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The present report examines the coinciding results of two study groups each presenting

a power-of-two function to describe network structures underlying perceptual processes

in one case and word production during verbal fluency tasks in the other. The former is

theorized as neural cliques organized according to the function N = 2i − 1, whereas

the latter assumes word conglomerations thinkable as tuples following the function

N = 2i. Both theories assume the innate optimization of energy efficiency to cause the

specific connectivity structure. The vast resemblance between both formulae motivated

the development of a common formulation. This was obtained by using a vector space

model, in which the configuration of neural cliques or connected words is represented

by a N-dimensional state vector. A further analysis of the model showed that the

entire time course of word production could be derived using basically one single

minimal transformation-matrix. This again seems in line with the principle of maximum

energy efficiency.

Keywords: neural network, connectivity, word production, vector space, energy efficiency, neural clique

INTRODUCTION

Given the evolutionary need to quickly respond to complex situations, i.e., to behave in an adaptive
fashion, nervous systems have developed highly efficient processing and reaction capacities.
Generally speaking, the ability of pattern recognition appears directly associated with an increase in
brain efficiency during evolution (Mattson, 2014) and may develop already prenatally (Spence and
Freeman, 1996). At the same time, depending on the required task set, a flexible shifting between
pattern-based and detail-based recognition is expected to enhance cognitive processing (Tsien,
2016). As a basic design principle of the brain’s network structure, Tsien (2015) therefore proposed
a “specific-to-general combinatorial connectivity logic” to represent the computational framework
of the microarchitecture of cell assemblies. Corresponding cell assemblies could be organized as
preconfigured, conserved Functional Connectivity Motifs (FCMs; Tsien, 2015) containing neural
cliques which should receive increasingly comprehensive and combinatorial input according to
the function

(

N = 2i − 1
)

(with i: number of information inputs; N: number of neural cliques;
Tsien, 2015). Consequently, specific input-processing cliques should receive featural information,
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sub-general cliques should receive sub-combinatorial
information, and general cliques the most convergent input.
The thus suggested specific-to-general connectivity pattern
should account for a flexible processing of all possible featural
and (sub-)combinational informational entities within each
FCM (Tsien, 2015). Implemented on the cell assembly level, the
“Theory of Connectivity” proposes this hierarchical organization
to eventually evoke categorical knowledge on a macro-scale
level (Li et al., 2016; Tsien, 2016). Considering the exponential
growth of neural cliques needed to process the respective
amount of information, the Theory of Connectivity furthermore
proposes a modular processing approach via segregated streams
to increase the efficiency of cell assemblies. According to
Tsien (2015), the suggested organizational principle should
thus fulfill six claims: 1. the pattern should be evolutionarily
conserved and therefore apply to different neuroanatomical
scales, brain regions, and species (cf. Li et al., 2016); 2. categorical
and hierarchical knowledge should emerge in the form of a
barcode, enabling flexible recognition of all possible patterns;
3. “first-order specific” connectivity patterns should be non-
random, whilst combinatorial arrangement should enable a
variety of connectivity patterns following a “second-order
statistical principle” (cf. Li et al., 2016); 4. FCMs could explain
the neuroanatomical structure of cortical layers (cf. Xie et al.,
2016); 5. by processing segregated amounts of information input
per FCM, the brain’s efficiency should vastly increase (cf. Li
et al., 2009); 6. the organizational structure should be genetically
preconfigured and therefore enable response patterns prior to
learning and an uncomplicated expansion of knowledge.

In the given context it appears of interest that a newly derived
logarithmic function for modeling word production during
verbal fluency (VF) tasks indicated the connectivity pattern
of the underlying semantic network to follow a power-of-two
distribution (Ehlen et al., 2016) reminiscent of the one described
by Tsien (2015).

