Network Propagation with Node Core
for Genotype-Phenotype Associations
and Module Identification

Dissertation
zur Erlangung des Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

am Fachbereich Mathematik und Informatik
der Freien Universitat Berlin

vorgelegt von

Gal Barel

Berlin , 2020



Erstgutachter: Prof. Dr. Martin Vingron
Zweitgutachter: Prof. Dr. Ulrich Stelzl
Tag der Disputation: 21 Januar 2021



Preface

Publications and contributions

This thesis is built on a project that was developed upon extensive experimentation
and explorations of network propagation applications for studying genotype-phenotype
associations, and in particular disease genes and disease modules. The idea of modify-
ing the commonly used network propagation formulation grew out of fruitful discus-
sions with my adviser Ralf Herwig. This approach was recently published in Nucleic
Acids Research (NAR) [30] and is available at https://doi.org/10.1093/nar/gkaa639.
In addition to the published version, this thesis includes further implementations, eval-
uations and applications, in order to further expand upon aspects which were not pre-
viously demonstrated and discussed. One of which is the application of the approach to
study drug-toxicity. Prior to the development of the approach I developed a workflow
for the analysis of toxicogenomics data using pathway and network information, which
was previously published in Frontiers in genetics [29] and is only briefly mentioned in
this thesis. Furthermore, I participated in the analysis of drug-toxicity data which was
collected, in collaboration with others, under the 7th framework project "HeCaToS".
Parts of the results have recently been accepted for publication in Communications biol-
ogy [263], and some of the data was re-analyzed by me for the purpose of this thesis.

Throughout the chapters of this thesis I will use the personal pronoun we to indicate
work done by myself, with the supervision and support from my adviser Ralf Herwig.
Any results which are based on previous works by others or which were done in collab-
oration will be mentioned accordingly in the text.
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Part I

INTRODUCTION AND PRELIMINARIES






1 Introduction

One of the main goals in molecular biology, and even more so in molecular genetics, is
to be able to associate genomic elements with some (disease) phenotype. To that end,
researchers attempt to decipher the role of each molecule and its contribution to the
concert of events at the cell which lead to the emerging phenotype. The key molecules,
namely DNA, RNA and proteins, drive most of the cellular functions by constantly in-
teracting with each other. Among these interactions, the ones between two and more
proteins play an important role by regulating and executing many processes in the cell.
These interactions are often depicted as network, which serves as a powerful scaffold
for analyzing and investigating molecular data. One such possible analysis involves the
diffusion of molecular evidence throughout the entire network in a process termed net-
work propagation. Since genes that carry similar functions are believed to be connected
in the network, the signal is thus amplified, enabling researches to draw informed con-
clusions about the mechanisms that lead to the phenotype under investigation. Several
approached based on this concept have already been successfully applied to genomic
measurements, mostly for the detection of disease genes and modules.

1.1 Research objective

This thesis presents a network propagation framework with the aim of identifying
novel genotype-phenotype associations as well as relevant network modules. The de-
veloped method provides two main novel contributions that address drawbacks which
arose from inspecting previous network propagation approaches in molecular biology.
The first is a modification to the mathematical formulation of network propagation
which provides an improved ranking of the genes at the end of the propagation. The
second is a semi-supervised module identification approach that incorporates prior
knowledge and allows for the detection of network modules which connect well-known
genes with novel ones. The method was initially developed with the goal of improving
disease-gene predictions and disease-module detection, and as such was applied to
two complex diseases. Additionally, the method is also suitable for analyzing other
types of genotype-phenotype associations, and was therefore also demonstrated on
drug-toxicity data.

1.2 Thesis outline

This thesis is divided into two parts. The first is aimed at providing relevant back-
ground for the work which is presented in the second part. This Chapter serves as a
brief introduction for the scope of the thesis. Chapter 2 will provide an introduction to
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molecular biology, focusing mainly on molecular interactions, pathways and networks.
Chapter 3 will include an introduction to experimental and computational techniques
for the purpose of associating phenotypes, mainly disease ones, with genomic elements.
The experimental background will be centered around genomic measurements that
are produced using sequencing technologies, and how those can be used to identify
disease-genes. The computational background will focus on computational methods
for identifying disease genes, and mainly on network-based methods, with a particular
emphasis on network propagation methods. The last Chapter in this section, Chapter 4,
will contain fundamental concepts that are relevant to the thesis, namely definitions
from graph theory and the mathematics of network propagation.

The second part of this thesis is comprised of four chapters and contains a comprehen-
sive report of the work that was done. Chapter 5 will describe the developed method,
which consists of a modified version of network propagation for genotype-phenotype
associations. The first part is concerned with the adjustment of the mathematical for-
mulation, and the second one with a semi-supervised module identification procedure.
In Chapter 6 the performance of the method will be evaluated using a set of well-
known disease-associated genes. In addition, the influence of the various parameters
of the method on its performance will be presented. In Chapter 7 the method will be
applied to three different data sets in order to demonstrate its benefits in identifying
genes and modules that are relevant to the experimental evidence. The results will
be compared with other state-of-the-art methods which were previously developed for
similar purposes. Finally, the method, its performance, application and results will be
discussed in detail in Chapter 8. The work will be concluded, and future applications
and improvements will be devised.



2 Molecular Biology Background

This chapter is aimed at introducing the field of molecular biology in general, and in
particular of molecular genetics. The key players in molecular biology are presented,
in addition to models for representing their interactions, such as pathways and net-
works. Finally, we review briefly how disruptions of the genome can lead to changes in
molecular interactions and therefore cause disease phenotypes.

2.1 Key players in molecular biology

Living organisms are composed of one or more cells. The cell, which consists of a
cytoplasm surrounded by a membrane, contains different kinds of biomolecules in var-
ious cell compartments (Figure 2.1). The nucleus contains the deoxyribonucleic acid
(DNA), a long double stranded molecule, comprised of four nucleotides (also called
bases), that are connected to one another in a helical shape. The DNA contains the ge-
netic information of the cell, that codes for genes and other genetic elements. Sections
of the DNA can be transcribed to ribonucleic acid (RNA), a single stranded molecule
which is also comprised of four nucleotides. There are several types of RNA molecules in
the cell, which are involved in different molecular processes. A messenger RNA (mRNA)
molecule holds the coding information of a gene, i.e. the exons, which can be translated
into a protein by the Ribosome machinery. The introns are the non-coding sequences
of a gene which are removed prior to translation. Proteins are long chains of connected
amino acids, that consist of one or more polypeptides, which perform many of the cell’s
functions. They help carry out chemical reactions on other molecules which are present
in the cell, such as lipids and carbohydrates, as well as other types of small metabolites.
Protein can be classified into families, which usually reflect their similarity in sequence
and function. For example, enzymes are a family of proteins which act as biocatalysts,
and are able to accelerate biochemical reactions. Another example are signaling pro-
teins, which bind to a ligand, and activate a chain of transmission that results in a
cellular response.

2.2 Molecular interactions

The many components of a cell interact with each other in order to execute all the
necessary processes for the cell to function. These processes vary from the most vi-
tal ones that are present in every cell, such as metabolism and energy conversion, to
specific ones that can determine the cell’s identity and role. It is crucial for the inter-
actions to successfully occur in order to carry out all processes, otherwise numerous
damages could arise, that might eventually lead to disease. The types of interactions
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Figure 2.1: Key players in molecular biology: The cell is separated from the extracellular
matrix by a membrane. The nucleus, one of the cell organelles, contains the DNA, which is
transcribed into RNA molecules. The RNA is transported outside of the nucleus and into the
cytoplasm, where it is translated by the Ribosome into a protein. The protein binds to a signaling
ligand, which is imported into the cell via a receptor protein which is bound to the membrane.
(Original illustrations taken from SMART Servier Medical Art [https://smart.servier.com/])

depend on the molecules involved. There are metabolic interactions, which are physical-
chemical reactions within the cell, for example an enzyme catalyzing the conversion of
one molecule to another. A signaling interaction usually involves two proteins, where
one chemically modifies some property of the amino acids of the other, for example in
a phosphorylation process. Proteins can also chemically interact via the side chains of
their amino-acids and form protein complexes, which serve as a functional machinery
to perform a specific process. Transcription factors (TFs) are a special kind of proteins
that can bind to regions in the DNA via genetic interactions and by that regulate the ex-
pression levels of a gene. Naturally, many biological processes are highly complex and
include multiple types of molecules and interactions. For example insulin is secreted
in response to glucose, however the process is tightly regulated and involves the inte-
gration of many signals from both metabolites and hormones. Therefore, it is usually
very useful to summarize and overview biological processes in pathways and networks,
which will be elaborated in the next Sections.

2.3 Molecular pathways

Many biological processes can be represented in pathways, which describe a series
of reactions between genes, proteins and other metabolites. The main idea behind a
pathway is to compile the set of participating players and their interactions which oc-
cur together in order to execute some process. The most common pathways are as-
sociated with metabolic reactions, gene regulatory mechanisms or signal transduction
processes. In addition, pathways can also represent a group of reactions which are
associated with the same outcome, for instance developmental pathways or complex
disease progression, such as cancer. Pathways can be visually represented as graphs,
where nodes correspond to biomolecules and reactions are represented by arrows or
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Figure 2.2: Signaling by Nuclear Receptors: An example of different signaling pathways, in-
voked by the signaling molecules estrogen and aldosterone or by oxysterol and retinol (also
known as vitamin A1). These molecules trigger a chain of signaling reactions that eventually
effect gene expression in the nucleus and by that some cellular function. These pathways in-
clude different molecular interactions such as biochemical, protein-protein and gene regulatory
ones. For example, the estrogen hormone binds to estrogen receptors, which can then act as
TFs and regulate the expression of genes which control cellular processes like proliferation and
differentiation. Adapted from Reactome [139].

lines connecting them. Figure 2.2 illustrates three different signaling pathways which
involve metabolic, protein-protein and gene regulatory interactions. Pathway concepts
are very useful when analyzing molecular data. They help to aggregate knowledge
regarding complex mechanisms and represent the interdependencies between many
cellular processes.

Molecular pathways can be defined in different ways, and are usually collected in
databases that are publicly available. However, each database is curated differently,
with interactions being collected from the literature and manual data submissions, and
are therefore not always comprehensive or consistent with others [33, 272]. Pathguide
[21], an online pathway resource list, currently provides information about more than
700 such pathway resources. Many of the resources span over multiple types of in-
teractions, for example the Kyoto Encyclopedia of Genes and Genomes (KEGG) [146]
database, which collects knowledge of metabolic reactions, signal transduction, genetic
regulation and more. Some resources are more specific and include only one type of
interactions, for example DrugBank [319] which collects information about drug-target
interactions and drug metabolism pathways. Due to the large number of resources, and
in order to concentrate pathway information for all kinds of interactions, there have
been efforts to integrate several resources into one. Pathway Commons [247] currently
integrates pathway information from 22 databases, while ConsensusPathDB (CPDB)
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[118] provides information for over 5,000 pathway concepts collected from 32 differ-
ent resources. These types of meta-databases agglomerate most of the information that
is relevant for each pathway, and therefore enable a comprehensive overview of the
players and their interactions.

2.4 Protein-protein interaction networks

Many living systems can be described using networks. In social networks, connec-
tions describe interactions between individuals or organizations [311]. The world wide
web can be represented as a vast network, connecting millions of HTML pages [8]. A
cell can also be described as a network, whose players are molecules such as genes
and proteins, and the connections describe biochemical reactions [315]. This network
is sometimes also referred to as the interactome, the set of all molecular interactions
in a cell. Most of these huge complex networks are highly structured and follow a com-
mon topology [313]. The aggregation of information into networks enables their anal-
ysis and can generate useful observations that have applications in many disciplines.
Network theory is largely based on graph theory, where networks are mathematically
defined using graph models. The relevant definitions are given in Section 4.1.

In molecular biology, different systems can be described using networks (For exam-
ples see Figure 2.3). The chemical interactions between proteins are usually described
by protein-protein interaction (PPI) networks. Genetic interactions, which represent
gene-gene interactions, are portrayed as gene regulatory networks (GRNs). Metabolic
interactions, which usually represent enzymatic reactions, can also be described as a
network, connecting enzymes with metabolites. Each one of these networks not only
serves as a fundamental source of information, but can also serve as a tool for analyzing
and understanding all sorts of biological questions [188]. Many metrics and concepts
that have been developed in graph theory are applicable to molecular interaction net-
works, as well as a large variety of algorithms which can be applied to them. At the cen-
ter of this work are PPI interactions and networks. We will describe how interactions
between proteins can be experimentally measured, focusing on one of the most com-
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Figure 2.4: The yeast two hybrid system: The ’bait’ protein is attached to a binding domain
(BD) and the ’prey’ protein is attached to the activating domain (AD). Once the ’bait’ protein
interacts with the prey’ protein, the BD is attached to the upstream activating sequence (UAS)
and the AD to the reporter gene, such that it can be transcribed. Thus, if the reporter gene
is detected, then it serves as a measure for the interaction between the ’bait’ and the ’prey’
proteins.

mon techniques. Furthermore, we will review how PPI networks have been constructed
over the years, and mention some of the recent efforts to expand the knowledge in the
field.

Proteins are characterized by domains, a region in the protein’s sequence that is
associated with some function. Thus, two proteins can interact with each other via
one of their domains, such that a chemical bond is created between the amino acids.
Proteins can also organize themselves into a complex, where multiple bonds are formed
between two or more proteins, resulting in an energetically favorable structure, where
the proteins stay connected to one another [184]. These protein complexes are able
to perform various molecular functions that are essential for the cell. In fact, many
fundamental processes are carried out by complex machineries of multiple proteins,
for example the Mediator complex, which helps activate transcription of genes [10].

There are two main experimental techniques to study protein interactions: the yeast
two hybrid (Y2H) system [88] and affinity purification coupled to mass-spectrometry
(AP-MS) methods [179]. Y2H is designed to capture binary interactions between two
proteins, while the AP-MS methods are able to measure protein complex interactions.
The latter can only detect which proteins come together within a complex, but does not
necessarily determine the binary interactions within the complex [327]. PPI networks
usually represent binary interactions, and therefore generally include interactions that
were captured via Y2H experiments [221]. This work mainly focuses on the Y2H sys-
tem, as even though it is widely used for measuring PPIs, it also suffers from some
technical biases, which are described in Section 3.6.1.

Y2H is a genetic system, based on the GAL4 protein of the yeast Saccharomyces cere-
visiae, to study interactions between two proteins. Figure 2.4 visualizes the main com-
ponents of the system. GAL4 is a TF that activates expression that is necessary for the
degradation of galactose. The protein has two main domains, the first binds to the
DNA, and the second contains a region that is necessary for transcription activation.
The Y2H system contains two fused proteins: a ’bait’ protein, which is fused to the DNA
binding domain of GAL4, and a ’prey’ protein, which is fused to the activating domain.
Only when the fused proteins interact via the ’bait’ and ’prey’ domains is the transcrip-
tion activated and can be measured. The basic Y2H system was later expanded to a
high-throughput screen, and thus almost all 6,000 of the yeast proteins were tested for



2 Molecular Biology Background

binary interactions [137, 138, 293, 305]. The same method could easily be utilized for
studying protein interactions in other model organisms, for example C. elegans [303,
304], and was later also adapted to humans [250, 277].

Interactions between proteins are most commonly described using network models.
Every protein is represented as a node in the network, and an interaction between two
proteins is represented by an edge. The interactions can also be weighted, such that the
weight describes the confidence level in the interaction. Typically such networks follow
the same model of other complex systems, such as the internet, and can be represented
by scale-free graphs [27, 140, 325]. Such graphs are characterized by a power law
distribution of the degree, i.e. most of the nodes in the network have a low degree, and
only a small sub-set has an extremely high degree (definitions and further details are
given in Section 4.1.3). This creates a ’small-world’ effect, where any two nodes are
connected via a path of a few edges only [65, 313].

Over the years there have been tremendous efforts to collect protein interactions,
summarize them in networks and make them available via online databases and re-
sources. Starting from PPI networks of yeast proteins [260, 322] and quickly expanding
to networks of human proteins [20, 218, 253, 330]. The first human PPI networks in-
cluded a rather small number of interactions [74], which in turn grew larger and larger,
as the high-throughput experimental technologies advanced [254]. Furthermore, in-
teractions could be computationally predicted for more organisms based on sequence
homology of the proteins and potential conservation of the interactions between them
[165, 186]. In addition to experimental and computational techniques for identifying
new interactions, those can also be extracted via automated text mining of abstracts
and publications [80, 181].

As the number of PPIs databases grew, there was a need to collect all of the informa-
tion and centralize it into one resource [54]. This way, all the experimental and curated
evidence for an interaction would become available under one place. Some databases
focus only on protein interactions, such as STRING [283], where others also provide ad-
ditional interactions. CPDB [145] is an example for such meta-database, summarizing
more than 600,000 unique interactions from 32 public resources, out of which more
than 400,000 are interactions between proteins. Since these meta-databases combine
information from multiple resources, they can also provide a confidence score for every
interaction, to suggest how many times it was reported and on which type of evidence
it is based. CPDB uses IntScore [143], an interaction confidence scoring tool, that
combines both topology based and annotation based methods, and generates a final in-
tegrated score. STRING uses a different approach [301], where the scores are derived
according to a trusted data set that is defined using KEGG pathways [146].

2.5 Molecular genetics - from genotype to pheno-
type

The field of genetics, and molecular genetics in particular, has made a long way
since Gregor Mendel established the rules of inheritance, in what is nowadays termed
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Figure 2.5: The central dogma of molecular biology: On the left, the double stranded DNA
is transcribed into mRNA which is then translated into the amino acid sequence that makes up
a protein. When the DNA is mutated, for example by a point mutation which changes one C
base to T, as depicted on the left, then the mutation is also carried on to the mRNA. Due to
the genetic code, the change in one base changes the matching amino acid from Glychin (Gly)
to Argenin (Arg). This change in amino acid could affect for example the 3D structure of the
protein and by that its usual function. (Figure created in bioRENDER [https://biorender.com/])

Mendelian inheritance. Already in the early 1900s it was clear that some genetic ma-
terial controls certain traits, or phenotypes, and that it is inherited and not just ac-
quired. Although it was already known then that genes existed on chromosomes, only
in the 1940s was it made clear that the DNA is the molecule which carries the ge-
netic information. In 1953 James Watson and Francis Crick famously determined the
three-dimensional double-helix structure of the DNA, based on crystallographic work
of Rosalind Franklin and Maurice Wilkins [312]. The double-helix model, containing
two strands of DNA, which are complementary to each other, provided the concept of
replication, where a new strand can be reconstructed based on the sequence of the old
one. This also explains the mode of inheritance, where every part of the genome exists
in two copies, one maternal and one paternal. Eventually it became clear that the four
bases of the DNA contain the genetic code, and that the genetic information is con-
verted into proteins via mRNA, in what is now known as the central dogma [73]. Since
a protein is responsible for carrying out some cellular process, any change to its func-
tion could lead to a change in the cell’s phenotype. And as the protein is determined by
the genetic code, this means that even a single change to one base of the DNA could
substantially affect the protein, and cause a genetic disorder or disease. Figure 2.5 il-
lustrates how a single mutation in the DNA sequence can eventually alter the protein
that it is translated to.

2.5.1 Genetic disorders

Broadly speaking, a genetic disorder or disease is caused by a variation or an alter-
ation of the DNA. For the disease to be inherited, this alteration must be present in
the germline cells, such that it is carried on to the next generation. The alteration, also
called allele, can range from a change in a single nucleotide to larger changes such
as insertion (additional new nucleotides), deletion (missing nucleotides), duplication
(additional existing nucleotides) or even aberration to an entire chromosome. In the
simple case, an alteration of one gene only can be directly associated with the disease
phenotype, in what is termed Mendelian diseases. The mode of inheritance in such
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Figure 2.6: Mutations in cancer progression: Cancer cells accumulate mutations over time,
such that the primary tumor is comprised of multiple cell populations. Some sub-clonal cells
might also form metastases in other tissues, where they continue to accumulate more mutations.
Adapted from [134].

cases is either dominant, when a mutation in one of the copies of the gene is enough to
cause the disease phenotype, or recessive, where both alleles must be mutated for the
disease to manifest. However, genetic disorders can also be more complex, such that the
disease phenotype is affected by many genes, sometimes also in combination with en-
vironmental factors. Online Mendelian Inheritance in Man (OMIM) [12] currently lists
more than 6,000 disease phenotypes for which the molecular basis is known!, the ma-
jority of them are single gene disorders and traits. However, most common diseases are
complex ones, and therefore it is more challenging to identify all the genetic factors that
contribute to the disease phenotype [40]. For this purpose it can be very useful to an-
alyze such complex diseases using pathways and networks, as those allow researchers
to accumulate the experimental evidence and review the process as a whole.

2.5.2 Cancer

Contrary to genetic diseases, cancer is a complex disease that arises by changes in the
DNA of somatic cells, i.e. any cell that is not of the germline. Early genetic changes, such
as single nucleotide variants (SNVs), copy number variations (CNVs) or even whole
chromosomal rearrangements, grant the cancerous cells a selective advantage, which
promotes abnormal cell growth and forms a tumor [111]. A mutation in a tumor sup-
pressor gene, which is usually involved in the regulation of cell division and replication,
that also results in its loss of function could promote cancer formation. On the other
hand, if a gene that is involved in cell growth and proliferation is mutated such that it is

https://omim.org/statistics/geneMap
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expressed in higher levels then that gene can become an oncogene, and therefore also
promote cancer formation. As the cells proliferate, they accumulate more and more
genetic changes, and can eventually spread from their primary location to other tissues
(Figure 2.6). More than 100 types of cancers, spanning over most tissues, are known
to affect humans. However, the mutational landscape varies greatly between different
types of cancers, as well as between patients within the same type. Some genes are
known to be highly mutated, whereas many genes are only mutated in several patients
[98]. Therefore it is particularly challenging to identify those genes that promote can-
cer development and progression. The "genomic era" has certainly made it possible
to advance cancer research, as sequencing technologies allowed to study the cancer
genome in high depth [317]. The first census of human cancer genes [95], which re-
ported an initial list of 291 genes in 2004, has since expanded to include over 700
genes [273] and the efforts are still ongoing. On top of that, cancer progression could
be a consequence of the disruption of some cellular process, and so the observed muta-
tional landscape in patients is different [112]. Hence, it is essential to also examine the
mutations in the context of pathways and networks, which give a more comprehensive
overview of the entire process and the effects that one gene has on the others.
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3 Experimental and Computational Tech-
niques in Genotype-Phenotype Associa-
tions

In this chapter we guide the reader through the process of identifying genomic vari-
ations that cause diseases, in particular complex diseases and cancer. We review the
experimental techniques for sequencing the genome, detecting mutations and measur-
ing gene expression levels. We then describe the computational procedures for iden-
tifying disease genes, and focus on methods which utilize molecular interaction net-
works for this task. Finally, we introduce the concept of network propagation and its
application for disease genes and disease modules identification. We give an overview
of propagation-based methods, discuss existing challenges and motivate for a revised
model.

3.1 High-throughput quantification of the genome
via next generation sequencing

Studying the genome requires the detection of the nucleic acids, which the DNA
is composed of, and the identification of their order. Major developments have taken
place in the field of DNA-sequencing since the first generation was developed by Fred
Sanger [255] and later termed Sanger sequencing. While the first technologies were
used for many years, they were limited to short fragments of less than one kilobase
(kb) [117]. This meant that in order to identify the entire human genome it first had
to be fragmented into shorter sequences. After those were resolved, then the fragments
needed to be assembled together to reconstruct the whole sequence. With time, further
technological improvements finally allowed researchers to determine the first draft of
the human genome in the early 2000s [160, 298]. The microarray platform [225, 266]
first enabled to study the genome in a highly parallel assay for measuring both the DNA
and RNA molecules [210]. The second generation of sequencing, nowadays usually re-
ferred to as NGS, allowed for mass parallelisation, substantially increasing the amount
of DNA that could be sequenced at the same time [182], and allowing to complete
the sequencing of the human genome in a much shorter time and at a considerably
lower cost [316]. Upon further advancements came the third generation of sequenc-
ing which enabled the sequencing of a single molecule [256], and allowed to produce
much longer reads, i.e. longer fragments of DNA [76]. By now there are dozens of dif-
ferent sequencing platforms, which differ mainly in the number of reads they produce
and their lengths [105].

All of the above contributed to the genomics revolution and will no doubt continue
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Figure 3.1: DNA sequencing and variant detection: Four stages in the process of DNA se-
quencing and variation detection. (1) The genome is fragmented into short fragments and a
DNA library is prepared for sequencing by adding short unique adapters to each sequence.
(2) The DNA library is sequenced in parallel using next generation sequencing (NGS) tech-
nologies and for each fragment the linear sequence of nucleotides is detected. (3) The short
fragments, referred to as reads, are assembled into longer fragments (contigs) based on over-
lapping reads such that the whole sequence can be resolved. (4) The sequence is compared
to a reference genome to detect variations. In this example the assembled sequence contains
an inserted fragment (in orange) which does not appear in the reference genome, as well as
a point mutation in one position, where C is changed to G. (Figure created in bioRENDER
[https://biorender.com/])
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3.1 High-throughput quantification of the genome via next generation sequencing

to do so in the next years. The power of genome sequencing has enabled to retrieve
information not only regarding the genome’s sequence, but also allowed researches
to develop many read counting applications, for example to measure the transcriptome
(the set of RNA transcripts) [309] and the epigenome (the set of chemical modifications
of the DNA) [220]. Due to the depth of the field it is infeasible to comprehensively re-
view its influence on molecular biology. Here we will only focus on whole-exome and
whole-genome sequencing, and in particular on the identification of variations in the
DNA (Figure 3.1). In the next Sections we will briefly explain the workflow that is re-
quired for processing DNA sequencing data, and further elaborate on the procedure of
mutation calling. In addition, we will shortly review the process of RNA sequencing
(RNA-seq) as a central technology for measuring the expression levels of the transcrip-
tome.

3.1.1 Whole-exome and whole-genome sequencing

While whole-genome sequencing allows for the determination of the complete DNA
sequence, whole-exome sequencing identifies only the exonic regions, i.e. only the frag-
ments of the genome that are known to be coding for proteins [125]. Consequently,
whole-exome sequencing is much cheaper and produces lower amount of data per sam-
ple, which allows for the sequencing of more individuals, and by that increase the
depth of a genomic study. Nevertheless, the strategies for processing the data remain
the same. Most commonly the DNA is fragmented into overlapping short sequences,
and the majority of sequencing platforms generate millions of reads, which must be
aligned to a known reference genome or assembled de novo. The very first sequences,
before a reference was completed, had to be assembled de novo [316] using complex
algorithms which were able to aggregate the reads and produce the correct order [258].
Once a complete and accurate reference genome was built, new sequencing data could
be directly mapped to it using sophisticated alignment algorithms [207].

Since the human genome is identical in more than 99.9% across individuals, it is
feasible to detect differences between a reference and a sequenced sample. In com-
parison to a reference genome, an individual typically harbors 4-5 million single nu-
cleotide polymorphisms (SNPs) and several hundred thousand short indels (insertions
or deletions) [68]. Longer structural variants are more complex and therefore harder
to detect [9], especially using short read technologies. They remain an on-going chal-
lenge, rapidly advancing due to improvements in long read technologies [261]. To
date, a large number of individuals have been sequenced, and the cohort of sequences
revealed common genetic polymorphisms in the human population [67]. These varia-
tions can help distinguish if a detected SNP is common or rare, and therefore determine
if it could be associated with a disease phenotype.

3.1.2 RNA sequencing

Even though most cells of an organism contain the same DNA sequence, they usually
vary greatly in the genes that they express, as those help control the specific function of
the cell. Gene expression levels are primarily measured via the quantification of mRNA
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Figure 3.2: RNA sequencing steps: mRNA molecules are converted into complementary DNA
(cDNA), and unique sequence adapters are added to each one. The molecules can be first frag-
mented and then converted or vice versa, as preparation for high-throughput sequencing. The
resulting sequencing reads are then mapped to the DNA sequence, where they are identified as
exonic regions (i.e. coding sequences) or junction reads (bordering intronic regions). Adapted
from [309].

molecules, whose sequences correspond to the DNA sequence of the gene. The mRNA
molecules are the processed transcripts of the genes that are also translated into the
proteins that the genes are coding for. Thereby, measuring the gene expression levels
via mRNA serves as a proxy for the level of the corresponding protein.

