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	 Es ist generell akzeptiert, dass der Hippocampus entscheidend an der Gedächtnisgenerierung 

von Säugetieren mitwirkt. Das Subiculum ist das Hauptziel von CA1-Pyramidenzellen und dient somit 

als ein Relais für abgehende Informationen des Hippocampus. Pyramidenzellen im Subiculum können 

anhand ihrer Aktivitätsrate als explosionsartig aktionspotentialbildend (burst-spiking) bzw. als regulär 

aktionspotentialbildend (regular-spiking) klassifiziert werden. In der gegenwärtigen Studie demonstrieren 

wir, dass burst-spiking- und regular-spiking-Zellen bei Ratten prinzipiell zu unterscheidende Formen 

von durch Niedrig-Frequenz induzierter synaptischer Plastizität zeigen. In burst-spiking-Zellen induziert 

Niedrig-Frequenz-Stimulation (bei 0,5-5Hz) eine frequenzabhängige Langzeitdepression (LTD) mit 

einem Maximum bei 1Hz. Diese LTD ist von der Aktivierung der NMDA-Rezeptoren abhängig und 

überlagert eine mGlu-Rezeptor-abhängige Langzeitpotenzierung(LTP). Im Gegensatz hierzu wird in 

regular-spiking-Zellen durch eine Niedrig-Frequenz-Stimulation eine mGlu-Rezeptor-abhängige LTP 

induziert, die eine NMDA-Rezeptor abhängige LTD überlagert. Beide Prozesse basieren auf einem 

postsynaptisch ablaufendem Ca2+-Signal, da BAPTA die Induktion von synaptischer Plastizität in 

beiden Zelltypen unterbindet Folglich finden mGlu-Rezeptor-abhängige LTP und NMDA-Rezepor-

abhängige LTD in CA1-Subiculum Zellen simultan statt. Die vorherrschende Ausrichtung synaptischer 

Plastizität hängt vom untersuchten Zelltyp ab. Unsere Daten geben einen neuen Mechanismus für 

das sliding-threshold-Modell synaptischer Plastizität zu erkennen, in welchem die LTP- und LTD-

Induktion von dem relativen Aktivierungsstatus des NMDA- und des mGlu-Rezeptors angestoßen 

wird. Des Weiteren können wir belegen, dass die oben genannte bidirektionale Plastizität von der 

Koaktivierung muskarinerger Acetylcholin-Rezeptoren abhängt, da Scopalamin synaptische Plastizität 

beider Zelltypen blockiert. Zusätzlich demonstrieren wir, dass der L-Typ-Calcium-Kanalblocker 

Nifedipine in burst-spiking-Zellen LTD zu LTP, in regular-spiking-Zellen LTP zu LTD konvertiert 

und dass somit die Polarität synaptischer Plastizität von spannungsgesteuerten Calcium-Kanälen 

moduliert wird. In Zellen des Subiculums scheint die bidirektionale synaptische Plastizität somit von 

einem komplexen Signalordnungssystem reguliert zu werden, welches zellspezifische Rekrutierung 

sowohl von liganden- als auch von spannungsgesteuerten Ionen-Kanälen involviert. Diese komplexe 

Regulierung könnte an hippocampalen Datenausgangssynapsen zur Feineinstellung von synaptischer 

Wirkkraft notwendig sein. Unsere Beobachtung der Korrelation von der Ausrichtung synaptischer 

Plastizität mit den Entladungscharakteristiken von postsynaptischen Zellen enthüllen einen neuen und 

gleichzeitig verblüffenden Mechanismus der Zielgenauigkeit, der dazu dienen könnte, die Signifikanz 
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neuronaler Informationen zu justieren, indem man hippocampalen Datenausgang entweder auf burst-

spiking- oder regular-spiking-Zellen des Subiculums lenkt.

	 It is commonly accepted that the hippocampus is critically involved in the explicit memory 

formation of mammals. The subiculum is the principal target of CA1 pyramidal cells and thus serves as 

the major relay station for the outgoing hippocampal information. Pyramidal cells in the subiculum can 

be classified according to their firing properties into burst-spiking and regular-spiking cells. In the present 

study we demonstrate that burst-spiking and regular-spiking cells show fundamentally different forms 

of low frequency- induced synaptic plasticity in rats. In burst-spiking cells, low-frequency stimulation 

(at 0.5-5 Hz) induces frequency-dependent long-term depression (LTD) with a maximum at 1 Hz. This 

LTD is dependent on the activation of NMDAR and masks an mGluR- dependent long-term potentiation 

(LTP). In contrast, in regular-spiking cells low-frequency stimulation induces an mGluR-dependent 

LTP that masks an NMDAR-dependent LTD. Both processes depend on postsynaptic Ca2+-signaling 

as BAPTA prevents the induction of synaptic plasticity in both cell types. Thus, mGluR-dependent LTP 

and NMDAR-dependent LTD occur simultaneously at  CA1-subiculum synapses and the predominant 

direction of synaptic plasticity relies on the cell type investigated. Our data indicate a novel mechanism 

for the sliding-threshold model of synaptic plasticity, in which induction of LTP and LTD seems to be 

driven by the relative activation state of NMDAR and mGluR. further more we give evidence that this 

bidirectional plasticity relies upon the co-activation of muscarinic acetylcholine receptors, as scopolamine 

blocks synaptic plasticity in both cell types. In addition, we demonstrate that the L-type calcium channel 

inhibitor nifedipine converts LTD to LTP in burst-spiking cells and LTP to LTD in regular-spiking 

cells, indicating that the polarity of synaptic plasticity is modulated by voltage-gated calcium channels. 

Bidirectional synaptic plasticity in subicular cells therefore appears to be governed by a complex 

signaling system, involving cell-specific recruitment of ligand and voltage-gated ion channels as well as 

metabotropic receptors. This complex regulation might be necessary for fine-tuning of synaptic efficacy at 

hippocampal output synapses. Our observation that the direction of synaptic plasticity correlates with the 

discharge properties of the postsynaptic cell reveals a novel and intriguing mechanism of target specificity 

that may serve in tuning the significance of neuronal information by trafficking hippocampal output onto 

either subicular burst-spiking or regular-spiking cells.
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Memory as a concept

	 Early philosophy and later experimental psychology referred to memory as changes in the 

individual’s behavior as a result of that individual’s experience a terese typical example of such 

'behavioral' definition is: ‘lasting change in behavior resulting from previous experience’ (Henry 

L. Roediger, 2007). This definition of memory was rejected primarily for the reason that some 

lasting experience-dependent changes in the individual’s behaviour are the outcome of fatigue, 

intoxication, injury and/or disease. Secondly, it was realized that memory could not be defined 

based merely on performance at the time of a particular test. These reasons made the definition 

evolve into an outcome of experience-dependent changes in the potential to behave and no

t only the manifested behavior. This definition introduced ‘knowledge’ as a critical attribute of 

memory. This latter term can be more precisely stated as ‘internal representation’, which in the 

case of neuroscience would mean a neuronally encoded structured version of the world that could 

potentially guide behavior. The function of memory is, therefore, to retain over time experience-

created or modified internal representations.

Learning

	 Learning is a mechanism for information acquisition, which may be measured as changes in 

performance, or in potential for performance. In terms of the underlying neuronal circuit, one may 

speak of the neural plasticity processes leading to the altered behavioral performance, where plasticity 

is the ability to undergo modification without immediate relaxation or disintegration. Plasticity is a 

general term that is used to describe neuronal changes that are associated with learning and memory. 

By changes in neuronal excitability, the phenomenon of plasticity has consequences in changes of the 

probability of a particular form of behaviour. Neural excitability may be regarded, in that context, as 

global when excitability of the whole neuron is altered or alternatively of a synapse with restricted area 

specificity. Restricted changes in excitability increase the potential information storage capabilities of 

the system.
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Neural plasticity 

	 Plasticity is the capacity of a neural activity triggered by experience of some sort to modify 

thoughts, feelings and behaviour via modification of the neural circuit function of a system. Specifically, 

plasticity is any mechanism that modifies the efficacy or excitability of synaptic transmission (Citri 

and Malenka, 2008). Plasticity can be induced by a particular synaptic input,  by either a pre-synaptic 

or a post-synaptic mechanism, or a combination of the two. It can also be induced by hormonal and 

non-synaptic neurotransmitters. Plasticity is manifested by morphological changes in the neurons 

such as the distribution of ion channels in the membrane and microtubule-associated proteins, which 

are important for the structural rigidity of the cell and in addition signaling and kinesis proteins. In the 

developing nervous system, astrocytes and Schwann cells promote synapse formation and function. 

Data from cell specific mutant studies support the notion that learning and memory formation can 

start from one or few sites and initiate the downstream plasticity process. 

Short term synaptic plasticity

	 Short-term synaptic plasticity has a temporal range of several milliseconds to several minutes 

and can be expressed in many ways . Short term adaptation to sensory inputs, short lasting alterations 

of behavior and short lasting memory are some of the important phenomena underlined by short 

term synaptic plasticity. Upon brief repeated activity, calcium is accumulated transiently at the pre-

synaptic terminal, which in turn modifies the probability of exocytosis of synaptic vesicles (Katz 

and Miledi, 1968; Zucker and Regehr, 2002). Paired pulse facilitation and depression are common 

forms of short-term plasticity. In this phenomenon,  a stimulus is followed by a second one, which is 

enhanced or depressed, respectively. At short inter-stimulus intervals, depression is observed at all 

synapses. This depression is manifested either by inactivation of voltage-gated calcium or sodium 

channels or by depletion of the pool of vesicles ready to be released. Facilitation may be observed at 

many synapses at longer inter-stimulus intervals. This kind of plasticity may be explained by the left 

over calcium that remains at the presynaptic site as a result of previous synaptic activation, thereby 

increasing the probability of release of synaptic vesicles upon a subsequent second stimulation.  
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Post-tetanic potentiation is observed after a high frequency train lasting between 200ms and 5s. 

This kind of potentiation is explained mainly by the elevated concentration of calcium caused by the 

stimulus train and hence affects the release probability of vesicles, directly or indirectly resulting in 

the alteration of functions of the pre-synaptic proteins (Citri and Malenka, 2008). At computational 

or signal processing level, the different forms of short-term synaptic plasticity function as filters. As 

an example, at higher probability of vesicular release, a synapse will depress upon high frequency 

stimulation, while a low frequency stimulation will be transmitted reliably (Abbott and Regehr, 

2004).

Memory and plasticity

	 Memory, which is believed to be structurally built up by plasticity mechanisms, is usually 

divided into two domains; short-term memory, where no protein or mRNA synthesis is required by 

the mechanism, and long-term memory, where the mechanisms require both protein and mRNA 

synthesis. However, this classification also accommodates several intermediate phases of memory, 

which like long-term memory, apply protein synthesis but do not require mRNA synthesis. Each 

of these intermediate phases has its own signature molecular mechanism. Recent studies suggest 

different temporal domains of long-term memory with different expression mechanisms (Wainwright 

et al., 2002).
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Criteria for Plasticity as a mechanism of memory

	 It all started in 1949, when Donald Hebb proposed for the first time, albeit theoretically, 

that “When an axon of cell A is near enough to excite cell B and repeatedly or persistently takes 

part in firing it, some growth process or metabolic change takes place in one or both cells such 

that A's efficiency, as one of the cells firing B, is increased.” This became the basis of what is 

now known as Hebbian plasticity. Significantly, he predicted structural and/or metabolic changes 

in the neurons as the underlying basis of activity dependent long-term changes in the neurons. 

His convictions were experimentally buttressed by Bliss and colleagues (Bliss and Lomo, 1973; 

Bliss and Gardner-Medwin, 1973), when they reported long-term potentiation (LTP) in the rabbit 

hippocampus in vitro in response to synaptic stimulation. Since the experimental discovery of LTP, 

it has been demonstrated that a synapse that exhibits LTP is also able to exhibit long term depression 

(LTD) (Dudek and Bear, 1992), meaning the weakening of the synaptic strength in response  to 

certain paradigms of synaptic activity.  The fact that a synapse is modifiable in a bidirectional way 

has far reaching consequences on the computational abilities of the brain as a whole. It is probably 

worthwhile to state here that the phenomena of LTP and LTD that are expressed in different areas or 

even in the different synaptic connections in the same areas of the brain, differ considerably in terms 

of their underlying mechanisms (Citri and Malenka, 2008).

	 The Synaptic Plasticity and Memory hypothesis (SPM) states that learning is a phenomenon 

that is accompanied by patterns in neural activity that represents the occurrence of some kind of 

events (Martin and Morris, 2002b). This neural activity changes the synaptic connections per se in 

the brain and the memory will be expressed upon reactivation of the circuitry that was previously 

altered.  Morris (Morris and Rugg, 2004) stated that ‘Memory is a property of the entire organism, 

while plasticity is a property of the synapses’; this probably emphasizes the complexity of memory 

as a phenomenon on one hand, and the lack of a complete knowledge about how a change in 

the individual synapses goes about in creating a memory, on the other. Nonetheless, Bliss and 

Collingridge ( Bliss and Collingridge, 1993) outlined the 3 basic properties of long term plasticity: 

associativity, input specificity and persistence over time. Note that persistence might be problematic  
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in defining  memory mechanism, since while plasticity must last a reasonable length of time to be 

considered a memory mechanism, there is no reason why LTP or LTD should last indefinitely, as 

memory traces can be activated in an activity dependent manner. LTP induction must start by pre-

synaptic activity and proceed to postsynaptic activation for potentiation to occur. On the other hand, 

back propagating dendritic action potential is important for alternating from LTP to LTD in the neo-

cortex and  hippocampus (Bi and Poo, 1998). There are four criteria according to Morris & Martin 

(Martin and Morris, 2002a) for the evaluation of the SPM hypothesis:

	 The detectability criterion, which postulates that behavioral memory must be associated 

with synaptic efficacy changes somewhere in the brain. Mimicry is an important test as to whether 

changes in synaptic strength are sufficient to memory formation. The test simply states that if we 

artificially induce changes in the synaptic weights, the animal should experience memory for an 

event that did not really happen. The anterograde alteration criterion states that upon preventing 

synaptic weight change during learning, the memory of the experience will be impaired, while, the 

retrograde alteration criterion states that a memory of an experience will be altered upon alteration 

of synaptic weights that were induced by learning experience. (Martin and Morris, 2002a). 

	 A great deal of knowledge has been gathered in the last few years concerning the biochemical 

events underlying the induction and expression of LTP and LTD (Malinow et al., 2000; Nicoll, 

2003). Increases in the postsynaptic calcium concentration after synaptic activation of NMDA 

receptors or voltage gated calcium channels are believed to be general mechanisms for LTP and 

LTD induction. This rise in calcium concentration triggers a variety of enzymatic reactions that lead 

to direct and indirect phosphorylation of proteins resulting in a change in receptor sensitivity and 

number (Malinow and Malenka, 2002).



Illustration 1 | During the early phase of LTP, high-frequency stimulation opens non-NMDA 
glutamate channels leading to hypopolarization. This dislodges Mg++ from the NMDA 
glutamate channels, and Ca++ enters the cells. The calcium triggers the activity of Ca-
dependent kinases, PKC and Ca-calmodulin, and tyrosine kinase. Ca-calmodulin kinase 
phosphorylates non-NMDA channels, increasing their sensitivity to glutamate and a messenger 
is sent retrogradely to the presynaptic terminal to increase the release of transmitter substance. 
Illustration taken from Principles of Neural Science, New York: McGraw-Hill.
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Illustration 1:  During the early phase of LTP, high-frequency stimulation opens non-NMDA

glutamate channels leading to hypopolarization. This dislodges Mg++ from the NMDA 

glutamate channels, and Ca++ enters the cells. The calcium triggers the activity of Ca-

dependent kinases, PKC and Ca-calmodulin, and tyrosine kinase. Ca-calmodulin kinase

Long Term Potentiation

	 The	most	prominent	forms	of	Long	Term	Potentiation	(LTP)	are	NMDA	receptor	dependent.	

NMDA	receptor	dependent	LTP	requires	synaptic	activation	of	NMDA	receptors	during	postsynaptic	

depolarization,	which	can	be	achieved	with	different	induction	protocols	(Bliss	and	Collingridge,	

1993;	Malenka	 and	Nicoll,	 1999).	The	 calcium	 influx	 through	NMDA	receptors	 and	 the	 rise	 in	

calcium	concentration	at	the	dendrites	is	a	necessary	condition	for	LTP.	Many	signaling	proteins	and	

as	a	consequence,	many	intracellular	cascades	are	found	to	be	involved	in	inducing	LTP.	It	seems	

that	calcium/calmodulin-dependent	protein	kinase	is	required	for	NMDA	receptor	dependent	LTP	

independent	of	the	induction	protocol	used.	These	cascades	alter	the	single	channel	conductance	

of	 synaptic	AMPA	 receptors	 (AMPAR)	 and	 lead	 to	 incorporation	 of	 additional	AMPAR	 to	 the	

postsynaptic	 density.	 In	 addition,	 the	 number	 of	 dendritic	 spines	 is	 increased.	 In	 parallel,	 there	

are	changes	 in	 the	synapse	structure,	 like	alterations	of	 the	size	of	 the	pre-synaptic	active	zone.	

