique is easily implemented

with modern analysis software, but often a scale is not constructed to fulfill only one criterion.

Instead, multiple conflicting criteria define the quality of a scale. A scale must simultaneously

be economically short and contain enough items to be reliable, be fair to all but provide enough

intentional discrimination on a latent construct, be internally consistent and heterogeneous in

order to predict outcomes well. These conflicts are also reflected in item selection, where it

becomes necessary to utilize multiple techniques in selection.

Perhaps the most prominent conflict is between internal consistency and narrowness of the

measured construct. Choosing items based solely on item-scale correlations or maximal factor

loadings may (and most probably will) result in the assessment of what Boyle (1991) calls a

“bloated specific”, meaning that one specific component of a more broadly defined constructed

is exaggerated in its importance. While this may be avoided to some extent by appropriately

defining sub-dimensions of constructs, these bloated specifics may also be the result of similarities

in item formulation that are far removed from the original construct. For example, selecting

items to represent the gregariousness sub-dimension of extraversion may be distorted by musical

preferences, when asking about party activity. A remedy proposed by Dawis (1987) is the

selection of anchor items and the elimination of items which do not correlated strongly enough

with these anchors. This imposes a two-step strategy, which is symbolic of many selection

strategies in scale construction because it implies a sequential form of item selection to account

for different demands placed upon the final scale.

Stanton et al. (2002) propose the ten-step best-practice procedure for item selection presented

in Table 1.3. These steps are created as a guideline for item selection and require the implemen-
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Table 1.3: Ten-Step item selection procedure proposed by Stanton et al. (2002, p. 188).

Step Goal Method

1 Item level indices of external item qual-
ity

Item-criterion correlations

2 Indicators of internal item quality Item-total correlations or factor load-
ings

3 Index of substantive item quality Experts’ or respondents’ judgment of
face validity

4 Item quality ranking Three item quality judgments
5 Select high-rankings items Quality ranking and professional judg-

ment
6 Quality assessment of constructed

scale
External correlations, correlation with
full item pool

7 Reliability and internal consistency Reliability and internal consistency es-
timates

8 Scale validation Assess scale and external criteria in
new sample

9 Quality assessment of scale Repeat steps 6 and 7 in new sample
10 Cross-validate scale performance Multiple Group SEM to compare scale

in both samples

tation of a number of the techniques described in the previous section. The first four steps are

intended to accommodate different demands posited towards a scale, thus combining different

aspects of item quality in the selection of items.

A more rigorous approach was used by Johnson (2014) in the construction of the IPIP-NEO-

120, a 120-item scale assessing the Big Five personality traits, each composed of six specific

facets. He first eliminated items based solely on the item-total correlations and then evaluated

the substantive quality of the resulting scale. Item combinations resulting in too narrow scales

were exchanged for more meaningful items and reliability was evaluated again. In their item

selection for a short-form of the Self-Description Qeustionnaire II (a questionnaire assessing

the general self-concept of adolescents) Marsh et al. (2005) followed six self-imposed guidelines

pertaining to item-total correlations, minimal cross-loadings and residual correlations, minimal

non-response, and what they call “subjective evaluations of the content” (Marsh et al., 2005,

p. 85). In their construction of the PPPM-SF - an observational checklist for the assessment of

postoperative pain in children - von Baeyer, Chambers, and Eakins (2011) also utilized item-total

correlations and item-criterion correlations.

Common to these selection strategies (and those implemented in countless other scale con-

structions in the past years) are three closely related shortcomings. First, they aim at fulfilling

the criteria presented in the previous section for the constructed scale, but often select items

based on information about the items. While there is no doubt that those qualities will be re-

lated, it is not necessarily the case that selecting items which show good qualities will result in a
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good scale. Selecting items without regard for the other items selected in the scale may result in

very narrow scales, because very similar items will often have very similar qualities. Thus, the

second shortcoming ensues: sequential item selection. In most cases items will be selected based

on some sort of order - e.g. the ten-step procedure proposed by Stanton et al. (2002) proposes

selecting items based on a ranking. This often results in the following problem: assume a scale

assesses relationally aggressive behavior with items describing concrete behaviors and a rating

scale, indicating how frequently a participant believes to display such behavior. Assume two

items pertain to behaviors displayed towards family members. Because the scale is intended to

assess behaviors from a wide array of contexts it may be reasonable to select the better per-

forming of the two family-related items and then move on to selecting items describing behaviors

towards friends, colleagues, etc. However it is quite possible that the item which showed the

“worse” quality may result in a better scale, because it displays smaller residual correlations

when combined with the items assessing behavior towards friends. To account for this, most ap-

proaches include a re-appraisal step where items are discarded if the potential for such problems

is detected (e.g. Johnson, 2014). This leads to the third shortcoming: limited traceability of the

entire item selection procedure. Running through the loop of selection, re-appraisal, elimination,

selection, re-appraisal, and so on, results in selection criteria that are often not comprehensible

to anyone not directly involved in the item selection process itself. In fact, this procedure is often

so complicated that authors refrain from reporting it all (see Kruyen, 2012, for a critique).

These procedures become even more complicated when the requirements regarding scale qual-

ities become more complicated. Selecting items with the goal of constructing a scale that is

invariant across multiple populations often indicates performing these procedures either on the

entire sample and assessing measurement invariance only in the re-appraisal step or performing

the entire procedure separately in each sample and selecting those items which consistently show

promising qualities. Both approaches have severe limitations, in that the first does not include

group-specific information in the selection process itself, while the second has the potential to

become incredibly convoluted when including many groups. The same is true when constructing

scales designed for use in longitudinal settings, e.g. when assessing the development of constructs

over the course of an intervention or when using scales in ambulatory assessment. Here too,

information guiding item selection is available at multiple points and integrating the amount of

information can become impossible.

Recent developments in item-selection strategy have attempted to alleviate this problem by

using computer algorithms to select items from the pool of items (e.g. Danner et al., 2016;

Janssen, Schultze, & Grötsch, 2015; Leite, Huang, & Marcoulides, 2008; Olaru, Witthöft, &

Wilhelm, 2015; Schroeders, Wilhelm, & Olaru, 2015). In all of these approaches, measurement

models and scale lengths are defined prior to item selection and items are then selected in line

with predefined criteria. Leite et al. (2008) use the regression weight of the latent variable

underlying their scale predicting a distal outcome as a selection criterion, while Janssen et al.
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(2015) utilized the latent correlation structure of the original item pool as a criterion. Both of

these, as well as Olaru et al. (2015) utilized model fit criteria to determine the adequacy of the

measurement model with the given selection. Comparisons have shown selection strategies based

on these algorithmic procedures to outperform classical approaches (e.g. Janssen et al., 2015;

Olaru et al., 2015).

Underlying these current procedures is a different understanding of the problem posited by

item selection, though none of the articles has clearly stated and described this conceptualization.

The next section will present item selection as a combinatorial optimization problem and is

intended to close this gap.

1.3 Item Selection as a Combinatorial Optimization Prob-

lem

As pointed out in the previous section, classical approaches to item selection often select items

based on their specific qualities. However, the criteria this selection is aimed at achieving are

mostly imposed on the final scale, not the items. In order to link the process of item selection

more directly to its goal, it may be beneficial to focus on evaluating a set of selected items as

a whole. Thus, the focus of item selection shifts from selecting good items to selecting items

that are good when used together. This indicates a different approach to item selection, in the

sense that the underlying problem that needs to be solved is conceptualized in quite a different

fashion. When selecting items based on the merits of the items themselves, the problem is

mainly in determining the quality of items and selecting the best. Quality, in this case, can refer

to a broad selection of psychometrical properties of items, such as reliability, external validity,

or content validity, among others. When instead focusing on the final selection of items, the

problem becomes a combinatorial optimization problem.

This section will give a brief introduction to combinatorial optimization problems and their

representation, before describing item selection as a specific problem-type of this class - the

knapsack problem.

1.3.1 Combinatorial Optimization Problems

Though combinatorial optimization is a young field in terms of scientific investigation, early

mathematical formulations of problems which can be subsumed under the class combinatorial

optimization problems date back as far as 1784 (cf. Schrijver, 2005). In accordance to Blum

and Roli (2003), combinatorial optimization problems can be defined as the search in a set for

an object which best fulfills a given optimization criterion. While this definition may seem

overly global it shows directly how many problems can be conceived of as being combinatorial

optimization problems. In a more specific way of phrasing these problems, they can be seen as the
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search for an order or a subset of a discrete set of objects under given constraints, optimizing a

quality function (Hoos & Stützle, 2004). Thus, the set which is being searched contains elements

which can be combined or ordered in many different ways and the optimization problem is finding

the optimal order or combination of elements.

In line with Dorigo and Stützle (2004) the more formal definition is given by the triple

(S, f,Ω). Here S represents the set of possible solutions, f is some objective function mapping

the quality of a solution s to a non-negative real number R≥0, and Ω is a set of constraints.

Given an initial set of components C = {c1, c2, ..., ci, ..., cI}, the set of possible solutions S is

defined as the set of sequences (ca, cb, ...) which fulfill the constraints provided by Ω. Additionally,

there exists a non-empty set of optimal solutions Sopt ⊆ S, which contains at least one solution

providing the optimum value for f .

Translated to the specific problem of item selection, C is the set of all items in the original

item pool and S is the set of all possible combinations of items fulfilling the set of constraints

provided by Ω. An example for a possible constraint ω is limiting the number of items which can

be selected. The objective function can map the quality of the constructed scale by any number

of quality indicators, such as reliability of the scale or the model fit of the measurement model.

The framework of problem representation shown throughout this and the following section is

intentionally general and imposes very little limitations on the possible definitions of C, S, f ,

and Ω, so as to allow a wide array of problems to be formulated within this framework.

Because the bulk of literature investigating the combinatorial optimization problems comes

from the tradition of economics and resource management (cf. Hamann, 2015), f is often con-

ceptualized as a cost function, making minimizing f the goal of optimization. In this thesis f will

be seen as a quality function, making it necessary to maximize f . While this is of no consequence

to the validity of the definitions, results, and conclusions of previous studies for this thesis, it

should be noted explicitly, to avoid confusion regarding some definitions and equations.

With this very general and broad definition in place, a variety of problems can be seen

as combinatorial optimization problems. One of the most studied subclasses of combinatorial

optimization problems are so-called routing problems. As the name suggests, routing problems

are concerned with finding optimal routes, passing through a number of pre-defined places. The

most well-known among these routing problems is the traveling salesman problem (TSP), which

was explicitly formulated during the middle of 19th century (cf. Schrijver, 2005), but finds its

roots in many everyday applications. In a TSP the goal is to find the shortest (or most cost-

effective) route through all cities a salesman must visit, ending at the original point of departure

- a Hamiltonian cycle. Thus, for the TSP the set of possible solutions S is simply the full set of

permutations on the set C of the initial components - i.e. C contains all cities and S contains all

possible orderings of visiting them, under the constraints provided by Ω. The objective function

is a cost function f , which is most often defined as the sum of traveling costs along the route.

Finally, the set of constraints is Ω = {ω1, ω2}, with ω1 stating that a solution must begin and



13 1.3 Item Selection as a Combinatorial Optimization Problem

end at c1 and ω2 stating that all solutions in S contain each ci ∈ C for all i 6= 1 exactly once.

Another well known subclass of combinatorial optimization problems are assignment prob-

lems, among which the quadratic assignment problem (QAP) is perhaps the most prevalent.

This problem was first formulated by Koopmans and Beckmann (1955) and is discussed in great

detail by Burkard, Çela, Pardalos, and Pitsoulis (1999). The main objective in a QAP is the

assignment of a set of facilities to a set of locations while optimizing for the cost of necessary

exchange between the facilities. This cost is defined as the product of distance and necessary

flow between two facilities. While this problem was originally formulated for the placement of

industrial complexes, it has been transposed to a number of different contexts, such as keyboard

layout (Burkard & Offermann, 1977). Within the QAP the set of possible solutions S is therefore

the set of all combinations of facilities and locations. The objective function is a cost function

defined as the aforementioned product of distance and flow. The set of constraints is given by

Ω = {ω1}, where ω1 states that the assignment of facilities to locations must be a bijection.

Both of these prominent representatives of combinatorial optimization problems have one

specific thing in common: the number of solutions contained in S grows at a factorial rate - i.e.

given n objects, the number of possible solutions is n!. Brute-force algorithms are not globally

suitable for solving combinatorial optimization problems, because their runtime is bounded by

the number of possible solutions: if the route of the TSP is to be optimal it must be shown

that the route is better than all other possible routes. Thus, using brute force, all possible

combinations would need to be evaluated.

The worst-case runtime (or, alternatively, the upper bound on runtime) of an algorithm is

often denoted using the O(·) notation (see Papadimitriou, 2003, for a concise introduction). This

notation allows for an approximation of the time an algorithm can be expected to require, under

the worst circumstances, in a shorthand fashion, because it allows ignoring lower-level terms.

For example, if the runtime of an algorithm is denoted O(n2) on a problem size n, the more

accurate upper-bound may actually be given by g(79n2 + 12n + 100), for example. Thus, for

small n the worst-case running time can be much larger than n2, because constants and sub-

quadratic terms are hidden in O(·) notation. However, asymptotically the O(·) notation will

provide an estimate of worst-case running time. In practice, three functional classes of O(·) are

of extreme importance: (a) polynomial time, where the runtime depends on the problem size by

some polynomial function, (b) pseudopolynomial time, where the runtime depends polynomially

on more than one parameter of problem size, and (c) non-polynomial time, where the runtime

exceeds polynomial functions of problem size - often meaning that some exponential function

relates runtime to problem size. This type of notation is helpful, because it can be used to

determine which types of algorithms are useful for solving problems of different complexity.

In the case of the TSP and the QAP, brute-force algorithms would be expected to run in

O(n!) time. It should be noted, that more efficient exact algorithms have been proposed for most

prominent combinatorial optimization problems - for the TSP: Baldacci, Hadjiconstantinou, and
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Figure 1.1: Euler diagram of complexity classes.

Mingozzi (2003), for an overview see Laporte (1992) and for the QAP: Ahmed (2013); Christofides

and Benavent (1989); Mautor and Roucairol (1994), though none of them have been able to

deliver solutions in polynomial time.

In addition to the fact that, for the described problems, around O(n!) time is required for

the optimal solution sopt to be found with exact and deterministic algorithms, it is also not

easy to determine whether a solution is truly optimal, because optimality is defined only in

relation to all other possible solutions in S. This places these problems in the class of NP-

hard problems. Figure 1.1 gives an overview of algorithmic complexity classes as described by

Reingold, Nievergelt, and Deo (1977). Classes become increasingly computationally complex

towards the top of the Figure 1.1.

The “easiest” class is P, which is a class of problems that are known to be solvable in polyno-

mial time by deterministic algorithms - i.e. they have O(nk) runtime with some constant value

for k and problem size n. This means that the number of operations required to solve problems

in P are bounded by a polynomial function of the size of the input. Next is the class of NP
problems for which a solution can be verified in polynomial time. A problem in NP may require

exponential time to be solved (using brute force), but whether a solution is correct or not can

be verified “quickly”. Therefore, though they may be hard to attain, solutions are not hard to

check. A great deal of research has been conducted into the question of whether P = NP, which

would mean that all problems for which a solution can be checked in polynomial time, the best

solution can also be found in polynomial time. A definitive answer has not been found until now,

in fact the P vs NP problem is of such importance that it is currently one of seven Millennium

Problems for which a solution is prized at $1 million (Clay Mathematics Institute, 2000).

When a problem is harder than all other problems in NP, but it still satisfies the condition
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of solutions being verifiable in polynomial time, it is considered NP-complete. For NP-hard

problems, on the other hand, it is not necessarily the case that they can be verified in polynomial

time.

For the purposes of this dissertation the main relevance is in the classification of problems as

NP-hard. Specifically, the importance is in the fact that if there exists no known deterministic

algorithm to solve a specific NP-hard problem in adequate time, then it becomes necessary to

approximate a solution in adequate time using heuristic algorithms. A class of such heuristic

algorithms is discussed in Section 1.4. To determine which complexity class the problem of item

selection belongs to, the next section will present it as a specific variation on a well-known class

of problems, for which many properties, such as the complexity class, are known.

1.3.2 Item Selection as a Knapsack Problem

Knapsack problems (KP) are a specific class of combinatorial optimization problems concerned

with finding a subset s in a set C, such that the subset s fulfills the optimality condition of some

objective function f , while not exceeding given restrictions (e.g. Kellerer, Pferschy, & Pisinger,

2004). The term “knapsack” refers to the metaphor of packing a knapsack (or rucksack) before

going on a hike. Each item you could pack has a certain value (e.g. water, food, and a raincoat all

have their merits) but each item also weighs something. Because the knapsack (and your back)

is limited in the weight it can carry, you can only pack things until a certain weight is reached.

Each combination of items you could pack is a solution s and the set of possible solutions S is

a set containing all combinations of components in C. In line with Kellerer et al. (2004), the

objective function in prototypical KP is given by

f(s) =

I∑
i=1

bixi (1.1)

where i is the running index of the components c, xi is a binary variable indicating whether

ci ∈ s, and bi is some benefit associated with selecting ci. In classical cases describing KP, the

benefit is often monetary but in the case of item selection it could be that an item benefits the

scale by increasing reliability, for example. Additionally, the main constraint in Ω associated

with KP is:

a ≥
I∑
i=1

wixi (1.2)

with each component ci weighing wi, and a representing the maximum weight which can be

carried. In terms of item selection the simple case is given by setting a to the number of items

that should be selected and setting all wi = 1. But this does not necessarily have to be the

case. When utilizing vignettes in assessment (e.g. Finch, 1987), it might be more sensible to
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define the weight of an item by the time it takes to complete it, because the length of vignettes

can vary drastically and the time required for the entire questionnaire should not exceed certain

boundaries.

It must be assumed that a > wi (all single weights are smaller than the capacity) and

a <
∑I
i=1 wi (the sum of all weights exceeds capacity) to ensure non-triviality of the KP (Fréville,

2004). In the basic KP it can also be assumed that bi > 0 and wi > 0 (benefits and weights

are strictly positive) because all instances not fulfilling these two criteria can easily be rewritten

as instances fulfilling them (Kellerer et al., 2004). Equations (1.1) and (1.2) imply a major

difference between the KP and many other combinatorial optimization problems: the order of ci

is irrelevant to the solution of the problem. Or, stated more formally:

(ci, ci′ , ..., cI) = (ci′ , ci, ..., cI) = {ci, ci′ , ..., cI}. (1.3)

While the assumption of the irrelevance of order is not strictly necessary in item selection, it

is sensible for two reasons: (a) in most cases the original item pool is not presented in multiple

orders, indicating that conclusions drawn about the order of items from the process of item

selection would not be grounded in data, and (b) in most CFA applications the order of indicators

is inconsequential to indexes of model fit, estimates of reliability, and correlations between latent

variables, because these models are at least globally covariance equivalent, meaning that they

produce the same model-implied covariance matrices (c.f. Hershberger, 2013). In this case two

solutions s and s′ would generate f(s) = f(s′), making them functionally indistinguishable in

terms of quality. Due to these two aspects, it is sensible to assume the order of items as irrelevant,

because this greatly reduces the size of the search space - making the problem smaller and thus

easier to solve.

With these constraints in place, a component can be selected independently of the actual

components selected previously, once the sum of their weights and the capacity of the knapsack

are controlled for:

p(x′i = 1|xi′′ ,
I∑
i∈s

wixi, a) = p(x′i = 1|
I∑
i∈s

wixi, a) ∀i′ 6= i′′. (1.4)

In addition to Equations (1.3) and (1.4), the formulation of the basic KP implies that

(bi|ci ∈ s) = (bi|ci ∈ s′) (1.5)

meaning that the benefit of any component is independent of the solution under consideration,



17 1.3 Item Selection as a Combinatorial Optimization Problem

and therefore of the other components that are chosen alongside it. This is often the case in

classical KP - e.g. when selecting which packages to load onto a delivery truck, because each

package has an associated worth, irrespective of the worth of the other packages. Problems that

fulfill these criteria (and are thus KP) can be solved in pseudopolynomial time and are proven

to be NP-complete (Kellerer et al., 2004).

In CFA-based item selection the assumption stated in Equation (1.5) restricts the selection

criteria of items to trivial item characteristics such as means and variances. Because these

characteristics are required to be independent of other items in s, finding an optimal selection

of items based solely on these criteria does not require a CFA approach. The criteria used in

CFA-based item selection are most often based on either fit of the measurement model or scale

reliability and are, as such, dependent on the constellation of items investigated in any given

model.

To avoid the restriction made in Equation (1.5), Gallo, Hammer, and Simeone (1980) intro-

duced the quadratic knapsack problem (QKP). This differs from the basic KP in the definition

of the objective function, which is

f(s) =

I∑
i=1

I∑
i′=1

bii′xixi′ , (1.6)

indicating that benefits of ci are dependent upon the selection of ci′ . This implies a quadratic

matrix of benefits bii′ , instead of the vector of bi assumed in the basic KP, hence the name

quadratic knapsack problem. The overall benefit of selecting two components ci and ci′ is given

by bii + bi′i′ + bii′ + bi′i. The four separate benefits denote the global benefit of selecting ci, the

global benefit of selecting ci′ , the increase in the benefit of ci when coupled with ci′ , and the

increase in the benefit of ci′ when coupled with ci. Thus, it is not necessarily the case that the

benefit matrix is symmetric. QKP are known to be strongly NP-hard, meaning that they are

known to not be solvable even in pseudopolynomial time. This means that solutions to these

problems must be found using heuristic algorithms or approximation algorithms (Pisinger, 2007).

The case of item selection utilizing CFAs goes beyond the QKP, because the benefits of a

component ci are not additively dependent on the vector of the other components selected for

s. Instead the additional benefit of selecting ci when having already selected ci′ may depend on

all other components selected and is thus possibly unique in every s ∈ S, making it necessary to

denote benefits as bis - i.e. both component and solution specific. In CFA-based item selection

this can be seen as the benefit an item has over an arbitrary replacement in terms of solution

quality. This makes this approach to item selection an I-dimensional KP. Stated more formally,

the I-dimensional KP can be viewed as:
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f(s) =

I∑
i=1

bisxi (1.7)

subject to a ≥
I∑
i=1

wixi. (1.8)

Note that, though the benefit of ci is solution specific in Equation (1.7), the weight wi

in Equation (1.8) is not. As pointed out above, wi = 1 can be used to make a the number

of items selected in the final scale - this is independent of the constellation of items selected.

Similarly, using other values of wi to encode the time it takes to finish vignettes, the wi should

be approximately independent. Because the QKP is a special case of the I-dimensional KP

and the QKP is strongly NP-hard, the problem of CFA-based item selection formulated as an

I-dimensional KP must also be strongly NP-hard.

These elaborations on the KP and QKP in relation to item selection are only feasible in a

special case: selecting items from a common pool of items to represent one single facet, i.e. when

a scale is used to unidimensionally assess only one specific construct. Utilizing this approach to

depict the problem of item selection in general requires two extensions: (a) the use of multiple

knapsacks m to depict multiple facets and (b) selection restrictions indicating which item is

intended to measure which facet(s).

The first extension is, quite sensibly, called the multiple knapsack problem (MKP). In these

cases Equations (1.1) and (1.2) are extended to

f(s) =

M∑
m=1

I∑
i=1

bimxim (1.9)

subject to am ≥
I∑
i=1

wimxim. (1.10)

Here, m indicates one of (1, ...,M) knapsacks and benefits, as well as weights, become knap-

sack dependent. In terms of item selection this knapsack specificity is sensible, because items

may well be more beneficial when chosen to measure one facet of a questionnaire, than when

chosen to select another. Combining Equations (1.7) and (1.9) provides the objective function

f(s) =

M∑
m=1

I∑
i=1

bimsxim. (1.11)

This objective function is subject to the constraint provided by (1.10), because weights are

not assumed to be solution specific, as shown in Equation (1.8).

The second necessary extension - the inclusion of assignment restrictions - was first presented
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Figure 1.2: Overview of the element mapping in item selection when construed as a knapsack
problem.

by Dawande, Kalagnanam, Keskinocak, Ravi, and Salman (2000) for regular MKP. There are

two possibilities for imposing assignment restrictions. The first is via the definition ofMi ⊆M,

i.e. by defining specific subsets of knapsacks (Mi) which are viable to hold component ci. In this

case restrictions are placed on each knapsack m, so that it can only contain specific components

in C. The other possibility is the definition of knapsack specific sets of components, viable to be

assigned to m as Cm ⊆ C. Throughout this thesis the second variant will be used.

The definition of Cm ⊆ C makes it necessary to impose two restrictions in addition to that

given by Equation (1.10) (c.f. Dawande et al., 2000):

Csm ⊆ Cm (1.12)

Csm∩Csm′ ≡ ∅ ∀m 6= m′ (1.13)

Equation (1.12) states that the components assigned to knapsack m in solution s must be

elements of the specific set of components eligible for assignment to knapsack m. Equation

(1.13) states that for any solution s the sets of components assigned to two different knapsacks

must be disjoint. MKP with assignment restrictions remain strongly NP-hard (Dawande et al.,

2000), therefore their extension to the case for I-dimensional MKP is also strongly NP-hard.

The restrictions imposed by Equations (1.12) and (1.13) can easily be integrated into the I-

dimensional multiple knapsack problem, because neither relate directly to the benefits encoded

in bi.

To give a more direct indication of the relevance of these general definitions in the context
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of this thesis, the sets and restrictions can be related to the process of item selection. Figure

1.2 shows the implied mapping of elements in this process. C is the starting point, because it

is the set of all items available. The items contained within this exhaustive set are denoted ci,

with i ∈ (1, ..., I) and I indicating the total number of items. Derived from theory (or perhaps

the dimensionality of the long version of a scale which is being shortened) there are M distinct

facets which are measured by the scale, each of which is denoted by an m ∈ (1, ...,M). A facet

is measured by Im items, which are contained in the set Cm, which is, of course, a subset of the

set containing all items (C). Items may measure more than one facet, and can thus be elements

of more than one Cm, though this is generally not recommended under the criteria of CTT.

Selecting items then means drawing items from the facet-specific subsets Cm and assigning them

to the facet-specific subset Csm used in solution s. During this selection process three constraints

Ω = {ω1, ω2, ω3} are imposed. ω1 is given by Equation (1.10) and states that an item ci may

only be selected if its selection does not result in the sum of weights wim of the items selected

for facet m exceeding the capacity am of the facet. Specifically, if the number of items allowed to

measure facet m is set to am and all wim = 1, an item may only be selected as long as there are

still “empty spots” in the short version. The second constraint, ω2, is given by Equation (1.12)

and states that items can only be selected to measure a facet m if it was stated, a priori, that

it measures facet m. The final constraint, ω3 as given by Equation (1.13), states that an item

may only be selected once in any given solution. Thus, while items may be eligible to measure

different facets in the original item pool, they must be assigned to measure a specific facet in the

selection process.

1.4 Ant-Colony-Optimization

Ant-Colony Optimization (ACO) is a meta-heuristic for solvingNP-hard combinatorial problems

on the basis problem solving behavior of certain types of ants. It was first described as a meta-

heuristic by Marco Dorigo and colleagues (Dorigo & Di Caro, 1999a, 1999b; Dorigo, Di Caro,

& Gambardella, 1999), but first algorithmic approaches subsumed under this meta-heuristic are

quite a bit older (e.g. Colorni, Dorigo, & Maniezzo, 1991).

Meta-heuristics are somewhat ambiguously defined - so much so that Blum and Roli (2003,

p. 270-271) cite four different definitions before listing nine global components common among

them. The points of central importance to this thesis are that they (a) guide search processes via a

set of strategies, (b) are not problem specific, and (c) are approximate and not deterministic. The

last point is of crucial importance, because it emphasizes that meta-heuristics are designed to find

“very high quality solutions to hard, practically relevant combinatorial optimization problems in

a reasonable time” (Dorigo & Stützle, 2004, p. 25). Thus, meta-heuristic (and heuristic, for that

matter) approaches do not provide a guarantee of finding optimal solutions to a problem. Instead,

the focus lies on knowing that a problem is computationally demanding - most often NP-hard
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- and finding an appropriate strategy to approximate the optimal solution to a satisfying degree

in an appropriate amount of time. This is done via stochastic optimization, i.e. using random

variables, their distributions and their manipulation to guide the search in a promising direction

(cf. Fouskakis & Draper, 2002).

Among these meta-heuristics, simulated annealing, evolutionary algorithms, and swarm algo-

rithms are perhaps the most prominent. ACO is a representative of the last of these categories

because it utilizes swarm behavior in its manipulation of search direction probabilities.

In this chapter the basic metaphor underlying ACO will be described - the emergent ex-

ploration behavior of ant colonies. Subsequently, the first and most influential ACO algo-

rithm, the Ant-System, is described in Section 1.4.2. The following section then describes the

MAX −MIN Ant-System which is of central importance to this thesis because it is the algo-

rithmic approach used to select items here. Section 1.4.4 will then give a brief overview of other

approaches that have been developed within the context of the ACO metaheuristic as well as

some other refinements often employed alongside one of these approaches.

1.4.1 Real Ants

As the name suggests, the real-life behavior of ants is the foundation of the ACO meta-heuristic.

Ants live in societies of varying complexity and size, and are thus subsumed under the category

“social insects” (a category that also includes, termites, bees, and wasps). While by no means

consensus, a strong case has been made for the view of a colony as one super-organism instead of

a gathering of multiple organisms (Hölldobler & Wilson, 1990). The degree of complexity of this

organism has been focus of a substantial amount of research and a general taxonomy is provided

by Anderson and McShea (2001). As Anderson and McShea (2001) note, the complexity of ant

colonies can be described by a multitude of correlated dimensions with the general tendency

toward more complex societies with more specialized individuals when the society is larger (see

Kesebir, 2012, or Kennedy & Eberhart, 2001, for a discussion of the parallels to human society).

The aspect of ant societies that is of interest in ACO are the so-called foraging strategies.

The greater extent of specialization of individuals in a complex society leads to a proportional

increase in the amount of food a forager must secure, in order for the super-organism as a whole

to survive. This implies that more complex ant societies must forage in a more efficient way than

less complex societies do. As summarized by Beckers, Goss, Deneubourg, and Pasteels (1989)

larger - and therefore more complex - ant societies rely on increasingly more intricate foraging

behavior to secure the needed amount of food. While small and simple ant societies rely mainly

on individual, non-cooperative foraging, larger societies rely on different types of recruitment

strategies to achieve cooperation between foragers to ensure a higher degree of efficiency in the

search for and gathering of food resources. As Anderson and McShea (2001, p. 223) point

out “there is a shift from information processing by individuals to emergent properties of a set
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Figure 1.3: A schematic of the double-bridge experiment conducted by Goss et al. (1989).

of essentially probabilistically behaving individuals mediated through signals” with increasing

societal complexity. This type of communication between foragers is called stigmergy - i.e.

communication that is achieved by manipulations of the environment. In the case of ants this

manipulation is most often achieved by the emission and detection of pheromones. It is important

to note that this communication is not deterministic but probabilistic in its consequences for

behavior.

A research group surrounding Jean-Louis Deneubourg (e.g. Deneubourg, Pasteels, & Ver-

haeghe, 1983; Goss et al., 1989; Deneubourg, Aron, Goss, & Pasteels, 1990) studied the foraging

behavior of several species of ants under experimental conditions. All of the examined species of

ants use a mass recruitment strategy to ensure cooperation between foragers, but especially the

Argentine ant (Iridomyrmex humilis) is of relevance to ACO.

Figure 1.3 shows a schematic representation of the double-bridge experiment conducted by

Goss et al. (1989) - aptly named, because ants can choose between two bridges, a short one and

a long one (i.e. the set of possible choices is L = {short, long}), both leading from their nest to a

food source. The experimental setup was designed to ensure that the very first ant would favor

neither choice, thus making p(l) ≈ .5 for both paths l ∈ L for this ant. Having chosen either

short or long at the first decision node, the ant reaches its goal and then returns to the nest

carrying food. On this return it reaches decision node 2 and again determines probabilistically

which route to choose. This choice is now, however, biased slightly towards choosing the path

it previously took. The special thing about the Argentine ant is that - unlike most other ants -

it deposits pheromones both while searching for and while returning from food resources. This

pheromone encourages ants to follow its path - meaning that in the double bridge experiment

the probability of choosing path l is influenced by the amount of ants that previously chose that

same path.

Via Monte-Carlo-Simulations Deneubourg et al. (1990, p. 163) were able to recreate the

behavior of ant colonies for a double-bridge experiment in which both branches are equal (i.e.

short = long). They were able to show that the probability for selecting path l can be expressed

as:
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p(l) =
(c+ nl)

α

(c+ nl)α + (c+ nl′)α
. (1.14)

Here, nl represents the number of ants that previously chose l, c represents some constant

attraction parameter of a choice that no ant has previously made, and α is the degree of non-

linearity of the choice function.1 This equation only holds in cases in which the set of possible

choices contains only two elements. The value of c determines the degree with which the relative

amount of ants that previously chose l affects the probability of the current ant to make the

same choice and is assumed to be equal for all possible choices in L. Using empirical evidence

Deneubourg et al. (1990) determined c ≈ 20 and α ≈ 2 to provide a realistic depiction of the

foraging behavior of the Argentine ant in this experimental setting.

Equation (1.14) shows that, even in settings in which both alternatives are equal, ants will

eventually use one of the two alternatives predominantly. Because the pheromones deposited by

previous ants make a certain decision more probable, more ants will make the same decision and

deposit pheromone making the same choice even more probable and so on. This autocatalytic

effect means that limn→∞ p(l) = 1 and limn→∞ p(l′) = 0 for the case with two mutually exclusive

choices l and l′. This means that eventually one of the paths (l) will be chosen exclusively,

irrespective of the fact that both are of equal length, because n - the number of ants that made

the journey from nest to food resource - approaches infinity given enough time.

This behavior has no real purpose in cases with two equally viable choices. However, Goss et

al. (1989) portrayed this behavior in cases in which one bridge is r-times longer than the other

(the case depicted in Figure 1.3). When one path is shorter than the other (r 6= 1) pheromones

will accumulate faster on the shorter path, because more ants can travel along the short path in

the same amount of time. This increases the probability of choosing the short path over time,

which means that food will be collected more efficiently overall.

Goss et al. (1989) generalized the equation shown in (1.14) so that the weighting of a chosen

path is not only dependent on the pure number of ants that previously chose it, but instead on

the amount of pheromone deposited on a path l:

p(l) =
(c+ φl)

α

(c+ φl)α + (c+ φl′)α
. (1.15)

The amount of deposited pheromone is a function of the number of ants that made a specific

choice, the quality of the chosen path (in this case its length), as well as a degree of pheromone

evaporation that simply occurs over time. Because the evaporation of pheromones is very slow

in reality, Goss et al. (1989) determined that it has an ignorable influence on the amount of

pheromone that is deposited, and thus on the system describing the foraging process as a whole, in

short-term experimental conditions. For the later use in ACO, however, pheromone evaporation

1Please note, that the notation used here does not correspond to the original notation used by Deneubourg et
al. (1990), but rather to that used by Dorigo and Stützle (2004) to avoid confusion in later sections of this thesis.
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plays a key role.

This depiction of the mass-recruitment strategy used by the Argentine ant focuses on the

positive effects it has on the efficiency of food collection. When a food resource becomes available

the colony will explore many possible ways to reach the resource, because each ant behaves

probabilistically at each decision node. In the early stages of the search little pheromone has

been deposited, making different choices at decision nodes more or less equally likely. Thus,

there is a high degree of exploration during this phase of foraging. As time goes on, pheromones

accumulate faster on those paths that are more efficient and more and more ants tend to use these

paths, marking a high degree of exploitation in this phase of foraging. Thus, the super-organism

as a whole explores a wide array of possibilities early, before focusing on those choices that lead

to the best results - ideal properties for solving combinatorial problems. However, Goss et al.

(1989) were also able to show, that once a path is established the occurrence of a better solution

will not be noticed by the colony.

The basics of ants’ foraging behavior described in this section are the foundation of the

ACO metaheuristic. The core concepts that are important for the transfer from real ants to

the artificial ants used in ACO are (a) the probabilistic behavior of each single ant in which

(b) choice probabilities are influenced by pheromones which are (c) left by other ants making

the same choice leading to (d) an autocatalytically increasing preference for better paths. The

reason why ants’ foraging behavior is so interesting for general-purpose problem solving is the

concept of emergence. Emergence describes the idea that simple entities following simple rules

can create highly complex systems, which is one of the core ideas of swarm intelligence in general

(c.f. Kennedy & Eberhart, 2001). In this context, this phenomenon allows ant colonies to solve

complicated problems (i.e. foraging) by only providing simple rules to a large enough number

of ants and relying on the emergence of complex problem solving strategies from the number of

ants as a whole.

1.4.2 Ant System

The first adaptation of the behavior of ants, as described in the previous section, to algorithmic

problem-solving was the Ant System (AS) approach proposed by Marco Dorigo and colleagues

(Colorni et al., 1991; Dorigo, 1992). While it is possible to construe algorithms that are simpler

and closer to the real-world behavior of ants (e.g. the appropriately named Simple-ACO shown

by Dorigo & Di Caro, 1999b; Dorigo & Stützle, 2004, pp. 11-21) AS is historically the first

algorithm that is subsumed under the ACO metaheuristic.

As with most ACO algorithms, AS was designed with respect to a construction graph G

representing the problem. Much like in the double-bridge experiment described in Section 1.4.1

there are paths lij that connect nodes i and j within this construction graph. However, different

from the experiment conducted by Goss et al. (1989) these connections lij are not different paths
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between the same nodes, but rather connections between different nodes (i 6= j).

In AS the probability of choosing to go from i to j at iteration t is given by

p(i, j|t) =
[φij(t)]

α[ηij ]
β

J∑
j=1

[φij(t)]α[ηij ]β
. (1.16)

This is very much in line with the equation for choice probabilities determined by Goss et al.

(1989), but incorporates two important extensions beyond Equation (1.15): it is not limited to

choosing different paths to get to the same destination and it incorporates heuristic information

(η) into determining choice-probabilities. In the original article this heuristic information con-

sisted of a simple inverse of the euclidean distance that needed to be traveled if path lij were to

be chosen, but it allows for the inclusion of any prior information on the quality of connections.

Equation (1.16) additionally implies that this prior information is the same throughout the entire

algorithmic process, while the pheromone φij(t) is a function of the iteration step t (sometimes

confusingly referred to as time). From t to t+ 1 these pheromones are updated by

φij(t+ 1) = ρφij(t) + ∆φij(t, t+ 1) (1.17)

with ρ representing the evaporation coefficient. As pointed out in Section 1.4.1, Goss et al. (1989)

determined that under experimental conditions the evaporation of pheromones was irrelevant to

the problem solving behavior of real ants. In AS, however, ρ is crucial to obtaining solutions,

because it guarantees that all choices that are not made, are forgotten over time, making them

even less likely in the future.

∆φij(t, t + 1) is simply the pheromone added to a chosen path in iteration t. Colorni et al.

(1991) proposed three different approaches (ANT-density, ANT-quantity, and ANT-cycle) that

differ in how and when ∆φij(t, t + 1) is computed. The first two differ in their computation:

ANT-quantity allocates a constant pheromone to all paths that are part of the constructed

solution, while in ANT-density this constant is divided by the cost (the distance traveled along

path lij). In both cases the pheromone update is made after each choice, while in ANT-cycle it is

made only after the entire solution has been constructed. In the case of ANT-cycle the constant

pheromone is divided by the cost of the entire solution:

∆φij(t, t+ 1) =

 c
lls
, if lij ∈ sk

0, else
(1.18)

where c is an arbitrary positive constant and lls is the total length of the solution constructed

by ant k. In applications to 10- to 75-city TSPs, Colorni et al. (1991) found the ANT-cycle to

be superior to the other two approaches, which is why it is the only one of the three discussed

in more detail here. In the following AS will always refer to the ANT-cycle AS approach, unless
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Algorithm 1: AS (ANT-Cycle) as proposed by Colorni et al. (1991)

Require: H, α, β, ρ, T , K
1 procedure AS(S, f,Ω)
2 set arbitrary φij(0) = φi′j′(0)
3 f(sgb)← 0
4 randomize all k ants starting position
5 while t ≤ T do
6 if Lk is not empty then
7 choose lij using (1.16) for each k
8 remove lij from Lk
9 else
10 compute f(sk)
11 determine ∆φij(t, t+ 1) with (1.18)
12 compute φij(t+ 1) with (1.17)
13 if f(sk) > f(sgb) then
14 sgb ← sk
15 end if
16 reset all Lk
17 randomize all k ants starting position
18 t← t+ 1
19 end if
20 end while
21 return sgb

22 end procedure
Result: sgb

explicitly stated otherwise.

Algorithm 1 shows the AS algorithm in simplified pseudo-code. The arguments that are

required for AS to find a viable solution are the components of Equation (1.16) - the non-linearity

coefficients α and β as well as the heuristic information H - to determine the probability of any

given choice, the evaporation coefficient ρ used in the pheromone update shown in Equation

(1.17), the number of iterations T , and the number of ants per iteration K.

Given these parameters, the AS procedure is then applied to the optimization problem

(S, f,Ω). As discussed in Section 1.3 this problem is characterized by the set of viable solu-

tions S, the pheromone function f , mapping the quality of a solution s to R≥0, and a set of

constraints Ω.2

AS is initialized at some arbitrary pheromone level that is the same for all choices at all

decision nodes. Thus, the initial solution is biased in its choices only by the heuristic information

provided via H. All ants k are placed on random starting locations in G.

All ants simultaneously choose a connection lij on the construction graph with the probabil-

ities given by Equation (1.16) and move along their individual paths. The path an ant k has

2Equation (1.18) shows the pheromone function used by Colorni et al. (1991) in their original article. As noted
in Section 1.3.1 these functions are often construed as cost functions, meaning that they need to be minimized.
In the case discussed here f is considered a quality function, meaning that it needs to maximized.
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just taken is removed from its set of possible paths Lk. This is done until the set of possible

paths is empty, at which point each ant has constructed a complete solution sk. After each of

these iterations, the pheromones of the paths are updated via Equation (1.18), thus changing

the probabilities of the choices in the next iteration. The quality of the solution sk is assessed

by some objective function f and the globally best solution sgb is memorized. The globally best

(gb) solution is characterized as the solution with max f(s). In the original articles by Colorni et

al. (1991) and Dorigo (1992) the objective function is given by c
lls

- as shown in Equation (1.18)

- with c being some arbitrary constant and lls being the length of the final path. However, in

theory, this objective function can be any function describing the quality of the solution. This

process continues until the predefined number of iterations T is reached.

As mentioned in Section 1.4.1, this process autocatalytically improves the probabilities of

making choices that were made before. The pheromone function originally used by Colorni et

al. (1991) ensures that choices which lead to a shorter total distance of s are updated with more

pheromone, if they are made, than choices that lead to a longer total distance. Given enough

iterations this should theoretically result in a solution that is close to optimal. The result of the

algorithm is the globally best solution sgb that was best found during the T iterations.

The influence of the parameters α, β, c, and ρ has been thoroughly investigated (e.g. Colorni

et al., 1991; Dorigo, Maniezzo, & Colorni, 1996; Dorigo & Stützle, 2004). All simulations have

shown that AS can be used to obtain very good solutions in relatively short time, if these

parameters are chosen correctly. In general, it has been found that (a) increases in α and β lead

to more exploitation, but less exploration, (b) heuristic information is necessary for AS to settle

into promising areas of the search space, (c) ρ reaches a saddle point for which it ensures best

results, and (d) c is irrelevant to the performance of AS. Additionally, Colorni et al. (1991) were

able to show that if a K ≤ 16 is chosen, AS is unable to find optimal solutions, irrespective of

the chosen T .

Many adaptations of AS have been proposed since its original presentation by Colorni et al.

(1991). Three specific algorithms - Elitist AS (Dorigo, 1992; Dorigo et al., 1996), rank-based

AS (Bullnheimer, Hartl, & Strauß, 1997), and MAX -MIN AS (Stützle, 1998) - extended the

original AS by incorporating the concept of elitism. As the name suggests, elitism is simply the

practice of favoring the solutions provided by some ants over the solutions provided by others.

The Elitist AS extends the normal AS by an additional pheromone update for those solutions

that are the best (i.e. those that have the shortest path lls). In rank-based AS, the solutions

found by the ants of one iteration step t are sorted by their path length lls and a weighting

parameter is applied to Equation (1.18) which is proportional to the inverse of this rank. Both

of these procedures lead to a faster convergence on good solutions - ensuring more exploitation

at the expense of exploration. The MAX -MIN AS is discussed in more detail in the next

section. Other general extensions of AS include the Ant Colony System (Dorigo & Gambardella,

1997) and the Approximate Nondeterministic Tree-Search (Maniezzo, 1999), both of which will
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be discussed in a bit more detail in Section 1.4.4. Beyond these general algorithms, numerous

problem-specific AS extensions have been proposed (see Dorigo & Stützle, 2004, for an overview).

1.4.3 MAX -MIN Ant System

The MAX -MIN Ant System (MMAS, Stützle, 1998; Stützle & Hoos, 2000) is an extensively

tested and well performing pure-ACO extension of AS (extensions that go beyond the ACO

framework are discussed in Section 1.4.4). Beyond the addition of elitism as briefly touched upon

in Section 1.4.2, it also introduces limits to the pheromone trails to ensure that the probability

of choosing any viable connection lij is never 0 or 1, thus guaranteeing some minimal exploration

throughout the entire search procedure.

Stützle and Hoos (2000) propose two different types of elitism. In the first variant, iteration-

best solutions sib are used for the pheromone update, meaning that, for every iteration t, only the

one solution with max f(s) deposits pheromone on the paths, while the results of the remaining

K − 1 ants are discarded. As shown in Algorithm 1, one of the basic principles of the ANT-

Cycle version of AS is that K ants are initialized during each iteration t and that pheromones

are updated only after each iteration. This means that selection probabilities for these K ants

within one single iteration are equal. MMAS - in contrast to AS - uses only the selection made

in sib during this iteration t to deposit pheromones. The second variant goes even further by

discarding all solutions that are not the globally best solution sgb found at iteration t, meaning

that a solution must be better than all preceding solutions to deposit pheromones. This means

that the computation of ∆φij(t, t+ 1) changes to

∆φij(t, t+ 1) =

f(sib), if lij ∈ sib

0, else
(1.19)

or

∆φij(t, t+ 1) =

f(sgb), if lij ∈ sgb

0, else
(1.20)

respectively. In both equations f(s) indicates the quality of the solution s (e.g. c/lls in Equation

(1.18) for AS). This means that all ants k that did not construct either an iteration-best or a

global-best solution have no influence on the pheromones - and are thus inconsequential for the

choices made in the future.

In addition to elitism, MMAS introduces upper and lower bounds that are imposed upon

φij(t). Equations (1.17) and (1.18) show that in AS, with any ρ < 1 the pheromone of a choice

lij is limited to
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lim
t→∞

φij(t) =
f(s)

1− ρ
(1.21)

Thus, the pheromone of choices which are only made in solutions with zero quality (f [s] = 0)

will approach zero as t becomes increasingly large. On the other hand the pheromones of choices

that are part of an optimal solution are bounded proportional to the maximum quality (i.e.

f [sopt]) that can be achieved.

When AS has run for a large number of iterations, the differences in pheromones will become

increasingly large. This is partly wanted, because it ensures that better choices are more probable

in future iterations, but it may also lead to stagnation - i.e. the state in which the same solution

is found exclusively because the probabilities of some choices are (practically) 0 while those of

others are (practically) 1. Such a state may occur even though the global-best solution sgb is far

below optimal. In MMAS this stagnation is avoided by ensuring that the difference between

the probabilities of two alternative choices does not become too large.

To ensure this, two new parameters φmin and φmax are introduced. The upper limit of the

pheromones is given by

φmax =
f(sgb)

1− ρ
, (1.22)

which is an estimate for the upper limit of the pheromones, as given in Equation (1.21), that

is obtained by using the global-best solution sgb as a placeholder for the optimal solution sopt.

Because a new sgb can be found at any t, the upper pheromone limit φmax becomes dependent

upon the iteration - making it a dynamic upper limit.

The definition of an adequate lower limit φmin is not quite as simple as that of the upper

limit, but simulations have shown the lower limit to be of greater importance to the performance

of MMAS (Stützle, 1998; Stützle & Hoos, 2000). Stützle and Hoos (2000) propose computing

φmin by

φmin =
φmax(1− n

√
psgb)

(avg − 1) n
√
psgb

, (1.23)

where psgb is the desired probability of an ant constructing the global-best solution sgb after the

search has ended, n is the total number of choices that need to made, and avg is the average

number of possibilities at each choice. The psgb must be defined for each application separately,

because it should depend on the size of S - in cases in which the set of possible solutions is small,

psgb should be quite large. The influence of psgb on the performance ofMMAS will be discussed

in more detail in Section 3.1.7.

Using both of these limits, choice probabilities will no longer tend towards 0 and 1, but rather

towards
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lim
t→∞

pt(i, j) =
φmin

J∑
j=1

φij(t)

(1.24)

for bad choices, and towards

lim
t→∞

pt(i, j) =
φmax

J∑
j=1

φij(t)

(1.25)

for good choices. This implies that as long as 0 < φmin ≤ φmax < ∞ a path lij will never

be selected - or not selected - with certainty based solely on the information provided by the

pheromones. The addition of certain heuristic information via ηij may have this effect, however.

To ensure that the pheromones stay within the bounds that were just shown, Stützle (1998)

define an extension of Equation (1.17) to

φij(t+ 1) =


φmin, if ρφij(t) + ∆φij(t, t+ 1) < φmin

φmax, if ρφij(t) + ∆φij(t, t+ 1) > φmax

ρφij(t) + ∆φij(t, t+ 1), else

(1.26)

which computes the new pheromone as φmax if the pheromone computed by Equation (1.17)

exceeds the the upper bound, φmin if the result of (1.17) is below the lower bound, and the

result of (1.17) in all other cases.

Besides preventing stagnation, the implementation of minimum and maximum pheromone

levels allows for a straightforward definition of a convergence criterion. Stützle and Hoos (2000)

define this criterion as

∀i, j 6= j′ ∃!j : (φij = φmax) ∧
(
φij′ = φmin

)
. (1.27)

This means that MMAS converges if, for every origin i there is one, and only one, choice j

that has the upper pheromone limit φmax associated with it, while all other choices j′ have the

lower pheromone limit φmin associated with them. In this case the algorithm can be considered

converged because there is one solution sgb that is obviously favored above all other solutions.

This is advantageous in comparison to AS, because (traditional) AS requires a fixed number

of iterations to be run, regardless of the status of the actual search. This can lead to sub-par

solutions, because T was chosen to be too small, or to a waste of time and resources, because

T was chosen to be too large. In MMAS, T can be used as an abort criterion if the algorithm

cannot construct a viable solution or fails to converge for some other reason.

With these two extensions in place, MMAS can be written in pseudo-code as shown in

Algorithm 2. As was shown in Algorithm 1 for AS, MMAS requires α, β, and H as arguments
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Algorithm 2: MMAS as proposed by Stützle (1998) with the iteration-best deposit rule.

Require: H, α, β, ρ, T , K, psgb
1 procedure MMAS(S, f,Ω)
2 set 1� φij(0) = φi′j′(0)
3 f(sgb)← 0
4 randomize all k ants starting position
5 while t ≤ T and (1.27) is not fulfilled do
6 if Lk is not empty then
7 choose lij using (1.16) for each k
8 update Lk
9 else
10 compute f(sk)
11 sib ← arg max f(sk)
12 determine ∆φij(t, t+ 1) with (1.19)
13 compute φij(t+ 1) with (1.26)
14 if f(sib) > f(sgb) then
15 sgb ← sib

16 compute φmax with (1.22)
17 compute φmin with (1.23)
18 end if
19 reset all Lk
20 randomize all k ants starting position
21 t← t+ 1
22 end if
23 end while
24 return sgb

25 end procedure
Result: sgb
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to compute any given selection probability. Additionally, ρ is required for the pheromone update

performed via Equation (1.26). The maximum number of iterations T is used as an abort criterion

and the number of ants to be used per iteration is denoted K.

With these parameters in place the MMAS procedure can be applied to the optimization

problem (S, f,Ω).

One important aspect that has not been considered so far is the initial pheromone level and its

limits. Stützle and Hoos (2000) propose to initialize the pheromones to an arbitrarily large value

- i.e. one that is larger than any reasonable limit that can be computed by Equation (1.21) with

an idealized sopt. This step is performed in line 2 of Algorithm 2 and results in a hard reset of all

pheromones to φmax after the first iteration in line 13. The opposite - initializing all pheromones

to a number that is much smaller than any reasonable φmin - has also been proposed, but was

determined to lead to too little exploration and too fast convergence (Stützle, 1998; Stützle &

Hoos, 2000).

After the initial value of the global best solution is initialized to 0 (line 3) and all initial starting

positions are randomly assigned (line 4), the algorithm is set to run either until the predefined

maximum number of iterations K has been evaluated or until the convergence criterion presented

in Equation (1.27) is fulfilled.

During each iteration, each ant k iteratively chooses an lij and updates the set of possible

choices Lk (because the ant is now in node j all viable paths now start in j). When the set of

possible choices is empty the ant has constructed a solution sk for which the pheromone value is

computed (line 10). The iteration-best solution is determined and assigned to sib. Using f(sib)

and Equation (1.19) the pheromone deposit for choices included in sib is determined and then

inserted into Equation (1.26) to determine the pheromones of choices for iteration t+ 1 (lines 12

and 13).

To ensure the viability of φmax and φmin as limits of the pheromones, these are updated

if a new global-best solution sgb is found. As discussed earlier, these limits are theoretically

dependent on the optimal solution sopt, but because this solution is unknown, sgb is used as an

approximation of the optimal solution. Therefore, both φmax and φmin must be updated each

time a new sgb is found.

At the end of each iteration t, the set of viable choices Lk is reset, all ants are re-initialized

to random starting positions, and the iteration counter is increased (lines 19 through 21). Once

either t = T or the convergence criterion is fulfilled the algorithm ends, returning the global-best

solution sgb.

Algorithm 3 shows the pseudo-code forMMAS when allowing only ants constructing global-

best solutions to deposit pheromone. In contrast to the approach depositing pheromone for

each iteration-best solution, the sib is not stored and ∆φij(t, t + 1) is the same until some

f(sk) > f(sgb), as shown in Equation (1.20). Therefore, the pheromones on the choices lij are

updated using the same procedures until the current best is surpassed, meaning that the choices
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Algorithm 3: MMAS as proposed by Stützle (1998) with the global-best deposit rule.

Require: H, α, β, ρ, T , K, psgb
1 procedure MMAS(S, f,Ω)
2 set 1� φij(0) = φi′j′(0)
3 f(sgb)← 0
4 randomize all k ants starting position
5 while t ≤ T and (1.27) is not fulfilled do
6 if Lk is not empty then
7 choose lij using (1.16) for each k
8 update Lk
9 else
10 compute f(sk)
11 if f(sk) > f(sgb) then
12 sgb ← sk
13 compute φmax with (1.22)
14 compute φmin with (1.23)
15 end if
16 determine ∆φij(t, t+ 1) with (1.20)
17 compute φij(t+ 1) with (1.26)
18 reset all Lk
19 randomize all k ants starting position
20 t← t+ 1
21 end if
22 end while
23 return sgb

24 end procedure
Result: sgb
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in sgb are reinforced after every iteration.