Microarray technologies first allowed to quantify the transcriptome [210] and nowa-
days high-throughput NGS is most commonly applied [197]. The process is described
for example in Figure 3.2. In short, the mRNA molecules are first reverse transcribed,
i.e. converted into a cDNA molecule which is comprised of the exonic regions of the
gene’s sequence. This cDNA molecule can then be sequenced via most of the NGS tech-
nologies, as previously described in Section 3.1 and Section 3.1.1. Since the mRNA
contains only exonic regions, the sequence of the cDNA must be aligned to the refer-
ence genome using an alignment algorithm which is able to identify the entire region
of the gene, even though the genome also contains the introns [309]. As genes can be
transcribed into multiple mRNA molecules it is also possible to quantify the number
of copies that were present at the particular time of the sequencing. To that end, each
c¢DNA molecule is attached with unique adapters, e.g. short random sequences, which
help to distinguish between different mRNA molecules of the same gene, and therefore
facilitate the quantification of each molecule once the sequences are resolved.

This quantification is very useful, for example when comparing two different con-
ditions based on the expression of the transcriptome, where one gene can be up- or
down-regulated in one of the conditions in comparison with the other. This type of
analysis, commonly referred to as differential expression analysis, can be applied us-
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ing a statistical test which compares the expression of the genes under two conditions,
where the null hypothesis is that there is no difference between them [183]. In addi-
tion, directly comparing the expression levels from different conditions can require a
normalization step to account for technical effects, which arise due to differences in
experimental environments as well as variations in sequencing platforms [48]. Once
the expression levels are normalized the data is modeled, usually using a Poisson or
a negative binomial distribution [326], and an appropriate test is applied to calculate
the significance of change in expression between the two conditions. By now there are
many methods which were developed for this purpose (see for instance the reviews in
[70, 237]). Some popular examples are limma [244], edgeR [246] and DESeq2 [171].
The results of those allow researchers to associate each one of the genes with the order
of magnitude of the change, measured by fold change (FC), and the significance level,
given by the P-value calculated using the statistical test.

3.2 Identification of disease genes from NGS data

While disease gene discovery was already possible prior to the sequencing revolution,
there is no doubt that exome- and whole-genome sequencing capabilities advanced the
field tremendously [23]. Older gene discovery strategies were mostly limited in their
ability to study only a few individuals and to explain only a small fraction of the her-
itability of the disease using the detected gene [122]. Once a catalog of the common
human SNPs was available [67], researchers could identify potential disease-causing
SNPs by comparing the exome of an affected individual to the catalog [206]. In addi-
tion, the functional effect and possible impact of a variant could be predicted according
to the type of mutation, i.e. whether it changes the protein or not, and the known role
of the gene, such as participation in a relevant pathway [3, 205]. This strategy proved
very powerful for many Mendelian disorders, which are usually governed by one gene
only, however was not suitable for more complex diseases [43]. Larger scale whole-
genome sequencing studies facilitated the detection of rare variants, which are more
prevalent in common diseases [64] that are generally more complex and affected by
multiple genes. On top of that, with the establishment of RNA-seq, the detected tran-
scripts could also be used to identify variations in the protein-coding regions [59].

3.2.1 Genome Wide Association Studies

Once the technologies for sequencing the entire genome were widely available, genome
wide association studies (GWAS) could be established. The main difference to previous
experimental methods is the ability to sequence the whole genome, or at least the whole
exome, and not being limited to specific regions only. The goal however remains the
same: to identify regions in the genome that could be correlated with some phenotype,
such that an association between a gene and the phenotype could be made. As these
associations are only based on correlations they certainly need to be experimentally
validated to demonstrate causation. For a (disease) phenotype in question, the exper-
imental design usually requires a cohort of cases and matched controls, which can be
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Figure 3.3: GWAS Manhattan plot: An example Manhattan-plot for the GWAS results from a
study on type 2 diabetes, based on 8,126 cases and 30,917 controls. The X-axis denotes genomic
coordinates along the 22 human chromosomes, and the Y-axis indicates the level of significance
(measured by the negative logarithm of the P-value) of the association between one coordinate
and the disease. The horizontal dashed line marks the significance threshold equivalent to a
P-value of 5e — 8. The five regions which contain genomic positions that have a P-value above
the marked threshold are labeled with their nearest genes. The figure was extracted from the
PheWeb web interface [284] which is populated with the UK Biobank summary statistics [51].

compared to each other. The aim is to detect SNPs among the cases only, which are
not present in the controls, and to find a correlation between those detected SNPs and
the phenotype. A detected SNP can be within a gene’s sequence, or in the vicinity of it,
such that it is close enough to be immediately related to the gene. As a result, the gene
is predicted to be associated with the phenotype. However, the SNP can also reside in
a non-coding area of the genome, and therefore it is more complicated to relate it to a
specific gene.

In order to detect a statistically significant correlation between a SNP and the phe-
notype, a statistical test must be applied. The test depends mostly on the measured
phenotypic trait. For a review on the different tests see [50]. As the hypothesis of corre-
lation is tested on millions of SNPs, the cohort under study must be large enough, and
a multiple testing correction procedure must be applied. Eventually, every genomic po-
sition is associated with the phenotype at some statistical significance level, and only
those which are strong enough serve as candidates for further studies. The results are
usually visualized as a Manhattan plot, for example in Figure 3.3, where each genomic
position is depicted with its significance level.

Over the last years there have been multiple GWAS studies which successfully as-
sociated many different diseases with genomic regions [285]. Since 2008 the GWAS
catalog has been collecting results and variant-trait associations from publications, and
to date it includes summary statistics from more than 5,000 studies [49]. However,
there still remain several challenges in identifying genotype-phenotype associations.
GWAS studies are only able to explain a small proportion of the heritability, i.e. the
genetic components that govern the disease phenotype [83, 91, 180]. Moreover, the
GWAS signals are not always tracked to the causal variants, as those might be in reg-
ulatory sequences which modify levels of expression or other regulatory mechanisms
downstream of the identified variants [265]. And finally, despite the power of exome
sequencing, the genetic effect is still only identified for 25% of the patients when di-
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agnosing a Mendelian disorder [324]. This could be due to large heterogeneity, with
many rare variants, which are less common, affecting only a small fraction of the indi-
viduals. All of the above highlight the need for incorporating more data and conducting
further analyses in order to identify the causal mechanisms of a disease.

3.2.2 Identifying cancer genes

Since cancer is mostly driven by genomic changes in somatic cells, such as SNVs and
CNVs, the predominant technique for characterizing cancer mutations is via sequenc-
ing of the DNA. Even though to date there have been many studies which attempted to
elucidate cancer mechanisms via other cellular measurements, such as gene expression
levels and DNA methylation quantification, our main focus here will be on the char-
acterization of cancer genes via DNA sequencing. While the very first cancer mutation
studies were able to identify a small group of mutations via older sequencing tech-
niques [279], advancements in sequencing technologies have profoundly increased the
amount of data and facilitated the identification of many cancer mutations and can-
cer genes [192]. The volume of different cancer sequencing projects to this day is
truly immense. At first the projects were smaller and helped to characterize the mu-
tational landscapes of specific types of cancer [69]. Very quickly, the projects evolved
into larger pan-cancer projects [314], integrating data from multiple types of cancer. So
far most of the projects generated only exome-sequencing data [200], which is typically
restricted to coding regions only, however just recently whole-genome sequencing of 38
tumor types have been made available by the Pan-Cancer Analysis of Whole Genomes
(PCAWG) consortium [286].

There are many challenges to consider when trying to identify cancer mutations
based on sequencing data and the research on the topic has been extensive. For the
purpose of this work we will only provide a very primary summary. We will focus on
The Cancer Genome Atlas (TCGA), one of the most comprehensive cancer projects in
the last years, and exemplify how cancer mutation data is often collected and analyzed.
TCGA is one of the largest efforts to collect and analyze cancer genomics data from
more than 10,000 patients spanning over 33 types of cancer [135]. With the aim of
characterizing cancer on all molecular levels, data was mainly collected for SNVs, CNVs,
mRNA expression, and DNA methylation [123, 124]. For each data type an extensive
analysis workflow had to be established. Here, we will only focus on the details that
are relevant for the identification of somatic mutations. The data was generated using
whole-exome sequencing, and was eventually analyzed using one centralized mutation
calling pipeline [84]. This analysis enabled the identification of 3.5 million somatic
variants, which are based on seven mutation-calling algorithms. The establishment of
such a centralized pipeline also allowed researches to analyze the data on a pan-cancer
level, i.e. summarizing evidence from all 33 cancer types, in order to identify cancer
genes [22].

The first step in identifying somatic mutations from sequencing data is calling for
variants, i.e. detecting mostly SNVs and small insertions/deletions in the tumor sam-
ples, and comparing them to matched normal samples. On top of that, it is also possible
to identify other changes such as CNVs [329]. To date, there exist many algorithms that
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Figure 3.4: Long-tail distribution of cancer mutations: The mutation frequency for the 100
most frequently mutated genes among 10,437 samples across 32 pan-cancer TCGA studies (data
downloaded from the cBioPortal for cancer genomics [55, 97]). Among the top 20 genes are
six well-known cancer genes (according to the cosmic cancer census list [273]). The mutation
frequencies for all genes (n=18,470) range between 36.8 and less than 0.1, with a median of
0.7.

were specifically developed for the detection of somatic mutations [87, 307]. However,
despite major advancements, there are still challenges in detecting alterations, and the
results of the different methods can vary greatly [150]. This is due to remaining tech-
nical problems with sequencing techniques and alignments, as well as the nature of
somatic mutations, which are hard to detect due to unique properties, such as low fre-
quencies, local CNVs and tumor subclonality [87].

Once a final set of variants is compiled, further analysis can be applied to identify
cancer driver genes, i.e. genes that are mutated and have a mechanistic effect on can-
cer development and progression [288]. This requires to distinguish driver mutations
from passenger ones, which occur incidentally and do not drive development or main-
tenance of tumor cells [106]. This step is necessary as in cancer the majority of genes
is mutated in at least five samples [161], a phenomenon which has been termed ’long-
tail’ [98], due to the long-tail distribution of mutation frequencies, and is illustrated in
Figure 3.4. Thus, assessing the mutation frequencies and identifying those that occur
significantly more than expected is key, and there are many statistical methods which
attempt to do so (see for example the review in [287]).

Mutation frequencies can vary greatly, both among patients with the same tumor
type, and also across tumor types, hence the variation must be accounted for when
identifying driver genes [162]. However, due to the high differences in mutation fre-
quencies, it is still challenging to identify those cancer genes which are very rarely
mutated, as they are not detectable after statistical adjustments [161]. In addition to
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assessing the mutation frequencies, it is also useful to estimate the functional effect
of the detected variants based on existing annotations and predictions related to the
corresponding protein [104]. On top of that, many methods that integrate prior knowl-
edge, such as from molecular pathways and networks [72], and/or other types of data
[6, 224, 281] have been developed in aim of characterizing driver genes. Since the
collection of algorithms is very large we refer the reader to some reviews on the topic
[57,77, 238].

3.3 Computational methods for identifying disease
genes

With the advancements in experimental methods for disease-gene identifications
arose also many computational methods for analyzing the data, mostly with the aim
of generating in silico predictions of disease-gene associations. These tools vary in both
the type of data that is being analyzed, as well as the computational approach for
prioritizing or ranking the novel predictions. The results of such tools help focus the
experimental studies on promising candidates and allow for further explorations and
functional validations.

Initially, the computational tools were developed to help target the search for genes,
given a larger genomic region that was identified via early methods such as linkage anal-
ysis or Homozygosity mapping [82, 262]. Later, by using existing information about
genes that were already discovered to be associated with some disease, researchers
could compare disease genes with non-disease genes, based on sequence properties or
functional annotations, such as gene ontology (GO) terms [18], and generate novel
predictions [2, 132, 174, 185, 271].

Once high-throughput sequencing data became widely available, more and more
methods, that also integrate multiple types of data, could be developed. The data is
usually highly heterogeneous and constitutes measurements of sequences and muta-
tions, gene expression levels, protein interactions as well as functional annotations.
Each type of information can help elucidate different aspects of the disease-gene as-
sociation, and therefore there is a great variation of methods that contribute different
insights about the mechanisms of a disease. Integrating together multiple types of data
is helpful in accumulating evidence and providing more comprehensive insights.

By now there is an abundance of tools, and there has been already considerable ef-
forts to summarize and review them (see for example [147, 196, 232]). Here we will
mention a few of the tools that are relevant for the scope of this work, with a particular
focus on methods that utilize PPI networks.

The first group of methods is mostly based on results from text mining of scientific
journals, which can be broadly used for retrieving evidence for genes, diseases and cel-
lular processes [156]. In order to identify new disease gene candidates, a search that is
based on the disease characteristics, or a set of already identified disease genes, is exe-
cuted and a statistical assessment is applied to the retrieved associations [294, 328].

The second group of methods attempts to identify novel genes based on varying fea-
tures of other genes which have already been associated with the disease. The charac-

23



3 Techniques in Genotype-Phenotype Associations

terization can be based on sequence similarities [101], gene expression profiles [215],
functional annotations [99] and more. Some methods also integrate the evidence from
different types of data and combine the results for generating a final prioritization [4].

The last group of methods is based on the analysis of interaction networks, which
enable new predictions based on the connections between genes. The interactions can
be experimentally measured, such that a network is constructed from the data, and
different network measures can be estimated [90]. Alternatively, existing interaction
information can be represented using a network, which can then be analyzed in combi-
nation with the experimental data [216].

3.4 Network based methods

Molecular networks are commonly used to help solve many different questions [188].
One of the main concepts in network analysis is the guilt-by-association principle [211].
Originally, it was exploited to predict the function of a protein, by looking at the func-
tion of other proteins it interacts with [260]. In the same manner, if a protein is as-
sociated with a disease, it is likely that its interaction partners will also be associated
with the same disease [163]. Thereby, networks can be a very useful tool for predicting
novel disease-gene associations. Furthermore, if a gene is known to be mutated, and
found associated with a disease, it can be very useful to view it in the context of an in-
teractome, since other genes, which are not necessarily mutated, might also be affected,
and therefore contribute to the disease phenotype. This is particularly useful in the case
of cancer, where some genes are mutated at very low frequencies and therefore could
only be detected as relevant when examined in the context of an interaction network
[58].

The most basic methods explore only the direct neighborhood of disease genes [216].
Other methods utilize the topological measures in the network to predict novel disease
genes [159, 320, 323]. In order to exploit information from the entire network differ-
ent methods that are based on the concept of diffusion or network propagation were
also explored. Kohler et al. [158] first introduced random walk and diffusion-kernel for
the identification of disease genes. Later, Vanunu et al. [297] used a propagation-based
algorithm to infer associations over the entire network, and, using prior knowledge of
disease similarities, generated novel predictions. As it is an essential part of this work,
we will further elaborate on propagation-based methods in Section 3.5.

Another approach for identifying disease genes is by first identifying network mod-
ules, which can then be associated with a disease [214]. It has been previously shown
that disease genes are not randomly spread in the network, but rather tend to be close
to each other [26, 191]. The connections between the genes essentially form sub-graphs
within the network, which are usually referred to as disease modules (Figure 3.5). Such
disease modules might include genes that were not experimentally detected, yet are af-
fecting the disease phenotype. The identification of network modules in general, and
disease modules particularly, is extensively studied, with many suggested solutions (see
for example the review in [203]).
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Figure 3.5: Network modules in disease: Proteins that are associated with some disease tend
to localize within the same network neighborhoods, i.e. in close proximity in the network. The
proteins can be connected via intermediate nodes to form disease modules. In contrast, some
proteins are organized in topological communities, i.e. regions in the network that are densely
connected, and might be related to some function or phenotype. Adapted from [102].

3.4.1 Identification of network modules

As molecular networks are usually very large, it is impractical to perceive or visu-
alize the entire network, and therefore identifying smaller parts of the network that
can then be associated with some function or disease can be very beneficial. Generally,
molecular networks tend to be very modular [110, 115, 245], which means they can
be partitioned into smaller modules, that usually represent some functionality. Thus, a
very common problem when analyzing molecular interaction networks is the identifica-
tion of modules. These modules (see definitions in Section 4.1.1) are sub-graphs of the
network that most commonly represent biological processes and pathways. Since many
genes can be involved in one phenotype or disease, yet also one gene can be related
to more than one function, the identified modules can be overlapping and related to
many biological processes. The modules can be purely topology based, such that they
include nodes that are densely connected among each other, but less connected to the
rest of the network. A functional module will include nodes that are both in proximity
as well as share some functionality. A disease module will include nodes that share
similar functionalities such that a disruption of them, or their interactions, results in a
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disease phenotype (Figure 3.5).

Here we will focus on methods which aim to identify functional and disease mod-
ules, and so usually combine both network information together with experimental
data. The problem of identifying modules solely based on the topology of the network,
sometimes also called community detection or graph clustering, was recently assessed
in the Disease Module Identification DREAM Challenge [62], and serves as a compre-
hensive overview on this problem.

The identification of functional modules and disease modules by integration of ex-
perimental data together with a molecular interaction network, aims to outline regions
in the network which are significantly enriched in experimental evidence. The problem
was first formulated in the development of the jActiveModules tool [136], where the
goal was to identify significantly high scoring sub-networks in molecular interaction
networks. Accordingly, methods that aim to find such modules must first summarize
the experimental evidence into scores or weights, which can then be assigned to each
node in the network, such that some optimized search for modules can be applied.

To date, there are many different methods that try to address the problem, and they
vary both in the way they score nodes, as well as in the computational approach for
extracting modules [321]. However, identifying the correct modules is a computation-
ally hard problem [136], and thus most methods apply some heuristic solutions, which
might be sub-optimal but still relevant in practice [194]. Nevertheless, there are some
methods that aim to provide exact solutions, and despite the computational costs can
be executed in relatively short times. Some examples are the BioNet algorithm [34,
78], the branch-and-cut approach [19] and recently also NetMix [241]. Another set of
methods is focused on the diffusion or flow of data in the network, rather than the
optimization of the problem. Propagating the data through the network can essentially
"smooth" the information and help identify modules that accumulate most of the flow.
As network propagation is at the heart of this work, these methods are further discussed
in the next Section.

3.5 Network propagation for genotype-phenotype
associations and module identification

Network propagation commonly refers to the diffusion of information or flow in an
interaction network. The mathematical foundations of network propagation, which are
based on random walk processes or diffusion kernels, are provided in Section 4.2. The
concept of propagating information through a network is widely used in many fields,
for instance to model the flow of electricity [81] or to rank web pages, as in Google’s
PageRank algorithm [217]. In molecular biology, it was initially applied to identify un-
known members of a protein complex in PPI networks [52], to detect protein homologs
[208] and to predict protein function [199]. Later, the same approach was also applied
to the problem of prioritizing and identifying disease genes [158, 297]. These methods,
that were based on random walks in PPI networks, were later surveyed and compared
with other computational methods for disease-gene predictions, and were found to out-
perform other clustering and linkage-based tools [201]. Since then, various approaches
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that are based on network propagation were developed for associating genes with dif-
ferent phenotypes, as well as for identifying gene modules in interaction networks (see
the review in [71]). The main advantage of network propagation methods is their abil-
ity to use the topological information that is encoded in the network and combine it
with prior knowledge or experimental evidence. In this way, both resources are simul-
taneously exploited and accurate predictions can be made.

3.5.1 Overview of network propagation methods

Recent methods that are based on network propagation generally differ in their main
aim and the data they analyze. The aim can be the prioritization and prediction of dis-
ease genes or the identification of disease modules. Figure 3.6 illustrates the general
framework and the various types of analyses. The data is usually focused on a disease
phenotype, and can be extracted from different types of experiments. Most of the meth-
ods use a PPI network for modelling the interactions, although other kinds of networks
are applicable too. Due to the abundance of PPI resources, the chosen network usually
varies between the methods. Several methods have previously suggested to use multi-
ple interaction networks, by applying the propagation on each network separately, and
integrating the results to increase the confidence in the predictions [61, 226].

In general, the methods can be divided into two groups. The first group of methods
aims to prioritize disease genes and generate novel predictions of disease-gene asso-
ciations. Initial approaches extracted genotype-phenotype associations from curated
resources, for instance OMIM [12], and smoothed the prior knowledge in the network
using random walks [168, 269]. Once whole-exome sequencing data became available,
it could also be incorporated for the identification of mutated genes that could be asso-
ciated with a disease, as applied in ExomeWalker [270]. Similarly, gene expression data
could also be incorporated in the propagation process. In NetWalk [152] the expres-
sion levels were used to set the transition probabilities of the random walk, whereas in
RegMode [236] they are used as the initial scores or weights for the propagation.

The second group of methods is aimed at identifying network modules, in addition
to generating new predictions. In order to identify such modules, it is usually required
to apply another computational procedure or to incorporate functional information.
Those will be described in Section 3.5.3.

3.5.2 Random walk with restart - formulations and applica-
tions

Even though all propagation methods are based on the same concept, the implemen-
tations of the procedure differ, as well as the computational approaches for identifying
modules. In this work we will focus on the random walk with restart (RWR) imple-
mentation of network propagation. This implementation differs from the random walk
one as it allows the walk to be restarted, i.e. reverted to the initial state and only
then continued. As a result, the final score for each node reflects a combination of the
input information and the topology of the network. The implementations and their dif-
ferences are discussed in Sections 4.2.1-4.2.2. Here, we will further review in detail
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Figure 3.6: Network propagation framework: Methods which are based on network propa-
gation are typically applied on two sources of input: an interaction network and a vector with
scores for each node (gene or protein) in the network. Some approaches might integrate multi-
ple scores and apply the propagation more than once. After the propagation two types of output
are possible. The first is the re-ranking of the nodes, which is a vector with a propagation score

for each node in the network. The second is network modules, which can be identified based
on a similarity matrix that is extracted at the end of the propagation. Adapted from [71].
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methods that apply the RWR implementation, discuss the different variations and refer
to remaining challenges.

To initialize the RWR process, genes in the network must be assigned with input
weights. The weights can be derived from prior knowledge, such that only genes that
are already known to be associated with the phenotype are scored. In the basic im-
plementations binary weights are assigned, i.e. well-known disease genes are scored
with 1 and the rest of the genes in the network with 0. Other implementations calcu-
late a different score based on the prior knowledge. For instance, Kohler et al. [158]
extracted disease-gene associations from OMIM [12] and assigned equal probabilities
to all the nodes in the same disease, such that the sum of their weights was 1. Vanunu
et al. [296] also used OMIM disease associations, but scored the nodes according to a
similarity metric between diseases, i.e. based on the fact that a node might already be
associated with another similar disease.

Alternatively, the weights of the nodes can also be initialized based on experimental
evidence, for example gene expression levels or mutation frequencies. The data must be
summarized such that each node is assigned one weight, which usually requires some
pre-processing and statistical analysis of the experimental values. One might choose to
initialize weights based on the entire data set, i.e. for all the nodes in the network, or
only for a sub-set of nodes, for example only those that passed a minimum significance
level. It is also possible to use the P-values themselves, instead of the raw or normal-
ized data, for the initialization of the weights. Carlin et al. [53] scored genes with their
significance level that was calculated based on GWAS data. Cancer mutation data is
also often statistically summarized into weights and used in many RWR applications
[166, 242, 295]. Ruffalo et al. [251] used both raw mutation counts and differential
gene expression levels, applied RWR twice, for each data set separately, and used the
propagated information to generate features for a logistic regression model, in order to
predict if a gene is causal in breast cancer.

Several modifications to the formulation of the RWR have already been suggested.
RWRH [168] was developed as a RWR process for a heterogeneous network, i.e. the walk
can jump between multiple interaction networks. Zhang et al. [332] replaced the inter-
action matrix with a weighted matrix, which reflects different types of evidence about
the interaction. Recently, Lee et al. [164] created an interaction network that combines
both PPIs and pathway information and applied network propagation in order to link
transcription factors to cancer pathways. In NetWalk [152] the experimental values are
used not only for assigning weights, but also for setting the restart probability sepa-
rately for each node, such that it is proportional to the evidence. In a similar way, Jin et
al. [141] developed Random Walk with Extended Restart (RWER), which also allows
for the calculation of a distinct restart probability for each node in the network, using
a supervised algorithm to learn the restart probabilities, given the interaction network.
Ahmed et al. [5] developed MEXCOwalk, where the random walk probabilities for every
pair of genes were defined based on their mutual exclusivity and coverage in cancer
mutation data. Very recently, Hristov et al. [130] suggested a guided random walk,
where the probability of walking to a neighbor depends on its network proximity to a
pre-defined set of known disease genes.
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3.5.3 Module identification based on network propagation

In the case of network propagation, and specifically for the RWR implementation,
there are two general ways to identify modules post propagation. The first approach
is by overlaying the weights after the propagation back onto the nodes in the network,
and applying some other computational method to extract modules. For example, in
PRINCE [296] protein complexes were identified in an iterative procedure which was
based on the prioritization scores that were calculated using a propagation-based algo-
rithm. Another example is TieDIE [223] where propagation is applied twice, for two
different data types, and sub-networks are identified by extracting minimal paths from
highly scoring genes in one set to the other. In the second approach, the propagation is
computed such that instead of extracting weights once the random walk is converged,
a similarity matrix for all the nodes in the network is calculated using the RWR formu-
lation and the initial weights. This allows for the computation of a similarity score for
every pair of nodes in the network, which can then be used to identify network mod-
ules. For example, both HotNet [295] and HotNet2 [166] compute a similarity matrix,
create a directed graph from those node pairs which are highly similar, and search for
connected components in this graph. Hierarchical HotNet [242] applies an hierar-
chical clustering algorithm on the computed similarity matrix to identify sub-networks.
Similarly, in network-based stratification (NBS) [126] consensus clustering is achieved
by using the unsupervised technique of non-negative matrix factorization (NMF).

3.6 Motivation for a revised computational model

By now, network propagation is a popular method of choice for identifying disease
genes and modules. There are at least 17 software tools which implement various prop-
agation variations for different purposes [71]. While many methods have been success-
ful in identifying both novel disease genes and modules, some fundamental shortcom-
ings still remain. Most methods use node degree in the propagation formulation to
generate the walking probabilities. However, in PPI networks node degree suffers from
some biases, which will be elaborated in the following Section. Consequently, the node
re-raking after the propagation will also be biased, which could hinder the results and
might even generate false predictions. Therefore, there is a need to address this bias
and modify the propagation model appropriately.

In addition, there are still some issues when identifying network modules based on
the re-ranking of the nodes. Some methods, for instance Network Assisted Genomic
Association (NAGA) [53], produce modules simply by taking the top nodes after the
re-ranking. This is problematic since a) the nodes are not necessarily directly con-
nected in the PPI, and b) the new ranking is not statistically tested. Other methods
(e.g. [38, 86]) might apply a statistical test to evaluate the re-raking, however, they do
not provide a process to identify network modules which is based on the significance
levels. Furthermore, methods which compute a similarity matrix, like HotNet2 [166]
and Hierarchical HotNet [242], produce modules where nodes might be directly con-
nected, even though such connections do not exist in the PPI network. Finally, so far
most methods propagated information either from well-known disease genes or from

30



3.6 Motivation for a revised computational model

Net Cere

Network propagation using
1 node coreness

Novel phenotype-genotype

P-val Weight .
value  weig associations and gene

o 1 high
o) predictions
ol | B e
¢ ree O <
I I low
Semi-supervised module
identification
|:| Yes
G1 93 G1 Yes
N
G2 58 G2 O No
G3 G3 Yes
Gn 7.4 Gn
Experimental evidence N Was the gene previously
summarized into weights ; associated with the phenotype?

Figure 3.7: NetCore - a revised network propagation model: Our revised network propaga-
tion model NetCore provides two novel contributions: (1) it applies network propagation using
node core and (2) it implements a semi-supervised module identification procedure. Both fa-
cilitate the prediction of novel genotype-phenotype associations and the detection of relevant
network modules.

experimental evidence. Yet, combining both could facilitate the identification of disease-
relevant modules.

The next Section will provide further details on these enumerated shortcomings of
network propagation and the identification of disease modules. These also serve as the
main motivation for the development of our method NetCore, illustrated in Figure 3.7.
NetCore, which aims to address these shortcomings, will be described in detail in the
next part of this thesis.

3.6.1 Study bias in PPI networks affects network propagation

In Section 2.4 we described the yeast two hybrid system for measuring PPIs. This
system proved to be very useful in identifying many binary interactions between pro-
teins, however it also introduced some study biases. The experimental design may re-
sult in some systematic technical biases. Interactions involving the ’bait’ proteins are
more likely to be measured than interactions involving they "prey’ proteins [278]. This
means that 'bait’ proteins will have more interactions in the PPI network, and therefore
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a higher degree. On top of that, the number of interactions when using a protein as
’bait’ is not always the same as when using it as 'prey’ [11]. This is especially problem-
atic as there is usually also a selection bias concerning the ’bait’ proteins, i.e. proteins
that are more commonly studied are more often selected as ’bait’ [198]. In fact, there
is a positive correlation between the degree of a protein and the number of times it
has been screened for interaction partners [109, 257]. Moreover, proteins which are
mentioned more often in publications are highly interconnected, whereas less studied
proteins are also less connected [248]. It is especially prevalent in proteins that are
associated with diseases, and particularly true for well-known cancer genes [257].