The	maintenance	of	these	changes	for	a	longer	time	period	utilizes	de	novo	transcription	and	local	

dendritic	proteins	(Citri	and	Malenka,	2008).

Long Term Potentiation

	 The most prominent forms of Long Term Potentiation (LTP) are NMDA receptor 

dependent. NMDA receptor dependent LTP requires synaptic activation of NMDA receptors during 

postsynaptic depolarization, which can be achieved with different induction protocols (Bliss and 

Collingridge, 1993; Malenka and Nicoll, 1999). The calcium influx through NMDA receptors and 

the rise in calcium concentration at the dendrites is a necessary condition for LTP. Many signaling 

proteins and as a consequence, many intracellular cascades are found to be involved in inducing 

LTP. It seems that calcium/calmodulin-dependent protein kinase is required for NMDA receptor 

dependent LTP independent of the induction protocol used. These cascades alter the single channel 

conductance of synaptic AMPA receptors (AMPAR) and lead to incorporation of additional AMPAR 

to the postsynaptic density. In addition, the number of dendritic spines is increased. In parallel, there 

are changes in the synapse structure, like alterations of the size of the pre-synaptic active zone. 

The maintenance of these changes for a longer time period utilizes de novo transcription and local 

dendritic proteins (Citri and Malenka, 2008).
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Long Term Depression

	 Long Term Depression (LTD) is an activity-dependent decrease in synaptic transmission 

that can be expressed as heterosynaptic or homosynaptic forms. Homosynaptic LTD is input specific 

while by definition, heterosynaptic LTD is a reduction of synaptic efficiency at nonstimulated 

synapses. The first LTD reported was the heterosynaptic form which occurred at the CA1 region 

of the hippocampus  through a non-tetanized pathway in parallel to LTP pathway expressed after 

tetanic stimulation (Lynch et al., 1977). Later on, it was found to occur at the dentate gyrus as 

well. Homosynaptic LTD was initially reported as a reversal phenomenon of LTP, when a low –

frequency stimulation was applied (Barrionuevo et al., 1980). A non-LTP-dependent homosynaptic 

LTD was firstly seen at the CA1 area as a response to low frequency stimulation (Dudek and Bear, 

1992;Mulkey and Malenka, 1992).

	 Since then, LTD has been reported in various other brain structures and was established as a 

principle plasticity phenomenon like LTP (Martin et al., 2000) or homeostatic plasticity (Turrigiano 

and Nelson, 2004). However, LTD seems to depend much more on the conditions during induction 

(Kemp and Bashir, 2001), like frequency and place of the stimulation (Braunewell and Manahan-

Vaughan, 2001; Poschel et al., 2005). 

Hippocampus anatomy

	 The hippocampal formation is constructed from several related brain regions, which together 

comprise a functional system. The CA3, CA2 and CA1 areas are subdivisions of the hippocampus 

proper, and the other components of the hippocampal formation are the dentate gyrus, subiculum, 

presubiculum, parasubiculum and entorhinal cortex (illustration 2). The reason for these five areas 

to be considered a single formation is the functional linkage between them.



illustration 2: Basic circuit and anatomy of the hippocampus, shown using 
a modified drawing by Ramon y Cajal. DG: dentate gyrus. Sub: subiculum. 
EC: entorhinal cortex 
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Dentate gyrus

	 The	dentate	gyrus	is	a	cortical	v-shaped	region	which	has	a	similar	structure	at	all	levels	

of	the	hippocampal	formation.	The	supra-pyramidal	blade	is	between	the	CA3	and	the	CA1	areas	

while	the	opposite	blade	is	called	infra-pyramidal	blade;	the	connection	between	the	blades	is	named	

the	crest.	The	dentate	gyrus	has	three	different	 layers:	 the	molecular	layer,	which	is	 the	cell-free	

layer;	 the	principle	cell	 layer	 that	 is	filled	with	densely	packed	cells	and	is	four	 to	eight	granule	

cells	thick.	The	third	layer	is	the	polymorphic	cell	layer.	At	the	principle	layer,	the	main	cellular	

constituent	is	the	granule	cell.	Granule	cells	are	closely	apposed	to	each	other	and	their	dendritic	tree	

is	characterized	by	cone-shaped	spiny
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Dentate gyrus

	 The dentate gyrus is a cortical v-shaped region which has a similar structure at all levels 

of the hippocampal formation. The supra-pyramidal blade is between the CA3 and the CA1 areas 

while the opposite blade is called infra-pyramidal blade; the connection between the blades is 

named the crest. The dentate gyrus has three different layers: the molecular layer, which is the cell-

free layer; the principle cell layer that is filled with densely packed cells and is four to eight granule 

cells thick. The third layer is the polymorphic cell layer. At the principle layer, the main cellular 

constituent is the granule cell. Granule cells are closely apposed to each other and their dendritic tree 

is characterized by cone-shaped spiny



Introduction | Dentate gyrus

12

	 dendrites directed to the superficial molecular layer. The supra-pyramidal blade cells tend 

to be larger than those in the infra-pyramidal blade. There are approximately 1.2 million granule 

cells in the rat dentate gyrus, and although cell proliferation and neurogenesis is carried on even into 

adulthood, the number of cells is not altered. The septal granule cells are packed more densely then 

the temporal ones. The granule cell is the only type of cell in the dentate gyrus which has an axon 

that leaves the dentate gyrus and penetrates another field of the hippocampus, the area CA3. Another 

cell type, the mossy cell, projects from the dentate gyrus in one hemisphere to that in the other side. 

Other cell types in the dentate gyrus are interneurons. One well studied type of interneuron is the 

pyramidal basket cells, located in the deep granular cell layer. Their axons surround the cell bodies 

of the granule cells and form synapses with them. The molecular layer constitutes primarily of 

the dendrites of the granule, basket and polymorphic cells as well as of axons and terminal axonal 

arbors from the entorhinal cortex and other sources.  

	 The dentate gyrus receives input mainly through the perforant pathway which projects 

from the entorhinal cortex. The mossy fibers are the only projections of the dentate gyrus to any 

brain area. These projections arise from the granule cells and end at the CA3 area. The mossy 

fibers end as complex en passant pre-synaptic terminals, which are  called mossy fiber expansions 

that are unique for their large size (giving them a mossy look, hence the name). Another unique 

feature of the mossy fibers is that although each expansion is typically in contact only with one 

pyramidal cell, it makes many contacts with the dendritic tree of that cell. Each of the mossy 

fibers projects to approximately about 15 CA3 pyramidal cells that are distributed through out the 

tranverse axis of CA3.
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Hippocampus proper

	 The hippocampus proper is divided into two regions: a region that is in proximity to the 

dentate gyrus and characterized by large cells and a region that follows from it, constituting of small 

cells. The large-celled region is further divided into two regions namely, CA3 and CA2, while the 

small-celled region is named CA1. The CA3 region receives input from the mossy fibers originating 

at the dentate gyrus, while CA1 receives input from the schaffer collaterals originating at CA3. CA2 

region has, as mentioned above, large pyramidal cells but does not receive input from the mossy 

fibers.  The pyramidal cell layer of the CA1 is packed tighter than that in the CA2 and CA3. 

Layering of the hippocampus

	 The cell-free layer is located between the alveus and the stratum pyramidalis  the 

pyramidal layer and is called stratum oriens. It contains the dendrites of the pyramidal cells and 

some interneurons. CA3 and CA2 receive input mainly from the axon collaterals of  of neurons 

located within the same areas. CA1, on the other hand, receives input mainly from CA3. CA3 and 

CA2 receive input also from the entorhinal cortex through collaterals of the perforant pathway 

fibres that project to the dentate gyrus. While the CA1, in a place dependent manner, also receives 

projections from the different layers of the entorhinal cortex, it can project back to the same 

entorhinal cortex layers.  All areas of the CA2 and CA3 project to CA1 and the area which they 

project to is dependent on the location of the CA3/CA2 cells. CA1 projects in a topographic 

manner to the subiculum, and to the deep layers of the entorhinal cortex. Projections from the CA1 

to the SUB exhibit a transverse organization: projections from the proximal one third of the CA1 

selectively terminate in the most distal third of the SUB. Conversely, projections that originate in 

the distal third of the CA1 selectively innervate the proximal third of the SUB (Amaral et al. 1991; 

Tamamaki and Nojyo 1990). 
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Subicular complex

	 The subiculum, parasubiculum and presubiculum are often called the “subicular 

complex”. Each of them is considered as a distinct cortical area mainly because of their different 

neuroanatomical characteristics (see below). The principal cell layer of the subiculum is comprised 

of large pyramidal cells. This layer starts at the end of the distal region of the CA1. The cells extend 

their apical dendrites into the molecular layer and their basal dendrites into the deep pyramidal layer. 

The pyramidal cell population is divided into two distinct groups according to the cells’ electrical 

properties. The first group has a characteristic regular firing pattern characterized by a single action 

potential or trains of single spikes upon stimulation or prolonged depolarization. The second group 

has a characteristic burst firing pattern upon stimulation or depolarization. These two groups are not 

morphologically distinct, but exhibit a differential distribution at the principal layer. According to 

some studies (Greene and Totterdell, 1997; Staff et al., 2000; Harris et al., 2001; Menendez et al., 

2003) The regular spiking cells are more abundant at the superficial region of the principal layer, 

while the burst-firing cells are more common at the deeper layer, although this were questioned 

by Jarsky et al. (Jarsky et al., 2008). In this work, they found that the well-defined morphological 

boundaries between the hippocampal subregions CA1 and subiculum do not correspond to abrupt 

changes in electrophysiological properties. Rather, they observed that the percentage of bursting 

neurons is linearly correlated with position in the proximal-distal axis across the CA1 and the 

subiculum, the percentages of bursting neurons being 10% near the CA1-CA2 border, 24% at 

the CA1-subiculum border, and higher than 50% in the distal subiculum, Furthermore, Some 

bursting cells were antidromically activated by stimuli applied to the superficial or deep layers of 

presubiculum, but never by stimuli applied to deep layers of medial entorhinal cortex (dMEC). 

Some non-bursting subicular neurons were antidromically activated by stimuli applied to dMEC, 

but never by stimuli applied to presubiculum, indicating that subiculum burst- and regular-spiking 

cells project either to the presubiculum or to the EC, respectively (Stewart 1997). Deep cells (mostly 

intrinsically bursting [IB] class) had one or more ascending axon collaterals that typically remained 

within the region circumscribed by their apical dendrites. Superficial cells (mostly regular spiking 

[RS] class) tended to have axon collaterals that reached longer distances in the cell layer 
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	 The subiculum is one of the two main output  structures of the hippocampus (Swanson and 

Cowan, 1975; Swanson et al., 1981). It projects on to the parasubiculum, the presubiculum and 

the entorhinal cortex. The connection to the presubiculum may be viewed in terms of the function 

of the subiculum as a last step of information processing through the hippocampal formation. The 

perforant path fibers are directed from the entorhinal cortex to the molecular layer of the subiculum 

and in a reciprocal manner the subiculum projects back to the entorhinal cortex. Some other cortical 

and subcortical areas the subiculum projects to are the perirhinal, retrosplenial, prefrontal, and the 

cingular cortex, mammillary bodies, hypothalamus, amygdala, septal complex, nucleus accumbens 

and thalamus (Amaral and Witter, 1995; O'Mara et al., 2001)                                                            

 	 The entorhinal cortex is the main entry point for the sensory information processed by the 

hippocampal formation and more than that, functions as the main relay station for hippocampus 

processed information back to the neocortex. The hippocampus has a large unidirectional projection 

system that connects the different regions, which implies a serial flow of information first from the 

entorhinal cortex to the dentate gyrus through the CA3 and so on. This usually perceived notion has 

to be considered carefully under the known parallel connectivity of the hippocampus projections.

Subiculum and memory

	 It has been suggested that the hippocampus serves as storage for intermediate-term 

memory that finally may be stored as a long-term memory in the cortex. It has been shown that 

the projections from the hippocampus to the cortex are operating as rapidly as the modifiability 

within the hippocampus itself (Deadwyler and Hampson 2004). The immediate question that 

comes to mind is: what are the functions of the subiculum as a consequence of it being an interface 

between the hippocampus proper and cortical and subcortical structures? According to O’Mara 

(O’Mara, 2006), it is reasonable to suggest that the subiculum reverses the inhibitory functions of 

the dentate gyrus. The granule cells of the dentate gyrus fire infrequently and at low rates (Jung 

and McNaughton, 1993) thus serving as a filter for the hippocampus. The subiculum, on the other 

hand, may act as an output amplifier for those signals on their way to the cortical and subcortical 
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areas. This is due to the ability of the subicular burst firing cells to fire bursts of action potential 

in response to orthodromic stimulation. Further more, it has been suggested that the subiculum 

may have a functional segregation of its dorsal and ventral parts (O’Mara 2006). The dorsal part 

has been shown to have a role in processing space, movement and memory (Anderson, 2004; 

Deadwyler and Hampson 2004). On the other hand, the ventral part was shown to serve as an 

interface between the hippocampal formation and the hypothalamic-adrenal-pituitary (HPA) axis 

and mainly as an inhibtor of the HPA axis (Lowry, 2002; Mueller, 2004). The immediate implication 

of this hypothesis is that a number of CA1 place cells may converge upon a subicular pyramidal 

cell in addition to the input regarding self motion of the animal combining movement and place 

information at one subicular cell. The hypothesis suggests the dorsal subiculum to be a site of 

integration of hippocampal spatial information and body movement information. For the role of the 

subiculum in the HPA axis, O’Mara (O'Mara, 2006) underpins the ventral subiculum as an important 

component in regulation of the response to stress. This prediction is supported by experiments in 

ventral subiculum lesions (Maren, 1999). Commins et al. (Commins et al., 2001) investigated the 

effects of systemic stress induced by lipopolysaccharide (LPS; a potent endotoxin which induces 

HPA axis changes similar to those induced by behavioural stress) on synaptic transmission/synaptic 

plasticity in the CA1-subicular pathway. Similar to behavioural stress, LPS blocked LTP induction 

and reduced paired-pulse facilitation in the CA1-subicular pathway. Importantly, LPS did not affect 

baseline synaptic transmission in this pathway but did, however, reduce the magnitude of PPF; 

thus, the effects of LPS on synaptic transmission in this pathway depends on the frequency and 

length of stimulation. LPS inhibits hippocampal-dependent spatial learning in the watermaze. Thus, 

systemic stress induced by an LPS-induced primary immune response has similar consequences to 

behavioural stress on synaptic plasticity and learning in the CA1-subicular axis. 

The two stage model of memory formation

	 The two stage model of hippocampus-dependent memory formation suggests that during 

explorative behaviour theta range oscillations (4–12 Hz) with superimposed, smaller amplitude 

gamma (γ) activity (30–100 Hz)(Bragin et al., 1995) constitute the spatial and temporal correlates 

Introduction | Subicular complex
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of memory trace formation within the hippocampus proper (Buzsaki, 1989; Buzsaki et al., 1983). 

Subsequently, during memory consolidation, previously stored information is transferred from the 

hippocampus to the cortical mantle during sharp wave-ripple complexes (SPW-Rs) characterized 

by a 60 ms slow wave field potential transient with superimposed ripple oscillations at 130 – 200 

Hz (Buzsaki, 1986; Buzsaki, 1998). Memory consolidation is thought to be based on the replay 

of previously stored information within condensed time windows during SPW-Rs. These occur 

during slow wave sleep (SWS) and quiet wakefulness (Buzsaki, 1986) but also during periods 

of goal-related decision making (Diba and Buzsaki, 2007). On the other hand, working memory 

related theta-gamma network oscillations are thought to provide a temporal template, which 

facilitates coincidence detection, binding and thereby storage of information (Lisman and Idiart, 

1995; Buzsaki, 1996; Bartos et al., 2007a). In hippocampal slices, γ-oscillations can be induced 

either pharmacologically (Buhl et al., 1998; Fisahn et al., 1998; Poschel et al., 2002) or by tetanic 

stimulation of area CA1 (Traub et al., 1996) (for review see (Bartos et al., 2007)). Gamma-frequency 

oscillations (30-100 Hz) result from synchronous neuronal network activity occurring in a variety 

of brain structures (Singer and Gray, 1995), most prominently in the hippocampus (Bragin et al., 

1995), a region that plays a central role in declarative memory formation (Zola-Morgan and Squire, 

1993; Morris et al., 1982). Hippocampal γ-oscillations have been proposed as a mechanism for 

coincidence detection and thus to promote the storage and retrieval of information (Bartos et al., 

2007; Ritz and Sejnowski, 1997; Gray, 1994; Singer, 1993). Theta-gamma oscillation have been 

shown to exist in the subiculum (D'Antuono et al., 2001; Colling et al., 1998). Together with the 

place cells of the subiculum and their relation to environmental cues, the subiculum may play a 

role in working memory and memory consolidation as well as in coincidence detection and in 

storage and retrieval of information. Working memory is not a conclusive concept and is interpreted 

differentially according to the discipline examining it. For the cognitive neuroscientist, working 

memory is related to encoding and the formation of a new memory while for the experimental/

behavioural neuroscientist, it is related to the retrieval and use of memory (Henry L.Roediger, 

2007) Complex thoughts require the manipulation of information, The manipulation of information, 

in turn, requires temporary storage. This temporary storage is thought to be provided by the 

framework of  working memory. The overall assumption is that this system is limited in its capacity 

but flexible in its operation (Henry L.Roediger, 2007). The Hitch and Baddeley (Hitch and Baddeley, 

Introduction | The two stage model of memory formation
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1976) model studied the verbal suburst firingystem. This model proposed that a temporary storage 

system evolved from mechanisms of speech perception and production. The system is assumed 

to be crucial in the acquisition of language and for the temporary storage of language information 

and can be employed for the guidance of behavior (Baddeley, 2001). The visual equivalent of this 

system is able to combine visual information with information on spatial location and probably 

also motor information as evidenced by Smith and Jonides (Smith and Jonides, 1997). Working 

memory is supposedly controlled by habits and schemata that relay on environmental cues while 

performing routine and well learned actions. On the other hand, upon a novel behavior requirement, 

the supervisory attentional system (SAS) is assumed to operate; a different component that serves 

as a temporary storage system for the complex thoughts, that is accessible to conscious awareness 

(Baddeley and Jarrold, 2007). 