1.4.4 Other ACO Algorithms and Extensions

Beyond the two algorithms discussed in the two previous sections, a number of different ACO

approaches have been proposed. In line with Dorigo and Stützle (2010, p. 239), Table 1.4

provides an overview of the most influential algorithms. This is by no means an exhaustive list

- there are many problem specific adaptations and variants of ACO approaches - but it contains

the core of ACO development for static problems. ACO extensions to dynamic problems, such

as the AntNet (Di Caro & Dorigo, 1998), AntHocNet (Ducatelle, 2007), or the population based

ACO (Guntsch & Middendorf, 2002), are not discussed here, because item selection constitutes

a static problem.

Of the approaches presented in Table 1.4, Elitist AS, Rank-Based AS, MMAS, and BWAS

all represent straightforward extensions of the classical AS approach. In all cases, new concepts

or parameters are introduced, but the core procedures of determining selection probability via

Equation (1.16) and updating these choice probabilities directly by influencing the pheromones

φij remain intact. WhileMMAS was discussed more thoroughly in Section 1.4.3, the Elitist AS

and Rank-Based AS can be described quickly. In Elitist AS the classical AS is simply modified

to not deposit each ants pheromone, but instead deposit only the pheromones associated with

the sgb, thereby reinforcing the strongest solution up until this point (Dorigo et al., 1991). The

underlying idea is that by reinforcing this best solution, future ants are more likely to construct

similar solutions, which are of higher quality. In Rank-Based AS, this elitist approach is combined

with the notion of all ants depositing pheromone by allowing K + 1 ants per iteration to deposit

pheromone, where the sgb constitutes the “+1”. These ants are ordered by their solution quality

and their pheromone deposit is weighted by their rank - with better ranks receiving larger weights

(Bullnheimer et al., 1997). The Best-Worst Ant System (BWAS; Cordón et al., 2002) extends the

ideas of AS by adding to the inverse concept of elitism: evaporating the pheromones on choices

made in the iteration-worst solution (if they do not also belong to the best solution).

The Ant Colony System (ACS; Dorigo & Gambardella, 1997) deviates from the tradition

of extensions of the AS approach by introducing a pseudo-random rule to choice probabilities

instead of the direct relation proposed in Equation (1.16). Without going into too much detail,

this is achieved by imposing a doubly probabilistic choice. First - with a set probability - the

choice with the maximum product of φijη
β
ij is selected. If this choice is not made, Equation (1.16)

is applied with α = 1. One of the common properties of ACS and MMAS is that both belong

to a class of ACO algorithms for which convergence in value (i.e. finding the optimal value at

least once) can be proven given infinite runtime (Dorigo & Stützle, 2004). While this does not

seem like much of a feat, it is extremely valuable to know that a probabilistic algorithm will find

the optimal solution given enough time and will not reiterate sub-optimal solutions infinitely.
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Table 1.4: Overview of the most influential ACO Algorithms.

Name Primary Citation Properties

AS Dorigo (1992) • All ants deposit pheromone

Elitist AS Dorigo, Maniezzo, and Colorni (1991) • sgb deposits after each iteration

Rank-Based AS Bullnheimer et al. (1997) • sgb deposits pheromone
• Ants deposit pheromone proportional to their rank in iteration

MMAS Stützle (1998) • sgb or sib deposit pheromone
• Imposes limits on pheromones
• Initializes pheromones to maximum

ACS Dorigo and Gambardella (1997) • Pseudorandom proportional rule for selection
• Only choices in sgb are updated
• Ants remove pheromone with each choice

BWAS Cordón, de Viana, and Herrera (2002) • sgb deposits pheromone
• Only worst solutions evaporate
• Pheromones are mutated with set probability
• Includes reinitialization when stagnant

ANTS Maniezzo (1999) • Projects total f(s) at each choice
• Bases choice on projection of overall f(s)
• Uses one balance parameter instead of α and β

Beam-ACO Blum (2005) • Generates partial solutions and projects f(s)
• Extends partial solution to multiple partial solutions stepwise

ACOPD P. Zhu, Zhao, and He (2010) • Pheromones diffuse to close decisions
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For the classical AS, for example, this is not the case and it is possible for any given run of AS

to not construct the optimal solution, even when given infinite runtime. However, because both

MMAS and ACS impose lower limits on the pheromones, the probability of constructing any

solution s never decreases to 0, but instead to a function of φmin. Thus, while it possible for

both, MMAS and ACS, to find the optimal solution slower than even purely random search,

it is impossible for either of them to not find it at all - again, if allowed to run infinitely long.

This important feature makes them much more attractive than the other purely AS-based ACO

approaches for the use in item selection, because there is a guarantee that increasing resources

(time, in this case) has a benefit: it makes finding the optimal solution, at least once, more likely.

The ACS and MMAS approaches are, perhaps, the most widely received and applied ap-

proaches within the ACO framework (Dinh, Mamun, & Dinh, 2005; Dorigo & Stützle, 2004;

López-Ibáñez, Stützle, & Dorigo, 2015). Both perform similarly well under most conditions

(Dorigo & Stützle, 2004; Escario, Jimenez, & Giron-Sierra, 2015; Fidanova, 2007; López-Ibáñez

et al., 2015), withMMAS being slightly more susceptible to the influences of parameter schedul-

ing (Stützle et al., 2010), a topic discussed in Section 3.1.8. Both provide a very general, flexible

framework, which can be applied to a wide array of problems.

The ACOPD is a modern extension of the AS approach that includes an additional mimicry

of real-life ant foraging called pheromone diffusion (P. Zhu et al., 2010). In these approaches,

neighborhoods which are close to choices with very high levels of deposited pheromone will also

benefit from these pheromones. The intensity of this benefit is modeled in accordance to some

model about the distance between nodes (Ji, Song, Liu, & Zhang, 2013).

Other modern ACO approaches often combine the AS strategy with another algorithmic

approach to constructing solutions. The Elitist-Mutated AS combines the MMAS approach

with genetic algorithms (Afshar, 2009). The Approximate Nondeterministic Tree Search (ANTS;

Maniezzo, 1999) combines ACO with branch and bound strategies (J. D. Little, Murty, Sweeney,

& Karel, 1963), as does Beam-ACO (Blum, 2005). The basic idea behind branch and bound

strategies is the construction of partial solutions, which are faster to construct and evaluate

than entire solutions (branching), determining a bound on the quality of the partial solution

(bounding), and eliminating branches which cannot lead to the optimal solution. It should be

noted that these algorithms are exact, meaning that they lead to the optimal solution with

certainty, but may require very long to complete. This is integrated into ANTS by eliminating

choices that are known to not be feasible (because of their bounds) from the set of possible

of choices at that point and choosing among the remainder via the ACO selection strategies.

Beam-ACO differs from ANTS in that it implements Beam Search, a class of branch and bound

inspired approximate algorithms, which construct multiple partial solutions, evaluate them, and

continue with a fixed number of best partial solutions.

The problem with both of these approaches is that they require knowledge of the search space

in some fashion and make it necessary to evaluate partial solutions at every step. As pointed out
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in Section 1.3.2, understanding item selection as an IMKAR does not allow for meaningful eval-

uation of partial solutions without additional assumptions, because solution quality is dependent

upon all components in a solution.

One of the most successful extensions proposed for most ACO algorithms is local search

(Bonabeau, Dorigo, & Theraulaz, 1999; Dorigo & Stützle, 2004). The idea in local search is that

solutions constructed by the ACO algorithm are - often randomly - changed in very few locations

repeatedly to determine the best solution within this specific neighborhood. This is done as an

optimization step after a solution is constructed but before it is allowed to deposit pheromones.

The main advantage of this process is that it is much cheaper, computationally speaking, to

change constructed solutions in few locations than it is to construct new solutions. However,

this approach is only truly advantageous if the construction of solutions is expensive while the

evaluation of solutions is trivial. This is not the case in CFA-based item selection, because the

estimation of CFAs to determine model fit is most likely the most time-consuming part of any

iteration.

A number of approaches have adapted ACO algorithms to solve MKP. Leguizamon and

Michalewicz (1999) formulated a straightforward adaptation of the AS approach, while Alaya,

Solnon, and Ghédira (2004) and Fidanova (2007) propose adaptations of the MMAS. The

latter - called ACO-AR - differs from classical MMAS by introducing additional reinforcement

to components that were not previously selected making them more likely to be selected in the

future. The aim of this approach is to enhance exploration by not punishing choices that were not

made in the same way as choices that led to bad solutions. Kong, Tian, and Kao (2008) proposed

the Binary Ant System, which is based on the hyper-cube framework proposed by Blum, Roli,

and Dorigo (2001). Ke, Feng, Ren, and Wei (2010) proposed another extension of the MMAS

which includes dynamic changes of the lower pheromone limit throughout the search to enhance

exploration. Recently, Hamann (2015) proposed another MMAS variant called NormANTS,

which standardizes pheromones to ensure less problem dependence in the search.



CHAPTER 2

The stuart Approach

This chapter will introduce the stuart approach to item selection and scale shortening. As

shown in Chapter 1, current approaches to item selection have some limitations, which this ap-

proach strives to address by understanding CFA-based item selection as a I-dimensional multiple

knapsack problem with assignment restrictions (IMKAR, see Section 1.3.2) and attempting to

solve this problem via an Ant Colony Optimization algorithm based on the MMAS approach

(see Section 1.4.3).

This chapter will begin with the problem representation of item selection in the stuart

approach. The next section will then give a detailed description of the algorithmic approach

employed - introducing two different variants of pheromone localization to the MMAS variant

used. This will be followed by a detailed portrayal of item selection in the most simple situ-

ation before providing extensions to situations incorporating (a) multiple groups, (b) multiple

measurement occasions, and/or (c) multiple sources of information.

The approach shown in this chapter is implemented in a Package for the statistical comput-

ing language R (R Core Team, 2016) available at https://bitbucket.org/martscht/stuart.

While the development is ongoing, the current version is appended to this thesis. Installation

details are provided by the README file. The current version of this package will be submitted to

CRAN concurrent to the publication of this thesis and will be available for installation via the

CRAN repositories thereafter. The R environment was chosen because of its wide spread in the

scientific community. Despite its slower performance in comparison to many other programming

languages, R ensures accessibility of the stuart approach to as many interested researchers as

possible.

https://bitbucket.org/martscht/stuart
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2.1 Problem Representation

As discussed in Section 1.3.2, the initial pool of items is denoted as the set C. Given a situation in

which a scale consists of multiple sub-scales (or facets), the pools of items which assess a facet m

are denoted Cm. The projection of items from C to their respective Cm is not part of the stuart

approach, but rather a prerequisite step that must be taken following theoretical assumptions

that also guided the item construction.

Given the sets of components, the optimization problem (S, f,Ω) must be defined. Because

the constraints provided by Ω influence the set of possible solutions S, the three parts determining

the optimization problem are discussed in reverse order.

Constraints Ω As discussed in Section 1.3.2, the IMKAR posits three specific constraints.

The first, ω1, is given by

am ≥
I∑
i=1

wimxim, (1.10, repeated)

stating that the sum of weights w associated with the items i selected for a facet m must not

exceed the capacity a of that facet. When constructing a questionnaire which can be answered

within a specific amount of time (am), the time needed to answer each question can be used

as weights (wim). However, in most applications all weights will likely be set to wim = 1

so that am provides the number of items selected for a facet. It is important to note that,

because am and wim are part of the constraint ω1 defining the optimization problem, they

must be known prior to item selection. In other words, when using wim = 1 for all items, the

number of items the final scale should have, must be provided. Constraints ω2 := Csm ⊆ Cm and

ω3 := Csm ∩ Csm′ ≡ ∅ ∀m 6= m′ are imposed upon the selection procedure in general, and are

therefore independent of substantive input. How these constraints are reflected in the algorithmic

procedure will be discussed in Section 2.2.

Objective Function f The second part of the optimization problem is the objective function

f . Throughout Section 1.3 this was referred to only vaguely - as an abstract function of any form,

somehow projecting the quality of a solution s onto the set of non-negative real numbers R≥0.

As stated in Equation (1.11), the classical objective function in IMKAR relates to the benefits

of each single component:

f(s) =

M∑
m=1

I∑
i=1

bimsxim. (1.11, repeated)

In the case of CFA-based item selection, however, the single benefits bims cannot be known

without knowing all possible solutions. This is due to the fact that these benefits are item
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and solution specific and thus represent benefits only in relation to all possible replacements.

However, the sum
∑I
i=1 bimsxim can be evaluated, because it is simply the quality of the entire

solution.

In the case of AS (Section 1.4.2) f was defined as:

f(s) =
c

lls
, (part of 1.18)

where c is some arbitrary constant and lls is the total length of the path a solution constructed.

The relation to path lengths is due to the fact that these approaches relate to the TSP and other

graph problems, but this definition of f can easily be related to the problem of item selection.

Because lls indicates the total path length, it is more akin to
∑I
i=1 bimsxim than to the specific

bims - much like the results of a CFA, it relates to the entire constructed scale and only to a

lesser extent to the specific items.

When using modern approaches to item selection most criteria used to define“good”selections

relate either to reliability, validity, or the fit of the measurement model. How these criteria are

set in relation to quantify the quality of a solution is mostly dependent upon the objectives

a scale is constructed to achieve. When information regarding predictive validity is available,

it may be part of f - e.g. in the form of including distal outcomes and optimizing for the R2

in the prediction of these outcomes by the latent variables underlying the selected items (e.g.

Leite et al., 2008). If other scales measuring other constructs are available, it might be useful to

include the inverse of the absolute correlation between latent variables of the different scales to

maximize discriminant validity. In cases in which a long scale is reduced to a short scale, it may

be desirable to reproduce the relationships between the facets in the long version. Janssen et al.

(2015) used the correlation between two facets as part of the objective function to reproduce the

relationships found in the long version.

Because the stuart approach is based on CFA, the most prominent components of f are

likely to be approximate indicators of model fit (e.g. RMSEA, SRMR, CFI, TLI) as well as

model-based reliability estimates. The former are preferable over tests of model fit (e.g. the χ2-

test of model fit) because they do not include inferential tests. Due to the ACO components of

the stuart approach, tests concerning model fit should not be performed, because error-rates are

likely to be so inflated as to make inference impractical. Instead, descriptive indicators of model

fit are preferable. However, most of these fit indexes are not interpreted in a linear fashion - most

often being compared to some cut-off criterion derived from simulation studies. Including logistic

transformations of fit indexes, instead of the fit indexes themselves, allows for high discrimination

at a predefined point, as well as nonlinear benefits of fit. In general, the logistic function is given

by

g(x) =
u

1 + e−v(x−w)
, (2.1)
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where u is the upper limit of the function, v is the slope of the curve, and w is the x-value of

the curve at its maximum discrimination. Therefore, w can be used to influence the point at

which one would discriminate most extremely between “good” and “bad” model fit (e.g. at .05 for

the RMSEA) and v can be used to influence the strictness of this discrimination. In Section 3.3

the RMSEA is one of the components determining solution quality, with f(s) given by Equation

(3.4):

g(RMSEA) = .5− .5

1 + e−100(RMSEA−.05)
. (2.2)

Here, u = .5, indicating that at optimal RMSEA its contribution to solution quality is .5,

and w = .05, indicating that the value of most discrimination is the widespread cut-off value of

.05. Due to the large value for v, RSMEA > .1 all lead to extremely similar qualities - the same

is true for all RMSEA < .01. This non-linearity encourages discrimination of solution quality on

the basis of other criteria included in f if the model fits “well enough”, according to the RMSEA.

The final recommendation with regards to the application specific definition of f concerns

models resulting in non-positive definite latent covariance matrices or residual covariance ma-

trices. While the appearance of these cases is sample-specific, it is often indicative of problems

that may reappear in other samples. In these cases it is advisable to penalize solutions with

regards to their quality. In all applications of the stuart approach presented in this thesis, this

is done by defining the set of admissible solutions S∗. This set contains only those solutions in S
which lead to a converged, proper CFA estimation and positive definite covariance matrices. All

solutions not contained in S∗ are automatically assigned f(s) = 0, irrespective of the remaining

definition of the objective function.

Possible Solutions S With these rough guidelines for the specific definition of f , the last

remaining part of the optimization problem is the set of possible solutions S. This set contains

all possible item combinations, which adhere to the constraints provided by Ω and constitute the

search space, which is searched using ACO techniques. Under the assumptions that

Cm ∩ Cm′ ≡ ∅ ∀m 6= m′, (2.3)

stating that no item indicates more than facet, and

wim = 1 ∀i,m, (2.4)

indicating that the weights of all items are equal to 1, the number of solutions in S is given by



2 The stuart Approach 42

S =

M∏
m=1

(
Im
am

)
, (2.5)

where m denotes the facet, M denotes the number of facets, Im denotes the number of items in

the item pool for facet m (i.e. the size of Cm) and am denotes the number of items selected for

facet m.

2.2 Algorithmic Approach

The algorithm employed in the stuart approach is very similar to the MMAS approach de-

scribed in Section 1.4.3, but has some key peculiarities which are described in this section.

The implementation of the stuart approach uses what Pedemonte, Nesmachnow, and Cancela

(2011) call a master-slave approach to parallelization. More specifically, the stuart implemen-

tation can utilize either a coarse-grain or a fine-grain parallelization. Within both approaches,

the master process manages all relevant global information such as the current pheromones, the

current global best solution, the values of φmax and φmin, and so on. When using a coarse-grain

master-slave parallelization, this information is passed to a slave process, which constructs and

evaluates a single solution, meaning that one ant k is performed by a slave. In this way, K ants

can be performed by K processors in parallel. This is possible because global information is

updated only after each iteration t in MMAS (see Algorithms 2 and 3), meaning that the k

ants within each iteration require no information from each other. The results of the K ants are

then passed to the master process, which determines sib (for implementations using the iteration

best approach) and whether any ant k in iteration t provides a new sgb. Then, pheromones are

updated in the master process before the new slave processes are started. This approach has

some obvious advantages over serial implementation, because it is bound to be faster. However,

it has the limitation of being able to utilize a maximum of K cores, a limitation not shared by

more fine grained master-slave approaches or even cellular approaches in the category system of

Pedemonte et al. (2011). The fine-grained approach - also usable within stuart - handles ants

in a serial fashion and utilizes parallel processing on the level of the solution evaluation - i.e. in

the CFA estimation process. Because the CFA estimation is not part of the stuart approach

proper, it is largely dependent on the abilities of the software package used in the CFA estimation

process. What Pedemonte et al. (2011) call medium-grain master-slave approaches and cellular

approaches are not possible in stuart, because the IMKAR conceptualization in Section 1.3.2

states that the value of single components cannot be assessed without knowledge of the entire

solution, and both of these approaches require dividing the problem into subproblems at the level

of the solution construction. Of the multi-colony approaches, parallel independent runs can be

used with the stuart approach.

In addition to parallelization, stuart is somewhat peculiar in the conceptualization of the
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Table 2.1: Minimal example of Φ when localizing pheromones to nodes in a situation with two
facets, each with 6 items. Pheromones are initialized to some arbitrary large value - here 999.

Φ1

c1 c2 c3 c4 c5 c6
999 999 999 999 999 999

Φ2

c7 c8 c9 c10 c11 c12

999 999 999 999 999 999

problem. The ACO approaches discussed in Section 1.4 were defined with regards to problems

which are represented as graphs, thereby always making it sensible to deposit pheromones on arcs

between nodes. However, in KP it is feasible to deposit pheromones either on arcs (Fidanova,

2003, 2007) or on the nodes themselves (Leguizamon & Michalewicz, 1999). When representing

item selection as an IMKAR, both approaches are valid so that both are included in the stuart

approach. Because the localization of pheromones to nodes is the simpler case, it is discussed

first.

2.2.1 Localization to Nodes

When localizing pheromones to nodes, the pheromones are assigned to a set of vectors, denoted

Φ. This set contains M vectors, each of size Im. Just as it is the case for the projection of

components from the overall item pool C into facet specific item pools Cm (see Section 1.3.2),

pheromones are allocated in a facet specific manner. This means, that any given item can have

up to M different pheromones associated with it. This guarantees that items are not generally

more or less likely to be selected when constructing a solution, but are instead more or less likely

to be chosen from Cm → Csm. The item-facet specific pheromones are denoted φim. Table 2.1

gives a minimal example of a Φ in a case with two facets, each with 6 items.

As was the case in Algorithms 2 and 3 showingMMAS, the stuart approach requires seven

input parameters: H, α, β, ρ, T , K, and psgb . Their specific influence on the algorithmic behavior

is discussed in more detail in Section 3.1, but it is necessary to investigate the structure of H

here.

Heuristic information is provided in a sets (H), which is of the same structure as its pheromone

counterparts Φ. Thus, the Φm shown in Table 2.1 could also show heuristics providing the

same prior information to each item. As is the case with pheromones, heuristics are provided

specifically for each item-facet combination - i.e. as ηim.

The probability of choosing a specific item is provided by an adaptation of Equation (1.16):
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Algorithm 4: Item selection subroutine implemented in the stuart approach when localizing
pheromones to nodes.

Require: Φ(t), H, α, β
1 procedure Item Selection
2 all xim ← 0
3 for all m in (1, ...,M) do
4 while constraint ω1 in (1.10) do
5 assign ci ∈ Cm → Csm using (2.6)
6 xim ← 1
7 remove ci from Φ, H
8 end while
9 return Csm
10 end for
11 combine Csm to s
12 return s
13 end procedure

Result: s

p(xim = 1|t) =
[φim(t)]α[ηim]β

Im∑
i=1

[φim(t)]α[ηim]β
, (2.6)

which describes the probability of choosing item i in facet m at iteration t as a function of its

pheromone φim and its heuristic information ηim.

With these parts in place, it is possible to define a subroutine for selecting items, as shown in

Algorithm 4. The subroutine requires pheromones at iteration t, heuristics, and their respective

non-lineary coefficients. The selection procedure initializes all binary selection indicators (xim) to

zero in line 2, indicating that no item has been selected. An item is selected with the probability

given by Equation (2.6) in line 5, and the selection indicator of the selected item is set to one

(line 6). The pheromone and heuristic vectors are updated to no longer include the item just

selected. This is done only as long as the constraint ω1 is fulfilled - i.e. as long as the sum of the

weights of the items does not exceed capacity - and iterated over all facets.

After the items are selected it is necessary to determine f(s). As discussed in Section 2.1,

determining an appropriate quality function is part of the theoretical work of each single appli-

cation. However, it is assumed that f(s) refers to the overall quality of the solution and is not

item specific beyond the properties of s. In this case it is possible to generally determine the

pheromone update, in line with Equations (1.19) and (1.20), as:

∆Φm(t, t+ 1) = Xib
mf(sib) (2.7)

or
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∆Φm(t, t+ 1) = Xgb
m f(sgb) (2.8)

depending on whether the iteration-best deposit rule or the global-best deposit rule, described

in Section 1.4.3, is used. Xm denotes the vector containing the binary values indicating whether

an item ci was selected in solution s in facet m. Thus, it can be used as a logical filter to replace

the cases shown in Equations (1.19) and (1.20).

As is the case for MMAS, an evaporation coefficient ρ guarantees an upper limit for the

elements in Φ and, using sgb as a placeholder for the optimal solution sopt, the temporary upper

limit is given by

φmax =
f(sgb)

1− ρ
. (1.22, repeated)

Additionally, the temporary lower limit - as discussed in Section 1.4.3 - is provided by:

φmin =
φmax(1− n

√
psgb)

avg n
√
psgb

(1.23, repeated)

With the limits in place, the pheromone at iteration t+ 1 is given by a variation of Equation

(1.26) as:

φim(t+ 1) =


φmin, if ρφim(t) + ∆φim(t, t+ 1) < φmin

φmax, if ρφim(t) + ∆φim(t, t+ 1) > φmax

ρφim(t) + ∆φim(t, t+ 1), else

(2.9)

stating that pheromones exceeding φmax are set to the maximum, pheromones lower than φmin

are set to the minimum, and all other pheromones are updated by evaporation of φim(t) and

then addition of the ∆φim(t, t + 1) determined via Equation (2.7) or (2.8), depending on the

deposit rule.

This necessitates the definition of a new convergence criterion as an adaptation of the general

MMAS convergence criterion provided in Equation (1.27), specifically:

∀t > 1, i′ 6= i′′ ∃i′, i′′

(φi′m(t) = φmax) ∧
(
φi′′m(t) = φmin

)
∧[

(φim(t) = φmax) ∨
(
φim(t) = φmin

)]
.

(2.10)

In detail, convergence is achieved if, at any iteration t > 1, there is at least one pheromone on

items which is minimal, at least one pheromone on items which is maximal, and all pheromones
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Algorithm 5: MMAS with the iteration-best deposit rule as implemented in the stuart

approach.

Require: H, α, β, ρ, T , K, psgb
1 procedure MMAS(S, f,Ω)
2 set 1� φim(0)
3 f(sgb)← 0
4 while t ≤ T and (2.11) is not fulfilled do
5 while k ≤ K do
6 run Item Selection in Algorithm 4
7 determine f(sk)
8 end while
9 sib ← arg max f(sk)
10 if f(sib) > f(sgb) then
11 sgb ← sib

12 compute φmax with (1.22)
13 compute φmin with (1.23)
14 end if
15 determine ∆Φm(t, t+ 1) with (2.7)
16 compute Φm(t+ 1) with (2.9)
17 t← t+ 1
18 end while
19 return sgb

20 end procedure
Result: sgb

are either minimal or maximal. While the limitation to t > 1 is not strictly necessary, it is stated

here to allow for some tolerance regarding the imprecision in estimating f(s). Including tolerance

tol factor to allow for this imprecision, rephrases the convergence criterion in Equation (2.10) to

∀t > 1, , i′ 6= i′′ ∃i′ 6= i′′

(φi′m(t)± tol = φmax) ∧
(
φi′′m(t)± tol = φmin

)
∧[

(φim(t)± tol = φmax) ∨
(
φim(t)± tol = φmin

)] (2.11)

The side effect of incorporating tol is a quicker convergence, because φim are no longer required

to be specific values, but may instead lie in an interval. Because of this interval, however, it is

possible to achieve“false convergence”during early iterations. This is the case when the difference

between φmin and φmax is smaller than the tolerance. Because φmin is a function of φmax, as

shown in Equation (1.23), this is possible only in few scenarios, which require either very small

problems (i.e. selecting from a small pool of items) or very low values of φmax. Because φmax

itself is computed using f(sgb), this is most likely in very early stages of the algorithm, when

only bad solutions have been found.

Algorithm 5 shows the pseudo-code of the algorithm implemented in the stuart approach
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when using the ib deposit rule. All pheromones are initialized to an arbitrary large value (line

2) and the initial global-best solution quality is set to be zero (line 3). Then, while neither

of the abort criteria is met, the Item Selection procedure is run and the resulting f(sk) is

determined (lines 6 and 7) for K ants in iteration t. The best of these K solutions is stored

as the iteration-best solution (line 9). If an sib is better than the current sgb, it takes its place

(line 11) and the pheromone limits are renewed (lines 12 and 13). Finally, the pheromones are

updated (lines 15 and 16) and the iteration counter t is increased.

For to the minimal example above, Table 2.1 shows Φ(0). Assume a simple example in which

three of the six items are selected per facet (i.e. wim = 1, am = 3) and α = β = 1, ρ = .8,

T = 5, K = 1, psgb = .5, and no heuristic information is provided. Using the initial pheromones

to determine selection probability via Equation (2.6), each item has the same initial probability

of being selected: p(xim = 1|t = 0) = 0.167. After Item Selection the chosen items are c1, c3,

c5, c7, c9, and c11. This results in f(s) = 1, which is the new sib and the new sgb. Therefore,

the new limits are computed as φmax = 5 and φmin = 0.175. ∆Φ(0, 1) is shown in Table 2.2.

Using Equation (2.9), however, all elements in Φ(1) are set to 5, because they are limited from

above limited by φmax. In the second iteration, Item Selection chooses the same six items -

by chance. Because K = 1 this is automatically the sib. However, because its quality does not

exceed the quality of the current sgb, lines 11 through 13 are skipped. Because this is the same

solution constructed in the first iteration, ∆Φ(1, 2) = ∆Φ(0, 1), which is conveniently already

depicted in Table 2.2. Using Equation (2.9), Φ(2) is updated to the version shown in Table 2.2.

Because the pheromones of the items that were not selected are multiplied with ρ = .8, they

decrease from 5 to 4. The pheromones of the items that were selected are also multiplied by ρ, but

∆φim(1, 2) = 1, making their pheromones 5 at the end of iteration 2. Because the pheromones

are not equal for all items at t = 2, their selection probabilities also differ. For the first item

selected in Item Selection those with φim(2) = 5 are chosen with p(xim = 1|t = 2) = 0.185,

while those with φim(2) = 4 are chosen with p(xim = 1|t = 2) = 0.148. The difference in selection

probability then increases as t increases, before the algorithm reaches the convergence criterion

or t exceeds T .

Tweaking Algorithm 5 to incorporate the global-best deposit rule results in Algorithm 6. The

only notable difference between the two algorithms is the absence of iteration-best solutions in

the latter. Instead, all K solutions in iteration t are compared to the current sgb (line 9), which

directly inherits sk if it is better than the current sgb. Irrespective of the deposit rule, a single

ant is contained in lines 6 and 7 of the algorithms. Within the while loop containing these ants

(lines 5 through 8 of both algorithms), no information is updated which is required by the ants -

none of the parameters required by the Item Selection process change and the rule with which

f(s) is determined, is also fixed. As discussed above, this allows for the parallelization of this

portion of the algorithm in the coarse-grain master-slave approach. The fine-grain master slave

approach described above is implemented during the evaluation of s (line 7). In both, Algorithm
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Table 2.2: Minimal example for a run of the stuart approach.

∆Φ(0, 1), ∆Φ(1, 2)

c1 c2 c3 c4 c5 c6
1 0 1 0 1 0

c7 c8 c9 c10 c11 c12

1 0 1 0 1 0

Φ(1)

c1 c2 c3 c4 c5 c6
5 5 5 5 5 5

c7 c8 c9 c10 c11 c12

5 5 5 5 5 5

Φ(2)

c1 c2 c3 c4 c5 c6
5 4 5 4 5 4

c7 c8 c9 c10 c11 c12

5 4 5 4 5 4

Algorithm 6: MMAS with the global-best deposit rule as implemented in the stuart ap-
proach.

Require: H, α, β, ρ, T , K, psgb
1 procedure MMAS(S, f,Ω)
2 set 1� φim(0)
3 f(sgb)← 0
4 while t ≤ T and (2.11) is not fulfilled do
5 while k ≤ K do
6 run Item Selection in Algorithm 4
7 determine f(sk)
8 end while
9 if f(sk) > f(sgb) then
10 sgb ← sk
11 compute φmax with (1.22)
12 compute φmin with (1.23)
13 end if
14 determine ∆Φm(t, t+ 1) with (2.8)
15 compute Φm(t+ 1) with (2.9)
16 t← t+ 1
17 end while
18 return sgb

19 end procedure
Result: sgb
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Table 2.3: Minimal example of Φ when localizing pheromones to arcs in a situation with two
facets, each with 6 items. Pheromones are initialized to some arbitrary large value - here 999.

Φ1

c1 c2 c3 c4 c5 c6
c1 0 999 999 999 999 999
c2 999 0 999 999 999 999
c3 999 999 0 999 999 999
c4 999 999 999 0 999 999
c5 999 999 999 999 0 999
c6 999 999 999 999 999 0

Φ2

c7 c8 c9 c10 c11 c12

c7 0 999 999 999 999 999
c8 999 0 999 999 999 999
c9 999 999 0 999 999 999
c10 999 999 999 0 999 999
c11 999 999 999 999 0 999
c12 999 999 999 999 999 0

5 and Algorithm 6, line 8 requires information about all solutions in iteration t. In theory it

is possible to parallelize the determination of ∆Φm(t, t+ 1) and the update of the pheromones,

because these are facet specific. Because these actions are extremely quick and small, however,

this is not included in the current stuart implementation.

2.2.2 Localization to Arcs

Localizing pheromones to arcs is a bit more difficult than localizing them to nodes, because it

requires extending the conceptualization of the IMKAR beyond the selection independence stated

in Equation (1.4) for classical KP, to a version in which the previous selection is memorized

and able to influence the probability of the selection immediately after it. This is done by

defining a set Φ containing M square matrices. These matrices contain pheromones influencing

the choice probability p(x(i,i′)m = 1) and denote i in rows and i′ in columns, meaning they

depict the pheromone for choosing item i′ after having chosen item i. In theory, M can be of

Am-dimensionality to encode combination specific choice probabilities (i.e. p[x(i,i′,i′′,...)m = 1]).

However, in the stuart approach the dimensionality is limited to two, imposing the assumption

of conditional independence after controlling for
∑
i∈s wixi and the preceding ci assigned to Csm.

Table 2.3 gives an example of Φ when localizing pheromones to arcs for two facets and six

items per facet. These matrices are symmetric with zeros along the diagonal. The former reflects

the equality of solutions which differ only in the order of items, as stated in Equation (1.3), the

latter the fact that no item may be chosen more than once.
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Table 2.4: Examples of heuristic information for item combinations in the stuart approach
with pheromone localization on arcs.

Example 1

c1 c2 c3 c4 c5 c6
c1 0 0 0 1 1 1
c2 0 0 0 1 1 1
c3 0 0 0 1 1 1
c4 1 1 1 0 0 0
c5 1 1 1 0 0 0
c6 1 1 1 0 0 0

Example 2

c1 c2 c3 c4 c5 c6
c1 0 1 3 1 1 1
c2 1 0 1 1 1 1
c3 3 1 0 1 1 1
c4 1 1 1 0 1 3
c5 1 1 1 1 0 1
c6 1 1 1 3 1 0

As is the case when localizing pheromones to nodes, heuristics also have the same structure

as the pheromones when localizing to arcs. Note that, while heuristics and pheromones have the

same structure, the assumptions of symmetry and zero-diagonals are not imposed on H. Specific

heuristics are denoted η(i,i′)m and have the possibility to relate to combinations of items. This

is one of the central aspects when choosing a localization, because it determines the degree in

which heuristic information can be provided. If the item selection should be limited because of

properties of item combinations, the arc localization is necessary. This might be the case when

some items in the original item pool are so similar, that at most one of them should be included

in the final solution, or when items are phrased positively and negatively and the final solution

should consist of as many positively as negatively phrased items. Example 1 in Table 2.4 shows

a situation in which items 1, 2, and 3 are positively phrased, items 4, 5, and 6 are negatively

phrased and provides the heuristic matrix necessary to ensure an even number of positive and

negative items. While filling H with zeros and ones provides logical gates to item selection,

it might also be necessary to make selection of an item more likely when a different one was

previously selected. This is done in Example 2 of Table 2.4, where items 1 and 3 as well as 4 and

6 are 3β-times more likely to be chosen together.

Due to this structure of Φ and H the probability of selecting an item i′ directly after having

selected an item i is given by an adaptation of Equation (1.16):
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Algorithm 7: Item selection subroutine in stuart when localizing pheromones to arcs.

Require: Φ(t), H, α, β
1 procedure Item Selection
2 all x(i,i′)m ← 0
3 for all m in (1, ...,M) do
4 randomly assign a starting item ci ∈ Cm → Csm
5 xim ← 1
6 while constraint ω1 in (1.10) do
7 choose i′ from i using (2.12)
8 assign ci′ ∈ Cm → Csm
9 x(i,i′)m ← 1
10 determine xi′m with (2.13)
11 remove i′ columns from Φ, H
12 end while
13 return Csm
14 end for
15 combine Csm to s
16 return s
17 end procedure

Result: s

p(x(i,i′)m = 1|t) =
[φ(i,i′)m(t)]α[η(i,i′)m]β

Im∑
i′=1

[φ(i,i′)m(t)]α[η(i,i′)m]β
. (2.12)

With the selection probability in place, the item selection subroutine is shown in Algorithm

7. It should be noted that the selection of items is coded in x(i,i′)m - i.e. on the arcs - but the

constraint in ω1 pertains to the items themselves. This can be included by defining xi′m as the

marginal sum of x(i,i′)m for all i. Or, more concisely:

xi′m =

I∑
i

x(i,i′)m. (2.13)

As was the case when localizing pheromones to nodes, the item selection procedure begins

with the initialization of the selection indication to zero. Within each facet a random item is

chosen as the starting location (line 4) and its selection indicator is set to 1 (line 5). Then,

while the sum of weights does not exceed capacity, a path is chosen from i to some i′ with

the probability determined via Equation (2.12), and the component ci′ is assigned to the facet

specific component set of solution s (lines 7 and 8). The arc between i and i′ is coded as chosen

(line 9) and the marginal sum is calculated (line 10), to make the evaluation of ω1 possible. In

the final step, all columns in H and Φ pertaining to the selected item i′ are removed (line 11).

After the selection of items, each solution is evaluated and the quality f(s) is determined. As

was the case for localizing pheromones to nodes, the pheromone updates are computed via:
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∆Φm(t, t+ 1) = Xib
mf(sib) (2.7, repeated)

or

∆Φm(t, t+ 1) = Xgb
m f(sgb) (2.8, repeated)

depending on the pheromone deposit that is utilized. With the pheromone update in place, the

pheromones at iteration t+ 1 are then determined as:

φ(i,i′)m(t+ 1) =


φmin, if ρφ(i,i′)m(t) + ∆φ(i,i′)m(t, t+ 1) < φmin

φmax, if ρφ(i,i′)m(t) + ∆φ(i,i′)m(t, t+ 1) > φmax

ρφ(i,i′)m(t) + ∆φ(i,i′)m(t, t+ 1), else

(2.14)

whereby the pheromones on the selection of i′ after selecting i are φmin ≤ φ(i,i′)m ≤ φmax. With

these limits the convergence criterion is defined as:

∀t > 1, i 6= i′, i 6= i′′ 6= i′′′ ∃i′′, i′′′(
φ(i,i′′)m(t)± tol = φmax

)
∧
(
φ(i,i′′′)m(t)± tol = φmin

)
∧[(

φ(i,i′)m(t)± tol = φmax
)
∨
(
φ(i,i′)m(t)± tol = φmin

)]
.

(2.15)

stating that for every item i there is at least one i′′, for which the pheromone on the arc is

maximal, at least one item i′′′ for which it is minimal, and all the pheromones leading to any

i′ are either maximal or minimal. As was the case for localization to nodes, the tolerance tol is

included to accommodate imprecision in the estimation of f(s).

Algorithms 8 and 9 depict the algorithmic procedure when localizing pheromones to arcs

in the stuart approach using either the iteration-best or the global-best deposit rule. The

algorithms themselves do not differ from those shown in Algorithms 5 and 6 for the localization

of pheromones to nodes, but their pieces differ somewhat.

The most notable differences in the localization approaches are handled in the Item Selec-

tion subroutine shown in Algorithm 7. The other two differences are the convergence criteria,

referenced line 4 of both algorithms, as well as the computation of pheromones at t+1, referenced

in lines 16 and 15, respectively.
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Algorithm 8: MMAS with the iteration-best deposit rule as implemented in the stuart

approach.

Require: H, α, β, ρ, T , K, psgb
1 procedure MMAS(S, f,Ω)
2 set 1� φim(0)
3 f(sgb)← 0
4 while t ≤ T and (2.15) is not fulfilled do
5 while k ≤ K do
6 run Item Selection in Algorithm 7
7 determine f(sk)
8 end while
9 sib ← arg max f(sk)
10 if f(sib) > f(sgb) then
11 sgb ← sib

12 compute φmax with (1.22)
13 compute φmin with (1.23)
14 end if
15 determine ∆Φm(t, t+ 1) with (2.7)
16 compute Φm(t+ 1) with (2.14)
17 t← t+ 1
18 end while
19 return sgb

20 end procedure
Result: sgb

Algorithm 9: MMAS with the global-best deposit rule as implemented in the stuart ap-
proach.

Require: H, α, β, ρ, T , K, psgb
1 procedure MMAS(S, f,Ω)
2 set 1� φim(0)
3 f(sgb)← 0
4 while t ≤ T and (2.15) is not fulfilled do
5 while k ≤ K do
6 run Item Selection in Algorithm 7
7 determine f(sk)
8 end while
9 if f(sk) > f(sgb) then
10 sgb ← sk
11 compute φmax with (1.22)
12 compute φmin with (1.23)
13 end if
14 determine ∆Φm(t, t+ 1) with (2.7)
15 compute Φm(t+ 1) with (2.14)
16 t← t+ 1
17 end while
18 return sgb

19 end procedure
Result: sgb
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2.3 Measurement Models

The representation of the problem of item selection as well as the algorithmic approach presented

in the previous two sections can be applied to any approach to evaluating s and determining a

meaningful f(s). Within the stuart approach, classical test theory (CTT; e.g. Lord & Novick,

1968; Novick, 1966; Steyer, 1989) and CFA are used to determine f(s) by establishing measure-

ment models and evaluating their results.

The basics of CFA are discussed in a multitude of introductory textbooks (e.g. Brown,

2015; Kline, 2011; Schumacker & Lomax, 2016). In the stuart approach the flexibility of

CFA is utilized to allow for item selection in situations with (a) multiple facets, (b) multiple

groups, (c) multiple occasions, and (d) multiple sources of information, or any combination of

the four. The general advantage of including this flexibility in the process of item selection is that

questionnaires can be constructed with the objective of measurement invariance across groups

explicitly included, for example. This flexibility, in combination with the understanding of item

selection as a combinatorial problem (see Section 1.3), allows for a straightforward manner of

selecting items in complex situations without the need for multi-stage decision processes of the

test constructor, thereby overcoming some of the major problems of modern CFA driven item

selection.

The current implementation of the stuart approach utilizes either lavaan (Rosseel, 2012) or

Mplus (L. K. Muthén & Muthén, 1998-2015) to estimate the underlying CFA models. While both

are extremely similar in their implementation of standard estimation approaches to structural

equation modeling, they do differ in some degrees that may have an impact on the results of

item selection using the stuart approach. First, they differ in their possibilities regarding par-

allelization. As discussed in Section 2.2, it is possible to use either a coarse-grain or a fine-grain

master-slave parallelization approach. Which of these is used is dependent upon the estimation

software, with the coarse-grain approach being used with lavaan and the fine-grain approach

being used with Mplus. This is due to the fact, that lavaan does not provide parallel computing

capabilities within its estimation process as of version 0.5-22, thus making the coarse-grain ap-

proach necessary in this instance. By contrast, using Mplus in the solution evaluation requires

the start of an external process when using R, thereby necessitating the storage of an Mplus

input file, an Mplus output file, and a data file for each single ant k. As of writing, a coarse-

grain parallelization of this process was slower than the fine-grain parallelization implemented

im Mplus Version 7.3. In addition to parallelization, the two software packages differ in which fit

criteria they provide, thereby influencing the possible definitions of the objective function f . It

should be noted that, irrespective of the estimation software, in the current implementation of

stuart standard errors are not computed for any solutions during the process of item selection.

This is done because it enhances the speed of the algorithm immensely.

The rest of this section will give an overview of the stuart approach to including information



55 2.3 Measurement Models

from the four constellations listed above. The most simple form, selecting items to multiple

facets, will be discussed first and then extended to include the other three conditions. Note,

that this presentation is limited to continuous indicators, but can be extended to situations with

categorical indicators. This extension would then allow for the inclusion of IRT models via their

SEM counterparts without necessitating an explicit reformulation of the fundamentals of this

thesis.

2.3.1 Item Selection for Simple Situations

In this section a “simple situation” is understood as a situation in which items are selected for a

scale, when considering only a single occasion, a single group, and a single source of information.

The inclusion of multiple facets is inherent to the representation of the problem of item selection

in the stuart approach (see Section 2.1). Specifically, because the problem of item selection is

construed as an IMKAR (as discussed in Section 1.3.2), multiple facets are a basic part of the

optimization problem.

In the most general setting, the selected items are modeled as

coim = τim + λimξom + εoim, (2.16)

where coim represents observation o of the component (i.e. the item) i of facet m, τim represents

the intercept, λim represents the factor loading on the latent variable ξom, representing the

underlying construct of facet m, and εoim is the measurement error.

Equivalently, Equation (2.16) can be formulated in matrix notation as

C = τ + Λξ+ ε (2.17)

with the model implying the covariance structure

Σ = ΛΨΛ> + Θ, (2.18)

and the meanstructure

µ = τ + Λκ (2.19)

where Λ is the matrix of factor loadings, Ψ is the latent covariance matrix, Θ is the residual

covariance matrix, τ is the vector of of intercepts, µ is the vector of item means, and κ is the

vector of latent means.

Within the stuart approach strict unidimensionality is assumed. As described in Section

2.1 and stated in Equation (1.13), one of the constraints imposed onto the IMKAR is that no

item can be selected to indicate more than one facet. In the strict interpretation utilized in the
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stuart approach, this means that

λim′ = 0 ∀cim ∈ Csm,m 6= m′, (2.20)

or stated a different way, that all elements in Λ are zero if they represent cross-loadings of

indicators on latent variables that are not the facet they were selected for. With the additional

assumption of uncorrelated errors, writeable as

cov(εoim, εoi′m′) = 0 ∀(i,m) 6= (i′,m′), (2.21)

which states that Θ is a diagonal matrix, the measurement model is overidentified for most cases

with either four components in Cs and one facet or two components in each Csm, when the latent

variables ξom are correlated (e.g. Brown, 2015). These guidelines do not guarantee identification

of the measurement models however, as they remain susceptible to empirical underidentification

(e.g. when factor loadings or latent covariances are zero). In situations with overidentified models,

the quality function f can contain indexes of model fit. When the model is just identified - e.g.

when three items are selected for one facet - other criteria can be included in the quality function,

but model fit will always be perfect, and will not differentiate between different solutions, making

the inclusion of fit-criteria unnecessary.

It should be noted, that the assumptions stated in Equations (2.20) and (2.21) are not strictly

necessary when constructing tests, but should be striven for. Specifically in the stuart approach,

the inclusion of correlated residuals and cross-loadings is hard to justify, given that their extent

is dependent on the specific combination of items. If items are assumed to be correlated above

and beyond the strict unidimensionality due to substantive considerations, it might be better

to consider either including separate facets for these or extending the approach to a case with

multiple sources of information. For example, a case in which some items are negatively phrased,

while others are positively phrased, may be more suited to a model in which a positive and a

negative facet are defined as different sources of information for the same latent construct using

an MTMM approach. This extension is discussed in more detail in Section 2.3.4.

Five different measurement models are considered in the stuart approach for simple situa-

tions, each implementing different invariance restrictions within a facet m (cf. Eid, Gollwitzer,

& Schmitt, 2015; Steyer, 1989; Steyer & Eid, 2001).

The most general model is that which is most often assumed in applications of CFA: the model

of τ -congeneric variables. In this case, all items within a facet are simply related to the latent

variable by Equation (2.16), implying that item easiness (indicated by τim), item discrimination

(indicated by λim), as well as item reliability (indicated by 1 − var(εoim)
var(coim) ), may differ across all
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items. Constraining the factor loadings to be equal for all items in the same facet (λim = λi′m)

results in a model of essentially τ -equivalent measures. In this case items within the same facet

discriminate equally on the latent dimension, indicating that an individual’s score on an item

differs from that on a different item of the same facet only by a constant and measurement error.

Additionally constraining τim = τi′m results in a model of τ -equivalent measures, which indicates

identical item easiness for all items of the same facet and that an individual’s values on two items

of the same facet differ only due to measurement error. Restraining var(εim) = var(εi′m) without

the assumption of invariant intercepts, results in a model of essentially τ -parallel measures. The

implications of this model are that all items pertaining to facet m have the same reliability

and that - much like for the model of essentially τ -equivalent measures - differences between

items are some constant (namely τim − τi′m) and measurement error. In the case of τ -parallel

measures, residual variances and intercepts are equal, meaning that item scores differ only due

to measurement error and that all items have the same reliability.

Within the stuart approach all five models are applicable to any facet. This means, that

the assumptions of a given measurement model apply to a facet m as a whole, but may differ for

different facets of the same questionnaire. One major difference between the stuart approach

and most approaches to CFA is that a measurement model is assumed a priori. In classical

CFA the different measurement models are often tested sequentially using likelihood-ratio tests

or information criteria. Using this procedure, the most restrictive measurement model which is

not significantly worse than a less restrictive model is assumed as best. In the stuart approach

this is not the case. Instead, a measurement model is assumed a priori and items are selected to

maximize the objective function given this measurement model. This way, if a scale is not in line

with the assumed measurement model, this is visible in overall model fit indexes, which would

result in lower f(s) when they are included in the objective function.

It should be emphasized that the stuart approach aims at finding the best solution under the

circumstances provided. The measurement model is one of these circumstances - an application

specific constraint which must be provided - thus putting the “search” for a good measurement

model beyond its scope. This should not be interpreted as a shortcoming because it is intentional.

Within the stuart approach it is necessary to construct a hypothetical, ideal scale - formulating

all of its properties - and then searching for a solution in the pool of item combinations which

best represents this ideal.

2.3.2 Multiple Groups

As pointed out in the previous section, using the stuart approach to select items from multiple

facets is ingrained in the IMKAR representation of item selection. Extending this approach

to include multiple groups is straightforward, because the process of item selection itself is not

influenced by the inclusion of multiple groups. Instead it is assumed that:
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Cg = Cg′ (2.22)

and

(Sg, fg,Ωg) = (Sg′ , fg′ ,Ωg′), (2.23)

meaning that the set of components C and the optimization problem (S, f,Ω) are independent of

the grouping variable. Under this assumption, the optimization problem is still the one described

in Section 2.1 and the additional assumptions made in Equations (2.20) and (2.21) also apply to

the case of multiple groups.

However, the inclusion of multiple groups necessitates the extension of Equation (2.16) to

multiple-group CFA (e.g. Jöreskog, 1971; Muthén, 1989) by including group-specific parameters:

coimg = τimg + λimgξomg + εoimg, (2.24)

where the new indicator g denotes the group, making all model parameters group dependent.

For multiple groups this implies the covariance structure

Σg = ΛgΨgΛ
′
g + Θg, (2.25)

and the meanstructure

µg = τg + Λgκg, (2.26)

meaning that the covariance matrices and mean vectors of all groups g are independent of each

other, because the observations are assumed to stem from independent groups.

Measurement invariance in the assessment of individuals from multiple populations is one

of the central research areas in psychological methodology and psychometrics. While the core

concepts of measurement invariance in factor analysis are not new (e.g. Drasgow & Kanfer,

1985; Meredith, 1964, 1993), research on appropriateness and implementation of measurement

invariance is still ongoing (e.g Millsap, 2011; Raykov, Marcoulides, & Li, 2012; van de Schoot,

Schmidt, & De Beuckelaer, 2015, for an overview of the current developments) and some of these

newer approaches aim at relaxing invariance restrictions by either adopting partial measurement

invariance schemes (Steinmetz, 2013) or utilizing approximate invariance (van de Schoot et al.,

2013). Because the stuart approach is aimed at constructing scales, these less restrictive ap-

proaches are not directly utilized and a more conservative approach is implemented, based on

the invariance levels described by Meredith (1993).

In line with Meredith (1993), the stuart approach includes four invariance levels for the item
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selection in multiple groups.

The first, configural invariance, assumes that zero-value restrictions on factor loadings λimg

are the same across all values of g, or more formally:

λim′g = λim′g′ = 0 (2.27)

for all components selected for facet m with m 6= m′. This is a straightforward combination of

the assumptions stated in Equation (2.20), (2.22), and (2.23) within the stuart approach. This

indicates that the structure of measurements is equivalent across groups, but the parameters

themselves may vary. While this may seem very unrestrictive, the establishment of configural

invariance is a point of contention in many areas of cross-cultural research (e.g. van de Vijver,

van Hermert, & Poortinga, 2008). The second level is weak factorial measurement invariance,

given by

λimg = λimg′ = λim (2.28)

stating that the factor loadings are independent of the grouping variable g. This means that

the relationships between latent variables may be compared across groups (Widaman & Reise,

1997), because the relationship between a latent variable and its indicators is the same across

groups, and that differences between individuals in the same group are comparable across groups.

Because of the equality of factor loadings, items discriminate to an equal degree on the latent

constructs across different groups. Strong factorial invariance, the third form of invariance, is

achieved if the equality of the intercepts

τimg = τimg′ = τim (2.29)

is included in addition to the equality of loadings stated in Equation (2.28). This allows for the

estimation of G− 1 means of latent variables, which implies

µimg − µimg′ = λim(κmg − κmg′). (2.30)

This states that the intercepts of all manifest variables are independent of g and that the

means of the observed variables differ only by the scaled differences in latent variable means.

These restrictions allow for the comparison of latent means between groups. Additionally, items

have the same discrimination on the latent variable and the same difficulty in different groups.

The final level of invariance implemented in the stuart approach is strict factorial invariance,

which is given in a model with strong factorial invariance and

var(εoimg) = var(εoimg′) = var(εoim) (2.31)
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as an additional assumption. The invariance assumption placed on the residual variances means

that all group differences in the manifest variables are due solely to differences in the latent

variables and their relations. All differences in the manifest variance-covariance matrix are due

to group differences in latent variances and covariances and all differences in the means of items

are due to differences in the latent means. However, it should be noted that even strict factorial

invariance does not imply full measurement invariance (Millsap, 2011, p. 106). Reliabilities may

be different across groups, because they depend on the distribution of the latent variables.

As was the case for measurement models described in Section 2.3.1, the invariance assumptions

are commonly tested sequentially, stopping at the most restrictive, tenable invariance assumption

(see Vandenberg & Lance, 2000, for a review of classical approaches). Again, this is not the case

here. As stated above, the stuart approach requires the statement of an ideal model - if a

scale is intended for use across different populations this must be reflected in the assumptions

about the solution and integrated into the process of item selection. With an assumption about

measurement invariance across groups in place, the stuart approach can be used to search for

a solution meeting those requirements. Again, it should be emphasized that these assumptions

can be provided on a facet-by-facet basis, if there is reason to believe that some facets are likely

less invariant in their measurements. As pointed out at the beginning of this section, configural

invariance is assumed as soon as this approach is applied to data with multiple groups.

2.3.3 Multiple Occasions

Despite the intuitive approach of understanding the incorporation of longitudinal measurement

settings into the process of item selection as an extension of the stuart approach, it actually

represents a restriction of the basic approach discussed in Section 2.3.1. This becomes clearer

when looking at the measurement invariance restrictions associated with CFA for repeated mea-

surements.

Measurement invariance assumptions made in longitudinal modeling are described in the same

four steps as those stated in Section 2.3.2 for multiple groups, but do not pertain to samples from

different populations, but instead to different variables representing repeated measures of each

other (T. D. Little, 2013). As was the case for multiple groups, the first invariance assumption

states configural invariance, meaning that the structure of factor loadings is the same across

multiple occasions. This implies that the same items must be selected to repetitions of the same

measurement when assuming configural invariance.