Despite a vast knowledge gain in recent decades (for a
review see Price, 2012), the complexity of the systems and
processes underlying word production naturally leaves open
questions and controversies. There is, however, wide agreement
on core processes encompassing conceptual preparation, lexical
selection, and form encoding (e.g., Dell, 1986; Levelt, 1999;
Indefrey and Levelt, 2004; for a review see Henry and Crawford,
2005; Walker and Hickok, 2016) which especially involve the
activation of left lateralized frontotemporal cortical networks
(Indefrey and Levelt, 2000; Binder and Desai, 2011; Robinson
et al., 2012; Mirman et al., 2015; Conner et al., 2019). Moreover,
a wide-spread cortical system (Indefrey and Levelt, 2000; Riès
et al., 2017) seems to be involved in the initial activation of
semantic concepts, i.e., non-verbal representations of an object’s
sensory, motor, and affective features (encompassing, e.g., shape,
use, familiarity, and relationships with other objects; Levelt,
1999; Pulvermüller, 1999; Binder and Desai, 2011; Kiefer and
Pulvermüller, 2012; Rofes et al., 2019). Gradual convergence
(Damasio et al., 1994), possibly involving connective hubs

Abbreviations: FCM, Functional Connectivity Motifs; FBF, fused Bousfieldian

function; VF, verbal fluency.

(Patterson et al., 2007), was proposed to connect the modality
specific information thus forming more abstract semantic
concepts (Binder and Desai, 2011; Rofes et al., 2019). At the
same time, the corresponding connections should account for
semantic associations (Rofes et al., 2019) between distinct items
which share common features (Kiefer and Pulvermüller, 2012).
This network structure furthermore implies a specific-to-general
organization principle similar to that proposed above.

To assess single semantic categories, verbal fluency (VF)
task have been established as cognitive tasks requiring the fast
production of as many words as possible belonging to a given
semantic category (e.g., “animals”). Restricting word search to
a predefined category thus yields a circumscribed search field
with an innate hierarchical structure (i.e., the given category by
definition belongs to a higher order class than the single words
produced). Moreover, e.g., the phenomenon of clusters (i.e.,
phases of rapid production of closely related words; Gruenewald
and Lockhead, 1980; Troyer et al., 1997; Vonberg et al., 2014)
points toward a hierarchized structure.

To enable an analysis of the time courses via curve fitting,
VF outcome parameters are traditionally plotted as a function of
time (i.e., time on the abscissa; word number on the ordinate).
For this purpose, an exponential (Bousfield and Sedgewick,
1944) and an alternative hyperbolic (Bousfield et al., 1954)
function were first introduced by Bousfield and co-workers. By
unifying their descriptors and their units, we could previously
show that instead of being contradictory, both two-parametric
formulae are special cases of a three-parametric overarching
“fused Bousfieldian function” (FBF; Ehlen et al., 2016) expressed
by n(t) = c ·

[

1− ( 1+ α r t/c )− 1/α
]

with n: number of
words produced; t: time (in seconds); c: asymptote (in words);
r: reciprocal of elementary process duration (second−1); α:
shape factor (dimensionless). Unexpectedly however, clinical
data indicated that almost 80 % of the analyzed VF data sets
followed a logarithmic function, i.e., n(t) = k · ln

(

1+ r t / k
)

with k = c/α which emerged from the FBF due to a coupling of
the parameters c and α. Evaluations of VF performance among
participants with essential tremor (Ehlen et al., 2017) and autism
spectrum disorder without intellectual impairment (Ehlen et al.,
2020) confirmed this high rate of logarithmic time courses,
which therefore appears to be a common distribution pattern.
Seeking an underlying organization principle, the extension
of a stochastic sampling-with-replacement model (Wixted and
Rohrer, 1994), which had originally been suggested for the
Bousfieldian exponential function (Bousfield and Sedgewick,
1944) delivered a method according to which the time course
of word production inevitably indicates the probabilities of
retrieving the respective words (Ehlen et al., 2016). This
relationship is expressed by pn+1 = n′/r [with pn+1: probability
of word retrieval of the n + 1 item; n′: first derivative of the time
course of word production; r: reciprocal of elementary process
duration (second−1)]. The subsequent probabilities result from
the individual data as determined via curve fitting. In the case of
the logarithmic time course, the probabilities of word retrieval
therefore generate a decreasing geometric sequence. The only
possible type of interitem connectivity which could explain a
corresponding geometric sequence is a set of items which is
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composed of all possible non-ordered tuples (i.e., single, double,
triple, quadruple) that can be built from i elements, including the
empty tuple. The number of the respective tuples is then given
by N = 2i [note: in the original formulation, the letter “i” was
labeled “N”; the letter “N” in the present version corresponds
to “number of favorable objects” in the original version which
indicated the number of all tuples; relabelings were performed
here to obtain a unified labeling between the formulae by Tsien
(2015) and Ehlen et al. (2016)]. Accordingly, the modeling
of the logarithmic time course proposes an interconnected
semantic system consisting of all possible connections between
the words retrieved per VF category. As a possible cause
for the proposed organizational principle, the model suggests
maximized efficiency, because the logarithmic time course
exhibits the comparably highest self-similarity value. According
to Prigogine, maximum self-similarity is preferable to maximize
efficiency of energy conversion (Prigogine, 1961; Glansdorff and
Prigogine, 1971).