	 The concept of consolidation means a progressive post encoding stabilization of the memory 

trace. During the consolidation phase memory is profoundly affected by amnesic agents. The role 

of consolidation is therefore in dispute with the question: is it really a stabilization of information 

or rather that the information is stored immediately and ‘consolidation’ refers to the accessibility of 

the information. Another question that remains open is whether the consolidation happens once, or 

is it activated and reconsolidated each time? Over the last 40 years, the idea of molecular memory 

consolidation has grown into a dogma in which when we learn or encode some experience, the 

synapses in the brain involved in learning or the encoding procedure are strengthened. This dogma 

brings us once again to the relevance of synaptic plasticity and the subiculum. 

Synaptic plasticity at the CA1–subiculum synapse

	 Synaptic plasticity at the CA1 projection to the subiculum was first examined in an in vivo 

model (Commins et al., 1998b; Commins et al., 1998a; Commins et al., 1999). High frequency 

stimulation at the CA1-subiculum projection results in LTP. Plasticity in subiculum was reported 

through the use of standard induction protocols. A rapid potentiation, measured by field excitatory post 

synaptic potentials, was induced at the CA1-subiculum projections using high frequency stimulation 
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(HFS). 5 minutes post-HFS, LTP remained stable for 30 minutes which was resistant to further HFS 

(O'Mara et al., 2000). In a different study, fundamental differences between the two different pyramidal 

cells (bursting and regular firing) that constitute the subiculum region were found. Prolonged high-

frequency stimulation induced NMDA receptor-dependent LTP in both cell types. While LTP relied 

on postsynaptic calcium in regular firing neurons, no increase in postsynaptic calcium was required 

in bursting cells. Furthermore, paired-pulse facilitation revealed that the site of LTP expression was 

postsynaptic in regular firing neurons, while presynaptic in burst firing neurons. Moreover, PPF 

revealed that the site of LTP expression was postsynaptic in the regular firing cells while presynaptic 

in the burst firing cells. Kokaia demonstrated that long-term potentiation (LTP) at CA1-subicular cell 

synapses can be readily induced by high-frequency stimulation (HFS) of the afferents, but not by 

pairing of low-frequency stimulation with depolarization of postsynaptic cells. This tetanus-induced 

LTP is input specific, insensitive to the N-methyl-D-aspartate (NMDA) receptor antagonist 3-[(R)-

2Carboxipiperazin-4-yl]-propyl-1-phosphonic acid (R-CPP), and reduces PPF in potentiated synapses. 

Their data indicate that CA1-subicular cell synapses in mice exhibit LTP, which can be expressed 

presynaptically, and its induction does not require NMDA-receptor activation (Kokaia, 2000). 

	 Both in vivo (Commins et al. 1998a) and in vitro studies (Kokaia 2000) found evidence for 

a presynaptic expression of LTP at CA1-SUB synapses that seems to be confined to burst-spiking 

cells (Wozny et al. 2008a; Wozny et al. 2008b). In various brain regions, it has been shown that 

synaptic plasticity may indeed rely on the activation of presynaptic NMDA-R (Casado et al. 2002; 

Duguid and Smart 2004; Humeau et al. 2003; Sjoestroem et al. 2003). It is feasible that the subunit 

composition of presynaptic NMDA-R differs from that of receptors expressed at the postsynaptic 

site. Indeed, in various cortical areas, presynaptic NMDA-R have been reported to contain NR2B 

subunits (Brasier and Feldman 2008; Sjoestroem et al. 2003; Woodhall et al. 2001). This might 

explain why LTP at CA1-SUB synapses has been found to be blocked by APV (Boeijinga and 

Boddeke 1996; Roberts and Greene 2003; Wozny et al. 2008b) but not by CPP (Kokaia 2000). 

APV and CPP are NMDA-R antagonists known to show differences in their NMDA-R subunit 

selectivity. For NMDA-R expressed in Xenopus oocytes, CPP has a nearly 7-fold higher affinity 

for NR2A than NR2B, whereas APV has nearly the same affinity for these two subunits (Feng et 

al. 2005). Indeed, Wozny’s et al. findings (Wozny et al. 2008b), indicate that high concentrations of 
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D-APV (100 µM) are required to block LTP in burst-spiking cells (Wozny et al. 2008b).

	 Li et al. (Li et al., 2005) demonstrated that the pairing protocols of low frequency stimulation 

(LFS) at 3 Hz and postsynaptic depolarization of -50 mV elicited a reliable LTD in the subiculum. 

This LTD induction protocol did not result in any significant changes of the paired-pulse ratio of 

the EPSC. Furthermore, it did not depend on either NMDA receptors or voltage-gated calcium 

channels (VGCCs). Bath application of the G-protein coupled muscarinic acetylcholine receptors 

(mAChRs) antagonists, atropine or scopolamine, blocked the LTD, suggesting that mAChRs are 

involved in the LTD. It was also completely blocked by either the Ca2+ chelator BAPTA or the 

G-protein inhibitor GDP-ß-S in the intracellular solution

Previous work of the group

	 My group’s past findings show that the subiculum receives strong glutamatergic input from 

CA1 (Behr et al., 1998) and is, thus, part of the polysynaptic hippocampal loop.  The entorhinal 

cortex also projects via monosynaptic excitatory perforant path projection from layer III to the 

subiculum (Behr et al., 1998) which forms a bypass for the trisynaptic hippocampal loop. Further 

more, my group has shown that synaptic terminals that arise from CA1 pyramidal cells do not 

function as a single compartment, but rather show specialized synaptic plasticity onto subicular 

pyramidal cells dependent on the type of electrical characteristic of the cell targeted upon (Wozny 

et al., 2008). Tetanic stimulation of CA1 axons targeting burst firing cells showed much more 

pronounced LTP than in the regular firing cells. In regular firing cells the induction of LTP is 

reminiscent of LTP in area CA1. It is NMDA receptor dependent and relies on the postsynaptic 

depolarization and subsequent postsynaptic Ca2+ signalling. Though LTP in burst firing neurons 

is likewise NMDA receptor dependent, postsynaptic depolarization and Ca2+  signalling are not 

required for the induction of LTP. While LTP in regular firing cells shows no change in PPF, in 

bursting neurons LTP is associated with a decrease of PPF (Wozny et al., 2008). Furthermore, 

in a recent study by Wozny et al., elevation of cAMP either by activation of adenylyl cyclase or 

by a cAMP analog caused a long-lasting increase in EPSC amplitudes in bursting neurons and 
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occluded tetanus-induced LTP. Moreover, LTP in bursting cells was inhibited by the PKA inhibitors 

Rp-8-CPT-cAMP and H-89. In sharp contrast, LTP in regular firing cells could still be induced in 

the presence of forskolin. Additionally, the forskolin-induced enhancement of EPSC amplitudes 

in bursting neurons caused a change in PPF. The degree of EPSC blockade by the low-affinity 

competitive AMPA receptor-antagonist -DGG suggests an increase of glutamate concentration in 

the synaptic cleft in burst firing cells after the application of forskolin.(Wozny et al., 2008). Overall, 

these data show a target-cell specific expression of presynaptic and postsynaptic mechanism of LTP 

in the subiculum which as noted above is a major hippocampal output region. 

Goals

	 The goal of this thesis is to investigate the cell specific and input specific LTD and LTP 

in subicular regular-spiking and burst-spiking cells using low-frequency stimulation protocols in 

hippocampal slices.

Hypothesis

1. We will demonstrate that subicular pyramidal cells show a cell specific induction, 			 

transduction and expression mechanisms of LTP and LTD following LFS.

2. We will determine pre- and postsynaptic induction mechanisms of LFS-induced LTD and  

LTP, and will characterize the underlining molecular mechanisms.

3. We will provide evidence that subicular pyramidal cells show a cell specific threshold for  

LTD and LTP. We will study the cell specific bi-directional plasticity of subicular pyramidal  

cells in each cell type. 
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Slice preparation

	 Animal procedures were conducted in accordance with the guidelines of the European 

Community Council and approved by the Regional Berlin Animal Ethics Committee 

(G0328/98,G0024/04). Wistar rats (4-6 weeks) of both sexes were decapitated under deep ether 

anaesthesia and their brains were quickly removed. Horizontal slices, 400 µm thick, containing the 

hippocampus and the entorhinal cortex were prepared with a vibratome (Campden Instruments, 

Loughborough, UK). For sharp microelectrode recordings, the preparation was performed in ice-

cold, oxygenated (95% O2, 5% CO2) artificial cerebrospinal fluid (ACSF) and the slices were 

transferred for storage to an interface recording chamber continuously perfused (1.5-2 ml/min) with 

oxygenated and pre-warmed (34° C) ACSF. The composition of ACSF was as follows (in mM): 

NaCl 129, Na2PO4 1.25, NaHCO3 26, KCl 3, CaCl2 1.6, MgSO4 1.8, glucose 10 at a pH of 7.4. For 

patch-clamp recordings, slices were prepared in ice-cold, saccharose-based ACSF (in mM): NaCl 

87, Na2PO4 1.25, NaHCO3 26, KCl 2.5, CaCl2 0.5, MgCl2 7, saccharose 75, glucose 25 at a pH of 

7.4. After preparation, slices were kept under submerged conditions at 35° C for ~ 30 min and then 

transferred to a physiological ACSF solution at room temperature for further storage.

Electrophysiology

	 Single cell recordings in the pyramidal cell layer of the subiculum were performed at near 

physiological temperatures (32°-34° C) with sharp microelectrodes (40-100 Mµ) filled with 2.5 M 

potassium acetate or with patch-clamp electrodes (4-6 Mµ). Patch-clamp electrodes were filled with 

(in mM): K-gluconate 135, KCl 20, HEPES 10, phosphocreatine 7, Mg-ATP 2, Na-GTP 0.3, EGTA 

0.2 and adjusted with KOH to a pH of 7.2. Access resistance did not exceed 20 Mµ and varied less 

than 20% in the course of the experiment. No series resistance compensation was used. 

	 All experiments were performed in the presence of bicuculline (5µM) or SR-95531 

(gabazine, 1µM) to block GABAA receptor-mediated responses. In order to prevent polysynaptic 

responses, concentrations of MgSO4 and CaCl2 were elevated to 4 mM each.



23

Materials and Methods | Electrophysiology

	 For characterization of intrinsic discharge and membrane properties, hyper- and depolarizing 

current steps (200 ms, 0.1 nA) were used. Action potential amplitude was defined as the peak 

amplitude relative to the peak of the fast after-hyperpolarization. Action potential width was 

measured at half-maximal amplitude. Sag ratio was calculated by dividing the steady state voltage 

during a hyperpolarizing current pulse of 300 pA by the peak voltage during hyperpolarization. 

Overshoot ratio was calculated by dividing the steady state voltage during a hyperpolarizing current 

pulse of 300 pA by the peak overshoot voltage after the end of the hyperpolarizing current pulse. 

	 Excitatory postsynaptic potentials/currents (EPSPs/EPSCs) were evoked by alveus 

stimulation. The stimulus intensity was between 1.5-4 V after adjusting the EPSP/EPSC amplitudes 

to 40-60% of the maximum response. In a subset of experiments, an incision of the alveus was made 

between the subiculum and the stimulation electrode in order to exclude antidromic activation of 

subicular pyramidal cells. Baseline responses were recorded at 0.033 Hz for at least 10 min. For 

induction of synaptic plasticity, paired-pulse low-frequency stimulation (15 minutes, 50 ms inter-

stimulus interval) at 0.5, 1, 3 and 5 Hz in voltage-clamp, current-clamp or bridge mode was used 

(for details, see Results section). Changes in synaptic strength were measured for a period of 30 

minutes after induction.

	 Signals were low-pass filtered at 3 kHz, sampled at 10 kHz by an ITC-16 interface (Instrutech 

Corp., Great Neck, NY, USA) and processed by TIDA software (HEKA GmbH, Lambrecht, Germany). 

Normalized EPSPs/EPSCs were averaged for the last five minutes of baseline recordings. LTP and 

LTD were calculated as percentage values of the normalized baseline EPSP/EPSC amplitude between 

20 to 25 min after induction. Statistical analysis was performed by applying Student’s t-test or by 

analysis of variance (ANOVA) for comparison of means between groups (SPSS, SPSS Inc., USA). 

Statistical significance was set to P < 0.05.
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Drugs

	 The following drugs were used: nifedipine, 20µM; scopolamine, 30 mM; D-2-amino-5-

phosphonovaleric acid (D-APV), 100µM; 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic 

acid (BAPTA), 30 mM; (RS)-a-methyl-4-carboxyphenylglycine (MCPG), 500µM, bicuculline, 

5µM; SR 95531 hydrobromide (gabazine), 1µM. Drugs were purchased from Sigma-Aldrich, 

Germany and Tocris, UK. All drugs were applied throughout the entire course of the experiments 

and at least 10 min prior to recording. Application of D-APV and/or MCPG did not affect baseline 

transmission. Intracellular loading with the calcium chelator BAPTA did not alter the spiking 

behaviour of subicular pyramidal cells. As an indicator for effective BAPTA loading in burst-

spiking cells, we observed a block of the slow after-hyperpolarization after the burst discharge (data 

not shown). Though some authors report BAPTA-mediated rundown of postsynaptic responses, in 

our study stable baseline responses could be obtained in most of the recordings with BAPTA. Cells 

that showed a rundown of responses (~15%) were not included.
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Electrical characterization of subicular pyramidal cells

	 In order to characterize electrically the type (regular or bursting firing) of the recorded cells, 

hyper-and depolarizing current steps were applied under current clamp mode (fig 1). Each current 

step was of 200ms duration and a magnitude of 0.1nA. The main criterion for the classification of 

the cells as burst firing was the appearance of burst discharges, while the criteria for classifying 

a cell as regular firing was the absence of such bursts. Subicular burst firing cells (47.2%  of 249 

recorded cells) had typical bursts of 2-4 action potentials with a frequency of 180Hz followed by 

single spikes without frequency-adaptation. Regular spiking cells (46.11% of 249 cells), however, 

had characteristic single spike trains with an initial frequency of about 120Hz and displayed 

frequency adaptation (fig 2a,b; fig 3a,b).  In addition, a subset of cells that were classified as high-

threshold burst firing cells (4.45%) were not included in the study and had typical single spikes 

upon weak depolarization but showed initial burst discharge when the depolarization current was 

increased. Cells which had a high frequency firing pattern with a frequency >200Hz were classified 

as interneurons (2.22%) and were likewise not included in this study. 

	

	 Burst firing cells showed lower input resistance than regular firing cells in accordance with 

previous studies (O'Mara et al., 2001;Menendez et al., 2003). Moreover, sag and over-shoot potentials 

were more pronounced in burst firing cells (See P values of t-test in table 1) in the regular firing cells 

(fig 1), consistent with a higher expression of Ih in burst firing cells (van Welie et al., 2006)

Results
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Figure 1  |   Voltage responses to depolorizing and hyperpolarizing 
current steps of subicular burst-spiking and regular-spiking cells. Burst 
spiking cells display sag and overshoot potentials (indicated by arrows). 
Figure adapted from (Fidzinski et al., 2008) 

Figure 2  |  Illustration of the frequency adaptation in regular and Burst 
spiking cells  (a) and different initial spike frequencies in each cell type 
(b).  Figure adapted from (Fidzinski et al., 2008)
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Figure 3  |  Initial frequency (left plot) and adaptation ratio(right plot). 
Upon o.6 nA current  step the time between 1st  and  2nd  spikes  was  
evaluated  and  the reciprocal of that time was taken for the frequency 
(left plot) P<0.05. Frequency adaptation was calculated as the mean of 
the reciprocal of the time between the 3rd and the 4th spike divided by 
the 4th and the 5th spike P<0.05. Figure adapted from (Fidzinski et al., 
2008). 