The aforementioned study bias problem in PPI networks is highly relevant for the
formulations of network propagation (see Section 4.2). In these formulations, most
commonly, the degrees of the nodes determine the probabilities of walking from one
node to another. Therefore, high degree nodes will be visited more often, which will
result in a larger weights for them after the propagation. Indeed, many network propa-
gation methods will report mostly high degree nodes and rank them higher than nodes
with a lower degree [119]. Recently, Picart-Armada et al. [229] examined the effects of
statistical normalization on network propagation results and found that unnormalized
scores are indeed more biased than different versions of normalized ones.

To address this study bias in network propagation results, two general methods for
statistical adjustments have been previously proposed. Erten et al. [86] first developed
DADA, a suite of degree aware statistical adjustments that can be applied to network
propagation results. Given a set of seed nodes, they proposed three different refer-
ence models for adjusting the scores of the seed nodes after the propagation. Later,
Biran et al. [38] developed a normalization based on random degree-preserving net-
works (RDPN). This approach, as opposed to the ones developed in DADA, is based on
randomizations of the input network, rather than of the input seed nodes, and was
shown to outperform DADA. Other propagation-based methods, such as HotNet2 and
Hierarchical HotNet, have applied similar approaches in their statistical significance
test, however those were directly incorporated to evaluate the significance of their re-
ported results, and do not provide a general solution.

Even though it is already possible to address the study bias via statistical normal-
izations, there is still no proposal for addressing it directly within the propagation for-
mulation. In the current formulation, most commonly, the degree is used for adjusting
the adjacency matrix (see Section 4.2.1). We postulated that a different modification,
based on a less biased node metric, could further reduce the bias in the propagation re-
sults. Once a different adjustment to the adjacency matrix is available, the propagation
results could still be statistically tested, as previously suggested by others. Subsequently,
based on these unbiased propagation weights, a new prioritization of the genes would
be achieved. Furthermore, network modules could then be identified based on the prop-
agation weights and their significance level.
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3.6.2 Drawbacks in module identification for network propa-
gation

Addressing the study bias would help generate more accurate predictions, however
there still remains the challenge to identify network modules. The RWR based methods
that attempt to identify modules still have some drawbacks. First, most of the methods
that search for modules based on the prioritization after the propagation apply some
threshold when choosing the nodes for the modules. However, this threshold is usu-
ally only set to select the top ranking genes, and is not statistically significant. Second,
the methods that identify modules based on a similarity matrix might create false in-
teractions that do not exist in the PPI network. Since they calculate a similarity score
for every pair of nodes in the network, they artificially connect all the nodes before
applying some computational approach to extract modules according to the calculated
similarity matrix. Although all the nodes in the network are connected through at least
one path, they are not all directly connected, and therefore the modules might include
false direct connections between nodes. Hence, there is a need to establish an approach
that could generate network modules based on propagation results, such that the in-
cluded nodes are weighted with a statistically significant value and the connections
between the nodes are only based on the existing interactions in the input network.

Since increasing amount of information is accumulated for many diseases and pheno-
types, we proposed to apply a semi-supervised approach for identifying network mod-
ules. So far, most of the propagation-based methods generated new predictions and
identified modules either based on known disease genes, or experimental evidence.
However, there has not yet been an attempt to integrate both within the network prop-
agation framework. Only very recently Hristov et al. [130] proposed a guided network
propagation scheme, such that data is propagated towards known disease genes, and
by that prior knowledge is incorporated within the propagation to improve disease-
gene predictions. Our aim is to combine the predictive power of network propagation
together with prior knowledge in order to detect not only novel disease genes, but
also disease modules, which connect well-known disease genes with novel predictions
in one sub-network. Due to the connectivity in these disease modules, they would be
more comprehensive and enriched in functions and pathways that could be relevant to
the disease mechanisms.
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4 Fundamental Concepts

This chapter includes some fundamental concepts which are used throughout this work.
The basic definitions in graph theory are provided, as well as the mathematics of net-
work propagation. There are many more concepts in graph theory that can be applied
to molecular interaction networks, as described, for example, in the book Networks: an
introduction by M. Newman [202].

4.1 Graph theory

Graphs are mathematical models that are used to describe pairwise interactions be-
tween objects, for example genes or proteins. A graph G is defined by a set of ver-
tices (also called nodes) V which can be connected by edges E C {V x V}, such that
G = {V, E}. The graph can be directed, where edges are asymmetric, i.e. (vi,Vvj) #
(vj,vi). In an undirected graph, these two edges are equivalent (vi,v;) = (vj,vi). A
weighted graph is a graph where each edge is also assigned with one value {V(v;,v;) €
El(vi,vj) = w}. Figure 4.1 shows examples of (un-)directed and (un-)weighted graphs.
A connected graph, in the undirected case, is a graph where there exists a path from
any node v; to any other node v;. In the directed case, the graph is strongly connected
if there is a directed path between any pair of ordered nodes, or weakly connected if
there is only an undirected path between them. A complete graph is a full graph, i.e. a
graph where there is an edge between every two nodes in the graph. If the number of
nodes in the graph is n, then the maximum number of edges is n(n — 1) in the directed
case, and %n(n — 1) in the undirected case.

Graphs are usually represented in an adjacency list or adjacency matrix. An adja-
cency list stores for each node in the graph a list of its adjacent (also called neighbor-
ing) nodes. An adjacency matrix is a two dimensional matrix, where each dimension
represents a list of all nodes. Binary values imply whether there exists an edge between
two nodes. Alternatively, the values can represent the edge weights.

4.1.1 Sub-graphs and modules

A sub-graph F is a graph that is generated using another graph G, by taking a sub-set
of nodes and edges from G. If a sub-set of edges {eq, .., e;n} from G is chosen for F, then
all of the nodes that connect these edges in G must also be included in F, in addition
to other nodes from G that might also be added to F. An induced sub-graph, given a
group of nodes {v1, .., v, }, will include all of the edges that connect the chosen sub-set
of nodes. A spanning sub-graph includes all of the nodes from G, but not necessarily
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Figure 4.1: Graph models: An example graph with nine nodes and 12 edges. (a) is undirected
and unweighted whereas (b) is directed and weighted. The adjacency matrix for each version
indicates both the directionality and the weights of the edges.

all of the edges. A well-studied example of sub-graphs is a clique, which is a sub-set of
nodes that are all connected to each other.

Sub-graphs are commonly used in many graph algorithms, as well as for defining
different graph and node properties. An important definition that emerges from sub-
graphs is that of graph components. The distinction between directed and undirected
graphs here is imperative. In an undirected graph G, a connected component is a
sub-graph of G that includes a sub-set of nodes such that every two nodes are con-
nected in a path, and nodes outside of the connected component are not connected by
a path to nodes within. When the graph G is fully connected, all of its nodes belong
to the same connected component. A node that is not connected to any other node in
the graph defines itself one component of size one. Figure 4.2 shows an example of
an undirected graph which has two connected components. In a directed graph G, a
strongly connected component is a sub-graph of G that includes a sub-set of nodes
such that there exists a directed path between every two nodes. A directed graph that
is fully connected includes one strongly connected component.

In addition to sub-graphs, a graph G can also be divided into sub-sets of nodes called
communities or modules, which usually represent a group of nodes which are similar
to each other according to some measure. Whereas the components of a graph are non
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Figure 4.2: Sub-graphs and modules: An example of an undirected graph with 11 nodes and
14 edges. The graph contains two connected components. The first component (orange nodes)
is also a clique, as all the nodes are connected to each other. The second component (purple
and green nodes) can be divided into two sub-graphs, according to color. The purple sub-graph
may also define a network module, as there are more connections between purple nodes than
between the green nodes.

overlapping, and essentially represent a partition of the graph, modules are sub-graphs
that can possibly overlap. The modules can be derived solely based on the topology of
the network, but also based on labels or weights that are associated with the nodes or
the edges. The nodes in the module are typically close to each other, i.e. there should
be a short path between every pair of nodes. Furthermore, usually the density of edges
among members of the module should be higher than to non-members.

The problem of identifying graph modules, sometimes also referred to as community
detection or graph clustering (not to be confused with graph clustering coefficient),
is in fact not possible to solve in a feasible time [44]. Even if one would like to identify
only two non-overlapping modules, the number of possible partitions would be ﬁ;z,
given n nodes, and modules of sizes n; and n, such that n = n; + n,. Therefore,
most algorithms must apply some heuristics in order to detect network modules, which
then result in different modules depending on the algorithm that was executed. Con-
sequently, it is also difficult to compare and asses the performance of such algorithms.
One way to asses the so-called quality of the modules is by calculating their modularity,
i.e. compare the fraction of edges within modules to the expected fraction given that
the edges were random. Graph modularity [204] is therefore designed to measure how
well the graph can be divided into modules. A graph with high modularity is a graph
that can be partitioned into modules such that the probability of two nodes from the
same module to be connected is higher than two nodes form different modules. Further
details on the definitions of graph modules and the approaches for detecting them are
available in the review by Fortunato and Hric [89].
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(@) Shortest (b) Degree (c) Betweenness  (d) Clustering
Path Centrality Coefficient
d(a,i) =2 degree(a) =5 BC(a) = 0.6 CC(a) =04
/g\ \h\

Figure 4.3: An example graph with 9 nodes and 12 edges. (a) The shortest path from a to i,
which goes through f only, is of length 2. Node metrics and measures: (b) The node degree of
ais 5 as it is connected to five other nodes. (c) The betweenness centrality (BC) measures how
many short paths go through a. For example, the shortest paths between b and e and between
f and d go through a, respectively. (c) The clustering coefficient (CC) measures the number of
connections between the neighbors of a, relative to the number of possible connections. For
example, e, f, and b are neighbors of a, however the connections (e,f) and (b,f) are not in the
graph.

4.1.2 Node metrics and measures

Both elements of the graph, the nodes and the edges, can be described and sum-
marized using different metrics and measures. For example, the distance between two
nodes in a graph can be calculated as the length of the shortest path between them,
i.e. the number of edges that are needed in order to get from one to the other (Fig-
ure 4.3(a)). These measures can also be used to characterize the entire structure of a
graph. Different node metrics have been defined to quantify and emphasize different
aspects of the topology of the graph. Some of these metrics are used to indicate how
central a node is, i.e. how important it is (depending on what the graph represents).
Here we list several of the commonly used metrics, albeit there are many more. We
provide only the definitions in the case of undirected graphs.

* Node degree: the degree of a node is the number of its adjacent nodes, which is
also referred to as the number of neighbors. Figure 4.3(b) shows for example that
the degree of node a is 5, since it is connected to five other nodes in the graph.

* Betweenness centrality (BC): the BC is a measure that indicates how many
shortest paths in the graph pass through the node v [92]. It is given by the fol-
lowing definition:

SP(x,ylv)

BC(v) = SP(x, )

x,yev

4.1)

where SP(x,y) is the number of shortest paths between x and y, and SP(x, y[v) is
the number of shortest paths between x and y that go through v. In Figure 4.3(c)
the BC of node a is 0.6 as 60% of the shortest paths in the graph pass through it.
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4.1 Graph theory

* Clustering coefficient (CC): the CC measures for a node v the proportion of
connections between its neighbors (relative to the number of connections that
can exist) [313]. It is given by the following definition:

i) 2T(v)

~ degree(v)(degree(v) — 1) (4.2)

where T(v) = {(x,y)|(v,x) € EA(v,y) € E}, i.e. all the edges that connect all
the nodes that interact with v. If v has d neighbors, then its degree is d and
therefore the number of edges that could exist between all its neighbors is w.
In Figure 4.3(d) the CC of node a is 0.4 since only 40% of the connection between
its neighbors exist in the graph.

¢ Node core: the core, sometimes also referred to as k-shell, of a node v is defined
by the largest value k of a k-core graph that contains v [41]. A k-core graph is
a maximal sub-graph of a graph G that contains only nodes with a degree of at
least k. To find the k-core number of a node v a k-shell decomposition algorithm
[31] can be used. The algorithm works iteratively, by removing at each step the
nodes with degree smaller than k and creating the next k-core sub-graph. An
example is provided in Figure 4.4. In the first step, all nodes with degree 1 are
removed from the graph. Subsequently, more nodes with a degree of 1 appear
(in the newly created sub-graph) and those are removed too. Eventually, all these
removed nodes are assigned a core value of k = 1. In the next step, in a similar
way, all nodes with degree of 2 are removed, until only nodes with degree of 3
or more are left. The process is continued until no further nodes can be removed,
and the highest k-core is reached.

¢ Node H-index: Similar to the H-index for citations [121], the H-index of a node
is defined by the maximum value h, such that the node has at least h neighbors
with degree of h or higher [155]. The H operator [172] can be defined to produce
the H-index of node i given the degrees of its neighbors:

hiy = H(d1y, ..., dji) (4.3)
where node i has j neighbors, and d;; is the degree of the j-th neighbor.

Lii et al. [172] first described the relation between the degree, core and H-index.
They defined a series of H-indices using the H operator, such that for a node v the
initial value is its degree, the second value is its first order H-index and the series
converges to the final value which is equivalent to its k-core.

4.1.3 Random graph generation

Certain global and local properties of graphs are more common than others, and
therefore several definitions of graph models have emerged over the years. In small-
world graphs most nodes are not directly connected to the rest of the nodes in the
network, however, the probability of the neighbors of a node being connected to each
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k=3
Node 1 2| 3| 4 5 6| 7 8 9| 10 11| 12| 13| 14 15| 16| 17| 18| 19| 20| 21| 22| 23| 24
Degree 4 4| 3| 4 3/ 2 2204 20 3| 20 4 1 1 1 1 1 6/ 1 1 1 1 1
h(1)-index
(H-index) | 3| 3| 3| 3| 2 2/ 22 2 2| 2| 2 20 1] 1 1 1] 1 1 1 1 1 1 1
h(2)-index
(core) 3131313122 2(2/2 2 20 2 2 1 1 1 1 1 1 1 1 1 1 1

Figure 4.4: k-shell decomposition and H-index: An example network with 25 nodes and 29
edges. In this example the network is decomposed into three layers, each one representing a
different k-core sub-graph. The first layer (k-core = 1) and the nodes in it are colored in yellow,
the second in blue (k-core = 2) and the third in green (k-core = 3). The table details the
different H-indices, starting from degree and ending in core. In this example, the convergence
to core is already achieved at h(2)-index.

other is high. Therefore, these graphs are characterized by a short average distance be-
tween nodes, despite having a relatively high average CC. Many real networks follow
the properties of small-world graphs, including social networks, biological networks,
and the internet. Scale-free [7] graphs are characterized by a power-law degree dis-
tribution. These graphs typically include hubs which are high degree nodes, and their
degree greatly exceeded the average degree in the graph. The distances in these graphs
are also relatively short, however, the CC also follows a power-law distribution, as it
decreases as the node degree increases. Many complex networks that hold small-world
graph characteristics also follow scale-free ones, for example, PPI networks.

A graph that follows a certain graph model can be generated via a random process
or using some probability distribution. The main idea is, given a set of V nodes, to
randomly generate a number of edges E such that a certain property of the graph is
achieved. The most common random graph model is the Erdos—Rényi one [85]. Ac-
cording to this model, each edge, out of all possible edges, has a uniform probability
to be present in the graph. These types of graphs are characterized by a Poisson de-
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high

Figure 4.5: Network propagation: A step-by-step demonstration of the propagation process
on a network of 9 nodes and 12 edges. The propagation process is depicted from time step 1,
where only nodes b and h are scored with a weight higher than 0, and until time step 6, which
describes here the steady-state. The nodes are colored according to the amount of weight that
is propagated to them. The weights are propagated in a step-wise manner, such that each node
gives and receives weight to and from its neighbors.

gree distribution. However, many complex networks are scale-free and therefore follow
a power-law degree distribution. Hence, other models for generating random graphs
have been suggested, in order to reproduce different characteristics of complex net-
works. For instance, the Watts—Strogatz model [313] does not follow a power-law de-
gree distribution, but does preserve a short average path length and high clustering
coefficients. The Barabdsi—Albert model [25] has the same characteristics, and also
follows a power-law degree distribution. The hierarchical model [209] is similar, but
follows a different CC distribution. There are many more algorithms that generate dif-
ferent types of graphs, and they are reviewed for example in the book by Bollobas
[42].

4.2 Network propagation

Network propagation is the process of propagating, or diffusing, information through-
out a graph in an iterative fashion through a series of steps, or until a steady state is
reached (Figure 4.5). As described in Section 3.5, it is used in a wide variety of fields,
including molecular biology. There are several mathematical formulations that can be
applied to execute the propagation process, based on random walks or diffusion models.
Here, we will provide the definitions for the case of an undirected and unweighted
graph only. To incorporate edge weights only minor changes are necessary. However,
the mathematical formulations in the directed case are more complex and further sum-
marized by Malliaros and Vazirgiannis [178].
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The input for all formulations always includes two main components: a graph G and
an initial weight vector pop = {s1, ..., sn} with weights for all the nodes V ={vy,...,vn}
in the graph. At every step t the current amount of weight for node v, which is given
by p+(v), is calculated based on the weights of its neighbors in the previous step, where
pt—1 holds the weights for all nodes at step t — 1. Thus, the weight on node v at step t
is calculated according to:

pi(v) = Z Pi—1(Ww(u,v) (4.4)
ueN(v)

such that N(v) are the neighboring nodes of v and w(u,v) is the probability of propa-
gating from u to v. If G is a weighted graph, then w(u,v) might reflect the weight of
the edge (u,v).

Network propagation can be viewed as a random walk on the graph [170], which is
a sequence of nodes vy, ..., vt where v¢, 1 is randomly chosen among the neighbors of
vt. In the walk, the probability of being at node v, 1 at time step t + 1 depends only on
the probability of being at node v, at time step t and the walking probability from v to
vi4 1. The sequence is thus equivalent to a Markov chain, with a random variable X and
the process Xo, X1, ..., X¢. The state of the Markov chain at time step t is equivalent to
the node v, that was visited at that time step. The Markov chain is thus defined by the
Markov property:

P(Xiy1 =vir1lXe = v, Xe1 =vi1,..., X0 =vo) = P(X¢p1 = v 1lXe = vi) (4.5)
forallt =1,2,... and all possible states (nodes) vi,...,vn.

The walking probabilities can be described in a matrix form, where W is derived in
some way from the adjacency matrix A of the graph (see Sections 4.2.1-4.2.3). And so
Equation 4.4 can be defined as:

Pt = Wpi (4.6)

In the same way, W defines the transition probability matrix in the Markov chain,
which describes the probability of going from one state to another: W;; = IP(X¢41 =
vi|X¢ = vj). In a Markov chain W is by definition stochastic, i.e. the columns sum up to
1 (here the probabilities of going from v; to v; are given by the columns of W).

In the random walk, at every time step, the weights are calculated using W and the
weights from the previous time step, such that py — p1 = Wpo — p2 = Wpy =
W?2po — p3 = Wp, = W3p, and so on. This means that after t steps p; can be
described using the initial weight vector py and the matrix W:

pe = Whpo (4.7)

The Perron-Frobenius theorem guarantees that the Markov Chain converges if it fol-
lows three conditions: 1) time-homogeneous, 2) irreducible and 3) aperiodic. Under
these conditions, there exists a unique equilibrium distribution (also called stationary
distribution) 7t such that 1 = W 7t is the largest non-negative eigenvector and since
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W is stochastic the eigenvalue with 7t is 1. Once converged, the equilibrium distribution
7 does not change anymore.

Correspondingly, the random walk on the graph converges to a steady-state only
when the graph is fully connected and W is stochastic and does not change over time.
Then, calculating W'p, is possible by power iteration, which results in a multiple of the
eigenvector (to the largest eigenvalue). As such, the final scores p = {ry,..., 5} can be
directly calculated from p¢ by taking the limit (Equation 4.8). Under these conditions
the Perron-Frobenius theorem guarantees that the limit exists and that it is unique.
Thus, p is equivalent to the equilibrium distribution 7.

p = lim py (4.8)
t—o0
While in Markov chains the transition probabilities are defined depending on the
states, in network propagation they are defined using the adjacency matrix A of the
graph. The different implementations of network propagation also differ in the defini-
tion of W. Here we will explore three main variants: random walk, random walk with
restart and diffusion kernel.

4.2.1 Random walk

In a random walk process on an interaction network, at each time step t, the walk
randomly moves towards one of the neighbors of the current node v¢. Thus, W can be
set using the adjacency matrix A such that W = AD~!, where D is a diagonal matrix
with the degree of the nodes. Then the random walk can be described by:

pt = (AD™ ") po (4.9)

The higher t is, i.e. the more steps of the walk were executed, the more of the initial
information in py was diffused through the graph, and p; can be used to represent
the graph’s topology. Since the definition for W is stochastic, i.e. the columns sum
up to 1, and as the graph is connected, the random walk converges and the steady-
state distribution is reached. At the steady-state the final weights p depend only on the
topology of the graph, regardless of the initial weights py. p thus defines the probability
of being at each one of the nodes, which does not change anymore.

In order for the final weights to indicate how connected are the nodes in the network
to the nodes which have a non-zero initial weight in py one can modify the random
walk and define the random walk with restart (RWR).

4.2.2 Random walk with restart

An alternative version to the random walk is the RWR, which is also referred to as
insulated diffusion or personalized PageRank [217]. Here at each time step the walk
can either continue to one of the neighbors, or restart from the initial position with
a restart probability equal to «. « controls the trade off between the initial weights

43



4 Fundamental Concepts

po and the topology of the network which is represented by W. The RWR process is
described by:

Pt = oapo + (1 —a)Wpy_4 (4.10)
Plugging Equation 4.7 into Equation 4.10 results in:
Pt = (a4 (1T — a)W)po (4.11)

where M = «I + (1 — a)W" is the transition matrix, which remains stochastic (as I
is the identity matrix). Hence, this process also converges at the steady-state with the
direct solution:

p=oa(l—(1 —oc)W)qpo (4.12)
where F = «(I— (1 — «)W)~! is sometimes also called the diffusion matrix.

. . 1 1
W is usually set to AD~!, as for the random walk, or also sometimes to D"2AD 2.
Both of which are stochastic and thus satisfy the necessary convergence condition.

The computation of the diffusion matrix F requires to invert the matrix [ — (1 — )W
which can be computationally intensive (cubic running time with respect to the number
of nodes) for very large graphs. However, it is important to note that F can be computed
once, allowing to execute RWR several times on the same network, using different
initial weights. On the other hand, this computation requires to store F, which can take
a large amount of space (quadratic space with respect to the number of nodes). It is
possible to reduce the computation time and space, for example by exploiting some
graph properties which are embedded in the adjacency matrix [289]. Such solutions
are faster and reduce the required space, yet the approximation might slightly deviate
from the correct result.

4.2.3 Diffusion kernel

Diffusion kernels are exponential graph kernels which are based on the heat equation
[153] and are also called heat kernels. These kernels are the continuous-time analogues
of the RWR. F defines a kernel if it is symmetric and positive semi-definite, e.g. for the
diffusion kernel F can be defined by F = e~*I where L is the network’s Laplacian matrix
withL =D — A.
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5 NetCore: Network Propagation with Core
Normalization

NetCore is a network propagation approach which was designed to attend to the two
main issues that were presented in Section 3.6. The innovation of the proposed method
are two-fold: 1) it addresses the study bias problem in PPI networks by incorporating
an alternative centrality measure in the RWR formulation, and 2) it combines prior
knowledge with experimental evidence in a network propagation framework to iden-
tify network modules in a semi-supervised fashion. The following chapter includes a
description of the two main parts of the NetCore approach and its implementations.
We first describe the different steps of the NetCore approach and then provide details
regarding all of its components.

5.1 Overview of the NetCore approach

NetCore’s workflow, presented in Figure 5.1, consists of three main steps: (1) data
initialization, (2) node re-ranking and (3) module identification:

1. Data initialization: for the network propagation procedure both a PPI network
and initial node weights are necessary. For NetCore, we extracted a high quality
PPI network from CPDB, which is described in Section 5.2. However, it is also
possible to use other interaction networks from different resources. The input
weights must be provided such that for each gene (node) one input weight is
computed in advance, which best reflects its experimental evidence. Yet, not all
the nodes in the network must be weighted in order to execute the propagation,
and therefore unweighted nodes will be assigned with 0. As the weights are com-
puted prior to the application of NetCore, they depend entirely on the phenotype
in question and could vary according to the type of data. In Chapter 7 we provide
a few examples on how to derive weights from different genomics data for apply-
ing NetCore. Alternatively, NetCore can also be applied for a given list of genes
of interest, using a binary scoring scheme, i.e. the propagation will be executed
only from these genes.

2. Node re-ranking: In this step the weights are propagated in the network via a
modified RWR formulation that is implementing node core, which is detailed in
Section 5.3. The weights after the propagation are assigned with a significance
level based on a network randomization procedure, which is described in detail
in Sections 5.4-5.5.
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Figure 5.1: NetCore workflow: The approach is depicted in a three step workflow: (1) Data ini-
tialization: includes the extraction of a scaffold PPI network, experimental data and extraction
of a seed gene list representing prior knowledge. (2) Node re-ranking: network propagation
using node core which involves initialization of node weights with experimental data or alterna-
tively with a weighted list of seed genes, random walk with restart propagation specifying the
restart parameter « (default « = 0.8), and assigning a propagated final weight and a P-value
(through permutation analysis) to each node. (3) Module identification: in a semi-supervised
fashion combining both network propagation results and the seed gene list. The seed genes are
connected by PPIs in a sub-network and neighbor nodes that have a significant P-value and a
sufficient weight after re-ranking are added to create an extended seed sub-network.
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3. Module identification: the final step allows for the identification of network mod-
ules based on the ranking after the propagation in a semi-supervised procedure,
which is described in Section 5.6. Given a pre-defined list of seed genes, and in
combination with genes which achieved a significant weight after the propaga-
tion, sub-networks (modules) are extracted. These sub-networks expand on prior
knowledge and interconnect well-known seed genes with novel predictions.

5.2 High confidence PPI network from Consensus-
PathDB

ConsensusPathDB (CPDB) [145] is a meta-database for molecular interactions and
pathways, available for human, yeast and mouse. The current human release (version
34 on 15.01.2019) integrates 32 public resources. It is composed of more than 600,000
unique interactions including: binary and complex protein-protein, genetic, metabolic,
signaling, gene regulatory and drug-target. In addition, it holds more than 5,000 path-
way concepts. By now, CPDB includes more than 300,000 binary protein-protein inter-
action from 19 different resources, which can be represented in a PPI network. This
network serves as a comprehensive model of the human protein interactome. Each in-
teraction is associated with a confidence score that was calculated using the IntScore
[143] method. This confidence score is a meta-score, i.e. it is based on a mixture of
multiple topology-based and annotation-based measurements. The final score aims to
indicate how plausible an interaction is. This is highly relevant in the case of PPIs due to
technical issues with the experimental methods that produce such interactions, which
might result in false observations [227, 248].

For NetCore’s workflow we needed to chose an appropriate interaction network.
CPDB, which was previously developed in-house [118, 142, 144, 145], integrates PPIs
from multiple resources and provides confidence scores for them. Thus, we found it
to be useful for the purpose of applying network propagation in NetCore. In addition,
the PPI network from CPDB was also recently reported in an independent study as one
of the top performing networks for identifying disease genes via network propagation
[133]. However, this network includes a large number of interactions, some of which
might not be accurate due to experimental deficiencies [227, 248]. Therefore, there is
a need to construct a smaller, more accurate PPI network, which is sufficiently compre-
hensive and contains mostly true-positive interactions. To this end, we previously con-
structed a high confidence PPI network from CPDB (version 32 on 11.01.2017) [29].
We used the confidence scores from IntScore [143] and selected only interactions with
a score equal and above 0.95. These scores are only available for binary interactions,
and not complex ones, and therefore the network consists only of binary PPIs.