In an application of the stuart approach with repeated measures and no configural invariance,

the relation of variables as repeated measures is not discernible from the relation of any other

two variables, and the item selection would proceed as described in Section 2.3.1. In this case

repeated measures allowing for the selection of different components simply constitute different

sets Cm, each with their own allocation from Cm → Csm.
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To introduce configural invariance it is necessary to constrain the selection Cm → Csm and

Cm′ → Csm′ for those facets m and m′ which are believed to be repeated measures. This is done

by introducing the set R which contains the sets of repeated measures {m,m′, ...} for which the

item selection is constrained to be the same. Each set of repeated measures is denoted Rv and

the constraint

Xm = Xm′ ∀m,m′ ∈ Rv (2.32)

is introduced, meaning that the selection matrix X (as introduced in Section 2.2.1) is identical

for all facets m and m′ which are defined as repeated measures in the same Rv. This equality of

selection implies that selection probabilities as stated in Equation (2.6) for localizing pheromones

to nodes and in Equation (2.12) for localizing pheromones to arcs of repeated measures must be

the same. This means that:

p(xim = 1|t) = p(xim′ = 1|t) ∀m,m′ ∈ Rv (2.33)

p(x(i,i′)m = 1|t) = p(x(i,i′)m′ = 1|t) ∀m,m′ ∈ Rv. (2.34)

Because the selection probability is proportional to the product Φ(t)αHβ , its equality also

indirectly implies the equality of pheromones and heuristics for the same items from repeated

measures.

Note, that this introduction of R means that, even in cases without repeated measures, all

m are assigned to a set Rv. In these cases V = M , because each facet is the first occasion of

measurement for its dimension and each m is assigned to its own Rv, so as not to impose any

restrictions.

In addition to this constraint in the item selection, it is necessary to assume that all zero-value

restrictions are the same across measurement occasions to constitute a model fulfilling configural

measurement invariance.

It should be noted that the constraint stated in Equation (2.32) allows for flexible definitions

of repeated measures, because no restrictions are imposed on the Rv themselves. Thereby, it

is possible to apply this constraint in different fashion to different facets, making it possible to

select items in situations in which some facets are measured more often than others (e.g. for

the simultaneous item selection for a trait and a state scale) or situations in which configural

invariance is assumed for some facets, but not for others.

As was the case for item selection in multiple groups, the remaining invariance assumptions

concern only the CFA models and not the actual process of item selection. In line with T. D. Little

(2013) weak factorial invariance is given if
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λim = λim′ ∀m,m′ ∈ Rv, (2.35)

meaning that the factor loadings of all items are equal for repeated measures. As was the case for

multiple groups, this implies the same item discrimination across multiple occasions and allows

for the comparison of the relationships between latent variables across occasions.

Strong factorial invariance assumes the equality of intercepts and freedom of V − 1 latent

means:

τim = τim′ ∀m,m′ ∈ Rv (2.36)

implying

µim − µim′ = λim(κm − κm′) ∀m,m′ ∈ Rv, (2.37)

which indicates that the difficulties of items are the same over different occasions but that the

means of indicators may change due to changes in the latent means, making the detection of

latent mean change possible. Finally, strict factorial invariance supposes that

var(εoim) = var(εoim′) ∀m,m′ ∈ Rv, (2.38)

meaning that error variances are equal for repeated measures, indicating that changes in the

distribution of items over time are solely due to changes in the latent variables.

As was the case in Section 2.3.2, it is necessary to impose a level of measurement invariance

for all facets prior to item selection. As pointed out above, if configural invariance should not be

assumed, two repeated facets can simply be defined as two regular facets without including them

in the same Rv. Beyond the assumption of measurement invariance, including repeated measures

into item selection has the positive effect of allowing for new components in the quality function

f . Specifically, it allows to go beyond the optimization of the reliability in state-assessment and

instead optimize for the reliability in change assessment between occasions, or to maximize the

change sensitivity of solutions.

2.3.4 Multiple Sources of Information

The incorporation of multiple sources of information into the stuart approach is very similar

to that of including multiple occasions. However, it differs in the implementation of the absence
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of measurement invariance. In the case of repeated measures, assuming no invariance results

in the simple case described in Section 2.3.1. Two facets m and m′ are simply handled as two

completely different facets, because they are indistinguishable from those cases in terms of CFA.

However, the approach used to accommodate multiple sources of information in this thesis has

implications for the model, even when the item selection process is not constrained in any fashion,

thereby allowing for different item pools for different assessment methods.

The stuart approach utilizes a restricted version of the CTC(M-1) model for multitrait-

multimethod (MTMM) data (Eid, 2000; Geiser, Eid, & Nussbeck, 2008). The CTC(M-1) ap-

proach uses the declaration of a reference method and the contrast of all other (non-reference)

methods against this reference to model MTMM data. This means that a state factor is defined

as the reference-measured state and residual method factors represent the common aspects of

items stemming from non-reference sources of information that are not shared with the reference

method (Eid, 2000). In the restricted version presented by Geiser et al. (2008) this is achieved by

regressing the latent states of non-reference methods on the reference-measured states, thereby

creating latent residual variables. This approach to modeling multiple sources of information

is, however, limited to structurally different methods. The implications of this and possible

extensions beyond this are discussed in more detail in Section 5.3.

Within the stuart approach, this restricted CTC(M-1) approach is represented by

ξom = β0m + β1mξom′ + ζom (2.39)

where ξom is the observation o of the latent variable for facet m, ξom′ is that for the reference

source m′, β1m is the regression weight predicting ξom by ξom′ , β0m is the intercept, and ζom

is the observation on the residual method factor of facet m. Note that the identifiability of

β0m is subject to the identification approach used for the mean structure in a model. When

the mean structure is identified by constraining all latent means to 0, β0m must too be 0 if no

additional restrictions are imposed on the mean structure (as is the case in configural and weak

measurement invariance).

This regression allows for the determination of consistency coefficients between the reference

method m′ and each m, conceived of as a non-reference method measuring the same construct.

Additionally, the computation of the inverse - the method specificity - is also possible. Both of

these coefficients can be used in the objective function f to incorporate aspects of the agreement

between different sources of information, which is the sole reason for the restriction imposed

unto the latent covariance matrix in this setting. If the consistency between different sources of

information assessing the same construct is not of interest to item selection (i.e. if it is not part of

the objective function), the restrictions imposed by the CTC(M-1) approach presented here are

not necessary, and different methods can be handled in the unrestricted fashion as different facets
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m and m′, for which the latent correlations are freely estimated. In fact, the two approaches -

the inclusion of the restricted CTC(M-1) approach vs. the free estimation of latent correlations

- differ only if additional facets and accompanying constraints are included in the measurement

model.

Configural invariance between different sources is included via the definition of a set B, con-

taining sequences of (m∗u,m, ...) facets which are multimethod assessments of the same latent

constructs, denoted Bu. Note, that while for repeated measures R contains sets, B contains se-

quences - meaning that the order of elements is irrelevant in cases with multiple occasions, while

it is of relevance for multiple sources of information. This is due to the CTC(M-1) approach

setting a reference method, as indicated above. The first element in each Bu is denoted m∗u. As

is the case for single occasions, having only one source of information (or no invariance between

sources of information) does not prevent subsets m from being assigned to sets Bu. It simply

means that each m is the first and only element m∗u in its own Bu and that M = U .

The configural invariance assumption is imposed via a straightforward transfer of Equation

(2.32) to the sets of MTMM facets:

Xm = Xm′ ∀m,m′ ∈ Bu, (2.40)

whereby the same items must be chosen for all facets indicated as being different sources of the

same latent construct in a shared Bu. As was the case for longitudinal applications, this implies

identity of the choice probabilities and - to a lesser extent - the equality of pheromones and

heuristics for these facets.

The remaining three invariance assumptions are very rare in applications with multiple sources

of information, but can be incorporated analogously to those stated in Section 2.3.3. For weak

factorial invariance this means

λim = λim′ ∀m,m′ ∈ Bu. (2.41)

Strong factorial invariance is given if

τim = τim′ ∀m,m′ ∈ Bu, (2.42)

which results in the identifiability of β0m in Equation (2.39) in cases in which the mean structure

is identified via κm = 0, making
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µim = λimβ0m. (2.43)

Strict factorial invariance is given if

var(εoim) = var(εoim′) ∀m,m′ ∈ Bu. (2.44)

While the factorial invariance assumptions are rarely of relevance, they can be incorporated

if need be. The main advantage of explicitly incorporating the MTMM structure into the stu-

art approach, instead of using the simple approach (Section 2.3.1) for cases without configural

invariance, and the approach for multiple occasions (Section 2.3.3) for all others, is the explicit

incorporation of the consistency coefficients between sources of information into the objective

function f . However, due to the asymmetric nature of the restricted CTC(M-1) approach em-

ployed here, it is necessary to select a reference method a priori - in addition to choosing an

invariance level.

2.3.5 The Full Approach

The four previous sections each presented the stuart approach in specific situations. This final

section is dedicated to combining these situations to a full approach, allowing for any combination

of multiple facets, multiple groups, multiple occasions, and multiple sources of information.

Consider the following minimal, fictional example: a scale is constructed for the assessment

of two, closely related constructs - e.g. cognitive and affective empathy in adolescents. Because it

is known that empathy can be somewhat gender-specific, the scale needs to ensure that measure-

ments are invariant across the two populations - allowing differences between genders only in the

latent variables. Additionally, because there is considerable interest in the development of these

latent constructs during adolescence, it is crucial that the scale be measurement invariant over

time. Because of this, two measurement occasions are used during the process of scale construc-

tion - one in freshman year and one in sophomore year of high school. Finally, it is of interest to

generate a self- and a parent-report version of the scale to investigate the consistency between

the empathy judged by the self and the empathy detected by another. The initial item pool

consists of 37 items (17 for cognitive and 20 for affective empathy) and the final scale is intended

to consist of four items per facet. In this minimal example, there are eight facets m = (1, ..., 8),

each indicating a specific construct-occasion-method combination. Table 2.5 shows the facet des-

ignation in the fourth column, labeled m. Without any further restrictions - meaning without

assuming configural invariance for either repeated measures or multiple sources - Equation (2.5)

can be used to determine the number of possible solutions as 1.77× 1028.
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Table 2.5: Facet designation m and allocation to sets of repeated measures Rv and sources Bu,
as well as to the partition Qh in the minimal example.

Construct Occasion Method m Rv Bu Qh

Affective
Freshman

Self 1 R1 = {1,3} B1 = (1,2) Q1 = {1,2,3,4}
Parent 2 R2 = {2,4} B1 = (1,2) Q1 = {1,2,3,4}

Sophomore
Self 3 R1 = {1,3} B2 = (3,4) Q1 = {1,2,3,4}

Parent 4 R2 = {2,4} B2 = (3,4) Q1 = {1,2,3,4}

Cognitive
Freshman

Self 5 R3 = {5,7} B3 = (5,6) Q2 = {5,6,7,8}
Parent 6 R4 = {6,8} B3 = (5,6) Q2 = {5,6,7,8}

Sophomore
Self 7 R3 = {5,7} B4 = (7,8) Q2 = {5,6,7,8}

Parent 8 R4 = {6,8} B4 = (7,8) Q2 = {5,6,7,8}

First, integrating the multiple group capabilities into the approach for simple situations,

results in the measurement equation shown in Equation (2.27). While this indicates that the

CFA models are group specific, the process of item selection is not different from the one used

for simple situations, as shown in Section 2.2. Specifically, because of the assumptions stated in

Equations (2.22) and (2.23), items are selected independently of the grouping variable - enforcing

the same selection in both groups. The multiple group aspect is introduced only to the analysis

of the constructed solution, i.e. the CFA conducted. Thereby, the stuart approach assumes that

the same items measuring affective and cognitive empathy need to be selected in the current

example. To ensure measurement invariance, strong factorial invariance could be imposed, for

example, allowing for differences in residual variances and latent means between the groups.

Because the combination of multiple measurement occasions and multiple groups do not

interfere in any way, both can be included into the approach independently. The restrictions

resulting from some facets m and m′ being repeated measures of each other are primarily imposed

on the selection process by Equation (2.32). This means, that for each specific combination of

construct and source, the same items must be selected across the occasions. By imposing this

constraint (i.e. configural invariance over time), repeated measures of the constructs are assigned

to their respective sets Rv as shown in the fifth column of Table 2.5 - labeled Rv. Due to the

imposed equality of item selection for facets in the same set of repeated measures, the problem

size decreases. Instead of being a function of the number of facets M it is now a function of the

number of sets of repeated measures V , updating Equation (2.5) to:

S =

V∏
v=1

(
Im
am

)
(2.45)

where the binomial coefficient is computed for one (and only one) m ∈ Rv for each Rv. This

results in 1.33× 1014 possible solutions in this example. Imposing more restrictive measurement
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invariance is part of the CFA and does not change the process behind item selection. Instead, it

is noticeable only in the quality of solutions f(s), if the objective function f contains an indicator

of model fit. This change in quality influences which solutions are constructed - via its influence

on item selection probabilities as stated in Equations (2.7) and (2.8) - but not how solutions are

constructed. The imposition of configural invariance, on the other hand, changes how solutions

are constructed as described above and in Section 2.3.3.

Extending the example to include multiple sources of information (self- and parent-reports)

is similar to the process of including multiple occasions. As described in Section 2.3.4, facets that

stem from different sources of information but measure the same construct are allocated to sets

Bu if they are at least configurally invariant. When this is combined with multiple measurement

occasions, only facets measuring the same construct at the same occasion are assigned to a

common Bu and item selection is restrained via Equation (2.40). This is shown in column six of

Table 2.5.

Using only multiple sources (and ignoring repeated measures, for now), reduces the number

of possible combinations in the same way that the use of multiple occasions does:

S =

U∏
u=1

(
Im
am

)
(2.46)

which results in the same number of possible combinations for the example, because there are

as many sources of information as there are measurement occasions. However, combining both

approaches reduces the problem size even more, because the number of unique facets for which

it is necessary to select items is only two, in this case. Table 2.5 shows that, via the constraints

imposed on repeated measures, m = 1 and m = 3 will use the same item selection matrix Xm.

Additionally, m = 2 is a different source of information for m = 1, whereby these facets share the

same selection matrix. Consequently, only one full run of Item Selection in either Algorithm

4 or Algorithm 7 is necessary for each construct, because the remaining three facets are known

once one is given. Figure 2.1 illustrates the facet allocation for this example.

In general the number of possible solutions is a function of the number of partitions on the

combined set of {Rv,Rv′ , ...,RV ,Bu,Bu′ , ...,BU}. This means the number of subsets for which

Qh ∩Qh′ = ∅ ∀h 6= h′ (2.47)

every pair is disjoint, and

m ∈ Qh (2.48)
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Figure 2.1: Illustration of facet allocation with eight facets, as per the example shown in Table
2.5. Sets of repeated measures Rv are depicted with dashed lines, sets of different sources of
information Bu are depicted with solid lines, and the partitions Qh are depicted with dotted
lines.

all m are element of a partition Qh. Note that while this is defined here for the combination

of multiple occasions and multiple sources of information, it is also true for all cases that are

simplifications - i.e. all of the cases presented. This is because the case with only a single source

of information simply assigns each facet m to its own set Bu, such that U = M . In this example

this would mean that there would be four partitions in Q, because there are four sets in R which

do not overlap. Therefore, in the most general case, the number of possible solutions in the

stuart approach is given by

S =

H∏
h=1

(
Im
am

)
. (2.49)

In the example shown in Table 2.5 this amounts to 11531100 possible solutions. While this

example is nicely symmetrical, note that this need not be the case. If, for example, the parent-

report for cognitive empathy were only assessed for freshmen the last two lines of Table 2.5

would simply be removed and the lower two lines would read {5} and {6} in the column Rv to

indicate that the parent-reports of cognitive empathy measured at the freshman age are repeated

measures of no other facets.

To summarize the full approach, recall the description of item selection as a MKP in Section

1.3.2. That section described how items are assigned from the overall item pool C to facet specific

item pools Cm and items are then chosen from those facet specific item pools to the facet solutions

Csm (see Figure 1.2). In this section, constraints on the selection from Cm → Csm were imposed by

defining relations between facets m. This was done by assigning each facet m to a set of facets

Rv consisting of those m which are repeated measures of each other. Simultaneously each facet

m is assigned to a set of facets Bu containing those facets which are multiple sources of the same
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information. The sets Qh were then defined as partitions of the combined set of R and B, which

contain facets for which the same items must be selected. Figure 2.1 shows this facet allocation

diagrammatically. With these sets in place, the algorithmic procedure described in Section 2.2 is

performed - and items are only selected for one of the facets in each Qh and copied to all other

facets in the same Qh, due to the constraints stated in Equations (2.32) and (2.40).



CHAPTER 3

Parameter Evaluation

The purpose of this chapter is twofold: (a) evaluate the overall performance of the stuart

approach to item selection and scale shortening proposed in this thesis, and (b) derive recom-

mendations concerning parameter settings for applications of this approach. To achieve these

two goals an evaluation study utilizing a wide array of parameter constellations is performed for

the shortening a scale with a relatively complex internal structure in a simple data constellation.

As described in Section 2.3.1, simple data structures constitute situations with only one

occasion, one group, and one assessment method. Because the evaluation presented here relies

on replications of a number of different parameters, such a data constellation was chosen to

make results obtainable in a reasonable time frame. The relatively complex internal structure is

provided by the Ryff-Scale, which consists of six specific facets. More detail on this scale is given

in Section 3.2.

Because the aim of this study is not just the investigation of the performance of the approach,

but also the derivation of guidelines for parameter settings in applications, the evaluation is

done in a two-step procedure. First, a number of constellations of constant parameter settings,

derived from the literature investigating the performance of ACO algorithms in other situations,

is evaluated. In the second step the results of this evaluation are used to derive parameter

schedules to be evaluated. The possible combinations of parameter schedules are simply too

many for an exhaustive study, therefore only those that seem promising, according to the results

of the evaluation of constant parameter settings, are investigated more thoroughly.

This chapter will begin with an overview of the parameters and their expected influence on the

performance of the generalMMAS algorithm before giving an introduction into the scale under

investigation. This is followed by a description of the performance measures used to evaluate

the behavior of the stuart approach. Afterwards, the constant parameter settings are described
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in detail and the results from these situations are presented. These results are then used in

the elicitation of parameter schedules to be investigated in the second phase of the evaluation.

After a presentation of the results regarding parameter schedules, the chapter will conclude with

a brief overall discussion and recommendations regarding parameter settings for applications of

the stuart approach.

3.1 Tuneable Parameters

As shown in Algorithms 5 through 9, as well as throughout Section 2.2, the MMAS algorithm

used in this approach requires a set of seven parameters as well as the definition of the pheromone

function f(s) to work properly. This section will provide a description of these parameters and

their expected influence on the behavior of the algorithm itself. Additionally, the final section

will provide an overview of parameter schedules which are relevant to the second half of this

evaluation.

3.1.1 Heuristic Information H

The heuristic information provided in H is a determining factor in the construction of the solution,

because it guides the algorithm in its search. As shown in Section 2.2, the selection probability

of each item is determined via

p(xim = 1|t) =
[φim(t)]α[ηim]β

Im∑
i=1

[φim(t)]α[ηim]β
, (2.6, repeated)

when localizing pheromones to nodes. Localizing pheromones to arcs gives a very similar equation

for determining selection probabilities - see Equation (2.12) - but this evaluation focuses on a

case with node localization. Both equations clearly indicate, that heuristic information is directly

linked to selection probability and that this link is independent of any solution’s quality. Instead,

heuristic information is a constant attractiveness of a choice (be it the node or the arc), biasing

the search in a certain direction. In classical applications of ACO algorithms to routing problems

(such as the TSP), the heuristic information generally includes information about the route length

or cost, thereby being directly related to the quantity that is being optimized for (e.g. Dorigo &

Stützle, 2004; Dorigo & Stützle, 2010; Pellegrini, Favaretto, & Moretti, 2006; Stützle, 1998). For

cases solving MKP, heuristic information is often related to cost and benefit of a component (e.g.

Leguizamon & Michalewicz, 1999; Fidanova, 2007). This information is often chosen, because it

is readily available and seems sensible for guiding the search towards good solutions, since it is

directly related to the problem and the objective function.

In the case of item selection, it can prove a bit more difficult to derive meaningful heuristics,

however. As pointed out in Section 1.3, the quality of a solution can only be derived from the
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full selection - partial solutions provide relatively little insurance about the success of the final

solution. While a routing problem can provide useful information after each single step, i.e. the

distance traveled can be divided into partial solutions, this is not the case for item selection.

While a selection of four items may provide very convincing fit, adding a fifth item can ruin

the fit of the measurement model or invalidate it completely (e.g. due to Heywood-Cases). This

implies, in reverse, that providing heuristics derived from partial solutions may steer the search

in the wrong direction, leading to scenarios where heuristic information is actually detrimental to

the search process. This contradicts the way heuristics are used in traditional ACO applications,

where the use of heuristics is sometimes necessary (e.g. when using the classic AS approach;

Dorigo & Stützle, 2004) and always recommended. This does not mean, that heuristics are

generally useless for item selection. The objective function can contain other criteria, which

may be indicated by uni- or bivariate information about the items. Facet specific item-total

correlations can provided heuristic information about item reliability, correlations of items with

external criteria can be used when the objective function contains correlations between the latent

variables and some distal outcome, or item inter-correlations can be used to indicate the direction

to more homogeneous selections. Beyond this, as discussed in Chapter 2 heuristic information

can be also be of dichotomous nature, filtering variables to make specific combinations impossible

or defining specific anchor items. As pointed out in Section 2.2, the heuristic information that is

included in item selection can determine the localization of pheromones. Using only item-specific

information makes node localization feasible, while using information about the combinations of

items makes it necessary to use arc localization.

Because of the comparatively unclear relation between heuristics and solution quality in

the stuart approach, determining to effect of heuristic information on the selection process is

difficult. Providing heuristic information that is not in line with the best solution, from the

perspective of the objective function, will likely lead to worse solutions. However, the coefficients

α and β (discussed in the following two sections) allow fine grained control over the balance

between statistical item quality, assessed via the quality function, and a priori item quality

provided by the heuristics in directing the search.

3.1.2 Non-Linearity of Pheromones α

As shown in Equations (2.6) and (2.12), the parameter α determines the extent with which

pheromones influence choice probabilities. Because of this, higher values of α are accompanied

by less exploration.

Assume a facet has six items and three are selected, with the pheromone being limited to

the range [0, 1]. Figure 3.1 shows the influence of α on the selection probability of an item,

if all other items have a deposited pheromone of .5. Higher values of α lead to substantially

increased selection probability of items that have higher φim. Specifically, if all ηim = 1, then
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Figure 3.1: Selection probability of an item dependent on deposited pheromone φim for different
values of α.

the odds-ratio of choosing item i and not item i′ is given via Equation (2.6) as[
φim(t)

φi′m(t)

]α
, (3.1)

making α the non-linearity coefficient of this selection relation. Because of this, items are selected

more consistently with larger values of α, limiting exploration while enforcing exploitation by

forcing many solutions to contain high-value items.

In general, α > 0 is used in applications of any ACO algorithm to ensure that higher

pheromones lead to higher selection probability. In many cases, large values of α are discour-

aged, because they have been found to lead to too fast convergence (Dorigo & Stützle, 2004),

often ending in recommendations of α = 1 for most applications (Alaya et al., 2004; Favaretto,

Moretti, & Pellegrini, 2009; Stützle, 1998; Stützle et al., 2010; Wei, 2014). However, it has also

been proposed, that the value of α is less relevant to the explorative behavior of MMAS, and

focus should lie on the ratio of β
α instead (Pellegrini et al., 2006).

3.1.3 Non-Linearity of Heuristic Information β

As can be seen in Equations (2.6) and (2.12), the effect of β on the heuristics is akin to that

of α on the pheromones. In general, higher values of β incentivize the selection of heuristically

favored items or combinations of items. As Pellegrini et al. (2006) point out, the actual value of

β is less relevant than the relation between α and β, because the latter determines how to weigh
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information against each other. When pheromones and heuristics lead to conflicting results the

ratio of α to β determines which information is more valuable in constructing solutions.

As mentioned in Section 3.1.1, the relevance of heuristics is not as clear cut in item selection as

in many other instances. Because the information provided by H may contradict the favorable

choices in terms of Φ after a number of iterations, β might be considered a prime target for

parameter adaptation. By decreasing β throughout the search, heuristics can guide the search

towards areas that are likely to contain very good solutions, while the pheromones can then be

used to search within those areas. It should be noted, that the specific value of β > 0 is irrelevant

if H is used as a logical filter, meaning that it implies impossible combinations (by allocating

zeros in the localization to arcs) or anchor items (by allocating very large values to some items).

In turn, any thoughts about the setting of β are only of relevance when relative heuristics are

provided, making some selections somewhat more likely than others.

Thus, previous studies on the influence of β in other areas of application are only mildly

informative. For many applications a setting of β = 2 is recommended for MMAS (Pellegrini,

Stützle, & Birattari, 2010; Stützle, 1998), though values of up to β = 5 have also been proposed

(Escario et al., 2015; Wei, 2014), as have recommendations of β = 1 (Favaretto et al., 2009). In

general, most recommendations fall between 2 ≤ β ≤ 5 (Dorigo & Stützle, 2004).

However, in most previous applications the heuristic information (and its weight, in the form

of β) had been derived from the same information used to determine the solution quality in

f . Under these circumstances, the objective of β is to ensure faster convergence to optimal or

near-optimal solutions. In the stuart approach, heuristics and β may be difficult to obtain,

as described above, increasing the possibility of providing sub-optimal heuristics, i.e. heuristics

biasing the search in a way that is not actually better than providing no prior information.

3.1.4 Evaporation Coefficient ρ

While the parameters discussed in the previous section are directly related to choice probabilities,

the evaporation coefficient ρ is more directly related to the behavior of the algorithm iteself.

Recall from Section 2.2.1, that the update rule for pheromones is given by

φim(t+ 1) =


φmin, if ρφim(t) + ∆φim(t, t+ 1) < φmin

φmax, if ρφim(t) + ∆φim(t, t+ 1) > φmax

ρφim(t) + ∆φim(t, t+ 1), else

(2.9)

when localizing to nodes and very similarly when localizing to arcs, as shown in Equation (2.14).

Thus, the coefficient ρ determines the speed with which pheromones of bad choices - or choices

that simply have not been made - disappear, making these less likely to be made in the future.
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Because the pheromones are initialized to some arbitrary large number and then scaled to φmax

at the first iteration, and the algorithm converges only if at least one of the pheromones is

minimal - see Equations (2.11) and (2.15) - ρ is crucially important in determining runtime and

exploration. Large values (e.g. ρ = .99 or ρ = .95) lead to slow convergence and emphasize

exploration, because the pheromone on choices disappears very slowly, while the opposite is true

for low values. Specifically, if a choice does not acquire any pheromone during the entire run, it

will reach the threshold φmin + tol required for convergence after a bare minimum of


log
(
φmin+tol
φmax

)
log(ρ)

 (3.2)

iterations. Therefore, when ρ = 0 the runtime is one iteration, because pheromones are not stored

and the current pheromones depend only directly on the pheromones of the previous solution.

Any choice not made in the first iteration would automatically receive φim(t) = φmin, any choice

made would automatically receive φim(t) = φmax and convergence would be achieved instantly.

On the other hand if ρ = 1, Equation (1.22), and therefore the φmax, is not defined.

Regarding any values in between the extremes, different values have been proposed to lead to

near-optimal solutions in adequate runtime. In most cases, values of ρ ≥ .9 are proposed when

using no local search (Alaya et al., 2004; Dorigo & Stützle, 2004; Fidanova, 2007; Pellegrini et al.,

2010; Stützle et al., 2010) inMMAS strategies, though values as low as ρ = .7 have been found

to be optimal in some situations (Favaretto et al., 2009). Alternatively, Hamann (2015) proposes

using an iteration-sensitive value for ρ and Wei (2014) proposes fine-tuning ρ in increments of .1.

Overall, large values (ρ ≥ .95) have been identified as leading to near-optimal solutions, albeit

in long runtimes (Alaya et al., 2004; Dorigo & Stützle, 2004; Stützle et al., 2010).

3.1.5 Number of Iterations T

The number of iterations is used solely to define the abort criterion stated in the Algorithms

presented in Section 2.2. Because the stuart approach utilizes anMMAS algorithm, the abort

criterion is only relevant when convergence is slow.

Slow convergence may be due to a number of factors. As pointed out in the previous section,

the evaporation coefficient ρ determines the lower limit of runtime. Using large values of ρ

will exponentially increase runtime, because the MMAS approach relies on evaporation of the

pheromones to achieve convergence. As pointed out previously, small values of α and β lead to

more exploration and thus to longer runtimes. A combination of these parameter settings might

make it necessary to abort the search if - after a reasonable number of iterations - no new sgb has

been found. What constitutes a “reasonable” number of iterations is largely problem dependent.

Larger problems indicate a necessity for larger values of T , because more iterations are necessary

to explore the larger problem space. Therefore, T is imposed as a limit defined mainly by the
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resources (mostly time) available for any given application. Because T can translate to actual

runtimes, an important aspect of choosing T is the time required to evaluate the solution, i.e.

the time required for the CFA estimation.

Given the probabilistic nature of solution construction, there is no guarantee of convergence

for any instance of item selection using the stuart approach. Imagine a situation in which

two solutions differing only in one item allocation lead to the same f(s). In this instance an

optimally behaving run of stuart would not converge, because the pheromones allocated to

these two items could not both be maximal at same time1 and it is very unlikely for either to

evaporate to φmin. To avoid infinite construction of solutions with very similar, near-optimal

quality, the abort criterion on the number of iterations T is used.

3.1.6 Number of Ants K

The number of ants influences runtime as well as exploration due to the fact that MMAS

utilizes an elitist strategy. Because in each iteration t there are K solutions and at most one of

these (depending on the deposit rule) is allowed to deposit pheromone, the choice of K can be

a difficult balance between runtime and solution quality. In applications to routing problems, it

is often recommended to use as many ants as there are nodes to visit via the route (e.g. Dorigo

& Stützle, 2004; Escario et al., 2015), while values of as low as one quarter of the number of

cities have also been suggested as optimal (Wei, 2014). For MKP no clear recommendation is

discernible, with evaluation studies using between 10 and 100 ants per iteration (Alaya et al.,

2004; Fidanova, 2007; Hamann, 2015; Ke et al., 2010).

Stützle et al. (2010) point out, that low values tend to perform best during the early phases

of the search, while higher values tend to perform better during later phases. This is due to the

fact that all ants of the same iteration use the same pheromones as their guide. Thus, in early

stages it may be beneficial to establish pheromone trails on many promising solutions by using

lower numbers of ants, thereby increasing the proportion of ants depositing pheromones and

keeping the number of ants operating with poor pheromones low. In later stages of the search,

good pheromone trails are established and more ants in each single iteration can use the same

information to explore specific, promising areas of the solution space.

As stated in Section 2.2, the stuart approach can utilize a coarse-grain approach to par-

allelization, meaning that the ants of an iteration are evaluated in parallel. In these cases, it

should be considered to utilize a multiple of the number of processing units available to minimize

overhead.

1Note that this is possible, when setting the tolerance in the convergence criteria, stated in Equations (2.11)
and (2.15), to tol > (1− ρ)φmax.
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3.1.7 Probability of the Global Best Solution psgb

The upper and lower limits imposed on pheromones were discussed in Section 1.4.3. The upper

limit φmax is given by

φmax(t) =
f(sgb)

1− ρ
(1.22, repeated)

and the lower limit is given by

φmin =
φmax(1− n

√
psgb)

(avg − 1) n
√
psgb

. (1.23, repeated)

Because these limits are of central importance in the convergence criteria given by Equations

(2.11) and (2.15), they greatly influence convergence speed and the quality of the final solution.

However, the definitions of the limits each contain only one parameter which can be manipulated:

ρ and psgb . The influence of ρ is discussed in Section 3.1.4.

Of the limits, φmin has been found to have greater influence on convergence speed ofMMAS

(Stützle, 1998; Stützle & Hoos, 2000), which is mainly due to the initialization of the pheromones

to φmax, necessitating the pheromone decay all the way down to the lower limit. As discussed

in Section 1.4.3, n indicates the total number of decisions and avg indicates the average number

of choices at each decision. In item selection as described in Chapter 2, n =
∑H
h=1 Im for one m

per partition Qh, indicating one unique facet for which I items are selected. The avg is simply

given by the mean of the number of available items at each of the selections made. Thus, both

of these variables are given by the size of the problem, and are not manipulatable.

The probability of finding the current global-best solution, however, is a free parameter, that

must be set for each application. While any choice of arbitrarily small value of psgb will improve

performance over not implementing a lower limit, the actual value that leads to best performance

is dependent on the size of the problem at hand (Stützle, 1998). This can be seen quite readily,

by imagining two situations. In the first, a single-facet scale is constructed by choosing 4 items

from a pool of 10 items. Using Equation (2.5), this results in 210 possible combinations. By pure

chance, the sgb will be constructed with p = 0.005. In the second situation, imagine the example

described in Section 2.3.5, where a two-facet scale was constructed by selecting four out of 17

and 20 items, respectively. In this case, the random chance of constructing sgb is p = 8.67×10−8.

The psgb represents the probability of constructing sgb after the algorithm has converged - thus

it should be set to a much higher value in the first case, than in the second. Note, that setting

psgb = 1 will result in a φmin = 0, thus ridding the algorithm of the lower pheromone limit and

the possibility of convergence, when no tolerance factor is included.
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3.1.8 Parameter Schedules

As pointed out for some of the parameters in the previous sections, the desirable effects of

parameter settings on the algorithmic procedure of the stuart approach may change throughout

the course of the search. During early phases it is desirable to search the space efficiently, finding

promising areas of the search space and exploring many different possibilities. During later

stages of the search, the focus often lies more on exploiting the knowledge generated about the

search space in the most efficient manner possible, avoiding the construction of bad solutions

by searching only those areas that are most probable to contain good solutions. Therefore, it

may be desirable to have different parameter settings early (e.g. using a small K to enhance the

communication between ants) than during later stages of the search (e.g. using lower values of ρ

to quickly forget bad solutions).

In general, three types of parameter flexibility can be distinguished: (a) fixed parameter

settings, which do not change at all, (b) scheduled parameter settings, which follow a pre-de-

fined schedule, and (c) adaptive parameter settings, which change dependent on the current

results provided by the algorithm. In line with the classification taxonomy proposed by Eiben,

Michalewicz, Schoenauer, and Smith (2007) for evolutionary algorithms, the former two options

represent parameter tuning, while the third represents parameter control. Approaches which

tune parameters require prior knowledge about parameters - be it from studies using similar

algorithms to investigate similar problems or from repeatedly solving the same problem with dif-

ferent parameter settings - while approaches using parameter control will react to intermediary

results of the algorithm, thereby adapting themselves to the problem at hand.

Intuitively, it makes most sense to assume that approaches using adaptive parameter settings

should perform best, because many of the parameters detailed above were said to be problem

specific. Using approaches which control parameters within the specific application seem most

promising from this perspective because, as Pellegrini, Stützle, and Birattari (2012, p. 23) state,

“an instance-optimal parameter setting always obtains better results than any other setting”.

Therefore, using strategies to derive these instance-optimal settings on the fly would be expected

to vastly outperform general recommendations for parameter settings. In experimental studies

specifically investigating MMAS, however, Pellegrini et al. (2010) found adaptive strategies to

be no better than scheduled parameter settings, while Pellegrini et al. (2012) even found them to

be detrimental to overall performance in comparison to (informed) fixed parameter settings. This

is most likely due to the increase in complexity of the problem which needs to be solved. In cases

with adaptive parameter settings, the problem at hand is larger than the actual problem that

needs to be solved, because it encompasses the dimensions of parameters (Eiben et al., 2007).

Stützle et al. (2010) compared the performance of fixed and scheduled parameter settings

in solving the TSP via MMAS and the ACS, concluding that the use of parameter schedules

can lead to substantial decreases in runtime, without substantial losses in the quality of the final
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solution. It should be noted here, that this means that in this study fixed parameter settings lead

to the highest solution quality, albeit at a much slower pace. Additionally, Stützle et al. (2010)

found that parameter schedules changing values from “high” to “low” settings at fixed points in

the algorithm outperform those where parameters are linear functions of runtime.

Due to the similarity of problems tackled with the stuart approach (i.e. they are all IMKAR

and all use the same problem representation), this chapter aims at providing recommendations

for parameters and parameter schedules which can be used as guidelines in applications.

3.2 Ryff-Scale for Psychological Well Being

The evaluation study is performed on a dataset stemming from an intervention study in the

field of positive psychology (Tempel, 2016). The sample consists of 1506, predominantly female

(89.83%) participants of the ages between 18 and 79 (Mage = 35.72, SDage = 12.06). Though the

intervention study itself is longitudinal in nature, only data from the first measurement occasion

(prior to the intervention) are used in this evaluation. For a much more thorough description of

the study and the sample please see Tempel (2016).

Among many other scales, the participants answered a German translation of the 54-item

version of the Ryff-Scale for the assessment of psychological well being (Ryff, 1989; Risch,

Strohmayer, & Stangier, 2005), which is the scale under investigation in this evaluation. This

scale was assessed via an online questionnaire on a 6-point scale ranging from “1 = decisively

disagree” to “6 = decisively agree”. Despite the online assessment, non-repsonse was low on

the items of the Ryff-Scale, at just 0.4% of all responses, but quite a sizeable proportion of

participants failed to respond on at least one of the 54 items (14.41%).

The Ryff-Scale was chosen here, because it fulfills a number of criteria: (a) it is quite long

with a total of 54 items, (b) it has a complex structure with six theoretically distinguishable

facets, (c) it has been investigated heavily, and (d) there is considerable need for a short version.

Regarding points (a) and (b), Table 3.1 shows the item allocation to the six facets. The

entire scale used by Tempel (2016) is provided in Appendix B. The six facets were initially

proposed by Ryff (1989) as theoretical dimensions of psychological well-being and the scale was

then constructed in several steps to reflect these theoretical considerations. It is important to

note that these facets were not derived empirically from a common pool of items in a single study

- as is often the case in psychological questionnaire construction - but rather that the scale was

constructed with the explicit goal of assessing these six theoretically distinct dimensions. This

does not mean, however, that the differentiation of these facets is unanimously accepted (e.g.

Abbott et al., 2006; Kafka & Kozma, 2002; van Dierendonck, 2004; Ryff & Singer, 2006; Springer

& Hauser, 2006; Springer, Hauser, & Freese, 2006). In fact, Springer and Hauser (2006) found

the facets self-acceptance, purpose in life, personal growth, and environmental mastery to be

so highly correlated when correcting for item-phrasing effects using a method factor, that they
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Table 3.1: Theoretical factor structure of the 54-item Ryff-Scale. Negatively phrased items are
emphasized.

Facet Item Number No. of Items

Self-Acceptance 4 9 14 23 28 31 43 45 48 51 10
Positive Relations 1 5 10 15 24 32 34 39 47 9
Autonomy 6 11 16 19 25 35 40 44 52 9
Environmental Mastery 2 7 12 17 20 29 36 49 53 9
Purpose in Life 8 13 22 27 30 33 38 42 46 9
Personal Growth 3 18 21 26 37 41 50 54 8

proposed these four dimensions may not be discernible empirically.

While the discussions regarding the empircal internal structure of the Ryff-Scale are still

ongoing, this scale has also been applied in a variety of settings and translated to a multitude

of different languages (e.g. Burns & Machin, 2009; van Dierendonck, 2004; van Dierendonck,

Dı́az, Rodŕıguez-Carvajal, Blanco, & Moreno-Jiménez, 2007; Fernandes, Vasconcelos-Raposo, &

Teixeira, 2010; Kállay & Rus, 2014; Kitamura et al., 2004; Sirigatti et al., 2013, 2009; Villar,

Triadó, & Celdrán, 2010). However, many of these applications vary widely on the number of

items assessed. In many cases, it is not reported which or how items were selected for the short

versions (e.g. Ryff & Keyes, 1995) and they often appear to differ across studies, making the

comparison of measurement models troublesome at best. Nevertheless, the use of these shortened

scales does indicate that there is a need for an adequately shortened version of the Ryff-Scale. In

fact, three large US surveys - National Survey of Midlife in the US (MIDUS), National Survey of

Families and Households (NSFH), and the Wisconsin Longitudinal Study (WLS) - employed a

shortened version of the Ryff-Scale with three items per facet. While it is possible to determine

which items were used in these surveys, information as to how these items were selected from

the long version is not accessible.

3.3 Optimization Problem

In this section the properties of the optimization problem (S, f,Ω) used in this evaluation are

described in further detail. As discussed in Section 2.1, the optimization problem is given by the

set of viable solutions S, the quality function f , and the set of imposed constraints Ω. Because

which solutions are contained in S is dependent upon Ω, the latter is discussed first.

As shown in Sections 1.3.2 and 2.1, representing item selection as an IMKAR results in three

general constraints:

(ω1) the sum of weights does not exceed capacity - Equation (1.10),

(ω2) items are selected specifically in their respective facets - Equation (1.12), and
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(ω3) items may be selected to only one facet - Equation (1.13).

In a simplification of ω1 for this specific application, all weights are set to be wim = 1 and all

facet capacities are set to am = 3, resulting in a short form consisting of 18 items.

Constraint ω2 ensures that items can only be sampled to indicate the facet to which they

pertain from a theoretical standpoint. Additionally, ω3 ensures that each item is sampled to

indicate only one latent variable in the short-form. As pointed out in Section 3.2, the items of

the Ryff-Scale used in this evaluation were constructed in separate pools for each of the six facets,

making an even stricter version a viable assumption about the item populations: it is assumed

that all Cm are disjoint sets (Cm ∩ Cm′ ≡ ∅, for all m 6= m′), meaning that all items in the 54

item original are assumed each measure only a single facet. The item allocations are shown in

Table 3.1.

Given the set of constraints Ω, the set of viable solutions S can be defined. This set consists

of all possible short forms of the Ryff-Scale with 3 items per facet, items allocated only in line

with the allocation key provided by Table 3.1, and items in the same order as they were in the

original 54-item scale. Using Equation (2.5) this amounts to a total of

S =

M∏
m=1

(
Im
am

)
= 334569553920

viable solutions.

As pointed out in Section 2.1, the objective function f should be chosen in reference to the

specific optimization problem at hand. In this evaluation f is given by

f(s) =

Φ(s), if s ∈ S∗

0, else
, (3.3)

where Φ(s) is the pheromone function given in Equation (3.4) and S∗ ⊆ S, for which the CFA

returns a proper solution, meaning that the model converges and all model matrices are positive-

definite.

For solutions s ∈ S∗, the pheromone function is defined as:

Φ(s) =
1

1 + e−10(crels−0.4)
+

(
.5− .5

1 + e−100(RMSEAs−.05)

)
+

(
.5− .5

1 + e−100(SRMRs−.05)

)
.

(3.4)

with crel representing a composite reliability measure across all facets, RMSEA representing the

Root-Mean-Squared-Error-of-Approximation, and SRMR representing the Standardized-Root-

Mean-Residual of the solution s. The latter two components are each limited to .5, while relia-

bility is limited to 1 to ensure that reliability and model fit are equally important in determining

the quality of the solution. Figure 3.2 shows the solution quality as a function of RMSEA and
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Figure 3.2: Solution quality as a function of RMSEA and composite Reliabililty.

composite reliability when the other two components included in Equation (3.4) are held at their

respective optimum. Due to the additive nature of Φ the value of the other components is of no

consequence for the relationship between a component and the quality, however. The function

of the SRMR is not shown, because it is identical to that of the RMSEA. Overall the function

was set in this manner to allow for maximum discrimination at the values of .05 for both SRMR

and RMSEA and to reward all models with fit worse than .1 on both indexes with a value of

approximately 0 for this component of the solution quality.

Via the definition of Φ(s) it is possible to derive min Φ(s) and max Φ(s) as the theoretical

bounds on the pheromone function. Both of these can be determined in a straightforward manner,

because all components are known. Reliability, as a variance component, has the range [0; 1]. The

RMSEA has a lower bound of 0 and no theoretical upper limit, while the range of the SRMR is

also [0; 1] (West, Taylor, & Wu, 2012). With the minimum possible value for reliability (crel = 0)

and the maximum possible value for model misfit (RMSEA =∞, SRMR = 1), min Φ(s) = 0.018

can be determined as the theoretical lower bound of Φ(s). The upper bound, max Φ(s) = 1.991,

is obtained when reliability is maximal (crel = 1) and both indicators of model misfit are minimal

(RMSEA = 0, SRMR = 0). The lower bound of the quality function f is actually min f = 0,

due to the conditional statement in Equation (3.3).

3.4 Referential Solutions

Given the optimization problem just described, it is possible to construct some solutions for

reference and evaluate them using the quality function f . This is done to understand the per-

formance of each replication of the evaluation more fully, by setting reference standards against

which to compare solutions.

The obvious first choice is the analysis of the short form used in the large-scale surveys.



83 3.4 Referential Solutions

Table 3.2: Results of the CFA with the short-form of the Ryff-Scale used in survey studies.

Latent Correlations
Subscale Items Rel. 1 2 3 4 5 6

Self-Acceptance 4 23 31 0.660 1.000
Positive Relations 5 34 39 0.458 0.729 1.000
Autonomy 25 35 52 0.667 0.608 0.392 1.000
Environmental Mastery 2 7 17 0.473 0.822 0.610 0.520 1.000
Purpose in Life 8 42 46 0.532 0.409 0.276 0.289 0.418 1.000
Personal Growth 21 45 50 0.538 0.762 0.534 0.553 0.637 0.362 1.000

Table 3.3: Results of the CFA with the short form of the Ryff-Scale determined in the optimal
solution sopt.

Latent Correlations
Subscale Items Rel. 1 2 3 4 5 6

Self-Acceptance 9 23 28 0.683 1.000
Positive Relations 10 24 39 0.646 0.458 1.000
Autonomy 6 19 52 0.645 0.736 0.310 1.000
Environmental Mastery 20 36 49 0.568 0.560 0.476 0.487 1.000
Purpose in Life 13 27 30 0.507 0.476 0.575 0.310 0.625 1.000
Personal Growth 3 50 54 0.453 0.621 0.476 0.492 0.616 0.799 1.000

Because this short form was not constructed with the goal of optimizing the measurement CFA

in mind, it should not be expected to perform optimally with regards to the quality function used

in this section. Applying a six-factor CFA with freely correlated facets to the selection of items

used in the surveys produces a Heywood-Case in this dataset. This was due to a negative residual

variance pertaining to item 42. The model shows moderate fit to the data (χ2 = 808.006, df =

120, p < .001, RMSEA = 0.062, SRMR = 0.047, CFI = 0.855). Table 3.2 provides a detailed

overview of the results of the CFA regarding this particular short form. The reliability estimates

in the fifth column were obtained using the SEM reliability computation reported by Yang and

Green (2010). The results indicate somewhat mediocre reliabilities of the facets, ranging from

0.458 to 0.667, but an adequate reliability of the entire scale at 0.892. The latent correlations

do not seem to indicate support for the claim of non-discernible factors, though it should be

noted that in contrast to the results reported by Springer and Hauser (2006), this model does

not include a method factor to control for the phrasing effect of the items.

Following the definition of the quality function in Equation (3.3), the determined quality

of this solution is f(sts) = 0, because the negative residual variance of item 42 indicates that

sts /∈ S∗. The superscript ts is used to indicate that this is the solution derived via theory-

guided selection. Disregarding this condition, the pheromone function returns Φ(sts) = 1.396 as

a possible reference value for the overall quality of this solution.
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Table 3.4: Results of the CFA with the short form of the Ryff-Scale determined in the median
solution smd.

Latent Correlations
Subscale Items Rel. 1 2 3 4 5 6

Self-Acceptance 9 31 48 0.691 1.000
Positive Relations 5 15 39 0.481 0.713 1.000
Autonomy 6 19 35 0.638 0.633 0.366 1.000
Environmental Mastery 2 12 29 0.433 0.887 0.803 0.447 1.000
Purpose in Life 13 33 38 0.605 0.831 0.583 0.496 0.894 1.000
Personal Growth 41 50 54 0.393 0.729 0.672 0.514 0.682 0.766 1.000

Perhaps the most important solution for the evaluation of the stuart approach is the optimal

solution sopt. This solution is of such central importance because it can be seen as the target

solution each run of the algorithm sets out to find. Therefore, comparing the results of any single

replication against sopt can be used as an indicator of how close to the goal finding the optimal

solution any single instance is. Because this solution is not known, it will be assumed that the

best solution found throughout the entirety of the evaluation study (which generated just shy of

342 million solutions) is the optimal solution. Table 3.3 provides an overview of the results of

this optimal solution. The reliabilities found for the subscales are similar in magnitude to those

determined for sts. The composite reliability of the entire scale was 0.924 for this solution. As

should be expected, the model fit the data quite well (χ2 = 188.168, df = 120, p < .001, RMSEA

= 0.019, SRMR = 0.021, CFI = 0.986). For this solution the quality can be determined to be

f(sopt) = 1.947.

Another approach of obtaining referential solutions is to construct a random sample of viable

solutions and determine the quality distribution. The basic idea underlying this approach is

that drawing a random sample from the set of possible solutions constitutes the null algorithm.

This algorithm is defined solely by random chance and can therefore be interpreted as the null

hypothesis against which any stochastic algorithm should be compared (c.f. Eiben & Smith,

2015). Generating 10000 random solutions results in 5802 solutions with f(s) = 0, due to

non-positive definite latent variance-covariance matrices or negative residual variances. The

distribution of Φ(s) for the remaining 4198 is shown in Figure 3.3, with the dashed line indicating

Φ(sts) and the solid line representing Φ(sopt). For these solutions, the average quality is Mf =

1.481 with SDf = 0.122. Assuming a normal distribution for Φ(s), the chances of finding

solutions as good or better than the two referential solutions discussed here are p[Φ(s) ≥ Φ(sts)] =

0.759 and p[Φ(s) ≥ Φ(sopt)] < .001. With skewΦ = 0.36 and kurtΦ = 1.175, assuming a normal

distribution seems to be a somewhat serviceable approximation for this rough placement of these

solutions in the spectrum of possible solutions.

The third and final referential solution that will be of relevance in this section is the median
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Figure 3.3: Histogram of the quality of the random solutions. The dashed line indicates the
pheromone of the theory-guided selection, the solid line the pheromone of the optimal solution.

solution smd of the random sample. This solution represents the short form that leads to the

median pheromone among all proper solutions - i.e. solutions that do not result in f(s) = 0 due

to Equation (3.3). The composite reliability of the entire scale of this solution is 0.908. The

model does not fit the data adequately (χ2 = 731.622, df = 120, p < .001, RMSEA = 0.058,

SRMR = 0.043, CFI = 0.887). For this solution the quality can be determined to be f(smd) =

1.483. The detailed results of this solution are presented in Table 3.4.

While this particular solution is of no real value from a substantive point of view, it will be

used to provide heuristic information indicating a sub-optimal solution in the evaluation. This

solution is used instead of the theory-guided solution because (a) sts leads to an improper solution

in the dataset used here, and (b) an item allocated to the facet personal growth in the short-form

used in survey studies is actually part of the facet self-acceptance in the German version used in

this study (item 45).

The consequence of using heuristic information leading to improper solutions is unknown and

not investigated in detail in this thesis. However, a consequence of using such a solution would

be that the solution favored in the heuristic information is unable to deposit pheromone because

f(s) = 0, in such cases. Therefore, only other solutions would be able to deposit pheromone

on the decision nodes, leading to a tug-o-war between the two components φij(t) and ηij in

Equation (1.16), when determining the selection probability of items, i.e. this would require the

pheromones to“overcome”the selection bias provided by the heuristics. It seems more informative

to investigate the behavior of the algorithm when the construction of solutions in line with the
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heuristic information can lead to pheromone deposit, because in this case different parameter

settings can lead to the heuristic information becoming dominant over the information of Φ or

the heuristic information becoming irrelevant. As shown in Tables 3.3 and 3.4 the optimal and

median short-forms share 7 Items, with only the subscale pertaining to environmental mastery

showing no overlap between the two solutions.

3.5 Perfomance Measures

Throughout this study, the evaluation of the performance of the stuart approach will most

often be determined by the comparison against the optimal solution sopt. This is done because

sopt constitutes the best possible solution to the problem defined in Section 3.3. In line with

the recommendations by Birattari and Dorigo (2007) for evaluating algorithms, measures of the

average performance will be most prevalent in this section and only in a few select cases will the

best or worst performance across replications be of interest.

The performance measures used in this evaluation are in line with those proposed by Eiben

and Smith (2015) for the evaluation of evolutionary algorithms. The first two measures discussed

are measures of the effectiveness of the algorithm, namely measures that indicate how well the

final solution fulfills the set criteria.

The first performance measure of interest is the success rate (SR), defined simply as the

relative frequency with which the optimal solution can be found for any given parameter con-

stellation. The value of this measure is obvious: higher SRs of parameter constellations imply

a better chance of finding the truly optimal solution in any single application. As stated above,

the optimal solution is not known and it is assumed that the best solution that was found across

all conditions of the evaluation is the optimal solution, making it possible to determine SR.

However, given the vast amount of possible solutions, it is often either not possible or not

necessary to find the optimal solution. In these cases, it is of relevance to know whether the

final solution is good enough - i.e. if it fulfills the set criteria well enough by providing a solution

with a very high value of f(sgb). For this Eiben and Smith (2015) propose using the mean best

fitness (MBF ), defined simply as the mean of f(sgb) over all replications. The value used in this

evaluation differs slightly and will be called relative deviation (RD). It is obtained via

RD =
1
R

∑R
r=1 f(sgbr )− f(sopt)

f(sopt)
, (3.5)

where R is the number of replications. The RD is used instead of the MBF because it is more

readily interpretable without deeper knowledge of the quality function and its behavior. As

a measure of relative deviation from the optimal solution it is scaled from −1 to 0, with −1

occurring only when f(sgb) = 0 (i.e. when no viable solution is found) and 0 being reached if

the optimal solution is recovered.
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The RD can also be computed with the regard to other referential solutions, such as smd,

though this is of little consequence when comparing the performance of conditions, because

different variants of RD are simply linear transformations of each other. The relative deviation

regarding the median solution, for example, can be computed from the RD regarding the optimal

solution as

RDmd =
f(smd)− f(sopt)

f(sopt)
+

(
f(smd)− f(sopt)

f(sopt)
+ 1

)
RD. (3.6)

In most cases the RD will be computed with regard to the optimal solution. All others cases

will be made explicit.

It should be noted that RD and SR are likely to be correlated, but provide different per-

spectives on the performance of the algorithm. While the SR is a rather strict assessment of

performance, because it views any replications not ending with the optimal solution as failures,

the RD is a more fine grained measure that can provide a lot of additional information. Especially

in situations in which there is a wide array of very good solutions, a low SR is not necessarily

indicative of poor algorithmic performance. The opposite may also be the case - though unlikely

in this situation. It is possible for an algorithm to detect the optimal solution often, but fail to

provide a usable solution in cases in which the optimum is not found.

In addition to these two measures, which relate more or less directly to the optimal solution,

selection consistency SC can be defined as the proportion of the items favored by the heuristics,

which are present in the final solution.2 This provides an indicator of the integration of the

heuristic information into the construction of subtests.

A fourth measure used in the evaluation of the performance of the stuart approach under

different circumstances, does not investigate the quality of the final solution, but is concerned with

the time it takes for a replication to converge or reach the abort criterion. Because the majority

of runtime is spent in the evaluation of the solutions (i.e. in the estimation of the CFAs) and the

actual time spent is determined by a multitude of factors outside of the algorithm’s reach (e.g.

raw processing power, CFA estimation software optimizations) the total number of ants that are

run (absolute runtime; AR) will be used as an indicator of runtime.