Table 1  |  Membrane characteristics of  
subicular cells according to their electric properties 
*P-value refers to t-test comparison between the 
values of burst firing and regular firing neurons
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Table 1  |  Membrane characteristics of  
subicular cells according to their electric properties

cells (1 Hz: 67.0 ± 7.2% of baseline, n • 12, P < 0.001; 3 Hz:
82.3 ± 12.5% of baseline, n • 9, P < 0.01) whereas RS cells
expressed a late-onset LTP (1 Hz: 122.9 ± 11.9% of baseline, n • 9,
P < 0.001; 3 Hz: 129.1 ± 18.8% of baseline, n • 6, P < 0.01).
Stimulation at 5 Hz evoked no synaptic plasticity in BS cells
(115.9 ± 14.4% of baseline, n • 7), but a robust LTP in RS cells
(135.5 ± 18.3% of baseline, n • 6; P < 0.01). Overall, LTD was

observed in 61.1% of the investigated BS cells whereas LTP occurred
only in 22.2%. An inverse ratio was found for RS cells, with 62.9%
showing LTP and 14.8% LTD. Although LFS predominantly caused
LTD in BS cells and LTP in RS cells (Fig. 2C), we observed a high
variability of outcomes in each cell type, as summarized in Fig. 2D.
Analysis of variance revealed that on average BS cells responded to LFS
•• • •• • • • • • ••• • ••• • •• ••• ••• •• • •• •• • •• ••• • ••• •• •• • • •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
(P < 0.01). Moreover, synaptic strength linearly correlated with the
stimulation frequency in both BS (r • 0.377 ± 0.342, n • 36,
P < 0.05) and RS cells (r • 0.407 ± 0.378, n • 28, P < 0.05; Fig. 2D).

LFS-induced LTP and LTD is coexpressed in subicular BS
and RS cells

To investigate the underlying mechanisms of LFS-induced LTD in BS
cells and LTP in RS cells in more detail, we performed whole-cell
patch-clamp recordings of subicular pyramidal cells at a holding
potential of )70 mV. Induction of synaptic plasticity was performed in
current-clamp mode. As shown in the previous set of experiments with
sharp microelectrodes, LFS at 1 Hz resulted in LTD in BS cells

Table 1. Membrane properties of subicular BS (burst-spiking) and RS
(regular-spiking) cells

BS cells RS cells P-value

Number 55 49
RMP (mV) )58.6 ± 0.5 )57.9 ± 0.8 0.41
Rinput (M• ) 84.0 ± 5.7 120.1 ± 14.3* 0.02
Sag ratio 0.81 ± 0.01 0.85 ± 0.01* 0.03
Overshoot ratio 6.0 ± 0.5 7.6 ± 0.4* 0.01
Spike height (mV) 83.4 ± 3.5 78.6 ± 2.9 0.31
Spike half-width (ms) 0.92 ± 0.06 0.97 ± 0.07 0.61

Data are given as means ± SEM. *P < 0.05, comparing BS and RS cells.

Fig. 2. Averaged time course of bidirectional synaptic plasticity induced by LFS at 0.5, 1, 3 and 5 Hz for BS cells (A) and RS cells (B). Superimposed traces were
recorded before (1) and 25 min after LFS (2). Note the distinct expression of synaptic plasticity with LTD in BS cells at 0.5–3 Hz and LTP in RS cells at 1–5 Hz.
Scale bars: 5 mV and 50 ms. (C) Summary of frequency-dependent changes in synaptic strength induced in BS and RS cells. (D) Summary of synaptic plasticity
induced in each cell. Symbols indicate LTD (.), LTP (m) or no change in synaptic strength (s). Linear regression line indicates positive correlation between
stimulation frequency and change of synaptic strength. *P < 0.05.
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Figure 3  |  Initial frequency (left plot) and adaptation ratio(right plot). 
Upon o.6 nA current  step the time between 1st  and  2nd  spikes  was  
evaluated  and  the reciprocal of that time was taken for the frequency 
(left plot) P<0.05. Frequency adaptation was calculated as the mean of 
the reciprocal of the time between the 3rd and the 4th spike divided by 
the 4th and the 5th spike P<0.05. Figure adapted from (Fidzinski et al., 
2008). 
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Table 1  |  Membrane characteristics of  
subicular cells according to their electric properties

cells (1 Hz: 67.0 ± 7.2% of baseline, n • 12, P < 0.001; 3 Hz:
82.3 ± 12.5% of baseline, n • 9, P < 0.01) whereas RS cells
expressed a late-onset LTP (1 Hz: 122.9 ± 11.9% of baseline, n • 9,
P < 0.001; 3 Hz: 129.1 ± 18.8% of baseline, n • 6, P < 0.01).
Stimulation at 5 Hz evoked no synaptic plasticity in BS cells
(115.9 ± 14.4% of baseline, n • 7), but a robust LTP in RS cells
(135.5 ± 18.3% of baseline, n • 6; P < 0.01). Overall, LTD was

observed in 61.1% of the investigated BS cells whereas LTP occurred
only in 22.2%. An inverse ratio was found for RS cells, with 62.9%
showing LTP and 14.8% LTD. Although LFS predominantly caused
LTD in BS cells and LTP in RS cells (Fig. 2C), we observed a high
variability of outcomes in each cell type, as summarized in Fig. 2D.
Analysis of variance revealed that on average BS cells responded to LFS
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Table 1. Membrane properties of subicular BS (burst-spiking) and RS
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Data are given as means ± SEM. *P < 0.05, comparing BS and RS cells.

Fig. 2. Averaged time course of bidirectional synaptic plasticity induced by LFS at 0.5, 1, 3 and 5 Hz for BS cells (A) and RS cells (B). Superimposed traces were
recorded before (1) and 25 min after LFS (2). Note the distinct expression of synaptic plasticity with LTD in BS cells at 0.5–3 Hz and LTP in RS cells at 1–5 Hz.
Scale bars: 5 mV and 50 ms. (C) Summary of frequency-dependent changes in synaptic strength induced in BS and RS cells. (D) Summary of synaptic plasticity
induced in each cell. Symbols indicate LTD (.), LTP (m) or no change in synaptic strength (s). Linear regression line indicates positive correlation between
stimulation frequency and change of synaptic strength. *P < 0.05.
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Low-frequency stimulation results in LTD in burst 
firing cells and late-onset LTP in regular firing cells

	 CA1 efferents were stimulated at 4 different low frequencies (0.5, 1, 3 and 5Hz) in order to 

investigate frequency dependence of synaptic plasticity in both types of subicular pyramidal cells. 

Sharp microelectrode recording was used in order to leave the intracellular composition of the cells 

unchanged. 0.5Hz frequency stimulation resulted in LTD in the burst firing cells (85.7±8.2% of 

baseline, n=9, P<0.01) but failed to induce synaptic plasticity in the regular firing cells (108.9±11.5% 

of baseline  n=7)  (fig 4).

	 1Hz frequency stimulation induced LTD in the burst firing cells (67.0±7.2% of baseline 

n=12 P<0.001) while regular firing cells responded with late onset LTP (122.9±11.9% of baseline 

n=9 P<0.001) (fig 5).

	 3Hz frequency stimulation did not show any difference compared to 1Hz stimulation in 

both cell types, LTD in burst firing cells (82.3±12.5% of baseline n=9 P<0.01) and late onset LTP 

in the regular firing cells (129.1±18.8% of baseline, n=6 P<0.01) (fig 6).

Results 

Figure 4  |  0.5Hz LFS induced LTD in burst spiking cells (left plot) and no 
plasticity at the regular spiking cells (right plot). The recorded EPSPs  are  
before (1) and  25 min  after (2)  the  stimulation .  Scale  bars  5 mV and 50 ms. 
Figure adapted from (Fidzinski et al., 2008)
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Figure 5  |  3Hz LFS induced plasticity at the burst spiking cells (left plot) 
and no plasticity (right plot). The recorded  epsp´s  are  before and  25 min  
after  the  stimulation .  Scale  bars  5 mV and 50 ms. Figure adapted from 
(Fidzinski et al., 2008) 

Figure 6  |  3Hz LFS induced plasticity at the burst spiking cells (left plot) 
and no plasticity (right plot). The recorded  epsp´s  are  before and  25 min  
after  the  stimulation .  Scale  bars  5 mV and 50 ms. Figure adapted from 
(Fidzinski et al., 2008)
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	 5Hz frequency stimulation did not cause any synaptic plasticity in the burst firing cells 

(115.9±14.4% of baseline n=7) while in the regular firing cells a robust LTP was expressed 

(135.5±18.3% of baseline n=6 P<0.01) (fig 7)

	 The overall frequency dependence in burst firing cells showed clear LTD which was 

inversely correlated with stimulation frequency (maximum of the depression at 1Hz and no plasticity 

at the frequency of 5Hz). The, regular cells showed potentaition which increased in magnitude as a 

function of frequency (fig 8).

	 Overall, summarized over all frequencies investigated   , LTD was observed in61.1% of the 

investigated Burst firing cells, and LTP was observed in 22.2% of the Burst firing cells. The opposite 

ratio was found for Regular firing cells, with 62.9% showing LTP and 14.8% of the cells exhibiting 

LTD. This high variability of synaptic strength outcomes is illustrated in fig 9. Variance analysis 

showed that on average burst firing cells responded to LFS at 0.5–5 Hz with a significantly lower 

synaptic gain than regular firing cell(P<0.01). Moreover a linear correlation was found between 

synaptic strength and stimulation frequency in burst firing cells (r=0.377±0.342 n=36 P<0.05) as 

well as in regular firing cells (r=0.407±0.378 n=28 P<0.05) (fig 9).

Figure 7  | 5Hz LFS induced plasticity at the burst spiking cells (left plot) 
and no plasticity (right plot). The recorded EPSPs are  before and  25 min  
after  the  stimulation .  Scale  bars  5 mV and 50 ms. Figure adapted 
from (Fidzinski et al., 2008)
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Results | Low-frequency stimulation results in LTD in burst firing cells and late-onset LTP in regular firing cells

Figure 8  |Overview of stimulation frequency  dependence  of  the  
plasticity at both cell types.  Figure adapted from (Fidzinski et al., 2008)

Figure 9  |  Summary of synaptic plasticity induced at each cell. Symbols indicate LTD (upside down triangle), 
LTP (triangle) no plasticity (circle) (at P< 0.05). Linear regression line indicates positive correlation between 
stimulation frequency and change of synaptic strength.  Figure adapted from (Fidzinski et al., 2008)
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cells (1 Hz: 67.0 ± 7.2% of baseline, n • 12, P < 0.001; 3 Hz:
82.3 ± 12.5% of baseline, n • 9, P < 0.01) whereas RS cells
expressed a late-onset LTP (1 Hz: 122.9 ± 11.9% of baseline, n • 9,
P < 0.001; 3 Hz: 129.1 ± 18.8% of baseline, n • 6, P < 0.01).
Stimulation at 5 Hz evoked no synaptic plasticity in BS cells
(115.9 ± 14.4% of baseline, n • 7), but a robust LTP in RS cells
(135.5 ± 18.3% of baseline, n • 6; P < 0.01). Overall, LTD was

observed in 61.1% of the investigated BS cells whereas LTP occurred
only in 22.2%. An inverse ratio was found for RS cells, with 62.9%
showing LTP and 14.8% LTD. Although LFS predominantly caused
LTD in BS cells and LTP in RS cells (Fig. 2C), we observed a high
variability of outcomes in each cell type, as summarized in Fig. 2D.
Analysis of variance revealed that on average BS cells responded to LFS
•• • •• • • • • • ••• • ••• • •• ••• ••• •• • •• •• • •• ••• • ••• •• •• • • •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
(P < 0.01). Moreover, synaptic strength linearly correlated with the
stimulation frequency in both BS (r • 0.377 ± 0.342, n • 36,
P < 0.05) and RS cells (r • 0.407 ± 0.378, n • 28, P < 0.05; Fig. 2D).
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To investigate the underlying mechanisms of LFS-induced LTD in BS
cells and LTP in RS cells in more detail, we performed whole-cell
patch-clamp recordings of subicular pyramidal cells at a holding
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current-clamp mode. As shown in the previous set of experiments with
sharp microelectrodes, LFS at 1 Hz resulted in LTD in BS cells
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Spike half-width (ms) 0.92 ± 0.06 0.97 ± 0.07 0.61

Data are given as means ± SEM. *P < 0.05, comparing BS and RS cells.

Fig. 2. Averaged time course of bidirectional synaptic plasticity induced by LFS at 0.5, 1, 3 and 5 Hz for BS cells (A) and RS cells (B). Superimposed traces were
recorded before (1) and 25 min after LFS (2). Note the distinct expression of synaptic plasticity with LTD in BS cells at 0.5–3 Hz and LTP in RS cells at 1–5 Hz.
Scale bars: 5 mV and 50 ms. (C) Summary of frequency-dependent changes in synaptic strength induced in BS and RS cells. (D) Summary of synaptic plasticity
induced in each cell. Symbols indicate LTD (.), LTP (m) or no change in synaptic strength (s). Linear regression line indicates positive correlation between
stimulation frequency and change of synaptic strength. *P < 0.05.
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Figure 9  |  Summary of synaptic plasticity induced at each cell. Symbols indicate LTD (upside down triangle), 
LTP (triangle) no plasticity (circle) (at P< 0.05). Linear regression line indicates positive correlation between 
stimulation frequency and change of synaptic strength.  Figure adapted from (Fidzinski et al., 2008)

cells (1 Hz: 67.0 ± 7.2% of baseline, n • 12, P < 0.001; 3 Hz:
82.3 ± 12.5% of baseline, n • 9, P < 0.01) whereas RS cells
expressed a late-onset LTP (1 Hz: 122.9 ± 11.9% of baseline, n • 9,
P < 0.001; 3 Hz: 129.1 ± 18.8% of baseline, n • 6, P < 0.01).
Stimulation at 5 Hz evoked no synaptic plasticity in BS cells
(115.9 ± 14.4% of baseline, n • 7), but a robust LTP in RS cells
(135.5 ± 18.3% of baseline, n • 6; P < 0.01). Overall, LTD was

observed in 61.1% of the investigated BS cells whereas LTP occurred
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showing LTP and 14.8% LTD. Although LFS predominantly caused
LTD in BS cells and LTP in RS cells (Fig. 2C), we observed a high
variability of outcomes in each cell type, as summarized in Fig. 2D.
Analysis of variance revealed that on average BS cells responded to LFS
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plasticity at both cell types.  Figure adapted from (Fidzinski et al., 2008)

cells (1 Hz: 67.0 ± 7.2% of baseline, n • 12, P < 0.001; 3 Hz:
82.3 ± 12.5% of baseline, n • 9, P < 0.01) whereas RS cells
expressed a late-onset LTP (1 Hz: 122.9 ± 11.9% of baseline, n • 9,
P < 0.001; 3 Hz: 129.1 ± 18.8% of baseline, n • 6, P < 0.01).
Stimulation at 5 Hz evoked no synaptic plasticity in BS cells
(115.9 ± 14.4% of baseline, n • 7), but a robust LTP in RS cells
(135.5 ± 18.3% of baseline, n • 6; P < 0.01). Overall, LTD was

observed in 61.1% of the investigated BS cells whereas LTP occurred
only in 22.2%. An inverse ratio was found for RS cells, with 62.9%
showing LTP and 14.8% LTD. Although LFS predominantly caused
LTD in BS cells and LTP in RS cells (Fig. 2C), we observed a high
variability of outcomes in each cell type, as summarized in Fig. 2D.
Analysis of variance revealed that on average BS cells responded to LFS
•• • •• • • • • • ••• • ••• • •• ••• ••• •• • •• •• • •• ••• • ••• •• •• • • •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
(P < 0.01). Moreover, synaptic strength linearly correlated with the
stimulation frequency in both BS (r • 0.377 ± 0.342, n • 36,
P < 0.05) and RS cells (r • 0.407 ± 0.378, n • 28, P < 0.05; Fig. 2D).

LFS-induced LTP and LTD is coexpressed in subicular BS
and RS cells

To investigate the underlying mechanisms of LFS-induced LTD in BS
cells and LTP in RS cells in more detail, we performed whole-cell
patch-clamp recordings of subicular pyramidal cells at a holding
potential of )70 mV. Induction of synaptic plasticity was performed in
current-clamp mode. As shown in the previous set of experiments with
sharp microelectrodes, LFS at 1 Hz resulted in LTD in BS cells

Table 1. Membrane properties of subicular BS (burst-spiking) and RS
(regular-spiking) cells

BS cells RS cells P-value

Number 55 49
RMP (mV) )58.6 ± 0.5 )57.9 ± 0.8 0.41
Rinput (M• ) 84.0 ± 5.7 120.1 ± 14.3* 0.02
Sag ratio 0.81 ± 0.01 0.85 ± 0.01* 0.03
Overshoot ratio 6.0 ± 0.5 7.6 ± 0.4* 0.01
Spike height (mV) 83.4 ± 3.5 78.6 ± 2.9 0.31
Spike half-width (ms) 0.92 ± 0.06 0.97 ± 0.07 0.61

Data are given as means ± SEM. *P < 0.05, comparing BS and RS cells.

Fig. 2. Averaged time course of bidirectional synaptic plasticity induced by LFS at 0.5, 1, 3 and 5 Hz for BS cells (A) and RS cells (B). Superimposed traces were
recorded before (1) and 25 min after LFS (2). Note the distinct expression of synaptic plasticity with LTD in BS cells at 0.5–3 Hz and LTP in RS cells at 1–5 Hz.
Scale bars: 5 mV and 50 ms. (C) Summary of frequency-dependent changes in synaptic strength induced in BS and RS cells. (D) Summary of synaptic plasticity
induced in each cell. Symbols indicate LTD (.), LTP (m) or no change in synaptic strength (s). Linear regression line indicates positive correlation between
stimulation frequency and change of synaptic strength. *P < 0.05.