The distribution of the scores, shown in Figure 5.2(a), is rather bimodal, that is most
of the interactions have either a very low score, equal or below 0.1, or a very high score,
mostly above 0.8. Therefore, choosing a high cut-off allows us to keep more than a third
of the interactions, while still maintaining only high quality ones. This network is much
smaller, with 10,707 proteins and 114,516 unique interactions (compared with 16,526
proteins and 264,493 interactions in total), yet it preserves the power law distribution
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Figure 5.2: Metrics and measures in the CPDB PPI network: a) Distribution of IntScore
values for the entire CPDB network. b) Degree distribution for the high confidence CPDB PPI
network. ¢) Shortest path lengths in the high confidence CPDB PPI network.

of the node degree (Figure 5.2(b)), which is one of the main characteristic of biolog-
ical networks [27, 140, 325]. In addition, it is also characterized by short distances
(Figure 5.2(c)), since the maximal length of a shortest path in the network is 11, and
the median is only 3. Therefore, this version of the network is used in NetCore and
throughout the evaluations and applications that are described in Chapter 6. A compar-
ison between different versions of the CPDB PPI network is provided in Section 6.3.1.
From here on, unless specified otherwise, when we refer to the CPDB PPI network, we
refer to the high quality version.

In Section 3.6.1 we elaborated on the study bias that is inherent within PPI net-
works. We described how some nodes are more connected than others, creating a bias
towards high degree. So far, the proposed solutions for addressing the study bias in
network propagation were focused on statistically adjusting the results (see for exam-
ple [86] and [38]). Here we suggest a modification which can be applied directly to
the mathematical formulation of network propagation in the form of RWR. The idea
is to normalize the adjacency matrix using other node metrics than degree in order to
reduce the study bias. To that end, we explored three alternative node metrics (see defi-
nitions in Section 4.1.2): clustering coefficient, betweenness centrality and core. In the
following sections we describe the characteristics of these metrics in the CPDB PPI net-
work and their relation to node degree. Then, we demonstrate how node core can be
used for normalizing the adjacency matrix, and provide various versions of core-based
normalizations which are suitable for the RWR form of network propagation.
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Figure 5.3: Node metrics in the CPDB PPI network in relation to degree: a) clustering
coefficient, b) betweeness centrality, c) core.

5.2.1 Clustering coefficient in CPDB PPI

The clustering coefficient (CC) is used as a measure for how well connected are the
neighbors of a given node. The values range from 0 to 1, where larger values indicate
better connectivity of the node’s neighbors. In the PPI network from CPDB most of
the nodes in the network have a CC equal or below 0.2, with an average of 0.16 for
all nodes. Figure 5.3(a) illustrates for every node in the network its degree and CC.
Overall, there is hardly any correlation between CC and degree (Pearson correlation
coefficient of —0.01). Yet, only nodes with a degree lower than 100 have a CC which is
higher than 0.6. Nodes with the highest degrees always display a very low CC, i.e their
neighbors are less connected among themselves. Thus, this measure also reflects the
study bias, as low degree nodes will have a high CC, and high degree nodes a lower
one. The fact that the neighbors of high degree nodes are not well connected implies
that those were probably only used as ’prey’ proteins, while the high degree nodes as
‘bait’ proteins.
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5.2.2 Betweenness centrality in CPDB PPI

Betweenness centrality (BC) was devised to measure how central a node is in a
network. It calculates how many shortest paths in the network pass through the node.
The values range from 0 to 1, where higher values imply higher centrality. In the CPDB
PPI network the values are at most 0.04 for all nodes. Figure 5.3(b) illustrates for every
node in the network its degree and BC. There is a positive correlation to node degree
(Pearson correlation coefficient of 0.73), where only the nodes with the highest degrees
have a BC value above 0.02. The majority of nodes in the network have a BC value
below 0.01. Hence, the study bias is also reflected by the BC, since the most central
nodes by this measure are also the nodes with the highest degree.

5.2.3 Core in CPDB PPI

In Section 4.1.2 we introduced the core metric for nodes. In short, node core deter-
mines to which k-core layer of the network a node belongs to. Due to the nature of the
k-shell decomposition algorithm (Figure 4.4), the core is always equal or lower than
the degree, and never higher. Figure 5.3(c) illustrates the relation between node degree
and core in the PPI network from CPDB. The values range from 1 to 58, and there is a
positive correlation between node degree and core (Pearson correlation coefficient of
0.76). Table 5.1 lists 30 nodes with the highest degrees in the network and their k-cores.
While the highest degrees range from 350 to 737, the core levels for these high degree
nodes range between 38 and 58. Many of these nodes are associated with diseases such
as cancer and other complex disorders.

Indeed, the study bias is reflected here by the high degree, however, it is not directly
implied by a high core. For instance, the node with the highest degree in the network,
with 737 connections, is TP53, a well-known tumor suppressor which is characterized
as one of the main cancer drivers [103, 228]. In contrast, the highest core in the net-
work is 58 and there are 71 genes in the network at this core level, with degrees ranging
from 74 to 645. TP53, however, has a lower core of 51, i.e. despite having the highest
degree in the network, it is not in the highest core level of the network. Figure 5.4
shows the distribution of degrees for the nodes in each core level in the network. Evi-
dently, nodes with the same core level vary greatly in their degree. Moreover, there is
a positive correlation in the variation: the higher the core, the higher the variation in
the degree. For example, in core level 47 there are only two nodes, MAP3K14 with 100
interactions, and RNF2 with 485. This tends to be the case for all core levels between
39 and 57, which include (in each level) only a small number of nodes, with a rather
high variance in degree. The only exception is the highest core level, which consisted
mostly of ribosomal proteins, with degrees ranging between 74 and 211.

Even at lower core levels, the difference in the degree of the nodes is evident, and
could suggest to study bias. For example Figure 5.5 displays the neighborhoods of two
genes: (a) LPAR]1 (Lysophosphatidic Acid Receptor 1) and (b) RSRCI (Arginine And
Serine Rich Coiled-Coil 1). Both genes are associated with height, according to the
GWAS catalog [176], and have the same number of 21 connections in the network.
However, LPAR1 has a core of 8 whereas RSRCI has a core of 18. This difference in
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5.2 High confidence PPI network from ConsensusPathDB

Network of
Node degree Node core GWAS Catalog
Node Cancer Genes
(max = 737) (max = 58) gene sets
(NCG)

TP53 737 51 Yes

XPO1 726 42 Yes

CUL3 645 58 Yes Schizophrenia

UBC 642 38

EGFR 574 38 Yes

NTRK1 538 38 Yes

GRB2 500 43 Yes

RNF2 485 47

CDK2 483 53 Rheumatoid arthritis,
Vitiligo

MCM2 479 56

ESR1 472 51 Yes Breast Cancer,
Height

CUL1 470 58 Yes

HDAC1 445 38

EP300 438 38 Yes Crohn’s disease,
Schizophrenia

COPS5 431 58

NPM1 413 58 Yes

SIRT7 412 42

APP 407 38
Breast Cancer,

MYC 405 38 Yes Prostate Cancer,
Height

YWHAZ 400 38

EED 386 42 Yes

CSNK2A1 382 38 Yes

BRCA1 378 38 Yes

CDC5L 378 38

CuL7 374 46 Yes

SNW1 372 38

TRAF6 366 38 Yes

HNRNPA1 358 42 Yes

HNRNPU 354 58 Yes

HSP90AB1 350 38

Table 5.1: Hub nodes in the CPDB PPI network: For each node its degree and core values
in the network are noted. In addition it is noted whether the node has been associated with
cancer, according to the NCG [240] and to which of the 11 GWAS gene sets (Table 6.1) from
the GWAS catalog [176] it belongs.
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Figure 5.4: The relation between degree and core in the CPDB PPI network: For each core
value the distribution of the degree values of the genes in this core level is illustrated.

core is reflected by the difference in the degrees of their neighbors. Out of LPARI’s 21
neighbors, 16 have a degree that is lower or equal to 21, and the rest have a degree
between 27 and 83. In contrast, RSRC1 is connected to nodes with much higher degrees,
all but one have degrees equal to at least 21 and up to 382. Thus, the core values reflect
that RSRCI is located in a much denser region of the network than LPARI. Although
both genes have the same number of connections in the network, it is possible that
LPAR1I’s high degree is due to study bias, as it is connected to nodes which themselves
are less connected to others. Indeed, the number of publications associated with LPAR1
is 193, while RSRC1 is associated with only 35 publications (based on publications in
the GeneCards database [276]).

Node degree and core can be directly related to one another. Recently, Lii et al. [172]
demonstrated how core can be estimated through a series of steps using the H-index
(Section 4.1.2). They constructed an operator H for calculating the H-index of a node
based on the degree of its neighbors. By applying this operator in a sequential and
synchronous manner, starting from the node degree, the process soon converges to
the node core. This means that degree can serve as a local property of the node, the
H-index series as intermediate centrality measures, and the core as a global property.
Furthermore, Kitsak et al. [151] have shown that core is a better indicator than both
degree and BC for how influential a node is in a network. They examined the spread of
information in a network using the susceptible-infected-removed (SIR) model, which
is usually used for epidemiological models of infectious diseases [15], and found that
nodes in the core of the network are the most efficient spreaders of information.
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5.3 Adjacency matrix normalization using node core

(a) (b)
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Figure 5.5: The neighborhood of (a) LPAR1 (degree = 21, core = 8) and of (b) RSRC1 (degree
= 21, core = 18) in the CPDB PPI network. Node sizes of the neighbors are visualized in
proportion to their degree.

We demonstrated here how the study bias effects the degree, while core is more
robust. This study bias is particularly relevant for ’bait’ proteins, which creates star-
like structures in the network with connections to multiple ’pray’ proteins (see Sec-
tion 3.6.1). In these cases, despite the degree being high, the core is low, correcting for
the high bias around such nodes.

5.3 Adjacency matrix normalization using node core

In most of the network propagation formulations the probabilities for walking from
one node to another are calculated based on the adjacency matrix, which contains the
structure of the network, and the node degree (see (Section 4.2). Thus, normalizing
the adjacency matrix differently provides means to adjust the walking probabilities and
results in different ranking of the nodes after the propagation. To address the study
bias that is reflected in the degree we decided to use core, which we concluded as
more robust to the bias. Since degree and core are interrelated, we explored multiple
modifications for the normalization of the adjacency matrix, as an alternative to the
standard degree normalization: using core alone or combinations of both core and
degree together. As the study bias is reflected in nodes with a high degree but a low
core, a large difference between the degree and the core of a node will suggest to the
extent of the bias concerning it. In order to adjust the walking probabilities accordingly,
we can penalize the probability of walking to such node with respect to this difference.
In a similar way we can also utilize the ratio instead of the difference. Thus, we define
three core-based normalizations which are detailed next.

Given a graph G, with a set of n nodes V = (v, ..., v ) and for each node its degree
D = (dj,...,dn) and its core K = (k1, ...,k ). In Section 4.2.2 we described the RWR
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5 NetCore: Network Propagation with Core Normalization
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Figure 5.6: Adjacency matrix normalization: An example network with 9 nodes and 12
edges with the corresponding adjacency matrix. Node a has five neighbors. The normalization
schemes for the neighbors of a are exemplified. When normalizing based on degree only, the
probability for walking to any of the neighbors is 0.2, since the degree of a is 5. When normaliz-
ing based on core only, the probability is according to the core of the neighbor, and normalized
by the sum of cores of all neighbors, such that the sum of probabilities is 1. The other two
normalizations are based on the difference between the degree and core, or the ratio between
them. The vectors show the probability values after normalizing by the sum of differences (or
ratios), such that all the values sum up to 1.

formulation of network propagation. In this formulation, the adjacency matrix is most
commonly normalized using the degree of the nodes, so we define Ad¢97¢¢ — AD~!,
where A is the adjacency matrix and D is the diagonal degree matrix. Here, we apply
three different normalizations to the adjacency matrix A using core and degree. Fig-
ure 5.6 illustrates these normalizations procedures on an example network. To keep
the matrix stochastic, and thereby ensure convergence (see Section 4.2), the adjacency
matrix is always normalized such that the sum of every column is 1.

* core: each column A; is normalized using the core of the neighbors of node v;.
Thus, for each neighbor v; of v; we divide its core k; by the sum of cores of all
of v; neighbors. This results in a stochastic matrix, as the sum of every column is
always 1.

k.
Acore — v
" 2ieng) Kt

where N(j) are the indices of the neighbors of node v;.

(5.1)

* degree-core difference: each column A; is normalized using the difference be-
tween the degree and the core of the neighbors of node v;. The difference is
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5.4 Statistical significance via permutation tests

always non-negative. To keep the sum of the column 1, we then divide the nor-
malized values by the sum of all values in the column.

; 1
Adiff _ 5.2
) (di — ki) +1 (5.2)

Adiff—norm _ Agjiff (5 3)
i - Z Adiff :
ie(1,...m) " M,j

* degree-core ratio: each column Aj is normalized using the ratio between the
core and the degree of the neighbors of node vj. The ratio is always equal or
lower than 1. To keep the sum of the column 1, we then divide the normalized
values by the sum of all values in the column.

ki

ratio __
A = a (5.4)
ti
Arqtio—norm — /A{/(J;1 0 _ (5.5)
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5.4 Statistical significance via permutation tests

The network propagation procedure produces new rankings for the genes, however
those do not carry any statistical significance information. The raw scores can vary in
size, depending both on the input scores and the topology of the network, and there-
fore it is crucial to be able to associate a result as a favorable one. The significance
information allows for making educated conclusions and selecting suitable candidates
for further studies.

Currently, there are several proposed models for statistical adjustment of network
propagation results. Most models are based on randomized sets of the input seed nodes
[37, 86, 187]. They differ in the way random seeds are generated, when some also
make sure to maintain a similar degree distribution to that of the input seed nodes. On
top of that, the DADA [86] suit also implements a likelihood-ratio test using eigenvector
centrality. In this case, the score of a seed node is compared to its eigenvector centrality
[47], which is equivalent to the score when executing the propagation with a restart
probability of 0. Recently, Biran et al. [38] evaluated the performance of the aforemen-
tioned models, and developed a new model which is based on randomizations of the
interaction network, rather than the input seed nodes. This model outperformed the
others when applied to multiple sets of disease-related and function-related input seed
nodes.

For NetCore, we chose to implement the method suggested by Biran et al. [38] which
is based on random degree-preserving networks (RDPN). Figure 5.7 illustrates this pro-
cedure. In this model the propagation score of a node is compared to its propagation
score when using a random network instead of the input network. The random net-
works are generated such that the degree of all nodes in the random network stays
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Figure 5.7: Statistical significance via permutation tests: Given an input network, n permuta-
tions of it are generated via some random graph generation process. Then, network propagation
is applied, both on the input network, as well as on each one of the random networks, using
some initial weights. The weights at the end of the propagation when the input network was
used are compared with the weights when all the random networks were used. The P-value is
calculated as the fraction of random propagation weights that exceeded the propagation weight
of the input network. In the end, each node in the network is associated with a propagation
weight and a P-value.
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5.5 Degree-preserving PPI network randomizations

as in the input network, and only the interaction partners are changed. Once n such
random networks are generated, the significance level is calculated using the propaga-
tion weights achieved with these random networks. Thus, the P-value P,, for node v,
with its propagation weight w,,, using n random networks, is defined as the fraction of
instances where the propagation weight w!, under a random network model i is larger
than the propagation weight given the input network (Equation 5.6).

Yic(tmy LWy +1

P, = — (5.6)

where 1(wl) is the indicator function:

L(wi) 1 if w.b >w,
wt) =
v 0 otherwise

5.5 Degree-preserving PPI network randomizations

The statistical test that we implemented relies on the generation of random network
models. In order to compare directly between the propagation results using the in-
put network and the random ones, the degree of the nodes in the random networks
must remain as in the input network. This is because, in the standard formulation,
the degree is used for determining the walking probabilities during the propagation.
However, we developed three other implementations for calculating the walking prob-
abilities, which rely on core and not only degree. Therefore, for these it is required to
generate random network models which also preserve node core. For this purpose we
explored two models for generating random degree-preserving PPI networks. The first
is based on a simple edge swap, where two existing edges are "switched" such that the
number of connections for each node is not changed. The second is based on so called
dk-distributions, and is able to generate random networks with both local and global
metrics, including core, that are highly similar to the ones in the input network.

5.5.1 Edge swap

The edge swap algorithm can be used to generate random degree-preserving net-
works (RDPN) by applying m random swaps to a given input network G. At each step,
two edges (u,v) and (x,y) are chosen at random. They are removed from the new
network G’, and two new edges are created (u,y) and (x,v), unless they already exist
in the input network G. This swap keeps the degrees of the nodes fixed. However, it
can also disintegrate the graph such that the connectedness of the nodes is not kept
anymore. To avoid that, the algorithm can be modified such that swaps that disinte-
grate the graph are not kept. As a result, the number of retained swaps is only at most
m. Clearly, m must be large enough for the final network G’ to be different enough
from the input network G, and therefore truly random. The general recommendation
for m depends on the size of the network, i.e. the number of edges, together with a
swap factor f = 100, and is usually defined by m = f x |E| [193]. In this work we used
the connected double-edge swap algorithm, as implemented in the Python software
Networkx [108].
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5 NetCore: Network Propagation with Core Normalization

5.5.2 dk-random graphs

While the edge swap algorithm preserves the degree of the nodes, it does not nec-
essarily preserve other node metrics. Therefore, we explored another approach which
generates RDPN which also aim to replicate the distributions of several other node met-
rics. Orsini et al. [212] developed a set of algorithms for generating dk-random graphs,
which were made available to use in the RandNetGen (Random Network Generator)
software tool'. They make use of the dk-series [177], which is defined for a graph G
with n nodes, as a collection of distributions of the sub-graphs of G. These sub-graphs
are in sizes d = 0, 1,...,n and the nodes are labeled by their degree in G. Figure 5.8(a)
shows an example for the dk-distributions of a graph with four nodes. The nk distri-
bution includes only one sub-graph which is the graph G itself. The Ok ’distribution’ is
defined as the average degree of G. The 1k distribution includes sub-graphs of size 1,
i.e. it counts the number of nodes for each degree k in the graph. Therefore, the 1k dis-
tribution is the degree distribution of the graph G. In a similar way the 2k distribution
is the joint degree distribution, and the 3k distribution, which consists of triangles, de-
fines clustering. In general, the dk-distribution characterizes the correlations of nodes
with degree k in sub-graphs of size d. It is also possible to consider dk-distributions
with fractional d € (2, 3), which in addition to characterizing the correlations between
nodes with degree d = 2, also fixes some properties which are characterized in d = 3
distributions.

The sequence of dk-distributions can be used to define a sequence of random graph
sets. For every d = 0, ..., n the dk-graphs are a set of all graphs with a given dk-
distribution. For a given input graph G, these dk-graphs have the same dk-distribution
of G and therefore share the graph property that is reflected in this dk-distribution.
Hence, all Ok graphs will have the same degree average as of the nk graph (which is
equivalent to G), while Tk graphs will have the same degree distribution, and so on.
Figure 5.8(b) provides an example for such dk-graphs given a graph G of size D. Due to
certain characteristics of dk-series, which are out of the scope for this work but are de-
tailed in [212], any property of a graph G can be reproduced by a high enough value of
d. Therefore, it is possible to sample dk-random graphs (from the set of all dk-graphs)
for a graph G such that some property is reproduced with a desired accuracy. However,
due to limitations in the sampling process, which we will not elaborate on here, for
real networks, it is only possible to sample dk-random graphs for d = 0,1,2,2.1,2.5.
2.1k-random graphs are defined as 2k-random graphs with an average clustering of
C. 2.5k-random graphs are defined as 2k-random graphs with an average clustering
c(k) of nodes of degree k. All of the dk-random graphs can be generated using some
modified version of the edge swapping procedure, as depicted in Figure 5.8(c), while
preserving the desired dk-distribution. For d = 2.1, 2.5 each swap is accepted with prob-
ability P, which is designed to reach the target value of average clustering for d = 2.1,
or degree-dependent clustering for d = 2.5. As a matter of fact, when d = 1 the exact
same edge swap procedure that was described in Section 5.5.1 is applied. As a result,
ford =1,2,2.1,2.5 the node degree is always preserved.

http://polcolomer.github.io/RandNetGen/
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Figure 5.8: dk-distributions and graphs: (a) An example graph with four nodes and its dk-
distributions. Each node is always marked with its degree (when the edges are not included in
the sub-graph, only a short line is visible), except for the Ok distribution. The 4k-distribution
is the graph itself. The 3k-distribution consists of the three sub-graphs of size three: one con-
necting nodes with degrees [2,2,3] and two connecting nodes with degrees [2,3,1]. The 2k-
distribution specifies the number of sub-graphs of size 2 connecting nodes of different degrees:
one connecting nodes with degrees [2,2], two connecting nodes with degrees [2,3] and one
connecting nodes with degrees [3,1]. The 1k-distribution lists the number of nodes (sub-graphs
of size 1) for each degree: one node with degree [1], two nodes with degree [2] and one node
with degree [3]. The Ok-distribution is the average degree in the graph (which is 2). (b) An
example for a hierarchy of dk-graphs, which are graphs with the same dk-distribution as for a
graph G of size D. The set of Ok-graphs includes those with the same average degree and is thus
the largest one. The set of Tk-graphs is a sub-set of Ok-graphs, because these are graphs with the
same average degree (but not necessarily the same degree distribution). The higher d is, the
smaller the set of graphs. The last set, where d = D, contains only the one graph G. (c) Edge
swapping procedures for dk-graphs where d = 0,1, 2,2.1,2.5. k indicates the node degree and
P the probability of accepting the swap. For d = 0 a random edge from the graph is swapped
with a new edge, i.e. an edge which does not exist in the graph. For d = 1 a random edge from
the graph is swapped with another random edge from the graph. For d = 2 two random edges
are selected from the graph such that the degree of two of the nodes (from different edges) are
the same. For d = 2.1 and d = 2.5 the swap is accepted with probability P, which is derived
from a simulated annealing procedure. Adapted from [212].
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Figure 5.9: Core distributions: Distributions of core values in the CPDB PPI network (origi-
nal’) and in 100 random networks generated with the edge swap algorithm or with dk-random
graphs using d = 2,2.1,2.5. For the 100 random networks, and for every core value, each point
represents the median and the standard deviation is depicted as confidence intervals.

Orsini et al. [212] applied their algorithms to six different networks,including one
PPI network [248], and generated dk-random graphs for them. For each network they
computed the following metrics: average degree, degree distribution, degree correla-
tions, average clustering, and averaging clustering of nodes of degree k. Then, they
compared these metrics for each network with the metrics for the corresponding dk-
random graphs. They also computed a variety of other network metrics, such as core
and betweenness centrality, and reported their means and deviations from the input
networks. They showed that for almost all networks and all metrics, there is a conver-
gence of the metrics with the increase of d. Depending on the metric, some already
converged at lower d values, while almost all converged only when d reached d = 2.5,
Thus, the generated dk-random graphs are able to replicate many important metrics of
the input network.

In order to generate random networks that preserve the core distribution in the CPDB
PPI network we used the RandNetGen package and generated dk-random graphs. Orsini
et al. [212] found for another PPI network that the core metric already converged at
d = 2, although for other interaction networks it only converged at d = 2.5. We there-
fore generated 100 dk-random graphs for the CPDB PPI network using d = 2,2.1,2.5.
We did not generate networks for d = 1 as those would be equivalent to those gen-
erated using the edge swap procedure (Section 5.5.1). When d = 0 usually none of
the node metrics are preserved, so we did not generate networks for this case either.
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5.6 Semi-supervised module identification

Finally, we compared the core distributions of the CPDB PPI network and the gener-
ated random networks, to examine whether the core metric is replicated in the random
networks. Figure 5.9 shows the core distributions of the input network, as well as the
random networks generated using the edge swap algorithm, and the dk-graphs with
d = 2,2.1,2.5. In most core levels, the mean value of the 100 random networks repro-
duced well the value from the input network. The only exception is that when d = 2.5
some nodes reside in higher core levels (59 — 62) than in the input network (where the
highest core level is 58). Otherwise, the difference between the three dk-graphs is al-
most undetectable, and all of them are also very close to the edge swap distribution in
most core levels. On top of that, the standard deviation is usually very small, suggesting
that most networks replicate well the core distribution in the majority of the levels.

In conclusion, both techniques for generating RDPN are able to preserve the degree
and core distributions of the CPDB PPI network, with minor differences. While the dk-
random graphs might be more appropriate for NetCore, due to the implementation
of core-based normalizations, their generation requires longer computation times in
comparison with the edge swap technique. The computation time also substantially
increases with the size of the network, and therefore might not be suitable for larger
networks. Accordingly, we implemented NetCore (see also Section 5.9) using only the
edge swap technique, to allow for easy execution by other users. Nevertheless, for the
purpose of this work we will compare the effect of the choice of technique on the results
in Section 6.3.2.

5.6 Semi-supervised module identification

NetCore’s propagation procedure results in a re-ranking of the nodes, that is each
node is associated with a new weight and a significance level. These can be further
used to identify sub-networks, which in turn represent modules that might be relevant
to the phenotype in question. Previously suggested solutions to this problem either lack
a significance level of the propagation results or direct connectivity between the nodes
in the identified modules (Section 3.6.2). In NetCore, the goal is to produce modules
by identifying a sub-set of nodes that are ranked highly after the propagation, have
a significant propagation weight, and are interconnected in the PPI network. In order
for these modules to be functionally relevant we applied a semi-supervised approach.
The incorporation of prior knowledge allows us to enforce biological guiding on sta-
tistically significant propagation results in the search for interconnected sub-networks.
This semi-supervised approach requires a collection of genes which are already known
to be associated with the phenotype in question, typically based on previous studies.
Such collections can be found, for example, in manually curated databases, or can be
extracted from publications via text mining approaches. Once a set of genes is made
available, it can be used in combination with the network propagation results to con-
struct the final modules.

In order to allow the identification of modules also in the event where no prior
knowledge is available, we also developed a procedure which is based only on the in-
put weights. The aim is to generate a set of seed genes that are reasonably relevant to
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5 NetCore: Network Propagation with Core Normalization

the phenotype and therefore could be used as a "starting point" for identifying network
modules. For example, if the propagation is to be executed on data derived from a dif-
ferential gene expression analysis, then the seed nodes could be labeled as those with
a significantly higher or lower expression, or as those with the highest fold change (e.g.
the top 100 genes). The propagation itself can then be executed on the entire data, such
that each node has a weight proportional to its expression level, and then the modules
are identified for the selected seed nodes in combination with the results on the entire
network.

The steps that are applied in order to identify modules in NetCore, given a set of seed
genes, are first briefly summarized in three main points, and then described in detail:

1. Extract seed-induced sub-network (i.e. the seed genes and their interconnecting
edges)

2. Extend seed-induced sub-network with nodes for which the following three con-
ditions hold:

a) Significant weight after propagation (p < pmax)
b) Direct neighbor of at least one seed node
c) High enough weight after propagation (W > wW,in)

3. Separate extended seed sub-network into modules by identifying connected com-
ponents.

As a first step, a sub-network that includes only the seed genes is extracted from the
PPI network. We term this a seed-induced sub-network. In case no seed genes are avail-
able, the sub-network is extracted based on the original input weights. The genes are
ranked according to their input weights, and the n top genes are used as seed genes.
By default, n is set to 100, but this can be modified by the user, according to the data.
The genes in the sub-network might not all be interconnected, as there might not be a
direct path from every seed gene to every seed gene.

In the second step the propagation results are used to extend the seed-induced sub-
network based on three principles. First, the genes must have a statistically significant
propagation weight. The level of significance is set according to the applied permu-
tation test, as will be further discussed in Section 5.7.2. Second, among those genes
with a significant propagation weight, only those that are directly connected to at least
one of the seed genes are further considered. Third, the weight of the genes after the
propagation must be considerably large enough. We assume that the higher the weight
post-propagation, the more relevant the gene is. A gene with a high propagation weight
either already had a high initial weight, or gained a higher weight during the propaga-
tion process. Since the initial weights are propagated throughout the network, at the
steady state all the nodes in the network will have some weight that is larger than
0 (due to the connectivity requirement). Therefore, the aim here is to discard nodes
with a very small weight, that might still be statistically significant, yet are less likely
to be biologically relevant. The minimum weight value that should be considered ap-
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propriate depends largely on the initial weights, and the distribution of the weights
post-propagation. Therefore, we decided to determine it based on the data, as will be
described in Section 5.7.3.

Finally, once the seed-induced sub-network is extended with the finalized set of ad-
ditional nodes, the final modules are defined as the connected components in the ex-
tended seed sub-network. Even though the goal is to connect all of the seed nodes in
one module, those might still be separated in the extended seed sub-network. As a re-
sult, the connected components corresponds to the partition of the graph where each
module includes as many seed nodes as possible within the topology of the extended
seed sub-network.