In addition to these global performance measures, two measures can be defined as functions

of time. The first is the time-sensitive version of the relative deviation defined in Equation (3.5),

which is simply the RD(t): the RD evaluated after any arbitrary number of colonies t. In this

sense, the RD is a special case of the RD(t) with t = T .

The second measure is the relative exploration RE(t) of a colony t. This can be operational-

ized as the proportion of solutions constructed in colony t that are proper and unique solutions.

RE can then be defined as the mean RE(t) over all t. Thus, the RE represents the overall

2Due to the design of this evaluation the heuristic information favors exactly 18 items - as many as are selected
in the final solution. While this is not necessary in standard usage of the approach, it has the benefit of scaling
SC from 0 to 1.
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proportion of unique solutions constructed over the course of the entire run.

The purpose of both of these time-dependent measures is to guide decisions regarding the

settings of scheduled parameters in the second part of this evaluation. As pointed out above, it

is the aim of these parameter schedules to capitalize on the effects of certain parameter settings,

to ensure a wide exploration of the space of possible solutions during the early stages of the run

and a quick exploitation of good solutions in the later stages of the run.

Dorigo and Gambardella (1997) proposed a more finely grained performance measure for

ACO-based search algorithms called the λ-branching factor. This measure gives extremely de-

tailed information about the search behavior of an algorithm by providing a summary statistic of

the search space based on each single decision node. Dorigo and Stützle (2004) propose using the

average entropy as more readily interpretable alternative to λ. However, both of these statistics

are very expensive to compute because they require an additional computational step and data

storage for each decision node after each iteration. Because of this, both of these approaches are

not used in this thesis.

To express the effects experimental factors have on these performance measures in a standard-

ized and easily interpretable fashion, Cohen’s d will be used to contrast two specific parameter

constellations - most often when investigating the effects of the deposit rule on the performance

measures. These estimates and their 95% confidence intervals will be computed using the eff-

size-Package (Torchiano, 2016). For most instances, however, ∆R2 will be used. This specific

∆R2 is determined as the difference in R2 of the OLS regressions with and without the relevant

factor and all its interactions with other independent variables. In these settings all independent

factors are treated as nominal-scaled and are dummy-coded for inclusion in the regression. The

95% confidence intervals for these ∆R2 are computed in accordance to Cohen, Cohen, West, and

Aiken (2003, p. 88).

3.6 Constant Parameter Settings

As discussed above, the evaluation is performed in a two-step procedure with the first step being

a fully crossed design of several constant parameter settings. This section will report the settings

of the parameters in this specific evaluation - for a more detailed discussion of the expected effect

of these parameters on the overall performance of the search algorithm, please see Section 3.1.

The first parameter described in Section 3.1 is the heuristic information provided in H. In

this specific evaluation the influence of H is investigated in three different settings. The first

is the complete absence of heuristic information. In this case all elements of H are set to 1,

making the selection of items dependent only on the pheromones deposited. The second setting

is the optimal setting, in which the heuristic information favors the items selected in the optimal

solution sopt. The third setting favors the median solution smd, as described in Section 3.4. In

both of the latter cases the items of the “favorable” solution are weighted with 2 in H, while
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all others are weighted with 1, making the selection of of a favored item 2β as likely as that of

an item not contained in sopt or smed, respectively, at the beginning of the search. These three

settings for the heuristics are used for several reasons. Choosing no heuristics is most likely a

very common case in practice, thus making an evaluation of the performance of the approach

necessary under these conditions. When heuristics are provided, they are most likely indicative

of a solution close to optimal. Therefore, they should bias the search towards an area with very

good solutions. Optimal and median quality heuristics are used as extreme examples here to

evaluate the performance of the approach in both of these cases. In applications, the quality of

heuristics should indicate solutions somewhere between these two extremes.

The non-linearity coefficient of the pheromone α is varied in four steps: 1, 1.5, 2.5, and

5. As described above, it is expected that lower values of α lead to more exploration but less

exploitation - meaning a slower convergence to a better solution. For the non-linearity coefficient

of the heuristic information β, the same four steps were chosen. For those conditions in which

heuristic information is included, the settings of α and β were fully crossed, while for the condition

including no heuristic information β = 1 is used.

The evaporation coefficient ρ is varied in three steps: .95, .8, and .5. Higher values are

expected to lead to a slower convergence to a better solution. Due to the fact that the range

between φmin and φmax is dependent upon the values of ρ - as shown in Equations (1.22) and

(1.23) - the tolerance parameter included in the convergence criterion stated in Equation (2.11)

is set to be

tol =
max f(s)

50(1− ρ)
, (3.7)

which simply states that the tolerance is 1
50 of the maximum of pheromone that can be deposited

on any given element of the pheromone matrix. This is similar to φmax as defined in equation

(1.22) but does not pertain to any actual optimal or global best solution, but instead to the

theoretical upper bound of f(s) - calculated in Section 3.3 via max f(s) = max Φ(s) = 1.991.

The number of iterations K is kept constant for all conditions. Throughout the entire evalu-

ation this abort criterion is set to 256 colonies after the last global best solution sgb was found.

The number of ants per colony is varied in three steps: 32, 16, and 8. As noted in Section

3.1.6, higher values of K lead to less cooperation between ants, thereby leading to a wider search

and slower convergence.

The value of psgb = .005 is the same across all conditions, because the size of the problem

does not change. In this case psgb is roughly 1.67×109 times the probability of finding the global

best solution by chance.

Finally, both deposit rules - iteration best and global best pheromone deposit - are used in

this evaluation. In line with Stützle (1998) it should be assumed that the ib deposit rule performs

better, because the stuart approach does not include local search.
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Table 3.5: Overview of the constant parameter settings used in the fully-crossed evaluation
design for Evaluation 1. Deposit rules are shortened ib for iteration-best and gb for global-best.

α 1 1.5 2.5 5
β 1 1.5 2.5 5
ρ .5 .8 .95
K 8 16 32
Deposit Rule ib gb
H none optimal sub-optimal

These different parameter settings result in a total of 648 different conditions. Table 3.5

provides an overview of the evaluation conditions. Each of the 648 conditions was replicated 100

times.

With these restrictions in place, it is possible to derive the minimum and maximum runtime

- i.e. the theoretical bounds of AR. Theoretically, AR has no upper bound unless a set number

of colonies is defined as an abort criterion. Given the conditions in this evaluation the maximum

runtime is given by

maxAR = 256SK (3.8)

with S being the number of possible solutions computed in Equation (2.5) as 334569553920, K

being the number of ants in a given condition and 256 being the number of colonies defined as the

abort criterion. This upper limit of AR is reached only if all possible combinations have unique

fitness and are found as the sgb in sequential order of their f(s), always in the 256th colony after

finding the previous solution.

Using the minimum required iterations presented in Equation (3.2), the lower bound on AR

- and thus the minimum number of ants required before convergence - can be computed as:

minAR =


log
(
φmin+tol
φmax

)
log(ρ)

K. (3.9)

With these parameter settings there are nine different lower bounds for AR in this study.

When ρ = .5, the minimum number of iterations required to reach the convergence criterion is

t = 5, thus minAR = 5K. For conditions with ρ = .8 this is minAR = 13K and with ρ = .95 it

is minAR = 52K.

Additionally, the probability of constructing the solution favored by the heuristic information

in the initial step can be computed. During the first colony (t = 1) all items have the the same

pheromone (because all are initialized to the same value) and thus the selection probability given

by Equation (2.6) simplifies to
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p(xim = 1|t) =
[ηim]β

Im∑
i=1

[ηim]β
. (3.10)

Therefore, the probability of selecting only those items stemming from the heuristically fa-

vored solution s∗ can be computed as

p(s = s∗) =

M∏
m=1

am∏
i=1

i2β

i2β + (Im − am)
(3.11)

during the first iteration, when using ηi = 2 for i ∈ s∗ and ηi = 1 for i /∈ s∗. With this, the

probability of generating the favored solution at least once in the initial colony can simply be

computed as 1− {1− (p[s = s∗])}K .

This is of relevance, because for some settings it becomes extremely likely to generate the

solution that is favored by the heuristics. In the most extreme case of this evaluation (for β = 5

and K = 32), this probability is 0.993. Due to the nature of the stuart approach, if the

heuristically favored solution is constructed during this initial iteration, the final solution cannot

be worse than the heuristically favored solution. While this is a good property of the approach

in general, it means that there is likely a considerable proportion of replications in the conditions

with optimal heuristics that encounter the optimal solution in the first iteration and will then

run unnecessarily long.

3.7 Results for the Constant Parameter Settings

The results for this part of the parameter evaluation will be presented in three sections. The

first is dedicated to the results derived from the 72 conditions for which no heuristic information

was provided. The following sections will then focus on those conditions in which optimal and

sub-optimal heuristics were provided.

3.7.1 No Heuristic Information

Errors In total 28 of 7200 replications (0.389%) did not terminate with either of the two

predefined abort criteria. All of these errors were due to none of the solutions in the first colony

of the run providing a proper solution - i.e. all ants of the first colony provided f(s) = 0. As can

be expected, this was exclusively the case in conditions with K = 8.

Success Rate (SR) Over all conditions the success rate was SR = 0.039 indicating a rather

low recovery rate of sgb over a wide array of parameter settings. Table 3.6 provides a bit more

detail about the condition specific performance regarding the SR. None of the replications using

α = 5 resulted in the optimal solution, and all conditions with α = 2.5 performed to SR ≤ .05,
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Table 3.6: Condition-specific SR for cases with no heuristic information.

ib-Deposit gb-Deposit
K ρ α = 1 α = 1.5 α = 2.5 α = 5 α = 1 α = 1.5 α = 2.5 α = 5

0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.8 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000

0.95 0.020 0.020 0.000 0.000 0.052 0.091 0.010 0.000
0.5 0.030 0.000 0.000 0.000 0.000 0.000 0.000 0.000

16 0.8 0.160 0.030 0.000 0.000 0.020 0.020 0.000 0.000
0.95 0.140 0.140 0.000 0.000 0.100 0.130 0.020 0.000
0.5 0.030 0.060 0.000 0.000 0.000 0.050 0.000 0.000

32 0.8 0.480 0.120 0.000 0.000 0.040 0.110 0.010 0.000
0.95 0.160 0.200 0.050 0.000 0.280 0.190 0.040 0.000

indicating lower success rates for larger degrees of non-linearity of the pheromone in determining

selection probability. In cases with α = 1 or α = 1.5, the SR is almost always higher for the

iteration-best deposit rule than for the global-best deposit rule and generally seems to increase

with K. With α = 1.5, larger values of ρ lead to higher SR, while the effect of ρ does not seem

to follow a simple tendency when α = 1. For these conditions, ρ = .8 resulted in the highest

SR (peaking at SR = 0.48). When using the global-best deposit rule, however, conditions with

ρ = .95 outperformed the other two parameter settings with regards to sucessfully recovering

sopt.

Relative Deviation (RD) The average RD across all parameter settings is -0.037, indicating

that the average final solution performed approximately 4% worse than the optimal solution with

regards to the quality function. In contrast, the average RD when using the smd described in

Section 3.5 as the reference solution is 0.265, indicating that the average best solution outperforms

the median solution by approximately 26%. As was the case with the SR the overall performance

regarding RD is much less informative than the comparisons between the conditions. Figure 3.4

shows the Boxplots of the RD for each of the conditions incorporating no heuristic information.

Generally, higher settings of α lead to worse RD values - as indicated by the downward shift

of the Boxplots across the panels of Figure 3.4 from left to right. In total, the variations in α

accounted for a ∆R2 = 0.465 (95% CI = [0.445; 0.484]) and represent the most important factor

in determining the values of RD.

Similarly, larger values ofK consistently lead to better final solutions (∆R2 = 0.095, 95% CI =

[0.081; 0.109]). The deposit-rule does not make a tangible difference for RD in cases in which α

is either 2.5 or 5 (Cohen’s dα=2.5 = 0.026, 95% CI = [−0.066; 0.119], Cohen’s dα=5 = −0.011,

95% CI = [−0.103; 0.082]). In cases with α = 1.5 these differences are also negligible (Cohen’s

dα=1.5 = 0.128, 95% CI = [0.035; 0.221]). However, when α = 1 the iteration-best deposit rule

outperforms the global-best deposit rule quite considerably (d = 0.813, 95% CI = [0.717; 0.909]).
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Figure 3.4: Boxplots of the relative deviation (RD) of the final solutions from the optimal
solution. The columns of panels depict different values of α.
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Table 3.7: Average and worst-case RD for the four best performing conditions. The ranks
pertain to the total of all 72 conditions without heuristic information.

Average Worst-Case
Deposit α K ρ RD Rank RD Rank SR AR

ib 1 16 0.8 -0.003 2 -0.014 4 0.160 9082.560
ib 1 16 0.95 -0.004 4 -0.011 3 0.140 10790.400
ib 1 32 0.8 -0.002 1 -0.011 2 0.480 13342.080
ib 1 32 0.95 -0.004 3 -0.008 1 0.160 16690.560

As was the case for the SR, there is a general tendency for ρ to increase values of RD

(∆R2 = 0.343, 95% CI = [0.324; 0.362]), except when using the iteration-best deposit rule with

α = 1, where ρ = .8 (in combination with K = 32) leads to the best average performance of

all conditions (MRD = −0.002). However, while this constellation leads to the best average

performance, its worst-case performance is worse than that of the condition with α = 1, K = 32,

and ρ = .95. Table 3.7 shows the four best performing conditions with regards to average and

worst-case performance and the respective ranks amongst all 72 conditions investigated in this

section. Only the best four are presented because they are the same in both situations.

For reference, the worst final solution of any of these four conditions (i.e. the worst final

solution found when using the iteration-best deposit rule, α = 1, K = 16, and ρ = .8) resulted in

f(s) = 1.921. This quality value was derived from a shortened scale with a composite reliability

of 0.896 and a measurement model with good overall fit (RMSEA = 0.025, SRMR = 0.024, CFI

= 0.968). Under the normal distribution assumed for the 10000 random samples described in

Section 3.4 this solution (sgb) provides p[Φ(s) ≥ Φ(sgb)] < .001.

Absolute Runtime (AR) On average, 2317.405 CFAs were run per condition. Again, this

number is not as informative as the condition specific runtimes, for which the Boxplots are shown

in Figure 3.5. The boxplots indicate general increases in runtime for larger values of K and ρ,

as well as smaller values of α.

As was the case for RD, the deposit rule does not have a substantial impact on AR in con-

ditions with non-linear deposit rules (Cohen’s dα=1.5 = 0.128, 95% CI = [0.035; 0.221], Cohen’s

dα=2.5 = −0.053, 95% CI = [−0.146; 0.04], Cohen’s dα=5 = 0.181, 95% CI = [0.088; 0.273]).

However, conditions in which the pheromone is deposited in a linear fashion, the global-best

deposit rule reaches either of the abort criteria much faster (d = 1.426, 95% CI = [1.322; 1.53]).

Overall, the most important determinant in the absolute runtime was the non-linearity co-

efficient α, with larger values leading to much shorter runtimes (∆R2 = 0.496, 95% CI =

[0.478; 0.515]). For both, ρ (∆R2 = 0.324, 95% CI = [0.307; 0.341]) and K (∆R2 = 0.196,

95% CI = [0.183; 0.21]) larger values lead to considerably longer runtimes.

The fastest convergence observed was after just 40 ants - a feat that was accomplished 52



95

1 1.5 2.5 5

0.5 0.8 0.95 0.5 0.8 0.95 0.5 0.8 0.95 0.5 0.8 0.95

0

10000

20000

30000

ρ

A
R

K

8

16

32

Iteration Best

1 1.5 2.5 5

0.5 0.8 0.95 0.5 0.8 0.95 0.5 0.8 0.95 0.5 0.8 0.95

0

10000

20000

30000

ρ

A
R

K

8

16

32

Global Best

Figure 3.5: Boxplots of the condition specific absolute runtimes (AR). The columns of panels
depict different values of α.
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times. All of these replications used ρ = .5 andK = 8, for which 40 also constitutes the theoretical

minimum required for reaching the convergence criterion as computed via Equation (3.9). Among

these fastest convergences were conditions utilizing any setting for α in combination with the

global-best deposit rule, but only conditions with α = 5 when using the iteration-best deposit

rule. Overall, 82 replications achieved minimum AR, with 79 (96.341%) of these stemming from

conditions with ρ = .5, and the remaining replications stemming from conditions with ρ = .8.

Additionally, 11 (13.415%) of these utilized the iteration-best deposit rule. The best of the 82

replications with minimal runtime ended with RD = -0.046, while the worst ended with RD =

-0.214.

The slowest condition ended at the abort criterion after 34432 ants. As visible in Figure 3.5,

this replication stems from the condition with the iteration-best deposit rule, α = 1, K = 32,

and ρ = 0.8. This replication ended in the optimal solution. It is noteworthy that, even though

34432 is quite a large number of CFAs to run, it represents running just 0.00001% of the total

number of viable solutions.

Relative Exploration (RE) Figure 3.6 shows the condition specific Boxplots for RE. Over

all conditions the average RE was 0.449, indicating that well under 50% of all constructed

solutions were proper, unique solutions. Higher values of the non-linearity coefficient α lead to

less exploration, as did higher values of K.

The findings concerning the evaporation coefficient ρ are mixed. When using the iteration-

best deposit rule ρ had no overall effect on the degree of exploration (∆R2 = 0.003, 95% CI =

[−0.001; 0.008]). However, with the global-best deposit rule, higher values of ρ lead to consider-

ably less exploration (∆R2 = 0.014, 95% CI = [0.006; 0.022]). As visible in Figure 3.6, conditions

with α = 1 did not exhibit a clear trend.

Figure 3.6 shows that α and its interactions are extremely important in determining the degree

of exploration across all conditions (∆R2 = 0.922, 95% CI = [0.916; 0.928]). For conditions with

α = 1 and the iteration-best deposit rule the average RE is 0.827, and for conditions with α = 1

and the global-best deposit rule the average is slightly lower, at MRE = 0.735.

Relative Deviation over Time (RD[t]) Figure 3.7 shows the optimization history with

regards to RD(t) of each of the replications using the iteration-best deposit rule. As described

above, absolute runtimes differed drastically between conditions with varying values for α, which

is why the four panels of Figure 3.7 use different scales on the x-axis. For α = 1 the quality of

the iteration-best solution slowly approaches RD-values close to zero, finding the final solution

after an average of 271.153 iterations and then replicating that final solution 218.036 times, on

average. It should be noted, that not a single replication reached the abort criterion defined via

the pheromone limits when using the iteration-best deposit rule, α = 1, and ρ = .95. Instead,

all of these replications reached the maximum number of iterations after the last improvement
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on sgb.

Figure 3.7 shows that the decreased runtimes associated with larger values of α are due to

quick convergence once an acceptable solution is found. In conditions with α = 5 and ρ = .5

this quite often lead to convergence in a solution found in the first iteration, resulting in values

of AR at the lower theoretical bound.

The drastic differences in behavior for different levels of α are not quite as pronounced in

Figure 3.8, which depicts the RD(t) of all replications using the global-best deposit rule. This is

partially due to faster convergence with α = 1, when compared to conditions using the iteration-

best deposit rule. For these conditions, an average of 85.631 iterations was needed before the final

solution was found, which is markedly faster than in the conditions utilizing the iteration-best

deposit rule and α = 1 (d = 1.219, 95% CI = [1.118; 1.32]). Additionally, the final solutions

were replicated much less often (Mrep = 30.877, d = 2.942, 95% CI = [2.808; 3.076]), leading to

the results concerning the differences in AR described earlier.

Relative Exploration over Time (RE[t]) Figure 3.9 shows the LOWESS lines for the rela-

tive exploration over time. With the exception of conditions with α = 5 and ρ = .8 or ρ = .5, all

conditions experienced an initial burn-in phase during which the RE(t) values increased. This

is mostly due to a large amount of improper solutions during the early exploration phase.

Defining the burn-in phase as the phase until the 90th percentile in RE(t) is reached, Table

3.8 shows the average number of iterations needed for the burn-in phase. Across all conditions,

lower values of ρ lead to a faster burn-in, as did lower values for K. Higher values of α had

the same effect, but the RE(t) they achieved at the 90th percentile was much lower. Overall,

conditions utilizing α = 1 with the iteration-best deposit rule all showed 90th percentiles of

RE(t) > .90, while those using α = 1 and the global-best deposit rule achieved only marginally

worse 90th percentiles with all RE(t) > .88. As is visible in Figure 3.9, conditions with higher

values of α achieved much worse performance with regard to the 90th percentile, with the general

trend of lower RE(t) accompanying lower values of ρ. This is not the case in conditions with

α = 1, where lower values of ρ actually lead to higher 90th percentile RE(t).

As already mentioned above, the average RE is lower for higher values of α. The most notable

pattern is that - independent of the deposit rule used - values of α = 1 lead to consistently high

RE(t) values after the initial burn-in phase, with only the two conditions (K = 32 and ρ = .8

or ρ = .95) showing signs of decline in RE(t) during later phases. For conditions with α = 1.5

or α = 2.5, the burn-in is followed by a short peak in RE(t) before a quick decline leads to

convergence in solution.

Summary In situations with no heuristic information there is a general tendency for parameter

constellations with smaller values of α, as well as larger values of ρ and K to lead to slower but

markedly better solutions. Overall, α = 1 showed the most promising results regarding solution



99

0.5 0.8 0.95

8
16

32

10 1000 10 1000 10 1000

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

t

R
D

(t)

α = 1

0.5 0.8 0.95

8
16

32

10 1000 10 1000 10 1000

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

t

R
D

(t)

α = 1.5

0.5 0.8 0.95

8
16

32

1 10 100 1 10 100 1 10 100

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

t

R
D

(t)

α = 2.5

0.5 0.8 0.95

8
16

32

1 10 100 1 10 100 1 10 100

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

t

R
D

(t)

α = 5

Figure 3.7: The relative deviation from f(sopt) as a function of time (RD[t]) for the conditions using the iteration-best deposit rule.
Yellow lines represent the optimization history for each single replication, blue lines the LOESS-smoothed averages. The x-axis is log-
scaled. Each panel shows a different value of α. Within these panels, values of ρ are depicted in columns and values of K are depicted
in rows.



1
0
0

0.5 0.8 0.95

8
16

32

1 10 100 1 10 100 1 10 100

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

t

R
D

(t)

α = 1

0.5 0.8 0.95

8
16

32

1 10 100 1 10 100 1 10 100

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

t

R
D

(t)

α = 1.5

0.5 0.8 0.95

8
16

32

1 10 100 1 10 100 1 10 100

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

t

R
D

(t)

α = 2.5

0.5 0.8 0.95

8
16

32

1 10 100 1 10 100 1 10 100

−0.4

−0.3

−0.2

−0.1

0.0

−0.4

−0.3

−0.2

−0.1

0.0

−0.4

−0.3

−0.2

−0.1

0.0

t

R
D

(t)

α = 5

Figure 3.8: The relative deviation from f(sopt) as a function of time (RD[t]) for the conditions using the global-best deposit rule. Yellow
lines represent the optimization history for each single replication, blue lines the LOESS-smoothed averages. The x-axis is log-scaled.
Each panel shows a different value of α. Within these panels, values of ρ are depicted in columns and values of K are depicted in rows.



101

1 1.5 2.5 5

0.5
0.8

0.95

0.000.250.500.751.000.000.250.500.751.000.000.250.500.751.000.000.250.500.751.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

t T

R
E

(t)

K

8

16

32

Iteration Best

1 1.5 2.5 5

0.5
0.8

0.95

0.000.250.500.751.000.000.250.500.751.000.000.250.500.751.000.000.250.500.751.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

t T

R
E

(t)

K

8

16

32

Global Best

Figure 3.9: Relative Exploration over time. Time is scaled relative to total runtime. Columns
depict different settings of α, rows show different settings for ρ.



3 Parameter Evaluation 102

Table 3.8: Average number of iterations needed for the burn-in phase (Tbi) per condition with
the average 90th percentile of RE in parentheses.

Deposit K ρ α = 1 α = 1.5 α = 2.5 α = 5

0.5 12.303 (0.999) 5.131 (0.834) 2.737 (0.676) 1.990 (0.098)
8 0.8 18.465 (0.997) 10.313 (0.895) 5.940 (0.807) 3.323 (0.371)

0.95 51.400 (0.999) 31.192 (0.930) 18.092 (0.900) 8.000 (0.709)
0.5 17.690 (0.979) 5.250 (0.780) 3.230 (0.666) 2.440 (0.122)

ib 16 0.8 27.440 (0.975) 10.760 (0.850) 6.470 (0.742) 3.750 (0.554)
0.95 76.120 (0.985) 41.640 (0.916) 22.740 (0.845) 11.510 (0.779)
0.5 12.080 (0.926) 4.870 (0.730) 3.170 (0.604) 2.720 (0.326)

32 0.8 20.150 (0.906) 12.050 (0.839) 6.700 (0.726) 4.090 (0.679)
0.95 70.540 (0.936) 45.710 (0.911) 25.630 (0.838) 12.020 (0.763)

0.5 7.040 (0.931) 4.371 (0.808) 2.670 (0.667) 2.343 (0.640)
8 0.8 15.293 (0.963) 7.454 (0.816) 4.374 (0.718) 2.643 (0.682)

0.95 38.464 (0.964) 13.707 (0.820) 6.760 (0.689) 5.303 (0.721)
0.5 8.600 (0.898) 4.870 (0.754) 3.090 (0.644) 2.530 (0.587)

gb 16 0.8 17.840 (0.931) 8.580 (0.785) 5.520 (0.690) 3.330 (0.663)
0.95 46.160 (0.899) 26.200 (0.811) 12.480 (0.682) 6.870 (0.687)
0.5 9.260 (0.887) 4.760 (0.719) 3.040 (0.618) 2.700 (0.548)

32 0.8 18.960 (0.893) 9.170 (0.765) 5.510 (0.650) 3.520 (0.633)
0.95 50.440 (0.891) 28.170 (0.784) 13.540 (0.680) 8.440 (0.682)

quality, while also being much slower than all other values of α investigated here. In conditions

with α ∈ {2.5, 5} convergence was extremely fast but often lead to poor solutions. The long

runtimes for low values of α went hand-in-hand with better - and in some cases sustained -

exploration of the space of possible solutions. The comparison of deposit rules becomes relevant

only in cases in which good solutions are found slowly (i.e. in situations where α = 1). In

these cases the ib deposit rule outperforms the gb with regards to solution quality to a small

but noticeable degree, while also being dramatically slower to find solutions. Of all conditions,

constellations with α = 1, ρ ∈ {.8, .95}, K ∈ {16, 32} and the ib deposit-rule were able to

consistently find the best solutions.

3.7.2 Optimal Heuristic Information

Errors Of the 28800 replications performed for conditions with optimal heuristic information,

10 (0.035%) resulted in errors. As was the case for replications without heuristic information,

all of these replications stem from conditions with K = 8 and are due to the absence of a viable

solution in the first colony.

Success Rate (SR) Over all conditions with optimal heuristics, the average SR was 0.796.

Table 3.9 shows the success rates in more detail. All conditions with β = 5 resulted in recovery
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Table 3.9: Condition-specific success rates with optimal heuristic information.

Iteration-Best Global-Best

β K ρ α = 1 α = 1.5 α = 2.5 α = 5 α = 1 α = 1.5 α = 2.5 α = 5

0.5 0.810 0.140 0.000 0.000 0.340 0.140 0.000 0.000
8 0.8 1.000 0.900 0.140 0.010 0.700 0.650 0.060 0.010

0.95 1.000 1.000 1.000 0.750 0.960 0.909 0.630 0.220
0.5 0.720 0.400 0.010 0.000 0.480 0.410 0.000 0.000

1 16 0.8 1.000 0.970 0.530 0.040 0.850 0.810 0.240 0.050
0.95 1.000 1.000 1.000 0.950 0.930 0.910 0.820 0.400
0.5 0.890 0.620 0.040 0.000 0.790 0.660 0.020 0.000

32 0.8 1.000 0.980 0.720 0.090 0.920 0.810 0.560 0.070
0.95 1.000 1.000 1.000 0.970 0.980 0.910 0.960 0.600

0.5 0.910 0.620 0.000 0.000 0.680 0.475 0.020 0.000
8 0.8 1.000 0.990 0.710 0.050 0.990 0.940 0.400 0.040

0.95 1.000 1.000 1.000 1.000 1.000 0.990 0.960 0.780
0.5 0.990 0.860 0.070 0.000 0.890 0.800 0.060 0.000

1.5 16 0.8 1.000 1.000 0.880 0.340 0.990 0.960 0.720 0.180
0.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.910
0.5 0.980 0.920 0.070 0.010 0.900 0.880 0.280 0.000

32 0.8 1.000 1.000 0.980 0.450 0.990 1.000 0.930 0.420
0.95 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.970

0.5 1.000 0.990 0.440 0.030 0.990 0.940 0.580 0.040
8 0.8 1.000 1.000 1.000 0.810 1.000 1.000 1.000 0.800

0.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 1.000 1.000 0.700 0.080 0.990 1.000 0.820 0.130

2.5 16 0.8 1.000 1.000 1.000 0.960 1.000 1.000 1.000 1.000
0.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 1.000 0.990 0.920 0.300 1.000 1.000 0.960 0.300

32 0.8 1.000 1.000 1.000 1.000 1.000 1.000 0.990 1.000
0.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
8 0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 16 0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

32 0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.95 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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of the optimal solution. Generally SR, was extremely high when α < β (SR =0.993), especially

when compared to those conditions with α > β (SR =0.517). When α ≥ β, ρ and K played

large roles in determining SR, allowing for sub-optimal solutions to be found only in conditions

with very quick evaporation (i.e. when ρ and K are small), however these effects became less

pronounced the closer the values of α and β were. Generally, conditions with ρ = .95 showed

extremely high SR when coupled with the ib deposit-rule. Further differences between the deposit

rules were visible - albeit small - only when β = 1 (Cohen’s dβ=1 = 0.276, 95% CI = [0.23; 0.322]).

Across all other conditions there was no noticeable difference between the iteration-best and the

global-best deposit rules (Cohen’s dβ 6=1 = 0.038, 95% CI = [0.011; 0.065]).

Relative Deviation (RD) The average RD across all conditions with optimal heuristics was

-0.006, indicating an average fitness of the final solutions that is less than 1% worse than that

of sopt. Figure 3.10 shows the boxplots of the RD for all conditions with optimal heuristics. As

was the case for SR, conditions with α < β (panels in the lower triangles of Figure 3.10) perform

extremely close to optimal, with the average RD > −1× 10−6 for these conditions.

For those cases in which α > β, higher values of both the evaporation coefficient ρ and the

number of ants K lead to better solution quality. When ρ = .95, using the iteration-best deposit

rule leads to an RD > −.0001, while the global-best deposit rule resulted in RD = −0.002.

As was the case for SR, those conditions with low values for ρ and larger differences between

α and β allowed for quick evaporation and convergence to final solutions much worse than

the solution provided in the heuristics. Across all conditions with α > β the difference in

relative deviation between the two deposit rules was negligible, however (Cohen’s dβ 6=1 = 0.014,

95% CI = [−0.023; 0.052]).

Selection Consistency (SC) The average SC = 0.958 across all conditions. Because the SC

and RD are very closely related for conditions with optimal heuristics, the same patterns emerge:

conditions with β > α almost exclusively construct the heuristically favored, optimal solution

(in 99.278% of replications) and conditions with larger α than β and low values of ρ construct

solutions that are inconsistent with the heuristics provided.

Absolute Runtime (AR) On average, conditions with optimal heuristics required the esti-

mation of 685.376 CFAs, before reaching either of the abort criteria. Figure 3.11 shows the

boxplots of the absolute runtimes per condition. Overall, the most important factor for AR was

the evaporation coefficient ρ (∆R2 = 0.672, 95% CI = [0.664; 0.681]), followed by the number of

ants (∆R2 = 0.304, 95% CI = [0.297; 0.311]). In both cases larger values lead to longer absolute

runtimes. The opposite is true for the non-linearity coefficient β, where larger values lead to

quicker convergence (∆R2 = 0.135, 95% CI = [0.131; 0.139]).

In total, 6532 of 28800 (22.681%) replications ended after the absolute minimum of iterations
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Figure 3.10: Boxplots of the relative deviation (RD) of the final solutions from the optimal
solution. Panels represent different settings for α in columns and β in rows.
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Figure 3.11: Boxplots of the absolute runtime (AR) for all conditions with optimal heuristics.
Panels represent different values for α in columns and β in rows.
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as derived via Equation (3.9). Of these just 106 replications stemmed from conditions that used

values other than β = 5. Combining β = 5 with K = 32 and the global-best deposit rule lead

to minimal AR 100% of the time. With the ib deposit rule minimal AR can be seen in 99.5%

of those conditions with β = 5 and K = 32. As pointed out in Section 3.6 the probability of

constructing the heuristically favored solution in the first iteration is p = 0.993 for these cases.

When using the gb deposit rule this is equivalent to the probability of achieving minAR because

the heuristics provided here are optimal. In line with this, smaller values of K (while maintaining

β = 5) lead to less minimal AR replications when using the ib deposit to a much greater extent

than for those utilizing the gb deposit.

Relative Exploration (RE)

Across all conditions the average RE = 0.382, indicating that just over a third of all con-

structed solutions were unique and viable solutions. Figure 3.12 shows the boxplots of the RE

for all conditions. In contrast to the results regarding AR, the parameter with the most influ-

ence on relative exploration was α. This is indicated by the downward shift across the panels

of Figure 3.12 from left to right, meaning that higher values of α lead to less exploration over-

all. Additionally, the effect size ∆R2 attributable to α and all its interactions is ∆R2 = 0.738

(95% CI = [0.729; 0.746]) - making it, by far, the most the most important determinant of RE

among the parameters varied in this study. To illustrate: the 53 conditions with the highest RE

values all utilized α = 1.

The parameter with the second largest relevance for RE was the non-linearity coefficient β

with ∆R2 = 0.188 (95% CI = [0.182; 0.193]). As was the case for α, higher values of β lead

to less exploration. The pronounced effects of the relation between α and β, seen with regards

to solutions quality, did not appear for the relative exploration. The same trend holds true

for the evaporation coefficient ρ (∆R2
ρ = 0.124, 95% CI = [0.12; 0.128]). The deposit rule did

not have an impact on exploration for situations with optimal heuristics (Cohen’s d = 0.017,

95% CI = [−0.006; 0.04]).

Relative Deviation over Time (RD[t]) Figures 3.13 through 3.16 depict the RD(t) of all

replications using the optimal heuristics that did not result in errors. Yellow lines are the RD(t)

of single replications and the blue lines represent the LOWESS lines across all replications per

condition. The scaling of the x-axes is different across the figures due to the extreme differences

in AR between conditions.

For all conditions with β = 5, the RD(t) quickly moved to 0, taking an average of 1.151

iterations to obtain the final solution. After this short exploration, the sgb was iterated upon

an average of 22.363 times before convergence. Conditions with β > α exhibit short search

processes (MT =7.549), with a clear trend towards RD(t) = 0 and a long phase of replicating

the final solution (MT =24.561). Over all conditions, iterations reiterating on the same sgb make
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Figure 3.12: Boxplots of the relative exploration (RE) for all conditions with optimal heuristics.
Panels represent different values for α in columns and β in rows.
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Figure 3.13: The relative deviation from f(sopt) as a function of time (RD[t]) for the conditions using the iteration-best deposit
rule and β = 1 or β = 1.5. Yellow lines represent the optimization history for each single replication, blue lines the LOESS-smoothed
averages. The x-axis is log-scaled. The columns of each panel show different values of ρ, the rows different values of K.
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Figure 3.14: The relative deviation from f(sopt) as a function of time (RD[t]) for the conditions using the iteration-best deposit rule
and α = 2.5 or α = 5. Yellow lines represent the optimization history for each single replication, blue lines the LOESS-smoothed
averages. The x-axis is log-scaled. The columns of each panel show different values of ρ, the rows different values of K.
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Figure 3.15: The relative deviation from f(sopt) as a function of time (RD[t]) for the conditions using the global-best deposit rule and
β = 1 or β = 1.5. Yellow lines represent the optimization history for each single replication, blue lines the LOESS-smoothed averages.
The x-axis is log-scaled. The columns of each panel show different values of ρ, the rows different values of K.
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Figure 3.16: The relative deviation from f(sopt) as a function of time (RD[t]) for the conditions using the global-best deposit rule and
β = 2.5 or β = 5. Yellow lines represent the optimization history for each single replication, blue lines the LOESS-smoothed averages.
The x-axis is log-scaled. The columns of each panel show different values of ρ, the rows different values of K.
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Figure 3.17: The LOWESS lines of the relative exploration over time for conditions with
iteration-best deposit rule. Different values of ρ are in columns, different values of β in rows, and
different values of α are in different panels.

up roughly 67% of the entire search duration. Though the search for sgb is longer for conditions

with α > β (MT = 13.515), the RD of in these conditions is often lower than that in those

conditions favoring the heuristic information more heavily. In conditions with α = 5 and low

values for β, very few new best solutions were generated before converging into sub-optimal

solutions.

Relative Exploration over Time (RE[t]) Figures 3.17 and 3.18 show the timed relative ex-

ploration when using optimal heuristics as LOWESS lines. Empty panels are due to information

being too sparse for the LOWESS smoother implemented in the stats-Package (Version 3.3.2;

R Core Team, 2016) to handle. As pointed out above, this is due to conditions with β = 5 often

requiring the absolute minimum of iterations to converge.

In almost all conditions with β 6= 5, the RE(t) reached its peak after a short burn-in phase

before deteriorating quickly. The notable exception were conditions with α = 5, ρ = .5, and the

iteration-best deposit rule, for which RE(t) never achieved acceptable values. Conditions with
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Figure 3.18: The LOWESS lines of the relative exploration over time for conditions with global-
best deposit rule. Different values of ρ are in columns, different values of β in rows, and different
values of α are in different panels.
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β = 5 almost always started at their maximum RE(t) and showed a quick and steep decline

in exploration. Somewhat irrespective of other parameter settings, larger values of α lead to a

shorter period of initial exploration before a period of reiterating the final solution. In cases with

α ∈ {2.5, 5} iterations with an RE(t) = 0 constitute 51.626% of all iterations. In the worst case

- when α = 5, β = 1.5, ρ = 0.5, K = 8, and using the ib deposit rule - iterations with RE(t) = 0

made up 90.351% of all iterations. The most consistent exploration was achieved in conditions

utilizing a linear pheromone deposit as well as β = 1. As pointed out above, these cases were

also those with the highest RE overall.

Tables 3.10 and 3.11 depict the 90th percentile in RE(t) and the average number of iterations

required to reach this RE(t). Conditions with large values for β reach their 90th percentile RE(t)

very quickly - sometimes beginning at their maximum exploration - but tend to have a lower

overall peak performance. The highest 90th percentile RE(t) was reached in the condition with

ρ = 0.5, K = 8, α = 1, β = 1 and utilizing the ib deposit rule at a value of 0.959. Overall, the

14 conditions with the highest 90th percentile RE(t) stem from conditions with α = 1 and the

12 best performing conditions used K = 8. Among these conditions, those with larger values of

β and lower values of ρ tended to surmount the initial burn-in quickest.

Summary For conditions with optimal heuristics, there is a general tendency for quick and

reliable recovery of the optimal solution in cases in which β > α. Exploration is dependent mostly

upon the values of α with a clear tendency for lower values of α to lead to more exploration.

Overall, only conditions with large values of α, small values of ρ, and small values of β performed

poorly in recovery of the optimal solution and showed little exploration. In conditions in which

β was large the search showed little exploration, discovering the optimal solution very early on

and iterating on this final solution for most of the runtime. Over all conditions with optimal

heuristics, the iteration-best deposit rule tended to show better performance in recovering the

optimal solution.

3.7.3 Sub-Optimal Heuristic Information

Errors 64 of the 28800 (0.222%) replications using the median solution to provide heuristic

information resulted in errors. As was the case in the previous two sections, all of these errors

were due to the failure to find an admissible solution in the first colony. All of the errors occurred

in conditions with K = 8.

Success Rate Table 3.12 provides the success rates for conditions implementing the iteration-

best and the global-best deposit rule, respectively. Overall, the average SR = 0.007, indicating a

very low rate of recovering the optimal solution. Specifically, all conditions with β ≥ 2.5 showed

a SR = 0 and all but one condition with α ≥ 2.5 also never recovered the optimal solution. The
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Table 3.10: Average number of iterations needed for the burn-in phase (Tbi) per condition
utilizing the iteration-best deposit rule. The average 90th percentile of RE is in parentheses.

β K ρ α = 1 α = 1.5 α = 2.5 α = 5

0.5 6.750 (0.959) 3.670 (0.819) 2.740 (0.764) 1.690 (0.147)
8 0.8 8.270 (0.914) 6.650 (0.895) 4.570 (0.858) 2.606 (0.624)

0.95 12.293 (0.877) 13.030 (0.908) 8.828 (0.864) 5.040 (0.806)
0.5 6.890 (0.910) 4.050 (0.778) 2.670 (0.701) 2.260 (0.135)

1 16 0.8 11.930 (0.905) 8.390 (0.872) 5.470 (0.801) 3.230 (0.724)
0.95 29.450 (0.892) 21.550 (0.872) 12.320 (0.840) 6.030 (0.769)
0.5 6.170 (0.876) 4.140 (0.759) 3.030 (0.681) 2.440 (0.363)

32 0.8 12.520 (0.887) 9.310 (0.852) 5.830 (0.795) 3.280 (0.720)
0.95 35.790 (0.868) 25.500 (0.850) 15.450 (0.819) 7.720 (0.753)

0.5 4.560 (0.932) 2.830 (0.824) 2.570 (0.772) 1.616 (0.128)
8 0.8 6.750 (0.915) 5.160 (0.895) 3.980 (0.844) 2.150 (0.796)

0.95 9.750 (0.890) 8.630 (0.889) 5.100 (0.866) 3.300 (0.795)
0.5 5.000 (0.880) 3.590 (0.789) 2.790 (0.751) 2.160 (0.272)

1.5 16 0.8 9.150 (0.889) 7.180 (0.859) 4.420 (0.824) 2.780 (0.743)
0.95 20.860 (0.877) 14.240 (0.859) 9.370 (0.827) 4.200 (0.764)
0.5 4.900 (0.845) 3.720 (0.790) 2.820 (0.723) 2.340 (0.638)

32 0.8 9.100 (0.852) 6.970 (0.838) 5.140 (0.805) 3.120 (0.719)
0.95 24.970 (0.844) 17.440 (0.827) 11.300 (0.805) 5.600 (0.744)

0.5 2.520 (0.911) 2.140 (0.876) 2.030 (0.841) 1.280 (0.244)
8 0.8 3.100 (0.920) 2.550 (0.902) 2.030 (0.864) 1.680 (0.818)

0.95 3.410 (0.893) 3.230 (0.884) 2.270 (0.871) 1.530 (0.796)
0.5 3.350 (0.865) 2.890 (0.829) 2.460 (0.796) 1.500 (0.352)

2.5 16 0.8 4.250 (0.873) 3.740 (0.864) 2.790 (0.822) 1.940 (0.788)
0.95 6.240 (0.865) 4.870 (0.854) 3.420 (0.827) 2.000 (0.772)
0.5 3.620 (0.832) 3.090 (0.807) 2.620 (0.775) 1.450 (0.683)

32 0.8 4.950 (0.838) 4.010 (0.825) 3.190 (0.801) 2.300 (0.760)
0.95 8.350 (0.832) 6.750 (0.823) 4.280 (0.804) 1.980 (0.751)

0.5 1.200 (0.891) 1.143 (0.878) 1.190 (0.896) 1.140 (0.895)
8 0.8 1.110 (0.834) 1.040 (0.825) 1.020 (0.802) 1.030 (0.733)

0.95 1.040 (0.749) 1.020 (0.693) 1.000 (0.617) 1.000 (0.445)
0.5 1.210 (0.859) 1.120 (0.845) 1.180 (0.845) 1.180 (0.831)

5 16 0.8 1.050 (0.788) 1.030 (0.765) 1.030 (0.745) 1.000 (0.698)
0.95 1.020 (0.667) 1.000 (0.631) 1.000 (0.556) 1.000 (0.413)
0.5 1.130 (0.789) 1.230 (0.801) 1.190 (0.800) 1.160 (0.795)

32 0.8 1.020 (0.733) 1.010 (0.717) 1.000 (0.703) 1.000 (0.659)
0.95 1.000 (0.589) 1.000 (0.559) 1.000 (0.484) 1.000 (0.338)
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Table 3.11: Average number of iterations needed for the burn-in phase (Tbi) per condition
utilizing the global-best deposit rule. The average 90th percentile of RE is in parentheses.

β K ρ α = 1 α = 1.5 α = 2.5 α = 5

0.5 6.170 (0.946) 3.530 (0.803) 2.450 (0.738) 1.909 (0.663)
8 0.8 10.170 (0.955) 5.630 (0.835) 3.800 (0.775) 2.140 (0.738)

0.95 18.667 (0.939) 10.354 (0.881) 7.120 (0.805) 3.280 (0.757)
0.5 7.060 (0.910) 3.590 (0.744) 2.860 (0.707) 2.370 (0.636)

1 16 0.8 11.790 (0.902) 7.360 (0.830) 4.710 (0.764) 3.130 (0.718)
0.95 27.000 (0.882) 18.540 (0.851) 10.410 (0.791) 4.680 (0.733)
0.5 6.450 (0.875) 3.830 (0.735) 2.950 (0.670) 2.480 (0.619)

32 0.8 11.750 (0.861) 8.320 (0.835) 5.060 (0.745) 3.330 (0.687)
0.95 32.250 (0.857) 22.780 (0.824) 13.480 (0.796) 6.530 (0.712)

0.5 4.460 (0.940) 2.646 (0.812) 2.360 (0.781) 1.780 (0.711)
8 0.8 7.260 (0.933) 4.460 (0.858) 3.320 (0.815) 1.990 (0.780)

0.95 10.080 (0.899) 6.040 (0.873) 4.570 (0.847) 2.890 (0.770)
0.5 4.870 (0.878) 3.190 (0.794) 2.870 (0.742) 2.090 (0.660)

1.5 16 0.8 8.300 (0.879) 6.280 (0.844) 4.300 (0.817) 2.760 (0.734)
0.95 16.760 (0.863) 12.540 (0.845) 7.770 (0.815) 4.150 (0.752)
0.5 5.030 (0.855) 3.730 (0.777) 2.900 (0.710) 2.240 (0.633)

32 0.8 9.120 (0.845) 6.910 (0.820) 4.750 (0.801) 2.920 (0.710)
0.95 21.690 (0.833) 15.800 (0.819) 10.270 (0.792) 5.300 (0.733)

0.5 2.630 (0.906) 2.200 (0.878) 2.050 (0.840) 1.440 (0.784)
8 0.8 3.180 (0.924) 2.350 (0.894) 2.180 (0.871) 1.430 (0.808)

0.95 3.600 (0.890) 2.910 (0.877) 2.120 (0.867) 1.480 (0.779)
0.5 3.410 (0.855) 2.940 (0.844) 2.370 (0.790) 1.340 (0.727)

2.5 16 0.8 3.790 (0.874) 3.480 (0.854) 2.650 (0.831) 1.830 (0.777)
0.95 5.320 (0.859) 4.800 (0.849) 3.460 (0.822) 1.860 (0.761)
0.5 3.590 (0.829) 3.100 (0.808) 2.670 (0.762) 1.340 (0.683)

32 0.8 5.090 (0.840) 3.760 (0.824) 3.040 (0.808) 2.010 (0.757)
0.95 7.230 (0.827) 5.940 (0.820) 4.310 (0.801) 2.070 (0.740)

0.5 1.110 (0.904) 1.120 (0.904) 1.090 (0.900) 1.090 (0.885)
8 0.8 1.000 (0.857) 1.030 (0.839) 1.020 (0.795) 1.000 (0.743)

0.95 1.040 (0.740) 1.020 (0.697) 1.000 (0.621) 1.000 (0.460)
0.5 1.180 (0.848) 1.150 (0.841) 1.120 (0.867) 1.070 (0.842)

5 16 0.8 1.090 (0.778) 1.030 (0.768) 1.000 (0.739) 1.000 (0.685)
0.95 1.000 (0.675) 1.000 (0.633) 1.000 (0.560) 1.000 (0.386)
0.5 1.130 (0.806) 1.180 (0.796) 1.210 (0.808) 1.140 (0.798)

32 0.8 1.050 (0.732) 1.030 (0.721) 1.000 (0.708) 1.000 (0.662)
0.95 1.000 (0.604) 1.000 (0.557) 1.000 (0.474) 1.000 (0.312)
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Table 3.12: Condition-specific success rates (SR) with sub-optimal heuristic information.

Iteration-Best Global-Best

β K ρ α = 1 α = 1.5 α = 2.5 α = 5 α = 1 α = 1.5 α = 2.5 α = 5

0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.95 0.000 0.000 0.000 0.000 0.020 0.112 0.000 0.000
0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 16 0.8 0.000 0.020 0.000 0.000 0.000 0.030 0.000 0.000
0.95 0.000 0.030 0.000 0.000 0.110 0.160 0.000 0.000
0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

32 0.8 0.110 0.020 0.000 0.000 0.000 0.050 0.000 0.000
0.95 0.000 0.110 0.000 0.000 0.180 0.310 0.020 0.000

0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.8 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.000

0.95 0.000 0.000 0.000 0.000 0.000 0.030 0.000 0.000
0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1.5 16 0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.95 0.000 0.000 0.000 0.000 0.040 0.110 0.000 0.000
0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

32 0.8 0.000 0.020 0.000 0.000 0.010 0.010 0.000 0.000
0.95 0.000 0.050 0.000 0.000 0.110 0.190 0.000 0.000

0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.95 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2.5 16 0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.95 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

32 0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.95 0.000 0.000 0.000 0.000 0.000 0.020 0.000 0.000

0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.95 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

5 16 0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.95 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

32 0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.95 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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one exception is the condition with α = 2.5, β = 1, ρ = .95, K = 32, and the global-best deposit

rule, which found the optimum twice in 100 replications.

Among the remaining 36 conditions with α ∈ {1, 1.5} and β ∈ {1, 1.5}, using the iteration-best

deposit rule showed slightly lower success rates (Cohen’s d = −0.198, 95% CI = [−0.245;−0.152]).

Additionally, conditions with α = 1.5 performed marginally better than those with α = 1 (Co-

hen’s d = 0.12, 95% CI = [0.074; 0.167]). Across all conditions the best performance (SR =

0.31) was achieved with α = 1.5, β = 1, ρ = .95, K = 32, and the global-best deposit rule.

Relative Deviation (RD) Across all conditions, the mean RD = -0.074 meaning that on

average, the final solution performed approximately 7% worse than the optimal solution. Keep

in mind that in all of the conditions discussed in this section, the heuristic information favored

the median solution, which performs to an RD = -0.238.

Figure 3.19 shows the boxplots of the RD for all conditions with sub-optimal heuristics.

Higher values of β are accompanied by worse performance with regards to RD, as visualized

by the downward shift in the different panel-rows of Figure 3.19. Numerically, this can be

shown via the RD means for the different levels of β, with RDβ=1 = −0.044, RDβ=1.5 = −0.052,

RDβ=2.5 = −0.073, and RDβ=5 = −0.126. Overall, the levels of β and all its interactions account

for ∆R2 = 0.524 (95% CI = [0.515; 0.534]) in the total variation of RD among conditions with

sub-optimal heuristics.

The second most prominent determinant of RD in these conditions is the non-linearity coef-

ficient α, which accounts for ∆R2 = 0.176 (95% CI = [0.169; 0.182]) with its main-effect and all

its interactions. In line with previous findings, higher values of α again lead to worse values in

RD. The evaporation coefficient ρ also showed consistent effects with larger values of ρ leading to

solutions closer to sopt in quality (∆R2 = 0.123, 95% CI = [0.117; 0.129]). Similarly, an increase

in the number of ants lead to RD values closer to 0 (∆R2 = 0.076, 95% CI = [0.07; 0.081]).

Of all manipulated factors the deposit rule had the least impact on RD (∆R2 = 0.027,

95% CI = [0.023; 0.032]) and also leads to the least clear results. In approximately 81% of all

paired conditions the global-best deposit rule outperformed the iteration-best. Of the remaining

28 conditions, only 6 resulted in a difference in RD of more than .01. All of these conditions

used α = 1 and ρ = .5.

Table 3.13 shows the four best performing conditions with respect to average and worst-case

RD, which differ only in deposit rule and α being either 1 or 1.5. The worst solution constructed

in these conditions resulted in f(s) = 1.895, which stems from a shortened scale with crel =

0.925 and a measurement model with good fit (RMSEA = 0.029, SRMR = 0.027, CFI = 0.969).

When computing RD relative to the median solution which served as the foundation of

the heuristic information used in these conditions, the average RDmd = 0.216, indicating an

average performance of the final solutions that was considerably better than the heuristically

favored solution. Over all 28736 replications which resulted in admissible solutions, only 1



120

1 1.5 2.5 5

1
1.5

2.5
5

0.5 0.8 0.95 0.5 0.8 0.95 0.5 0.8 0.95 0.5 0.8 0.95

−0.2

−0.1

0.0

−0.2

−0.1

0.0

−0.2

−0.1

0.0

−0.2

−0.1

0.0

ρ

R
D

K

8

16

32

Iteration Best

1 1.5 2.5 5

1
1.5

2.5
5

0.5 0.8 0.95 0.5 0.8 0.95 0.5 0.8 0.95 0.5 0.8 0.95

−0.2

−0.1

0.0

−0.2

−0.1

0.0

−0.2

−0.1

0.0

−0.2

−0.1

0.0

ρ

R
D

K

8

16

32

Global Best

Figure 3.19: Boxplots of the relative deviation (RD) of the final solutions from the optimal
solution. Panels represent different values for α in columns and β in rows.
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Table 3.13: Average and worst-case RD for the four best performing conditions. The ranks
pertain to the total of all 288 conditions without heuristic information.

Average Worst-Case
Deposit α β K ρ RD Rank RD Rank SR AR

ib 1 1 32 0.95 -0.008 4 -0.013 1 0.000 21876.480
ib 1.5 1 32 0.95 -0.008 3 -0.021 2 0.000 23840.320
gb 1 1 32 0.95 -0.007 2 -0.027 3 0.180 8931.200
gb 1.5 1 32 0.95 -0.007 1 -0.027 4 0.110 9680.640

showed an RDmd < 0. All remaining replications resulted in solutions that outperformed smd.

As described in Section 3.5, the RDmd is simply a linear transformation of the RD with relation

to optimal solution and therefore the comparison of different conditions with regards to RDmd

is not reported here.

Selection Consistency (SC) For the conditions implementing the sub-optimal heuristics the

average SC = 0.667, indicating that roughly 12 (out of a total of 18) items are shared between

the final solutions and the median solution. As pointed out in Section 3.4, the optimal and

the median solution share 7 common items, resulting in an SC = 0.389. Figure 3.20 shows the

boxplots of the SC for all conditions implementing the sub-optimal heuristics.

The non-linearity coefficient β was, by far, the most important determinant of selection

consistency, with its main effect and all its interactions accounting for a ∆R2 = 0.731 (95% CI =

[0.724; 0.739]). Generally, higher values of β lead to solutions that resemble the heuristically

favored solution more, with the average SC for conditions with β = 5 at 0.871. Overall, the

highest condition-specific average SC was 0.908, encountered in the condition with α = 2.5, β =

2.5, ρ = 0.5, K = 8, and the gb deposit rule. It should also be noted, that not a single replication

selected exactly the 16 items that were preferred by the heuristics, nor was there any replication

which selected none of those 16 items.