1114 P. Fidzinski et al.

• The Authors (2008). Journal Compilation • Federation of European Neuroscience Societies and Blackwell Publishing Ltd
European Journal of Neuroscience, 27, 1111–1118

Figure 9  |  Summary of synaptic plasticity induced at each cell. Symbols indicate LTD (upside down triangle), 
LTP (triangle) no plasticity (circle) (at P< 0.05). Linear regression line indicates positive correlation between 
stimulation frequency and change of synaptic strength.  Figure adapted from (Fidzinski et al., 2008)
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Plasticity does not depend on the membrane potential at the soma

	 In order to reveal the underlying mechanisms of the long term plasticity phenomena in 

our preparation, sharp-electrodes recordings are insufficient. Therefore, we conducted induction 

protocols in whole-cell patch recordings. To validate our LFS-protocol, we examined two different 

LFS induction protocols with 1Hz stimulation. In the first protocol, performed in voltage clamp 

mode at holding potential of -70 mV, we stimulated at 1 Hz for 15 min.  The second protocol 

was performed in current clamp condition. 1Hz stimulation was performed for 15 minutes. Both 

induction protocols displayed similar results (P>0.1 in all comparisons, student's t-test): Burst 

firing cells displayed LTD (72.2±4.9% of baseline n=8 P<0.01 in voltage clamp mode, fig 10; and 

71.3±5.6% of baseline n=10 P<0.001 in current clamp mode, fig 11), while regular firing cells 

showed LTP (133.3±12.4% of baseline n=14 P<0.05 in voltage clamp, fig 12 and 131.4±9.2% of 

baseline n=9 P<0.01) (fig 13).

Results 

Figure 10  |   LFS  at  1Hz  in  
voltage  clamp  mode  at  -70mV  
induces LTD in burst spiking 
cells. Averaged time courses of 
evoked EPSC  amplitudes before 
and after induction with LFS at 
voltage clamp mode at -70mV are 
shown. Superimposed traces are  
averages  from 10 single responses  
each  and were  recorded  during  
baseline  (left-1)  and  25  min  after  
induction  (right-2). Figure adapted 
from (Shor et al., 2009)
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Fig. 1. (A) Schematic illustration of the stimulation and recording sites in a hori-
zontal hippocampal brain slice. Hippocampal areas: CA3, CA1; Sub: subiculum; EC:
entorhinal cortex; DG: dentate gyrus. (B) Voltage responses of subicular BS and RS
neurons to depolarizing and hyperpolarizing current pulses. BS cell display single
burst discharges whereas RS cells discharge with single spikes. Upon stronger depo-
larization, BS cells display burst discharges followed by single spikes. (C) LFS at 1 Hz
induces LTD in BS cells but LTP in RS cells. Averaged time courses of evoked EPSC
amplitudes before and after induction with LFS are shown. Superimposed traces are
averages from 10 single responses each and were recorded during baseline (left) and
25 min after induction (right).

tions at 35 •C for • 30 min and then transferred to a physiological
ACSF solution at room temperature for further storage. The com-
position of physiological ACSF was as follows (in mM): NaCl 129,
Na2PO4 1.25, NaHCO3 26, KCl 3, CaCl2 1.6, MgSO4 1.8, and glucose
10 at a pH of 7.4.

Whole-cell recordings in the pyramidal cell layer of the subicu-
lum were performed in voltage-clamp mode at a holding potential
of • 70 mV (unless otherwise stated) at near physiological tempera-
tures (32–34 •C). Patch-clamp electrodes (4–6 M• • • • •• • ••• • • ••• • • • • • • • • • • • • • •
(in mM): K-gluconate 135, KCl 20, HEPES 10, phosphocreatine 7, Mg-
ATP 2, Na-GTP 0.3 EGTA 0.2 and adjusted with KOH to a pH of 7.2.
All experiments were performed in the presence of bicuculline or
SR-95531 (gabazine) to block GABAA receptor-mediated responses.
Previous studies demonstrated the existence of recurrent connec-
tions within the subicular network [16,23] that frequently cause
polysynaptic responses upon repetitive stimulation. Therefore, the
concentrations of MgSO4 and CaCl2 were elevated to 4 mM each to
reduce the probability of polysynaptic responses [31,36,6].

For characterization of intrinsic discharge and membrane
properties, hyper- and depolarizing-steps were applied in current-
clamp mode (200 ms, 0.1 nA). Excitatory postsynaptic currents
(EPSCs) were evoked by alvear stimulation (Fig. 1A). The stimulus
intensity was set after adjusting the EPSC amplitudes to 40–60%
of the maximum response and ranged between 1.5 and 4 V. For
induction of synaptic plasticity, paired-pulse low-frequency stimu-
lation at 1 Hz (15 min, 50 ms inter-stimulus interval) was applied in
current-clamp mode. Normalized EPSCs were averaged for the last
5 min of baseline recordings. LTP and LTD were calculated as per-
centage values of the normalized baseline EPSC amplitude between
20 and 25 min after induction. Statistical analysis was performed by
applying Student’s t••• • • •• • • • • • • • • •• • •• • • • •• • •• ••• ••• • • • •• • •• ••••••••••••••••••••••••••••••••••••••••••••
cance was set to p • • •• • • • •• • • •• • • •• •• • •• • • • • ••• •• • • • • • • • ••••••••••••••••••••••••••••••••••••••••
sampled at 10 kHz by an ITC-16 interface (Instrutech Corp., Great
Neck, NY, USA) and processed by TIDA software (HEKA GmbH,
Lambrecht, Germany). Analysis of the paired-pulse was applied
•• • •• • ••• •• • •• • • •• • • • • •• • • • • • ••• • • • • • • •• • • • • ••• • • • •• • • ••••••••••••••••••••••••••••••••••••••••••••••••••••••••

tions in synaptic transmission [46]. The paired-pulse ratio (PPR)
• • • • • • • • • • • •• • •• • • • • • • •• ••• •• • • • • • • • • • •••• • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
amplitude) to a pair of stimuli given at an inter-stimulus interval of
50 ms.

The following drugs were used: nifedipine, 20 • M; scopolamine,
30 mM; bicuculline, 5 • M; SR 95531 hydrobromide (gabazine),
1 • M. Drugs were purchased from Sigma–Aldrich, Germany and
Tocris, UK. All drugs were applied throughout the entire experiment
and for at least 10 min prior to recording of baseline EPSCs.

Upon injection of depolarizing current steps (200 ms,
0.1–0.8 nA) subicular BS cells responded with a burst of two
to four spikes at • 170 Hz followed by single spikes without
frequency adaptation whereas RS cells displayed trains of single
spikes with frequency adaptation (Fig. 1B). Out of 64 investigated
• • ••• • • • • • • •• • •• • • •• • • • • • • • • • • • • • • • • • • • • •• • •• • • • ••••••••••••••••••••••••••••••••••••••••••••••••••
difference was found between the resting membrane potentials of
the BS and RS cells (BS: • 58.6 • 0.8 mV, n = 27; RS: • 58.4 • 1.0 mV,
n = 37, p = 0.73), whereas the input resistance was lower in BS cells
than in RS cells (BS: 79.6 • 3.7 M• , n = 27; RS: 107.6 • 6.3 M• ,
n = 37, p < 0.01). Upon synaptic stimulation, BS cells displayed
slightly higher paired-pulse facilitation than RS cells (BS: 1.76 • 0.1,
n = 8; RS: 1.34 • 0.6, n = 14, p < 0.01).

As reported in our recent study [12], LFS induced LTD in BS
cells (72.2 • 4.9% of baseline, n = 8, p < 0.01) but a late-onset LTP
in RS cells (133.3 • 12.4% of baseline, n = 14, p < 0.05; Fig. 1C). As
we observed no obvious difference between slices from male and
female animals, data were pooled. Li et al. demonstrated that subic-
ular LTD induced by a pairing protocol depends on the activation of
mAChR [25]. We therefore tested the effect of the muscarinic recep-
tor antagonist scopolamine on LFS-induced bidirectional synaptic
plasticity. Application of scopolamine had no effect upon base-
line transmission and did not change the PPR in either cell type
(BS: 1.60 • 0.1, n = 10, p = 0.3 vs. control; RS: 1.44 • 0.1, n = 11, p = 0.9
vs. control, data not shown). Scopolamine blocked LTD in BS cells
and LTP in RS cells (BS: 96.9 • 4.7% of baseline, n = 10, p = 0.67; RS:
95.2 • 4.0% of baseline, n = 11, p = 0.14; Fig. 2A) indicating that the
co-activation of mAChR is necessary for both forms of synaptic
plasticity.

Although glutamate receptors are the predominant source for
calcium signals involved in the induction of synaptic plasticity,
additional sources such as VGCC may play a modulatory func-
tion in this process [7]. In BS cells, application of the L-type
calcium channel blocker nifedipine prevented the induction of
LTD and unmasked a late-onset LTP (129.4 • 11.3% of baseline,
n = 10, p < 0.05; Fig. 2B). A reverse effect was observed in RS cells,
where nifedipine blocked the induction of LTP and unmasked LTD
(86.5 • 4.0% of baseline, n = 9, p < 0.05; Fig. 2B). As with scopo-
lamine, nifedipine had no effect on the paired-pulse ratio (BS:
1.73 • 0.1, n = 10, p = 0.3 vs. control; RS: 1.31 • 0.1, n = 9, p = 0.8 vs.
control, data not shown). These results suggest that VGCC modu-
late intracellular calcium signals in subicular BS and RS cells, and
• • •• •• •• • •• • • • •• •••• • • • • • • • ••• • •• • ••• ••• •• • • • •••• • • • •• • • • • ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
ner.

In the present study, we show that LFS-induced LTD in BS cells
and LTP in RS cells require the co-activation of mAChR. In addition,
we demonstrate that the polarity of synaptic plasticity is modu-
lated by VGCC, as the L-type calcium channel inhibitor nifedipine
converts LTD to LTP in BS cells and LTP to LTD in RS cells.

The involvement of muscarinergic neurotransmission in mem-
ory consolidation and cognition processes is widely recognized
[18]. The hippocampal formation, including the subiculum, receives
its major cholinergic projections from the medial septal nucleus
and the vertical limb nucleus of the diagonal band, respectively
[30,26]• • • • • • • • • • • • • • • • • •• • • • • • • • • •• • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •1, M2 and
M4 are predominant in the central nervous system. The M1 recep-
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Figure 11  |  LFS  at  1Hz  at  
bridge  mode  at the intrinsic  
membrane potential  induces LTD 
in burst spiking cells. Averaged 
time courses of evoked EPSC 
amplitudes before and after 
induction with LFS at bridge 
mode are shown. Superimposed 
traces are  averages  from 10 
single responses  each  and were  
recorded  during  baseline  (left-
1)  and  25  min  after  induction  
(right-2). Scale bars 100pA 10ms. 
Figure adapted from (Fidzinski et 
al., 2008)

Figure 12  |   LFS at 1Hz at 
voltage clamp mode at -70mV 
induces LTP in regular spiking 
cells. Averaged time courses of 
evoked EPSC amplitudes before 
and after induction with LFS at 
voltage clamp mode at -70mV 
are shown. Superimposed traces 
are  averages  from 10 single 
responses  each  and were  
recorded  during  baseline  (left-
1)  and  25  min  after  induction  
(right-2). Figure adapted from 
(Shor et al., 2009)
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(71.3 ± 5.6% of baseline, n • 10, P • 0.001) and a late-onset LTP in
RS cells (131.4 ± 9.2% of baseline, n • 9, P • 0.01; Fig. 3). A crucial
step in the induction of synaptic plasticity in various brain regions
is the activation of postsynaptic NMDAR. In BS cells, application of
D-APV blocked the induction of LTD and unmasked a late-onset LTP
(123.2 ± 9.2% of baseline, n • 11, P • 0.05; Fig. 3A). This result
suggests that in BS cells LFS induces an NMDAR-dependent form of
LTD that masks an NMDAR-independent late-onset LTP. Late-onset
NMDAR-independent LTP has been reported to depend on the
activation of mGluR (O’Leary & O’Connor, 1999). In line with this
previous report, after co-application of D-APV and the type I •II
mGluR antagonist MCPG, LFS induced neither LTD nor LTP in BS
cells (101.4 ± 3.1% of baseline, n • 9, Fig. 3A). In RS cells,
application of the NMDAR antagonist D-APV failed to block the
late-onset LTP (153.4 ± 9.4% of baseline, n • 9, P • 0.001, data
not shown). As in BS cells, application of MCPG blocked the
NMDAR-independent LTP in RS cells and revealed a pronounced LTD
(76.2 ± 7.0% of baseline, n • 8, P • 0.05; Fig. 3B). Co-application
of D-APV and MCPG prevented synaptic plasticity in RS cells
(97.4 ± 4.9% of baseline, n • 6). These results indicate that LFS
induces bidirectional synaptic plasticity in subicular pyramidal cells
and that NMDAR and mGluR play complementary roles in the
induction mechanism. Both cell types, however, seem to differ in their
propensity to express either LTP or LTD. In BS cells, LFS induces an

NMDAR-dependent LTD that masks an mGluR-dependent form of
LTP. In contrast, in RS cells the same induction protocol induces an
mGluR-dependent LTP that masks an NMDAR-dependent form of
LTD.

LFS-induced LTP and LTD in subicular BS and RS cells
depends on postsynaptic Ca2+

NMDAR and type I mGluR mediate their intracellular effects via
Ca2+ as a second messenger (Perkel et al., 1993; Anwyl, 1999).
Loading the postsynaptic cell with the Ca2+ chelator BAPTA
completely abolished synaptic plasticity in both BS and RS cells
(BS cells: 97.2 ± 7.2% of baseline, n • 8; RS cells: 96.7 ± 4.6% of
baseline, n • 8; Fig. 4A), suggesting that LFS-induced LTP and LTD
rely on postsynaptic Ca2+ signaling. In the course of stimulation, we
observed a transient facilitation of EPSPs in both cell types
(Fig. 4B, a). We determined the level of this facilitation by analysing
the time course and extent of the change in EPSP amplitude and
calculated the respective time–amplitude integral (Table 2). At
stimulation frequencies between 0.5 and 3 Hz, which induced LTD
in BS cells but not in RS cells, the facilitation in BS cells was
••• • •• ••• ••• •••• • • •• •• •• •• • • •••••• •• •• • •••• • • • • •• •••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••
correlation was found between the time–amplitude integral of EPSPs
during stimulation and the change in synaptic strength for both cell

Fig. 3. (A) LFS-induced LTD in BS cells is
blocked by the NMDAR antagonist D-APV and
unmasks a late-onset LTP. After co-application of
D-APV and the mGluR antagonist MCPG, LTD
and LTP are blocked in BS cells. (B) In RS cells,
MCPG blocks LFS-induced late-onset LTP and
unmasks LTD. Co-application of D-APV and
MCPG blocks late-onset LTP and LTD in RS cells.
Superimposed traces were recorded before (1) and
25 min after (2) LFS. Scale bars: 100 pA and
25 ms. (C) Summary of changes in synaptic
strength induced by LFS for single cells: under
control conditions, in the presence of D-APV,
MCPG and after co-application of both antago-
nists. Symbols indicate LTD (down-triangles), LTP
(up-triangles) or no change in synaptic strength
(circles) for BS cells (open symbols) and RS cells
•• •••• •• • • • •••••••••••••••••••

• •••••• •••• • • ••••••••• •• • • • ••• • ••• •• • •• • •• ••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
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Fig. 1. (A) Schematic illustration of the stimulation and recording sites in a hori-
zontal hippocampal brain slice. Hippocampal areas: CA3, CA1; Sub: subiculum; EC:
entorhinal cortex; DG: dentate gyrus. (B) Voltage responses of subicular BS and RS
neurons to depolarizing and hyperpolarizing current pulses. BS cell display single
burst discharges whereas RS cells discharge with single spikes. Upon stronger depo-
larization, BS cells display burst discharges followed by single spikes. (C) LFS at 1 Hz
induces LTD in BS cells but LTP in RS cells. Averaged time courses of evoked EPSC
amplitudes before and after induction with LFS are shown. Superimposed traces are
averages from 10 single responses each and were recorded during baseline (left) and
25 min after induction (right).

tions at 35 •C for • 30 min and then transferred to a physiological
ACSF solution at room temperature for further storage. The com-
position of physiological ACSF was as follows (in mM): NaCl 129,
Na2PO4 1.25, NaHCO3 26, KCl 3, CaCl2 1.6, MgSO4 1.8, and glucose
10 at a pH of 7.4.

Whole-cell recordings in the pyramidal cell layer of the subicu-
lum were performed in voltage-clamp mode at a holding potential
of • 70 mV (unless otherwise stated) at near physiological tempera-
tures (32–34 •C). Patch-clamp electrodes (4–6 M• • • • •• • ••• • • ••• • • • • • • • • • • • • • •
(in mM): K-gluconate 135, KCl 20, HEPES 10, phosphocreatine 7, Mg-
ATP 2, Na-GTP 0.3 EGTA 0.2 and adjusted with KOH to a pH of 7.2.
All experiments were performed in the presence of bicuculline or
SR-95531 (gabazine) to block GABAA receptor-mediated responses.
Previous studies demonstrated the existence of recurrent connec-
tions within the subicular network [16,23] that frequently cause
polysynaptic responses upon repetitive stimulation. Therefore, the
concentrations of MgSO4 and CaCl2 were elevated to 4 mM each to
reduce the probability of polysynaptic responses [31,36,6].