5.7 Parameter selection in NetCore

The implementation of NetCore requires the setting of three different parameters.
As with any other method, there is a need to set a value or threshold (for each pa-
rameter) for the optimal execution of the method. For NetCore we tried to set the
parameters to the best of our abilities: 1) the restart parameter is optimized for the
PPI network, 2) the P-value threshold parameter is set to the most strict one possible,
and 3) the weight threshold parameter is based on the distribution of the propagation
results. We acknowledge that setting the parameters is always a matter of trade-off be-
tween different requirements and therefore implemented the approach such that the
user can decide on different parameters when necessary (see Section 5.9). In the fol-
lowing Sections we elaborate on the optimal settings for each one of the parameters.
In Section 6.2 and Sections 6.4.5-6.4.6 we evaluate the performance given the settings
of these parameters, and examine their influence on the results.

5.7.1 Restart parameter

In the RWR formulation, as defined in Section 4.2.2, the restart parameter « dictates
the probability of the random walk to return to the input nodes and restart again. This
allows us to control how much of the input weights will be diffused throughout the
network. The lower the value, the less the walk restarts, and therefore more of the
weight is spread in the entire network [52]. Yet, when the value is high, the diffusion
of the weight exponentially decreases on the basis of distance from the source, which
confines the weight to the local neighborhood of the source, even at steady state. Thus,
if o is set too low then more weight is spread and more nodes will eventually gain
higher weights at the final propagation step. On the other hand, when « is set too
high, potential relevant nodes might end up being ranked lower, and as such relevant
predictions could be missed. This means that the value of « essentially allows us to
control the trade-off between finding novel phenotype-associated genes and including
false predictions.

In general, for every PPI network, the restart parameter « has to be set individually.
Once it is set for the network, it can then be used regardless of the initialization of
the weights in the RWR formulation. Thus, « must only be optimized for the chosen
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PPI network. Our aim therefore is to find an optimal value for the CPDB PPI network
so that correct predictions can be made, but nevertheless the number of false ones is
reduced. We wish to limit the diffusion such that the initial weight is mostly spread
to nodes that are close to the source, and not throughout the entire network. This is
especially necessary in PPI networks, where the average shortest path is usually very
small [235]. In the CPDB PPI network more than 50% of the nodes are within only
3 "steps" from the rest of the nodes in the network (see Figure 5.2). Thus, for the
purpose of identifying disease genes we decided to set « = 0.8 in order to be able
to still provide novel predictions, while reducing the number of potentially false ones.
Furthermore, the semi-supervised module identification procedure in NetCore accounts
only for direct neighbors of seed nodes (Section 5.6). Consequently, the value of & need
not be very low in order for enough weight to be propagated to those neighbors. Thus,
setting o« = 0.8 is sufficient for the addition of these nodes during the extension of the
seed sub-networks.

5.7.2 P-value threshold

In Section 5.4 we introduced a permutation-based test for assessing the significance
level of the weights of the nodes after the propagation. The test is based on a collection
of random degree-preserving networks. The number of random networks that are gen-
erated determines the minimal possible level of significance that can be achieved. For n
random networks, the lowest P-value is 1/(n + 1). This P-value signifies that the weight
of a node after the propagation, when using the input network, is always higher than
the weights achieved when using any of the random networks. Therefore, we decided
to use the P-values generated by the permutation test for the selection of non-seed
nodes to be added during the module identification step. Since only nodes with a sig-
nificant P-value should be considered, a minimal significance level must be set. Biran
et al. [38], which showed that this approach performed best in the setting of network
propagation, suggested to set the number of random networks at n = 100. Therefore,
as a general rule of thumb, we also recommend using at least n = 100 random net-
works. In this case, we set the significance level at p < 0.01, as the minimal P-value is
p = 0.0099. Additionally, we implemented NetCore such that the minimal significance
level can be set by the user. For example, in order to include more potential nodes for
the module identification step, it is possible to set a less strict level such as p < 0.05.
On top of that, if the number of generated permutations is larger, than clearly the mini-
mal P-value is lower, and the threshold can be set accordingly. However, the number of
generated random networks is also limited by the time required to generate them (see
Section 5.9). Therefore there is a trade-off between the time it takes to generate the set
of random networks and the highest level of significance that can be achieved.

5.7.3 Weight threshold

In addition to the significance level of the propagation weights, we also exploited
the weight value to determine which nodes should be considered for the module iden-
tification step. As previously discussed in Section 5.7.1, the amount of the weight that
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is diffused from the source can be controlled via the restart parameter. Therefore, the
weight that is accumulated in a node at the final propagation step depends on its initial
weight, if available, and its position in the network, i.e. the weight which was propa-
gated from its neighbors. Since the initial weights indicate experimental relevance to
the phenotype in question, the final propagation weights also suggest towards potential
relevance. Therefore, there is a need to set a threshold for the minimum weight that
should be considered for identifying novel nodes. We estimated this threshold based on
the distribution of the weights after the propagation. This distribution depends on the
input weights, the network and the restart parameter, and therefore the threshold must
be evaluated for every combination of those. Since we also only wanted to consider
nodes with a significant P-value, we estimated the distribution only for those nodes
with a significant P-value, rather than all the nodes in the network. Furthermore, as
some of those nodes might be already labeled as seed nodes, we finally estimated the
distribution only for those non-seed nodes which had a significant P-value. As a gen-
eral rule-of-thumb we recommend to set the minimum threshold for the weight as the
75th percentile of this estimated distribution. This threshold allows us to make enough
novel predictions and at the same time discard nodes which only accumulated a small
amount of the propagated information, and therefore are less likely to be biologically
relevant. Setting the threshold to a higher percentile naturally reduces the number of
predictions, while a lower one increases them. As a result, the weight threshold also
allows to control the trade-off between novel predictions and false ones.

5.8 Adaptation for edge-weighted networks

Network propagation can also be applied to weighted graphs, where each edge is
scored with one weight. For example, in MEXCOwalk [5] an edge-weighted random walk
was applied, and the weights were calculated for every pair of genes based on the
mutual exclusivity and coverage in cancer mutation data. For the implementation of
NetCore, we adapted the RWR formulation to allow for utilizing also edge-weighted in-
teraction networks. The edge weights must be provided by the user. When available, we
incorporated the edge weights into the adjacency matrix normalizations (Section 5.3).
For the standard degree normalization, after the weighted adjacency matrix is multi-
plied by the reverse of the degree Ad¢97¢¢ — AD~! it is further normalized such that
the sum of its each column is 1 (and so the matrix is stochastic). For the three versions
that utilize core, this procedure was already implemented for the unweighted version,
therefore no further adjustments were required. In addition, we also provided an im-
plementation for generating RDPN for edge-weighted networks using the edge swap
algorithm (Section 5.5.1). To that end we modified the implementation of the algo-
rithm from the NetworkX [108] library for Python and adapted it for edge-weighted
networks. Given a pair of edges (u,v) and (x,y) that were to be swapped such that
the new edges (u,x) and (v,y) were created, we assigned weights to the new edges
according to: w(u, x) = w(u,v) and w(v,y) = w(x, y).

67



5 NetCore: Network Propagation with Core Normalization

5.9 Implementation

NetCore is a command-line tool implemented in Python and is compatible with ver-
sions 3.6 and 3.7. NetCore is licensed under the MIT License and is freely available for
download and use via https://github.molgen.mpg.de/barel/NetCore. NetCore is im-
plemented using the NetworkX [108] Python library for graph analysis. The repository
includes an implementation for the random walk with restart formulation of network
propagation, using all the normalization schemes that are defined in Section 5.3. In ad-
dition, the repository also provides an implementation for generating RDPN in parallel
using the multiprocessing module in Python. The user can choose to use the CPDB PPI
network, or supply any other interaction network. In addition, the user must provide
either a list of seed nodes or a list of weights to (some of) the nodes in the network,
or both. The rest of the parameters are set to a default value for an optimized exe-
cution with the CPDB PPI network, as previously described in this Chapter. However,
each one of those can be adjusted by the user. Finally, we provide the user a tutorial
with a step-by-step guide of how to execute NetCore (which is available in the GitHub
repository).

NetCore’s run-time was tested (on a Linux machine with 64 cores) using the CPDB
PPI network. We provide here the run-time analysis, which also includes the times
needed for generating the random networks for the permutation test. The run-time de-
pends mostly on the number of edges, yet is still feasible for most molecular interaction
networks. The computation of the RWR formula, and the calculation of the steady state
distribution (see Section 4.2.2), are implemented using the linear algebra module of
the SciPy software for Python [299]. Given the size of the CPDB PPI network this com-
putation is still very feasible and the running time for one such computation takes 30
seconds. Yet, with much larger networks this computation can rapidly increase in time.
Since NetCore implements a permutation test that is based on random networks, the
total running time depends on the number of permutations. Given 100 permutations,
each one requires a computation of 30 seconds, and therefore a total of 50 minutes.
The overall running time, including the module identification, requires no more than
60 minutes.

In addition, to execute NetCore’s permutation test, we provided an implementation
for generating RDPN. The running time for creating such networks depends both on
the size of the network (number of edges) and a constant factor f, which controls the
number of attempts to swap edges (see Section 5.5.1). For the CPDB network (114,341
edges) and a swap factor of f = 100, generating one random network takes up to 45
minutes. Since multiple networks can be generated at the same time, we provided a
fast implementation that runs in a parallel fashion using Python’s multiprocessing mod-
ule. Using that, the generation of 100 random networks requires a total running time
of 90 minutes (instead of up to 75 hours without parallelization). The computation of
the random networks needs to be executed only once for every input network, and can
later be used repeatedly for running NetCore.
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5.10 Summary

5.10 Summary

This Chapter provided a detailed overview on NetCore, the network propagation ap-
proach which we developed using node core. NetCore provides both a modified version
of the RWR formulation and a semi-supervised procedure for identifying network mod-
ules after the propagation. We elaborated on the different components of the approach
as well as the parameters which are required for its application. First we focused on the
chosen PPI network from CPDB and explored its characteristics, and in particular the re-
lationship between node degree and core within the network. We concluded that core is,
in contrast to degree, more robust to the study bias, and presented three modifications
to the RWR formulation which are based on node core. Second, we defined a statistical
test which is based on RDPN and described two techniques for generating such net-
works, namely edge swap and dk-random graphs. We observed that both techniques
were able to replicate well the core distributions of the CPDB PPI network and were
therefore suitable for NetCore. Third, we provided a procedure to identify functionally
relevant modules by incorporating the propagation results with prior knowledge. These
modules, which integrate genes of interest with novel predictions, are likely to be rel-
evant for the phenotype in question. Finally, we determined the optimal parameters
for applying NetCore, all of which allow us to control the trade-off between novel and
false predictions. Our implementation thus contributes both in producing less biased
network propagation ranking and in detecting phenotype-associated modules which
extend well-known genes together with novel predictions.
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In this chapter we evaluate the NetCore approach which was described in the previous
chapter. The evaluations are separated in two, the first is designed to assess the perfor-
mance of the different normalization schemes, and the second of the identified modules.
For both problems, of identifying disease genes and disease modules, there is no stan-
dard way of evaluation, and therefore we had to construct disease-gene sets which are
based on previous studies and could be used for evaluating NetCore. In addition, we
also examine the influence of the interaction network and the different parameters on
the performance.

6.1 Evaluation of adjecency matrix normalizations

Evaluation of disease-gene predictions is not straight forward, since there is no real
"gold-standard" available for any disease. Nevertheless, in order to evaluate the per-
formance of the different normalization schemes that we implemented in NetCore, we
had to compile a set of true-positive genes that could be used for the evaluation. Fur-
thermore, to assess the performance, the prediction problem had to be regarded as a
classification problem, such that predicted genes are classified as positives, and the rest
as negatives. Then, a cross-validation scheme could be applied to evaluate the results.

6.1.1 Cross validations and performance measures

Given a set of n positive genes, we define a cross validation procedure as follows. The
set is sub-sampled into a training set and a validation set, such that the size proportion
is 1 : 4 respectively. L.e. 80% of the genes in the set are used for training, and the
remaining 20% are used for testing. Each training set is used to execute the RWR,
such that the genes in the training set are scored with 1 and the rest of the genes in
the network with 0. For NetCore this is repeated four times, once for each one of the
normalization schemes. The weights at the steady-state are extracted and assigned with
P-values according to NetCore’s permutation test. Then, all the genes in the network are
sorted according to their P-values, such that the classification can be made according to
the level of significance. Given a minimal P-value p, every gene g; with a propagation
weight w; that has a P-value p; < p is classified as positive, and the rest of the genes
as negatives. Following that, the false-positive rate and true-positive rate are calculated
for a series of P-values p = 0.01, ..., 1.0 and the receiver operating characteristic (ROC)
curve is produced. Since the test set is small relative to the size of the network, the
negative set has to be balanced accordingly. Therefore, a smaller negative set, in the
size of the test set, is randomly sampled from the remaining nodes in the network (i.e.
those that are neither in the training nor in the test set), such that the degree of the
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. . Gene Set Coverage in
Source Disease (Trait) &

Size PPI network
Body Mass Index 177 97
Breast Cancer 113 73
Crohn’s Disease 436 227
Height 387 234
GWAS  Prostate Cancer 324 168
Catalog  Rheumatoid Arthritis 124 88
L176] Schizophrenia 395 226
Systemic Lupus Erythematosus 137 90
Type 2 Diabetes 124 78
Ulcerative Colitis 345 203
Vitiligo 111 76

Table 6.1: The 11 GWAS gene sets were extracted from the GWAS catalog [176] and applied
to estimate the performance of NetCore.

sampled nodes is matched to the degrees of the nodes in the test set. In total, the entire
procedure was repeated five times (for each normalization scheme) and the five ROC
curves were then averaged into one ROC curve to get a consensus curve, from which the
area under the ROC (AUROC) was calculated. We use the AUROC as the performance
measure.

6.1.2 Performance on GWAS gene sets

To construct reasonable gene sets for the evaluation of NetCore we used the GWAS
catalog [176] which is a curated collection of GWAS studies and their results. For a
given trait or disease it provides information about genomic locations that were found
to be significantly associated with it. Most of the genomic locations can be mapped to
one or more genes. Hence, given a trait or disease, a list of genes that are associated
with it can be extracted directly from the catalog. Such list can serve as a set of true
positives for our cross validation scheme. For that purpose we extracted the genes for
nine diseases and two quantitative traits. Table 6.1 lists the sizes of the gene sets, which
range between 20 and 500 genes, and their coverage in the CPDB PPI network. The
same 11 gene sets were also previously used to evaluate the performance of 21 PPI
networks in the context of network propagation, including CPDB [133].

For each one of the four normalization schemes of the adjacency matrix we applied
the 5-fold cross validation scheme to the 11 GWAS gene sets. We compared the results
for standard degree normalization with three other normalization schemes using: core
only, the difference between core and degree, and the ratio between core and degree.
For each gene set we used 80% of the genes as training set and 20% of the genes as
validation set. We used a binary node initialization scoring scheme, where the genes
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Figure 6.1: Performance of adjacency matrix normalizations: AUROC for 11 GWAS gene sets
using different normalization schemes for the RWR matrix normalization. Degree = standard
normalization based on node degree; core = normalization based on core; diff = normalization
based on difference between degree and core; ratio = normalization based on ratio between
core and degree. P-value was computed with a paired Wilcoxon test using the AUROC values of
degree and core.

in the training set were scored with 1, and the rest of the genes in the PPI network
with 0, and then computed the performance on the validation set after propagation.
We calculated the average ROC curve and the AUROC (see Figure A.1). The results
from all gene sets were compared based on the AUROC values of each one of the four
normalization schemes. The results are displayed in Figure 6.1. It can be seen that
for most of the gene sets, the core normalization achieved the highest AUROC. On
average there is a significant improvement when using core- instead of degree-based
normalization (Wilcoxon signed-rank test, P = 0.004). In fact, in all but one of the gene
sets the AUROC was higher for core- than for degree-based normalization.

We also explored the degree and core of the genes in the 11 GWAS sets (see Fig-
ure 6.2) and observed that for all gene sets the variation of core values is much smaller
than that of the degree. The coefficient of variation (CV) for all the genes in the GWAS
sets is twice higher for the degree than the core (CV degree= 1.9, CV core= 0.9). Ad-
ditionally, we note that the degree distributions include many extreme outliers, which
is not the case for the core distributions. This points to the high degree bias around
well-studied genes, and in particular disease genes. Indeed, there are some genes with
a high degree that are present in many of the GWAS sets. For example, HLA-B (Major
Histocompatibility Complex, Class I, B), which has a degree of 135 and core of 35, is
present in six of the 11 sets.
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[0 degree
[ core

Figure 6.2: Degree and core of genes from 11 GWAS gene sets: Box plots of degree (green)
and core values (orange) for the genes in 11 GWAS gene sets. X-axis denotes the phenotypic
traits and diseases.

6.2 Influence of restart parameter

The restart parameter « defines the probability of the random walk to restart again,
as previously discussed in Section 5.7.1. Since it enables the control of how much of
the initial weight will be diffused throughout the network, the results after the prop-
agation can vary, depending on the value that was set. For the CPDB PPI network we
decided to set « = 0.8 (see Section 5.7.1). In order to estimate the influence of the pa-
rameter on the performance of the normalization schemes we compared between three
cases: low value (x = 0.3), intermediate value (o« = 0.5) and a high value (x = 0.8).
We tested the performance for these three values when identifying genes from the pre-
viously described GWAS gene sets. We repeated the same cross validation scheme for
each « value and evaluated the performance based on the AUROC measure. The results
are displayed in Figure 6.3(a).

Overall, for all normalization schemes the highest performance, on average, is achieved
when « = 0.8, with the core-degree difference being the only exception, where « = 0.5
is slightly better. Specifically for the core normalization, there is a small increase in the
average AUROC with the increase of «, which reaches above 0.6 only when « is set to
0.8. By this measure, we confirm that setting « to 0.8 and applying core normalization
generated the best results for the GWAS data sets.

For the significant genes that were recovered using core normalization we also cal-
culated the ratio between the number of those which belong to the input GWAS gene
set and the total number. We compared this ratio for the 11 GWAS sets, as depicted in
Figure 6.3(b), and found that in five of the 11 sets the highest ratio was achieved for
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Figure 6.3: (a) The performance of the different normalization schemes in NetCore when iden-
tifying 11 GWAS gene sets for three different values of the restart parameter o: 0.3, 0.5 and 0.8.
(b) For core normalization only: the ratio between the number of significant genes that were
reported by NetCore and belong to the input GWAS gene set, and the total number of significant
genes that were reported by NetCore.

o = 0.8. The ratio varies depending on the gene set: it is the lowest for breast cancer
genes (0.02) and the highest for genes that are associated with height (0.12). For five
of the gene sets there is barely any difference in the ratio between the three « values,
whereas for the rest of the sets the difference is rather minor. However, in some cases
the number of significant genes that are from the GWAS set hardly changes, whereas
the number of total significant genes is reduced. For example, in height, the number of
significant genes that are from the GWAS set is reduced by 10% (from 39 at « = 0.3 to
35 at a = 0.8), whereas the total number of significant genes is reduced by almost 40%
(from 473 at « = 0.3 to 289 at &« = 0.8). This indicates that setting a higher value for «
reduces the false positive predictions, while maintaining most of the true positive ones.

6.3 Influence of interaction network

The interaction network is one of the two main components in network propagation.
Consequently, the choice of the network is crucial and can have a direct effect on the
results. CPDB is a meta-database, which contains PPIs from multiple resources (see
Section 5.2), and its performance in identifying disease genes via network propagation
exceeded most of the other 20 networks which were compared by Huang et al. [133],
including smaller networks that were derived from data-bases contained within CPDB.
Nevertheless, we sought to estimate the influence of the CPDB PPI network on Net-
Core’s results. In addition, since NetCore’s permutation test relies on the production
of RDPN for the interaction network, we also evaluated how the generation of those
affects the results.
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6.3.1 Comparison of CPDB versions

To explore the influence of the PPI network from CPDB we compared between three
different versions which can be extracted from CPDB: 1) the high confidence PPI net-
work with 10,586 nodes and 114,341 interactions, 2) the full PPI network with 16,526
nodes and 264,493 interactions, and 3) the full edge-weighted PPI network, making use
of the IntScore [143] weights for the edges (see Section 5.2). For the edge-weighted
network we adapted the adjacency matrix normalizations in order to incorporate the
weights directly into the RWR formula (see Section 5.8). We used each network for the
identification of 11 GWAS disease gene sets (Table 6.1) and evaluated the predictions
by comparing the AUROC.

Figure 6.4 displays the results for two restart parameters: (a) 0.5 and (b) 0.8. Al-
though we previously showed that setting the restart parameter to 0.8 performs best
for the high confidence network, we nevertheless compared the results also for a lower
value. Huang et al. [133] previously proposed a linear model which predicts the restart
parameter based on the number of interactions in the network, where larger networks
should apply a smaller restart parameter. Therefore, since the full CPDB network is
much larger than the high confidence one, we also used a smaller restart parameter for
assessing the networks’ performance.

On average, for almost all normalization schemes, the high confidence network out-
performs the full network, with and without edge weights. The only exception is for
the ratio-based normalization, where, on average, the performance of the full network
(without weights) is slightly improved in comparison with the high confidence one. De-
spite the difference in size, the performance for both the high confidence network as
well as the full one is improved when the restart parameter is set higher (« = 0.8).
Furthermore, core-based normalization outperforms the other ones, for both versions.
The performance of the full edge-weighted network is however strikingly worse and the
differences between the normalization schemes are not as prominent as for the other
two networks. We thus conclude that incorporating the edge weights directly into the
propagation formula is not beneficial, and in fact using the weights to produce the high
confidence network results in the best performance.

6.3.2 Influence of randomized networks

In Section 5.4 we presented the statistical test that we applied in NetCore, which
is based on a permutation test of the input network. We suggested two different tech-
niques to generate permutations of the input network that also preserve the distri-
butions of degree and core: the edge swap algorithm (Section 5.5.1) and random
dk-graphs (Section 5.5.2). We compared the distributions of the core values for the
different random networks and concluded that the core distribution from the original
network is well replicated. Despite the difference being slightly more observable when
using the edge swap algorithm, in comparison to random dk-graphs with d = 2.5, we
nevertheless implemented NetCore using the edge swap algorithm, mostly due to the
extremely long running times for generating random dk-graphs, and in particular when
setting d = 2.5. We did, however, evaluate the performance of NetCore for identifying
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Figure 6.4: The influence of the chosen network and random network generations: Three
different versions of the CPDB PPI network were compared, using two different restart param-
eters: (a) « = 0.5 and (b) « = 0.8. For the high confidence PPI network from CPDB, NetCore
was applied using four different versions of random network generation: edge permutations
and random dk-graphs using d = 2,2.1, 2.5, using two different restart parameters: (a) o = 0.5
and (b) x = 0.8.

disease genes when using these two techniques for generating permutations of the high
confidence CPDB PPI network.

The performance, shown in Figure 6.4(c-d) for two different values of the restart
parameter, varies depending on the normalization scheme that was applied. When
o = 0.5, for degree and core normalizations, on average, the performance of the edge
swap permutations exceeded the performance of dk-graphs for all d values, with core
normalization outperforming degree in all cases. The only exception is for the genes in
the rheumatoid arthritis set, where, for all d values, the performance achieved for core
normalization exceeded the one with edge swap permutations. When « = 0.8, the over-
all performance, for both techniques, and in all normalization schemes, is increased, as
seen previously when comparing the different version of CPDB. When comparing the
results for the difference- and ratio-based normalizations, for both « values, the best
performance is achieved when using dk-graphs, and specifically when setting d = 2.5.
In these cases, the performance of the edge swap permutations is comparable with that
of d = 2.0, and in most cases the overall performance for dk-graphs increases with
higher values of d. Furthermore, the performance for the difference-based normaliza-
tion is higher, in all cases, than of the ratio-based one. All in all, despite the slight
improvement in performance for dk-graphs, which was mostly limited to the ratio- and
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difference-based normalizations, we conclude that the performance of the core-based
normalization is superior with the edge swap technique.

6.4 Evaluation of module identification

Once we established core normalization as the best performing method, we sought
to identify network modules based on its propagation results. To enforce biological
guiding of the network propagation through incorporation of prior knowledge, we ap-
plied a semi-supervised approach for module identification. As network modules are
not very well defined (see Section 3.4.1), there is also no standard way for evaluating
them either. Furthermore, the module is always a trade-off between false and novel pre-
dictions, and therefore various criteria can be used to estimate its relevance. For this
work we focused on two different criteria. The first is a very straightforward criterion,
showing functional content and disease relevance, using over-representation analysis.
The second criterion introduced in this work is connectivity regarding known disease
genes, which we measured via entropy. We elaborate further on both criteria in the fol-
lowing Sections, and apply them to the modules that were identified for the 11 GWAS
genes. To exemplify the novelty that is possible via NetCore’s modules we focus on the
results for type 2 diabetes. In addition, as NetCore’s module identification step requires
to set two parameters (see Sections 5.7.2-5.7.3), we also evaluate the influence of these
parameters on the results.

6.4.1 Evaluation via over-representation analysis

Over-representation analysis allows us to identify if a computed set of genes, e.g. a
network module, is statistically significantly enriched in another pre-defined gene set,
for example a pathway, given a background list of all genes. The statistical significance
is obtained via a hypergeometric test, where a P-value is calculated based on the num-
ber of identifiers that are present in the computed gene set and in the pre-defined gene
set. This type of analysis is available via the CPDB web server [118]. CPDB includes a
total of 5,436 pathway gene sets from 12 different resources: Pharmgkb [318], EHMN
[175], HumanCyc [249], WikiPathways [149], INOH!, Netpath?, Reactome [139], Sig-
naLink [154], KEGG [146], BioCarta®, SMPDB [93], PID*. In this work, we applied
over-representation analysis via CPDB to the genes from the different modules that
were identified by NetCore. We used a minimum module size of 10 genes for the analy-
sis. Furthermore, we used all the genes from the high confidence PPI network in CPDB
as background, and extracted only the significantly enriched pathways. A minimum
overlap of two genes between the input list and the pathway gene list was required.
Only pathways with a P-value of at most 0.01 were extracted, and we used the Q-values,
which are corrected for multiple testing using the false discovery rate (FDR) method
[35], as a measure for the level of enrichment.

http://www.inoh.org
http://www.netpath.org
http://www.biocarta.com
http://pid.nci.nih.gov
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6.4.2 Evaluation via a connectivity measure

The module identification in NetCore aims to connect well-known disease genes with
novel ones. This follows the guilt-by-association principle [211], where interconnected
genes share the same function. Thus, novel disease genes that are connected with
known disease genes are more likely to contribute to the disease than totally unrelated
genes. In order to evaluate the connectivity of the identified modules, we measured the
entropy of the seed nodes distribution with respect to the modules and compared it to
the maximum possible entropy. If, for example, after network propagation two disease
genes remain in different unconnected modules, the connectivity is lower than in the
case where a novel gene, which connects the two disease genes, is included, such that
they are all connected in one single network module.

Since we defined the modules to be the connected components of the extended seed
sub-network (see Section 5.6), we calculated the entropy of the seed nodes contained
in these M = {M, ..., M} modules by:

E=— Z Pm, logpa, (6.1)
ie(1,...,m)
such that pm, = k:fi , where kp, is the number of seed nodes in module M;, m is

the total number of modules and n is the total number of seed nodes. The maximum
entropy, calculated by Eyqx = logn, reflects the case where all seed nodes are in
different modules. Therefore, we measured the connectivity as the difference between
Emmax and E, which reflects the distance from the maximum entropy. The larger the
distance, the more seed nodes are interconnected in the same modules, and the nodes
are less distributed over a large number of smaller modules. The same calculation
can also be applied to the connected components from the seed sub-network. Thus,
the connectivity of the seed sub-networks and the extended seed sub-networks can be
directly compared.

6.4.3 Performance on GWAS gene sets

After applying a binary scoring scheme to the genes in the 11 GWAS gene sets, and
applying core-normalized propagation, we also used the genes as seed nodes and ex-
tended their induced sub-networks according to the propagation results. For each gene
set we applied the following workflow. First, we extracted the sub-network that con-
nects the seed genes only, which we further refer to as seed sub-network. Then, we
extended the seed sub-network by adding neighbors of seed nodes, based on the prop-
agation results. Namely, we only added neighbors if their weight after the propagation
was larger than w,in, and their P-value was significant (p < 0.01). wy,in was com-
puted based on the data and was therefore determined for each gene set separately,
according to the distribution of the weights after the propagation, as described in Sec-
tion 5.7.3. We added the new nodes such that we also added all of their respective
connections from the PPI network to other nodes in the sub-network.

We note that for many of the GWAS gene sets, the majority of the genes are not di-
rectly connected to one another in the seed sub-networks (see Figure A.2). In fact, in
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most cases, the majority of the genes have no connections to any of the other genes in
the seed sub-network. Some are connected only to a few genes in rather small compo-
nents, while the rest of the genes are usually connected in one bigger component. For
some gene sets the biggest component includes a larger number of genes, whereas in
other cases it is rather small, usually depending on the size of the entire set. Even for
the largest gene set, of Crohn’s disease, only 40% of the genes are connected in one
component in the seed sub-network. On top of that, the number of connections in this
component is still rather small, with most of the genes having less than five connections.
Likewise, for the gene set that is associated with body mass index, only 3% of the genes
are connected in the seed sub-network.