The surprising analogy between the network structure of
neural cliques suggested in the Theory of Connectivity and
the tuple structure put forth in the FBF model motivated us
to develop a common description form of both theories. By
illustrating the circumscribed process of retrieval of single words
or the processing of single informational entities, the model
makes use of a complexity reduction to approach what is
algorithmically common to both operations.

THE VECTOR SPACE MODEL

Rationale
For both the logarithmic VF time course and the Theory of
Connectivity, single tuples and cliques, respectively, appear as
independent factors. This independence is illustrated as a barcode
in the works by Tsien and co-workers (e.g., Tsien, 2015, 2016;
Li et al., 2016). A possibility to present independent quantities
mathematically is provided by factor analysis. In analogy, we
will use the above factors as basis vectors of a multi-dimensional
vector space in the present formulation. The overall state would
then appear as a linear combination of the basis vectors. A
graphic expression similar to that in the works by Tsien and co-
workers is represented by the barcode illustration of the basis
vectors (see Figure 1).

By means of a three-item example which yields N = 23

= 8 basis vectors, Table 1 presents the transcription from the
tuple formulation to the tensor product formulation | α β γ 〉 =
| α〉A⊗| β〉B⊗| γ 〉C, where α,β , γ are binary numbers that can
each take on the value 0 or 1. That is to say, if, e.g., the tuple {A,
B} contains item A and B, but not C then the binary digit that will
be assigned to α and β in | α β γ 〉 will be “1,” whereas “0” will be
assigned to γ . Therefore, the basis vector | 1 1 0〉 will be assigned
to the tuple {A, B}.

If applying a corresponding nomenclature to the Theory of
Connectivity, the four-item example set “pancakes, milk, eggs,
and blueberries” given by Tsien (2015) can be expressed as
| 1111〉 , whereas the combinational relationship of “milk with
pancake” should be expressed as | 1100〉 . Naturally, the same
holds true for a set of any size.

FIGURE 1 | Barcode illustration of the 16 basic vectors of the vector space

constructed as tensor product of four distinct words (|α〉 A = activation state

of first word, | β〉 B = activation state of second word, | γ 〉 C = activation

state of third word, | δ〉 D = activation state of forth word). Orange blocks

represent activated (“permissible”) words, green blocks suppressed

(“impermissible”) ones.

Since each state can be expressed as the linear combination of
the basis vectors in the vector space model, any three-item state
vector analogous to the above example is given by:

| x 〉 = c0 | 0 0 0 〉 + c1 | 1 0 0 〉 + c2

| 0 1 0 〉 + c3 | 1 1 0 〉 + c4 | 0 0 1 〉 + c5 | 1 0 1 〉
+c6 | 0 1 1 〉 + c7 | 1 1 1 〉 · (1)
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TABLE 1 | The table presents three equivalent expressions of eight exemplary

independent three-item basis vectors: the left column provides their tuple

denotation, where each tuple contains the three items “A,” “B,” “C”; the middle

column represents them as tensor products.

Tuple notation Tensor product Decimal notation

∅ | 0 0 0〉 0

{A} | 1 0 0 〉 1

{B} | 0 1 0 〉 2

{A ,B} | 1 1 0 〉 3
{

C
}

| 0 0 1 〉 4
{

A ,C
}

| 1 0 1 〉 5
{

B ,C
}

| 0 1 1 〉 6
{

A ,B ,C
}

| 1 1 1 〉 7

| αβγ 〉 , where | α〉 A, | β〉 B and | γ 〉 C indicate the states | 0〉 or | 1〉 of each single item;
the right column shows their standard decimal notation.