For characterization of intrinsic discharge and membrane
properties, hyper- and depolarizing-steps were applied in current-
clamp mode (200 ms, 0.1 nA). Excitatory postsynaptic currents
(EPSCs) were evoked by alvear stimulation (Fig. 1A). The stimulus
intensity was set after adjusting the EPSC amplitudes to 40–60%
of the maximum response and ranged between 1.5 and 4 V. For
induction of synaptic plasticity, paired-pulse low-frequency stimu-
lation at 1 Hz (15 min, 50 ms inter-stimulus interval) was applied in
current-clamp mode. Normalized EPSCs were averaged for the last
5 min of baseline recordings. LTP and LTD were calculated as per-
centage values of the normalized baseline EPSC amplitude between
20 and 25 min after induction. Statistical analysis was performed by
applying Student’s t••• • • •• • • • • • • • • •• • •• • • • •• • •• ••• ••• • • • •• • •• ••••••••••••••••••••••••••••••••••••••••••••
cance was set to p • • •• • • • •• • • •• • • •• •• • •• • • • • ••• •• • • • • • • • ••••••••••••••••••••••••••••••••••••••••
sampled at 10 kHz by an ITC-16 interface (Instrutech Corp., Great
Neck, NY, USA) and processed by TIDA software (HEKA GmbH,
Lambrecht, Germany). Analysis of the paired-pulse was applied
•• • •• • ••• •• • •• • • •• • • • • •• • • • • • ••• • • • • • • •• • • • • ••• • • • •• • • ••••••••••••••••••••••••••••••••••••••••••••••••••••••••

tions in synaptic transmission [46]. The paired-pulse ratio (PPR)
• • • • • • • • • • • •• • •• • • • • • • •• ••• •• • • • • • • • • • •••• • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
amplitude) to a pair of stimuli given at an inter-stimulus interval of
50 ms.

The following drugs were used: nifedipine, 20 • M; scopolamine,
30 mM; bicuculline, 5 • M; SR 95531 hydrobromide (gabazine),
1 • M. Drugs were purchased from Sigma–Aldrich, Germany and
Tocris, UK. All drugs were applied throughout the entire experiment
and for at least 10 min prior to recording of baseline EPSCs.

Upon injection of depolarizing current steps (200 ms,
0.1–0.8 nA) subicular BS cells responded with a burst of two
to four spikes at • 170 Hz followed by single spikes without
frequency adaptation whereas RS cells displayed trains of single
spikes with frequency adaptation (Fig. 1B). Out of 64 investigated
• • ••• • • • • • • •• • •• • • •• • • • • • • • • • • • • • • • • • • • • •• • •• • • • ••••••••••••••••••••••••••••••••••••••••••••••••••
difference was found between the resting membrane potentials of
the BS and RS cells (BS: • 58.6 • 0.8 mV, n = 27; RS: • 58.4 • 1.0 mV,
n = 37, p = 0.73), whereas the input resistance was lower in BS cells
than in RS cells (BS: 79.6 • 3.7 M• , n = 27; RS: 107.6 • 6.3 M• ,
n = 37, p < 0.01). Upon synaptic stimulation, BS cells displayed
slightly higher paired-pulse facilitation than RS cells (BS: 1.76 • 0.1,
n = 8; RS: 1.34 • 0.6, n = 14, p < 0.01).

As reported in our recent study [12], LFS induced LTD in BS
cells (72.2 • 4.9% of baseline, n = 8, p < 0.01) but a late-onset LTP
in RS cells (133.3 • 12.4% of baseline, n = 14, p < 0.05; Fig. 1C). As
we observed no obvious difference between slices from male and
female animals, data were pooled. Li et al. demonstrated that subic-
ular LTD induced by a pairing protocol depends on the activation of
mAChR [25]. We therefore tested the effect of the muscarinic recep-
tor antagonist scopolamine on LFS-induced bidirectional synaptic
plasticity. Application of scopolamine had no effect upon base-
line transmission and did not change the PPR in either cell type
(BS: 1.60 • 0.1, n = 10, p = 0.3 vs. control; RS: 1.44 • 0.1, n = 11, p = 0.9
vs. control, data not shown). Scopolamine blocked LTD in BS cells
and LTP in RS cells (BS: 96.9 • 4.7% of baseline, n = 10, p = 0.67; RS:
95.2 • 4.0% of baseline, n = 11, p = 0.14; Fig. 2A) indicating that the
co-activation of mAChR is necessary for both forms of synaptic
plasticity.

Although glutamate receptors are the predominant source for
calcium signals involved in the induction of synaptic plasticity,
additional sources such as VGCC may play a modulatory func-
tion in this process [7]. In BS cells, application of the L-type
calcium channel blocker nifedipine prevented the induction of
LTD and unmasked a late-onset LTP (129.4 • 11.3% of baseline,
n = 10, p < 0.05; Fig. 2B). A reverse effect was observed in RS cells,
where nifedipine blocked the induction of LTP and unmasked LTD
(86.5 • 4.0% of baseline, n = 9, p < 0.05; Fig. 2B). As with scopo-
lamine, nifedipine had no effect on the paired-pulse ratio (BS:
1.73 • 0.1, n = 10, p = 0.3 vs. control; RS: 1.31 • 0.1, n = 9, p = 0.8 vs.
control, data not shown). These results suggest that VGCC modu-
late intracellular calcium signals in subicular BS and RS cells, and
• • •• •• •• • •• • • • •• •••• • • • • • • • ••• • •• • ••• ••• •• • • • •••• • • • •• • • • • ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
ner.

In the present study, we show that LFS-induced LTD in BS cells
and LTP in RS cells require the co-activation of mAChR. In addition,
we demonstrate that the polarity of synaptic plasticity is modu-
lated by VGCC, as the L-type calcium channel inhibitor nifedipine
converts LTD to LTP in BS cells and LTP to LTD in RS cells.

The involvement of muscarinergic neurotransmission in mem-
ory consolidation and cognition processes is widely recognized
[18]. The hippocampal formation, including the subiculum, receives
its major cholinergic projections from the medial septal nucleus
and the vertical limb nucleus of the diagonal band, respectively
[30,26]• • • • • • • • • • • • • • • • • •• • • • • • • • • •• • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •1, M2 and
M4 are predominant in the central nervous system. The M1 recep-
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Figure 11  |  LFS  at  1Hz  at  
bridge  mode  at the intrinsic  
membrane potential  induces LTD 
in burst spiking cells. Averaged 
time courses of evoked EPSC 
amplitudes before and after 
induction with LFS at bridge 
mode are shown. Superimposed 
traces are  averages  from 10 
single responses  each  and were  
recorded  during  baseline  (left-
1)  and  25  min  after  induction  
(right-2). Scale bars 100pA 10ms. 
Figure adapted from (Fidzinski et 
al., 2008)

(71.3 ± 5.6% of baseline, n • 10, P • 0.001) and a late-onset LTP in
RS cells (131.4 ± 9.2% of baseline, n • 9, P • 0.01; Fig. 3). A crucial
step in the induction of synaptic plasticity in various brain regions
is the activation of postsynaptic NMDAR. In BS cells, application of
D-APV blocked the induction of LTD and unmasked a late-onset LTP
(123.2 ± 9.2% of baseline, n • 11, P • 0.05; Fig. 3A). This result
suggests that in BS cells LFS induces an NMDAR-dependent form of
LTD that masks an NMDAR-independent late-onset LTP. Late-onset
NMDAR-independent LTP has been reported to depend on the
activation of mGluR (O’Leary & O’Connor, 1999). In line with this
previous report, after co-application of D-APV and the type I •II
mGluR antagonist MCPG, LFS induced neither LTD nor LTP in BS
cells (101.4 ± 3.1% of baseline, n • 9, Fig. 3A). In RS cells,
application of the NMDAR antagonist D-APV failed to block the
late-onset LTP (153.4 ± 9.4% of baseline, n • 9, P • 0.001, data
not shown). As in BS cells, application of MCPG blocked the
NMDAR-independent LTP in RS cells and revealed a pronounced LTD
(76.2 ± 7.0% of baseline, n • 8, P • 0.05; Fig. 3B). Co-application
of D-APV and MCPG prevented synaptic plasticity in RS cells
(97.4 ± 4.9% of baseline, n • 6). These results indicate that LFS
induces bidirectional synaptic plasticity in subicular pyramidal cells
and that NMDAR and mGluR play complementary roles in the
induction mechanism. Both cell types, however, seem to differ in their
propensity to express either LTP or LTD. In BS cells, LFS induces an

NMDAR-dependent LTD that masks an mGluR-dependent form of
LTP. In contrast, in RS cells the same induction protocol induces an
mGluR-dependent LTP that masks an NMDAR-dependent form of
LTD.

LFS-induced LTP and LTD in subicular BS and RS cells
depends on postsynaptic Ca2+

NMDAR and type I mGluR mediate their intracellular effects via
Ca2+ as a second messenger (Perkel et al., 1993; Anwyl, 1999).
Loading the postsynaptic cell with the Ca2+ chelator BAPTA
completely abolished synaptic plasticity in both BS and RS cells
(BS cells: 97.2 ± 7.2% of baseline, n • 8; RS cells: 96.7 ± 4.6% of
baseline, n • 8; Fig. 4A), suggesting that LFS-induced LTP and LTD
rely on postsynaptic Ca2+ signaling. In the course of stimulation, we
observed a transient facilitation of EPSPs in both cell types
(Fig. 4B, a). We determined the level of this facilitation by analysing
the time course and extent of the change in EPSP amplitude and
calculated the respective time–amplitude integral (Table 2). At
stimulation frequencies between 0.5 and 3 Hz, which induced LTD
in BS cells but not in RS cells, the facilitation in BS cells was
••• • •• ••• ••• •••• • • •• •• •• •• • • •••••• •• •• • •••• • • • • •• •••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••
correlation was found between the time–amplitude integral of EPSPs
during stimulation and the change in synaptic strength for both cell

Fig. 3. (A) LFS-induced LTD in BS cells is
blocked by the NMDAR antagonist D-APV and
unmasks a late-onset LTP. After co-application of
D-APV and the mGluR antagonist MCPG, LTD
and LTP are blocked in BS cells. (B) In RS cells,
MCPG blocks LFS-induced late-onset LTP and
unmasks LTD. Co-application of D-APV and
MCPG blocks late-onset LTP and LTD in RS cells.
Superimposed traces were recorded before (1) and
25 min after (2) LFS. Scale bars: 100 pA and
25 ms. (C) Summary of changes in synaptic
strength induced by LFS for single cells: under
control conditions, in the presence of D-APV,
MCPG and after co-application of both antago-
nists. Symbols indicate LTD (down-triangles), LTP
(up-triangles) or no change in synaptic strength
(circles) for BS cells (open symbols) and RS cells
•• •••• •• • • • •••••••••••••••••••

• •••••• •••• • • ••••••••• •• • • • ••• • ••• •• • •• • •• ••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
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Figure 12  |   LFS at 1Hz at 
voltage clamp mode at -70mV 
induces LTP in regular spiking 
cells. Averaged time courses of 
evoked EPSC amplitudes before 
and after induction with LFS at 
voltage clamp mode at -70mV 
are shown. Superimposed traces 
are  averages  from 10 single 
responses  each  and were  
recorded  during  baseline  (left-
1)  and  25  min  after  induction  
(right-2). Figure adapted from 
(Shor et al., 2009)
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Fig. 1. (A) Schematic illustration of the stimulation and recording sites in a hori-
zontal hippocampal brain slice. Hippocampal areas: CA3, CA1; Sub: subiculum; EC:
entorhinal cortex; DG: dentate gyrus. (B) Voltage responses of subicular BS and RS
neurons to depolarizing and hyperpolarizing current pulses. BS cell display single
burst discharges whereas RS cells discharge with single spikes. Upon stronger depo-
larization, BS cells display burst discharges followed by single spikes. (C) LFS at 1 Hz
induces LTD in BS cells but LTP in RS cells. Averaged time courses of evoked EPSC
amplitudes before and after induction with LFS are shown. Superimposed traces are
averages from 10 single responses each and were recorded during baseline (left) and
25 min after induction (right).

tions at 35 •C for • 30 min and then transferred to a physiological
ACSF solution at room temperature for further storage. The com-
position of physiological ACSF was as follows (in mM): NaCl 129,
Na2PO4 1.25, NaHCO3 26, KCl 3, CaCl2 1.6, MgSO4 1.8, and glucose
10 at a pH of 7.4.

Whole-cell recordings in the pyramidal cell layer of the subicu-
lum were performed in voltage-clamp mode at a holding potential
of • 70 mV (unless otherwise stated) at near physiological tempera-
tures (32–34 •C). Patch-clamp electrodes (4–6 M• • • • •• • ••• • • ••• • • • • • • • • • • • • • •
(in mM): K-gluconate 135, KCl 20, HEPES 10, phosphocreatine 7, Mg-
ATP 2, Na-GTP 0.3 EGTA 0.2 and adjusted with KOH to a pH of 7.2.
All experiments were performed in the presence of bicuculline or
SR-95531 (gabazine) to block GABAA receptor-mediated responses.
Previous studies demonstrated the existence of recurrent connec-
tions within the subicular network [16,23] that frequently cause
polysynaptic responses upon repetitive stimulation. Therefore, the
concentrations of MgSO4 and CaCl2 were elevated to 4 mM each to
reduce the probability of polysynaptic responses [31,36,6].

For characterization of intrinsic discharge and membrane
properties, hyper- and depolarizing-steps were applied in current-
clamp mode (200 ms, 0.1 nA). Excitatory postsynaptic currents
(EPSCs) were evoked by alvear stimulation (Fig. 1A). The stimulus
intensity was set after adjusting the EPSC amplitudes to 40–60%
of the maximum response and ranged between 1.5 and 4 V. For
induction of synaptic plasticity, paired-pulse low-frequency stimu-
lation at 1 Hz (15 min, 50 ms inter-stimulus interval) was applied in
current-clamp mode. Normalized EPSCs were averaged for the last
5 min of baseline recordings. LTP and LTD were calculated as per-
centage values of the normalized baseline EPSC amplitude between
20 and 25 min after induction. Statistical analysis was performed by
applying Student’s t••• • • •• • • • • • • • • •• • •• • • • •• • •• ••• ••• • • • •• • •• ••••••••••••••••••••••••••••••••••••••••••••
cance was set to p • • •• • • • •• • • •• • • •• •• • •• • • • • ••• •• • • • • • • • ••••••••••••••••••••••••••••••••••••••••
sampled at 10 kHz by an ITC-16 interface (Instrutech Corp., Great
Neck, NY, USA) and processed by TIDA software (HEKA GmbH,
Lambrecht, Germany). Analysis of the paired-pulse was applied
•• • •• • ••• •• • •• • • •• • • • • •• • • • • • ••• • • • • • • •• • • • • ••• • • • •• • • ••••••••••••••••••••••••••••••••••••••••••••••••••••••••

tions in synaptic transmission [46]. The paired-pulse ratio (PPR)
• • • • • • • • • • • •• • •• • • • • • • •• ••• •• • • • • • • • • • •••• • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
amplitude) to a pair of stimuli given at an inter-stimulus interval of
50 ms.

The following drugs were used: nifedipine, 20 • M; scopolamine,
30 mM; bicuculline, 5 • M; SR 95531 hydrobromide (gabazine),
1 • M. Drugs were purchased from Sigma–Aldrich, Germany and
Tocris, UK. All drugs were applied throughout the entire experiment
and for at least 10 min prior to recording of baseline EPSCs.

Upon injection of depolarizing current steps (200 ms,
0.1–0.8 nA) subicular BS cells responded with a burst of two
to four spikes at • 170 Hz followed by single spikes without
frequency adaptation whereas RS cells displayed trains of single
spikes with frequency adaptation (Fig. 1B). Out of 64 investigated
• • ••• • • • • • • •• • •• • • •• • • • • • • • • • • • • • • • • • • • • •• • •• • • • ••••••••••••••••••••••••••••••••••••••••••••••••••
difference was found between the resting membrane potentials of
the BS and RS cells (BS: • 58.6 • 0.8 mV, n = 27; RS: • 58.4 • 1.0 mV,
n = 37, p = 0.73), whereas the input resistance was lower in BS cells
than in RS cells (BS: 79.6 • 3.7 M• , n = 27; RS: 107.6 • 6.3 M• ,
n = 37, p < 0.01). Upon synaptic stimulation, BS cells displayed
slightly higher paired-pulse facilitation than RS cells (BS: 1.76 • 0.1,
n = 8; RS: 1.34 • 0.6, n = 14, p < 0.01).