Extending the seed sub-networks resulted in larger connected components, with
more seed nodes connected to each other through the intermediate nodes that were
added to the seed sub-networks (see Figure A.3). For all 11 GWAS sets, the number
of nodes, shown in Figure 6.5(a), as well as the number of edges, in Figure 6.5(b),
increased in the final modules in comparison to the largest components in the seed
sub-networks. The number of nodes that are included in the largest module is higher
by a factor between 2.2 and 10.6. This is due to more seed nodes being connected in
one component, as well as to the addition of non-seed nodes to the sub-networks. This
is further emphasized when looking at the number of nodes in the largest module that
are from the input seed list, i.e. from the 11 GWAS gene sets, versus the non-seed
nodes. In Figure 6.5(a), the number of seed nodes in the largest module (in orange)
is always higher than the number of non-seed nodes (in gray). Nevertheless, there are
always at least a few additional non-seed nodes which in turn serve as potential novel
predictions.

Not only are more seed genes connected to each other in the largest modules (see
Figure A.4), but also the number of connections is increased. Figure 6.5(b) shows the
number of edges in the largest component of the seed sub-network versus the largest
module, indicating that the number of edges in the largest module is larger by fac-
tors between 2.4 and 17.4. As a numerical indicator for the connectivity among the
seed nodes, we measured the entropy derived from the different components of the
sub-networks and compared it to the maximum entropy, where each seed node is in
its own component. Figure 6.5(c) shows that the connectivity of the seed nodes is al-
ways higher for the extended seed sub-networks, by factors ranging from 2.0 up to
17.86. We also estimated the functional relevance of the largest modules by applying
over-representation analysis. We compared the enrichment of the nodes in the largest
modules with the enrichment of the nodes in the largest component in the seed sub-
network (see Figure A.5). In most of the GWAS gene sets there is an increase in the
enrichment of the genes that are in the modules. That is to say, the nodes that were
added to the seed sub-networks usually participate in the same pathways as the seed
nodes, which is also evident by the larger overlap with the pathway genes. For three
of the gene sets, namely body mass index, schizophrenia and type 2 diabetes, the size
of the largest component in the seed sub-network was too small to detect enriched
pathways. In these cases NetCore provided largest modules with interconnected seed
genes which could only then be associated with some function based on the pathway
enrichment.
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Figure 6.5: (a) Number of nodes for each GWAS gene set in : 1) the largest connected com-
ponent for the seed sub-network (in blue), 2) the largest module using in the extended seed
sub-network from NetCore (in purple), 3) the number of seed nodes in the largest module (or-
ange), 4) the number of non-seed nodes in the largest module (in gray). (b) The number of
edges in the seed sub-network and in the extended seed sub-network. (c¢) Connectivity of mod-
ules in seed sub-network and of modules in extended sub-network after network propagation.
the connectivity is measured by the difference in entropy from the maximum entropy and the
respective modules.
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The 11 GWAS sets that were used for the evaluation of NetCore are associated with
traits and diseases that are extremely different from each other, both on a genomic
level, but also in the mechanisms that drive them. Therefore, a comprehensive exami-
nation of the results, in combination with a vast understating of the disease or trait, is
necessary for the full functional evaluation of the modules and the novel predictions.
Unfortunately, this would require expert knowledge which we could not provide for this
work. Instead, to demonstrate the potential relevance of NetCore’s results we present in
the next Section a short example that focuses on type 2 diabetes, which aims to suggest
novel disease-gene candidates for further investigations.

6.4.4 Focus on Type 2 Diabetes

We focus on the results for the type 2 diabetes genes from the GWAS catalog. Fig-
ure 6.6(a) visualizes the seed sub-network, which includes 78 seed nodes and 14 edges
only. Most nodes are not connected to one another, and the connected components are
all small, in sizes that range between two and five (connectivity measure of 0.3). Clearly,
it is difficult to extract a functional module that is relevant to the disease based on this
sub-network alone. Therefore, we added to the sub-network intermediate nodes which
are connected to seed nodes in the PPI network, depending on their propagation re-
sults with NetCore (p < 0.01, w > 0.015). This resulted in an addition of 39 nodes and
78 edges to the sub-network. Figure 6.6(b) visualizes the seed extended sub-network,
which consists of 15 connected components, in sizes between two and 53 (connectivity
measure of 2.2). The largest connected component, displayed in Figure 6.6(c), consists
of 53 nodes, out of those 32 are from the input GWAS seed set and 21 are not, with a
total of 64 edges. Far more seed genes are now interconnected, which corresponds to
a 6.9 higher level of connectivity. In addition, the seed genes are now also connected
to other genes that serve as novel predictions for the disease. For example, NTRK1 and
APP are both connected to many of the seed genes and also have the highest weights
after the propagation (among the non-seed genes that were added to the sub-network).
On top of that, UBXN7 which is ranked third (among the non-seed nodes after the
propagation) is also included in the network, and is connected to both NTRK1 and
APP, as well as to other seed genes. UBXNY is already associated with body mass index
according to the GWAS catalog.

We evaluated the functional relevance of the largest module from NetCore via over-
representation analysis. Figure 6.7 shows the 20 most enriched pathways (Q —value <
0.012) for the module, and for each pathway the number of nodes from the module
that are part of this pathway, and whether they were included in the original seed
list or not. In many relevant pathways the amount of novel candidates is even higher
than the amount of original seed genes. Some of the identified novel predicted genes
participate in more than one of the most enriched pathways. For example, IGF1, IGF2
and LEPR, which have all previously been associated with diabetes [16, 63, 259, 331].
These genes are enriched with pathways related to leptin, which has also been linked
to diabetes before [75, 148, 306], as well as some IGF (Insulin Like Growth Factor)
related pathways. Additional genes include members of the JAK/STAT signaling path-
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Figure 6.6: Sub-networks for type 2 diabetes genes from the GWAS catalog and NetCore:
Orange nodes show genes in the original seed list, and gray nodes show significant genes that
were added by NetCore. Graphs show: (a) seed sub-network; (b) extended seed sub-network,
and (c) the largest module of the extended seed sub-network. In (b) and (c) the size of the
nodes is proportional to the weight after propagation.

way, e.g. STAT5B and ROCK1, where it has been previously argued that this pathway is
dysregulated in metabolic diseases including obesity and diabetes [79].

6.4.5 Influence of P-value threshold

The P-value criterion is set based on the statistical test that we chose to apply for
NetCore. It is based on a permutation test, which requires the generation of random
networks, and is therefore dependent on the number of executed simulations. We chose
p < 0.01 as our criterion since it is the most stringent one, given n = 100 random net-
works. To show how robust the modules are to changes in this criterion we examined
how the size of the extended seed sub-network (measured by number of nodes, num-
ber of edges, and number of nodes in largest module) depends on the chosen P-value
in the case of the 11 GWAS data sets. Figure 6.8 displays the results for 10 P-values
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Figure 6.7: The most enriched pathways for the genes in the largest module for type 2
diabetes: In blue is the size (number of genes) of the entire pathway (according to CPDB), and
in purple is the overlap of the genes from NetCore’s largest module with the pathway genes.
Orange indicates genes are from the seed list, and gray not.

ranging between 0.01 and 0.1, where two potential thresholds of p < 0.01 (red) and
p < 0.05 (purple) are marked. The weight threshold was fixed for all P-values and was
set according to the 75th percentile from the weights distribution, as described in Sec-
tion 5.7.3. We note that the difference in the number of nodes, given the highest and
lowest P-values which were tested, varies between 43 and 102. That is, the number of
nodes at p < 0.1 was increased in comparison with p < 0.01 by between 19.1% and
83.6%, with the majority of the gene sets increasing by up to 40%. For most gene sets
the number of nodes already stabilizes with p < 0.05, i.e. only a few more nodes are
additionally added in comparison with p < 0.01. Beyond this level the number of edges
increases greatly, and the modules increase so that it is more difficult to process them
and provide reasonable candidates for further studies. To conclude, just as the P-value
determined the balance between correct and false predictions (in Section 6.1.2) it also
controls the addition of novel predictions to the final modules. Therefore, the value is
set to include only those predictions which are relevant with the highest confidence. If
the value is set higher, than more false predictions are potentially added, which also
increases the size of the modules beyond desire.

6.4.6 Influence of weight threshold

Since the weights after the propagation depend on the input weights, we could not
set a general threshold for the minimum weight we wished to consider. Therefore, we
decided to set the minimum weight according to the distribution of the weights after
the propagation. First, we explored the distribution of the weights after the propaga-
tion for the 11 GWAS gene sets (see Figure A.6). These distributions were generated
using only those nodes with a significant P-value (p < 0.01) that were not included in
the 11 GWAS gene sets, and were therefore potential candidates to be added to the
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Figure 6.8: Influence of P-value threshold: The effect of the P-value threshold was examined
when applying NetCore to 11 GWAS gene sets. The effect was measured, in the extended seed
sub-network, by the number of nodes (blue), number of edges (orange) and number of nodes
in the largest module (green). Y-axis is the P-value, X-axis is the measured size. For each gene
set the chosen weight threshold was fixed, and the P-values range between 0.01 and 0.1. Two
significance levels are marked: 0.01 (red) and 0.05 (purple).
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Figure 6.9: Influence of weight threshold: The effect of the weight threshold was examined
when applying NetCore to 11 GWAS gene sets. The effect was measured, in the extended seed
sub-network, by the number of nodes (blue), number of edges (orange) and number of nodes
in the largest module (green). Y-axis is the weight after propagation, X-axis is the measured
size. For each gene set the chosen weight threshold is marked (dashed red line), which was
calculated by the 75th percentile of the weights after propagation, among the significant (p <
0.01) nodes which are not in the input seed list.
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seed sub-networks. We note that for all gene sets, the majority of the nodes obtain only
a very small weight after the propagation (all of these nodes had an initial weight of 0
before the propagation, as they are not included within the input seed gene sets). Thus,
our aim was to set the threshold such that these nodes are excluded and so only nodes
with higher weights at the end of the propagation are further considered.

To evaluate the influence of the weight threshold on the results we measured the
change in the size of the modules for different weight values. Figure 6.9 shows the
number of nodes, number of edges, and number of nodes in the largest module for
weight values which vary between 0.006 and 0.2. For each gene set we calculated these
sizes given 11 weight values, equivalent to the values of the 99th to the 50th per-
centiles of the weight distributions. The number of nodes increases from the lowest
weight value to the highest one by between 47.8% and 110.1%, with most gene sets
more than doubling in size. We note that the differences in sizes largely depend on the
size of the GWAS set. For larger gene sets the sizes increase when the weight thresh-
old is lower. However, for smaller gene sets the differences in sizes are less extreme.
Indeed, all three sizes (see Figure A.7) are highly correlated with the number of seed
genes (Pearson correlation coefficients of 0.99, 0.86 and 0.83 for the nodes, edges and
largest module, respectively).

In conclusion, we generally find that setting the threshold at the 75th percentile
allows us to generate reasonably sized modules which could still be biologically inter-
pretable. Nevertheless, since the sizes of the modules depend both on the range of input
weights as well as the number of seed nodes (in this case also the number nodes that
are scored above 0), we recommend to closely examine the generated modules and
adjust the weight threshold accordingly.

6.5 Summary

In this Chapter we evaluated NetCore’s performance with the goal of identifying dis-
ease genes and disease modules. Since there are no "gold standards" for either problem,
we compiled 11 sets of (disease) genes based on GWAS studies and tested NetCore’s
ability to predict those. We compared the degree- and core-based normalizations and
concluded that the best performance is achieved with a core-based normalization. We
further examined the influence of different components, including the version of the
CPDB PPI network, the technique for generating network permutations, and all of Net-
Core’s parameters. In general we found that the high confidence CPDB PPI network
performs best, in particular when setting the restart parameter to a high value. Further-
more, we provided two approaches for evaluating the network modules generated by
NetCore and applied them on the 11 GWAS gene sets, while particularly focusing on
the functional relevance of the largest module for type 2 diabetes. To test the robust-
ness of NetCore’s modules to both the P-value and weight thresholds we studied the
changes in their sizes, focusing on the number of novel nodes that were added to the
modules. We observed that up to p = 0.05 the differences are rather minor and the
modules are still small enough to be functionally interpretable. The weight threshold
however can increase the sizes of the modules to a larger extend, mostly depending
on the size of the gene set, and therefore must be carefully adjusted given the input.
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The identification of modules is therefore a delicate process, and the parameters help

control the balance between the number of new predictions and a reasonable size of
the sub-networks.
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7 Applications to Data and Results

The following chapter provides examples for the type of analysis that is available with
NetCore, as well as comparisons to other network propagation-based methods. We
demonstrate the application of NetCore on two different complex diseases, namely
schizophrenia and cancer, using mutational data and public resources for the identifi-
cation of disease modules. We compare NetCore’s results with three other propagation-
based methods and estimate its ability to produce disease-relevant predictions with
respect to those. In addition, we provide another application of NetCore where we try
to elucidate the toxic effects of drugs by using gene expression levels measured with
RNA-seq from a 3D cardiac microtissue model and identifying drug toxicity response
networks.

7.1 Comparison to other network propagation meth-
ods

Several methods which are based on network propagation have already been applied
to genomics data for the purpose of identifying disease associated genes and disease
modules. In Section 3.5.1 we reviewed some of the methods, and specifically those
which apply the RWR formulation. Most of these methods utilize the standard degree
normalization of the adjacency matrix, yet usually vary in the post-processing of the
propagation weights and the identification of network modules. The caveats of the
current methods, which served as the main motivation for the development of NetCore,
were previously discussed in Section 3.6. To illustrate how NetCore’s implementation
resolves these caveats we compared it with three other methods: NAGA [53], HotNet2
[166] and Hierarchical HotNet [242]. While NAGA is a network propagation method
specifically designed for the analysis of GWAS data, both HotNet2 and Hierarchical
HotNet were developed for cancer mutation data. In the next Sections we briefly review
the technical details of the methods, focusing on the main differences to NetCore. Then
we provide a comparison between the results of NetCore and the three methods, using
suitable data sets. In order to allow fair comparisons, all other network propagation
methods were applied using the CPDB PPI network, with a restart parameter of « = 0.8,
as was previously selected for the application of NetCore.

7.1.1 NAGA method

NAGA is a network propagation method tailored for the analysis of results from
GWAS studies [53]. The workflow includes three main parts. In the first part, the GWAS
results are summarized into P-values which are converted to gene scores. In the second,
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the genes are re-ranked using network propagation with an interaction network from
the Network Data Exchange (NDEx) database [234]. Finally, a set of prioritized genes
are extracted to be evaluated against a gold standard list and to create an associated
sub-network. The network propagation scheme in NAGA is based on the standard RWR
formulation, with degree normalization of the adjacency matrix. After the propagation,
the authors recommend re-ranking the genes and taking the top 100 genes as the pri-
oritized list. Then, a sub-network which includes these 100 genes can be constructed,
and network modules can be computed using ModuLand [282], a network clustering
method implemented in Cytoscape [267], a popular network analysis software. NAGA
does not apply any significance test, neither for the re-ranking step nor the module
identification one. It was evaluated on nine GWAS data sets, using three different PPI
networks, and compared with two other network-based methods designed for GWAS
data analysis, which are not based on network propagation. Comparing NetCore with
NAGA allows us to demonstrate both the advantages of core normalization as well as
the incorporation of prior knowledge for the module identification procedure.

7.1.2 HotNet methods

HotNet2 [166] and Hierarchical HotNet [242] were both developed for the identifi-
cation of significantly mutated sub-networks based on pan-cancer mutation data. They
are also both based on the same network propagation scheme that is using the RWR
formulation, with degree normalization of the adjacency matrix, yet apply a different
approach for extracting network modules. Both methods define a similarity matrix S
using the RWR formulation and the input weights. S is computed by representing the
input weights as a diagonal matrix (instead of a vector) in the RWR steady-state equa-
tion (see Section 4.2.2). HotNet2 then builds a fully connected graph from S, removes
edges below a minimum threshold 8, and extracts the strongly connected components
(SCCs) from the graph, which then serve as the final modules. The output consists of
four values for 5, which are estimated from the data and the results. We compared
NetCore only with HotNet2 results which were extracted using the minimal & value,
because this value yielded the largest final modules. Hierarchical HotNet constructs a
hierarchy of clusters from S consisting of SCCs, estimates the optimal cut for the hier-
archy, and reports back the generated clusters as modules. Of these modules, we only
compared NetCore to those that consisted of at least two genes. Both methods apply
a statistical test which is based on input randomization of the weights or the network.
HotNet2 is an extension of the previous HotNet algorithm [295], which was based on
an undirected heat diffusion process. It was extensively evaluated on three different
interaction networks, and was compared with HotNet as well as two other standard
pathway-based enrichment methods: DAVID [131] and GSEA [280]. The performance
of Hierarchical HotNet was also evaluated on three different interaction networks, and
compared with HotNet2 as well as three other network-based methods which aim to
identify mutated sub-networks in cancer: heinz [78], MUFFINN [60] and NetSig [129].
HotNet2 is considered the state-of-the art method for identifying cancer modules, while
Hierarchical HotNet demonstrated the best performance for predicting candidate can-
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7.2 Schizophrenia GWAS

Gene Set Coverage in PPI

Source Disease
Size network

DisGeNET [231] Schizophrenia 1436 1072
Pardifias et al. [219] Schizophrenia 945 426
NCG [240] Cancer Consensus 711 626

Cancer Candidate 1661 1050
DisGeNET [231] Cardiomyopathy 773 602
KEGG [146] Cardiomyopathy 115 106

Table 7.1: Gene sets which were used as prior knowledge for the identification of NetCore
modules, or for the evaluation of the results. A schizophrenia gene list was downloaded from
the DisGeNET database [231] and used for module identification. The cancer genes were taken
from the Network of Cancer Genes (NCG) web resource [240]. The cancer consensus were
used for identifying the modules, whereas the cancer candidates were used for evaluating the
results. For evaluating the results of anthracycline drug-toxicity data we used the genes which
are associated with cardiomyopathy in the DisGeNET database [231]. For identifying anthra-
cycline drug-toxicity modules with NetCore we used three cardiomyopathy disease pathways
from KEGG [146].

cer genes. Therefore, comparing NetCore to both allows for a comprehensive assess-
ment of its results for cancer mutation data.

7.2 Schizophrenia GWAS

We applied NetCore to a schizophrenia genetic variations data set by the Schizophre-
nia Psychiatric GWAS Consortium [243], which was also used by Carlin et al. to apply
NAGA [53]. The data set includes P-values for SNP associations to schizophrenia ac-
cording to a GWAS study, which was based on the analysis of 9,394 cases and 12,462
controls. Based on the SNPs, genes were assigned with P-values, according to a prede-
fined genomic region of 10 kilobases (kb) up- and downstream of the gene. Each gene
is assigned the lowest P-value from the SNPs that are within its defined region. This
P-value is then —logi( transformed such that each gene is associated with one weight.
A total of 14,966 genes had a weight above 0, but only 9,033 of them were covered in
the CPDB PPI network, and could be used as input.

For validating the results and later identifying schizophrenia modules with NetCore
we extracted a list of genes that are associated with schizophrenia according to the Dis-
GeNET database [231]. We downloaded the BeFree gene-disease associations (which
are obtained by text mining of abstracts [45, 46]) from the database and extracted all
the gene names relevant for schizophrenia. This list included 1,436 genes, with 1,072 of
them covered in the CPDB PPI network (Table 7.1). In addition, we evaluated NetCore’s
performance for identifying schizophrenia-associated genes using another much larger
GWAS data set by Pardifias et al. [219] (with 40,675 cases and 64,643 controls), which
was produced later than the one by the Schizophrenia Psychiatric GWAS Consortium.
We downloaded the meta-analysis summary statistics and extracted all the available
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Figure 7.1: Schizophrenia genes in network modules: (a) The number of genes, and whether
they are contained in the DisGeNET schizophrenia disease gene list (blue) or not (orange), for
the following (left to right): top 100 genes computed with NAGA, top 100 genes computed
with NetCore; NetCore predicted genes with the 221 GWAS catalog derived genes as seed list.
The last bar shows the overlap of the 221 GWAS catalog genes with the DisGeNET genes. (b)
The same analysis results as in (a) but with the overlap computed with the genes that were
significant (p < 5e — 8) in a recent Schizophrenia GWAS study by Pardifias et al. [219]. (c)
Venn diagram for: DisGeNET schizophrenia genes, NAGA’s top 100 genes and NetCore’s largest
module when using DisGeNET as the seed list. (d) The same analysis results as in (c) but with
the overlap computed with the significant genes from Pardifias et al.

SNP to P-values associations. The SNPs were then associated with genes, according to a
predefined genomic region of 10kb, up- and downstream of it. Each gene was assigned
the lowest P-value from the SNPs that were identified for its region. We applied a sig-
nificance level of p < 5e — 8, which was also used by Pardifias et al. [219], to identify
significant SNPs. 945 significant genes remained, and 426 of them were covered in the
PPI network and used for the evaluation of NetCore (Table 7.1).

We applied NetCore such that core normalization was used together with the com-
puted gene weights that are based on the GWAS P-values. In addition, we also applied
NAGA to the same input weights and the CPDB PPI network. Then, as suggested for
NAGA, we extracted the top 100 genes according to the re-ranking after propagation.
To allow direct comparison of the methods, we then computed the re-ranking after
propagation from NetCore, without applying any module identification, and also ex-
tracted the top 100 genes. As both NetCore and NAGA apply the RWR procedure, and
since the same input was used, the only difference in this case is due to the core nor-
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malization in NetCore, versus the standard degree normalization in NAGA. 63 of the
100 genes were reported by both methods, i.e. each method identified 37 genes that
the other did not.

In order to highlight the advantages of including prior knowledge for the module
identification step, we also applied NetCore using 226 genes from the GWAS cata-
log (Table 6.1) as seed nodes, computed an extended seed sub-network from these
genes along with the propagation results, and extracted the largest module. We eval-
uated the results by calculating the overlap to schizophrenia-associated genes derived
from the DisGeNET database [231]. Although the DisGeNET gene list is not indepen-
dent of the list from the GWAS catalog, this comparison demonstrates the power of
incorporating prior knowledge in NetCore. The performance (measured by overlap
with DisGeNET) improved when the genes from the GWAS catalog were used as seed
nodes. Figure 7.1(a) shows the overlap between the different gene lists and the 1,072
schizophrenia-associated genes in DisGeNET. NAGA’s top 100 genes have an overlap of
30, while NetCore’s top 100 genes overlap with 33, an increase of 10% in comparison
to NAGA. NAGA does not apply any module identification steps, and therefore all of its
reported top 100 genes will be included in the extracted sub-network. With NetCore,
however, we can apply a module identification step, which will in fact include differ-
ent genes from the top 100 that we used for the comparison with NAGA. The list of
genes generated using the 226 GWAS catalog seed nodes increases the overlap to the
DisGeNET list further to a total of 59 genes. The original GWAS seed set of 226 genes
includes only 48 genes from DisGeNET, i.e. when using NetCore with seed genes from
GWAS, we added 11 more disease-associated genes from DisGeNET and thus improved
the consistency of the two data sets. The higher number of non-DisGeNET genes in this
case is due to the high number of non-DisGeNET genes already within the GWAS seed
set.

In order to further test consistency of network propagation among disease gene sets,
we evaluated the different network propagation outcomes with a second set of genes
that were found to be significant (GWAS P —value < 5e — 8) in a larger and more
recent schizophrenia GWAS study [219]. Figure 7.1(b) displays the performance as
measured by overlap to the 426 significant genes from this study. Whereas NAGA’s top
100 genes overlap with only nine of those significant genes, NetCore’s top 100 genes
overlap with 35 of them, i.e. more than 3 times larger. Hence, NetCore is more robust
with respect to different validation sets of the same disease.

In addition, we further compared the enriched pathways for the gene sets that were
used in Figure 7.1(a). We extracted the top 20 most enriched pathways for the disease
genes from the GWAS catalog, and examined the level of enrichment for those path-
ways in the other gene sets, which were identified by network propagation. The results
are displayed in Figure 7.2. Although NAGA’s enrichment is higher for some pathways,
overall NetCore is enriched for more pathways, with a stronger enrichment than for
those genes which are only in the GWAS catalog list. The incorporation of prior knowl-
edge is demonstrated here again by the higher enrichment of NetCore with GWAS seed
in comparison to NetCore’s top 100 only.
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Figure 7.2: Enriched pathways for schizophrenia modules: Over-representation analysis for
the schizophrenia results from: NAGA top 100, NetCore’s top 100, NetCore with GWAS seed,
and genes from the GWAS catalog. Displayed are the 20 most enriched pathways for the genes
in the GWAS catalog, and their enrichment in the other gene sets. The color indicates the
enrichment score (measured by —logj of the enrichment Q-value).

As the incorporation of prior knowledge improved NetCore’s results, we applied Net-
Core once more, this time using the genes from DisGeNET as seed genes, since this is
the most comprehensive gene list (1,072 genes). With these seed genes NetCore identi-
fied 1,136 genes in the extended seed sub-network, where the largest module consisted
of 951 genes. Of these, 888 genes are shared with DisGeNET, which is to be expected, as
they were used as seed genes (Figure 7.1(c)). Furthermore, the overlap with the signif-
icant genes from Pardifias et al. increased to 86 (Figure 7.1(d)). 63 genes are potential
novel disease genes, 22 of them were also among the top 100 genes predicted by NAGA.
Figure 7.3 lists the 63 genes in NetCore that are not in DisGeNET, grouped according to
whether they were also predicted by NAGA, and ranked according to their weight after
propagation with NetCore. We noticed that the genes with the highest weights after
the propagation, for example TRAF6 and SRC, are also predicted by NAGA. This is to be
expected, as NAGA takes the top 100 ranked genes after propagation. However, there
are also some genes with intermediate weights, which are only predicted by NetCore,
such as BTN2A1 and AP2M1. BTN2A1 had an initial propagation score of 6.3 and was
also found to be significant (p = 4.9e —40) in the more recent schizophrenia GWAS
study [219], in addition to seven more genes that were predicted by NetCore (marked
in blue in Figure 7.3).

We further explored two non-DisGeNET genes, which are among NetCore’s novel
predictions. SRC, which is the second highest prediction, and is also predicted by NAGA,
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Figure 7.3: Novel schizophrenia genes predicted by NetCore: 63 genes predicted from Net-
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study by Pardifias et al. [219]. In red are highlighted two of the genes which were further
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Figure 7.4: The neighborhoods of SRC and PSEN1 in NetCore’s largest module. Orange genes
are in the DisGeNET list, gray are novel predictions. The sizes of the nodes are proportional to
the weights after propagation.

as well as PSEN1, which was predicted by NetCore only. Both nodes had initially rather
low weights (1.3 for SRC and 1.7 for PSEN1) which were greatly increased at the end of
the propagation (9.0 for SRC and 3.7 for PSEN1). Their neighborhoods within the largest
module in NetCore are visualized in Figure 7.4. SRC has 97 neighbors, 87 of them
from DisGeNET (orange) and 9 are novel predictions (gray). The sub-network is fairly
dense, with 548 interactions, 97 alone belong to SRC. Other highly connected genes in
the sub-network are: EGFR, GRB2, and ESR1, all of which are already associated with
schizophrenia according to DisGeNET. Among the newly predicted genes are TRAF6
and PRKACA, which are ranked first and third respectively from the non-DisGeNET
genes, and also appear in the predictions made by NAGA. Both of these genes had a
rather small initial weight based on the data (1.8 for TRAF6 and 0.9 for PRKACA), and
a substantial increase in their weight after the propagation (9.5 for TRAF6 and 6.2 for
PRKACA). From the nine predicted neighbors of SRC, only ACTN1 is not predicted by
NAGA, and has a rather low weight after the propagation, yet was still found to be
significant by NetCore. These three genes, TRAF6, PRKACA and ACTN1 are also in the
neighborhood of another gene that was only predicted by NetCore, PSEN1. PSEN1, is
not directly connected to SRC, but is connected to other well-known disease genes too,
such as APP and GRB2. The neighborhood of PSEN1 is smaller, with 21 neighbors and
68 interactions in total. All of the neighbors, apart from TRAF6, PRKACA and ACTN1,
are already associated with schizophrenia according to DisGeNET.