The remaining four experimental factors had small effects on the SC. The non-linearity

coefficient α achieved a ∆R2 = 0.057 (95% CI = [0.051; 0.062]), while ρ (∆R2 = 0.044, 95% CI =

[0.038; 0.049]), K (∆R2 = 0.036, 95% CI = [0.031; 0.042]), and the deposit rule (∆R2 = 0.043,

95% CI = [0.038; 0.049]) all achieve ∆R2 values below .05. Generally, fewer ants per colony

lead to higher consistency. For α and ρ lower values lead to solutions more consistent with the

heuristics. Across all conditions, the iteration-best deposit rule leads to slightly higher selection

consistency.

Absolute Runtime (AR) On average it took 2636.756 model estimations when using sub-

optimal heuristic information, before reaching either of the abort criteria. The longest run

required 50528 total CFAs to be estimated (utilizing α = 1, β = 1, ρ = 0.95, K = 32, and the ib
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Figure 3.20: Boxplots of the selection consistency (SC) between the final solutions and the
heuristically favored median solution. Panels represent different values for α in columns and β
in rows. The solid line represents the SC of the optimal solution.
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deposit rule). Though this took 195.878 minutes to finish during the evaluation study, it should

be noted that this represents running roughly 0.000015% of all possible combinations.

Figure 3.21 shows the boxplots of the absolute runtime across all conditions. Conditions

utilizing the iteration best deposit required more than twice the number of CFA estimations

before reaching an abort criterion (ARib = 3706.689, ARgb = 1567.27, Cohen’s d = 0.541,

95% CI = [0.517; 0.564]). Despite this, all other factors, except for β, showed larger effects

on AR when using ∆R2 as an effect size estimate. Chief among them was the effect of the

evaporation coefficient ρ (∆R2 = 0.423, 95% CI = [0.414; 0.432]), for which larger values lead

to much longer runtimes - with the average runtime for conditions with ρ = .95 being almost

tenfold of those with ρ = .5. For the non-linearity coefficient α, larger values lead to shorter

AR (∆R2 = 0.34, 95% CI = [0.331; 0.348]), while more ants per colony lead to longer absolute

runtimes (∆R2 = 0.277, 95% CI = [0.269; 0.285]).

Overall, 925 (3.212%) replications required the minimum runtime determined via Equation

(3.9), out of which 749 (80.973%) utilized either β = 5 or β = 2.5.

Relative Exploration (RE) Across all conditions the average RE = 0.321, indicating that

less than a third of all generated solutions were unique and viable. Using ∆R2 of the factors and

all their respective interactions as the effect size measure, both non-linearity coefficients were

the critical elements in determining RE values (∆R2
α = 0.564, 95% CI = [0.555; 0.573], ∆R2

β =

0.423, 95% CI = [0.415; 0.431]). For both coefficients, higher values lead to considerably less

exploration. The importance of α for RE is indicated by the fact that the 47 conditions with

the highest values of RE are all conditions with α = 1.

Higher values of the evaporation coefficient ρ generally lead to less exploration, though Figure

3.22 indicates that there may be no such trend in the best performing conditions (i.e. when

α = 1 and β ∈ {1, 1.5}) using the global-deposit rules. Despite the fact that, in terms of peak

performance, the iteration-best outperformed the global-best deposit rule (i.e. the 10 conditions

with the highest RE all utilize ib), on average the global-best deposit rule results in slightly more

exploration (REib = 0.288, REgb = 0.354, Cohen’s d = −0.306, 95% CI = [−0.329;−0.283]).

The findings regarding the effects of K on relative exploration are mixed. Across all con-

ditions the effect is negligible (∆R2 = 0.007, 95% CI = [0.004; 0.009]). However, there was a

small tendency for larger values of K to lead to less exploration, when using the global-best

deposit rule (REK=8 = 0.376, REK=16 = 0.353, REK=32 = 0.334), while the RE values were

unsystematically varying for conditions with the iteration-best deposit rule.

The highest relative exploration achieved was RE = 0.822 in the condition with α = 1, β = 1,

ρ = 0.5, K = 8 and utilizing the iteration-best deposit rule. The six conditions with the largest

RE values all used α = 1, β = 1, K ∈ {8, 16}, and the iteration best deposit rule, though it

should be noted that 29 conditions showed RE > .7 utilizing any number of ants per colony and

any evaporation coefficient.
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Figure 3.21: Boxplots of the absolute runtime (AR) for all conditions with sub-optimal heuris-
tics. Panels represent different values for α in columns and β in rows.
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Figure 3.22: Boxplots of the relative exploration (RE) for all conditions with sub-optimal
heuristics. Panels represent different values for α in columns and β in rows.
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Table 3.14: Standard deviations of the current sgb for different settings of α and β.

Deposit α β = 1 β = 1.5 β = 2.5 β = 5 MSD

1 0.042 0.043 0.038 0.038 0.040
1.5 0.056 0.053 0.048 0.042 0.050

ib 2.5 0.062 0.054 0.040 0.044 0.050
5 0.074 0.064 0.046 0.042 0.057

MSD 0.059 0.054 0.043 0.041 0.049

1 0.065 0.062 0.057 0.049 0.058
1.5 0.065 0.062 0.060 0.054 0.060

gb 2.5 0.067 0.063 0.058 0.052 0.060
5 0.070 0.064 0.057 0.050 0.060

MSD 0.067 0.063 0.058 0.051 0.060

Relative Deviation over Time (RD[t]) Figures 3.23 through 3.26 show the RD(t) of all

replications that terminated normally. Be aware, that due to the drastic differences in absolute

runtime between some of the conditions, the figures utilize different x-Axes and all are log-scaled.

Figures 3.23 and 3.24 depict the RD(t) of the conditions utilizing the iteration-best deposit

rule. Among these, higher values of β lead to a less steep trajectory of the relative deviation

over time. This indicates current best solutions that are more similar in terms of the quality

function and are generally closer to the solution favored in the heuristic information (as shown

in the previous section). Larger values of α lead to less iterative updates of the currently best

solution - and therefore to quicker convergence. This effect does not seem as pronounced in those

conditions using the global-best deposit rule (depicted in Figures 3.25 and 3.26).

On average, 73.51 iterations were required until encountering a final solution, though this

varied widely across conditions (range: [1;1323]). The final solution was replicated 71.298 times,

on average, but again this number was vastly different across conditions with a range of [3;256].

It is also noteworthy, that increases in β lead to smaller variation in the quality of the current

solutions across all conditions, while (at least when using the ib deposit rule) the opposite is

true for larger values of α. Table 3.14 shows the standard deviations of the RD(t) for different

values of α and β. As indicated by the marginal means, the SD was higher across all conditions

utilizing the gb deposit rule.

Relative Exploration over Time (RE[t]) Figures 3.27 and 3.28 depict the LOWESS lines

for the RE(t) across the 100 replications per condition. As was the case for the conditions

without heuristic information, there was an initial burn-in phase for most conditions during which

the RE(t) increases due to the higher percentage of improper solutions during early iterations.

However, all conditions with β = 5 do not show this burn-in, but instead exhibit constantly

decreasing RE(t). The same can be said about most conditions utilizing the iteration-best
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Figure 3.23: The relative deviation from f(sopt) as a function of time (RD[t]) for the conditions using the iteration-best deposit
rule and β = 1 or β = 1.5. Yellow lines represent the optimization history for each single replication, blue lines the LOESS-smoothed
averages. The x-axis is log-scaled. The columns of each panel show different values of ρ, the rows different values of K.
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Figure 3.24: The relative deviation from f(sopt) as a function of time (RD[t]) for the conditions using the iteration-best deposit rule
and α = 2.5 or α = 5. Yellow lines represent the optimization history for each single replication, blue lines the LOESS-smoothed
averages. The x-axis is log-scaled. The columns of each panel show different values of ρ, the rows different values of K.
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Figure 3.25: The relative deviation from f(sopt) as a function of time (RD[t]) for the conditions using the global-best deposit rule and
β = 1 or β = 1.5. Yellow lines represent the optimization history for each single replication, blue lines the LOESS-smoothed averages.
The x-axis is log-scaled. The columns of each panel show different values of ρ, the rows different values of K.
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Figure 3.26: The relative deviation from f(sopt) as a function of time (RD[t]) for the conditions using the global-best deposit rule and
β = 2.5 or β = 5. Yellow lines represent the optimization history for each single replication, blue lines the LOESS-smoothed averages.
The x-axis is log-scaled. The columns of each panel show different values of ρ, the rows different values of K.
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Figure 3.27: The LOWESS lines of the relative exploration over time for conditions with
iteration-best deposit rule. Different values of ρ are in columns, different values of β in rows, and
different values of α are in different panels.
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Figure 3.28: The LOWESS lines of the relative exploration over time for conditions with global-
best deposit rule. Different values of ρ are in columns, different values of β in rows, and different
values of α are in different panels.
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deposit rule and β = 2.5, though at least four conditions in Figure 3.27 with this combination of

parameters manifests some burn-in iterations.

Conditions with the ib deposit rule and β = 5 did not display much exploration after roughly

20% of iterations. In conditions utilizing the global-best deposit rule, this lack of exploration

was also noticeable though far less pronounced. Irrespective of the deposit rule, this effect was

amplified by larger values of ρ. When α = 1 relative exploration is somewhat constant over time

for conditions with β ∈ {1, 1.5} and the iteration-best deposit rule and for those with β 6= 5 and

the global-best deposit rule. Overall, though RE was higher on average for conditions with ib

deposit as shown above, RE(t) was more stable for conditions which use gb deposit.

Tables 3.15 and 3.16 show the average number required to reach the 90th percentile of RE(t).

Results for conditions with β = 5 again indicate steadily declining RE(t) with the 90th percentile

being reached after an average of 1.044 iterations when employing the ib deposit rule and after

1.101 iterations for conditions with the gb deposit rule. Additionally, the 90th percentile of RE(t)

for conditions with β = 5 and the ib deposit rule never exceeded 0.282.

Overall, conditions with α = 1 and smaller values of K surmounted the burn-in phase quickly

and approached very high levels of RE(t) - going as far as constructing 100% unique and viable

solutions, when using the ib, and up to 96.2% when using the gb deposit rule. As pointed

out with regards to the figures, peak performance of the conditions utilizing the iteration-best

deposit rule was better (Cohen’s d = 0.44, 95% CI = [0.463; 0.417]) while there does not seem to

be a meaningful difference with regards to the time required to overcome the burn-in (Cohen’s

d = 0.069, 95% CI = [0.092; 0.045]). However, specifically with regards to those conditions that

attained very good RE(t) 90th percentiles, i.e. conditions with α = 1 and β ∈ {1, 1.5}, the

global-best deposit rule seemed to attain comparable performance in less iterations.

Summary Across conditions with sub-optimal heuristics, higher values of β lead to results more

in line with the solution provided by heuristic information, at the cost of the overall solution

quality. With regards to α, higher values decreased the overall quality of the final solution

without making it more consistent with the heuristic information. However, higher values of

α lead to shorter runtimes - at the expense of less exploration. The non-linearity coefficient

β had much less influence on runtimes, but decreased overall exploration nonetheless. With

regards to the evaporation coefficient ρ results are somewhat unclear. While lower values of

ρ lead to lower solution quality in many cases, they also lead to higher average exploration in

shorter runtimes. The selection of a deposit rule can have dramatic effects on runtimes and

solution quality, depending on the settings of α and β. Generally, the gb deposit rule seems

more resistant to heuristic information - leading to higher solution quality and lower selection

consistency when using the same settings for the non-linearity coefficients.
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Table 3.15: Average number of iterations needed for the burn-in phase (Tbi) per condition with
the average 90th percentile of RE in parentheses.

β K ρ α = 1 α = 1.5 α = 2.5 α = 5

0.5 10.684 (1.000) 4.182 (0.799) 3.175 (0.668) 1.907 (0.074)
8 0.8 19.410 (1.000) 7.265 (0.815) 5.566 (0.699) 2.860 (0.384)

0.95 47.653 (0.996) 5.040 (0.680) 9.828 (0.739) 5.677 (0.611)
0.5 11.840 (0.953) 4.580 (0.769) 3.110 (0.667) 2.400 (0.120)

1 16 0.8 19.070 (0.928) 9.120 (0.789) 6.140 (0.758) 3.740 (0.638)
0.95 55.320 (0.934) 18.370 (0.714) 14.220 (0.714) 8.780 (0.716)
0.5 10.670 (0.907) 4.760 (0.712) 3.350 (0.638) 2.540 (0.266)

32 0.8 17.810 (0.892) 9.690 (0.784) 6.400 (0.711) 3.740 (0.676)
0.95 56.480 (0.886) 26.520 (0.751) 17.300 (0.717) 10.060 (0.715)

0.5 11.000 (0.998) 3.837 (0.788) 2.768 (0.558) 1.980 (0.070)
8 0.8 11.070 (0.900) 4.449 (0.700) 4.340 (0.563) 2.571 (0.350)

0.95 18.450 (0.827) 2.414 (0.509) 4.788 (0.569) 3.630 (0.461)
0.5 9.900 (0.930) 4.050 (0.725) 3.100 (0.686) 2.350 (0.109)

1.5 16 0.8 12.230 (0.844) 6.170 (0.701) 5.190 (0.670) 3.380 (0.509)
0.95 27.060 (0.800) 4.390 (0.558) 8.650 (0.645) 5.940 (0.556)
0.5 10.740 (0.892) 4.150 (0.684) 3.240 (0.632) 2.610 (0.231)

32 0.8 13.880 (0.834) 7.370 (0.691) 5.530 (0.710) 3.690 (0.678)
0.95 36.440 (0.780) 11.410 (0.604) 10.710 (0.608) 8.130 (0.674)

0.5 3.398 (0.753) 2.449 (0.679) 2.560 (0.397) 1.909 (0.054)
8 0.8 1.680 (0.558) 1.444 (0.418) 2.390 (0.200) 2.172 (0.204)

0.95 1.770 (0.549) 1.459 (0.471) 1.200 (0.367) 1.242 (0.079)
0.5 4.510 (0.760) 2.990 (0.679) 3.020 (0.704) 2.280 (0.195)

2.5 16 0.8 2.230 (0.530) 1.950 (0.504) 3.600 (0.382) 2.520 (0.239)
0.95 1.890 (0.484) 1.130 (0.273) 1.770 (0.385) 1.990 (0.207)
0.5 6.290 (0.760) 3.350 (0.655) 2.930 (0.669) 2.360 (0.179)

32 0.8 2.750 (0.529) 2.740 (0.526) 3.900 (0.593) 3.130 (0.579)
0.95 2.150 (0.461) 1.030 (0.293) 3.350 (0.448) 2.690 (0.372)

0.5 1.000 (0.149) 1.090 (0.149) 1.170 (0.038) 1.230 (0.035)
8 0.8 1.000 (0.125) 1.000 (0.111) 1.000 (0.014) 1.010 (0.018)

0.95 1.000 (0.226) 1.000 (0.130) 1.000 (0.030) 1.000 (0.003)
0.5 1.040 (0.137) 1.080 (0.158) 1.170 (0.088) 1.250 (0.053)

5 16 0.8 1.010 (0.095) 1.000 (0.072) 1.000 (0.025) 1.010 (0.043)
0.95 1.000 (0.119) 1.000 (0.079) 1.000 (0.054) 1.000 (0.016)
0.5 1.030 (0.184) 1.040 (0.282) 1.220 (0.196) 1.210 (0.086)

32 0.8 1.000 (0.067) 1.010 (0.044) 1.010 (0.018) 1.020 (0.029)
0.95 1.000 (0.086) 1.000 (0.047) 1.000 (0.026) 1.000 (0.009)
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Table 3.16: Average number of iterations needed for the burn-in phase (Tbi) per condition with
the average 90th percentile of RE in parentheses.

β K ρ α = 1 α = 1.5 α = 2.5 α = 5

0.5 6.414 (0.935) 4.280 (0.775) 2.800 (0.683) 2.100 (0.623)
8 0.8 13.650 (0.947) 6.469 (0.808) 4.229 (0.712) 2.375 (0.674)

0.95 31.430 (0.954) 10.847 (0.789) 6.545 (0.701) 4.384 (0.701)
0.5 8.250 (0.902) 4.440 (0.730) 3.200 (0.675) 2.500 (0.580)

1 16 0.8 15.410 (0.909) 7.730 (0.751) 4.730 (0.672) 3.210 (0.646)
0.95 46.430 (0.913) 17.860 (0.760) 10.910 (0.689) 5.900 (0.694)
0.5 9.890 (0.881) 4.340 (0.694) 3.010 (0.603) 2.770 (0.547)

32 0.8 17.150 (0.881) 7.770 (0.720) 5.170 (0.657) 3.660 (0.654)
0.95 50.830 (0.882) 22.200 (0.737) 12.960 (0.669) 7.670 (0.681)

0.5 6.612 (0.922) 3.700 (0.774) 2.830 (0.686) 2.030 (0.641)
8 0.8 13.979 (0.960) 6.270 (0.797) 4.061 (0.741) 2.960 (0.680)

0.95 30.860 (0.962) 9.111 (0.759) 6.510 (0.675) 4.220 (0.719)
0.5 7.370 (0.884) 4.040 (0.712) 3.020 (0.661) 2.570 (0.589)

1.5 16 0.8 15.220 (0.908) 6.540 (0.727) 4.940 (0.716) 3.110 (0.683)
0.95 40.890 (0.893) 12.430 (0.704) 8.240 (0.630) 5.690 (0.677)
0.5 9.060 (0.869) 4.090 (0.665) 2.950 (0.610) 2.710 (0.550)

32 0.8 16.900 (0.877) 6.590 (0.678) 4.830 (0.649) 3.330 (0.651)
0.95 45.240 (0.852) 18.030 (0.710) 10.340 (0.638) 6.500 (0.647)

0.5 5.210 (0.899) 2.930 (0.757) 2.770 (0.743) 2.061 (0.671)
8 0.8 8.620 (0.904) 3.929 (0.738) 3.606 (0.732) 2.290 (0.704)

0.95 15.747 (0.885) 3.890 (0.677) 4.660 (0.676) 3.030 (0.690)
0.5 5.880 (0.847) 3.330 (0.693) 2.850 (0.677) 2.420 (0.608)

2.5 16 0.8 9.620 (0.828) 4.430 (0.679) 4.180 (0.702) 2.890 (0.679)
0.95 19.530 (0.813) 5.570 (0.634) 4.760 (0.568) 3.980 (0.653)
0.5 6.950 (0.819) 3.320 (0.661) 2.830 (0.647) 2.660 (0.582)

32 0.8 11.910 (0.803) 4.370 (0.643) 3.710 (0.641) 2.890 (0.640)
0.95 24.530 (0.773) 5.370 (0.585) 5.750 (0.562) 4.170 (0.622)

0.5 1.270 (0.715) 1.220 (0.692) 1.300 (0.699) 1.210 (0.729)
8 0.8 1.160 (0.550) 1.080 (0.527) 1.050 (0.562) 1.060 (0.565)

0.95 1.030 (0.411) 1.010 (0.342) 1.010 (0.362) 1.000 (0.339)
0.5 1.300 (0.593) 1.170 (0.573) 1.180 (0.615) 1.350 (0.654)

5 16 0.8 1.080 (0.472) 1.060 (0.432) 1.030 (0.462) 1.050 (0.499)
0.95 1.000 (0.314) 1.000 (0.261) 1.010 (0.243) 1.000 (0.283)
0.5 1.240 (0.535) 1.230 (0.535) 1.210 (0.575) 1.250 (0.604)

32 0.8 1.020 (0.402) 1.000 (0.310) 1.020 (0.407) 1.040 (0.467)
0.95 1.000 (0.234) 1.000 (0.181) 1.000 (0.180) 1.000 (0.210)
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3.8 Parameter Schedules

The results shown in Section 3.7 are used in this section to elicit parameter schedules which

appear promising in terms of performance and should therefore be investigated in more detail.

As discussed in Section 3.1.8, parameter schedules can often enhance the speed of ACO algorithms

immensely, because they allow for more specific behavior during different phases of the search

procedure. Section 3.7 revealed that early stages of the search tend to be characterized by a

burn-in phase which is needed to separate inadmissible solutions from those contained within the

set S∗. During this stage it seems advisable to use parameter settings which reach high levels of

RE(t) quickly. In contrast, settings which do not converge too fast and are instead characterized

by higher RD(t) are desirable during the broad search for good solutions in S∗, because many

solutions may be viable, albeit not close to optimal. After close to optimal solutions are identified,

another shift in parameters may be advisable to ensure a more localized exploration and quick

evaporation of pheromones on items leading to worse solutions.

Thus, this section will aim to identify promising combinations of parameters, as derived from

results with constant parameter settings, and schedule them accordingly. In contrast to the

evaluation of constant parameters settings, this section will not include settings with optimal

heuristic information. In the previous evaluation these conditions were included to investigate

whether the approach presented in this thesis can recover optimal solutions sufficiently often

when given the optimal conditions to run in. Because it is the aim of this part of the parameter

evaluation to culminate in explicit recommendations for applications of this approach, it is not

necessary to consider situations in which optimal solutions are known. Instead the focus will be

on situations in which either no or sub-optimal heuristics are provided.

A general comparison, included in both evaluations irrespective of whether heuristic infor-

mation is provided, will be performed on the type of parameter scheduling. As discussed in

Section 3.1.8 different types of parameter scheduling can lead to different search behavior. The

first type utilized in this evaluation is a rigid parameter schedule (rps) which provides changes

in parameters after a set number of iterations has passed. The second type is a somewhat more

flexible parameter scheduling (fps) scheme, which resets its current phase every time a new sgb

is found.

For example, if one were to set α = 2.5 for the first 10 iterations, to α = 1.5 for the

subsequent 10, and then α = 1 for all following iterations, the rigid schedule would result in

exactly 10 iterations being performed with α1 = 2.5, then exactly ten iterations with α2 and all

subsequent iterations with α2 = 1. In contrast, the flexible parameter schedule uses the number

of iterations since the last sgb was found (denoted tgb) to reinitialize the current phase. This

way, if no sgb were found in the first 10 iterations, α2 = 1.5 would be initialized as the second

phase. If a new sgb were then found at t = 14, tgb = 1 would be set and the number of iterations

to reach the switch to α3 would be ten (tα3
− tα2

= 20− 10 = 10) from this point, assuming that
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no new sgb is found during these ten iterations.

While previous studies showed that schedules akin to the rigid parameter schedule tend to

perform better than more flexible approaches (see Section 3.1.8 for an overview), they are harder

to define for each application. Setting schedules requires knowledge about problem size and its

influence on the behavior of the search. Especially in item selection this is extremely speculative

before any search has been initialized, because the number of viable solutions has a major impact

on the performance of the search. With this insecurity, it may be easier to define fps than rps

in an application. Because of this expected benefit of the fps, their comparison is of relevance

to the recommendations for application of the stuart approach.

3.8.1 Scheduled Parameters with No Heuristic Information

Section 3.7.1 showed some clear general trends in the effects of certain parameters on solution

quality and search speed in the construction of short-scales: (a) values of α > 1 are not recom-

mendable, (b) the iteration-best deposit rule generally outperforms the global-best deposit rule

in terms of peak performance, and (c) lower values of ρ and K lead to a quicker search.

As pointed out with regards to α, values other than 1 generally lead to very fast convergence

at the expense of reduced exploration and lower quality of the final solution. While the burn-in

phase regarding RE(t) is generally shorter for conditions with α > 1, the peak RE(t) is unable

to reach the values found in conditions with α = 1. Results regarding the RD(t) indicate no

advantage of using settings other than α = 1. Thus, in this evaluation only conditions with α = 1

are considered.

In terms of solution quality, utilizing the ib deposit rule generally proved better than using

its gb counterpart. Additionally, the iteration-best deposit results in higher and more consistent

RE than the global-best when using α = 1. The only tangible benefit of using the gb deposit

rule in situations without heuristic information is the decrease in AR. However, because this

decrease in runtime comes at a cost to solution quality and exploration, the ib deposit rule is

considered superior when used in the absence of heuristic information. Therefore, this evaluation

will investigate only conditions utilizing the ib deposit rule.

Results concerning the number of ants per colony (K) and the evaporation coefficient ρ

revealed better peak performance in conditions in which both are high. However, results regarding

the timed performance criteria RD(t) and RE(t) revealed conditions with low vales in K and ρ to

surmount the burn-in phase quickly and then result in very high relative exploration. Therefore,

beginning the algorithm with low settings of K and ρ seems a promising approach to reach a

phase of exploration in S∗ quickly and reliably. K and ρ are scheduled to increase incrementally

from 8 to 16 to 32 and from .5 to .8 to .95, respectively, in this evaluation. Because the final

solutions show better values for RD when K and ρ are large, these parameter settings should be

used during the middle exploration phase of the search.
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Table 3.17: Parameter schedules for the evaluation with no heuristic information.

Parameter Time Condition Values Schedule
rps fps

ρ

start
early (.5,.8,.95) (0,15,30) (0,15,30)
late (.5,.8,.95) (0,30,60) (0,30,60)
none .95 - -

end
early (.8,.5) (150,200) (75,150)
late (.8,.95) (300,400) (100,200)
none - - -

K

start
early (8,16,32) (0,15,30) (0,15,30)
late (8,16,32) (0,30,60) (0,30,60)
none 32 - -

end
early (16,8) (150,200) (75,150)
late (16,8) (300,400) (100,200)
none - - -

As shown in Table 3.8 conditions utilizing the ib deposit rule and α = 1 tend to require an

average of about 12 to 20 iterations to surmount the burn-in phase. Thus, in a conservative con-

dition, the two early parameter switches are scheduled for 15 and 30 iterations after initialization.

In a more liberal approach these switches are scheduled for t = 30 and t = 60. In addition to

these schedules, a constant condition is added which utilizes the largest values, i.e. K = 32 and

ρ = .95, respectively. The schedules for the number of ants and the evaporation coefficient are

varied independently, resulting in a fully crossed design. The same settings are used, irrespective

of the scheduling type.

As pointed out with regards to the RD(t), conditions with α = 1 and ρ = .95 did not

reach the abort criterion defined by the pheromone limits, but instead terminated only after the

maximum number of iterations was reached. This indicates an unnecessarily long runtime due

to a large number of iterations with no benefit to sgb during the late stages of the search. To

investigate whether convergence can be sped up, this evaluation includes conditions in which

the number of ants and the evaporation coefficient are reduced during the later stages of the

algorithm. These reductions are the mirrored opposite of the increases during the early stages

(i.e. in sequence k = [32, 16, 8] and ρ = [.95, .8, .5]). For conditions with the rps these will occur

at t = 300 and t = 400 in one condition and at t = 150 and t = 200 in another. These values

are chosen because, in conditions with α = 1, the final sgb was found after an average of roughly

270 iterations. To allow an adequate amount of time for near optimal solutions to be found,

the conservative condition exceeds this average slightly before reducing ρ and K to facilitate

convergence. The more liberal condition is defined under the assumption that the conditions

with early shifts in the parameters will find near optimal solutions quicker than did conditions

with constant parameter settings. Again, these two levels are complemented by a condition in
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which no scheduling is done during this phase of the search. In cases with the fps, the number

of iterations is set to be t = (100, 200) in a conservative, and t = (75, 150) in a more liberal

condition. These values are chosen so that they allow for an adequate number of replications of

the final sgb before enforcing convergence.

In a fully crossed design this results in 162 conditions. Table 3.17 provides an overview of

the conditions used in this evaluation.

3.8.2 Results with No Heuristic Information

Errors Over all conditions including no heuristic information and scheduled parameter settings,

129 of 16200 replications (0.796%) resulted in errors. All of these errors were due to no viable

solution being found in the first iteration, which occurred almost equally often in conditions with

early or late beginning schedules for the number of ants (57 vs. 72). Both of these conditions

began with K = 8.

Success Rate (SR) On average, the SR of conditions with no heuristic information and

the scheduled parameters settings was 0.13. Table 3.18 provides more details on the condition

specific SR. Over all conditions, differences in the ending schedule of the number of ants K

had the greatest impact on SR (∆R2 = 0.034, 95% CI = [0.027; 0.04]), while no other influence

showed R2 > 0.02. Most notably, conditions using an early reduction of ants had lower SR

than the other two conditions at SR = 0.069. Across all settings for K and ρ there were only

negligible differences in SR between the scheduling types (Cohen’s d = −0.124, 95% CI =

[−0.154;−0.093]).

Relative Deviation (RD) On average, the conditions under investigation in this section

achieved an RD = −0.005, meaning that the average performance of the final solutions con-

structed here was just 0.527% worse than the optimum. Figure 3.29 shows the RD of the

conditions in more detail.

Regarding the scheduling of K, Figure 3.29 shows that the end schedules performed worse,

the quicker the number of ants was reduced (RDearly = −6.29 × 10−3, RDlate = −4.93 × 10−3,

RDnone = −4.57 × 10−3). This constitutes the largest determinant of RD in this evaluation

(∆R2 = 0.03, 95% CI = [0.02; 0.04]). The scheduling of K at the beginning of the algorithm had

the opposite effect, with RD being best in situations in which many early iterations used a smaller

number of ants (RDearly = −4.85× 10−3, RDlate = −4.72× 10−3, RDnone = −6.21× 10−3). Of

the ten conditions with the best RD values, nine used no schedule on K at the end of the search.

The schedules implemented for ρ had little effect on the average quality of solutions, they

did, however, impact the variability of solution quality. In particular, the starting schedules for

ρ, depicted in the rows of panels in Figure 3.29, had an impact on the variance of f(sgb) in

such a way that including lower values of ρ in the beginning of the search increased variability
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Table 3.18: Condition-specific SR for cases with scheduled parameters and no heuristic information.

K start early late none

Type ρ start ρ end K end early late none early late none early late none

early 0.020 0.144 0.150 0.031 0.141 0.110 0.060 0.150 0.130
early late 0.020 0.141 0.220 0.030 0.155 0.101 0.010 0.200 0.220

none 0.051 0.112 0.182 0.041 0.101 0.194 0.090 0.130 0.220

early 0.062 0.111 0.081 0.020 0.130 0.090 0.030 0.100 0.130
rps late late 0.051 0.121 0.100 0.060 0.091 0.306 0.070 0.110 0.220

none 0.051 0.141 0.190 0.030 0.070 0.286 0.100 0.140 0.190

early 0.030 0.160 0.153 0.000 0.172 0.143 0.020 0.120 0.050
none late 0.010 0.101 0.253 0.000 0.041 0.230 0.010 0.100 0.190

none 0.010 0.071 0.202 0.011 0.081 0.202 0.000 0.050 0.210

early 0.150 0.220 0.170 0.110 0.162 0.182 0.060 0.100 0.160
early late 0.190 0.182 0.110 0.101 0.186 0.227 0.090 0.140 0.110

none 0.111 0.158 0.232 0.111 0.202 0.162 0.100 0.200 0.170

early 0.040 0.182 0.155 0.124 0.170 0.155 0.090 0.080 0.060
fps late late 0.133 0.190 0.140 0.110 0.303 0.153 0.050 0.090 0.100

none 0.101 0.133 0.212 0.090 0.224 0.263 0.070 0.130 0.150

early 0.071 0.220 0.265 0.082 0.194 0.265 0.180 0.160 0.260
none late 0.090 0.200 0.190 0.071 0.200 0.152 0.170 0.220 0.170

none 0.091 0.173 0.182 0.051 0.141 0.153 0.140 0.160 0.190
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Figure 3.29: Boxplots of the relative deviation (RD) of the final solutions from the optimal
solution. Panels of the figure are for different combinations of ρ schedules. The starting schedules
are depicted in rows, the ending schedules in columns.
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Table 3.19: Average and worst-case RD for the five best performing conditions in each respect.
The ranks pertain to the total of all 182 conditions without heuristic information.

Average Worst-Case
Schedule K start K end ρ start ρ end RD Rank RD Rank SR AR

rps late none none late -0.003 1 -0.008 5 0.230 13093.440
rps early none none late -0.003 2 -0.011 33 0.253 13292.606
rps late none late none -0.003 3 -0.018 100 0.286 16478.531
fps early late early early -0.003 4 -0.012 44 0.220 11801.440
fps early none early early -0.003 5 -0.013 59 0.170 11402.400
fps none none none early -0.003 7 -0.007 1 0.260 15778.240
rps none none none late -0.003 13 -0.007 1 0.190 13844.800
fps late none none early -0.004 15 -0.008 5 0.265 14185.306
fps none none none none -0.004 19 -0.007 4 0.190 17087.040
fps none late none none -0.004 38 -0.007 1 0.160 17545.280

of the final solutions substantially (var(RDearly) = 2.49 × 10−5, var(RDlate) = 3.71 × 10−5,

var(RDnone) = 8.89×10−6). Inspecting the worst-case performance reveals that the 21 conditions

with the best worst-case RD all utilized no evaporation schedule at the beginning of the search.

Because of this, the best performing conditions in terms of average and worst-case perfor-

mance showed only little overlap. Table 3.19 shows the best performing conditions with respect

to their average and worst-case RD. Of these conditions, only two used a schedule for the number

of ants during the end of the search (in both cases combined with the fps schedule) and only

three used a schedule for ρ at the start of the search.

Absolute Runtime (AR) On average, 10491.368 CFAs were run per replication. Using the

∆R2 approach described in Section 3.5, all of the factors in this study contributed substantially

to the absolute runtime, with all ∆R2 > 0.1.

The most important determinant of AR was the schedule used for K at the end of the

search (∆R2 = 0.254, 95% CI = [0.239; 0.27]). As can be expected, quicker switches to smaller

K lead to shorter runtimes in general. Conversely, the K schedule at the beginning of the

search lead to larger AR when more iterations used lower K (ARlate = 10974.847, ARearly =

10783.519,ARnone = 9725.268). These effects lead to the third largest effect with a ∆R2 = 0.14

(95% CI = [0.124; 0.157]).

The second most important factor for AR was the schedule type (∆R2 = 0.152, 95% CI =

[0.136; 0.168]), with the flexible parameter schedule being much slower than the rigid schedule

on average (ARfps = 11414.634, ARrps = 9567.527). Overall, the scheduling of ρ had the least

influence on AR, with starting schedules accomplishing a ∆R2 = 0.123 (95% CI = [0.106; 0.139])

and ending schedules a ∆R2 = 0.119 (95% CI = [0.103; 0.136]). However, Figure 3.31 shows the

condition specific boxplots of AR, depicting one of the results for early ρ schedules. As was the

case for RD, utilizing schedules for ρ at the beginning of the search lead to inconsistent, highly
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variable results. Especially cases utilizing a scheduled version of ρ at the beginning of the search,

no schedule for K, and the fps lead to some cases converging to suboptimal solutions quickly.

Across all conditions, the fps had much higher variability in the results (sd[ARfps] = 6194.145,

sd[ARrps] = 3878.967).

Relative Exploration (RE) Across all conditions without heuristics the average RE = 0.817,

indicating that just over 80% of all constructed solutions were unique and viable. As was the case

in the previous sections, utilizing a schedule for ρ during the beginning of the search increased

the variability of the RE across replications. This did not, however, have a noteworthy impact

on the average RE (∆R2 = 0.015, 95% CI = [0.004; 0.026]).

In general, none of the manipulated variables had a large impact on the RE and the condition

specific averages were in a small range between 0.764 and 0.864. The scheduling of K resulted in

the largest ∆R2. At the beginning of the algorithm not utilizing a schedule lead to lower RE than

both of the scheduled conditions (REnone = 0.803, REearly = 0.821, RElate = 0.828). Overall this

resulted in a ∆R2 = 0.045 (95% CI = [0.035; 0.054]). Similarly, for ant schedules at the end of the

search, reducing the number of ants quickly lead to higher relative exploration (REnone = 0.809,

REearly = 0.829, RElate = 0.814) with an effect size of ∆R2 = 0.044, (95% CI = [0.034; 0.054]).

Relative Deviation over Time (RD[t]) Figures 3.32 and 3.33 show the optimization history

of each single replication using parameter schedules and no heuristic information. Because run-

times differed somewhat, the log-scaled x-axes use different scales. All cases portray searches as

climbing steadily in solution quality, before replicating on the final solution for some time. No-

tably, only 1 of 1780 replications utilizing no schedule for the evaporation coefficient whatsoever,

converged before reaching the abort criterion. Overall, 86 of the 162 conditions investigated here

(53.086%) did not have a single replication converge before reaching the abort criterion, instead

replicating on the final solution 256 times. As should be expected, the end scheduling had the

greatest impact on the number of iterations after finding the final solution, with the number of

ants achieving ∆R2 = 0.365, (95% CI = [0.351; 0.379]) and the evaporation coefficient ρ achiev-

ing ∆R2 = 0.285 (95% CI = [0.269; 0.3]). Scheduling K at the end of the search lead to more

iterations being run after having found the final solution with fewer ants in each iteration, with

an average of 231.227 being run for the early schedule, 188.082 for the late, and 166.139 for no

schedule at all. Note that this does not imply that the absence of a schedule for K lead to quicker

convergence. As described previously, quite the opposite is true in terms of absolute runtime.

Regarding the schedule of ρ, earlier switches to lower values lead to less iterations after finding

sgb (137.698 for early schedules, 214.673 for late schedules, and 233.076 for no schedules).

In terms of the first half of the search, as indicated by the number of iterations required

before finding the sgb, the starting schedule for K was most important (∆R2 = 0.171, 95% CI =

[0.038; 0.069]). Here, using more iterations with fewer ants at the beginning of the search re-
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Figure 3.30: Boxplots of the absolute runtime (AR). Panels of the figure are for different
combinations of ρ schedules. The starting schedules are depicted in rows, the ending schedules
in columns.
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Figure 3.31: Boxplots of the relative exploration (RE). Panels of the figure are for different
combinations of ρ schedules. The starting schedules are depicted in rows, the ending schedules
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1
4
6

early late none

early
late

none

1 10 100 1 10 100 1 10 100

−0.4

−0.3

−0.2

−0.1

0.0

−0.4

−0.3

−0.2

−0.1

0.0

−0.4

−0.3

−0.2

−0.1

0.0

t
R

D
(t)

early ρ start, early ρ end

early late none

early
late

none

10 1000 10 1000 10 1000

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

t

R
D

(t)

early ρ start, late ρ end

early late none

early
late

none

10 1000 10 1000 10 1000

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

t

R
D

(t)

early ρ start, no ρ end

early late none

early
late

none

10 1000 10 1000 10 1000

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

t

R
D

(t)

late ρ start, early ρ end

early late none

early
late

none

10 1000 10 1000 10 1000

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

t

R
D

(t)

late ρ start, late ρ end

early late none

early
late

none

10 1000 10 1000 10 1000

−0.4

−0.3

−0.2

−0.1

0.0

−0.4

−0.3

−0.2

−0.1

0.0

−0.4

−0.3

−0.2

−0.1

0.0

t

R
D

(t)

late ρ start, no ρ end

early late none

early
late

none

1 10 100 1 10 100 1 10 100

−0.4

−0.3

−0.2

−0.1

0.0

−0.4

−0.3

−0.2

−0.1

0.0

−0.4

−0.3

−0.2

−0.1

0.0

t

R
D

(t)

no ρ start, early ρ end

early late none

early
late

none

10 1000 10 1000 10 1000

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

−0.3

−0.2

−0.1

0.0

t

R
D

(t)

no ρ start, late ρ end

early late none

early
late

none

10 1000 10 1000 10 1000

−0.4

−0.3

−0.2

−0.1

0.0

−0.4

−0.3

−0.2

−0.1

0.0

−0.4

−0.3

−0.2

−0.1

0.0

t

R
D

(t)

no ρ start, no ρ end

Figure 3.32: The relative deviation from f(sopt) as a function of time (RD[t]) for the conditions using the rigid parameter schedule.
Yellow lines represent the optimization history for each single replication, blue lines the LOESS-smoothed averages. The x-axis is
log-scaled. Panels of each subfigure represent the K schedules, with starting schedules in rows and ending schedules in columns.
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Figure 3.33: The relative deviation from f(sopt) as a function of time (RD[t]) for the conditions using the flexible parameter schedule.
Yellow lines represent the optimization history for each single replication, blue lines the LOESS-smoothed averages. The x-axis is
log-scaled. Panels of each subfigure represent the K schedules, with starting schedules in rows and ending schedules in columns.
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Figure 3.34: The relative exploration as a function of relative time (t/T ) for the conditions
using the rigid parameter schedule. Panels of each subfigure represent the ending K schedules
in columns.

sulted in more iterations being required to find the best solution, with 183.063 iterations being

the average for no ant schedule, 230.908 for the early ant schedule, and 268.952 for the late ant

schedule. Again, this does not equate to longer runtimes in the beginning, because the ant sched-

ules required less ants per iteration. In fact, for the rigid parameter schedule all the conditions

required roughly 6250 CFAs before finding the sgb.

The slightly convex curve of the LOESS smoothers in the lowermost parts of Figures 3.32 and

3.33 indicates less greedy improvement on the sgb during the early phases of the search, when

utilizing no schedule for ρ during this stage.

Relative Exploration over Time (RE[t]) Figure 3.34 shows the LOWESS lines of the RE(t)

for all conditions with a rigid parameter schedule and Figure 3.35 shows those of all conditions

with a flexible parameter schedule. In both cases the most noticeable difference in RE(t) is the

difference in burn-in when comparing conditions with different starting schedules of ρ. Conditions
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Figure 3.35: The relative exploration as a function of relative time (t/T ) for the conditions
using the rigid parameter schedule. Panels of each subfigure represent the ending K schedules
in columns.
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Table 3.20: Average number of iterations needed for the burn-in phase (Tbi) per condition with
the average 90th percentile of RE in parentheses.

early K end late K end no K end
Schedule ρ start ρ end K start

early 24.140 (0.992) 15.155 (0.982) 12.260 (0.978)
early late 15.515 (0.991) 10.949 (0.983) 10.800 (0.979)

none 72.010 (0.997) 19.810 (0.997) 16.850 (0.995)

early 19.455 (0.943) 13.596 (0.950) 11.340 (0.949)
early late late 17.670 (0.935) 15.526 (0.961) 12.970 (0.930)

none 55.790 (0.952) 42.420 (0.979) 12.630 (0.967)

early 21.970 (0.934) 14.459 (0.928) 10.293 (0.913)
none late 11.918 (0.940) 11.525 (0.916) 10.316 (0.904)

none 55.140 (0.943) 18.670 (0.944) 11.930 (0.929)

early 27.917 (0.990) 11.434 (0.986) 14.141 (0.981)
early late 12.816 (0.990) 10.380 (0.987) 10.290 (0.982)

none 64.680 (0.999) 17.960 (1.000) 13.930 (0.996)

early 20.041 (0.950) 17.990 (0.969) 10.190 (0.952)
rps late late late 11.740 (0.948) 10.768 (0.972) 10.051 (0.937)

none 50.490 (0.954) 21.070 (0.979) 12.830 (0.975)

early 13.283 (0.937) 13.667 (0.932) 9.160 (0.911)
none late 10.515 (0.943) 10.880 (0.926) 10.980 (0.921)

none 36.690 (0.948) 19.050 (0.943) 11.910 (0.931)

early 109.626 (0.992) 76.880 (0.960) 72.235 (0.977)
early late 101.293 (0.990) 70.697 (0.980) 67.255 (0.977)

none 107.950 (0.996) 73.760 (0.996) 72.460 (0.997)

early 110.480 (0.918) 84.768 (0.948) 68.960 (0.915)
none late late 99.690 (0.923) 84.588 (0.940) 67.100 (0.932)

none 103.020 (0.956) 88.770 (0.975) 72.080 (0.977)

early 101.101 (0.925) 87.092 (0.917) 68.515 (0.902)
none late 93.596 (0.920) 86.545 (0.914) 64.212 (0.894)

none 106.670 (0.946) 90.810 (0.945) 71.570 (0.926)

early 11.290 (0.971) 10.120 (0.971) 10.640 (0.964)
early late 10.240 (0.979) 11.253 (0.956) 11.202 (0.964)

none 20.700 (0.981) 12.610 (0.981) 16.500 (0.984)

early 12.710 (0.929) 10.192 (0.913) 10.830 (0.899)
early late late 10.182 (0.942) 9.680 (0.930) 10.062 (0.914)

none 13.600 (0.939) 11.910 (0.931) 11.310 (0.933)

early 10.566 (0.932) 8.653 (0.907) 11.283 (0.915)
none late 10.848 (0.942) 10.354 (0.920) 11.192 (0.921)

none 16.900 (0.937) 11.810 (0.925) 11.390 (0.930)

early 10.600 (0.982) 10.394 (0.970) 13.144 (0.977)
early late 11.969 (0.988) 11.160 (0.974) 10.495 (0.975)

none 16.490 (0.994) 12.930 (0.999) 13.740 (0.997)

early 10.296 (0.938) 11.180 (0.926) 11.130 (0.925)
fps late late late 10.710 (0.945) 10.404 (0.935) 10.827 (0.929)

none 15.320 (0.950) 12.320 (0.934) 13.160 (0.945)

early 11.162 (0.945) 10.000 (0.927) 11.071 (0.922)
none late 11.190 (0.962) 10.469 (0.931) 10.909 (0.926)

none 14.090 (0.953) 11.430 (0.940) 11.940 (0.946)

early 83.439 (0.937) 63.590 (0.920) 64.408 (0.936)
early late 56.837 (0.938) 53.765 (0.924) 55.092 (0.916)

none 78.620 (0.954) 71.390 (0.955) 73.000 (0.950)

early 88.160 (0.910) 62.150 (0.899) 61.340 (0.899)
none late late 59.293 (0.922) 55.720 (0.896) 53.919 (0.899)

none 77.550 (0.934) 70.490 (0.929) 70.050 (0.931)

early 82.576 (0.908) 61.000 (0.902) 62.121 (0.901)
none late 56.778 (0.931) 50.758 (0.903) 51.173 (0.917)

none 75.550 (0.939) 68.920 (0.933) 71.750 (0.935)
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utilizing any schedule on the evaporation coefficient lead to a much shorter burn-in, mainly due

to constructing less improper solutions. On average, these conditions required 15.637 iterations

before achieving their 90th percentile in RE(t), while conditions without a starting schedule for

ρ required 75.58. As noted previously, however, this does not negatively impact the overall RE of

these conditions. The second-most visible effect in Figures 3.34 and 3.35 is that later scheduling

of diminishing K at the end of the search decreases RE(t) during those iterations. This is more

visible in cases utilizing the fps, where this trend is also visible for late K schedules, while it is

only observable for cases not utilizing any K schedule with the rps. The factor with the largest

influence on overall RE(t) - the K schedules at the beginning of the search - seems to have little

influence on the form of the RE(t) curves.

Summary In general, parameter schedules for situations without heuristic information had a

substantial influence on runtimes and solution quality. Decreasing the number of ants during

the later stages of the search lead to much shorter runtimes, but also resulted in the worst

average performance regarding solution quality. Using ρ schedules during the beginning of the

run resulted in much larger variability between different starts of the algorithm, leading to

substantially worse worst-case performance in situations, in which ρ allowed for quick evaporation

for longer periods. Constellations utilizing schedules for increases in K during the beginning and

decreases in ρ during the end of the search performed best with regards solution quality, though

they are among the slowest. In comparison to fixed parameter settings, these conditions resulted

in better average and comparable worst-case performance without being substantially faster.

3.8.3 Scheduled Parameters with Sub-Optimal Heuristic Information

The results from Sections 3.7.3 and 3.8.2 show some general trends, which are combined in this

section to derive the parameter settings used to evaluate the stuart approach with parameter

schedules and sub-optimal heuristic information. In contrast to the parameter settings used in

the previous section, the setting of α and β will be of crucial importance to the performance

of the parameter schedules with heuristic information. As pointed out in Sections 3.1.2 and

3.1.3, these two non-linearity parameters greatly influence the speed and precision with which

the algorithm moves through the search space. Additionally, Section 3.7.3 indicated a much

less clear picture about the selection of a deposit rule, than was the case for conditions without

heuristic information, necessitating an investigation of the search behavior with both the ib and

the gb deposit. To prevent these three new variable parameters from increasing the number of

evaluation conditions drastically, their variation is combined with only those conditions which

showed the most promising results in the evaluation presented in Section 3.8.2 for parameter

schedules with no heuristic information.

Regarding the first non-linearity coefficient, higher values of α generally lead to increasingly

fast pheromone accumulation on promising choices. While α > 1 is generally not recommended
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and Section 3.7.1 clearly showed these conditions to lead to sub-optimal solutions (albeit at

a much faster pace), the evaluation of constant parameter settings with sub-optimal heuristic

information revealed conditions with α = 1.5 to be those with the highest success rates. However,

conditions with α = 1 exhibited a greater extent of exploration, leading to very similar average

solution quality at the cost of - in cases with the iteration best deposit rule, drastically - longer

runtimes. In this evaluation a parameter schedule beginning with α = 1 and gradually increasing

its value (to α = 1.5 and then α = 2.5) during the later stages of the search process is compared

to conditions using only α = 1. The latter is chosen as the constant reference setting, despite

the slight advantages conditions with α = 1.5 had in Section 3.7.3, because of the overwhelming

amount of literature on MMAS and similar strategies recommending that α not exceed 1. The

increases in α are set at such late points in the search, to allow for exploration during the early

phases and reinforce better choices during the later phases to concentrate search around these

choices.

The opposite is done for the second non-linearity coefficient, β. As shown in Section 3.7.3,

β has a dramatic influence on the tradeoff between selection quality (as measured by RD) and

the selection consistency (SC), with larger values leading to solutions closer to the heuristically

favored solution. To make use of this, β is gradually decreased during the early phases of the

search in this evaluation, to ensure that heuristics guide the early search in the favored direction

and become less important, once the search is within this subspace of possible solutions. As shown

in Section 3.7.3 the degree of influence β has on the explorative behavior of stuart is dependent

on the deposit rule, with the gb rule being less sensitive to heuristic information. Because of this,

the condition with constant β differs, depending on the deposit rule with β = 1.5 for ib deposit

and β = 2.5 for gb deposit.

The remaining two parameters which are scheduled in this evaluation, are the number of ants

K and the evaporation coefficient ρ. The results shown in Section 3.8.2 indicate that scheduling

the number of ants to reduce towards the end of the search process has a detrimental effect on

the quality of the final solution. Thus, these conditions are not investigated in this section. On

the other hand, beginning with low values of K and increasing this during the early search leads

to better solution quality at the expense of increased runtime for conditions without heuristic

information. To investigate the effect of the increase in cooperation between ants during the

early search, K is scheduled during the beginning of the algorithm in line with the schedules

used for the case without heuristic information.

While the schedule for values of K during the late search is detrimental to the algorithmic

performance, the opposite is true for the evaporation coefficient ρ in the results shown in Section

3.8.2. In those cases, placing a schedule on ρ during the initial phases of the search lead to

much higher variability in search results, often leading to very bad worst-case performance.

Therefore schedules on ρ during the beginning of the search are excluded from this evaluation.

On the other hand, decreasing ρ during the late stages of the search had no detrimental effect on
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Table 3.21: Parameter schedules for the evaluation with sub-optimal heuristic information.

Parameter Condition Values Schedule
ib gb rps fps

α
early (1,1.5,2.5) (1,1.5,2.5) (0,200,300) (0,75,150)
none 1 1 - -

β
early (2.5,1.5,1) (2.5,1.5,1) (0,30,60) (0,30,60)
none 1.5 2.5 - -

K
early (8,16,32) (8,16,32) (0,15,30) (0,15,30)
late (8,16,32) (8,16,32) (0,30,60) (0,30,60)

ρ
early (.95,.8,.5) (.95,.8,.5) (0,150,200) (0,75,150)
late (.95,.8,.5) (.95,.8,.5) (0,300,400) (0,100,200)

solution quality but did decrease runtime in the evaluation for cases without heuristic information.

Therefore, the evaporation coefficient is decreased during the late stages of the search in this

evaluation, in line with the conditions shown in Section 3.8.1.

As pointed out above and in Section 3.7.3 for conditions with constant parameter settings, the

deposit rule has substantial influence on the runtimes of the algorithm with heuristic information.

To investigate this under conditions with scheduled parameter settings, both deposit rules are

included in this evaluation. Finally, to determine the type of scheduling best suited for instances

with heuristic information, both the rps and the fps are included in this evaluation.

Table 3.21 shows the evaluation design for conditions with scheduled parameters and sub-

optimal heuristic information. The combinations result in a total of 64 conditions. As was the

case in the preceding evaluations, each condition is replicated 100 times.

3.8.4 Results with Sub-Optimal Heuristic Information

Errors Across all conditions, 38 replications (0.594%) did not terminate normally. As was

the case in all previous evaluations, the errors were due to the search not encountering a viable

solution in the first iteration. Conditions did not differ in any respect during the first iteration,

because all conditions used K = 8.

Success Rate (SR) Across all conditions the average SR = 0.031. Table 3.22 provides an

overview of the condition specific SR. Of the five factors manipulated in this evaluation, two

showed a substantial influence on the success rate: the non-linearity coefficient β (∆R2 = 0.253,

95% CI = [0.032; 0.473]) and the deposit type (∆R2 = 0.208, 95% CI = [−0.015; 0.431]). As is

visible in Table 3.22, sopt was recovered almost exclusively in conditions with a schedule for β.

Beyond that, the gb-deposit rule resulted in a higher SR (0.003 vs. 0.058). Over all conditions,

those combining a scheduled β with the gb deposit and a flexible parameter schedule resulted in

the highest success rates, irrespective of the scheduling chosen for α and ρ.
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Table 3.22: Condition-specific SR for cases with scheduled parameters and sub-optimal heuris-
tic information.

ib Deposit gb Deposit
early K late K early K late K

α β early ρ late ρ early ρ late ρ early ρ late ρ early ρ late ρ

rps
early

early 0.000 0.000 0.000 0.000 0.010 0.121 0.010 0.170
none 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000

none
early 0.030 0.000 0.010 0.000 0.010 0.060 0.030 0.121
none 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

fps
early

early 0.000 0.020 0.000 0.010 0.130 0.162 0.202 0.162
none 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

none
early 0.020 0.000 0.000 0.000 0.121 0.202 0.162 0.202
none 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Relative Deviation (RD) The average RD across all conditions was -0.016, indicating that

the average solution in this evaluation was 1.629% worse in terms of the quality function than the

optimal solution. None of the replications resulted in an RD worse than that of the heuristically

favored solution. In fact, the worst single RDsgb = −0.064, where RDsmed = −0.238.

Figure 3.36 shows the boxplots of the RD for conditions with parameter schedules and sub-

optimal heuristic information. As was the case for the SR, β had the largest effect on the

RD with a ∆R2 = 0.356 (95% CI = [0.334; 0.379]). As indicated by Figure 3.36, conditions

with a fixed setting for β performed notably worse on average. This effect was magnified when

using the global-best deposit-rule, where the difference between the settings for β (Cohen’s

d = 1.953, 95% CI = [1.869; 2.038]) was even more pronounced than with the iteration-best

deposit (Cohen’s d = 1.201, 95% CI = [1.125; 1.276]). Of the remaining factors, only the deposit

rule had a detectable, albeit small, impact on the RD (∆R2 = 0.042, 95% CI = [0.016; 0.068]),

with the iteration-best deposit rule achieving slightly better average RD values (RDib = −0.014,

RDgb = −0.018).