Description of VF Processes by Means of
the Vector Space Model
Relating this conceptualization to VF, the coefficients ck will
change their values during VF execution, because tuples
containing items which have already been produced should
become inadmissible. To take into account the fact that despite
the inadmissibility of the corresponding words, their neural
representations remain part of the network involved, the vector
spacemodel must maintain themagnitude of the state vector | x 〉
even though the coefficient is changed to 0. In our modeling this
premise will be secured by the claim

∑

| ck | 2 = 1.
Since the FBF model suggests an equivalent activation of all

tuples to generate the initial state of the logarithmic time course,
the three word-state vector is given by:

| x 〉 = 1/
√

8 · ( | 0 0 0 〉 + | 1 0 0 〉 + | 0 1 0 〉 + | 1 1 0 〉
+ | 0 0 1 〉 + | 1 0 1 〉 + | 0 1 1 〉 + | 1 1 1 〉 ) · (2)

For example, all tuples containing item C should
become inadmissible after C is produced. Accordingly,
the coefficients c4 to c7 would have to change to zero.
This would transform the initial state | x 〉 to the
state| xC 〉 = 1/

√
4 · ( | 0 0 0 〉 + | 1 0 0 〉 + | 0 1 0 〉

+ | 1 1 0 〉 + 0 · | 0 0 1 〉 + 0 · | 1 0 1 〉 + 0 · | 0 1 1 〉 + 0·
| 1 1 1 〉 ). Due to equal vector length, the transition of | x 〉
to | xC 〉 must represent a rotation in the vector space. A
rotation corresponds to an orthogonal matrix. To express the
transformation in an adequate manner, we shall formulate the
state vector as a column vector. The coefficients of the basis
vectors given in the above three-item state vector will then
appear as components of the column vector. The state vectors
| x 〉 and | xC 〉 , for example, can then be denoted as presented in
Figure 2.

The vector space model can be scrutinized by requesting to
find rotation matrices for word production. If the production
series of the words C, B, and A serve as an example, the rotation
matrices RC, RB, and RA are required (see Figure 3).

As presented in Figure 4, it is indeed possible to find suitable
matrices. Matrix multiplication verifies that RC · | x〉 = | xC〉 ,

FIGURE 2 | The figure shows the column vectors | x 〉 and | xC 〉 , where | x 〉
corresponds to the initial state of the vector space and | xC 〉 to the state of

having produced the item C. Since only the last four basis vectors contain item

C, they will change to zero, whereas the first four remain unchanged.

RB · | xC〉 = | xB〉 , and RA · | xB〉 = | xA〉 are true. The
standard procedure of finding respective matrices is outlined in
the Appendix. It is worth noting that the matrices RC , RB, and
RA not only follow the same structure, but are also similar in a
mathematical sense: since all of them have the same eigenvalues,
the three matrices lie within the same equivalence class and can
be transformed into each other by the matrix transformation
PRP−1. In particular, they can be deduced from the matrix RA,

which because of 1 + e = 1 +
(√

2− 2
)

/2 = 1/
√
2 and

f =
√
2/2 = 1/

√
2 is basically the minimal matrix ρ =

(

1+ e f
−f 1+ e

)

= 1√
2
·
(

1 1
−1 1

)

.

The same holds true for an arbitrary number of words
and an arbitrary word order. All rotation matrices can be
deduced from the same matrix ρ. The model accordingly
suggests, that during the elementary task, the same process
operates on the production of each word of the logarithmic
time course. Implementation of the same rather than
multiple matrices means maximized parsimony and thus
energy efficiency.

It is moreover essential that the vector space model
encompasses two different types of state, of which one
state allows a separation of informational entities, but the
other does not. This is provided because the normalization
condition

∑

| ck | 2 = 1 does not require the coefficients to be
equal but only their magnitudes. Therefore, another possibility
of generating the initial state is given, e.g., by: | x̄ 〉 =
1/
√

8·(− | 0 0 0 〉 + | 1 0 0 〉 + | 0 1 0 〉 + | 1 1 0 〉 + | 0 0 1 〉
+ | 1 0 1 〉 + | 0 1 1 〉 + | 1 1 1 〉 ). The states | x 〉 and | x̄ 〉 are,
however, different in type, because | x 〉 can be factorized into
| x 〉 = 1/

√
8 · ( | 0 〉A + | 1 〉A ) ⊗ ( | 0 〉B + | 1 〉B ) ⊗

( ∣

∣ 0 〉C +
∣

∣ 1 〉C
)

, whereas | x̄ 〉 cannot. Therefore, in the state
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FIGURE 3 | The figure represents the series of the three rotation matrices (i.e., RC, RB, and RA) that operate on the state vectors necessary for producing the words

C, B, and A, respectively.