In conclusion, NetCore is able to provide gene predictions which are indeed relevant
to Schizophrenia. For example, BTN2A1 would be a promising candidate for further
studies as it has already been associated with other disorders such as dyslipidemia [94,
120, 128]. SRC is a tyrosine-protein kinase, which is connected to many genes that are
known to be associated with schizophrenia, for instance MAPKI and NTRK1, among
others. Dysregulated SRC has been previously linked to schizophrenia together with
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the activity of NMDA [24, 233, 252, 310]. GRIN2A and GRIN2B, which are some of
the sub-units of NMDA, are also connected to SRC in NetCore’s module. PSEN] is also
connected to other well-known disease genes, but is not a neighbor of SRC, and thus
might be involved in a different mechanism that affects the disease. PSEN1 encodes a
presenilin protein, which is associated with other neurodegenerative diseases, in partic-
ular Alzheimer’s disease. In fact, mutations in PSEN1 have been identified as one of the
first genes related to early-onset Alzheimer [268]. Furthermore, PSENI has also been
implicated in other neurodegenerative and neuropsychiatric disorders [17].

7.3 Pan-cancer mutations

We applied NetCore to a pan-cancer somatic mutation data set, provided by Lawrence
et al. [161], that was previously applied to both HotNet2 and Hierarchical HotNet. The
data set consists of primarily whole-exome sequences from tumor—normal pairs, with
a total of 4,742 samples from 21 tumor types, both from TCGA projects and from non-
TCGA projects at the Broad Institute. The mutations from all samples were combined
together, such that duplicated patients and duplicated mutations were removed. For
each tumor type a total of 18,388 genes were analyzed, and three significance metrics
were calculated using the following methods: MutSigCV [162], MutSigCL and Mut-
SigFN [169]. MutSigCV calculates for a gene the number of non-silent mutations, and
determines its significance according to a background model, which is based on the
number of silent mutations in the surroundings of the gene. MutSigCL measures the
significance of the positional clustering of the observed mutations, while MutSigFN
measures the evolutionary conservation in the positions of the mutations. Both mea-
sures are assigned a P-value based on a permutation test of the non-silent coding mu-
tations. Finally, the significance levels from the three metrics were combined into a
single P-value, which was then corrected for multiple testing into a single FDR Q-value
using the Benjamini-Hochberg FDR procedure [35]. This resulted in 1,489 genes with
Q —value < 1, 929 of them covered in the PPI network. We transformed the Q-values
using the —logip and used those as node weights to initialize network propagation
with NetCore.

For evaluating the results, we made use of the NCG catalog [240]. The catalog con-
tains manually curated information from publications about more than 2,000 cancer-
associated genes, which are known or predicted to have driver roles in cancer based on
somatic mutations. These genes are divided into two categories: (1) 711 cancer consen-
sus genes, which include both tumor suppressors and oncogenes, and (2) 1,661 cancer
candidate genes, which were identified by mutational screenings and have strong sup-
port to be involved in cancer development. We used the cancer consensus gene list as
seed nodes for identifying network modules in NetCore, and evaluated the results using
the cancer candidate gene list (Table 7.1).

For comparison with NetCore, we also applied the same data, using the CPDB PPI
network, to both HotNet2 and Hierarchical HotNet. We extracted the modules from
the three methods and compared them based on their genes. HotNet2 reported in total
59 genes in two modules of sizes 57 and 2. Hierarchical HotNet reported in total 35
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Figure 7.5: Pan-cancer mutation results: (a) The number of genes in the predicted modules
reported by NetCore, HotNet2 and Hierarchical HotNet (h-hotnet). Colors indicate the different
categories of the NCG lists (blue = cancer consensus genes, orange = cancer candidate genes,
green = genes in neither of the lists). (b) Venn diagrams showing the overlap between the
three methods for all the genes in the computed modules, and according to the different NCG
categories. (C) Box plots of the node degrees of the computed module genes. For NetCore this
is also broken down to the different NCG categories.

genes in four modules of sizes 26, 4, 3 and 2. NetCore reported in total 639 genes in
three modules of sizes 633, 4 and 2. Figure 7.5(a) shows the number of genes in all
the modules, and their overlap with the genes from the NCG cancer consensus and
candidate lists. Both Hotnet2 and Hierarchical HotNet have a relatively small number
of genes in their modules, however most of them belong to the consensus list. NetCore
includes most of the cancer consensus genes, as those were used for the module identi-
fication step, however, it also retrieves the most candidate genes. This is further shown
in Figure 7.5(b), where NetCore’s genes almost completely overlap with the other two
methods, but include 15 more genes from the candidate list. HotNet2 reported seven
genes from the candidate list, yet those are not overlapping with the 15 genes reported
by NetCore. Figure 7.5(c) illustrates the degree of the nodes in all the modules. We
observed high degrees for the genes which are in both the HotNet2 and Hierarchical
HotNet modules. This is due to HotNet2 and Hierarchical HotNet mainly reporting
genes from the consensus list, and hardly reporting any genes with lower degrees. We
divided the genes from NetCore’s module according to the NCG lists, and noticed that
both the genes from the candidate list as well as the genes that are in neither of the
lists have lower degrees.

We further evaluated the cancer-association potential of the genes that have been
identified by NetCore and that are neither consensus nor candidate genes. We ap-
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Figure 7.6: Signaling pathways in pan-cancer modules from NetCore: (a) Pathways with
at least three predicted genes from the candidate list in the largest module (633 genes) from
NetCore. Color indicates the different NCG categories. (b) The genes from the largest module
that are part of the "MAPK signaling pathway". (c) The genes from the largest module that
are part of the "RAS signaling pathway". Blue genes are in the consensus cancer list, orange in
the candidate and green are new predictions. (d) Cox regression plots for three of the novel
predicted genes from the modules in (b) and (c), marked with a yellow square, generated using
OncoLnc [13]. LGG refers to Brain Lower Grade Glioma. KIRC refers to Kidney renal clear cell
carcinoma.
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plied an over-representation analysis to the 633 genes in NetCore’s largest module
and extracted the most enriched pathways (Q —value < 0.01). We then investigated
those enriched pathways that contained at least three genes from the candidate list
(Q —value < 2.7e — 6).

Figure 7.6(a) lists the identified 16 pathways and the number of genes in NetCore’s
largest module, according to the NCG lists. All pathways also include genes that are nei-
ther consensus nor candidate genes, where some pathways include more genes from
the candidate list, and others do not. We focused on two KEGG pathways: “MAPK sig-
naling pathway” (Q —value = 1.11e — 19) and “Ras signaling pathway” (Q — value =
2.05e — 20), which are both well known to be involved in cancer development (see for
example [300]).

Figure 7.6(b)-(c) display the sub-networks from NetCore’s largest module that in-
clude the genes which are enriched for these pathways. The majority of the genes are
in the consensus list (blue), while a smaller number of genes are in the candidate
list (orange) or in neither of the two lists (green). In total, both pathways include
nine genes that are in neither of the NCG lists: RASGRP3, FGF10 and RASGRF1 are
present in both pathways; RASAL2, KSR1 and RIN1 in “Ras signaling pathway” only;
and IL1RAP, MAPKAPK3, and TGFB1 in “MAPK signaling pathway” only. All of these
genes, apart from RASGRP3, did not have an initial weight, i.e. they were not found to
be significantly mutated, yet they were identified as significant by NetCore and had a
high enough weight to be included in the final modules.

We argued that these novel genes might still be cancer-relevant biomarkers since
they are connected with many consensus and candidate genes. We thus examined the
associations of these genes to cancer survival data by generating Cox regression plots
using OncoLnc [13]. With this tool one can explore patient survival correlations to gene
expression data for 21 cancer types from TCGA. Therefore, we utilized this tool as an
independent resource for estimating the relevance of the predicted genes to cancer
development and progression. And so, we applied it to the previously identified nine
genes, which were not listed as cancer consensus or candidate genes, and extracted the
results for the cancer types with the lowest FDR-corrected P-values. In Figure 7.6(d) we
show the results for three of the novel predicted genes from the modules, which were
part of the MAPK and Ras signaling pathways: RASGRF1, MAPKAPK3 and RINI. The
expression levels of all three genes were significantly associated with survival of cancer
patients, and therefore could potentially be used as biomarkers.

In addition, we repeated the same analysis for genes that are part of the overview
“Pathways in Cancer” list from KEGG [146], which were predicted in NetCore’s largest
module but are in neither of the NCG lists. This is the most enriched pathway in the
module (Q —value = 1.34e — 65). It consists of 475 genes, which are also in the PPI
network, 147 of them are in NetCore’s largest module. From those, 137 are from the
consensus list, three from the candidate list, and seven are in neither of the lists. We
identified six of the seven novel genes as potential biomarkers due to their significant
correlations to patient survival data: CTBP1, FGF10, LPAR1, LRP5, RASGRF3 and TGFBI.
FGF10 and TGFB1 were also identified as part of the “MAPK signaling pathway”. All of
these genes had an initial weight of O at the start of the propagation, yet were identified
as significant with a high enough weight after the propagation by NetCore. Figure 7.7
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Figure 7.7: Pathways in Cancer: The pathway as depicted by KEGG and generated using
Pathview [173]. The colored nodes are present in the module from NetCore. Red nodes are
present in the NCG cancer consensus list. Blue nodes are newly predicted genes, some are
present in the NCG cancer candidate list, and some are not. The Cox regression plots are based
on TCGA survival data for six genes in the pathway that were predicted by the module and are
not present in either the consensus or candidate cancer lists. The plots were generated using the
OncoLnc [13] tool. The results are shown for the cancer type with the lowest FDR-corrected P-
value. LGG refers to Brain Lower Grade Glioma. KIRC refers to Kidney renal clear cell carcinoma.
STAD refers to Stomach adenocarcinoma.
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illustrates the genes from the pathway, marking the genes which are also present in
NetCore’s largest module, and the correlations of the six genes to patient survival data.

In conclusion, NetCore identified several genes that can potentially serve as biomark-
ers for cancer. Some of the genes have already been suggested to be involved in the
disease. For example, over-expression of CTBP1 promotes the progression of multiple
cancer types, as recently reviewed by Blevins et al. [39]. RIN1 expression has been
implicated in tumor development and invasion [116, 264, 308]. Hypermethylation of
RASGRF1 has been suggested as a biomarker for colorectal cancer [56]. Finally, MAP-
KAPK3 was also suggested as a potential biomarker for colorectal cancer [28], however
further investigations are still required to confirm this observation.

7.4 Toxicogenomics - drug toxicity expression lev-
els

In this Section we aim to demonstrate the application of NetCore to drug toxicity
studies, and in particular to toxicogenomic studies. Elucidating and understanding the
mechanisms that drive drug toxicity are crucial for preventing the toxic effect and even-
tually improving drug development processes [114]. Following the advancements of
sequencing-based technologies, the concept of toxicogenomics was developed in order
to study the toxic effects of drugs by genomic analysis [190]. It has previously been
shown that gene expression signatures can be used to predict toxicity levels, i.e. identi-
fying differentially expressed genes (DEGs) and associating them with toxic phenotypes
[14, 127, 222]. Accordingly, NetCore can be applied to toxicogenomics data in order
to provide network modules which suggest pathways and mechanisms that might be
involved in causing the toxic phenotype. To that end, gene expression measurements
upon drug treatments must be converted into scores, which can then be used as input
weights for the propagation.

We have previously constructed a workflow for the analysis of toxicogenomics data
which included a scoring scheme for the application of network propagation [29]. We
showed that the enrichment level of the identified network modules was increased in
comparison to the enrichment of the significant DEGs only, and therefore amplified
the functional information which is relevant to toxicity. On top of that, the modules
extended the mutual effects between different drugs, as more genes were shared be-
tween the detected modules in comparison to the DEGs only. Here we describe the
scoring scheme that was used for the workflow, and adapt it for gene expression levels
measured by RNA-seq, as it was originally designed for microarray data.

Our previously developed workflow for the analysis of toxicogenomics data in the
context of pathway and network analysis aims at identifying the mechanisms that lead
to drug toxicity [29]. In short, the workflow, illustrated in Figure 7.8, allowed us to an-
alyze gene expression levels from drug toxicity studies together with network and path-
way information from CPDB [145]. The pathway analysis was previously established
in-house by Hardt et al. [113], which was made available via the ToxDB web interface?,

http://toxdb.molgen.mpg.de/
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Figure 7.8: Network and pathway analysis of toxicogenomics data: Workflow for analyzing
toxicogenomics data at the network and pathway level. Gene expression data is collected upon
drug treatment and used in combination with pathway and network information from CPDB.
The pathway analysis can be executed via ToxDB [113] and the network analysis is applied us-
ing network propagation. The workflow allows for the identification of both relevant pathways,
that are disrupted upon drug treatment, and network response modules, that hold functionally
relevant genes and novel candidates. Taken from [29].
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and provided drug-toxicity response pathways. The network analysis was executed by
us using the HotNet2 [166] network propagation algorithm (see Section 7.1.2), and
produced functionally relevant network toxicity modules. The workflow was designed
for the analysis of gene expression levels derived from microarrays, however could eas-
ily be adapted to RNA-seq. The main requirement is for the control and drug treatments
to be compared so that DEGs can be computed. This way, each gene is associated with
a FC which is assigned a significance level, given the null hypothesis that there is no
change in expression between treatment and control. The FC levels are either positive
(up-regulated) or negative (down-regulated). However, to execute network propaga-
tion it is requires to have positive scores only, and thus we computed new scores, which
are positive only, and reflect the degree of change in comparison with the control. In
addition, we also wanted the scores to include the significance level, in order to focus
the analysis mostly on those genes whose expression is significantly changed (regard-
less if increased or decreased).

For toxicogenomics data, where different time and dose conditions are available for
each drug, we proposed the following scheme for scoring the genes. For every gene 1,
drug j, and time-dose treatment k, the score for gene i under the conditions j and k is
defined by:

Sijx = |log, rijklllog, 4 Pijkl (7.1)

where ry;y is the FC and pyjy is the P-value from the differential expression analysis.
This score describes a weighted FC of the gene, such that the more significant the
change is, the higher the weight is. It also measures how much the gene is affected by
the treatment, regardless of the change in expression, i.e. if the gene is up- or down-
regulated. In addition, the score can be calculated for all genes, and therefore there is
no need to assign a cut-off to the significance level.

The workflow was previously applied to rat in vivo data from DrugMatrix [96] and
was focused on cardiotoxic compounds, and specifically on four compounds from the
anthracycline family: daunorubicin (DAU), doxorubicin (DOX), idarubicin (IDA), and
epirubicin (EPI). Anthracyclines are widely used in cancer chemotherapies and have
been shown to be extremely effective despite the fact that they induce cardiotoxicities
in up to 23% of the patients [167, 275]. Anthracycline-induced cardiotoxicity can re-
sult in cardiomyopathy and heart failure, in many cases only after a long period of time
post-treatment [100]. Anthracyclines can interact in the cell with several components,
as depicted in Figure 7.9. Although it is known that anthracyclines disrupt the synthe-
sis of DNA and RNA [100], and that they lead to mitochondrial dysfunction [189], the
mechanisms that cause the cardiotoxic effects still remain largely unclear [291]. Previ-
ous studies have tried to elucidate this problem, however, there is still need for further
investigations so that detection and prevention can be improved [239].

Very recently, in a collaborative work by us and others [263], the same four anthra-
cycline compounds were studied in iPSC-derived human 3D cardiac microtissues with
the goal of identifying adverse mechanisms of cardiotoxicity. The experimental design
and analysis workflow that were applied in this study are illustrated in Figure 7.10.
Over a period of 14 days the cell models were challenged with the four anthracycline

104



7.4 Toxicogenomics - drug toxicity expression levels

Nucleus

Lipid
Peroxidation

ROS Production

&

4 Cardiac Troponins
t NP

Cytoplasm

Extracellular Matrix

Legend: Anth li Reactive Oxygen ; DNA/ g i
g @ nthracycline % Sl ‘ Topoisomerase Il CRNA Polymerase Ribosome

Figure 7.9: Anthracycline induced cardiotoxicity: Anthracyclines (AC) that enter the cell
impair DNA and can cause mitochondrial damage by inducing reactive oxygen species (ROS).
AC inhibit DNA and RNA synthesis and also inhibit the enzyme Topoisomerase 113 (TOPIIf),
which leads to activation of DNA-damage response that leads to cell death. AC can also function
as transcriptional inhibitors, i.e. affect gene transcription, which leads to cardiac injury that
can be detected by increased levels of cardiac troponins and brain natriuretic peptides (BNP).
Adapted from [195].

compounds, which were dissolved in dimethyl sulfoxide (DMSO) at two physiologi-
cally relevant doses (therapeutic and toxic) [157], and measured at seven time points
(2h, 8h, 24h, 72h, 168h, 240h, 336h), collecting three replicates for each one. The
effects were measured for dynamic quantitative proteomics (LC-MS), transcriptomics
(RNA-seq) and methylation (MeDIP-seq). The measurements were compared with con-
trol profiles which were derived from time-matched DMSO-treated microtissues. The
results from the longitudinal expression analyses were used to identify a network mod-
ule which represented a common signature of the effects of all four compounds. The
results from this integrated in vitro approach were also shown to be clinically transfer-
able to cardiac biopsies taken from patients. This integrated approach was established
as an efficient method to capture dynamic drug responses across time and dose in an
in vitro modelling system that enables to bypass animal-based testing, which have been
previously shown to translate poorly to human conditions [114].

For the purpose of this work, and in order to identify clinically relevant drug toxic-
ity modules upon anthracycline treatments, we used the gene expression levels which
were measured in the iPSC-derived human 3D cardiac microtissues mentioned above.
In contrast to the data that was previously analyzed by us [29], these gene expression
measurements are more relevant as they were derived from a human in vitro model,
and in addition they were measured using RNA-seq, which is more advanced than mi-
croarrays. The raw RNA-seq data were previously processed by Selevsek et al. [263]
using the Genedata Profiler® software (v.11.0.). Transcripts and genes were identified
with an algorithm based on Cufflinks [290] and the differential expression analysis
was performed with DESeq2 [171]. Thus, for every drug-dose-time experiment the FC
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Figure 7.10: Experimental design for measuring anthracycline induced cardiotoxicity in
iPSC-derived human 3D cardiac microtissues: 3D cardiac microtissues were grown for 14
days and treated at two doses calculated by physiologically based pharmacokinetic (PBPK) mod-
eling with four anthracycline drugs: DAU, DOX, EPI and IDA. Measurements of the proteome,
transcriptome and methylome were taken at 7 different time points. Proteome and transcrip-
tome measurements were used to characterize dynamic cellular responses. Time series data
was mapped to the CPDB PPI network in order to identify a common response network across
all treatments. Adapted from [263].

and significance level were extracted. Based on those we computed the gene scores, in
the same way as described in Equation 7.1. In order to apply NetCore we needed to
generate one score for every gene. Hence, we combined the scores from all the seven
time points by taking their mean, while separating the therapeutic scores from the toxic
scores, i.e. applying NetCore for each compound twice (Table 7.2). In this way the ef-
fect over time is summarized, yet the effect of the dose remains separated. In addition
we also applied HotNet2 to the same data in order to compare the results with NetCore.

To evaluate the results produced by NetCore and compare them with those from
HotNet2 we downloaded disease-gene associations from the DisGeNET database [231]
for Cardiomyopathy (Familial Idiopathic). This included a list of 773 disease genes,
602 of them were covered in the CPDB PPI network (Table 7.1). In addition, in or-
der to apply module identification in NetCore using prior knowledge, we downloaded
the genes which are associated with three KEGG [146] cardiomyopathy pathways: 1)
dilated cardiomyopathy, 2) arrhythmogenic right ventricular cardiomyopathy (ARVC),
and 3) hypertrophic cardiomyopathy (HCM). The pathways are comprised of 89, 72
and 83 genes respectively, with a total of 115 genes combined, and 106 of those were
covered in the CPDB PPI network (Table 7.1). The overlap between the cardiomyopathy
genes from DisGeNET and those from the three KEGG pathways is 41.
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Input gene scores Input gene scores

Drug Dose
- all - significant only

DAU The 6,892 132

DAU Tox 7,659 40

DOX The 8,224 179

DOX Tox 8,254 115

EPI  The 8,064 341

EPI Tox 8,518 157

IDA The 8,756 434

IDA Tox 8,678 158

Table 7.2: The number of genes which are covered in the CPDB PPI network and were used
as input for running NetCore for each drug-dose combination. The scores were computed once
for all genes, and once only for genes that were significantly differentially expressed in all
measured time points.

For each drug-dose combination we extracted the modules from both NetCore and
HotNet2. Both methods can produce more than one module for each condition (see Sec-
tion 5.6 and Section 7.1.2), and therefore we compared their results based on the genes
in the largest reported module only, and on the genes in all of the modules combined.
Figure 7.11(a) displays the number of genes in the largest module for each condition,
and whether those were included in the cardiomyopathy gene set from DisGeNET. For
all conditions, the number of genes in the HotNet2 modules is larger than the number
of genes in the NetCore modules. Although the overlap with the DisGeNET genes is
mostly higher in the modules from HotNet2, the overlap of the modules from NetCore
is only slightly lower in most conditions, with an ever higher overlap for DAU (therapeu-
tic) and DOX (toxic), despite having smaller modules. Moreover, when comparing the
genes in the largest modules in all of the conditions together (Figure 7.11(b)) we note
that the overlap of NetCore with the DisGeNET genes (22%) is twice as high as that of
HotNet2 (11%), relative to the total number of the reported genes in each method.

When comparing the genes from all modules (Figure 7.11(c)) we note that Hot-
Net2 produced a much larger number of modules and genes, and therefore the over-
lap in each condition with the DisGeNET genes is higher than that of the NetCore
genes. However, the overlap of the genes from all conditions in the HotNet2 modules is
reduced to less than 8%, whereas in the NetCore modules it remains above 20% (Fig-
ure 7.11(d)). Indeed, NetCore’s genes are interconnected in fewer modules, as depicted
in Figure 7.11(e). The largest modules from NetCore consist of more than 70% of the
genes from all modules, whereas HotNet2’s genes are dispersed in many modules, with
the largest modules consisting of less than 40% of the genes, in all conditions. This is
due to the fact that HotNet2 produced many modules of small sizes, with an average
module size of four genes only.

To evaluate the robustness of NetCore towards the size of the input (i.e. number of
genes with a weight above 0) we applied a more stringent scoring scheme. Instead of
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Figure 7.11: Comparison of modules generated for anthracycline toxicity measured by
gene expression: The modules were computed using NetCore and HotNet2. (a) The number
of genes in the largest module for every drug, in both therapeutic (The) and toxic (Tox) doses,
and the overlap with the cardiomyopathy genes from the DisGeNET database [231]. (b) The
genes in all of the largest modules (for all drug-dose conditions) from NetCore and HotNet2,
and their overlap with the cardiomyopathy genes from DisGeNET. (c) and (d) display the same
results as in (a) and (b) respectively, but for all the genes from all the modules (each method
reported more than one module for each drug-dose condition). (¢) The number of genes in
the largest module, relative to the total number of genes in all modules, for each drug-dose

combination.
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Figure 7.12: Comparison of anthracycline toxicity modules generated using a stringent
scoring scheme: The anthracycline toxicity modules were generated once again, using a strin-
gent scoring scheme such that the number of input nodes was reduced. (a) The number of
genes in the largest module for every drug, in both therapeutic (The) and toxic (Tox) doses,
and the overlap with the cardiomyopathy genes from the DisGeNET database [231]. (b) The
genes in all of the largest modules (for all drug-dose conditions) from NetCore and HotNet2,
and their overlap with the cardiomyopathy genes from DisGeNET. (c¢) The number of genes in
all of the modules versus the number of input genes (with a score above 0), for every drug-dose
combination.

computing a score for every gene, we calculated the mean over the scores from all
seven time points only if the significance level (P-value) in each one of the time points
was under 0.1. The aim is to consider genes with a non-significant FC as irrelevant, and
therefore exclude them from the input to NetCore. For the anthracycline expression
data, this resulted in a sharp decrease in the number of input genes which had a score
above 0 (Table 7.2). Figure 7.12(a) displays the number of genes, from all modules,
in each condition, for both NetCore and HotNet2. Using these scores both methods
produced smaller modules than before (Figure 7.11(c)), however, NetCore reported
more genes than HotNet2 in all conditions. The overlap of all the genes with the genes
from the DisGeNET set, as displayed in Figure 7.12(b), is the same for both methods
(20% with respect to the total number of reported genes), suggesting that NetCore
is still as accurate as HotNet2, despite reporting more genes in total. Furthermore,
HotNet2 is more sensitive to the size of the input, as it is highly correlated with the size
of its output (Figure 7.12(c)), whereas NetCore is more robust to the input size.
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Figure 7.13: Anthracycline toxicity modules for therapeutic doses identified with NetCore
using KEGG seed genes: (a) The genes for all four drugs from NetCore modules identified
with and without KEGG seed genes. (b) The genes in the combined module for all four drugs,
where only genes that were present in at least two of the four drug modules were extracted.
The combined module for all four drugs when using the KEGG seed genes (c) and when not

(d).

To demonstrate the benefits of NetCore’s semi-supervised module identification pro-
cedure we applied NetCore once more, using the scores for all genes, and in addition
used the 106 genes from the cardiomyopathy KEGG pathways (Table 7.1) as seed genes
for the module identification procedure. Our previous analysis did not exploit any prior
knowledge, and therefore the modules were generated by extending the sub-networks
that included the 100 highest scoring genes (from the input). Figure 7.13 demonstrates
the results for the therapeutic dose. We compared the genes in all of the modules, for
all drugs, with and without the seed genes from KEGG, by computing their overlap
with the cardiomyopathy genes from DisGeNET (Figure 7.13(a)). Although the total
number of genes from all the modules without KEGG seed is larger, the overlap with
the DisGeNET genes is higher for the KEGG seed modules (23% in comparison with
35%, respectively). This is to be expected, as there is already an overlap of 41 genes
between the DisGeNET and KEGG genes. Of the 65 genes in the KEGG seed modules
that overlap with the DisGeNET genes, 38 were already included by adding the KEGG
genes as seed genes, i.e. NetCore identified 27 genes from the DisGeNET set which are
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not in the KEGG set.

In order to produce a combined module for all four drugs, we extracted the genes
that were present in at least one of the modules of two or more drugs. When compar-
ing the genes from these combined modules (Figure 7.13(b)) we note that the number
of genes is larger when using the KEGG seed genes. Hence, the commonality between
the modules of the different drugs is increased when using the KEGG seed genes. Fig-
ure 7.13(c) visualises the combined modules when the KEGG seed genes were used,
and Figure 7.13(d) when they were not. The number of edges in the KEGG seed com-
bined module is also larger, and the nodes are more interconnected, as the majority of
them are connected in one component, whereas in the combined module without the
seed genes they are separated into smaller components. Both combined modules in-
clude sarcomere-related genes, such as TNNC1, which is also associated with cardiomy-
opathy according to both DisGeNET and KEGG, as well as genes which are neither in
the KEGG set nor in the DisGeNET one, such as TNNT1 and TNNI1, who are also from
the same family of troponins. In addition, TNNT2 and TNNI3, which are in the KEGG
set, are indeed included in the KEGG seed module, yet not in the module without the
KEGG seed. TNNTZ2 was indeed found to be up-regulated in most time points, according
to both transcriptomics and proteomics, in all drugs except for DAU [263].

In conclusion, we established that NetCore could easily by applied to gene expression
data from drug toxicity studies. We showed that NetCore is able to produce relevant
predictions regardless of the sizes of the input. On top of that, the modules identified by
NetCore benefited from the incorporation of prior knowledge and allowed to increase
the common toxic signature between all drugs. These modules also included genes
from the cardiac troponins family, which have recently been implicated as targets of
anthracyclines (see for example [1, 292]).