Ranking all conditions with regard to RD shows that the 31 best-performing conditions in

terms of RD all utilized a schedule for β. Table 3.23 shows the five conditions which performed

best, either on average or in the worst-case, with regards to RD. While the case is clear with

regards to settings for β, other parameters showed more inconsistent performance. Generally,

however, there was a tendency for the gb-deposit to perform better on average, while the ib-

deposit performed better in the worst case, showing slightly lower variability across replications

(sdib = 6.7× 10−3, sdgb = 1.15× 10−2,).

Selection Consistency (SC) The average selection consistency across all replications was

0.483, indicating that roughly 9 items were shared between any sgb and the heuristically favored

solution. Recall, that the SC of sopt is 0.389. Figure 3.37 shows the condition specific SC. As
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Figure 3.36: Boxplots of the relative deviation (RD) of the final solutions from the optimal
solution. Panels represent different values for α in rows and β in columns.

Table 3.23: Average and worst-case RD for the five best performing conditions in each respect.
The ranks pertain to the total of all 64 conditions with sub-optimal heuristic information.

Average Worst-Case
α β ρ K RD Rank RD Rank SR AR

gb fps none early late late -0.008 1 -0.036 34 0.202 8548.283
gb rps early early late early -0.008 2 -0.029 7 0.121 8360.404
gb fps none early early late -0.009 3 -0.029 7 0.162 8604.848
gb fps early early early late -0.009 4 -0.032 28 0.202 8280.323
ib rps early early late early -0.009 5 -0.029 10 0.000 9434.560
ib fps none early late early -0.010 14 -0.027 2 0.000 18564.160
ib rps none early late early -0.010 15 -0.017 1 0.000 13967.360
gb fps early early late late -0.010 16 -0.027 2 0.162 8258.909
ib rps none early late late -0.010 17 -0.027 2 0.000 13383.040
ib rps early early early early -0.013 27 -0.027 2 0.000 6088.081
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Figure 3.37: Boxplots of the selection consistency (SC) of the conditions with sub-optimal
heuristics and scheduled parameter settings. Panels represent different values for α in rows and
β in columns. The horizontal line depicts the selection consistency of the optimal solution.

this figure indicates, the scheduling of β was the most important factor for selection consistency

with a ∆R2 = 0.356 (95% CI = [0.334; 0.379]). Those conditions scheduling β achieved a

lower SC, with the effects differing somewhat, depending on the combination with either the gb

(Cohen’s d = −2.199, 95% CI = [−2.287;−2.111]) or the ib deposit-rule (Cohen’s d = −1.353,

95% CI = [−1.43;−1.276]). However, the effect of the deposit rule on SC was minimal, as was

that for all other factors, with none of the 95% confidence intervals of the ∆R2 excluding zero.

Absolute Runtime (AR) Across all 6400 replications, the average AR was 9585.475, with

the slowest single replication requiring at total of 33784 CFAs to be estimated. Figure 3.38

shows the boxplots of the AR. The most visible effect is that of the schedule type on the

variability of runtimes, with the rps resulting in much more homogeneous AR across replications

(SDrps = 3174.164, SDfps = 4311.913). The schedule type also had the second largest effect on

the average AR, with a ∆R2 = 0.193 (95% CI = [0.169; 0.218]).

The largest determinant of absolute runtime was the deposit rule (∆R2 = 0.195, 95% CI =



157

early none

early
none

early late early late

0

5000

10000

15000

20000

0

5000

10000

15000

20000

ρ

A
R

K

early

late

Rigid Schedule, Iteration−Best

early none

early
none

early late early late

0

5000

10000

15000

20000

0

5000

10000

15000

20000

ρ

A
R

K

early

late

Flexible Schedule, Iteration−Best

early none

early
none

early late early late

0

5000

10000

15000

20000

0

5000

10000

15000

20000

ρ

A
R

K

early

late

Rigid Schedule, Global−Best

early none

early
none

early late early late

0

5000

10000

15000

20000

0

5000

10000

15000

20000

ρ

A
R

K

early

late

Flexible Schedule, Global−Best

Figure 3.38: Boxplots of the absolute runtime (AR) of the conditions with sub-optimal heuris-
tics and scheduled parameter settings. Panels represent different values for α in rows and β in
columns.
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Figure 3.39: Boxplots of the relative exploration (RE) of the conditions with sub-optimal
heuristics and scheduled parameter settings. Panels represent different values for α in rows and
β in columns.

[0.17; 0.22]) with ib conditions requiring much longer runtimes (ARib = 11444.184) than their

gb counterparts (ARgb = 7725.597). Additionally, the scheduling of ρ had a substantial impact

on AR (∆R2 = 0.12, 95% CI = [0.095; 0.144]), with the earlier schedule leading to shorter

runtimes. Of the non-linearity coefficients, scheduling α had a larger impact on AR (∆R2 = 0.03,

95% CI = [0.006; 0.053]) than did schedules of β (∆R2 = 0.007, 95% CI = [−0.016; 0.03]), but

both had close to no impact on the runtimes at all. The same is true for the scheduling of K,

which did not have a substantial impact on AR (∆R2 = 0.015, 95% CI = [−0.008; 0.038]).

The eight conditions with the shortest runtimes all utilized early schedules of the evaporation

coefficient, the gb deposit, and the rps. They differed only in in the scheduling of K, with the

first four using the late switch to larger numbers of ants and the latter four all utilizing the early

switch. On the opposite end, the seven slowest conditions all used the ib deposit-rule and the

fps. Additionally, six of those seven used the late schedule in ρ.
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Relation Exploration (RE) Across all conditions, the average relative exploration was 0.663,

indicating that roughly two thirds of all solutions that were generated, were viable and unique

within that replication. Figure 3.39 shows the boxplots of the RE across all conditions. The non-

linearity coefficients were the most important determinants of the RE, with β achieving a ∆R2 =

0.223 (95% CI = [0.197; 0.248]) and α accomplishing a ∆R2 = 0.1 (95% CI = [0.074; 0.127]). In

the case of scheduling β, not utilizing a schedule lead to less exploration (0.713 vs. 0.613), while

the opposite was true for α (0.63 vs. 0.697).

Scheduling the evaporation coefficient ρ had the third largest impact on theRE (∆R2 = 0.085,

95% CI = [0.059; 0.112]). As is visible in Figure 3.39, this effect is dependent on the combination

with other parameter settings. The impact of the two schedules of ρ on RE was most prominent

in combination with the schedules on α: the combinations of an early schedule on ρ, a scheduled

α (RE = 0.685), an early schedule on ρ, no schedule on α (RE = 0.703), or a late schedule

on ρ and no schedule on α (RE = 0.691) all resulted in extremely similar relative exploration.

Combining a schedule on α with a late schedule on ρ, however, decreased the RE noticeably (RE

= 0.574).

Of the conditions with the lowest RE, the worst six all used combinations of the α schedule

and no β schedule. RE was below .5 for three of these. On the other end of the spectrum, the four

conditions with the highest RE all combined no schedule on α, a scheduled β, the iteration-best

deposit-rule, and the rps, resulting in an RE just shy of .8.

Relative Deviation over Time (RD[t]) Figures 3.40 and 3.41 show the optimization history

of all replications using parameter schedules and sub-optimal heuristic information. The x-axes

are log-scaled to better accommodate the differences in runtimes.

On average, replications required 288.887 iterations before finding the sgb. The most impor-

tant determinant for this number was the schedule type (∆R2 = 0.262, 95% CI = [0.237; 0.287]),

with the flexible parameter schedule requiring significantly more iterations before finding the fi-

nal solution (227.419 vs. 350.433). Beyond this, the deposit-rule had a noticeable impact on the

number of iterations spent in this phase (∆R2 = 0.16, 95% CI = [0.134; 0.185]). In this case,

conditions using the ib deposit-rule needed 336.915 iterations before finding the final solution,

while conditions with the gb deposit-rule needed only 240.83. The schedule chosen for K was

the only remaining factor with a detectable influence on this number of iterations (∆R2 = 0.16,

95% CI = [0.134; 0.185]). Overall, conditions with a late switch to higher values of K used more

iterations to settle on a final solution (284.17 vs. 293.593). However, this effect was negligible

in conditions using the rps (226.822 vs. 228.014), while it was detectable in conditions with

the fps (341.554 vs. 359.297). Keep in mind, that more iterations does not necessarily imply

longer runtimes for schedules with K, because later switches to higher values also mean that

more iterations use less ants, thereby balancing the number of total CFAs estimated.

After finding a final solution, it was replicated as best an average of 58.372 times. This is
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Figure 3.40: The relative deviation from f(sopt) as a function of time (RD[t]) for the conditions using the rigid parameter schedule.
Yellow lines represent the optimization history for each single replication, blue lines the LOESS-smoothed averages. The x-axis is
log-scaled. The two sub-figures represent the different deposit rules.
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Figure 3.41: The relative deviation from f(sopt) as a function of time (RD[t]) for the conditions using the flexible parameter schedule.
Yellow lines represent the optimization history for each single replication, blue lines the LOESS-smoothed averages. The x-axis is
log-scaled. The two sub-figures represent the different deposit rules.
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visible in Figures 3.40 and 3.41 in that the overwhelming proportion of the optimization history

showed increases in RD(t). In fact, of the 6362 replications which did not result in errors, only 27

(0.424%) reached the abort criterion, while all others converged in accordance to the criteria set

by Equation (2.11). The parameter schedule type was especially important in determining the

number of iterations replicating sgb (∆R2 = 0.138, 95% CI = [0.113; 0.163]), with the fps, again,

resulting in more iterations. Beyond the schedule type, the schedule imposed on the evaporation

coefficient ρ influenced the length of the late search (∆R2 = 0.09, 95% CI = [0.064; 0.116]), with

early switches to lower values of ρ predictably leading to less iterations spent in this phase. The

schedule of the non-linearity coefficient α was the final determinant of the number of iterations

replicating the sgb (∆R2 = 0.068, 95% CI = [0.041; 0.094]), with a scheduled α leading to less

iterations spent in replications of the sgb.

Relative Exploration over Time (RE[t]) Figure 3.42 shows the LOWESS lines across all

replications of each condition for the RE(t). The most notable effect is the one the schedule

placed on α has on relative exploration. Especially when combined with late changes to ρ,

relative exploration was extremely low during the later stages of the search in conditions utilizing

a schedule on α. Interestingly, conditions with the rps were more prone to this effect, whereas

conditions utilizing the fps and the gb deposit rule did not portray this phenomenon. Another

peculiarity is that, in conditions with the global-best deposit-rule, the initial burn-in was followed

by a short peak and a subsequent valley in RE(t). This specific course was much less pronounced

for conditions utilizing the ib deposit.

Table 3.24 shows the number of iterations required to reach the 90th percentile in RE(t) and

its associated RE(t)-value. Generally, utilizing a schedule on β lead to a higher 90th percentile

of the RE(t) (0.87 with a scheduled β, 0.801 with a fixed β), which was reached after more

iterations (27.846 vs. 16.875). Similar patterns are observable for the schedule type (where

the rps reached higher values slower) and the deposit rule (where the same was true for the ib

deposit). However, differences in the actual values of the 90th percentiles of RE(t) were minute,

which is line with the earlier findings concerning the total RE. Note that schedules on α had

little to no impact on the values depicted in Table 3.24, because they indicate early exploration.

The schedules for α only applied during the later stages of the search, making their impact on

the explorative behavior visible in Figure 3.42, but not Table 3.24.

Summary In general, utilizing parameter schedules can have a substantial impact on runtimes

when utilizing sub-optimal heuristics. Both deposit rules resulted in extremely similar solutions in

terms of RD and SC, but the gb deposit rule proved substantially faster - mostly due to a quicker

early search, as indicated by the RD(t). The non-linearity coefficient β, scaling the influence of

the heuristic information, had the largest overall impact on a vast array of performance measures.

In terms of Success Rate as well as Relative Deviation, utilizing a schedule for β resulted in
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Figure 3.42: The relative exploration as a function of relative time (t/T ) for the conditions using the rigid parameter schedule.
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Table 3.24: Average number of iterations needed for the burn-in phase (Tbi) per condition with the average 90th percentile of RE in
parentheses.

early K late K
Schedule Deposit α β early ρ late ρ early ρ late ρ

rps

ib
early

early 49.939 (0.902) 42.390 (0.906) 31.340 (0.876) 23.260 (0.871)
none 41.610 (0.857) 23.430 (0.849) 24.439 (0.813) 18.485 (0.812)

none
early 62.360 (0.911) 45.646 (0.908) 61.770 (0.901) 45.080 (0.896)
none 36.424 (0.870) 26.950 (0.865) 33.232 (0.837) 19.450 (0.831)

gb
early

early 28.091 (0.883) 27.737 (0.891) 26.626 (0.858) 20.410 (0.867)
none 10.337 (0.764) 9.152 (0.791) 6.670 (0.721) 6.434 (0.737)

none
early 32.100 (0.888) 26.900 (0.886) 30.350 (0.876) 23.111 (0.877)
none 9.070 (0.766) 11.180 (0.795) 12.867 (0.760) 9.620 (0.772)

fps

ib
early

early 23.550 (0.830) 13.910 (0.852) 16.657 (0.820) 16.500 (0.837)
none 21.980 (0.811) 16.475 (0.805) 21.357 (0.791) 15.430 (0.777)

none
early 27.727 (0.864) 32.280 (0.867) 23.060 (0.859) 18.400 (0.857)
none 23.657 (0.824) 20.786 (0.819) 21.370 (0.810) 16.622 (0.806)

gb
early

early 15.280 (0.838) 16.768 (0.872) 17.333 (0.840) 20.899 (0.876)
none 9.480 (0.781) 10.150 (0.816) 9.071 (0.763) 10.260 (0.804)

none
early 15.980 (0.837) 16.566 (0.875) 18.212 (0.834) 20.848 (0.879)
none 12.200 (0.782) 11.980 (0.820) 9.459 (0.760) 10.380 (0.811)
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much better solutions, while those utilizing a constant setting for β were more consistent with

the heuristically favored solution and showed less relative exploration. Overall, the scheduling

type had little influence on RD and SR, but the fps required longer and less consistent runtimes

to converge. However, those conditions resulting in the best performance in terms of RD either

utilized the fps or combined the rps with a late schedule for ρ, resulting in similar performance

at similar runtimes. The schedule imposed on the number of ants had little effect whatsoever.

3.9 Discussion of the Evaluation Results

The first core result of the evaluation is that, given adequate parameter settings, the stuart

approach can be used to select items from a pool to create a scale (or short-scale) which fulfills

the criteria established in the pheromone function. In some cases, without requiring additional

information about the item pool (i.e. in cases without heuristic information), the approach was

able to construct the one optimal of 334569553920 possible solutions 48% of the time. Even

when failing to find the optimal solution, the constructed solutions were often not much worse

than optimal in terms of the pre-defined quality function. This behavior is, however, dependent

upon using appropriate parameter settings. While some select, instance-specific settings lead to

optimal behavior of the stuart approach, only few parameter constellations will result in truly

bad search results. The previous sections of this chapter provided an overview of the parameters

in the stuart approach and their expected general influence on the behavior of the search

algorithm (Section 3.1), an in-depth application of the approach to the case of item selection from

the Ryff-Scale (Sections 3.2 to 3.4), as well as a comprehensive evaluation study of the influence of

parameter settings on the performance of the stuart approach in this application (Sections 3.5 to

3.8). This section is intended to integrate the overwhelming amount of information generated by

those sections, discuss the general influence of the various parameters on the performance of the

stuart approach, and close with some general recommendations regarding parameter settings in

applications.

Heuristic Information (H) Regarding heuristic information, results of the evaluation are

somewhat unclear. Section 3.6 provides the results regarding constant parameter settings for the

three specific instances where no heuristic information is provided (Section 3.7.1), heuristics bias

the search towards the optimal solution (Section 3.7.2), and heuristics bias the search towards

a sub-optimal solution (Section 3.7.3). Generally, as should be expected, results are best when

heuristics already provide the correct solution. The much more relevant conclusion from the

overall results regarding the different heuristic information is, however, that providing heuristics

can make the performance of stuart substantially worse. While the best performing condi-

tions without heuristic information lead to an average Relative Deviation of −0.002, conditions

supplied with sub-optimal heuristics were not always able to overcome the “false information”
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provided and resulted in an RD = −0.007 at the best of times.

Deposit Rule Providing heuristic information changes which deposit rule should be favored.

In cases without heuristic information, the iteration-best deposit-rule consistently outperforms

the rule in which only the global-best solutions deposit pheromones, while the exact opposite

is true for conditions in which heuristic information is provided. This is especially true when

considering the absolute runtimes in addition to the the quality of the final solutions. The search

is always quicker when using the global-best deposit rule, which is unsurprising given the fact

that there is less variability in which pheromones increase and evaporate after each iteration.

In cases in which the selection process is biased by H, the difference in runtimes becomes more

drastic - without heuristics the ratio of average AR of ib vs. gb conditions is roughly 2.03, with

sub-optimal heuristics it is approximately 2.365. However, the longer runtime is accompanied

by an increase in exploration, which allows the ib deposit-rule to outperform its gb counterpart

when the selection is not biased by heuristics. In cases where sub-optimal heuristic information

is provided, the gb deposit-rule proves less influenced by the search bias which is introduced (as

indicated by the lower selection consistency with the heurisitcally favored solution) and manages

to outperform the ib deposit rule in terms of solutions and runtime. However, it should be noted,

that when using very good heuristic information, this relative robustness of the gb deposit rule

may also be detrimental, because it does not allow the search to be steered towards promising

areas of the search space as easily. As pointed out in Section 3.8.3, this can be assuaged by

increasing the value of β, which increases selection consistency without increasing runtimes for

situations in which the gb deposit is used.

Non-linearity of pheromones (α) Regarding α, results mostly conform to prior studies,

whereby values of α > 1 lead to overly fast convergence to lower-value solutions (Alaya et al.,

2004; Favaretto et al., 2009; Stützle, 1998; Stützle et al., 2010; Wei, 2014). Interestingly, this is

not globally true for cases with sub-optimal heuristics. In cases with constant parameters, α = 1

and α = 1.5 show extremely similar results when combined with the most promising settings

for the remaining parameters. The same is true for schedules which increase α during the late

stages of the search to facilitate convergence. It should be noted that this did not, in fact, speed

up convergence. However, when using either optimal or no heuristics, conditions with α = 1

lead to the best performance in terms of quality. Due to this finding, there is only very limited

foundation to recommending any value other than α = 1.

Non-linearity of heuristic information (β) The non-linearity coefficient β has the pre-

dictable effect of increasing the influence of the heuristic information on the search and the final

solution. This means that, in situations in which optimal heuristics are provided, runtimes are

shorter and solution quality is higher, the larger the value of β. On the other hand, increasing
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β in situations with sub-optimal heuristics will result in worse solutions without any benefit to

runtimes. However, results from the conditions with scheduled parameter settings indicate that

imposing a schedule on β during the early stages of the search, may provide benefits to overall

performance, albeit without decreasing AR substantially. Specifically, scheduling β may prove

beneficial in situations in which the early search is plagued by a substantial proportion of solu-

tions being improper. Results indicate that the burn-in using a schedule on β is comparable to

situations utilizing high values throughout the entire search, while simultaneously resulting in

much better RD and SR values.

Evaporation coefficient (ρ) Predictably, lower static values of the evaporation ρ lead to

shorter runtimes (because the disappearance of bad choices is accelerated). However, this comes

at the cost of worse and substantially more variable solution quality. In situations without

heuristic information and constant parameter settings, however, the best-performing conditions

were some with ρ = .8, indicating a very specific “sweet spot” for the balance between forgetting

bad choices and enough iterations for exploration. However, introducing sub-optimal heuristics

shifts this trend towards higher values of ρ, most likely due to the necessity of generating more

solutions to overcome the misleading directions provided by these heuristics. Scheduling ρ to

increase during the early stages of the search has no substantial benefit with the added detriment

of increasing solutions variability, thus decreasing worst-case performance. However, scheduling

a decrease in ρ during the later stages of the algorithm provides a potential reduction in runtime,

with practically no impact on the overall solution quality.

Number of ants (K) The number of ants has a substantial influence on runtimes. In cases

with no heuristic information and constant parameters, however, the benefit of increasing the

number of ants from 16 to 32 is minimal in well-performing conditions (i.e. in cases with α = 1

and ρ ∈ {.8, .95}). Again, this is not the case when sub-optimal heuristics are provided, but,

irrespective of heuristic information, the best RE was achieved for K = 16. This indicates

that the trade-off between runtimes and solution quality is better served with relatively small

colonies. Scheduling K to increase during the early phases of the search proved most promising

in the evaluation with parameter schedules. Results regarding solution quality were robust with

regard to the time-point of switches in K, indicating some tolerance in the specific scheduling.

While these schedules actually lead to longer run-times in situations without heuristic information

when combined with the flexible parameter schedule and starting schedules for ρ, they do tend to

decrease runtimes when combined with (the preferable) constant settings for ρ during the early

stages of the search. Again, the results from conditions with scheduled parameters indicate some

leniency regarding the actual iteration at which the number of ants increases, with regards to

solution quality. Reducing the number of ants during the late stages of the search substantially

decreases runtimes, but comes at the cost of reduced solution quality.



3 Parameter Evaluation 168

Parameter Scheduling Overall, parameter scheduling did not drastically decrease runtimes

without also decreasing solution quality. Especially in situations without heuristic information,

the benefit of using parameter schedules is barely detectable. This, coupled with the substan-

tial increase in application complexity, may be enough to recommend using constant parameter

settings when not providing heuristic information. In these cases the only promising parameter

scheduling concerns increases in K during the beginning of the search to enhance ant commu-

nication and decreasing ρ towards the end of the search, both resulting in somewhat shorter

runtimes. In cases with heuristic information, this may be different, however. Especially early

scheduling of β shows promising results in guiding the search through early the phase before

deemphasizing the importance of heuristic information in later stages. In all situations, the rigid

parameter schedule shows much more consistent runtimes (as is to be expected), but the two

approaches are nearly indiscernible in terms of solution quality. However, results from the sched-

uled parameters with sub-optimal heuristic information show a potential benefit of using the

fps: when using an early ρ schedule, the fps condition outperforms its rps counterpart. This is

most likely due to a too early decrease in the evaporation coefficient, something that is a risk in

an application in which the search space is not well known.

Recommendations Globally optimal parameter settings for the stuart approach are some-

what difficult to derive, given the differences in possible applications due to problem size and

other instance specifics (e.g. an abundance of improper solutions). However the following seven

recommendations are given for applications:

1. Heuristics should be provided when they are sufficiently good and when the search must

be guided during the early phases.

The evaluation shows that the search often results in good solutions even when sub-optimal

heuristics are provided. In applications, heuristics are likely to be closer to the optimal condition

shown here than to the sub-optimal condition. Recall that the sub-optimal heuristics were

derived from the median solution and were not elicited in any reasonable fashion. However, the

evaluation also shows that heuristics are not necessary to construct close-to-optimal solutions in

a situation in which very few problems occur in early search. Therefore, the use of heuristics

is recommended in situations in which their quality is sufficiently high. Beyond that, some

instances may necessitate heuristics, due to problems in the early search (most likely due to

improper solutions stemming from non-positive-definite model matrices). In these cases, it is

recommended to schedule β to decrease during the search process.

2. When using heuristics it is recommended to use the global-best deposit-rule.

Across all conditions of the evaluation, the global-best deposit-rule proved to be much faster.

In cases with heuristic information it was not noticeably worse than the ib deposit rule (when
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using other parameter settings that are recommended) and had the additional benefit of being

less susceptible to the influence of sub-optimal heuristics.

3. In applications without heuristics the iteration-best deposit-rule is recommended.

In this evaluation, the ib deposit-rule resulted in demonstrably better solutions when not

providing heuristic information. It should, however, be noted that it requires more than twice

the runtime of the gb deposit rule. In cases in which runtimes are a central concern - i.e. when

each CFA takes much longer to estimate than the simple example used here - using the gb

deposit-rule should be considered.

4. Scheduling parameters is not generally recommended.

The aforementioned scheduling of β to guide the early search is the exception. Scheduling

other parameters often proved to be detrimental. Scheduling increases in K during the early

search can have a positive impact on runtimes without much loss in terms of solution quality,

as does decreasing ρ during the very late search. However, scheduling parameters requires in-

depth knowledge about the problem at hand and the risk of unintentionally reducing the solution

quality exists. If runtimes are problematic due to model complexity, it is recommended to use

the gb deposit-rule to reduce runtimes.

5. The non-linearity coefficient α should rarely be different from 1.

The only exception here should be situations in which an application with α = 1 showed

that there is a substantial need to more strongly discriminate between a plethora of similarly

good solutions. In this evaluation α > 1 only performed adequate when heuristics were truly

sub-optimal, a situation which should rarely be this extreme in applications.

6. A moderate number of ants per colony is sufficient.

Increases inK have a very poor return-on-investment after a minimalK is exceeded. However,

defining a specific number is difficult for two reasons. First, the number of appropriate ants

depends on the problem-size. Selecting a 30-item scale from a pool of 400 items may require a

larger K, though the specific relationship needs further investigation. Second, the proportion of

improper solutions increases the number of necessary ants per colony. In this application just

over 50% of random solutions were improper. Increases in this ratio will necessitate larger values

of K to establish enough viable solutions, which can guide the search via pheromone deposit.

7. Multiple instances of item selection should be run in every single application.

Because the algorithmic approach is based on weighted random selection, different starts

may very well result in different solutions. An easy way of improving the chances of finding an
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extremely good solution is to run multiple instances. This avoids the peril of stagnation in a

sub-optimal area of the search space (or running into a local maximum, as it is more commonly

known) by initiating multiple starts.



CHAPTER 4

Applications

This chapter will introduce specific examples of the application of the stuart approach to data

stemming from different studies, each with its own specificities which need consideration.

In addition to the the applications discussed in this Chapter, the first application of the

stuart approach is provided in the evaluation performed in Chapter 3. Specifically, Section

3.2 introduced the Ryff-Scale and its theoretical structure in accordance to Ryff (1989), Section

3.3 described the optimization problem provided by the reduction of this scale, and Section

3.4 provided three different solutions, including the optimal solution according to the stuart

approach. In this application data were cross-sectional, stemmed from one group, and were

provided by one source of information. In many parameter constellations, the stuart approach

was able to construct a very good final solution, providing an adequately fitting model for the

Ryff-Scale with its six specific facets.

This chapter will provide details on the item selection in more intricate data constellations,

beginning with the item selection for a mood-assessment scale in a longitudinal setting. The

second application stems from personality psychology and aims at constructing an extremely

short scale for the assessment of the Big Five in a cross-cultural application. The third application

will present the item selection for a scale assessing emotional expressivity using self- and peer-

ratings. The presentation of these three applications will be in line with that provided in Sections

3.2 to 3.4, whereby a brief introduction into the scale itself will be given, followed by a description

of the associated problem representation and a quick overview of possible referential solutions.

The quality of each constructed scale will be validated and discussed.
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4.1 Item Selection in Longitudinal Studies: Application in

Mood Assessment

This section will show how a short-form of the Multidimensional Mood State Questionnaire

(MDBF; Steyer, Schwenkmezger, Notz, & Eid, 1997) can be constructed, reducing the original

pool of 58 items to a final version consisting of twelve items. The MDBF is a questionnaire

used to assess the current mood of participants. Mood is conceptualized as a facet of subjective

well-being (Eid & Diener, 2004) and can be differentiated from emotion mainly in that it is more

stable and not only a direct reaction to situational factors (Steyer et al., 1997). However, it is

less stable than other facets of subjective well-being, such as life satisfaction. As such, mood is

often used as an outcome in psychological research aimed at understanding situational influences

on well-being. In particular, the MDBF has been used in studies investigating a wide array of

factors influencing well-being, such as exam taking (Berger & Freund, 2012), physical activity

(Fritz, Halfpaap, Grahl, Kirkland, & Villringer, 2013), and confrontation with negative life events

(Korn, Sharot, Walter, Heekeren, & Dolan, 2014).

The data used here stem from the original study to construct the scale and are publicly

available (Steyer, Schwenkmezger, Notz, & Eid, 2004). 503 subjects were asked to report to

what extent each of the 58 original items described their current mood on a 5-point Likert-Scale

with the extremes “1 - not at all” and “5 - very much”. Appendix B.2 provides the full MDBF

questionnaire. 292 (58.052%) of participants were female and the mean age was 31.191 years

with a range from 17 to 78. The MDBF was assessed at four occasions, approximately three

weeks apart. More details on the sample and the recruitment procedure are provided by Steyer

et al. (2004).

The original item pool consists of 58 adjectives describing the current mood. These items

were selected from a general pool of adjectives used in different previous scales for the assessment

of mood by a group of experts. Steyer, Schwenkmezger, Eid, and Notz (1991) provide a detailed

description of this procedure. After preliminary analysis, items were selected to represent three

bipolar mood dimensions: (a) good vs. bad, (b) awake vs. tired, and (c) calm vs. nervous.

These facets are conceived of as correlated but distinguishable dimensions of current mood. The

bipolarity of the dimensions is an important aspect of the questionnaire. Each facet in the final

scales presented by Steyer et al. (1997) consists of item presenting the positive as well as the

negative pole of a dimension.

While the original item selection was based on the data from all four measurement occasions

in this data set (Steyer et al., 1997), only the first three occasions will be used during item

selection in this application. The fourth will be used for validation, with the aim of investigating

whether the qualities of the selection made based on the first three occasions can be replicated

at a later occasion.



173 4.1 Item Selection in Longitudinal Studies

Table 4.1: Theoretical factor structure of the original MDBF item pool.

Facet Pole Item Number No. of Items

Good
Positive 2 5 9 14 17 26 35 37 46 47 56 11
Negative 13 20 25 28 29 32 34 36 39 45 10

Awake
Positive 1 6 18 22 42 44 48 55 8
Negative 7 12 21 31 38 40 41 58 8

Calm
Positive 23 30 43 49 52 54 57 7
Negative 3 4 10 11 15 16 19 24 27 33 50 51 12

4.1.1 Problem Representation

As pointed out in Chapter 2 and then illustrated for the item selection of the Ryff-Scale in

Section 3.3, the main challenge in applying the stuart approach is representing the problem as

the triple (S, f,Ω) in each specific instance. Like in Section 3.3, the constraints Ω are discussed

first, because they imply the set of possible solutions in S.

The three general constraints in Ω are given by the IMKAR as:

(ω1) the sum of weights does not exceed capacity - Equation (1.10),

(ω2) items are selected specifically in their respective facets - Equation (1.12), and

(ω3) items may be assigned to only one facet in a solution - Equation (1.13).

The first constraint requires two additional parameters: the weight of the items and the

capacity of the facets. For this case, the weights of items are all assumed to be equal as wim =

1. In accordance to the two short forms of the MDBF presented by Steyer et al. (1997), the

constructed scale should consist of twelve items, four for each of the three dimensions. Note that

the number of items of the original full MDBF is 24. However, the original scale consists of two

alternate short versions each consisting of twelve items. Therefore, am = 4 gives the final piece

required to impose constraint ω1.

Constraints ω2 and ω3 comply with the original selection of adjectives for each of the six

general terms (two poles per dimension) as described by Steyer et al. (1991). Table 4.1 provides

an overview of the items and their dimensional allocation. Appendix B.2 shows the full 58 item

questionnaire. Only 56 of the total 58 adjectives are allocated to the scales, the remaining two

(item 8 “ärgerlich [angry]” and item 53 “ängstlich [afraid]”) are not considered for the final scale.

Due to the longitudinal structure of the data, a fourth constraint is imposed as: (ω4) the same

items are selected for repeated measures of the same construct - as given by Equation (2.32). As

shown in Sections 2.3.3 and 2.3.5, this implies that there are M = 9 facets (three dimensions,

each measured three times) assigned to V = 3 sets of repeated measures Rv, which are equal to

H = 3 unique partitions Qh. Thus, the set S contains a total number of 4.22 × 1010 possible
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Table 4.2: Filter matrix Fm containing the binary heuristics for the MDBF subscale “awake”.

1 6 7 12 18 21 22 31 38 40 41 42 44 48 55 58

1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1
6 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1
7 1 1 0 0 1 0 1 0 0 0 0 1 1 1 1 0
12 1 1 0 0 1 0 1 0 0 0 0 1 1 1 1 0
18 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1
21 1 1 0 0 1 0 1 0 0 0 0 1 1 1 1 0
22 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1
31 1 1 0 0 1 0 1 0 0 0 0 1 1 1 1 0
38 1 1 0 0 1 0 1 0 0 0 0 1 1 1 1 0
40 1 1 0 0 1 0 1 0 0 0 0 1 1 1 1 0
41 1 1 0 0 1 0 1 0 0 0 0 1 1 1 1 0
42 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1
44 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1
48 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1
55 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 1
58 1 1 0 0 1 0 1 0 0 0 0 1 1 1 1 0

solutions. In line with the evaluation performed by Steyer et al. (1997) for the original item

selections, strong factorial invariance is assumed across measurement occasions.

The original scale incorporates the bipolar nature of the MBDF dimensions by retaining the

same number of items for each of the poles per dimensions to ensure balance between positive and

negative mood in the assessment (Steyer et al., 1997). This balance on the MDBF dimensions

can be achieved in two ways in the stuart approach. First, the poles can represent different

sources of information for the same dimension, making each pole its own facet and determining

the consistency between the poles via the MTMM approach discussed in more detail in Section

2.3.4. An application using the MTMM approach in item selection is shown in Section 4.3. In this

application an alternative is used by localizing pheromones to arcs instead of nodes as discussed

in Section 2.2.2.

To achieve balance between the positive and negative poles of each dimension, heuristics can

be used to filter combinations of items by placing binary heuristics on arcs. Table 4.2 shows the

binary heuristics for the dimension “awake”. The rows represent the starting point of an arc,

the columns the end point. Thus, initially selecting item 1 eliminates all items indicating the

positive pole of “awake” from the next selection. Using Equation (2.12), the selection probability

of an item i′ stemming from the same pole as the item i previously selected is given by:

p(x(i,i′)m = 1|t) =
[φ(i,i′)m(t)]α0β

Im∑
i′=1

[φ(i,i′)m(t)]α[η(i,i′)m]β
= 0

and that of selecting an item i′′ from the opposite pole is given by
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p(x(i,i′)m = 1|t) =
[φ(i,i′′)m(t)]α1β

Im∑
i′′=1

[φ(i,i′′)m(t)]α[η(i,i′′)m]β
=

[φ(i,i′′)m(t)]α

Im∑
i′′=1

[φ(i,i′′)m(t)]α
.

Thus, even though heuristics are provided in H, the actual search process simplifies to a case

without heuristics and the parameter settings recommended in Section 3.9 for situations without

heuristics should be considered.

The final component needed for the problem representation is the objective function f(s). As

was done for the application regarding the Ryff-Scale in Equation (3.3), the objective function

is defined as

f(s) =

Φ(s), if s ∈ S∗

0, else
, (4.1)

where S∗ is the subset of viable solutions, i.e. solutions converging to results with positive-definite

latent, residual, and manifest covariance matrices. The pheromone function Φ(s) is defined as

Φ(s) =
1

1 + e−10(Mrelms−0.8)
+

(
.5− .5

1 + e−100(RMSEAs−.05)

)
+

(
.5− .5

1 + e−100(SRMRs−.05)

)
.

(4.2)

Here, Mrelms
is the average reliability over all facets in a given solution. This is used here

instead of composite reliability, because the repeated measures make a composite nonsensical

across all facets. As discussed in Section 2.1, this pheromone function implies the highest dis-

crimination between solutions at average facet reliabilities of .8. This value is chosen because

Steyer et al. (1997) show that the internal consistencies (computed via Cronbach’s α) of each

4-item facet lie between .73 and .89. For RSMEA as well as SRMR, the conservative values of .05

are used for the highest discrimination. In line with the limits derived for the objective function

used in the shortening of the Ryff-Scale in Section 3.3, the limits of f(s) can be determined by

simple computation. Using the worst-case values (Mrelms
= 0, RMSEA = ∞, SRMR = 1) the

lower limit is min Φ(s) ≈ 0 for the pheromone function, while min f(s) = 0, due to the definition

of f(s) in Equation (4.4). The upper limit, computed with Mrelms
= 1, RMSEA = 0, SRMR =

0, is max f(s) = max Φ(s) = 1.874.

Thus, with these settings in place, the stuart approach will search for a twelve item solution

with high composite reliability and close approximate fit, as indicated by the RMSEA and the

SRMR, while allowing only combinations consisting of the same amount of positive and negative

items (as imposed via Hm). Pheromones are localized to arcs.
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Table 4.3: Items for the three dimensions of the MDBF in the stsA with their Reliabilities at
each of the first three occasions. Items from the negative poles are emphasized.

Reliability Coefficients
Subscale Items Occ. 1 Occ. 2 Occ. 3

Good 2 14 28 32 0.835 0.882 0.890
Awake 1 31 41 55 0.853 0.883 0.897
Calm 3 19 23 57 0.754 0.802 0.830

Table 4.4: Items for the three dimensions of the MDBF in the stsB with their Reliabilities at
each of the first three occasions. Items from the negative poles are emphasized.

Reliability Coefficients
Subscale Items Occ. 1 Occ. 2 Occ. 3

Good 29 39 47 56 0.855 0.886 0.867
Awake 38 40 42 48 0.862 0.884 0.886
Calm 4 10 30 49 0.723 0.822 0.828

4.1.2 Original MDBF

As was the case in Section 3.4 for the Ryff-Scale, the original selection of items can be viewed as

a referential solution against which to contrast the performance of the selection made with the

stuart approach. However, as stated above, the original MBDF uses 24 items in the full scale,

but consists of two halves which can be used separately (Steyer et al., 1997). Thus, these two

twelve item versions will both be investigated as referential solutions.

The item allocation of the first original MDBF half (referred to as stsA ) is provided by Table

4.3. The reported reliabilities are computed in line with Yang and Green (2010). This solution

provides a model with unconvincing fit (χ2 = 2230.244, df = 594, p < .001, RMSEA = 0.074,

SRMR = 0.057, CFI = 0.852) when incorporating three measurement occasions and strong

factorial invariance over time. Using the quality function given in Equations (4.4) and (4.5), this

solution achieves f(stsA ) = 0.821.

The second original version (denoted stsB ) is shown in Table 4.4. As was the case for stsA , the

CFA for stsB provides a model with sub-optimal fit (χ2 = 2339.966, df = 594, p < .001, RMSEA

= 0.076, SRMR = 0.058, CFI = 0.84). Computing the objective function of this solution via

Equation (4.4) gives f(stsB ) = 0.806, which is extremely similar to the quality determined for

version A of the MDBF, indicating the success of the aim of creating two similar versions of this

scale.

To locate the quality of these two solutions in the overall space of possible solutions, 10000

random combinations were generated and evaluated. Note that these solutions were not truly

random, because they were required to adhere to the filter matrices Fm, which ensure an equal

number of positive and negative items for each facet. Of the random solutions, 4133 (41.33%)
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Figure 4.1: Histograms of the pheromone function of the random solutions. The dashed lines
represent the quality achieved by the original solutions stsA and stsB .

resulted in f(s) = 0 due to non-viable solutions. The historgram of the Φ(s) of the remaining

solutions is shown in Figure 4.1, with the vertical lines representing the quality of the two MDBF

forms. The best random solution resulted in f(s) = 0.946, given by a CFA with mediocre fit

(χ2 = 1907.909, df = 594, p < .001, RMSEA = 0.066, SRMR = 0.05, CFI = 0.875). The facet

reliabilities ranged from 0.724 to 0.893, thus providing a similar overall solution quality as the

two item combinations used in stsA and stsB .

4.1.3 Item Selection

Using the problem representation discussed in Section 4.1.1, the stuart approach was applied

to the first three measurement occasions of the MDBF assessment. As mentioned above, only

56 of the 58 items were deemed eligible for selection, because the two remaining items were not

attributable to any of the three theoretical dimensions.

In line with the results derived from the evaluation of the stuart approach in Section 3.7.1 and

the recommendations made in 3.9, a fixed parameter schedule with an iteration-best pheromone

deposit was chosen. The iteration-best deposit rule was chosen, because it proved to result in

better solution quality, while being much slower than the gb deposit rule. Because the problem

is relatively small in this instance, runtimes are not expected to be of substantial interest. In line

with the results presented in Section 3.7.1, the non-linearity coefficient was chosen to be α = 1.

The evaporation coefficient was set to ρ = .95 to avoid premature convergence and K = 32 ants

were used throughout the entire search. As described above, pheromones were set to be localized
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Table 4.5: Items for the three dimensions of the MDBF in the sgb with their Reliabilities at
each of the first three occasions. Items from the negative poles are emphasized.

Reliability Coefficients
Subscale Items Occ. 1 Occ. 2 Occ. 3

Good 2 14 28 34 0.848 0.890 0.900
Awake 1 38 41 42 0.861 0.882 0.878
Calm 10 19 49 57 0.776 0.821 0.840

to arcs, increasing the search complexity considerably. Because of this, larger values for K and

ρ were chosen than indicated by the evaluation results for the item selection in the Ryff-Scale.

Note that pheromones are initialized to φmax irrespective of their heuristic information, meaning

that pheromones on non eligible choices must also evaporate - requiring the minimum runtime

given by Equation (3.2). Appendix C.1 provides the annotated R-Syntax for the item selection

performed here.

The search using these parameters required 601 iterations (totaling 19232 CFA estimations)

and took 170.865 minutes to complete utilizing R version 3.3.2 (R Core Team, 2016) and lavaan

version 0.5-22 (Rosseel, 2012) on a machine with an Intel Core i7-5600U Quadcore CPU running

Ubuntu 16.04.

The items selected in sgb are shown in Table 4.5. Of these twelve items, eleven are also used

in one of the two original short forms, with the only exception being item 34 (“in gedrückter

Stimmung [in low spirits]”), an indicator of the good vs. bad facet. The model incorporating

strong factorial invariance for three measurement occasions showed sub-optimal model fit (χ2 =

1665.138, df = 594, p < .001, RMSEA = 0.06, SRMR = 0.048, CFI = 0.9). In combination with

the facet reliabilities shown in Table 4.5 this amounts to f(sgb) = 1.047.

It should be noted that despite the model fit of the sgb not being optimal, both RMSEA

and SRMR fall into the range of acceptable model fit (Hu & Bentler, 1999; Brown, 2015). As

discussed by Moshagen (2012), model fit, as assessed via indicators that are based on the the fit-

function, depends substantially on the size of the covariance matrix, i.e. the number of manifest

variables included in a model. In this case there are 36 Items used to indicate a total of 9 latent

variables, which may drastically reduce the values of the RMSEA and CFI. The SRMR is not

directly affected by this, because it is not based on the fit function, but instead on residuals.

Marsh, Hau, and Wen (2004) as well as Brown (2015) propose using model comparisons and

in-depth analysis of specific misfit, in addition to overall fit indexes, to determine whether a

model is suitable in a given situation. In this instance modification indices are investigated and

four alternative models are estimated to determine possible reasons for and the degree of model

misfit of the final solution, to determine whether the proposed measurement structure used here

for the MDBF is suitable.

The modification indices identify restrictions on the residual correlations as the main sources
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Table 4.6: Fit criteria of the five alternative models for the selected MDBF items. The five
models are denoted “Original” for the model used in the item selection, “Weak Inv.” for weak
measurement invariance, “Conf. Inv.” for configural invariance, “Auto Cor.” for a model allowing
for all auto-correlations of items, and “CTC(M-1)” for a model incorporating the CTC(M-1)
approach.

Original Weak Inv. Conf. Inv. Auto Cor. CTC(M-1)

N. Par. 108 126 144 144 225
χ2 1665.138 1623.254 1596.654 1323.196 747.206
df 594 576 558 558 477
p 0.000 0.000 0.000 0.000 0.000

RMSEA 0.060 0.060 0.061 0.052 0.034
SRMR 0.048 0.047 0.045 0.047 0.030

CFI 0.900 0.902 0.903 0.929 0.975

AIC 46483.824 46477.940 46487.340 46213.882 45799.891
BIC 46939.647 47009.735 47095.105 46821.647 46749.524

aBIC 46596.846 46609.800 46638.037 46364.579 46035.355

of misfit. Of these, suppressed correlations between items with the same valence (i.e. positive or

negative adjectives) at the same measurement occasion show the most potential for improving

overall model fit. To illustrate, the total sum of modification indices in the sgb is 3377.578,

of this 1387.034 (41.066%) are due to restrictions placed on residual correlations at the same

measurement occasion. In contrast, 393.075 (11.638%) are due to restrictions placed on the

autocorrelation of items. The sum of modification indices accrued by restrictions due to mea-

surement invariance was almost negligible. Note, that these numbers are purely illustrative.

A more direct approach is given if the four less restrictive models are estimated and com-

pared to the original model, to show which general conceptual modification to the measurement

model might be necessary. Table 4.6 shows a selection of fit criteria for the five models. The

model allowing for the auto-correlations of items imposed strong measurement invariance. The

CTC(M-1) approach is realized by setting the positive poles as the reference method and defining

additional, dimension specific residual factors for the items assessing the negative poles. Note

that in the original presentation of the MDBF scale by Steyer et al. (1997), EFA revealed a

fourth, general factor. This fourth factor is interpreted as representing a general response style

(with higher values indicating more extreme responses), but not included in this model due to the

substantial challenges associated with bi-factor CFA models (e.g. Eid, Geiser, Koch, & Heene,

2016). Instead, the CTC(M-1) structure is used here, as a model accounting for the lack of

unidimensionality in the assessment.

While a direct model comparison via the Likelihood-Ratio-Test (LRT) shows the restrictions

leading from weak to strong invariance to lead to significantly more misfit (χ2 = 41.883, df = 18,

p = 0.001), the overall fit does not decrease notably by incorporating these assumptions. In fact,
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both the BIC and its sample-size adjusted version shown in Table 4.6 prefer the model incorpo-

rating strong invariance, indicating how similar the fit of these two models is. Beyond that, the

restrictions associated with the weak invariance assumption does not significantly worsen model

fit when compared to the configural invariance model (χ2 = 26.6, df = 18, p = 0.087).

A somewhat different picture emerges when comparing the original model to the one allowing

for the auto-correlation of the residuals. A direct comparison via the LRT suggests that sup-

pressing these correlations may be too strict an assumption for the measurement model of the

MDBF (χ2 = 341.941, df = 36, p < .001). The main implication of a model allowing for residual

correlations is a weakening of the unidimensionality assumption with regards to the time-stable

components. If items are more strongly correlated with themselves than is suggested by incor-

porating only the correlations of the latent variables over time, this may imply different stability

for certain subdimensions within the dimensions that are defined at each single occasion of mea-

surement. On the other hand, this may also be due to stable measurement bias introduced by,

for example, item phrasing. In this case it is reasonable to suspect that this bias is introduced by

the enforced bipolarity of the items assessing these three dimensions. These residual correlations

lie in the range of [0.028; 0.259] and their average is 0.151.

As shown in Table 4.6, the most drastic improvement in model fit is achieved if the CTC(M-

1) is introduced to accommodate for the bipolarity in the assessment of the dimensions. This

is not surprising given the increase in model parameters (the model requires an additional 117

parameters when not imposing additional assumptions). However, this model results in a non-

positive definite latent covariance matrix due to auto-correlations of method factors, depicting

the negative pole of the “awake” dimension, exceeding 1 and thus, does not constitute a real

alternative. However, to inform a possible change in the conceptual measurement model it can

be informative to investigate the degree to which items are specifically measures of the negative

pole - i.e. their method specificity (c.f. Eid, Lischetzke, Nussbeck, & Trierweiler, 2003). In this

case the method specifities range from 0.11 to 0.507, with the highest observable for the “calm”

dimension. This, in combination with relatively high stability of the negative-pole specific effects,

indicates the possibility of rethinking the measurement model of the MDBF to incorporate these

phrasing specific effects.

Despite these possible extensions and alterations of the basic MDBF measurement model,

it should be noted that the original model showed adequate fit. The extension to a CTC(M-

1) structure to include the specific factors for the negative poles may be viewed as excessive,

because of the immense increase in model complexity. Additionally, simple adjustments in terms

of measurement invariance do not improve the model drastically. Thus, the basic model is kept

and validation is attempted for the fourth measurement occasion.
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4.1.4 Selection Validation

To determine whether the item selection is successful in producing a scale with results that are

replicable, the fourth occasion of the original data collection was not used in the selection process.

Instead, it is used here as a longitudinal version of a validation sample. Three steps are used to

appraise the quality of the solution sgb: (a) results from the three occasion specific models are

compared to those of the holdout occasion, (b) the fourth occasion is included in a longitudinal

model to determine whether the invariance holds for the fourth occasion, and (c) the selection is

compared to an occasion specific selection performed at the fourth occasion.

Figures 4.2 and 4.3 show the path diagrams of the measurement models for all four occasions

with the unstandardized estimates. A glance at the factor loadings reveals very similar patterns

for the last three occasions, while the first occasion seems somewhat different. This is in line

with to so-called “socratic effect” (McGuire, 1960; Rosen & Wyer, 1972; Wyer, 1974), which

implies that measures taken at later occasions in a study are more homogeneous, due to the

participants’ desire to achieve cognitive consistency with regards to the constructs that are being

assessed. This may indicate that a questionnaire, such as the MDBF, changes its measurement

structure slightly with participants’ increasing familiarity with it, becoming more reliable and

unidimensional at later occasions in a longitudinal study. This could be interpreted to mean

that the first measurement occasion should not be included in the process of item selection, if

the goal of scale construction is a measure which is ideal for longitudinal assessments. However,

the argument for its inclusion is that, in most studies, the first measurement occasion is vitally

important and not merely to acquaint participants with the assessment material. Therefore,

including the first occasion in the process of item selection will result in a final questionnaire

that contains those items that are adequate for both, longitudinal invariance and inclusion of the

first occasion, though likely not the optimum for either.

Table 4.7 shows the model fit of the occasion specific models. Astonishingly, the measurement

model does not achieve tolerable fit at any of the occasions, despite the overall model for the

three occasions investigated in the previous section being adequate. It should be noted that,

despite this degree of misfit, the selection performed via the stuart approach outperforms both

forms presented by Steyer et al. (1997).

Including the fourth occasion into the longitudinal model results in a model with adequate

approximate global fit (RMSEA = 0.058, SRMR = 0.048), though the comparison with the

independence model does not indicate a suitable measurement model (CFI = 0.877). In terms

of exact fit, the model is rejected by the χ2-Test (χ2 = 2875.385, df = 1068, p < .001). When

assuming strong factorial invariance for the first three occasions, model comparisons testing for

weak vs. configural invariance (χ2 = 16.039, df = 9, p = 0.066) as well as strong vs. weak

invariance (χ2 = 20.882, df = 12, p = 0.052) of the fourth occasion did not lead to rejection

of the invariance assumptions. Although the direct comparison between configural and strong
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Figure 4.2: Path diagrams of the occasion measurement models for the selected MDBF items.
Residuals are not depicted, because they were not constrained in the longitudinal model.
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Figure 4.3: Path diagrams of the occasion measurement models for the selected MDBF items.
Residuals are not depicted, because they were not constrained in the longitudinal model.
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Table 4.7: Fit criteria of the four occasion specific models for each set of selected MDBF items.

Occ. 1 Occ. 2 Occ. 3 Occ. 4

sgb

χ2 277.611 265.543 284.852 363.641
df 51 51 51 51
p 0.000 0.000 0.000 0.000

RMSEA 0.094 0.091 0.095 0.110
SRMR 0.053 0.040 0.042 0.053
CFI 0.920 0.938 0.938 0.906

AIC 16425.791 15551.476 15285.014 15334.280
BIC 16261.188 15386.873 15120.411 15169.677
aBIC 16302.001 15427.686 15161.225 15210.491

stsA

χ2 426.053 414.504 517.171 482.462
df 51 51 51 51
p 0.000 0.000 0.000 0.000

RMSEA 0.121 0.119 0.135 0.130
SRMR 0.071 0.062 0.069 0.070
CFI 0.866 0.895 0.886 0.871

AIC 16452.266 15619.039 15115.485 15411.945
BIC 16287.663 15454.436 14950.882 15247.342
aBIC 16328.477 15495.250 14991.696 15288.156

stsB

χ2 480.541 437.064 432.766 460.037
df 51 51 51 51
p 0.000 0.000 0.000 0.000

RMSEA 0.129 0.123 0.122 0.126
SRMR 0.078 0.069 0.059 0.063
CFI 0.851 0.893 0.894 0.881

AIC 16618.443 15555.356 15609.882 15435.541
BIC 16453.840 15390.753 15445.279 15270.938
aBIC 16494.654 15431.566 15486.093 15311.752
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measurement invariance for the fourth occasion via LRT results in rejection of the invariance

assumptions (χ2 = 36.921, df = 21, p = 0.017), the information criteria unanimously favored

the more restrictive solution assuming the equality of factor loadings and intercepts across all

four occasions (AIC: 61422.824 vs. 61427.902, BIC: 62081.236 vs. 62174.947, aBIC: 61586.078

vs. 61613.133). As was the case for the original model with three occasions, modification indices

suggest that most of the misfit is due to the restrictions placed on residual covariances within

each measurement occasion.

Finally, to locate the quality of the solution in the space of possible solutions, 10000 pseudo-

random solutions were constructed using only the fourth occasion. As was the case in the previous

section, these solutions are all subject to the constraint that each facet must consist of two positive

and two negative items. Of these 10000, a total of 9462 resulted in viable solutions. Additionally,

stuart was used to search for a selection of items at the fourth occasion using the same parameter

settings that were used in the construction presented in Section 4.1.3. This solution showed very

similar model fit as the one derived from the first three occasions (χ2 = 281.584, df = 51,

p < .001, RMSEA = 0.095, SRMR = 0.043, CFI = 0.93). The reliabilities of the facets differed

by no more than .011 (for the subscale “good”). Figure 4.4 shows the histogram of Φ(s) of the

9462 viable pseudo-random solutions, with the quality of both solutions included. In terms of

the quality defined in Equation 4.4, the occasion specific solution proved slightly better - with

f(s) = 0.956 than the application of the solution found for the first three occasions, for which

f(s) = 0.848.

4.1.5 Discussion

This section presented an application of the stuart approach to a longitudinal data setting

with a filtering approach to heuristic information. Although the final scale may not deliver

satisfactory model fit, it does outperform the manual selections with regards to fit and scale

reliability. Additionally, it is much easier to implement than the item selection performed by

Steyer et al. (1997). Appendix C.1 shows the entire R-code necessary for the application of the

stuart approach to the MDBF.

As pointed out throughout this section, one of the main challenges with item selection in this

instance is the requirement of using the same number of positive and negative items. This leads to

subscales that are not truly unidimensional, which, in turn, reduces the fit of the measurement

model. Thus, it seems promising to either abandon the idea of unidimensional scales which

assess the positive and negative in a balanced fashion, or to acknowledge the differences in the

poles by introducing an MTMM structure to the measurement model. An application of the

stuart approach in a situation with MTMM data structure is shown in Section 4.3. Completely

removing heuristic information from the search results in a selection of items that provides a well-

fitting model across three measurement occasions (χ2 = 992.373, df = 594, p < .001, RMSEA =
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Figure 4.4: Histograms of the pheromone function of the random solutions. The solid line
represents the quality achieved by the solution found in the first three occasions, the dashed line
the solutions found specifically for the fourth occasion.