FIGURE 4 | Matrix multiplication is illustrated for the matrices RC, RB, and RA which verifies that RC · | x〉 = | xC〉 , RB · | xC〉 = | xB〉 , and RA · | xB〉 = | xA〉 are true.

The three matrices follow the same structure.

| x 〉 , the single informational entities exist in separation despite
their tuple structure, whereas they do not in the state | x̄ 〉 .
Noteworthy, the identical rotation matrix is sufficient for
both states.

DISCUSSION

Motivated by the resemblance between the power-of-two
functions derived for FCM structures (Tsien, 2015) and word
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production during VF tasks (Ehlen et al., 2016), suggesting
similar connectivity patterns, the present study attempts to
describe a common formulation for both models.

With respect to the theoretical underpinnings, it should first
be mentioned that the execution of VF tasks seems consistent
with the specific-to-general organization principle proposed
by Tsien (2015), in that hierarchization should enable the
movement from a given category to various specific examples
that are linked by their sub-characteristics as well as by their
superordinate concept (Ehlen et al., 2016). The following three
postulates formulated by Tsien (2015) appear to hold true for
VF: a. the connectivity pattern seems conserved across different
neuroanatomical scales (here: the semantic system) and different
groups of individuals, as it was found in 80 % of the participants
from three different study populations (Ehlen et al., 2016,
2017, 2020), b. categorical and hierarchical knowledge appear
to enable flexible pattern recognition, and c. the preconfigured
organizational structure should allow for an uncomplicated
expansion of knowledge pertaining to a given category.

It was furthermore postulated that by processing segregated
amounts of information input, the brain’s efficiency should
vastly increase, while otherwise the number of cliques needed to
process the exponentially growing amount of information would
necessarily exceed the brain’s neural capacity (Tsien, 2015). In
this context, the single FCMs were predicted to be composed
of, e.g., 23 − 1 = 7 (Tsien, 2016) or 24 − 1 = 15 (Tsien,
2015) cliques. The FBF model, on the other hand, claimed the
network to be “be holistically preformatted with all possible
conglomerations” (Ehlen et al., 2016) of selectable items. This
seeming contradiction could be resolved by the hierarchization
on different scales proposed in the Theory of Connectivity
which finds an equivalent in the assumption of self-similarity
in the FBF model. It is therefore reasonable to expect that the
connectivity structure underlying VF can be broken down to
smaller sub-combinations.

Moreover, since the Theory of Connectivity (Li et al.,
2016; Tsien, 2016) was formulated for perceptual processes
and the FBF for a production process, the application of
basically the same connectivity structure to both processes
could be interpreted as one process “mirroring” the other.
For the language system, despite controversies regarding the
extent of overlap (Meyer et al., 2016), indications of common
representations of word production and recognition (Van Assche
et al., 2016) converging at a shared conceptual level (e.g., Hickok
and Poeppel, 2004; Indefrey and Levelt, 2004; Whitworth et al.,
2014; Rofes et al., 2019) appear compatible with the idea of
contradirectional operations.

Seeking a common formulation for both models, we used
a vector space representation to account for the independence
assumed both for neural clique configurations in the Theory
of Connectivity (Li et al., 2016; Tsien, 2016) and for tuples in
the FBF model (Ehlen et al., 2016). Application of the model
to the restricted search field which is explored by VF tasks
indicated that basically a single minimal matrix is sufficient for
the rotation of each state vector during word production. Here,
vector rotation relates to the transformation of a word from
“permissible” to “impermissible,” i.e., from “not produced yet”

to “already produced.” Therefore, the mathematical minimal
matrix could be interpreted as a word-retrieval-and-production
command or procedure. From a mathematical point of view,
the operation of the rotation matrix described corresponds to
that of a quantum logic gate. The fact that only one rather
than multiple procedures is needed seems to be directly linked
to the presumed connectivity structure of the generated words
which define the structure of the vector space. That is to say,
that only under the assumption of a holistically preformatted
and equally weighted tuple structure (which is self-similar),
the use of basically just one minimal matrix is sufficient to
rotate each vector in an appropriate fashion. Maximized energy
efficiency could therefore be considered as a reason for the
organizational principle that leads to the logarithmic time course
of VF performance. Any other organization would, on the other
hand, require a new rotation matrix for each procedure. This
appears reminiscent of the argument of self-similarity presented
in the FBF model which showed highest self-similarity and
therefore maximized energy efficiency according to Prigogine
(Prigogine, 1961; Glansdorff and Prigogine, 1971). However,
the vector space model delivers the same argument from a
completely different approach. Noteworthy, self-similarity and
the hierarchical organization of neural circuits have also been
proposed to underly an optimized efficiency of brain size and
performance (Hofman, 2014).