As reported in our recent study [12], LFS induced LTD in BS
cells (72.2 • 4.9% of baseline, n = 8, p < 0.01) but a late-onset LTP
in RS cells (133.3 • 12.4% of baseline, n = 14, p < 0.05; Fig. 1C). As
we observed no obvious difference between slices from male and
female animals, data were pooled. Li et al. demonstrated that subic-
ular LTD induced by a pairing protocol depends on the activation of
mAChR [25]. We therefore tested the effect of the muscarinic recep-
tor antagonist scopolamine on LFS-induced bidirectional synaptic
plasticity. Application of scopolamine had no effect upon base-
line transmission and did not change the PPR in either cell type
(BS: 1.60 • 0.1, n = 10, p = 0.3 vs. control; RS: 1.44 • 0.1, n = 11, p = 0.9
vs. control, data not shown). Scopolamine blocked LTD in BS cells
and LTP in RS cells (BS: 96.9 • 4.7% of baseline, n = 10, p = 0.67; RS:
95.2 • 4.0% of baseline, n = 11, p = 0.14; Fig. 2A) indicating that the
co-activation of mAChR is necessary for both forms of synaptic
plasticity.

Although glutamate receptors are the predominant source for
calcium signals involved in the induction of synaptic plasticity,
additional sources such as VGCC may play a modulatory func-
tion in this process [7]. In BS cells, application of the L-type
calcium channel blocker nifedipine prevented the induction of
LTD and unmasked a late-onset LTP (129.4 • 11.3% of baseline,
n = 10, p < 0.05; Fig. 2B). A reverse effect was observed in RS cells,
where nifedipine blocked the induction of LTP and unmasked LTD
(86.5 • 4.0% of baseline, n = 9, p < 0.05; Fig. 2B). As with scopo-
lamine, nifedipine had no effect on the paired-pulse ratio (BS:
1.73 • 0.1, n = 10, p = 0.3 vs. control; RS: 1.31 • 0.1, n = 9, p = 0.8 vs.
control, data not shown). These results suggest that VGCC modu-
late intracellular calcium signals in subicular BS and RS cells, and
• • •• •• •• • •• • • • •• •••• • • • • • • • ••• • •• • ••• ••• •• • • • •••• • • • •• • • • • ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
ner.

In the present study, we show that LFS-induced LTD in BS cells
and LTP in RS cells require the co-activation of mAChR. In addition,
we demonstrate that the polarity of synaptic plasticity is modu-
lated by VGCC, as the L-type calcium channel inhibitor nifedipine
converts LTD to LTP in BS cells and LTP to LTD in RS cells.

The involvement of muscarinergic neurotransmission in mem-
ory consolidation and cognition processes is widely recognized
[18]. The hippocampal formation, including the subiculum, receives
its major cholinergic projections from the medial septal nucleus
and the vertical limb nucleus of the diagonal band, respectively
[30,26]• • • • • • • • • • • • • • • • • •• • • • • • • • • •• • • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •1, M2 and
M4 are predominant in the central nervous system. The M1 recep-
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Figure 13  |   LFS at 1Hz at bridge mode at the intrinsic membrane 
potential induces LTP in regular spiking cells. Averaged time courses of 
evoked EPSC amplitudes before and after induction with LFS at bridge 
mode are shown. Superimposed traces are  averages  from 10 single 
responses  each  and were  recorded  during  baseline  (left-1)  and  25  
min  after  induction  (right-2). Scale bars 100pA 10ms. Figure adapted 
from (Fidzinski et al., 2008)
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evoked EPSC amplitudes before and after induction with LFS at bridge 
mode are shown. Superimposed traces are  averages  from 10 single 
responses  each  and were  recorded  during  baseline  (left-1)  and  25  
min  after  induction  (right-2). Scale bars 100pA 10ms. Figure adapted 
from (Fidzinski et al., 2008)

(71.3 ± 5.6% of baseline, n • 10, P • 0.001) and a late-onset LTP in
RS cells (131.4 ± 9.2% of baseline, n • 9, P • 0.01; Fig. 3). A crucial
step in the induction of synaptic plasticity in various brain regions
is the activation of postsynaptic NMDAR. In BS cells, application of
D-APV blocked the induction of LTD and unmasked a late-onset LTP
(123.2 ± 9.2% of baseline, n • 11, P • 0.05; Fig. 3A). This result
suggests that in BS cells LFS induces an NMDAR-dependent form of
LTD that masks an NMDAR-independent late-onset LTP. Late-onset
NMDAR-independent LTP has been reported to depend on the
activation of mGluR (O’Leary & O’Connor, 1999). In line with this
previous report, after co-application of D-APV and the type I •II
mGluR antagonist MCPG, LFS induced neither LTD nor LTP in BS
cells (101.4 ± 3.1% of baseline, n • 9, Fig. 3A). In RS cells,
application of the NMDAR antagonist D-APV failed to block the
late-onset LTP (153.4 ± 9.4% of baseline, n • 9, P • 0.001, data
not shown). As in BS cells, application of MCPG blocked the
NMDAR-independent LTP in RS cells and revealed a pronounced LTD
(76.2 ± 7.0% of baseline, n • 8, P • 0.05; Fig. 3B). Co-application
of D-APV and MCPG prevented synaptic plasticity in RS cells
(97.4 ± 4.9% of baseline, n • 6). These results indicate that LFS
induces bidirectional synaptic plasticity in subicular pyramidal cells
and that NMDAR and mGluR play complementary roles in the
induction mechanism. Both cell types, however, seem to differ in their
propensity to express either LTP or LTD. In BS cells, LFS induces an

NMDAR-dependent LTD that masks an mGluR-dependent form of
LTP. In contrast, in RS cells the same induction protocol induces an
mGluR-dependent LTP that masks an NMDAR-dependent form of
LTD.

LFS-induced LTP and LTD in subicular BS and RS cells
depends on postsynaptic Ca2+

NMDAR and type I mGluR mediate their intracellular effects via
Ca2+ as a second messenger (Perkel et al., 1993; Anwyl, 1999).
Loading the postsynaptic cell with the Ca2+ chelator BAPTA
completely abolished synaptic plasticity in both BS and RS cells
(BS cells: 97.2 ± 7.2% of baseline, n • 8; RS cells: 96.7 ± 4.6% of
baseline, n • 8; Fig. 4A), suggesting that LFS-induced LTP and LTD
rely on postsynaptic Ca2+ signaling. In the course of stimulation, we
observed a transient facilitation of EPSPs in both cell types
(Fig. 4B, a). We determined the level of this facilitation by analysing
the time course and extent of the change in EPSP amplitude and
calculated the respective time–amplitude integral (Table 2). At
stimulation frequencies between 0.5 and 3 Hz, which induced LTD
in BS cells but not in RS cells, the facilitation in BS cells was
••• • •• ••• ••• •••• • • •• •• •• •• • • •••••• •• •• • •••• • • • • •• •••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••
correlation was found between the time–amplitude integral of EPSPs
during stimulation and the change in synaptic strength for both cell

Fig. 3. (A) LFS-induced LTD in BS cells is
blocked by the NMDAR antagonist D-APV and
unmasks a late-onset LTP. After co-application of
D-APV and the mGluR antagonist MCPG, LTD
and LTP are blocked in BS cells. (B) In RS cells,
MCPG blocks LFS-induced late-onset LTP and
unmasks LTD. Co-application of D-APV and
MCPG blocks late-onset LTP and LTD in RS cells.
Superimposed traces were recorded before (1) and
25 min after (2) LFS. Scale bars: 100 pA and
25 ms. (C) Summary of changes in synaptic
strength induced by LFS for single cells: under
control conditions, in the presence of D-APV,
MCPG and after co-application of both antago-
nists. Symbols indicate LTD (down-triangles), LTP
(up-triangles) or no change in synaptic strength
(circles) for BS cells (open symbols) and RS cells
•• •••• •• • • • •••••••••••••••••••

• •••••• •••• • • ••••••••• •• • • • ••• • ••• •• • •• • •• ••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

• The Authors (2008). Journal Compilation • Federation of European Neuroscience Societies and Blackwell Publishing Ltd
European Journal of Neuroscience, 27, 1111–1118
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Results

LFS-induced LTP and LTD are co-expressed  
in subicular burst firing and regular firing cells

We further studied the mechanism of synaptic plasticity induced by LFS-protocol in current clamp. 

In various brain regions, activation of postsynaptic NMDA receptors is important for the induction 

of synaptic plasticity. LTD in burst firing cells was blocked by the NMDA receptor antagonist 

D-APV and revealed a masked late onset LTP (123.2±9.2% of baseline n=11 P<0.05) (fig 14).

These results suggest an NMDA-receptor-dependent LTD that masks an NMDA-receptor-

independent late-onset LTP. 

This form of late-onset LTP was reported previously by O’Leary and O’Connor (O’Leary, D.M. 

& O’Connor, 1998) to depend on the activation of metabotropic glutamate receptors (mGluR). In 

accordance with that, co-application of D-APV and the type I/II mGluR antagonist MCPG, resulted 

in complete abolishment of synaptic plasticity following the same LFS induction protocol in burst 

firing cells (fig 15). 

Figure 14  |    LFS at 1Hz at bridge 
mode at the intrinsic membrane 
potential and the usage of NMDA-
receptors antagonist D-APV 
unmask LTP in burst spiking cells. 
Averaged time courses of evoked 
EPSC amplitudes before and after 
induction with LFS at bridge 
mode are shown. Superimposed 
traces are  averages  from 10 
single responses  each  and were  
recorded  during  baseline  (left-
1)  and  25  min  after  induction  
(right-2). Scale bars 100pA 25ms. 
Figure adapted from (Fidzinski et 
al., 2008)
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(71.3 ± 5.6% of baseline, n • 10, P • 0.001) and a late-onset LTP in
RS cells (131.4 ± 9.2% of baseline, n • 9, P • 0.01; Fig. 3). A crucial
step in the induction of synaptic plasticity in various brain regions
is the activation of postsynaptic NMDAR. In BS cells, application of
D-APV blocked the induction of LTD and unmasked a late-onset LTP
(123.2 ± 9.2% of baseline, n • 11, P • 0.05; Fig. 3A). This result
suggests that in BS cells LFS induces an NMDAR-dependent form of
LTD that masks an NMDAR-independent late-onset LTP. Late-onset
NMDAR-independent LTP has been reported to depend on the
activation of mGluR (O’Leary & O’Connor, 1999). In line with this
previous report, after co-application of D-APV and the type I •II
mGluR antagonist MCPG, LFS induced neither LTD nor LTP in BS
cells (101.4 ± 3.1% of baseline, n • 9, Fig. 3A). In RS cells,
application of the NMDAR antagonist D-APV failed to block the
late-onset LTP (153.4 ± 9.4% of baseline, n • 9, P • 0.001, data
not shown). As in BS cells, application of MCPG blocked the
NMDAR-independent LTP in RS cells and revealed a pronounced LTD
(76.2 ± 7.0% of baseline, n • 8, P • 0.05; Fig. 3B). Co-application
of D-APV and MCPG prevented synaptic plasticity in RS cells
(97.4 ± 4.9% of baseline, n • 6). These results indicate that LFS
induces bidirectional synaptic plasticity in subicular pyramidal cells
and that NMDAR and mGluR play complementary roles in the
induction mechanism. Both cell types, however, seem to differ in their
propensity to express either LTP or LTD. In BS cells, LFS induces an

NMDAR-dependent LTD that masks an mGluR-dependent form of
LTP. In contrast, in RS cells the same induction protocol induces an
mGluR-dependent LTP that masks an NMDAR-dependent form of
LTD.

LFS-induced LTP and LTD in subicular BS and RS cells
depends on postsynaptic Ca2+

NMDAR and type I mGluR mediate their intracellular effects via
Ca2+ as a second messenger (Perkel et al., 1993; Anwyl, 1999).
Loading the postsynaptic cell with the Ca2+ chelator BAPTA
completely abolished synaptic plasticity in both BS and RS cells
(BS cells: 97.2 ± 7.2% of baseline, n • 8; RS cells: 96.7 ± 4.6% of
baseline, n • 8; Fig. 4A), suggesting that LFS-induced LTP and LTD
rely on postsynaptic Ca2+ signaling. In the course of stimulation, we
observed a transient facilitation of EPSPs in both cell types
(Fig. 4B, a). We determined the level of this facilitation by analysing
the time course and extent of the change in EPSP amplitude and
calculated the respective time–amplitude integral (Table 2). At
stimulation frequencies between 0.5 and 3 Hz, which induced LTD
in BS cells but not in RS cells, the facilitation in BS cells was
••• • •• ••• ••• •••• • • •• •• •• •• • • •••••• •• •• • •••• • • • • •• •••• •••••••••••••••••••••••••••••••••••••••••••••••••••••••
correlation was found between the time–amplitude integral of EPSPs
during stimulation and the change in synaptic strength for both cell

Fig. 3. (A) LFS-induced LTD in BS cells is
blocked by the NMDAR antagonist D-APV and
unmasks a late-onset LTP. After co-application of
D-APV and the mGluR antagonist MCPG, LTD
and LTP are blocked in BS cells. (B) In RS cells,
MCPG blocks LFS-induced late-onset LTP and
unmasks LTD. Co-application of D-APV and
MCPG blocks late-onset LTP and LTD in RS cells.
Superimposed traces were recorded before (1) and
25 min after (2) LFS. Scale bars: 100 pA and
25 ms. (C) Summary of changes in synaptic
strength induced by LFS for single cells: under
control conditions, in the presence of D-APV,
MCPG and after co-application of both antago-
nists. Symbols indicate LTD (down-triangles), LTP
(up-triangles) or no change in synaptic strength
(circles) for BS cells (open symbols) and RS cells
•• •••• •• • • • •••••••••••••••••••

• •••••• •••• • • ••••••••• •• • • • ••• • ••• •• • •• • •• ••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

• The Authors (2008). Journal Compilation • Federation of European Neuroscience Societies and Blackwell Publishing Ltd
European Journal of Neuroscience, 27, 1111–1118
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Figure 15  |    LFS at 1Hz at bridge mode at the intrinsic membrane 
potential and the co-application of NMDA-receptors and mGluR 
antagonists D-APV and MCPG, respectively   blocked both LTD and 
LTP in burst spiking cells. Averaged time courses of evoked EPSC 
amplitudes before and after induction with LFS at bridge mode are 
shown. Superimposed traces are  averages  from 10 single responses  
each  and were  recorded  during  baseline  (left-1)  and  25  min  after  
induction  (right-2). Scale bars 100pA 10ms. Figure adapted from 
(Fidzinski et al., 2008)

Results | LFS-induced LTP and LTD are co-expressed in subicular burst firing and regular firing cells
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LFS-induced LTP and LTD is co-expressed in subicular burst firing and regular firing cells

Figure 15.  LFS at 1Hz at bridge mode at the intrinsic membrane potential 
and the co-application of NMDA-receptors and mGluR antagonists D-APV 
and MCPG, respectively   blocked both LTD and LTP in burst spiking cells. 
Averaged time courses of evoked EPSC amplitudes before and after induc-
tion with LFS at bridge mode are shown. Superimposed traces are  aver-
ages  from 10 single responses  each  and were  recorded  during  baseline  
(left-1)  and  25  min  after  induction  (right-2). Scale bars 100pA 10ms. Figure 
adapted from (Fidzinski et al., 2008)

reported previously by O’Leary and O’Connor to depend on the activation of metabotropic 
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Results | LFS-induced LTP and LTD are co-expressed in subicular burst firing and regular firing cells

Figure 16  | LFS at 1Hz in bridge mode at the intrinsic membrane 
potential and the usage of NMDA-receptors antagonist D-APV did not 
block LTP in regular spiking cells. Averaged time courses of evoked EPSC 
amplitudes before and after induction with LFS at bridge mode are 
shown. Superimposed traces are  averages  from 10 single responses  each  
and were  recorded  during  baseline  (left-1)  and  25  min  after  induction  
(right-2). Scale bars 100pA  25ms

	 In regular firing cells, in accordance to the above mentioned study, the late-onset LTP was 

not blocked by the NMDA receptor antagonist D-APV (153.4±9.4% of baseline n=9 P<0.001) (fig 

16), but application of MCPG blocked the NMDA-receptor-independent late-onset LTP, revealing 

an LTD (76.2±7.0% of baseline n=8 P<0.05) (fig 17).

	 Co-application of D-APV and MCPG prevented synaptic plasticity in regular firing cells 

(97.4±4.9% of baseline n=6) (fig18).
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block LTP in regular spiking cells. Averaged time courses of evoked EPSC 
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shown. Superimposed traces are  averages  from 10 single responses  each  
and were  recorded  during  baseline  (left-1)  and  25  min  after  induction  
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	 In	regular	firing	cells,	in	accordance	to	the	above	mentioned	study,	the	late-onset	LTP	was	

not	blocked	by	the	NMDA	receptor	antagonist	D-APV	(153.4±9.4%	of	baseline	n=9	P<0.001)	(fig	

16),	but	application	of	MCPG	blocked	the	NMDA-receptor-independent	late-onset	LTP,	revealing	

an	LTD	(76.2±7.0%	of	baseline	n=8	P<0.05)	(fig	17).