0.037, SRMR = 0.037, CFI = 0.971). Unsurprisingly, this scale consists predominantly of items

assessing the negative pole of the dimensions of the MDBF (with item 49 “ruhig [calm]” being to

sole exception).

4.2 Item Selection in Multiple Groups: Application in Big

Five Assessment

This section presents the item selection from the international personality item pool (IPIP;

International Personality Item Pool: A Scientific Collaboratory for the Development of Advanced

Measures of Personality Traits and Other Individual Differences, 2016; Goldberg et al., 2006)

to obtain a ten-item scale for the quick and cursory assessment of the Big-Five personality

dimensions.

The IPIP is a collection of over 3000 items for the assessment of different personality dimen-

sions. The underlying aim of the project is to “provide rapid access to measures of individual

differences, all in the public domain, to be developed conjointly among scientists worldwide”

(International Personality Item Pool: A Scientific Collaboratory for the Development of Ad-

vanced Measures of Personality Traits and Other Individual Differences, 2016), which is why it

contains such a wide collection of items related to the assessment of personality. Being in the

public domain, the IPIP has spawned over 600 scientific papers and 250 different scales in over
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40 different languages. Its origins lie in the works of Hendriks, Hofstee, and Raad (1999), who

constructed the Five-Factor Personality Inventory - a scale of 100 items aimed at assessing five

general personality factors. This inventory, and the approach of the IPIP in general, is based on

the lexical approach and is focused on items describing specific behaviors, rather than general

motives and tendencies. Currently, perhaps the most prominent scales based on IPIP components

are the 50-item scale proposed by Goldberg (1992) and the 120-item IPIP NEO-PI-R proposed

by Johnson (2014).

However, these two, along with many other scales derived from or contributing to the IPIP,

have the important characteristic of being extremely long, detailed questionnaires. Johnson’s

(2014) IPIP NEO-PI-R measures 30 specific subscales of the Big Five with 4 items each, which

not just entails a lengthy assessment for study participants, but also complex analysis for the

researcher. As a point of general interest in psychology, the assessment of personality traits is

often part of studies which focus primarily on other constructs, thus necessitating a short scale

providing rough approximations of the Big Five personality traits.

There has been a considerable amount of research on the construction of extremely short

scales for the assessment of the Big Five. Gosling, Rentfrow, and Swann (2003) constructed a

five- and a ten-item scale, derived mainly from the items constructed by Goldberg (1992), using

an exclusively theory guided approach to item selection. Due to the limitations in modeling

possibility and the psychometric shortcomings of assessing each trait with only one item, they

recommend using the ten-item version, called TIPI (Ten Item Personality Inventory). The TIPI

has been shown to lead to adequate results in a CFA framework (e.g. Ehrhart et al., 2009).

Similarly, Rammstedt and John (2007) constructed a ten-item version of the BFI-44 (John,

Donahue, & Kentle, 1991), also stressing the need for these extremely short assessments of

personality traits, especially in online assessments. Another widespread short-version is the

Mini-IPIP presented by Donnellan, Oswald, Baird, and Lucas (2006).

In addition to being short, a point of relevance in constructing a scale for use in modern study

settings is its cross-cultural applicability. The TIPI, for example, is available in 20 languages

and the original article has been cited 1233 times1, indicating its usefulness to researchers from

a wide array of countries and areas of research. As is the case with IPIP, the TIPI is publicly

available.

In this application, a ten-item short scale is constructed from a pool of 300 IPIP items

assessing a total of 30 different facets of personality - each of the Big Five personality traits

Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism is divided into six

specific sub-dimensions (Johnson, 2014). To ensure that the ten item short version constructed

here has a minimal degree of globality in the dimensions it assesses, item selection is limited

in such a way that it ensures that selected items do not assess the same sub-dimension of a

personality trait. It is easily possible to select two items from the pool to represent a dimension

1As determined via Web of Science, January 10, 2017.
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which are, in effect, almost identical. For example items 176 (“Remain clam under pressure”)

and 296 (“Am calm even in tense situations”) are both indicators of neuroticism. However, they

are also both indicators of the same subscale, namely “vulnerability”. Selecting these two items

to assess the global neuroticism function may result in very high reliability (because these two

items are bound to be highly correlated) and good overall model fit, but would be a disservice to

construct validity. These limitations are imposed via heuristics and are discussed in more detail

in the following section.

Data stem from Johnson’s (2014) assessment of 307313 participants for the construction of the

120-item IPIP NEO-PI-R and are publicly available via the Open Science Framework at https://

osf.io/tbmh5/. Participants were self-selected, not actively recruited, and anonymously filled

out the questionnaire online. For more details on the assessment procedure see (Johnson, 2014).

Due to the online nature of the assessment, participants stem from a wide variety of different

countries. Specifically, 238 different countries provided at least one participant - an astonishing

feat, given that the number of sovereign states as of 2000 (the year of data collection) was no

larger than 213.

To ensure the intercultural applicability of the selected ten-item version constructed in this

section, three countries were selected from the pool of countries: Mexico, France, and Malaysia.

These three were selected specifically, because they provide roughly the same number of par-

ticipants (NMX = 700, NFR = 854, NMY = 911)2 and are in vastly different regions of the

earth. A selection was made to ensure empirical identification of the CFA in each country (i.e.

an adequate sample size within each group) and to reduce estimation time of the CFAs for this

application. Beyond these three countries, South Africa was selected as a fourth country to pro-

vide a validation sample. South Africa was chosen specifically, because it provides a large sample

(NZA = 927) and is vastly different from the three countries used to select the ten items.

4.2.1 Problem Representation

In line with Section 1.3, the problem of selecting items from the 300-item pool is represented by

the triple (S, f,Ω), consisting of the set of possible solutions S, the objective function f , and

the constraints Ω. Because the set of possible solutions is subject to the constraints that are

imposed, Ω is discussed first.

As shown in Section 1.3.2, the basic constraints associated with all applications of the stuart

approach are:

(ω1) the sum of weights does not exceed capacity - Equation (1.10),

(ω2) items are selected specifically in their respective facets - Equation (1.12), and

2The countries’ names are abbreviated according to ISO 3166 alpha-2, available at http://www.iso.org/iso/

country_codes

https://osf.io/tbmh5/
https://osf.io/tbmh5/
http://www.iso.org/iso/country_codes
http://www.iso.org/iso/country_codes
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(ω3) items may be selected to only one facet - Equation (1.13).

In this application the weights of all items are set to be wim = 1 and the capacity of each

of the M = 5 facets is set to aim = 2. This combination ensures the selection of two items

per dimension, thus constructing a ten-item scale. Beyond these constraints, the multiple group

aspect of the application is handled via:

Cg = Cg′ (2.22, repeated)

and

(Sg, fg,Ωg) = (Sg′ , fg′ ,Ωg′), (2.23, repeated)

stating the assumption that the itempool consists of the same items for all groups and that the

problem is identical for all groups. The latter implies the same constraints, objective function,

and set of possible solutions across the three countries. Thus, the item selection is performed in-

dependently of the group, and the multiple groups aspect is integrated only in the CFA estimation

(as discussed in Section 2.3.2).

Within the CFAs, two invariance assumptions are imposed. First, strong factorial invariance

is assumed across nations, thus implying the equality of factor loadings λimg and intercepts αimg

for all values of g. This assumption allows for the estimation of latent means κmg in two of

the three groups as contrasts to the reference group. In this instance Mexico is chosen as the

reference group, but model fit and reliabilities of the final scale are independent of this choice.

Second, essentially τ -equivalent measures are assumed within each facet, implying λimg = 1 for

all indicators i, all facets m, and all groups g. This is done to ensure the independence of model

identification from the empirical values of the latent correlations, because the different personality

facets are not necessarily sufficiently correlated in this collection of items (e.g. Maples, Guan,

Carter, & Miller, 2014). In cases with only two indicators it is necessary for latent variables to

be correlated to identify a τ -congeneric measurement model without further restrictions - this is

not the case if the indicators are constrained to be essentially τ -equivalent (c.f. Brown, 2015).

Because of the size of the item pool, a complete tabulation of the item allocation in the

original is not presented here.3 Each of the Big Five dimensions is assessed with 60 items. As

pointed out above, the items assesses not only the five top-level dimensions, but also six specific

sub-facets per dimension (Johnson, 2014). Each of these sub-facets is associated with 10 items

in the original item pool. Selecting two items for each dimension to construct a 10 item short

scale results in a total number of 1.74× 1016 possible solutions in S.

To ensure that selected items assess different sub-facets, heuristics can be defined as dimension-

3A complete item allocation can be found at http://ipip.ori.org/newNEOFacetsKey.htm.

http://ipip.ori.org/newNEOFacetsKey.htm
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specific filter matrices. Because the restriction imposed concerns combinations of items, heuristics

(and thereby the item selection in general) must be localized to the arcs between items. This

approach was described in Section 2.2.2 and shown for the application of the MDBF in Section

4.1.

In addition to the filter matrices Fm, a promising approach to guiding the search in item

selection is providing correlations between the items as heuristic information. In this instance, the

scales consist of two items and are assumed to be essentially τ -equivalent. Thus, scale reliabilities

are closely tied to bivariate correlations and providing these correlations as information in each

selection step should guide the search in the direction of more reliable scales. To emphasize

stronger correlations and to equally favor strong positive and strong negative correlations, the

absolute values of z-Transformed Pearson correlations (Fisher, 1924) are used (denoted Zm) in

addition to the filter matrices Fm to obtain the heuristics via

Hm = ZmFm. (4.3)

In this case the correlations from the entire sample encompassing participants from Mexico,

France, and Malaysia are used.

The objective function f is defined in this application as

f(s) =

Φ(s), if s ∈ S∗

0, else
, (4.4)

with S∗ being the subset of viable solutions. The pheromone function Φ(s) is defined as

Φ(s) =
1

1 + e−25(min relms−0.4)
+

(
1− 1

1 + e−100(RMSEAs−.05)

)
+

(
1− 1

1 + e−100(SRMRs−.05)

)
.

(4.5)

In this instance, the minimal reliability of the five scales is relevant to the quality function in-

stead of the average reliability or the composite reliability, because of the danger of constructing

an extremely unreliable dimension with just two items and the remaining four reliabilities quan-

tifying the solution as good, regardless. A reliability of .4 was chosen as the point of strongest

discrimination because this is in line with the lowest reliabilities found for the subscales of the

TIPI (Romero, Villar, Gómez-Fraguela, & López-Romero, 2012). The pheromone function is

limited from below by Φ(s) ≈ 0 (in a case with min relms = 0, RMSEA = ∞, and SRMR =

1) and the objective function is limited by f(s) = 0, due to the value assigned to s /∈ S∗. The

upper limit for both is max f(s) = max Φ(s) = 2.987 (for a solution with RMSEA = 0, SRMR

= 0, and min relms = 1).
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4.2.2 Item Selection

With the problem representation in place, parameters for the search algorithm must be defined.

This application provides the search with heuristic information and thus the parameters found

to be most promising in Sections 3.7.3 and 3.8.4 are used to guide parameter selection, in this

instance.

Both non-linearity coefficients (α and β) are set to 1, because it was the most promising

setting for conditions with heuristic information in terms of solution quality. In line with the

results presented in Section 3.7.3, the evaporation coefficient is set to ρ = .95. Due to the

problem size being much larger in this case (even more so due to the localization to arcs) than

in the parameter evaluation presented in Chapter 3, the number of ants per iteration is set to

K = 64 and the maximum number of iterations is set to T = 512 after the last sgb was found.

Additionally, the gb deposit rule is chosen because it proved much faster in Section 3.7.3, with

only minute impact on the average and worst-case RD.

Five independent runs of the stuart approach were performed, all leading to extremely poor

solutions. Closer inspection revealed that 93.482% of all constructed solutions were not viable.

The overwhelming percentage of these solutions were not viable because the latent covariance

matrix Ψg was not positive-definite in at least one of the countries. This was due to facets being

indicated by two almost uncorrelated items, thereby leading to negative variance estimates for

the latent variables.

A possible solution to this problem is increasing the value of β, thereby making the selection

of an item less likely when it is only weakly correlated to the first selected item. This, however,

has the drawback of intensifying the differences between acceptable correlations as well, which

may lead to too little exploration. Due to the definition of the selection probability defined in

Equation (2.12) for cases with localization to arcs, the relative initial selection probability of an

item c2 over an item c3 after having chosen c1 is

(
zcor[c1,c2]

zcor[c1,c3]

)β
, (4.6)

meaning that, for a value of β = 5, a path with an associated correlation of .6 would be 56.323

times more likely to be chosen than a path with an associated correlation of .3.

The number of impermissible solutions can be reduced further by imposing another filtering

condition. Most improper solutions were due to negative latent variances, caused by a lack of

covariance between the two indicators chosen. A simple way reduce the number of these problems

is to disallow all combinations of items which are correlated to a sufficiently small extent. In this

case |cor(ci, ci′)| > .2 is chosen as this cutoff criterion. In the stuart approach the coefficient

proposed by Yang and Green (2010) is used to determine scale reliability. As reported by Yang

and Green (2010, p. 68) this is computed as
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rel(mg) =

∑
ΛmgΨmgΛ

>
mg∑

ΛmgΨmgΛ>mg + Θmg
(4.7)

for the facet m in group g. Because of the assumption of essentially τ -equivalent measures,

var(ξmg) approximates cov(cimg, ci′mg) and all λimg = 1. This means that a two-item facet,

for which the correlation between the two items is .2, would approximately achieve a reliability

of 0.286. Thus, this additional filter precludes any possible facets with a reliability below this

approximate value from being constructed.

In addition to excluding specific combinations of items from the set of possible solutions, the

minimum correlation filter reduces the problem-size by removing all items which do not have a

correlation of a magnitude larger than .2 with any item not pertaining to the same personality

sub-scale. Specifically, this reduces to number of items (from the original size of 60 per Dimension)

to 44 for Openness, 59 for Conscientiousness, 54 for Extraversion, 54 for Agreeableness, and 54

for Neuroticism.

In contrast to the item selection for the MDBF presented in Section 4.1, there is no prior,

referential solution in this case. Thus, the heuristically favored solution is presented here as one

possibility. The heuristically favored solution sheu is most likely to be constructed at the first

iteration, when all arcs between items have the same amount of pheromone deposited. In this

initial iteration the selection probability, determined via

p(x(i,i′)m = 1|t) =
[φ(i,i′)m(t)]α[η(i,i′)m]β

Im∑
i′=1

[φ(i,i′)m(t)]α[η(i,i′)m]β
, (2.12, repeated)

is dependent only on the weighted heuristic information provided by Φβm. This contains the

z-transformed correlations that are |cor(ci, ci′)| > .2 between items not stemming from the same

sub-dimension. Therefore, the heuristically favored solution is the solution choosing the items

that are most highly correlated and from different subdimensions. Table 4.8 shows the items of

this solution, with their corresponding dimensions and subdimensions in the original 300-item

scale. The correlation (and its Fisher z) pertain to the relation between the two items for each

single dimension in the combined sample.

This solution results in a CFA with sub-optimal fit (χ2 = 473.897, df = 100, p < .001,

RMSEA = 0.067, SRMR = 0.044, CFI = 0.914). Reliabilities are high for subscales consisting of

only two items, with an average reliability of 0.654 (Range: [0.494; 0.777]), which is not surprising

given the fact that the main selection criterion for item combinations was their correlation.

As pointed out, many of the possible combinations result in non-positive-definite latent covari-

ance matrices in the CFA, making the generation of an informative random sample of solutions

much more difficult than was the case for either the Ryff-Scale (Section 3.2) or the MDBF (Sec-

tion 4.1). In this instance, generating 10000 random samples under the constraints imposed by
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Table 4.8: Heuristically favored 10-item scale, selected from the 300-item IPIP. Items were
recoded prior to analysis in line with the dimension they assess.

Dimension Sub-Dimension No. Item Correlation
(Fisher z)

Openness
Intellect 143 Enjoy thinking about things. 0.396
Imagination 153 Spend time reflecting on

things.
(0.419)

Conscientiousness
Self-Discipline 145 Carry out my plans. 0.562
Achievement-Striving 80 Turn plans into actions. (0.636)

Extraversion
Excitement-Seeking 112 Enjoy being part of a loud

crowd.
0.565

Gregariousness 217 Don’t like crowded events. (0.641)

Agreeableness
Altruism 104 Am concerned about others. 0.422
Sympathy 149 Am not interested in other

people’s problems.
(0.451)

Neuroticism
Anger 96 Am often in a bad mood. 0.540
Depression 131 Have frequent mood swings. (0.605)

the two filtering conditions described above, results in only 39 (0.39%) viable solutions. Therefore

the presentation of random solutions is not deemed appropriate as a benchmark for the quality

of the final and heuristically favored solutions.

The final solution constructed under the constraints discussed, is shown in Table 4.9. This

solution results in good overall model fit when examining the RMSEA (0.049) and the SRMR

(0.039), but the value of the CFI is relatively low (0.915). The latter is most likely due to the

low correlations between the items (range: [-0.18, 0.474]), which results in a better fitting fully

constrained null-model than in most other cases. The exact test for model fit is, unsurprisingly,

significant (χ2 = 293.631, df = 100, p < .001).

The country specific reliabilities of the subscales, as well as the latent means are shown in

Table 4.10. The latent means are constrained to zero in the Mexican sample to identify the mean

structure of the model. Therefore, the latent means are interpretable as the unidimensional mean

differences between the Mexican (the reference group) and the French or the Malaysian sample,

respectively. Table 4.10 indicates the significance of these mean differences at p < .05.

The reliabilities of the dimensions are somewhat acceptable for dimensions consisting of only

two items, ranging from 0.398 (Agreeableness assessed in the French sample) to 0.655 (Neuroti-

cism assessed in the French sample).
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Table 4.9: The final 10-item scale, selected from the 300-item IPIP. Items were recoded prior
to analysis in line with the dimension they assess.

Dimension Sub-Dimension No. Item

Openness
Intellect 143 Enjoy thinking about things.
Imagination 153 Spend time reflecting on things.

Conscientiousness
Orderliness 190 Leave a mess in my room.
Self-Discipline 25 Get chores done right away.

Extraversion
Gregariousness 7 Love large parties.
Excitement-Seeking 292 Dislike loud music.

Agreeableness
Trust 64 Trust what people say.
Cooperation 19 Am easy to satisfy.

Neuroticism
Anger 66 Get upset easily.
Depression 131 Have frequent mood swings.

Table 4.10: Reliabilities and latent means for the dimensions of the IPIP 10-item short scale.
Items were recoded prior to analysis in line with the dimension they assess. Means significant at
p < .05 are emphasized.

Reliabilities Latent Means

Dimension Malaysia France Mexico Malaysia France Mexico

Openness 0.493 0.589 0.597 -0.080 0.040 0.000
Conscientiousness 0.598 0.545 0.461 -0.202 -0.126 0.000
Extraversion 0.404 0.510 0.529 -0.480 -0.400 0.000
Agreeableness 0.446 0.398 0.425 0.097 0.014 0.000
Neuroticism 0.632 0.655 0.631 0.155 -0.073 0.000
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Table 4.11: Fit criteria of the four country specific models.

Mexico France Malaysia South Africa

χ2 65.148 72.140 113.626 95.215
df 30 30 30 30
p 0.000 0.000 0.000 0.000

RMSEA 0.041 0.041 0.055 0.048
SRMR 0.035 0.033 0.042 0.034
CFI 0.949 0.948 0.892 0.928

AIC 22115.398 26344.264 27840.382 28316.728
BIC 22274.685 26510.511 28008.891 28485.847
aBIC 22163.553 26399.361 27897.736 28374.690

4.2.3 Selection Validation

As discussed previously, the South African sample (with NZA = 927) is used as a pseudo-

validation sample to investigate the applicability of the 10-item short scale in a different country.

As was the case for the application to the MDBF, this validation is performed in three steps:

(a) results from the three country specific models are compared to those of the South African

sample, (b) the fourth country is included in the multigroup model to determine whether the

invariance holds across these different settings, and (c) the selection is compared to an selection

performed only within the South African sample.

Table 4.11 shows the fit criteria for each of the country specific measurement models. Close-

ness of fit indices show good fit of the model within the samples from Mexico, France, and South

Africa. Surprisingly, fit is not worst in the validation sample, but instead in the Malaysian

sample. Here, RMSEA are SRMR are within the boundaries of acceptable fit, but the CFI is

worryingly low. Overall, this may indicate the necessity of constructing a different solution,

which might be more suited for the application in Malaysia.

Tables 4.12 through 4.15 show the latent correlations in group specific models for the four

countries. While the correlations vary in size rather drastically, the patterns across all four

nations seem consistent. Note that the latent correlations are not restricted in the multiple

groups model, so their differences have no impact on the misfit of the overall model. However, as

a part of investigating the cross-cultural applicability of the short-form, it is necessary to ensure

that relationships between the different dimensions are relatively stable across settings and are in

line with theoretical expectations. Most prominent is the positive correlation between Openness

and Neuroticism across all four samples, which runs contrary to the findings in other short scales

(e.g. Donnellan et al., 2006; Gosling et al., 2003). This may indicate a too narrow assessment of

Openness (as intellectuality) and/or Neuroticism (as emotional instability).

The means of the ten selected items are shown in Table 4.16. Especially the difference



196

Table 4.12: Latent correlations and variances (in the diagonal) in Mexico.

O C E A N

O 0.394
C -0.200 0.523
E 0.021 -0.209 0.715
A 0.024 0.159 0.181 0.394
N 0.209 -0.431 0.065 -0.457 0.831

Table 4.13: Latent correlations and variances (in the diagonal) in France.

O C E A N

O 0.309
C -0.131 0.674
E -0.076 -0.059 0.624
A -0.202 0.072 0.155 0.319
N 0.134 -0.249 -0.177 -0.410 0.852

Table 4.14: Latent correlations and variances (in the diagonal) in Malaysia.

O C E A N

O 0.257
C -0.227 0.719
E -0.044 -0.169 0.423
A 0.068 -0.065 -0.032 0.343
N 0.155 -0.182 0.073 -0.151 0.757

Table 4.15: Latent correlations and variances (in the diagonal) in South Africa.

O C E A N

O 0.247
C -0.044 0.710
E -0.192 -0.117 0.622
A -0.130 -0.029 0.211 0.270
N 0.034 -0.194 0.095 -0.252 0.891
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Table 4.16: Country specific item means and their differences for the ten selected items. Items
were recoded prior to analysis in line with the dimension they assess.

Mexico France Malaysia South Africa

Openness
Item 143 4.43 4.40 4.33 4.47
Item 153 4.02 4.21 4.01 4.21

-0.41 -0.19 -0.32 -0.27

Conscientiousness
Item 190 3.01 2.98 2.97 2.87
Item 25 3.13 2.95 2.84 2.81

0.12 -0.03 -0.13 -0.05

Extraversion
Item 7 3.10 2.74 2.67 2.89
Item 292 3.70 3.27 3.18 3.76

0.60 0.54 0.51 0.87

Agreeableness
Item 64 3.23 3.19 3.24 3.12
Item 19 2.95 3.04 3.17 3.17

-0.28 -0.16 -0.07 0.05

Neuroticism
Item 66 2.90 2.86 3.07 3.03
Item 131 3.02 2.90 3.16 2.96

0.12 0.04 0.09 -0.07

between the means of two items pertaining to the same dimension is of relevance to the strong

measurement invariance assumption, which is why they are included in the table. As pointed

out in Section 2.3.2, strong measurement invariance implies that the mean difference between

groups in manifest variables is due to latent mean differences, and thus unidimensional. Large

discrepancies in mean differences between items pertaining to the same dimension may indicate

country specificity in item difficulty beyond simple latent mean differences. With regards to

Extraversion, Agreeableness, and Neuroticism, Table 4.16 indicates some relations which may

call the group-independence of the short-scale into question.

A more definite decision regarding the inter-cultural replicability of the factor-structure is

given by including the South African sample into the multigroup model. In this instance, two

models are estimated: one incorporating strong and one incorporating weak factorial invariance.

Note that the model utilizing weak factorial invariance is identical to the one with configural

invariance due to the assumption of essentially τ -equivalent measures. The model incorporating

all four countries and strong factorial invariance resulted in adequate model fit (χ2 = 440.492,

df = 135, p < .001, RMSEA = 0.052, SRMR = 0.04, CFI = 0.904). As was the case in the initial

sample of three countries, the CFI is rather low in this instance, but RMSEA and SRMR are well

within the range of acceptable model fit (Hu & Bentler, 1999; Brown, 2015). As was indicated

by Table 4.16, however, constraining the intercepts to be equal across countries does prove a bit

too restrictive, with the LRT rejecting this assumption (χ2 = 51.646, df = 5, p < .001) and

the information criteria unanimously favoring the less restrictive model (AIC: 104681.136 vs.
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104639.49, BIC: 105447.283 vs. 105436.283, aBIC: 105050.1 vs. 105023.212).

Finally, the item selection performed for the other three countries results in a CFA with ac-

ceptable fit when applied only to the South African sample (the fit criteria are given in Table

4.11). Constructing a solution with the stuart approach, under the constraints described pre-

viously, resulted in a short-form overlapping with the one presented above in only three items.

Notably, both items selected for Openness were also selected within the South African sample,

as was Item 190, an indicator of the Conscientousness dimension. This model showed very good

fit (χ2 = 56.357, df = 30, p = 0.002, RMSEA = 0.031, SRMR = 0.025, CFI = 0.975) within the

South African sample.

While both selections provide well fitting measurement models in the South African sam-

ple, there are drastic differences in the reliabilities of the two-item dimensions. Predictably, the

Openness dimension displays the same reliability in both solutions (0.527), and both Conscien-

tiousness (0.525 vs. 0.584) and Extraversion (0.628 vs. 0.521) result in similar reliailities. For

Agreeableness, however, the solution generated from the three other countries resulted in a re-

liability of 0.337, while the country specific solution provided a much better reliability at 0.592.

On the opposite, the global solution provided a selection of Neuroticism items with a reliability

of 0.702, while the specific solution resulted in just 0.531.

4.2.4 Discussion

This section presented an application of the stuart approach to a setting where a scale is con-

structed in a cross-cultural setting. Additionally, a complex combination of heuristic information

is included in the search for a 10-item short scale to assess the Big Five.

While the final scale results in good model fit across multiple countries and shows adequate

reliabilities for subscales consisting of just two items, the latent correlation structure is not

satisfactory, as it is not in line with those found for other scales. As pointed out, this may be

due to a selection resulting in the assessment of very specific sub-dimensions of the intended

global dimensions. To remedy this, it is possible to include the latent correlation structure in

the objective function and assign quality based on the deviation of the latent correlation matrix

from the obejective matrix. Schultze and Eid (2015) presented the possibility of this by utilizing

M∑
m=1

1−min[(cor(m,m′)Orig. − cor(m,m′)s)2, 1]

as part of the objective function. Of course, this approach should only be utilized if there is

substantial knowledge about the appropriate latent correlations.

Overall, the results of this section do not speak for the appropriateness of a 10-item short

scale consisting of items selected from a long-form with a large amount of specific sub-dimensions.

While there is a possibility this may be limited to the 300 items of the IPIP presented here, it
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seems more beneficial to generate less specific questions for a more global scale, instead of selecting

specific questions from a long form. Especially when considering model stability (or lack thereof)

over a large number of possible solutions, a scale with just two two items assessing each sub-facet

did not generate promising results.

Therefore, a conclusion from this application should be that either (a) a longer scale is

necessary to assess the Big Five in meaningful manner, or (b) more general questions should be

used in short forms for the superficial assessment of the Big Five. Both approaches have been

applied in numerous variants. A third possibility - selecting six items, one per sub-dimension, for

each of the five dimensions - does not seem promising, given the low correlations between such

items that already lead to estimation problems in this application.

Nevertheless, this section showed a possibility of simultaneous item selection in multiple

groups, thereby circumventing the need of multiple applications of item selection strategies in

multiple groups. Instead, this approach allows for the aimed selection of items with relatively

stable properties across different cultural settings.

4.3 Item Selection in MTMM Studies: Application in the

Assessment of Emotional Expressivity

This section presents the item-selection using the stuart approach in a situation with multiple

sources of information. As indicated in Section 2.3.4, MTMM structures are incorporated into

the item-selection process via a restricted CTC(M-1) approach. In this approach, one source

of measurement is defined as the reference (denoted m∗u), and all other methods are contrasted

against this method. This contrast is achieved via simple latent regression, allowing for the

calculation of the consistency between the reference and all other methods.

In this application items are selected for the assessment of emotional expressivity. Gross and

John (1997, p. 435) define emotional expressivity in such a way that an “individual is emotion-

ally expressive to the extent that he or she manifests emotional impulses behaviorally”. As such,

emotional expressivity can be viewed as the observable behavior of an individual experiencing

emotion, meaning this construct is not only focused on the person experiencing the emotion, but

also on the social surroundings experiencing the reaction. Therefore there are (at least) two per-

spectives that must be taken into account when assessing emotional expressivity: the perspective

of the person expressing emotion and the perspective of the people observing and experiencing the

expression. Because of various sources of bias manifested in self- and informant-ratings (Lucas

& Baird, 2006; Neyer, 2006) the overlap between the two is not necessarily high when assessing

behaviors, especially when it is assessed via global, retrospective questionnaires. Therefore, it

can be a more promising approach to assess both viewpoints to account for the specificities of

the perspectives. If the assessment of emotional expressivity is intended via multiple sources of
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information, this should also be a part of scale construction and, therefore, be included in the

process of item selection. Humrichouse (2010) presents an overview over the three most influen-

tial classic scales for the assessment of emotional expressivity, all of them originally constructed

as self-reports but also used in the assessment of peer-reports. More recently, Trierweiler, Eid,

and Lischetzke (2002) as well as Humrichouse (2010) presented scales intended for the use with

self- and peer-reports, discussing the advantages of using these two complementary perspectives.

Beyond the question of the source of information, scales assessing emotional expressivity

differ in their assumptions regarding the underlying dimensionality. While earlier scales were

constructed under the assumption of multiple facets centering around a positive and a negative

valence facet - the underlying assumption being that the emotional expressivity differs concep-

tually, depending on the valence of the experienced emotion (Gross & John, 1997) - more recent

developments indicate more fine-grained, emotion-specific approaches (Trierweiler et al., 2002).

Humrichouse (2010) combines these approaches in a hierarchical factor structure, with emotion-

specific factors being subsumed under valence-specific factors, with a single dimension underlying

these two. This hierarchical approach is intended to allow for some specificity at each level while

simultaneously enabling the analysis of general relationships between emotional expressivity and

other psychological constructs.

In this application, the goal is to select items for a short scale aimed at assessing the valence

specific level in this hierarchy of facets. These items are selected from a pool of items assessing

emotion-specific expressivity. Specifically, the data stem from the original study by Trierweiler

et al. (2002), who assessed 482 individuals on 28 items using a self-report and two peer-reports.

In direct comparisons of three different dimensionality assumptions, Trierweiler et al. (2002)

concluded that the emotion-specific approach best represents the 24-item selection they made

from the original 28 items. However, assessment of emotion-specific expressivity using 24 items

may be more fine-grained than necessary in some applications, especially when the questionnaire

is included in a study not primarily focused on this construct. Therefore, eight items (four per

valence) will be selected with the hopes of creating a short-scale capable of a coarse assessment

of emotional expressivity from both, a self- and a peer-report. To ensure the quality of this short

scale for both possible sources, the MTMM approach described in Section 2.3.4 is utilized. To

allow for validation, an approach similar to that employed in the previous two sections is used.

The data include one self- and two peer-ratings per participant. The self- and one peer-report

are used in item selection and the second peer-report is used as a hold-out for a validation of the

quality achieved in this item selection.

4.3.1 Problem Representation

In line with the problem representations discussed this far, the problem of item selection is

represented by the triple (S, f,Ω), where S is the set of possible solutions, f is the objective
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Table 4.17: Item allocation of the original 28 items assessing emotional expressivity.

Item Word Emotion Valence Item Word Emotion Valence
1 affection love + 15 nervousness -
2 joy joy + 16 cheerfulness joy +
3 fear fear - 17 concern fear -
4 anger anger - 18 fury anger -
5 shame shame - 19 regret shame -
6 sadness sadness - 20 sorrow sadness -
7 love love + 21 caring love +
8 happiness joy + 22 contentment joy +
9 worry fear - 23 anxiety fear -
10 resentment anger - 24 rage anger -
11 guilt shame - 25 embarassment shame -
12 depression sadness - 26 unhappiness sadness -
13 disgust - 27 pride +
14 intimacy love + 28 tension -

function, and Ω is the set of constraints. Due to the dependency of the first on the last, the

restrictions are discussed first.

As shown in Section 1.3.2, the fundamental constraints in all applications of the stuart

approach are:

(ω1) the sum of weights does not exceed capacity - Equation (1.10),

(ω2) items are selected specifically within their facets - Equation (1.12), and

(ω3) items may be selected to only one facet - Equation (1.13).

Due to the fact that the original 28 items do not differ substantially in the amount of time

required to answer them (all 28 are single emotion words), all of the weights are set to wim = 1.

Additionally, as pointed out above, the goal is to construe a short scale with four items per

valence-specific facet - thus, am = 4 for all facets. Note that this differs from the imbalance in

the original scale used by Trierweiler et al. (2002), where 16 of the 24 items were allocated to

the negative valence dimension. Of the 28 item pool used here, 19 are allocated to the negative

dimension.

The constraints ω2 and ω3 are in line with substantive theory, whereby each of the 28 emotions

has a clear positive or negative valence. For those unfamiliar with human emotions, Table 4.17

provides an overview of the items and their dimensional allocation. Items missing the emotional

dimension were assessed in the study, but not used in the final analysis by Trierweiler et al.

(2002).

Beyond these basic constraints, configural invariance is assumed across self- and peer-reports,

meaning that the same items are selected for both informants. This has the benefit of generating

a single, comparable short-form, but does not include overly restrictive assumptions (such as
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equality of item discrimination across sources), which are unlikely to hold for most items in the

item pool. For both facets the self-report is chosen as reference. Note that, when using only

two measurement methods and internal criteria, this selection is irrelevant, because the model

implied covariance-matrix is identical, irrespective of the choice regarding the reference (Geiser

et al., 2008). Thus, consistency coefficients, reliabilities, and model fit will be identical for both

choices in this application. This, however, need not be the case in other applications using a

more complex measurement model (i.e. models with more methods or external criteria).

More formally, the assumption of configural invariance defines two Bu, one for each valence,

containing two facets each. In this application the specific item-pools are denoted C1 for self-

reported, positive valence items, C2 for self-reported, negative valence items, C3 for peer-reported,

positive valence items, and C4 for peer-reported, positive valence items. Thus, B1 := (1, 3) and

B2 := (2, 4). Because there are no repeated measures, each Bu translates directly into a Qh,

constituting the fourth constraint (ω4) imposed on the item selection in this application.

With Im = 9 for m ∈ {1, 3} (i.e. the positive valence facets), Im = 19 for m ∈ {1, 3} (i.e. the

negative valence facets), and am = 4 as imposed by constraint ω1, the set of possible solutions S
is defined. This set contains a total of 488376 possible solutions4.

In contrast to the applications presented in Sections 4.1 and 4.2, no heuristics are provided

in this application. All items are assumed to be equally suitable for a short-form and no specific

combinations are disallowed. Thus, pheromones are localized to nodes, as presented in Section

2.2.1. This is in line with the way the item selection was performed for the Ryff-Scale in Chapter

3.

To account for the MTMM nature of the setting, the consistency coefficient con is included

in the objective function f . As pointed out above, this coefficient is akin to R2 of the regression

predicting the peer-reports by the self-reports. Therefore, it indicates convergent validity between

the two sources of information. Because the aim of the short-form is to provide a general view

of emotional expressivity, one of the aims in this selection is to maximize consistency between

the different perspectives. This is done by including

Φcon(s) =
1

1 + e−10(Mrelhs
−.5)

(4.8)

as a component of the pheromone function. Here, Mconhs
is the mean of consistencies across the

two partitionsQh in solution s. The top-left panel of Figure 4.5 shows this component pheromone

function. The midpoint of this function is set to .5, because the agreement between self- and peer-

ratings has been shown to be somewhere around .25 when using scales not explicitly optimized for

consistency (Humrichouse, 2010). Because this is explicitly integrated into the objective function

of the item-selection process in this application, the aim is set to double this consistency.

In addition to the consistency coefficient, RMSEA and SRMR are, again, included to indicate

4If the assumption of configural invariance were lifted, S would contain 238511117376 possible solutions.
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Figure 4.5: Component specific pheromone functions used in the application.

fit of the measurement model. The component specific pheromone functions are given by

ΦRMSEA(s) = 1− 1

1 + e−100(RMSEAs−.05)
(4.9)

ΦSRMR(s) = 1− 1

1 + e−100(SRMRs−.05)
(4.10)

and are also depicted in Figure 4.5.

The final component used to assess the quality of a solution is the reliability. As was done in

the application in Section 4.2, the minimal reliability among the four facets is used to indicate

reliability. This is done to ensure that the solution does not result in a short form which reliably

assesses only three of the four facets but does not produce an acceptable measurement of the

positive valence dimension in the self-report, for example. For the four-item, emotion-specific

facets in the original 24 items, Trierweiler et al. (2002) reported reliabilities ranging from .63 to

.88. Thus, .7 was chosen as the value of maximal discrimination in the reliability-based part of

the fit function. This results in

Φrel(s) =
1

1 + e−25(min relhs−.7)
(4.11)

as the reliability component of the objective function. This function is also shown in Figure 4.5.

The components shown in Equations (4.8) to (4.11) are additively combined to form the

overall pheromone function:
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Φ(s) = Φcon(s) + ΦRMSEA(s) + ΦSRMR(s) + Φrel(s). (4.12)

As was the case in previous applications, the objective function is defined as

f(s) =

Φ(s), if s ∈ S∗

0, else
, (4.13)

with S∗ being the set of viable solutions. All solutions resulting in non-positive-definite covariance

matrices are assigned zero quality.

4.3.2 Item Selection

With the problem definition presented in the previous section, items were selected from the

original pool using the parameter settings that were shown to most successful in Section 3.7.1. As

noted above, no heuristics were used and pheromones were localized to nodes, in this application,

making it very similar to the situation for which the performance of stuart was evaluated in

Section 3.7.1. Thus, α = 1, ρ = .8, K = 16, and the iteration-best deposit rule were used in

this item selection. K = 16 was used instead of K = 32, because the problem is somewhat

smaller than that evaluated in Chapter 3. In line with the recommendations made in Section

3.9, multiple instances of stuart (in this case five) were run to ensure the best possible selection.

Appendix C.3 shows the R-code used to perform the stuart approach in this application.

In a simplified attempt to account for the non-normality of the variables in this applica-

tion, the robust maximum-likelihood estimates based on the correction proposed by Satorra and

Bentler (1994) and implemented in lavaan (Rosseel, 2012) were used. In this approach, parameter

estimates are identical to those of a standard maximum-likelihood approach, but standard errors

and the test-statistic are corrected, based on the mixture-distribution of the χ2 test-statistic

when data are non-normal. While standard errors are not of relevance in the construction of so-

lutions or the determination of f(s), the correction of the test-statistic also leads to a correction

of the RMSEA (because this is based on the test-statistic). Estimates of the RMSEA tend to

be biased in finite samples when data are non-normal, necessitating this correction when using

the stuart approach with non-normal, continuous data. It should be noted, that alternatives to

the approach by Satorra and Bentler (1994) have been proposed (e.g. Li & Bentler, 2006) and

been shown to outperform the Satorra-Bentler approach (Brosseau-Liard, Savalei, & Li, 2012).

However, as of writing, implementation of the correction based on the approach by Li and Bentler

(2006) in lavaan was still work-in-progress.

The search required a total of 20704 CFAs to be run across all five replications (an average of

4140.8 per run). The best overall solution was found in two of the five instances. This solution

selected the items “joy”, “happiness”, “cheerfulness”, and “contentment” to indicate the positive
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valence facet and“anger”, “resentment”, “fury”, and“rage”to indicate the negative facet, resulting

in a Φ(sgb) = 2.113. This selection contains only items indicating the sub-facet “joy” from the

original pool in place of the positive valence and only items indicating the “anger” sub-facet for

the negative valence. This will be discussed in more detail in Section 4.3.4. The measurement

model showed suboptimal fit in terms of RMSEA (0.062) and CFI (0.945), though both are close

to the cut-off criteria stated by Hu and Bentler (1999). In terms of SRMR approximate model

fit was adequate (0.04), though it should be noted that the SRMR is the only of these three fit

criteria that is not corrected for non-normality, because it is not based on the test statistic. The

model-test rejected the measurement model (χ2 = 287.597, df = 100, p < .001).

In terms of consistency between informants and reliability of the facets, the solution provides

good results. For the positive facet, reliabilities were relself = 0.827 and relpeer = 0.719 and for

the negative facet they were relself = 0.855 and relpeer = 0.766. Surprisingly, reliabilities were

higher for self- than for peer-reports, indicating a more homogeneous assessment across the four

respective items in the former. In contrast to the reliabilities, consistencies were higher for the

positive than the negative facet (0.564 vs. 0.465), though both were adequate, achieving higher

consistencies than those found for other scales (Humrichouse, 2010).

Due to the limited problem size (as pointed out in Section 4.3.1, S contains just 488376

possible solutions), it is feasible to determine the optimal solution under the constraints imposed

in Ω via brute force. Investigating all possible solutions required approximately 27.211 hours

utilizing R version 3.3.2 (R Core Team, 2016) and lavaan version 0.5-22 (Rosseel, 2012) on a

machine with an Intel Core i7-5600U Quadcore CPU running Ubuntu 16.04. The optimal of

these solutions is identical to the one recovered twice in five runs of the stuart approach. Of the

488376 solutions, 336129 (68.826%) were viable solutions, resulting in a pheromone different from

0. Note that, while the final solution did not result in satisfactory fit in terms of RMSEA and

CFI, the minimal RMSEA in all possible solutions was 0.059 and the maximum CFI achieved was

0.947, indicating that satisfactory fit was not readily available for 8-item short scales constructed

from the original pool in this sample.

Modification indices identified the residual correlation for the item “resentment” between the

two informants as the most obvious detriment to model fit (MI = 72.361). Allowing for this

residual correlation to indicate a specific effect of expressing “resentment” above and beyond the

expression of the other selected negative valence emotions, results in a measurement model with

acceptable model fit (χ2 = 209.346, df = 99, p < .001, RMSEA = 0.048, SRMR = 0.037, CFI =

0.968). Allowing for the uniqueness of this item had little effect on reliabilities and consistencies.

4.3.3 Selection Validation

To validate the item selection, the second peer-report is investigated closely in this section. In

line with the procedure of the previous two applications, this validation will follow three main
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steps: (a) the method-specific models are investigated, (b) the third method is included in the

overall model, and (c) the selection is compared to a selection performed only for the second peer

rating. Due to the nature of the peer reports as being interchangeable sources of information in

this data set (c.f. Eid et al., 2008), the second step also includes a series of tests for invariance

among the peer-reports, to investigate whether the selection is suited for the use with multiple,

interchangeable sources.

Figure 4.6 shows the path diagrams, with factor loadings and intercepts, of the three separate

informant-specific models. The model for self-reports showed good overall fit (χ2 = 28.909,

df = 19, p = 0.067, RMSEA = 0.033, SRMR = 0.024, CFI = 0.992), while those for the peer

reports were both acceptable, albeit a bit worse. For the first peer-report, at 0.06, the RMSEA

achieved the value defined as the cut-off by Hu and Bentler (1999). The values of the SRMR

(0.024) and CFI (0.992) both indicated adequate model fit, though the χ2-test rejected the model

(χ2 = 51.716, df = 19, p < .001). For the second peer report, which was not included in the

process of item selection, model fit was better than for the first (χ2 = 44.856, df = 19, p = 0.001,

RMSEA = 0.053, SRMR = 0.032, CFI = 0.981). As indicated by the values shown in Figure 4.6,

the structure of the measurement model was extremely similar between the two peer reports,

while that for the self-reports differs a bit from the informant-reports. Self-reports show less

latent variability and a somewhat different loading structure regarding the positive facet, though

these differences appear rather small.

To allow for the test of equality in the measurement of the three informants, all three methods

are included in one CFA, with the self-assessments being chosen as the reference method. The

unconstrained model did not fit the data well (χ2 = 689.538, df = 241, p < .001, RMSEA =

0.062, SRMR = 0.044, CFI = 0.92) and modindices, again, indicated the necessity of allowing

for specific effects concerning the item “resentment”. Allowing for the residual correlations of

“resentment” across the three different sources dramatically improved model fit (∆χ2
SB = 78.097,

df = 3, p < .001)5.

Using the modified model as a baseline, Table 4.18 shows the fit and comparisons of the

models incorporating the invariance assumptions described in Section 2.3.4. The sequential

model comparisons using the Satorra-Bentler χ2 (Satorra & Bentler, 2010) indicate that even

the strict invariance assumption is adequate across the two peer-reports, showing support for the

claim of interchangeability of these two informants. Imposing weak invariance between the two

peer-reports and the self-report was rejected by the model comparison (∆χ2
SB = 20.39, df = 6,

p = 0.002).

Performing the item-selection using only the data from the second peer-informants reveals a

much different final selection of items.6 In contrast to the selection made for the combination of

5Due to the correction of the test statistic, model comparisons are performed using the strictly positive Satorra-
Bentler χ2 (Satorra & Bentler, 2010)

6Performing the item-selection five times - as was done for the MTMM case - results in the exact same solution
in all five cases.



20
7

Item2

Item8

Item16

Item22

Item4

Item10

Item18

Item24

Positive

Negative

1.000

1.355

1.108

1.194

1.000

0.844

1.291

1.274

1
3.483

1
3.359

1
3.554

1
3.278

1
2.396

1
1.867

1
2.338

1
2.116

0.047

0.166

0.334

Self-Reports

Item2

Item8

Item16

Item22

Item4

Item10

Item18

Item24

Positive

Negative

1.000

1.084

0.928

0.965

1.000

0.824

1.164

1.057

1
3.415

1
3.154

1
3.479

1
3.095

1
2.326

1
1.810

1
2.160

1
1.925

0.158

0.307

0.471

Peer-Reports A

Item2

Item8

Item16

Item22

Item4

Item10

Item18

Item24

Positive

Negative

1.000

1.113

0.888

0.901

1.000

0.850

1.150

1.012

1
3.409

1
3.158

1
3.471

1
3.180

1
2.396

1
1.862

1
2.201

1
1.950

0.151

0.291

0.483

Peer-Reports B

Figure 4.6: Path diagrams of the informant-specific models for the selected items.
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Table 4.18: Model fit indices and comparisons of the models assuming different levels of invari-
ance across the two peer reports.

Configural Weak Strong Strict
χ2
SB 524.618 525.568 537.929 539.896
df 238 240 248 256
p 0.000 0.000 0.000 0.000

RMSEA 0.050 0.050 0.049 0.048
SRMR 0.040 0.038 0.039 0.039

CFI 0.949 0.949 0.948 0.949

AIC 20671.750 20666.060 20659.377 20648.267
BIC 21031.053 21017.008 20976.901 20932.368

aBIC 20758.096 20750.399 20735.684 20716.542

∆χ2
SB 0.400 10.927 3.918

∆df 2 8 8
∆p 0.819 0.206 0.864

self-ratings and those provided by the first peer, the selection made for the second peer consists

mainly of items indicating the facet “love” and only one indicating the facet “joy” - and thus

only one item shared with the original selection. For the positive valence, the selection made,

were items 1, 14, 21, and 22. For the negative valence, there was no overlap in selected items

whatsoever, with items 3, 6, 9, and 20 being selected. Two of these indicate the emotion-facet

“fear”, the other two the facet “sadness” in the original item pool. As pointed out above, the

selection made originally, contained only anger items in the negative facet. This selection achieved

almost perfect fit for the second peer-informants (χ2 = 17.17, df = 19, p = 0.578, RMSEA = 0,

SRMR = 0.014, CFI = 1) in addition to the facets having high reliabilities (0.874 for positive

and 0.86 for negative valence).

Beyond its qualities for the group of raters the selection was made in, this selection also

shows good overall model fit when applied to the self-reports (χ2 = 42.55, df = 19, p = 0.001,

RMSEA = 0.051, SRMR = 0.029, CFI = 0.974) and the peer-reports from the first group of peers

(χ2 = 35.522, df = 19, p = 0.012, RMSEA = 0.042, SRMR = 0.021, CFI = 0.99) individually.

This, however, underlines the importance of including multiple sources of information in the

process of item selection, because the fit of the model when using this selection in the MTMM

model was worse than that of the original selection (χ2 = 771.307, df = 241, p = 0, RMSEA =

0.068, SRMR = 0.046, CFI = 0.903) and consistencies were much worse (between .267 and .383).

4.3.4 Discussion

This section presented an application of the stuart approach to a situation with multiple sources

of information. Using the parameter settings found to be most promising in Chapter 3, the

optimal solution was found in two of five instances, requiring less than 5% of the runtime of the
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brute force approach (for all five instances combined).

While the solution fulfills the criteria set in the objective function (i.e. it provides a measure-

ment model with acceptable fit, reliability, and consistency across self- and peer-ratings), the

final selection does suffer from the typical reduction of construct content associated with an item

selection based solely on statistical criteria. As can be expected, best reliabilities and consis-

tencies were found for items indicating only two specific emotions contained in the original item

pool. In this case, the short scale contains only words addressing the specific emotions joy and

anger, resulting in a somewhat unsatisfactory collection for an assessment intended to globally

assess positive and negative valence in emotional expressivity. This phenomenon can be avoided

by implementing filter-type heuristics as shown in the previous two applications. However, this

would result in a model with much lower values in terms of the objective function. As pointed

out for the application to item selection from IPIP in Section 4.2, selecting items from a large

pool of items designed to assess specific facets may not be a suitable approach to constructing

short-scales intended for a more coarse assessment (perhaps at a higher level of facet abstraction).

Instead, it may also be a better approach, in this case, to construct a pool of general items and

select items for a short scale from this pool.

This application does underline the importance of using all sources of information when at-

tempting to construct a scale intended for the use with different sources of information. Selecting

items within the data specific to different perspectives results in solutions not suitable for the

combined analysis of multiple perspectives. This shows one of the strengths of the stuart ap-

proach: selecting items in the MTMM is not any more difficult than item selection when using

only one source of information. Using more classical approaches would require the integration of

a number of different analytical procedures and their results. In this case, the results regarding

the different informants would likely contradict each other and the selection of items may be

immensely difficult. Using all information available in a single step of item selection is relatively

simple within the stuart approach.



CHAPTER 5

Discussion

This thesis presented the stuart approach for item selection. Within this approach, the prob-

lem of selecting items is conceptualized more formally than in many previous strategies. Se-

lecting items from a pool of items is understood as a combinatorial problem, specifically as an

I-dimensional multiple knapsack problem with assignment restrictions (IMKAR), which can be

solved by using adaptations of known algorithms. This problem conceptualization is formulated

in such a way that it can flexibly be applied to any situation including one or more facets, groups,

occasions, and sources of information. Thus, it constitutes a very inclusive framework for item

selection that goes beyond previous approaches in its ability to be applied in such complex data

situations without the need for the formulation of a new specific strategy for each single instance

of item selection. By modeling the potential scales in confirmatory factor analysis (CFA), the

stuart approach allows for a multitude of theoretically feasible measurement models and neces-

sitates a clear formulation of the assumptions regarding the final scale’s measurement structure.

In contrast to many classical approaches for item selection, this allows for the selection of items

which conform to a measurement structure which was defined a priori without requiring multiple

phases of analyses. Additionally, the inclusion of complex study designs in a single step allows

for the simultaneous optimization of the final scale regarding a plethora of different criteria - be

they external, internal, or structural.

An ant colony optimization algorithm - an adaption of the MAX −MIN Ant-System

(MMAS) algorithm presented by Stützle (1998) - is used to search for viable solutions within the

space of combinations of items representing different possible scales. This algorithmic approach

allows for the inclusion of pre-defined filtering (e.g. selecting anchor items and disallowing specific

item combinations in the final scale). The performance of the search algorithm was investigated

in an evaluation study, which culminated in a number of recommendations for applications, allow-
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ing for the use of the stuart approach without requiring any prior knowledge about the search

algorithm itself. Beyond this, applications of the approach in a variety of different situations

were presented in Chapter 4.

This chapter will focus on discussing the strengths and limitations of the stuart approach.

First, attention will focus on the problem representation and the underlying conceptualization

of item selection in this thesis. Section 5.2 discusses the chosen algorithm, before Section 5.3

deliberates the implications of the modeling approach. A section providing an overview of pos-

sible avenues for future extensions (Section 5.4) is followed by recommendations for applications

(Section 5.5). This chapter will close with general conclusions about the stuart approach.

5.1 Conceptualization of Item Selection

As pointed out throughout Sections 1.3 and 2.1, the way item selection is conceptualized within

the approach presented in this thesis is quite different from traditional approaches. While most

traditional approaches are based on a rather informal problem definition and instead focus on

deriving general recommendations based on prior experiences and the objectives (i.e. the quality

of the final scale in terms of different aspects of validity, reliability, etc.), the stuart approach

focuses on a more formal definition of the problem of item selection. This has the benefit of

describing a minimal subset of concepts shared by all instances in which items are selected from

a large pool to a form a scale. This problem definition is general enough to make a differen-

tiation between item selection for short-forms and item selection for initial scale construction

unnecessary. As pointed out in Chapter 1, once the item-pool is constructed, scale shortening

and scale construction are so similar, that the same recommendations regarding the following

steps apply to both of them (Smith et al., 2000). The same can be said about item selection

for a questionnaire with a 5-point Likert-Scale and a questionnaire consisting of vignettes - the

underlying problem can be conceived as the IMKAR described in Section 1.3, irrespective of

the stimulus material. Such generality in the problem definition has the benefit of allowing for

general solution approaches, which stay the same over a wide variety of instances, instead of

requiring an instance specific approach for every single application.

The definition of the problem of item selection as an IMKAR has several specific advan-

tages. First, it is a problem of known complexity. While this may seem like a minor victory,

the implication is that any knowledge about problems of the same complexity also applies to

the fundamental problem of item selection (as it is defined in this thesis). Second, it allows

for the application - or at least adaptation - of several algorithmic strategies to the problem of

item selection. Knapsack problems are wide-spread in many areas and therefore the fundamental

approaches to solving them are established and evaluated. With a problem definition in place,

approaches to solving KP can be adapted for the use in item selection, beyond the one approach

presented in this thesis. Third, knowledge gained about item selection in the future can be trans-
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ferred to other instances of item selection, if they are all conceptualized as IMKAR. Specifically,

investigating the merits of other algorithmic approaches can have general implications for all

specific applications of item selection. As long as the problem is defined as an IMKAR with its

associated constraints, promising solution strategies can easily be applied to other instances and

applications.