In addition, the vector space model encompasses two different
types of state, of which one state allows a separation of
informational entities, but the other does not. Importantly, the
identical rotation matrix for word production acts on both states.
Although their existence constitutes a mathematical option
rather than an observable process, the idea of a transition between
a separable and an inseparable state of informational entities is
interesting in the framework of the proposed organization of the
semantic network, where categories (Murphy and Medin, 1985;
Levelt, 1999) encompass specific members which are interrelated
by shared inherent features (Kiefer and Pulvermüller, 2012) and
personal associations (Burnett et al., 2005). It therefore seems
appealing to relate the inseparable state to an activation of the
category and the separable state to an activation of the single
concepts. A corresponding ability to shift between retrieving
either the superordinate or the subordinate concept has been
expressed as “perspective-taking” (Clark, 1997; Indefrey and
Levelt, 2000).

The vector space model furthermore predicts a superposition
of informational entities for the separable state, i.e., | 0〉 and
| 1〉 . If transferred to word production processes during VF, all
items should be “permissible” as well as “impermissible.” In the
given interpretation, the superposition state could accordingly
represent a simultaneous activation and inhibition of candidate
items. This seems reminiscent of the activation of multiple
concepts, which has been proposed to occur as a prerequisites
of item selection (Indefrey and Levelt, 2004) in the course of
word production. Spatiotemporal dynamics of the respective
processes of word production have mainly been characterized
for picture naming tasks (e.g., Billingsley et al., 2004; Indefrey
and Levelt, 2004; Riès et al., 2017; Conner et al., 2019).
Corresponding studies have suggested staged (Indefrey and
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Levelt, 2004) or overlapping (Riès et al., 2017; Conner et al.,
2019) processes of lexical selection, phonological retrieval, and
encoding, which mainly involve left lateralized fronto-temporal
networks (Indefrey and Levelt, 2000; Binder and Desai, 2011;
Robinson et al., 2012; Mirman et al., 2015). A recent connectivity
analysis identified smooth transitions between an initial state
modulating task-directed attention, possibly enabling activation
spread, an early stage associated with lexical retrieval, a later
stage associated with lexical selection and phonological encoding,
and finally articulation, altogether indicating an interactive
processing (Conner et al., 2019). VF, however, differs from picture
naming in some regards, including the production of as many
words as possible to only one stimulus and the prohibition
of word repetition. Therefore, co-activation of related concepts
can be expected to be particularly vivid during VF, leading to
complex interactions between competing items. Corresponding
functional imaging studies have shown a specific engagement of
left-lateralized fronto-temporal networks (e.g., Troyer et al., 1997;
Baldo et al., 2006; Birn et al., 2010; Li et al., 2017) with temporal
areas being more strongly involved in semantic (Billingsley et al.,
2004; Henry and Crawford, 2004; Baldo et al., 2006) and frontal
more strongly in phonemic VF (Billingsley et al., 2004; Henry
and Crawford, 2004; Baldo et al., 2006; Robinson et al., 2012). An
analysis of spatiotemporal dynamics during VF indicated a left-
lateralized activation with an early involvement of widespread
areas predominantly within the frontal cortex and a later
involvement of predominantly temporal areas, the thalamus,
and the hippocampus (Pirmoradi et al., 2016). While the latter
could serve category driven word retrieval (Pirmoradi et al.,
2016), frontal regions were proposed as crucial for sustained
activation (Robinson et al., 2012) with the anterior cingulate
possibly engaging in a lead-in process such as “mentally touring
a zoo” (Indefrey and Levelt, 2004) when asked to generate animal
names. Within this framework, the mathematical description
of two different types of state including a superposition state
proposed in the vector space model could theoretically relate to
the interactive nature of the stages of word production.

Interestingly, the N = 2i combinatorial pattern has also
emerged from neurophysiological recordings of the amygdala in
macaques when investigating the responsiveness of individual
neurons to three distinct sensory modalities, with the majority of
neurons responding to more than one or no stimulus (Morrow
et al., 2019).