7.5 Summary

This Chapter included three examples for the application of NetCore to real data.
The first two focused on disease phenotypes measured by mutational data, while the
third focused on drug-toxicity effects measured by gene expression levels. Our aim was
to provide a comprehensive description of the type of analysis which is available via
NetCore, and demonstrate that it can be used for diverse types of problems and data.
Furthermore, we underlined the benefits of NetCore by comparing it to previous net-
work propagation-based methods. By applying NetCore to schizophrenia data we were
able to show how core normalization improves over degree normalization, as well as
identify novel candidate disease genes through applying our semi-supervised module
identification approach. Using the same approach we were also able to identify candi-
date cancer genes, which participate in relevant cancer pathways, and could potentially
serve as biomarkers. We also introduced NetCore as a tool for analyzing a different type
of genotype-phenotype associations by applying it to gene expression levels that were
measured upon anthracyline treatments. The various types of data, input and output
that were applied to and generated by NetCore throughout this work are finally sum-
marized in Table 7.3.
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Disease /

Input Data
Phenotye

Type 2 Diabetes Binary

. . Mutati
Schizophrenia utations
(P-values)
Mutations
Cancer
(P-values)

Drug Toxicity RNA-seq

(DOX The) (weighted FC)

Nodes with

input weights

78

9,033

929

8,224

Seed genes
resource

GWAS
catalog [176]

DisGeNET [231]

NCG [240]
(consensus)

KEGG [146]

Nodes as

seed genes

78

1,072

626

106

Nodes added
by NetCore

39

63

79

39

Number of
Modules

15

12

Largest module
(% from extended
seed sub-network)

45%

84%

90%

85%

Table 7.3: NetCore application summary: Gene sets that were applied in NetCore and were
used together with prior knowledge from different resources. Type 2 diabetes is used as example
for one of the 11 GWAS gene sets. DOX in therapeutic (The) dose is used as an example for one
of the anthracycline drug-dose conditions.
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Diffusing information via network propagation is a well-established technique, which
in recent years has been repeatedly adopted in the field of molecular biology [71]. The
concept is relatively simple to implement and is therefore easily applied to any molecu-
lar interaction network and data. Although it has been successfully utilized to generate
novel genotype-phenotype associations (mostly for complex diseases), there are still
several limitations that hinder existing methods. In the scope of this work we identified
and focused on two such limitations. The first arises from the frequent use of PPI net-
works, which suffer from study bias that directly affects the propagation results. The
bias is reflected in high degree nodes, which are subsequently visited more often during
the propagation process, and are thus more likely to be predicted as associated with
the phenotype. The second limitation concerns the identification of network modules at
the end of the propagation. To date, most methods provide modules which are poorly
connected, with many of the genes scattered in distinct modules, making it challenging
to determine the functionality of the modules.

To overcome these limitations, we developed NetCore, a network propagation method
that uses node core instead of degree in the mathematical formulation of random walk
with restart. We proposed alternative normalizations to the adjacency matrix that al-
low us to adjust the random walk probabilities. Thereby, the walk is expected to arrive
less often at high degree nodes, and thus the study bias is addressed. We compared
the performance of the normalizations in the task of identifying GWAS gene sets and
concluded that core normalization is performing significantly better than degree. In
addition, we presented a semi-supervised approach to identify network modules based
on the propagation results. By incorporating prior knowledge we were able to identify
functionally relevant modules, which improved connectivity between the genes and
included novel predictions. We demonstrated the usability of the method on complex
(disease) phenotypes and highlighted its benefits in comparison to other propagation-
based methods.

For the purpose of this work we extracted a PPI network from CPDB. We included in
this network only binary interactions from the database, and excluded complex ones.
Therefore, the majority of these interactions were measured using the yeast two hybrid
technique, and are therefore prone to both technical and selection biases. These biases
result in star-like structures of ’bait’ proteins, which will be connected to multiple 'pray’
proteins.

In order to account for the fact that the study bias results in high degree nodes
we explored other node metrics in the network and examined how they relate to de-
gree. While clustering coefficient is a local metric, and betweenness centrality a more
global one, both measures still reflect the study bias, albeit less than degree. Moreover,
both measures have been identified as significantly higher in well-studied cancer genes
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[240]. On the other hand, we observed that node core is more robust to the study bias,
and that the difference between core and degree reflects the level of bias. Core is also a
global metric, which can directly be associated with node degree [172], and therefore
we found it to be more suitable for network propagation purposes.

This prompted us to develop three variations for the normalization of the adjacency
matrix. The first is exclusively based on core. The second is based on the difference
between core and degree, and the third on their ratio. Even though we showed that
the difference indicates the level of study bias, when one uses it for the normalization
of the adjacency matrix it can produce very low probabilities, especially in cases when
the difference is very large. To avoid such low probabilities, we also provided a normal-
ization based on the ratio between the core and the degree.

The normalization which is based on the difference between the core and degree has,
on average, the lowest performance, even lower than that of the degree normalization.
This could be indeed as result of the very low walking probabilities that are calculated
for nodes with a high difference, i.e. nodes with a very high degree, yet a much lower
core. For example, the gene MYC, which is associated with breast cancer, prostate can-
cer and height (according to the GWAS catalog), has a degree of 405 and a core of 38,
i.e. the difference is 367. In this case the probability for walking to the node would be
very low, and therefore its weight after the propagation would not be significant, which
might result in a wrong prediction for the gene. In such cases the ratio-based normaliza-
tion produces a higher probability, which could still result in a significant weight, and
therefore the gene would be correctly predicted. Indeed, the ratio-based normalization
outperforms the difference-based one, and is on average also slightly better than the
degree-based one.

Even with core normalization, the performance measured by the AUROC was at best
still under 0.7, and sometimes as low as 0.5. One potential explanation is that the pre-
diction is based on the P-value of the weight at the end of the propagation, which
is calculated according to a permutation test that aims to account for the study bias.
As a result, some high degree nodes will not have a significant weight at the end of
the propagation. However, disease genes tend to have higher degrees, as previously
demonstrated for cancer [257], and as is reflected in the GWAS gene sets that we se-
lected (see Figure 6.2). Therefore, some high degree disease nodes might have been
wrongfully classified as negatives, thereby reducing the overall performance. This issue
was already previously identified as problematic when adjusting propagation scores
[86], and can be addressed, for example, by combining the weight and the significance
level to produce more balanced predictions [36].

At the same time, it is important to note that the negative set which was selected for
the evaluation might in fact include genes which are associated with the disease, yet
were not included in the GWAS catalog. This would result in correct predictions that,
under this scheme, are marked as false-positives. One possible solution would be to
construct a "real" negative set or to use different sets for the evaluations, and estimate
the average performance.

Choosing an interaction network is central to running network propagation. To date
there is a plethora of PPI resources from which PPI networks can be constructed [21].
Yet, these resources still differ from one another, especially since the interactions can
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be established via multiple technologies, including in silico predictions (see for exam-
ple [302]). Recently, Huang et al. [133] evaluated 21 different molecular interaction
networks when identifying disease genes via network propagation. They found that the
performance varies greatly between different networks, depending on the set of disease
genes. They concluded that although the number of interactions was the only strong
predictor of a network’s performance, agglomerating interaction data from multiple
resources is even more essential for improving the performance. This prompted us to
exploit CPDB, which is a meta-database and contains PPI interactions from 19 different
resources. Since the interactions in CPDB are also associated with a confidence score,
we could focus only on the high ones, to assure accuracy.

By comparing our propagation-based results we confirmed that the performance of
the high confidence network was improved in comparison to the entire network. Even
though the high confidence network is much smaller (with less than 50% interactions),
its quality is favorable when trying to identify disease genes via network propagation.
On the other hand, taking the entire network and incorporating the weights of the
interactions into the propagation formulation was disadvantageous, and the perfor-
mance was drastically reduced. This is likely due to our permutation-based test, since
the generation of random graphs also prompts random assignments of weights for the
interactions. As a result, the propagation weights of fewer nodes are statistically signif-
icant, and thus there are much less correct predictions.

We thus conclude that in addition to agglomerating interaction data from multiple
resources, it is also crucial to carefully account only for the most accurate interactions.
This holds true for identifying disease modules via other approaches, as sparsifying the
network by taking only "strong" interactions was also beneficial in unsupervised mod-
ule identification for GWAS disease modules [62].

Beyond the interaction network itself, the technique for generating random networks
is also central to the performance, as the statistical significance is calculated based on
a permutation test of the interaction network. The test calls for generating random net-
works which are based on the input network and also preserve the degree for each node.
While the edge swap algorithm ensures that the degree is preserved, it does not nec-
essarily maintain other node metrics like core. To that end, we generated dk-random
graphs, which produced similar core distributions to the one in the CPDB PPI network.

It is important to note that even in dk-random graphs the core does not always re-
main exactly the same for each one of the nodes. As a matter of fact, for d = 2.5 we
observed nodes with a core which was higher than the maximal core in the CPDB PPI
network. Nonetheless, to the best of our knowledge, there are no current techniques
for generating network permutations which preserve the core for each and every one
of the nodes. In the future, it would be useful to examine alternative techniques for
generating random networks, and perhaps account for this issue directly within the
statistical test.

So far, existing propagation-based approaches were applied to experimental evidence,
i.e. to results from a specific study, or to previously established prior knowledge. The lat-
ter relies on the guilt-by-association principle, where evidence is spread from phenotype-
associated genes with the goal of identifying additional phenotype-relevant ones. Yet, at
the time of the development of this work, none of the propagation methods combined
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in their framework both experimental and prior evidences. Only very recently Hristov
et al. [130] proposed to inform the propagation of new evidence by incorporating ex-
isting knowledge of disease genes. They showed that even when the propagation was
guided using only a small number of known cancer genes the results were improved
in comparison to the standard approach (using data alone). The approach that we pro-
posed incorporates the prior information only at the module identification step, and
not during the propagation. The generated network modules connect the well-known
genes with novel predictions. Hence, the main idea is the same: to enhance existing
knowledge and use it to improve predictions of novel genes.

Additionally, in this work we also observed that the genes from most of the 11 GWAS
gene sets are scattered in the network. In fact, it has already been observed that for
many diseases the genes associated with them are poorly interconnected, and the
largest sub-graph they induce comprises, on average, only 20% of the entire disease
gene set [191]. When most of the genes are disconnected from one another, and when
the existing components are rather small, it is difficult to extract modules that are func-
tionally relevant to the disease. This issue was also addressed by our approach as it con-
tributed to producing disease modules with higher connectivity between disease genes,
by connecting them through intermediate novel nodes. This allowed for the genes to be
less dispersed in multiple modules, also in comparison to modules produced by another
propagation-based method.

On top of that, incorporating prior knowledge also facilitates the construction of net-
work modules which include high degree nodes that are associated with the disease. As
discussed, adjusting the propagation weights to account for study bias might result in
the exclusion of high degree nodes from the final modules. However, some of these high
degree nodes might in fact already be associated with the phenotype, and so by guid-
ing the procedure with prior knowledge we were able to include them in the network
modules, regardless of the significance of their propagation weight.

NetCore runs with three essential parameters: 1) the restart parameter, 2) the max-
imal P-value threshold and 3) the minimal weight threshold. These parameters were
optimized for the purpose of this work and their influence on the results was exam-
ined.

The restart parameter allows us to control the trade-off between false and correct
predictions. We evaluated the influence of the restart parameter on the performance,
using low, intermediate and high values, and concluded that the highest one was the
most appropriate for our setting. Nonetheless, it should be emphasized that while the
restart parameter was adjusted for the CPDB PPI and optimized for the purpose of iden-
tifying GWAS-derived gene sets, it is not necessarily suited for other networks or other
kinds of data. In fact, any propagation-based method ought to suggest the ideal value
for its execution, and several other approaches have been previously tested.

For example, Leiserson et al. [166] optimized the restart parameter such that the
amount of weight that is diffused to the neighbors of the source is larger than the
weight that is diffused to the neighbors of the neighbors. They also found that vary-
ing the optimal value by +/-10% only slightly changed the results. Reyna et al. [242]
attempted to achieve the same goal by optimizing the restart parameter such that the
overall probability of walking to the neighbors of the source is equivalent to the prob-
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ability of walking to any other node in the network (which is not in the first order
neighborhood). Recently, Huang et al. [133] constructed a linear model which is based
on the network size (measured by the number of edges) to estimate an optimal restart
parameter. They found that for 21 different networks, and a set of genes from hallmark
pathways, the best performance is achieved when the restart parameter was propor-
tional to the logjo-adjusted number of interactions in the network.

Ultimately, before applying any propagation-based method, including NetCore, the
user must consider the effect of the restart parameter, and seek to determine the opti-
mal one for both the network and the data.

The other parameters in NetCore determine the genes which will be included in the
final network modules. Both the P-value and weight thresholds are computed from the
data itself, at the convergence of the propagation, and thus can not be generally opti-
mized. Setting a P-value threshold depends in principle on the statistical test that was
applied. Accordingly, we opted to set it to the minimum significance level that can be
achieved under our statistical model. Furthermore, we established that the ideal weight
threshold depends largely on the range of the input weights, and therefore estimated it
based on the distribution of the propagation weights.

Some propagation-based methods, for instance NAGA, do not apply any statistical
test, and therefore rely only on the propagation weights. Yet, in order to provide a
reasonably sized prediction list, they are still required to set a threshold based on the
weights. Other methods, which do apply some statistical test, like HotNet2 and Hier-
archical HotNet, must also estimate some parameter for an ideal execution of their
approach, according to their model. In fact, HotNet2 provides four versions of the re-
sults, which correspond to four alternative parameter values, and alter both the number
of predicted genes as well as the sizes of the reported modules.

We acknowledge that the sizes of the final modules in NetCore partially depend on
the setting of these thresholds, and so they govern the trade-off between small modules
(with less novel predictions) and larger ones (with more potential false predictions).
Furthermore, we also observed that there is a correlation between the size of the input
(i.e. number of seed genes) and the size of the modules. Our evaluations were focused
on the GWAS gene sets, and therefore the results are with respect to binary weights only.
Nevertheless, since the threshold is set according to the distribution of the weights after
the propagation, it is in principle also suitable for any range of input data.

At last, even though we attempted to select the optimal thresholds, it is still en-
couraged to examine the results with respect to the data, and adjust the parameters
accordingly, if needed.

To demonstrate the usability of our method to diverse phenotypes and data sets we
applied NetCore to a genome-wide schizophrenia study, pan-cancer mutation data, and
expression levels measured upon drug treatment.

By combining experimental evidence from a large genetic variation study, and a list
of well-known disease genes extracted from a curated database, we were able to predict
novel candidate genes that might be associated with schizophrenia. We demonstrated
NetCore’s relevance by first comparing it with NAGA, which is a propagation-based
method tailored for the analysis of GWAS data. Not only did we find that NetCore
predicts more novel genes than NAGA, but also it can predict novel genes that are sig-
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nificant in future GWAS studies. Furthermore, the modules identified by NetCore were
strongly enriched in disease-relevant pathways, stronger than the enrichment of the
genes detected by NAGA. This was also further demonstrated by the disease-relevance
of two of the predicted genes, namely SRC and PSEN1. Both of these genes reside in
regions of the network that appear to be enriched with schizophrenia-associated genes,
and were also previously linked either directly to schizophrenia or to diseases that arise
form similar mechanisms.

We also tested NetCore’s ability to predict novel cancer genes based on cancer mu-
tation data and compared the results to the state-of-the-art methods in the field, Hot-
Net2 and Hierarchical HotNet. Both methods have previously been shown to predict
the highest numbers of candidate cancer genes [242] in comparison to other network-
based methods for cancer gene predictions. However, many cancer consensus genes
are greatly affected by the study bias and therefore have high degrees in PPI networks
[257]. Thus, applying a standard degree normalization in network propagation will,
on the one hand, facilitate the identification of such cancer genes, yet on the other
hand, prohibit the detection of cancer genes with lower degrees. Indeed, we demon-
strated that both HotNet2 and Hierarchical HotNet, while being very specific, reported
a rather low number of novel cancer genes, and mainly those with a relative high node
degree. In contrast, NetCore, which benefited both from using node core and from in-
corporating prior knowledge, detected more candidate cancer genes, which have lower
degrees, and are also connected to well-known consensus cancer genes. This indicates
the power of a) using core instead of degree and b) using a pre-defined list of well-
known cancer genes in order to predict novel cancer genes. We additionally confirmed
the relevance of these novel predictions using an independent data set, where the novel
genes (which were identified by mutation data only) were associated with disease pro-
gression based on their expression levels.

We further exemplified that NetCore can be suitable for diverse types of questions
and data by applying it to gene expression levels measured upon treatment with anthra-
cyclines in order to identify toxicity mechanisms. The toxicogenomics workflow, which
was previously developed by us, was adapted in order to analyze the results from a
more recent study, where expression levels were measured by RNA-seq. We proposed
both a general scoring scheme and a more stringent one, in order to accommodate for
instances where the user wishes to provide scores only for a selected number of genes,
for instance those that are significantly differentially expressed, rather than the entire
transcriptome. In these scores the time effect was summarized by averaging over all
time points, however other measures can be used to compute dynamic longitudinal
scores. One could apply a mathematical model to detect differential expression over
time, e.g. as the one suggested by Conesa et al. [66]. Using both score variations, in
comparison with HotNet2, not only did NetCore produce fewer false-positive predic-
tions, but it was also more robust with respect to the size of the input. Without prior
information the results from NetCore reflect a combination between the most differen-
tially expressed genes and the significant genes which were detected via network prop-
agation, but not necessarily via the differential expression analysis. Yet, without prior
knowledge the overlap between the genes in the final modules of all drugs is rather
low. Incorporating prior knowledge increased this overlap, and thus we were able to
combine the drug-modules into one module with relevant cardiotoxicity signals.
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This work describes how NetCore improves network propagation results for the iden-
tification of novel disease genes and modules. However, in addition to the modifications
that we proposed, there are still several challenges to address and room for advance-
ment.

First, the study bias in PPI networks can be further reduced by designing more accu-
rate experiments for studying PPIs, without focusing on well characterized nodes only.
This will hopefully promote better representations of the interactions so that each node
will be associated with a correct number of connections in the network. In addition,
while CPDB is already integrating over multiple resources, it has been shown that sum-
marizing information from multiple PPI networks can even further improve the results
[133]. One could also consider other interaction networks, which represent different
types of molecular interactions and consist of alternative modules (see for example
[168] and [164]).

Second, for an ideal performance, NetCore requires a set of seed genes in order to
identify comprehensive modules. Great efforts have been made in the field of cancer
for comprising lists of genes that are associated with the disease [22, 240, 273]. Yet,
even when the prior knowledge about causal genes for a given disease is limited, it is
nevertheless useful to exploit it in order to improve predictions [130]. For this work
we exclusively used (non-cancer) disease-gene associations from the GWAS catalog
and the DisGeNET databases. To date there are many more resources which could be
beneficial to consider. That being said, it is important to remember that the level of
agreements between these resources varies (see for example [32, 230]), and that the
results should be carefully inspected, and perhaps validated using other independent
resources or studies. In the future, it would be very useful if similar curated lists as in
the case of cancer would be produced for other diseases too.

Third, it is in principle possible to tune the final modules in NetCore with additional
post-processing steps, according to different node metrics. For example, if one wishes to
further exclude genes from the periphery of the network, and focus only on core genes,
one could remove genes with a low core value from the final modules. For instance, if
we were to apply a threshold of core > 5 for NetCore’s results on pan-cancer mutation
data, this would only exclude one of the genes that are in the candidate cancer list, and
reduce the detected novel candidates from 63 to 57 (and by that also the potential false
positives), while preserving the potential biomarkers. On the other hand, if one wishes
to expand the final modules, it is also possible to include additional nodes which are
discarded by NetCore. Currently NetCore considers only nodes which are direct neigh-
bors of the input seed genes. Alternatively, it could be adapted to include also nodes
which are not direct neighbors of any of the seed genes. This, however, would require
to find an appropriate path between the potential gene and at least one of the seed
genes, in order to maintain the connectivity between the nodes in the final modules.

Fourth, network propagation can further be used as a method for integrating multi-
ple types of genomic data [71]. For example, it has been applied to the identification
of cancer genes based on both mutation data and gene expression levels [223, 251].
In [263] we proposed, in collaboration with others, an integrated approach to ana-
lyze proteomics and transcriptomics data by calculating a combined score and apply-
ing network propagation to identify integrated modules. The functional enrichment of
the integrated modules was higher than when the modules were computed separately.
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Moreover, the integrated modules included proteins which were only measured by gene
expression levels, and were not detected using proteomics alone. For example, TRIM55
and TRIM28, which belong to the superfamily of TRIM (Tripartite motif-containing) pro-
teins, were identified in the integrated modules, even though they could not be fully
identified by proteomics only. A similar approach could also be implemented using Net-
Core. In fact, TRIM21, which is from the same family of proteins, was already identified
in NetCore’s combined drug-toxicity module, and is connected to two cardiomyopathy-
related genes, TNNI3 and TNNCI.

Finally, NetCore could further be used beyond the purpose of genotype-phenotype
associations. If applied to proteomics data, NetCore could assist in identifying proteins
which are not detectable due to technological limitations (see for example [274]). By
propagating the experimental evidence from the measured proteins, it is possible to
also reach the ones that were not measured, and assign a propagation score to them.
This score could help to infer the missing data and determine the relevance of the
protein to the experiment. Another possibility is to use NetCore as an initial step for
re-ranking of genes and extracting relevant features in the context of machine learning.
For example, network propagation was recently applied to the detection of additional
drug targets, which were then used as input for predicting anticancer drug sensitivity
with neural networks [213].

To conclude, even though there exist other modifications of random walk with restart,
for instance random walk with extended restart (RWER) [141] where each node has
its own restart probability, such adjustments of the adjacency matrix as suggested in
this work had yet to be introduced. We thus advise researchers to apply core normal-
ization to improve network propagation results, in particular for genotype-phenotype
associations. In the future, other modifications could be adapted to improve the results
even further. We additionally advise researchers to combine experimental evidence to-
gether with prior knowledge to promote improved predictions and construction of com-
prehensive network modules. Very recently, two other propagation-based approaches
advocated for the incorporation of prior knowledge [107, 130], albeit using alternative
techniques. In consistency with our observations, this supports the idea of leveraging
well-established knowledge in order to advance it further. Presumably, more and more
new methods that lead to further progress in the field will soon emerge.
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Figure A.1: ROC curves for all 11 GWAS gene sets. The different colors imply different normal-
ization schemes. The lines depict the mean curve for the 5-cross validation results.
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Figure A.2: Seed sub-networks for 11 GWAS gene sets. Each node is a gene from the gene set,
and each edge is an interaction from the PPI network.
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Figure A.3: Extended seed sub-networks for 11 GWAS gene sets from NetCore. The orange
nodes are original seed nodes, the gray nodes were added to the seed sub-network after the
propagation, according to their results (significant P-value of p < 0.01 and a minimum weight,
which was calculated based on the weights distribution after the propagation). The sizes of the
nodes reflect their weights after the propagation. The edges are originally from the PPI network.
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Figure A.4: Largest modules for 11 GWAS sets from NetCore. The largest module is extracted
from the extended seed sub-network (Figure A.3), where it is the largest connected component
of the sub-network. Orange genes are in the original gene sets (seed nodes), and gray ones
were added after the propagation. The edges are originally from the PPI network.
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Figure A.5: Over-representation analysis (Section 6.4.1) was executed for each GWAS gene set
twice: 1) for the genes in the largest component in the seed sub-network (Figure A.2) and 2) for
the genes in the largest NetCore modules (Figure A.4). The enriched pathways are depicted for
each GWAS gene set for which there was an overlap of at least 4 genes between the pathway set
and the queried genes. The red color scale indicates the enrichment score (measured by —logqg
of the enrichment Q-value), and the blue color scale indicates the number of overlapping genes

within the pathway.
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Weights after propagation - non seed (p<0.01)
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Figure A.6: Distribution of the weights after the propagation for genes in the network with
a significant level (p < 0.01), which are not part of the input seed list. The propagation was
applied using a binary scoring scheme, i.e. the initial weight for seed genes was 1 and for the
rest of the genes in the network 0. The X-axis denotes the weights after the propagation, which
vary in range, depending on the GWAS gene set. The vertical dashed red line denotes the 75th
percentile of the distribution, which is the minimum weight criterion chosen for NetCore.
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Summary

In recent years, the framework of network propagation has been adopted multiple times
for the purpose of generating novel genotype-phenotype associations. However, exist-
ing methods usually rely on the standard degree-based formulation, which skews the
results due to degree bias within protein-protein interaction networks. Furthermore,
the network modules, which are identified post propagation by some of these methods,
are rather dispersed and their genes are not well connected.

In this thesis we present NetCore, a novel network propagation framework based
on node core, for genotype-phenotype associations and module identification. NetCore
explicitly addresses the node degree bias by incorporating node core in the random
walk with restart formulation of network propagation. Additionally, NetCore applies
a semi-supervised module identification procedure that allows us to connect between
well characterized genes and novel candidate genes, which are significantly scored at
the end of the propagation.

We evaluate the performance of NetCore using gene sets from 11 different traits,
which are based on previously established genome-wide associations. We show, using
a cross-validation scheme, that our core-based approach improves the performance in
comparison to the standard degree-based approach. Furthermore, we determine that
our semi-supervised module identification procedure allows us to enhance the connec-
tivity between the known phenotype-associated genes by introducing connections to
novel candidate genes. The performance is assessed with respect to the choice of the
different parameters in NetCore, along with assorted versions of the protein-protein
interaction network, which was extracted from ConsensusPathDB.

We demonstrate the application of NetCore to identify disease genes and modules for
schizophrenia genome wide mutation data as well as for pan-cancer mutation data. We
compare the results with existing network propagation methods and highlight the bene-
fits of using NetCore in comparison to those. To illustrate the versatility of NetCore, we
also apply it to gene expression levels measured upon anthracycline drug treatments,
in order to elucidate the mechanisms of drug-induced toxicity.

Altogether, this thesis provides a novel framework, with an easy-to-use implemen-
tation, which can be applied to various types of genomics data in order to obtain a
re-ranking of genes and functionally relevant network modules. Our contributions im-
prove the re-ranking after propagation, augment the experimental evidence towards
candidate genes, and produce modules which connect well-characterized genes with
novel predictions.
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Zusammenfassung

Network Propagation, also die Analyse der Informationsausbreitung in Netzwerken,
hat sich in den letzten Jahren als niitzliches Konzept fiir die medizinisch-biologische
Forschung erwiesen, insbesondere bei der Analyse von Genotyp-Phanotyp Assoziatio-
nen (GPA). Existierende Methoden basieren dabei auf dem Knotengrad bei der Berech-
nung der Losungen der mathematischen Prozesse (random walk with restart (RWR)).
Der Knotengrad in biologischen Netzwerken neigt allerdings zu Verzerrungen. Aul3er-
dem stellt sich die Frage, wie aus dem errechneten Gleichgewichtszustand Teilnetzw-
erke bestimmt werden konnen (Netzwerkmodule), die Knoten mit hohem Gewicht
miteinander verbinden und biologische Funktionen abbilden. Dies ist bei bisherigen
Verfahren nicht optimal gelost.

In dieser Arbeit wird ein neues Verfahren zur Network Propagation entwickelt (Net-
Core) zur Analyse von GPA und zur Identifizierung von Netzwerkmodulen. NetCore
basiert dabei im Gegensatz zu existierenden Methoden nicht auf dem Knotengrad als
Parameter fiir die Berechnung des Gleichgewichtszustandes, sondern fiihrt dazu den
Core des Knotens (node core) ein. Dieses Mal3 erweist sich als robust gegeniiber technis-
chen oder Annotations-bedingten Verzerrungen in den Interaktionsnetzwerken und ist
damit dem Knotengrad iiberlegen. Das neue Mal® wird in den RWR eingebaut, so dass
die Konvergenzbedingungen erfiillt sind. Nach dem Erreichen des Gleichgewichtszus-
tandes realisiert NetCore im zweiten Schritt eine semi-iiberwachte Prozedur zur Iden-
tifizierung von Netzwerkmodulen, indem bereits bekannte Gene (Knoten) fiir den un-
tersuchten Phanotyp als Initialisierung verwendet und mit den signifikant bewerteten
Knoten verkniipft werden.

NetCore wurde anhand von 11 verschiedenen Genotyp-Phénotyp Analysen aus genom-
weiten Assoziationsstudien validiert. Mithilfe von Kreuzvalidierung wird gezeigt, dass
der Core-basierende Ansatz (NetCore) zu einer Verbesserung im Vergleich zu Knotengrad-
basierenden Ansétzen fiihrt. In der Arbeit wird gezeigt, dass NetCore sehr gut geeignet
ist, um krankheitsrelevante Gene und Netzwerkmodule aus verschiedenen Typen von
experimentellen Ausgangsdaten zu berechnen. Zum einen wird das Verfahren auf Mu-
tationsdatensétze zu Schizophrenie und Krebs angewendet. Zum anderen wird das
Verfahren auf Genexpressionsdaten in einem konkreten Anwendungsfall zur Medika-
mententoxizitit getestet. Hierbei wurden 3D Mikrogewebe menschlicher Herzmuskelz-
ellen mit Anthrazyklinen behandelt, und die Effekte dieser Behandlung mit RNA-seq
gemessen. Es wird gezeigt, wie solche Genexpressionsmessungen auf das Netzwerk
ibertragen werden konnen, und wie NetCore daraus biologisch-funktionell sinnvolle
Netzwerkmodule identifizieren kann.

Die Dissertation tragt zur Robustifizierung und Verbesserung von RWR Verfahren bei
und ist ein Werkzeug zur Identifizierung von GPA sowie von Netzwerkmodulen zur
funktionellen Beschreibung der zugrundeliegenden biologischen Prozesse.
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