Conceptualizing item selection as an IMKAR is not without its drawbacks, however. As

pointed out in Section 1.3, die IMKAR imposes three constraints:

am ≥
I∑
i=1

wimxim (1.10, repeated)

Csm ⊆ Cm (1.12, repeated)

Csm ∩ Csm′ ≡ ∅ ∀m 6= m′. (1.13, repeated)

The first, indicating that the sum of weights in a facet must not exceed the capacity of that

facet, is perhaps the most problematic in the practice of item selection. Because am is part

of the problem representation, it must be known a priori. While this is in line with the basic

understanding of the stuart approach, that the substantive knowledge of a researcher should

guide the construction of a scale, it may be too restrictive for some applications. It is possible

to simply go through the automated process of item selection multiple times, for different values

of am, but this would actually constitute a different problem, one containing multiple instances

of the IMKAR. As such, solving this new, superordinate problem requires new strategies and

approaches to find adequate solutions. This may sound overly complicated (why should one

not simply search for an adequate solution with three, four, and five items per facet and pick

the most promising one?), but it implies a much larger problem. Imagine a situation in which

there are three facets and each Cm contains 20 items. Without imposing any restrictions, the

meta-problem contains 203 possible item-number constellations. Each of these 8000 contains an

IMKAR, resulting in a total 2.35 × 1017 possible solutions. Beyond the size of the problem,

there is also the problem of interpretability. There are very few approaches to compare the

psychometric quality of scales of different lengths in a meaningful fashion. Many CTT-based

indicators of reliability are known to increase as the number of items increases (e.g. Raykov &

Marcoulides, 2011), while model fit has been shown to decrease as the number of items increases

(Moshagen, 2012).

The second and third constraints are closely related and have joint implications for applica-

tions. While the second constraint imposes that the facet-specific selection of items must come

from a pre-defined set of items believed to be indicative of that facet, the second states that the

final facet-specific selections must be disjoint sets. Strictly speaking, these two constraints do

not necessarily require any prior knowledge of the measurement structure beyond the number of
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facets. It is possible to simply define all Cm ≡ C, bypassing any theory-guided allocation. At this

point, the constraint imposed in Equation (1.13) will lead to a data-driven definition of facets.

This may result in the same solutions being generated but not recognized as the same because the

same sets of items are simply allotted to different facets - a phenomenon called label-switching in

other analyses. However, the problem itself remains intact and even situations, in which nothing

more than the number of theoretical facets is known, are included in the problem definition. The

restriction of exclusivity, as imposed by Equation (1.13), prevents an item from being chosen

twice, but the actual measurement structure must not be as rigid, because the inclusion of cross-

loadings in a CFA-based approach is possible, or one could use other models classes such as EFA

or exploratory SEM. Note, that within the stuart approach strict undimensionality is assumed,

prohibiting the estimation of any cross-loadings, but this is not part of the problem definition

itself.

To summarize: the problem definition presented in this thesis allows for a very inclusive

representation, which encompasses all forms of item selection that are able to provide the number

of facets being measured and the size of the final scale (e.g. number of items, time taken to

complete the scale). Beyond this, the IMKAR imposes no limitations on the properties of any

instance of item selection, making it extremely inclusive.

5.2 Algorithmic Approach

The second peculiarity of the approach to item selection presented in this thesis is the algorithmic

approach to solving the IMKAR posited. The algorithm used for the stuart approach is an

adaptation of the MMAS algorithm proposed by Stützle (1998). As shown in Section 1.4, this

is by no means the only ACO algorithm available, and the ACO metaheuristic is not the only

class of algorithms suited to solve problems in the KP class.

Generally, a heuristic algorithm was chosen over a deterministic approach because of two

main considerations: (a) the IMKAR representation of item selection can lead to excessively

large problems and (b) when using CFA, a solution’s quality can only be determined once an

entire solution is constructed.

The first consideration precludes näıve deterministic approaches from being recommendable

as a general solution strategy. In many cases, however, simple brute-force may be applicable

to select items from the original pool. Because item selection needs to be performed only once

- ideally - to construct a suitable candidate scale, it can be quite appropriate to run a brute-

force search for several days. Because brute-force can easily be distributed to several cores,

developments in computer hardware make these approaches more and more feasible in future

applications. However, as described in Section 1.3, the complexity of the IMKAR is of O(n!)

magnitude, meaning that the number of possible solutions increases rapidly with problem size.

This means that larger item pools and more facets increase the overall runtime required for



5 Discussion 214

brute-force approaches immensely. Additionally, complex measurement models incorporating

longitudinal data, multiple groups, and/or multiple sources of information increase the runtime

of each single CFA. Beyond these specific cases discussed here, other factors, like missing data,

can lead to increases in the time required for model estimation. In cases in which the estimation

of a single model may require a minute, näıve deterministic algorithms quickly become unfeasible.

For example, the item selection for the short-form of the Ryff-Scale required approximately 0.4

seconds per model during the evaluation shown in Chapter 3. Selecting three items per facet

from the original 54-item scale gives 334569553920 possible solutions (see Section 3.3). Evaluating

all possible solutions would therefore have required 4243.652 years of computational time (for

reference, the pure computational time required for the evaluation presented in Chapter 3 was

approximately 1581.999 days).

The second consideration precludes many of the remaining deterministic approaches to solving

combinatorial problems. Most deterministic algorithms (for example the branch and bound

strategies or tree-search algorithms) determine the quality of partial solutions to eliminate areas

from the search space. However, if partial evaluation is not possible - as in the case of the IMKAR

representation of item selection, see Equation (1.11) - these approaches cannot be applied without

imposing additional assumptions about solution quality and solution construction.

Heuristic algorithms do not provide a guarantee of finding the best solution, however. This

may be unsettling to researchers selecting items, but the basic idea of utilizing a heuristic algo-

rithm is that some problems are too complex to solve with certainty, and thus they are solved

in such a way that the solution fulfills the criteria set a priori. In this sense, the result of any

single run of a stuart-based item selection does not necessarily provide the best solution, merely

one deemed “good enough” in terms of the criteria. Additionally, different short forms can not

only be found in different samples, but different runs of the approach on the same data may also

lead to different results (as demonstrated by the evaluation presented in Chapter 3). Because

the random components are not truly random, but performed by a computer - a deterministic

machine by definition - providing random seeds makes selections reproducible within the same

sample. Especially in light of the recent replication crisis in psychology and many other sciences

(Open Science Collaboration, 2015), using such a heuristic approach may not seem too enticing

at first glance. However, the central goal in an application of the stuart approach is the iden-

tification of a selection of items which fulfills the criteria imposed on the final scale by theory.

Optimality of the solution, while nice, cannot be guaranteed when problems are too complex.

Beyond this, final solutions are sample dependent to the degree in which the modeling approach

and the criteria used in the objective function are sample dependent. This is the same in any

other approach of item selection: a sample representative of the target population is required to

ensure that the constructed scale is suited for use in this population.

Among the heuristic algorithmic approaches, the ACO metaheuristic was chosen because

it has already shown promising results in the solving of several classes of KP (Alaya et al.,
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2004; Fidanova, 2003, 2007; Leguizamon & Michalewicz, 1999). In structural equation modeling,

Marcoulides and Drezner (2003) proposed using ACO techniques for automated model specifi-

cation searches and Leite et al. (2008) used ACO techniques for short-form construction. More

recently, these approaches have been applied to different instances of item-selection and found to

outperform classical and stepwise procedures (Janssen et al., 2015; Olaru et al., 2015; Schroed-

ers et al., 2015). Applications of genetic algorithms (GA; Sahdra, Ciarrochi, Parker, & Scrucca,

2016) have also been shown to lead to promising results. While a comparison of the ACO and GA

approaches favored GA (Schroeders et al., 2015), this is not indicative of the overall performance

of ACO approaches, because of the ACO variant used.

Specifically, past approaches utilized a variant of the classical AS approach (Janssen et al.,

2015; Leite et al., 2008; Olaru et al., 2015; Schroeders et al., 2015), which is known to have several

shortcomings. As described in Section 1.4.2, the AS algorithm requires heuristic information to

perform well (Dorigo & Stützle, 2004) and does not define convergence criteria, thereby running

exactly as long as is imposed. None of the applications named utilized heuristic information and

Schroeders et al. (2015) found the AS to perform as well as the GA variant used, albeit much

slower, because it required more iterations. The MMAS variant used in the stuart approach

proposed in this thesis overcomes these shortcomings. The extensive evaluation presented in

Chapter 3 shows that the stuart approach is able to retrieve optimal solutions, or construct

solutions very close to optimal, in situations in which no heuristic information is provided. By

imposing the convergence criteria presented in Equations (2.11) and (2.15) the runtime can

be reduced and is made more independent of arbitrary settings for the number of maximum

iterations (T ). Additionally, Colorni et al. (1991) found AS to be unable to recover optimal

solutions when the number of ants per colony (K) was chosen to be too small, irrespective of T .

This is not the case withMMAS and therefore also not for the stuart variant of it. As proven

by Dorigo and Stützle (2004), MMAS will find the optimal solution if given enough runtime,

irrespective of the parameter settings (with the exception of requiring ρ > 0).

The stuart approach also goes beyond previous implementations in SEM automation by

including multiple possibilities of pheromone localization. Even so, the presentation in this

thesis is limited to the unidimensional and two-dimensional instances of pheromone deposit. The

first is shown in Section 2.2.1 and is akin to localizing pheromones to the items themselves.

In this way, items which were previously part of good solutions are more likely to be chosen

into future solutions. The second is shown in Section 2.2.2 and localizes pheromones to the

connections between two items. In this way, the pheromones affect the probability of choosing

items dependent on the item that was previously chosen. It is possible to extend this localization

to up to I dimensions. In this case, every complete solution would have an associated pheromone,

making the process of constructing a solution simply a weighted random selection of s from S,

removing any component-based selection and thereby the very idea that leads to stuart being

potentially quicker in finding good solutions than random search.
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Table 5.1: Example of directed heuristics for the selection of items from specific sub-facets.

One-on-One Group Public
c1 c2 c3 c4 c5 c6 c7 c8 c9

One-on-One
c1 0 0 0 1 1 1 0 0 0
c2 0 0 0 1 1 1 0 0 0
c3 0 0 0 1 1 1 0 0 0

Group
c4 0 0 0 0 0 0 1 1 1
c5 0 0 0 0 0 0 1 1 1
c6 0 0 0 0 0 0 1 1 1

Public
c7 1 1 1 0 0 0 0 0 0
c8 1 1 1 0 0 0 0 0 0
c9 1 1 1 0 0 0 0 0 0

However, the limitation to two dimensions is rather strict, constituting a possible problem for a

number of applications. Sections 4.1 and 4.2 show two applications which utilize the localization

to arcs in order to impose logical filters in item selection. These filters represent substantive

requirements, imposed upon the solutions by the researcher constructing the scale. In both cases

these filters are also just two-dimensional (in the case of the MDBF, the number of positive and

negative items was balanced in the final selection, and in the case of the IPIP, the two selected

items were not allowed to stem from the same sub-dimension). Many applications may wish to

impose logical gates that relate to more complex structures than the two-dimensional localization

may permit at first glance.

Imagine a scale which assesses three specific dimensions of social anxiety. These three com-

ponents are one-on-one situations, group activities, and public presentations. Each of these three

specific components is assessed with three items, resulting in a scale with nine total items. The

aim is to reduce this scale to three items, but it is necessary to ensure that each of the three

items represents one of the three specific dimensions. This constraint can be imposed via the

two-dimensional heuristics used in situations in which pheromones are localized to arcs. Because

the heuristic matrices Hm do not need to be symmetric (in contrast to the pheromone matrices

Φm, which are assumed to be symmetric, as pointed out in Section 2.2.2), a simple solution is to

impose heuristics in a directed fashion to ensure that the items are always chosen in the order

“one-on-one”→“group”→“public”. Table 5.1 shows the implementation of these filter heuristics.

As stated in Section 2.2.2, the first item is chosen randomly. For any item, however, the

H shown in Table 5.1, imposes that the next item that is chosen must be from the subsequent

sub-facet. For example, selecting item 6 first (an item from the “group” sub-facet), results in
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p(x(6,i′) = 1|t) =
[φ(6,i′)(t)]

α0β

9∑
i=1

[φ(6,i)(t)]α[η(6,i)]β
= 0 ∀i′ /∈ (7, 8, 9)

and

p(x(6,i′) = 1|t) =
[φ(6,i′)(t)]

α1β

9∑
i=1

[φ(6,i)(t)]α[η(6,i)]β
=

[φ(6,i′)(t)]
α

9∑
i′=7

[φ(6,i′)(t)]α
∀i′ ∈ (7, 8, 9)

during the second selection, thereby guaranteeing that the second item is selected from the

“public” sub-facet. Selecting any of these three items then guarantees that the final item must

be in (1, 2, 3) and therefore an item assessing the first sub-facet.

The approach used in this extremely simplified example can be used in every instance where

the final solution must consist of equal numbers of items stemming from different sub-facets

in the original item-pool. For example, the application shown in Section 4.2 can be extended

to produce a short version of the IPIP-300 that consists of a total of 30 items, one selected

from each sub-dimension within each of the five OCEAN dimensions. Note, however that this

approach decreases problem size dramatically, possibly to the point where brute-force approaches

are feasible. In the instance of the IPIP, this reduces the problem size from 3.15× 1038 possible

solutions, in the unrestricted variant, to 1030 when providing the filter heuristics. This is because

the problem is actually reduced to a form where one out of ten items is selected for each of the

30 sub-facets, a rephrasing of the problem discussed in more detail in Section 5.3. While brute-

force is not an option in this case, the feasibility of changing the algorithmic approach should be

evaluated in every application imposing such wide-ranging restrictions via heuristics.

Beyond the possibility of using them as logical filters, heuristics should be understood as

an initial aid to guide the search during early phases of the search process. This implies that

heuristics must contain information which is beneficial to finding good solutions. While it is

possible to intentionally steer the search in a direction which is favored based on theory, this

should be done by including the substantive information in the objective function.

Beyond these specific points, utilizing an ACO-based algorithm to select items has a short-

coming embedded in its core approach to solution construction. While it was pointed out in

Section 1.3 and discussed in Section 5.1 that the quality of components are not necessarily in-

dicative of the overall quality of a solution consisting of these components, the use of pheromone

deposits implies the utility of this assumption in the stuart approach. Pheromones are deposited

to components stemming from good solutions, so that they may be selected with higher proba-

bility to other solutions. This only enhances the search speed (and solution quality under time
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constraints) if the assumption that components, which are part of good solutions are also more

likely to be part of other good solutions, is true. Deterministic approaches were disregarded from

consideration because of this very assumption, yet it is also imposed in ACO-based algorithms.

One of the differences between deterministic and heuristic approaches is that the latter allow for

this information to be wrong. An item may have been part of one good solution, but if it does

not reappear in other good solutions its pheromone will evaporate and the fact that it once con-

tributed to a good solution will soon be forgotten. Nevertheless, the basic assumption remains

and, in item selection based on the results of CFA, it may be wrong. If the quality of solutions

is not related to the quality of other solutions containing the same items, then the search space

is completely unstructured and no search algorithm will consistently outperform random search.

In such cases, the stuart approach may actually perform worse than random search, due to

the pheromone deposits increasing the probability of reconstructing the same solution multiple

times.

5.3 Modeling Approach

Section 2.3 shows the modeling approach utilized in this thesis for the evaluation of solutions

created via the algorithm discussed in the previous section. As pointed out, a structural equa-

tion modeling and confirmatory factor analysis approach was chosen, allowing for the inclusion

of complex data situations which may simultaneously include multiple groups, multiple measure-

ment occasions, and multiple sources of information. The combination of these aspects for the

process of item selection is shown in Section 2.3.5, where the facets are partitioned into the sets

Qh, for which the same items must be selected. While this approach is more flexible in handling

a multitude of data settings than other current approaches for item selection, it is not without

its limitations. Perhaps the most apparent limitation lies in the handling of multiple groups and

multiple occasions.

As pointed out in Section 2.3, cases in which items are selected for the use in multiple groups

are handled via a multi-group CFA approach (e.g. Brown, 2015). Whether an application uses

multiple groups or not, does not affect the item selection process itself, thereby imposing that

C, all Cm, all Csm, and the selection Cm → Csm are identical for all groups. This is a consequence

of the multiple-group CFA being defined in the tradition of Jöreskog (1971), as the analysis

of multiple covariance matrices of the same dimensions. While this may not be of substantial

detriment to many instances of item selection, it precludes the stuart approach from being of use

in situations with a stem of cross-culturally viable anchor items and additional culture-specific

items. An extension to such cases is possible, albeit complicated, because it would most likely

require the introduction of concepts from test-equating and linking into the stuart approach

(see Dorans, Moses, & Eignor, 2010; W. Zhu, 1998, for an introduction to the matter). Further

research is needed to extend the approach to such situations.
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In cases with multiple occasions, the problem is similar, although easier to circumvent within

the approach itself. As pointed out in Section 2.3, invariance assumptions are made on the basis

of facets in the stuart approach. Thus, assuming configural (or any more restrictive) invariance

over time, automatically assumes the equality of Cm, Csm, and the selection Cm → Csm for those m

which are elements of the same Rv. This equality is imposed in Equation (2.32) via the selection

matrices Xm. Full non-invariance can be imposed simply by not assigning the facets m and

m′ to the same Rv. But this duality between full non-invariance and full configural invariance

ignores all situations in which some items are used as anchors across occasions, while other items

may be different across occasions. This may be necessary when scales are used to assess children

over longer periods of time. As children age, the items used to assess them must also change, to

ensure enough discrimination on the developing latent variable. As in the case of multiple groups,

there is a vast collection of literature on test equating and linking in longitudinal settings (e.g.

von Davier, 2011, for an overview). Extending the stuart approach to include these approaches

presents an interesting avenue for future studies. Within the possibilities of the stuart approach

in its current state, however, anchor items can be utilized by defining them as parts of repeated

measures and their non-anchor counterparts as simply stemming from other pools of items.

Take a minimal example with three occasions and two sets of items (denoted C1 and C2)

linking the first and the second occasion, as well as two sets of items linking the second and the

third occasion (denoted C3 and C4). Additionally, there are occasion specific items (C5, C6, and

C7). To ensure the same items are selected from the pool of items linking the first to the second

occasion, R1 = {1, 2} defines these two as repeated measures. R2 = {3, 4} defines the two sets

of items linking the second and third occasion as repeated measures. The partitions Qh of the

item pool are then simply {R1,R2, 5, 6, 7}. Attention must be paid to am to guarantee that

the resulting scale has the same length at each occasion. To generate a scale with 20 items, for

example, a1 = a2 = 8 ensures eight anchor items between the first and second occasion. This

results in a5 = 12, resulting in 20 items being selected to scale at the first occasion. For the

links between the second and third occasion a3 = a4 = 7 may be chosen, resulting in a6 = 5 and

a7 = 13. Thus, selecting items via stuart produces a solution with 20 items at each occasion

and items linking the different occasions, while optimizing for the quality of their joint CFA

model. Constraining the correlations between the latent variables representing facets assessed at

the same occasion in the measurement model, leads to the assumption of unidimensionality for

each of the occasion specific scales. In this way, the basic definitions of sets presented in Section

2.3.5 can be used to select items even in situations with more complex longitudinal designs.

This “trick” shows the flexibility of the set assignment strategy in the approach presented in

this thesis. Few item-facet constellations, that are assumed a priori, cannot be expressed as a

version of the three sets Cm, Rv, Bu, and the resulting partitions Qh. The example used for

the presentation of directed heuristics in Section 5.2 can also be rephrased to a problem with

three facets, each with am = 1, instead of using directed heuristics. An application with single-
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indicator facets requires additional restrictions in the CFA, however, which is the reason the

approach shown in Table 5.1 may be preferable.

Despite the flexibility in the formulation of facets and their relation to each other, the basic

CFA models used to evaluate solutions are rather restrictive in their assumptions. As stated in

Section 2.3.1, the implemented CFA models assume strict unidimensionality (i.e. cross-loadings

of 0) and an absolute absence of residual correlations. The application presented in Section

4.3 for the item selection in a situation with multiple sources of information showed that this

might be too strict in at least some applications. Especially in cases with repeated measures or a

CTC(M-1) structure, the assumption of correlated residuals may often by suitable. The inclusion

of these correlations is not possible for models generated by the stuart approach in an ad-hoc

fashion, because any item may be part of any Cm, leading to issues with model identification.

Thus, it is necessary to state assumptions about violations of these assumptions prior to item

selection.

The invariance assumptions imposed across groups, occasions, and possibly sources of infor-

mation are also rather restrictive. While all invariance levels described by Meredith (1993) can

be chosen at will, and invariance must not be assumed at all, contemporary approaches to par-

tial and approximate measurement invariance are not included in this thesis. In contrast to the

inclusion of general error-correlations or cross-loadings an extension to include these approaches

is possible, however, because it does not systematically interfere with model identification. The

inclusion of partial invariance is straightforward if invariance assumptions can be stated on an

item-specific level a priori, and is, in fact, possible via rephrasing the facet structure in a similar

fashion to that presented above for the case of scales with anchor items. Approximate measure-

ment invariance can also be included rather simply on a theoretical level. However, including

approximate measurement invariance currently presents a substantial practical problem. Because

contemporary approaches to allow for slight inequalities of parameters in SEM and CFA are based

on Bayesian estimation methods (e.g. B. O. Muthén & Asparouhov, 2013; van de Schoot et al.,

2013), runtimes of an application of the stuart approach could be beyond acceptable.

Finally, the modeling approach implemented in this thesis is limited regarding the kinds of

sources included in Section 2.3.4. Utilizing the CTC(M-1) approach implies that the sources

of information are structurally different methods. These methods can be separated from in-

terchangeable methods in the sense that they imply different random experiments (Eid et al.,

2008; Koch, 2013; Nussbeck, Eid, Geiser, Courvoisier, & Lischetzke, 2009). Structurally different

methods are generally assumed to differ in some substantial regard, thereby making them sources

of somewhat different information regarding the subject. Interchangeable methods, on the other

hand, are assumed to stem from a common population of methods, making them sources of the

same information regarding the subject. Interchangeable methods can be modeled in multilevel

SEM (Eid et al., 2008) or in a classic SEM (Nussbeck et al., 2009), but both approaches cannot

to be recreated using the facet classification presented in Section 2.3. An extension to include
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these different types of methods is possible, but implies a substantial extension of the underlying

system of facet sets in the stuart approach. Beyond this, the restricted CTC(M-1) approach

(Geiser et al., 2008) implemented in the stuart approach is more prohibitive than strictly nec-

essary when modeling structurally different methods. However, it allows relating facets to each

other, instead of imposing item-level adaptations of the measurement models, making it more

compatible with the flexibility of the facet definitions.

5.4 Extensions and Future Research

Some possible extensions were already touched upon in the previous sections, but this section

is intended to provide an overview over the most promising avenues of extending the stuart

approach beyond its current limitations, to further ensure its applicability as a method of item

selection.

Perhaps the most global possible extension of the stuart approach is the inclusion of alter-

native heuristic algorithms. In the variant presented in this thesis, stuart is limited to the use

of the adapted version of the MMAS algorithm. As discussed above, Olaru et al. (2015) and

Schroeders et al. (2015) found approaches based on genetic algorithms to be equally, if not more,

viable for item selection. Integrating GA into the stuart approach would allow for a more direct

comparison of the algorithms than these two studies showed, because both algorithms can be

integrated into the same conceptualization of item selection.

Beyond this, Section 5.1 introduced the idea of extending the approach to include the length

of the final scale as a variable in the optimization problem itself. In its current form, the

approach presented in this thesis requires an a priori definition of am and all wim, because they

are constituents of the problem definition itself. They could also be reconceptualized as free

parameters in a larger problem which must also be solved for scale length.

In terms of the measurement models included, there are several opportunities for future re-

search to expand the approach. First, the models shown in Section 2.3 all pertain to continuous

items. While many CFA and SEM applications to psychological scales use the assumption of

continuous items as a simplification, with negligible bias regarding the estimation of latent con-

structs, scales using less than five possible response categories should be approached in a different

fashion (Finney & DiStefano, 2013). Including models for ordinal and categorical items is an

important step to increase the applicability of the stuart approach and towards an integration

of IRT into the approach. Beyond this, an extension to include the concepts of scale linking and

test equating, as eluded to in Section 5.3, also represents a possible extension of considerable

merit.

Finally, the approach presented in this thesis requires a sample to respond to the entire item

pool. While standard approaches to missing data are implemented in the SEM software used in

the stuart implementation (see Enders, 2010, for an overview), a more thorough investigation
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of planned missingness in item selection via this approach is necessary. Especially in situations

where extremely short scales are required (e.g. in experience sampling methods) assessing only

few items in a realistic setting may be very beneficial for the external validity of the final scale.

5.5 Recommendations for Applications

Chapter 4 presented three specific applications and the accompanying difficulties and possible

limitations. The most important thing to keep in mind is that the stuart approach is a method

for item selection. As with all strategies to item selection, constructing a good scale is most likely

when there is a sound theoretical basis for the construct, its assumed measurement structure,

and the original pool of items. An item selection strategy, no matter how intricate, can only find

the best possible combination of items in the original item pool. Thus, any application of the

stuart approach must be preceded by substantive research to generate a pool of sensible items

(either in form of a completely new pool of items or in the form of a validated long scale).

The item selection from the IPIP (see Section 4.2) and the selection for a scale to assess

emotional expressivity (shown in Section 4.3) both highlight one of the potential pitfalls of scale

shortening: the generality of the assessed facets is mirrored in the formulation of the items.

Items constructed for the use in a long form that assesses specific sub-dimensions are likely to be

phrased in such a way, that they mirror those specific areas of content. Unconstrained selection

from a long form with the aim of constructing a short form, which assesses only the general,

superordinate dimensions is likely to result in the selection of items pertaining to the same sub-

dimension. Thus, instead of constructing a shorter scale, assessing constructs in more coarse

fashion, this often leads to the reduction of the overall construct breadth. Generally, it may be

more feasible to construct a new pool of less specific items and select a short form from these,

than it is to construct a short form from a long version assessing more specific dimensions. If this

is not possible or not deemed necessary, filter matrices should be used as heuristic information

to ensure an adequate composition of the facets.

Perhaps the most important aspect of selecting items via the stuart approach is the definition

of the objective function f . Because this is, intentionally, specific for each application only broad,

general recommendations can be given. In most cases the objective function should contain

components which assess the quality of a possible scale in different areas. It is important to keep

in mind, that f determines what the scale is optimized for. If f contains only an estimate of

reliability, then the search will very likely result in a solution with high reliability, but possibly

abysmal model fit. In most cases, sensible components to include into the objective function can

be divided into four categories.

The first category constitutes indicators of the quality of the assumed measurement model.

Most of these belong to classical model fit criteria, such as the RMSEA, SRMR, CFI, etc.

Optimizing for good model fit ensures that the measurement model, which is assumed to underly
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the final scale, is a suitable representation of the scale structure. Note that different model

fit indexes evaluate model fit differently and are affected by different properties of each single

application, thus necessitating the inclusion of multiple indexes in every application. However,

model quality is not limited to fit, but can also encompass model adequacy. In all applications

presented in this thesis, measurement models resulting in improper solutions were automatically

rejected as unsuitable solutions. Thus, indicators in this category should be included in the

objective function to ensure that the theoretical structure is actually present in the final scale

selected.

The second category encompasses classical indicators of scale quality. Most notably, perhaps,

an indicator of reliability may be suitable in many applications. Due to CFA being used to

evaluate measurement models in the stuart approach, reliability measures based on these models

are most appropriate (e.g. Yang & Green, 2010). Beyond simple indicators of reliability, i.e.

estimating the reliability of each facet, indicators such as the reliability in the assessment of

change can be utilized in some settings (Geiser, 2008) to specifically search for possible scales,

which are well suited to assess change over time. Other classical indicators, such as the size of

factor loadings or item difficulty can also be included in the objective function.

The third category includes indicators of structural validity beyond the measurement model.

In cases with multiple sources of information the consistency coefficient represents such an indica-

tor. Beyond this, the latent correlations can be compared to a specified value, thereby imposing

assumptions about the relationship between the latent constructs in the process of item selection.

Perhaps the situation in which this is of relevance most often, is when a short scale is constructed

and the latent correlation matrix is optimized for its resemblance of the correlation matrix of the

original version.

The fourth category consists of indicators of external validity. The stuart approach allows for

the inclusion of external criteria in the CFA which is evaluated. Thus, correlations or regression

weights linking the facets in the scale to external criteria can be used to maximize predictive

validity, for example. On the other hand, correlations with other scales can be minimized to

ensure discriminant validity of the scale for which the selection is being performed.

Irrespective of which components are included in the objective function, it is sensible to use a

function with known limits. Most of the components listed above lie within pre-specified intervals,

making this easier. Using an objective function for which the theoretical upper limit is known

is beneficial, because it allows for an easier interpretation of solution quality and setting of the

parameters discussed in Section 3.1. Beyond this, it is crucial to choose an objective function

which is strictly positive. The quality of a (iteration-best or global-best) solution is deposited

directly as pheromone in Φ, as shown in Equations (2.7) and (2.8). This pheromone is then

used to determine the selection probability of an item via Equations (2.6) and (2.12). Using a

quality function which may result in negative values, can lead to negative selection probabilities,

resulting in failure of the application.
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Beyond the quality function, the heuristics play an integral part in determining the perfor-

mance of the stuart approach. Providing heuristics can have varying effects on runtime and

solution quality and the in-depth discussion of the consequences of using heuristics beyond bi-

nary filters is given in Section 3.9. A general recommendation is to use heuristics as logical

filters whenever necessary. In some cases, it may be more beneficial to rephrase the measure-

ment model and include more specific facets, instead of defining global facets and disallowing

combinations via heuristics, because these approaches allow for a more flexible handling of the

violation of strict unidimensionality, which may result from such theory-driven constraints. Us-

ing more facets makes the measurement model more complex and flexible, while the imposition

of heuristics regarding combinations of items makes the search problem itself more difficult. Be-

yond the logical filters, very large numbers can be used in H to guarantee selection of some items

which are vitally important to the definition of the scale from a substantive perspective.

Recommendations regarding the specific settings of the algorithmic parameters α, β, ρ, K,

the deposit-rule, as well as the possibility of using parameter schedules were derived from an

extensive evaluation study and are given in Section 3.9.

5.6 Conclusion

The stuart approach presented in this thesis provides a flexible approach for item selection,

either in the initial construction of scales or in the generation of short-forms of validated scales.

The evaluation presented in Chapter 3 and the applications shown in Chapter 4 indicate that

this approach is able to generate good solutions in a wide array of different situations. Utilizing a

CFA approach to item selection allows for the a priori specification of the measurement model of

the final scale. Due to the explicit inclusion of multiple groups, multiple measurement occasions,

and multiple sources of information, the approach can be used to select items in complex study

situations in a single step. The explicit requirement of a priori knowledge of the measurement

model, the extent of the final scale, the required invariance restrictions, and an objective function

allows basing each single application of the approach in the substantive theory surrounding the

scale it is applied to. Beyond this substantive knowledge, however, an in-depth understanding

of the underlying algorithm is not needed for the application of the stuart approach, because

general recommendations regarding the algorithm’s parameters are given in Section 3.9.

The approach is implemented in an R-Package, allowing for an application by anyone familiar

with the basics of the statistical programming language R (R Core Team, 2016). This package

is able to utilize both Mplus (L. K. Muthén & Muthén, 1998-2015) and lavaan (Rosseel, 2012)

for the estimation of CFAs. Appendix C provides the R-Syntax required for the applications

of the stuart approach presented in Chapter 4, for an easy introduction into the usage of the

R-Package.
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A.1 Abstract

Using questionnaires to assess constructs has a long standing tradition in psychological research.

Several guidelines and best-practices for constructing questionnaires and scales have been pro-

posed over the years. In most of these, it is recommended to generate more items than the

final scale is supposed to include, test this item pool on a sample, and select those items that

perform best for the (potentially) final scale. Recent developments have necessitated the use

of much shorter scales, making the shortening of established scales a common setting in which

items are selected from an original pool. Whether in scale shortening or in initial scale con-

struction, the quality requirements for a valid and reliable scale are manifold and, not seldom,

contradicting. Beyond this, modern psychological research is often based on complex study de-

signs, making scales desirable, which are known to be adequate for longitudinal studies, multiple

groups, multiple sources of information, or any combination thereof.

This thesis presents the stuart approach for item selection, which allows for the simultaneous

consideration of a multitude of quality criteria in complex study settings. To this end, item

selection is defined as an I-dimensional multiple knapsack problem with assignment restrictions

(IMKAR) and an adaptation of the MAX −MIN Ant-System (MMAS) is presented as an

algorithmic approach to find solutions for this problem. In this context, item selection is based on

generating promising solutions for final scales, evaluating these solutions via confirmatory factor

analysis (CFA), and using the results of these analyses to guide the search for better solutions.

Within this approach, an ideal measurement model and its restrictions must be defined a priori

and solutions are then generated to best accomplish this ideal. Utilizing the CFA approach allows

for item selection based on measurement models including multiple facets, multiple occasions,

multiple groups, and multiple sources of information simultaneously and optimizing the final

solution for criteria of model fit under assumptions of measurement invariance, among others.

Because the aim of this thesis is to present an applicable, flexible approach for item selection,

an extensive evaluation study was performed to investigate the performance of the chosen algo-

rithmic approach and derive recommendations for applications. These recommendations were

then transferred to three applications of item selection: (a) a longitudinal setting, incorporating

measurement invariance over time as a crucial component in item selection for a mood scale, (b) a

multiple-group setting, aimed at generating a cross-culturally comparable, ultra-short Big Five

scale, (c) and a setting including self- and peer-reports in the step of item-selection, to generate

a scale which can assess emotional expressivity via multiple sources of information.

Overall, the stuart approach proved flexible in the accommodation of a wide variety of study

designs, allowing for complex, application-specific objective functions and measurement models.

Additionally, the evaluation study allowed for the recommendation of parameter settings for the

alogrithmic approach, which generated solutions very close to optimal.
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A.2 Zusammenfassung

Das Verwenden von Fragebögen hat in der psychologischen Forschung eine lange Tradition. In

diversen Richtlinien und Empfehlungen zur Fragebogenerstellung wird es empfohlen, mehr Items

zu generieren als die finale Version des Fragebogens enthalten soll, diesen Item-Pool einer Stich-

probe vorzulegen und dann die bestgeeigneten Items auszuwählen. Neuere Entwicklungen haben

die Nutzung von viel kürzeren Skalen nötig werden lassen, sodass die Kürzung einer etablierten

Skala ebenfalls zu einem gängigen Beispiel der Itemselektion geworden ist. Sowohl in Fällen der

Skalenkürzung, als auch bei der Erstellung einer neuen Skala, sind die Qualitätsanforderungen

an reliable und valide Skalen vielfältig und nicht selten widersprüchlich. Darüber hinaus ist

moderne psychologische Forschung oft mit komplexen Studiendesigns verknüpft, wodurch Skalen

vonnöten sind, welche für Längsschnittstudien, Multigruppenuntersuchungen, multi-methodale

Studien oder eine Kombination aller drei geeignet sind.

In dieser Dissertation wird der stuart Ansatz vorgestellt, der die simultane Berücksichtigung

diverser Qualitätskriterien in komplexen Studiendesigns bei der Itemselektion erlaubt. Dafür

wird diese als I-dimensionales multiples Rucksackproblem mit Zuweisungsrestriktionen (IMKAR)

definiert und eine Abwandlung desMAX−MIN Ant-System (MMAS) zu dessen Lösen präsen-

tiert. In diesem Kontext werden Items dadurch selektiert, dass verschiedene, vielsprechende Lö-

sungen generiert, via konfirmatorischer Faktorenanalyse (CFA) analysiert, und deren Ergebnisse

für die Erstellung neuer Lösungen weiter verwendet werden. In diesem Ansatz wird ein ideal-

isiertes Messmodell, mit all seinen Restriktionen, vorgegeben und Lösungen generiert, die dieses

Ideal bestmöglich erfüllen sollen. Die CFA erlaubt es dabei, mehrere Facetten, Messzeitpunkte,

Gruppen und Quellen von Information gleichzeitig in die Itemselektion einzuschließen und die

Lösungen auf, beispielsweise, Modellpassungskriterien unter Invarianzannahmen zu optimieren.

Da es das Ziel dieser Dissertation ist, einen anwendbaren und flexiblen Ansatz zur Itemse-

lektion zu präsentieren, wurde eine extensive Evaluationsstudie durchgeführt, um das Verhalten

des ausgewählten Algorithmus zu untersuchen und Empfehlungen für Anwendungen abzuleiten.

Diese Empfehlungen wurden auf drei Anwendungen übertragen: (a) eine Längsschnittstudie, in

der Messinvarianz eine wichtige Komponente in der Itemselektion für eine Wohlbefindensskala

darstellt, (b) eine Multigruppenuntersuchung, in der eine Kurzskala für die interkulturell vergle-

ichbare Erfassung der Big Five generiert werden soll und (c) eine Untersuchung, in der Selbst-

und Fremdeinschätzungen in die Itemselektion einbezogen werden um eine Skala zur Erfassung

von Emotionsausdruck zu erstellen.

Insgesamt erwies sich der stuart Ansatz als flexibel genug um die Itemselektion in einer

Breite verschiedener Studiendesigns, unter Verwendung von anwendungsspezifischen Zielfunktio-

nen und Messmodellen, zu ermöglichen. Zusätzlich konnten aus der Evaluationsstudie Parame-

terempfehlungen für den genutzten Algorithmus abgeleitet werden, welche Lösungen sehr nahe

am Optimum generierten.
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In den folgenden Fragen geht es darum, wie Sie über sich und Ihr Leben denken.  

Bitte kreisen Sie die Zahl ein, die am besten Ihre  gegenwärtige Zustimmung zu oder Ablehnung von jeder einzelnen Aussage 

beschreibt. Bitte denken Sie daran, dass es keine richtigen oder falschen Antworten gibt. 

 
Lehne  

entschieden 
ab 

Lehne 
ziemlich 

 ab 

Lehne 
ein wenig 

ab 

Stimme 
ein wenig 

zu 

Stimme  
ziemlich  

zu 

Stimme  
entschieden  

zu 

1) Die meisten Menschen sehen in mir einen 
liebevollen und zärtlichen Menschen. 

1 2 3 4 5 6 

2) Im Allgemeinen habe ich das Gefühl, dass ich für 
meine Lebenssituation verantwortlich bin. 

1 2 3 4 5 6 

3) Ich interessiere mich nicht für Aktivitäten, die 
meinen Horizont erweitern. 

1 2 3 4 5 6 

4) Wenn ich rückblickend mein Leben betrachte, freue 
ich mich darüber, wie es verlaufen ist. 

1 2 3 4 5 6 

5) Enge Beziehungen aufrecht zu erhalten, ist für mich 
schwierig und frustrierend gewesen. 

1 2 3 4 5 6 

6) Ich habe keine Angst davor, meine Meinung zu 
äußern, auch wenn sie im Gegensatz zu den Ansichten 
der meisten Menschen steht. 

1 2 3 4 5 6 

7) Die Anforderungen des Alltags entmutigen mich oft. 1 2 3 4 5 6 

8) Ich lebe von einem Tag zum nächsten und denke 
nicht wirklich über die Zukunft nach. 

1 2 3 4 5 6 

9) Im Allgemeinen bin ich selbstbewusst und sehe mich 
positiv. 

1 2 3 4 5 6 

10) Ich fühle mich oft einsam, weil ich nur wenige enge 
Freunde habe, denen ich meine Sorgen mitteilen kann. 

1 2 3 4 5 6 

11) Meine Entscheidungen werden normalerweise 
nicht durch das, was andere machen beeinflusst. 

1 2 3 4 5 6 

12) Ich passe nicht sehr gut zu den Leuten um mich 
herum und in mein Umfeld. 

1 2 3 4 5 6 

13) Ich neige dazu mich mehr auf die Gegenwart zu 
konzentrieren, da die Zukunft mir fast immer Probleme 
bringt. 

1 2 3 4 5 6 

14) Ich habe das Gefühl, dass andere Menschen, mehr 
aus ihrem Leben gemacht haben als ich. 

1 2 3 4 5 6 

15) Ich mag persönliche Gespräche und Austausch mit 
Verwandten oder Freunden. 

1 2 3 4 5 6 

16) Ich neige dazu, mir Sorgen darüber zu machen, was 
die Leute von mir denken. 

1 2 3 4 5 6 

17) Es gelingt mir ganz gut, die vielen Pflichten in 
meinem täglichen Leben zu bewältigen. 

1 2 3 4 5 6 
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Lehne  

entschieden 
ab 

Lehne 
ziemlich 

 ab 

Lehne 
ein wenig 

ab 

Stimme 
ein wenig 

zu 

Stimme  
ziemlich  

zu 

Stimme  
entschieden  

zu 

18) Ich will nicht versuchen neue Wege zu gehen – 
mein Leben ist gut so wie es ist. 

1 2 3 4 5 6 

19) Mit mir selber zufrieden zu sein ist mir wichtiger als 
das, was andere von mir halten. 

1 2 3 4 5 6 

20) Ich fühle mich oft von meinen Pflichten erdrückt. 1 2 3 4 5 6 

21) Ich glaube es ist wichtig neue Erfahrungen zu 
machen, die die Art und Weise, wie man über sich und 
die Welt denkt, in Frage stellen. 

1 2 3 4 5 6 

22) Mein tägliches Tun scheint mir oft belanglos und 
unwichtig. 

1 2 3 4 5 6 

23) Ich mag die meisten Seiten meiner Persönlichkeit. 1 2 3 4 5 6 

24) Ich habe nicht viele Menschen, die mir zuhören 
wollen, wenn ich das Bedürfnis habe zu reden. 

1 2 3 4 5 6 

25) Ich neige dazu, mich von Menschen mit festen 
Überzeugungen beeinflussen zu lassen. 

1 2 3 4 5 6 

26) Wenn ich es mir recht überlege, so habe ich mich in 
den letzten Jahren als Person nicht wirklich 
weiterentwickelt. 

1 2 3 4 5 6 

27) Ich weiß nicht so recht, was ich in meinem Leben 
erreichen möchte. 

1 2 3 4 5 6 

28) In der Vergangenheit habe ich einige Fehler 
gemacht, aber ich glaube, alles in allem hat sich das 
meiste zum Besten gefügt. 

1 2 3 4 5 6 

29) Im Allgemeinen kann ich meine persönlichen und 
finanziellen Angelegenheiten gut erledigen. 

1 2 3 4 5 6 

30) Früher habe ich mir Ziele gesetzt, aber das kommt 
mir jetzt wie Zeitverschwendung vor. 

1 2 3 4 5 6 

31) In vieler Hinsicht bin ich enttäuscht von dem, was 
ich im Leben erreicht habe. 

1 2 3 4 5 6 

32) Mir scheint, dass die meisten anderen Menschen 
mehr Freunde haben als ich. 

1 2 3 4 5 6 

33) Ich mache gerne Pläne für die Zukunft und arbeite 
daraufhin, sie zu verwirklichen. 

1 2 3 4 5 6 

34) Andere Menschen würden mich als eine Person 
beschreiben, die viel für andere tut und die bereit ist 
ihre Zeit mit anderen zu teilen. 

1 2 3 4 5 6 

35) Ich vertraue meinem Urteil, auch wenn es nicht den 
Überzeugungen der Mehrheit entspricht.  

1 2 3 4 5 6 

36) Es gelingt mir, meine Zeit so einzuteilen, dass ich 
alles erledigen kann, was getan werden muss. 

1 2 3 4 5 6 
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Lehne  

entschieden 
ab 

Lehne 
ziemlich 

 ab 

Lehne 
ein wenig 

ab 

Stimme 
ein wenig 

zu 

Stimme  
ziemlich  

zu 

Stimme  
entschieden  

zu 

37) Ich habe das Gefühl, dass ich mich im Laufe der Zeit 
als Person sehr weiterentwickelt habe. 

1 2 3 4 5 6 

38) Ich bin aktiv und setze um was ich mir vornehme. 1 2 3 4 5 6 

39) Ich habe nicht viele warmherzige und 
vertrauensvolle Beziehungen mit anderen erlebt. 

1 2 3 4 5 6 

40) Es fällt mir schwer, zu umstrittenen Themen meine 
Meinung zu äußern. 

1 2 3 4 5 6 

41) Ich mag neue Situationen nicht, in denen ich meine 
gewohnte Art Dinge zu tun ändern muss. 

1 2 3 4 5 6 

42) Manche Menschen gehen ziellos durchs Leben, 
aber ich gehöre nicht zu ihnen. 

1 2 3 4 5 6 

43) Ich denke wahrscheinlich weniger positiv über mich 
als andere Menschen über sich. 

1 2 3 4 5 6 

44) Wenn meine Freunde oder Familie anderer 
Meinung sind, ändere ich oft meine Entscheidungen. 

1 2 3 4 5 6 

45) Das Leben ist für mich ein ständiger Prozess des 
Lernens, Veränderns und des Reifens. 

1 2 3 4 5 6 

46) Manchmal habe ich das Gefühl, dass ich alles getan 
habe, was es im Leben zu tun gibt. 

1 2 3 4 5 6 

47) Ich weiß, dass ich mich auf meine Freunde 
verlassen kann und sie wissen, dass sie sich auf mich 
verlassen können. 

1 2 3 4 5 6 

48) Mein bisheriges Leben hatte Höhen und Tiefen, 
aber insgesamt würde ich nichts daran ändern wollen. 

1 2 3 4 5 6 

49) Es fällt mir schwer mein Leben so zu organisieren, 
dass es für mich befriedigend ist. 

1 2 3 4 5 6 

50) Ich habe schon vor langer Zeit aufgegeben, mein 
Leben grundsätzlich zu verändern und zu verbessern. 

1 2 3 4 5 6 

51) Wenn ich mich mit Freunden und Bekannten 
vergleiche, habe ich ein gutes Gefühl dabei, so zu sein 
wie ich bin. 

1 2 3 4 5 6 

52) Ich beurteile mich selbst nach dem, was ich für 
wichtig halte, nicht nach den Werten, die für andere 
gelten. 

1 2 3 4 5 6 

53)  Ich habe es geschafft, mir ein Zuhause und einen 
Lebensstil ganz nach meinem Geschmack zu schaffen. 

1 2 3 4 5 6 

54) Es ist etwas Wahres an dem Spruch: Was Hänschen 
nicht lernt, lernt Hans nimmermehr. 

1 2 3 4 5 6 
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C.1 Longitudinal Item Selection

> #################################

> #### Stuart Application ####

> #### Item Selection for MDBF ####

> #################################

>

> #### Preparation ----

> library(stuart)

> library(foreign)

> ####

>

> #### Data Handling ----

>

> # Comprenhensive data description:

> # http://www.metheval.uni-jena.de/materialien/ges7/ZwischenberichtStufe1.php

> mdbf <- read.spss('http://www.metheval.uni-jena.de/materialien/ges7/ges7.sav',

+ to.data.frame=TRUE, use.value.labels=FALSE)

> demo <- mdbf[,2:3]

> names(demo) <- c('sex','age')

> # Import Item Allocation

> load('labels.rda')

> # Select only MDBF ('beschreibungges7.pdf')

> mdbf <- mdbf[,grep('ST[0-5]',names(mdbf))]

> mdbf <- mdbf[,!grepl('59',names(mdbf))]

> mdbf <- mdbf[,!grepl('U',names(mdbf))]

> # Recoding

> mdbf[,names(mdbf)%in%unlist(labels[labels$Valence=='negative',4:7])] <-

+ (mdbf[,names(mdbf)%in%unlist(labels[labels$Valence=='negative',4:7])]-6)*-1

> # Save the file

> mdbf <- data.frame(demo,mdbf)

> save(mdbf,labels,file='mdbf.rda')

> ####

>

> #### Facet Definitions ----

>

> # Set Up Factor Structure

> fs <- list(wach1=labels$name[labels$Dimension=='wach'],

+ wach2=labels$name2[labels$Dimension=='wach'],

+ wach3=labels$name3[labels$Dimension=='wach'],

+ gehoben1=labels$name[labels$Dimension=='gehoben'],

+ gehoben2=labels$name2[labels$Dimension=='gehoben'],

+ gehoben3=labels$name3[labels$Dimension=='gehoben'],

+ ruhe1=labels$name[labels$Dimension=='ruhe'],

+ ruhe2=labels$name2[labels$Dimension=='ruhe'],

+ ruhe3=labels$name3[labels$Dimension=='ruhe'])

> # Repeated Measures
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> repe <- list(wach=c('wach1','wach2','wach3'),

+ gehoben=c('gehoben1','gehoben2','gehoben3'),

+ ruhe=c('ruhe1','ruhe2','ruhe3'))

> ####

>

> #### Heuristics ----

>

> # Generate empty heuristics table

> heu <- heuristics(mdbf,fs,4,repeated.measures=repe,deposit.on='arcs')

> # Assign heuristic values

> for (n in seq_along(heu)) {

+ for (i in 1:ncol(heu[[n]])) {

+ for (j in 1:nrow(heu[[n]])) {

+ heu[[n]][i,j] <- as.numeric(labels$Valence[labels$name==rownames(heu[[n]])[i]]!=

+ labels$Valence[labels$name==colnames(heu[[n]])[j]])

+ }

+ }

+ }

> ####

>

> #### Objective function ----

> fit <- function(chisq,df,pvalue,rmsea,srmr,crel,rel,cfi,tli) {

+ 1 / (1 + exp(-10 * (mean(rel) - .8))) +

+ (.5 - (.5 / (1 + exp(-100 * (rmsea - .05))))) +

+ (.5 - (.5 / (1 + exp(-100 * (srmr - .05)))))

+ }

> ####

>

> #### Run ----

>

> # Compute number of combinations

> combinations(mdbf,fs,4,repeated.measures=repe)

> # Run Item Selection

> sel <- mmas(mdbf, fs, 4,

+ repeated.measures=repe, heuristics=heu,

+ deposit.on='arcs', cores=4,

+ colonies=512, ants=32,

+ evaporation=.95, deposit='ib',

+ fitness.func=fit, item.long.invariance='strong',

+ alpha=1)

> ####
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C.2 Multiple Group Item Selection

> #################################

> #### Stuart Application ####

> #### Item Selection for IPIP ####

> #################################

>

> #### Preparation ----

> library(stuart)

> ####

>

>

> #### Data Handling ----

>

> # Data available at https://osf.io/tbmh5/

> load('ipip.rda')

> load('itemkey.rda')

> ####

>

> ### Country Selection ----

>

> small <- ipip[ipip$country%in%c('Mexico ','France ','Malaysia '),]

> small$country <- droplevels(small$country)

> ####

>

> #### Facet Definitions ----

>

> fs <- list(Op=paste0('I',itemkey$Full.[substr(as.character(itemkey$Key),1,1)=='O']),

+ Co=paste0('I',itemkey$Full.[substr(as.character(itemkey$Key),1,1)=='C']),

+ Ex=paste0('I',itemkey$Full.[substr(as.character(itemkey$Key),1,1)=='E']),

+ Ag=paste0('I',itemkey$Full.[substr(as.character(itemkey$Key),1,1)=='A']),

+ Ne=paste0('I',itemkey$Full.[substr(as.character(itemkey$Key),1,1)=='N']))

> ####

>

>

> #### Heuristics ----

>

> # Generate empty heuristics

> heu <- heuristics(small,fs,2,deposit.on='arcs')

> # Assign Fisher-z correlations

> for (n in seq_along(heu)) {

+ for (i in 1:ncol(heu[[n]])) {

+ for (j in 1:nrow(heu[[n]])) {

+ heu[[n]][i,j] <- as.numeric(itemkey$Facet[itemkey$Full.==substr(rownames(heu[[n]]),2,4)[i]]!=

+ itemkey$Facet[itemkey$Full.==substr(colnames(heu[[n]]),2,4)[j]])

+ }

+ }
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+ cors <- cor(small[,colnames(heu[[n]])])

+ cors[abs(cors)<.2] <- 0

+ cors <- abs(.5*log((1+cors)/(1-cors)))

+ heu[[n]] <- heu[[n]]*cors

+ }

> # Remove items without cors > .2

> filt <- lapply(heu,function(x) rowSums(x,na.rm=TRUE)!=0)

> for (i in seq_along(fs)) {

+ heu[[i]] <- heu[[i]][filt[[i]],filt[[i]]]

+ fs[[i]] <- fs[[i]][filt[[i]]]

+ }

> ####

>

> #### Objective function ----

>

> fit <- function(chisq,df,pvalue,rmsea,srmr,cfi,tli,crel,rel) {

+ (1 - (1 / (1 + exp(-100 * (rmsea - .05))))) +

+ (1 - (1 / (1 + exp(-100 * (srmr - .05))))) +

+ (1 / (1 + exp(-25 * (min(unlist(rel)) - .4))))

+ }

> ####

>

> #### Run ----

>

> sel <- mmas(small,fs,2,grouping='country',

+ item.invariance='ess.equivalent',item.group.invariance='strong',

+ heuristics=heu,deposit.on='arcs',

+ fitness.func=fit,,deposit='gb',

+ evaporation=.95,ants=64,colonies=512)

> ####
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C.3 MTMM Item Selection

> #################################

> #### Stuart Application ####

> #### Item Selection for EMEX ####

> #################################

>

> #### Preparation ----

> library(stuart)

> library(foreign)

> ####

>

> #### Data Handling ----

>

> load('emo.rda')

> # Item Allocation

> key <- data.frame(item=1:28,word=NA,cate=NA,vale=NA)

> key$word <- c('affection','joy','fear','anger','shame','sadness',

+ 'love','happiness','worry','resentment','guilt','depression',

+ 'disgust','intimacy','nervousness','cheerfulness','concern','fury',

+ 'regret','sorrow','caring','contentment','anxiety','rage',

+ 'embarassment','unhappiness','pride','tension')

> tmp <- data.frame(

+ c(7,1,14,21,2,8,16,22,3,9,17,23,4,10,24,18,5,11,19,25,6,12,20,26,13,27,15,28),

+ rep(c('love','joy','fear','anger','shame','sadness',NA),each=4))

> key$cate[tmp[,1]] <- tmp[,2]

> key$cate <- factor(key$cate,labels=levels(tmp[,2]))

> key$vale <- 'neg'

> key$vale[tmp[,1]][c(1:8,26)] <- 'pos'

> ####

>

>

> #### Facet Definitions ----

>

> # Set Up Factor Structure

> fs <- list(posS=paste0('zea',str_pad(key$item[key$vale=='pos'],2,'left','0')),

+ negS=paste0('zea',str_pad(key$item[key$vale=='neg'],2,'left','0')),

+ posA=paste0('zeaa',str_pad(key$item[key$vale=='pos'],2,'left','0')),

+ negA=paste0('zeaa',str_pad(key$item[key$vale=='neg'],2,'left','0')))

> # MTMM Structure

> mtmm <- list(pos=c('posS','posA'),

+ neg=c('negS','negA'))

> ####

>

> #### Objective function ----

> fit <- function(chisq.scaled,df.scaled,pvalue.scaled,rmsea.scaled,srmr,cfi.scaled,tli.scaled,con,crel,rel) {

+ (1 - (1 / (1 + exp(-100 * (rmsea.scaled - .05))))) +
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+ (1 - (1 / (1 + exp(-100 * (srmr - .05))))) +

+ (1 / (1 + exp(-25 * (min(unlist(rel)) - .7)))) +

+ (1 / (1 + exp(-10 * (con - .5))))

+ }

> ####

>

>

> #### Run ----

>

> # Compute number of combinations

> combinations(emo,fs,4,mtmm=mtmm)

> # Run Item Selection

> sel <- list()

> for (i in 1:5) {

+ sel[[i]] <- mmas(emo,fs,4,fitness.func=fit,mtmm=mtmm,

+ analysis.options=list(estimator='mlr'),

+ evaporation=.8,ants=16,alpha=1,deposit='ib')

+ }

> do.call(rbind,lapply(sel,function(x) x$log[which.max(x$log$pheromone),]))

> ####
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