Neural cliques, as suggested in the Theory of Connectivity (Li
et al., 2016; Tsien, 2016) can be represented similarly in a vector
space model. However, factorization requires the representation
of a state where all single informational entities have the
value “zero.” In the FBF model, this state is conceptualized
as an empty tuple. Conversely, by representing hierarchically
connected neural cliques, FCMs cannot contain an equivalent
of an empty tuple. This difference between the models becomes
most obvious in the two formulae, i.e., N = 2i (Ehlen
et al., 2016) vs. N = 2i − 1 (Tsien, 2015). Accordingly,
separability of information would not be possible for the latter
so that only inseparable states would emerge. Furthermore,
more than one minimal matrix would be needed for vector
rotations. However, the barcode illustration provided by Tsien

and co-workers (e.g., Tsien, 2015, 2016; Li et al., 2016) contains
not only the activated cliques (whose number is 2i − 1)
but also an area where none are activated. Noteworthy, by
excluding the “vacuum” state (i.e., no firing), Tsien’s law has
recently been derived in a neuromorphic network model in
which an initially n-dimensional space has been extended to a
Grassmann algebra of dimension 2n (Selesnick, 2019; Selesnick
and Piccinini, 2019). An inclusion of this inactive state would,
on the other hand, lead to a situation in which the above
assumptions would also apply to the Theory of Connectivity.
Since there cannot be an absence of thought or process, the
empty tuple or inactive state can most likely be interpreted as
a state of non-task-directed activity occurring in the context of
task-directed activity. This could possibly relate to a dynamic
coupling between the default mode and the attention network
which has been proposed for verbal creativity tasks (Sun
et al., 2019). The vector space model expresses this kind of
coupling as the successive rotation of the state vector to the
“inactive” state during the course of word production until
its complete activation is achieved after production of the last
word of the VF task. Of interest in this context, activity of
the default mode network has been associated with mentally
moving from one thought to another based on contextual overlap
(Christoff et al., 2016). This may indicate that an extended
model embracing the inactivity of a specific FCM could provide
a mathematical expression of the possibility to shift between
distinct FCMs.

LIMITATIONS

The present work is theoretical in nature. It was motivated
by similarities between the mathematical formulae presented in
two studies which suggest a common organizational structure.
Whereas the reference studies are based on experimental
findings, the here presented perspective is limited to the
logical unification of the two formulae without a connection to
clinical data.

CONCLUSION

The mathematical equations developed by Tsien (2015) and
Ehlen et al. (2016) for stimulus processing and word production,
respectively, indicate strong resemblance of the processes they
describe. In the current study, a common vector space model
is presented for both formulae, which provides self-similarity
and two distinct vector states including a superposition state
specifically if the empty tuple or a corresponding representation
is included. In this case, only a single minimal matrix—
mathematically corresponding to an elementary quantum logic
gate—is required to derive the entire time course of VF execution.
This, on the one hand, indicates maximum efficiency and,
on the other hand, provides a model that suggests interesting
relationships to word production stages and creative switching
between distant concepts. A mathematical inclusion of the
inactive state could therefore offer an extension of the Theory of
Connectivity possibly relating to the activation of remote FCMs.
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APPENDIX

Rotation matrices were obtained using a standard procedure
(Koecher, 1997), which shall be exemplified by the item C: during
the procedure |x〉 will first change to |xC〉. The angle between the
normalized vector |x〉 and |xC〉 is ϕ = arccos 〈x |xC 〉 = π/4.
Applying the Gram–Schmidt process yields the vector |x̄C〉 =
|xC〉 − 〈x |xC 〉 · |x〉, which is orthogonal to |x〉 and lies in the
hyperplane of |x〉 and |xC〉.

Given the dyadic products X 11 = |x〉 ⊗ |x〉, X 12 = |x〉 ⊗ |x̄C〉,
X 21 = |x̄C〉 ⊗ |x〉, and X 22 = |x̄C〉 ⊗ |x̄C〉, the matrices V =
X 11 + X 22, and W = X 12 − X 21 are built, which deliver the
rotation matrix RC = E + (cosϕ − 1) · V − sinϕ · W where E
is the 8 × 8-identity matrix. Since each vector orthogonal to |x〉
and |x̄C〉 is mapped onto itself by RC, the 8 × 8-matrix contains
the eigenvalue 1 six times. The remaining two eigenvalues are
λ 1,2 = e±iϕ = (1± i)/

√
2.
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