	 Co-application	of	D-APV	and	MCPG	prevented	synaptic	plasticity	in	regular	firing	cells	

(97.4±4.9%	of	baseline	n=6)	(fig18).
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Figure 16.  LFS at 1Hz in bridge mode at the 
intrinsic membrane potential and the usage of 
NMDA-receptors antagonist D-APV did not block 
LTP in regular spiking cells. Averaged time courses 
of evoked EPSC amplitudes before and after 
induction with LFS at bridge mode are shown. Su-
perimposed traces are  averages  from 10 single 
responses  each  and were  recorded  during  
baseline  (left-1)  and  25  min  after  induction  
(right-2). Scale bars 100pA  25ms. 
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Figure 17  |    LFS  at  1Hz  at  bridge  mode  at the intrinsic  membrane potential and the usage 
of mGluR antagonist MCPG  blocked LTP in regular spiking cells and unmasked LTD. Averaged 
time courses of evoked EPSC  amplitudes before and after induction with LFS at  bridge  mode 
are shown. Superimposed traces are  averages  from 10 single responses  each  and were  
recorded  during  baseline  (left-1)  and  25  min  after  induction  (right-2). Scale bars 100pA 
25ms. Figure adapted from (Fidzinski et al., 2008)

Results | LFS-induced LTP and LTD are co-expressed in subicular burst firing and regular firing cells
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 Figure  18  |   L LFS at 1Hz at bridge mode at the intrinsic membrane potential and the 
co-application of NMDA-receptors and mGluR antagonists D-APV and MCPG respectively   
blocked both LTD and LTP in regular spiking cells. Averaged time courses of evoked EPSC 
amplitudes before and after induction with LFS at bridge mode are shown. Superimposed 
traces are  averages  from 10 single responses  each  and were  recorded  during  baseline  
(left-1)  and  25  min  after  induction  (right-2). Scale bars 100pA 10ms. Figure adapted from 
(Fidzinski et al., 2008).

Results | LFS-induced LTP and LTD are co-expressed in subicular burst firing and regular firing cells
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LFS-induced LTP and LTD in subicular burst firing and  
regular firing cells depends on postsynaptic calcium 

	 When loading the postsynaptic cells with the calcium chelator BAPTA, both cell types did 

not express any synaptic plasticity (burst firing cells: 97.2±7.2% of baseline n=8; regular firing cells: 

96.7±4.6%of baseline n=8) (fig 19), indicating that LFS-induced LTD and LTP rely on postsynaptic 

calcium signaling.

	 Notably, during LFS, a transient facilitation of EPSPs in both cell types was oburst firingerved 

(fig 20).  However, differences in their values (table 2) suggest that different mechanisms might 

be involved. The facilitation in burst firing cells at frequencies between 0.5-3Hz, which induced 

LTD, was significantly stronger than in the regular firing cells. In addition, a negative correlation 

was found between the time-amplitude curve integral of EPSP during stimulation and the change 

in synaptic strength for both cell types (burst firing cells: r=0.38±0.32 n=36 P<0.05; regular firing 

cells: r=0.55±0.33 n=25 P<0.01) (fig 21 ). 

Recall that LTD in burst firing cells and regular spiking cells was inhibited either by the blockade 

of NMDAR or by loading the cells with the Ca2+ chelator BAPTA.  Taken together, these data 

suggest that the lower induction threshold for NMDAR-dependent LTD in burst firing cells might 

be mediated by enhanced NMDAR-driven Ca2+ currents in burst firing compared with regular firing 

cells. 

Results

Figure 19  |  Postsynaptic loading of BAPTA prevents any synaptic plasticity  
phenomena in both cell types. Figure adapted from (Fidzinski et al., 2008).
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Results | LFS-induced LTP and LTD in subicular burst firing and regular firing cells depends on postsynaptic calcium 

Figure 20  |   EPSP amplitudes in regular and burst spiking cells during 
the LFS at 1Hz and 3Hz. Grey area depicts the integrals of the facilitation 
of EPSP amplitudes to time for burst spiking cells. Figure adapted from 
(Fidzinski et al., 2008)
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Figure 20  |   EPSP amplitudes in regular and burst spiking cells during 
the LFS at 1Hz and 3Hz. Grey area depicts the integrals of the facilitation 
of EPSP amplitudes to time for burst spiking cells. Figure adapted from 
(Fidzinski et al., 2008)
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Table 2  |  Peak amplitude, duration  and  time-amplitude  integral of 
the facilitation of EPSP amplitudes  for  each  stimulation  frequency  
and  cell  type.  Figure adapted from (Fidzinski et al., 2008)

Figure 21  |  Synaptic strength  changes plotted  against  time-
amplitude  integral of EPSP  facilitation  for each cell  (filled circles)  at 
each cell type  and the  means  of each  stimulation  frequency (open  
circles).  Regression lines show negative correlation between integral 
and synaptic strength for both cell types
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sp

sp

burst
iking

regular
iking

Frequency
(Hz)

Maximal
EPSP (mV)

Total duration of
increase (min)

Integral
(mV*s)

0.5 5.6 ± 0.4 2.3 ± 0.2 148.1 ± 16.8
1.0 6.8 ± 0.4 2.9 ± 0.4 209.9 ± 33.0
3.0 6.1 ± 0.5 2.0 ± 0.3 120.1 ± 27.2
5.0 5.8 ± 1.3 0.6 ± 0.2 19.8 ± 11.3

0.5 6.7 ± 0.9 2.0 ± 0.1 101.4 ± 25.0
1.0 6.5 ± 0.9 2.2 ± 0.2 117.5 ± 17.9
3.0 4.4 ± 0.7 0.9 ± 0.1 21.1 ± 7.9
5.0 3.8 ± 0.4 0.7± 0.3 15.5 ± 9.6
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Figure 22  |    Involvement of 
muscarinic neurotransmission in 
subicular bidirectional  plasticity.  
LFS  at  1Hz  at  bridge  mode  at 
the intrinsic  membrane potential 
and application of  scopolamine  
blocked  LTD  in  burst  spiking  
cells. Superimposed traces are  
averages  from 10 single responses  
each  and were  recorded  during  
baseline  (left)  and 25  min  after  
induction (right). Figure adapted 
from (Shor et al., 2009)

LFS induced synaptic plasticity is dependent 
on muscarinic acetylcholine receptors 

	 Li et al (Li et al., 2005) demonstrated that subicular LTD induced by a pairing protocol depends 

on the activation of mAChR. We therefore tested the effect of the muscarinic receptor antagonist 

scopolamine on LFS-induced bidirectional synaptic plasticity. Scopolamine application had no effect 

on baseline transmission and did not change the paired pulse ratio in either cell type (burst firing cells: 

1.60±0.08, n=10, P=0.261Vs. control; regular firing cells: 1.44±0.07, n=11, P=0.9 vs. control)

	 Scopolamine blocked LTD in burst firing cells and LTP in regular firing cells (burst firing 

cells 96.9±4.7% of baseline n=10 P=0.067; regular firing cells: 95.2±4.0% of baseline n-=11 

P=0.14) (fig 22-23) indicating that the co-activation of mAChR is necessary for both forms of 

synaptic plasticity. 
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Figure 22  |    Involvement of 
muscarinic neurotransmission in 
subicular bidirectional  plasticity.  
LFS  at  1Hz  at  bridge  mode  at 
the intrinsic  membrane potential 
and application of  scopolamine  
blocked  LTD  in  burst  spiking  
cells. . Superimposed traces 
are  averages  from 10 single 
responses  each  and were  
recorded  during  baseline  
(left)  and 25  min  after  
induction(right). Figure adapted 
from (Shor et al., 2009)

LFS induced synaptic plasticity is dependent 
on muscarinic acetylcholine receptors 

	 Li	et	al	(Li	et	al.,	2005)	demonstrated	that	subicular	LTD	induced	by	a	pairing	protocol	depends	

on	 the	 activation	 of	mAChR.	We	 therefore	 tested	 the	 effect	 of	 the	muscarinic	 receptor	 antagonist	

scopolamine	on	LFS-induced	bidirectional	synaptic	plasticity.	Scopolamine	application	had	no	effect	

on	baseline	transmission	and	did	not	change	the	paired	pulse	ratio	in	either	cell	type	(burst	firing	cells:	

1.60±0.08,	n=10,	P=0.261Vs.	control;	regular	firing	cells:	1.44±0.07,	n=11,	P=0.9	vs.	control)

	 Scopolamine	blocked	LTD	in	burst	firing	cells	and	LTP	in	regular	firing	cells	(burst	firing	

cells	 96.9±4.7%	 of	 baseline	 n=10	 P=0.067;	 regular	 firing	 cells:	 95.2±4.0%	 of	 baseline	 n-=11	

P=0.14)	 (fig	 22-23)	 indicating	 that	 the	 co-activation	 of	 mAChR	 is	 necessary	 for	 both	 forms	 of	

synaptic	plasticity.	

Results 
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Figure 23  |   Involvement of muscarinergic neurotransmission in subicular 
bidirectional plasticity.  LFS  at  1Hz  at  bridge  mode  at the intrinsic  
membrane potential and application of  scopolamine  blocked  LTD  in  
regular  spiking  cells. . Superimposed traces are averages from 10 single 
responses each and were recorded during baseline (left) and 25 min after 
induction (right). Figure adapted from (Shor et al., 2009)
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Figure 23  |   Involvement of muscarinergic neurotransmission in subicular 
bidirectional plasticity.  LFS  at  1Hz  at  bridge  mode  at the intrinsic  
membrane potential and application of  scopolamine  blocked  LTD  in  
regular  spiking  cells. . Superimposed traces are averages from 10 single 
responses each and were recorded during baseline (left) and 25 min after 
induction (right). Figure adapted from (Shor et al., 2009)

Voltage gated calcium channels (VGCC) play a modulatory function in

the bi-directional synaptic plasticity 

Results | LFS induced synaptic plasticity is muscarinic acetylcholine receptors dependent
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Figure 24  |  Involvement of  voltage 
gated calcium channels  in subicular  
bidirectional  plasticity. LFS at 1Hz  
in bridge  mode  at the intrinsic  
membrane potential and application 
of  nifedipine reversed the polarity 
of synaptic plasticity from LTD to LTP 
in burst spiking  cells. Superimposed 
traces are  averages  from 10 single 
responses  each  and were  recorded  
during  baseline  (left)  and  25  
min  after  induction  (right). Figure 
adapted from (Shor et al., 2009

Voltage gated calcium channels  play a modulatory  
function in the bi-directional synaptic plasticity

	 Although glutamatergic receptors are the main source of calcium signals that play a role in 

synaptic plasticity, Voltage gated calcium channels (VGCCs) may play a modulatory role as well. 

In order to test that, we applied nifedipine, an L-type calcium channel blocker. Upon induction with 

LFS-protocol, we oburst firingerved the prevention of LTD in burst firing cells and the expression 

of late onset LTP (129.4±11.3% of baseline n=10 P<0.05) (fig 24). In regular firing cells the late 

onset LTP was abolished upon application of nifedipine, revealing LTD (86.5±4.0% of baseline n=9 

P<0.05) (fig 25). The overall effects of muscarinic acetylcholine receptor and VGCC blockage are 

summarized in Figure 26.

	 The application of nifedipine had no effect on the pair-pulse ratio (burst firing cells: 

1.73±0.1 n=10 P=0.3 Vs. control; regular firing cells: 1.31±0.1 n=9 P=0.8 Vs. control), eliminating 

pre-synaptic mechanisms. These results suggest that VGCC modulate intracellular calcium signals 

in subicular burst firing and regular firing cells, and determine the polarity of synaptic plasticity in 

a cell-specific manner. 
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Figure 24  |  Involvement of  voltage 
gated calcium channels  in subicular  
bidirectional  plasticity. LFS at 1Hz  
in bridge  mode  at the intrinsic  
membrane potential and application 
of  nifedipine reversed the polarity 
of synaptic plasticity from LTD to LTP 
in burst spiking  cells. Superimposed 
traces are  averages  from 10 single 
responses  each  and were  recorded  
during  baseline  (left)  and  25  
min  after  induction  (right). Figure 
adapted from (Shor et al., 2009

Voltage gated calcium channels  play a modulatory  
function in the bi-directional synaptic plasticity

	 Although	glutamatergic	receptors	are	the	main	source	of	calcium	signals	that	play	a	role	in	

synaptic	plasticity,	Voltage	gated	calcium	channels	(VGCCs)	may	play	a	modulatory	role	as	well.	

In	order	to	test	that,	we	applied	nifedipine,	an	L-type	calcium	channel	blocker.	Upon	induction	with	

LFS-protocol,	we	oburst	firingerved	the	prevention	of	LTD	in	burst	firing	cells	and	the	expression	

of	late	onset	LTP	(129.4±11.3%	of	baseline	n=10	P<0.05)	(fig	24).	In	regular	firing	cells	the	late	

onset	LTP	was	abolished	upon	application	of	nifedipine,	revealing	LTD	(86.5±4.0%	of	baseline	n=9	

P<0.05)	(fig	25).	The	overall	effects	of	muscarinic	acetylcholine	receptor	and	VGCC	blockage	are	

summarized	in	Figure	26.

	 The	application	of	nifedipine	had	no	effect	on	the	pair-pulse	ratio	(burst	firing	cells:	1.73±0.1	

n=10	 P=0.3	Vs.	 control;	 regular	 firing	 cells:	 1.31±0.1	 n=9	 P=0.8	Vs.	 control),	 eliminating	 pre-

synaptic	mechanisms.	These	results	suggest	that	VGCC	modulate	intracellular	calcium	signals	in	

subicular	burst	firing	and	regular	firing	cells,	and	determine	the	polarity	of	synaptic	plasticity	in	a	

cell-specific	manner.	
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Figure 25  |Involvement of voltage-gated calcium channels in subicular 
bidirectional plasticity. LFS at 1Hz at bridge mode at the intrinsic 
membrane potential and application of nifedipine reversed the polarity of 
synaptic plasticity from LTP to LTD in regular spiking cells. Superimposed 
traces are  averages  from 10 single responses  each  and were  recorded  
during  baseline  (left)  and  25  min  after  induction  (right). Figure 
adapted from (Shor et al., 2009)
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Figure 25  |Involvement of voltage-gated calcium channels in subicular 
bidirectional plasticity. LFS at 1Hz at bridge mode at the intrinsic 
membrane potential and application of nifedipine reversed the polarity of 
synaptic plasticity from LTP to LTD in regular spiking cells. Superimposed 
traces are  averages  from 10 single responses  each  and were  recorded  
during  baseline  (left)  and  25  min  after  induction  (right). Figure 
adapted from (Shor et al., 2009)

Results | Voltage gated calcium channels (VGCC) play a modulatory function in the bi-directional synaptic plasticity



47

Figure 26  |  Summary of changes in 
synaptic strength for each cell type
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Figure 26  |  Summary of changes in 
synaptic strength for each cell type

Results | Voltage gated calcium channels (VGCC) play a modulatory function in the bi-directional synaptic plasticity
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	 Our study provides evidence that LTP and LTD occur simultaneously at CA1-subiculum 

synapses. We demonstrate that LFS induces an NMDAR-dependent LTD and an mGluR-dependent 

LTP in subicular pyramidal cells. The predominant direction of synaptic plasticity is dependent on the 

cell type investigated. In burst firing cells, LFS induces LTD that masks a simultaneously occurring 

LTP, whereas in regular firing cells LFS results in LTP that masks LTD. Taken together, these results 

suggest that NMDAR-dependent LTD and mGluR-dependent LTP are co-expressed in subicular 

neurons, but different induction thresholds determine distinct directions of synaptic plasticity in 

each cell type. Furthermore, we show that LFS-induced LTD in burst firing cells and LTP in regular 

firing cells require activation of mAChR. In addition, we demonstrate that the polarity of synaptic 

plasticity is modulated by VGCC, as the L-type calcium channel inhibitor nifedipine converts LTD 

to LTP in burst firing cells and LTP to LTD in regular firing cells. Bidirectional synaptic plasticity 

in subicular cells therefore appears to be governed by a complex signaling system, involving cell-

specific recruitment of ligand and voltage-gated ion channels, as well as metabotropic receptors. 

This complex regulation might be necessary for fine-tuning of synaptic efficacy at hippocampal 

output synapses.

	 Previous studies that investigated LFS-induced synaptic plasticity using field potential 

recording in vivo and in vitro  reported no synaptic plasticity at 1Hz or LTP at 3 and 5Hz (Huang 

and Kandel, 2005) or a late onset  LTP (Anderson et al., 2000). However, in the studies did not 

differentiate between the different subicular cell types.

	 Our data indicate that only burst firing cells express LTD. In field potential recording, LTD 

might be masked by LTP expressed in regular firing cells. 

	 There have been many computational models for neural plasticity and their roles in activity 

driven development of neural circuits and storage of memories (Hopfield and Tank, 1986). The 

Hebbian synapse was implemented in most physiological studies (Sejnowski, 1981;Rumelhart, 

1986;Kohonen, 1984), assigning LTP to co-activated connected neurons. However, an almost 

immediate problem these models had to face was the saturation of the synaptic connections and 

consequent the loss of stored information. This problem was initially approached by incorporating 

a mechanism for LTD induction. However, the resulting networks were such that half of the 
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connections were saturated and half were depressed to the minima. Bienenstock, Cooper and 

Munro (Bienenstock et al., 1982) overcame this problem by introducing activity dependence for 

induction of both LTP and LTD. In this model, termed ‘sliding threshold model’, the threshold 

for inducing synaptic plasticity was dynamically determined as a function of the current synaptic 

strength. According to this model, high levels of synaptic activation reduced the probability of LTP 

and increased LTD likelihood. At low levels of synaptic activation, the threshold of LTP induction 

is lowered, increasing its probability and LTD becomes less likely. Consequently, the connection 

strengths within the network remain linear, thus maximizing the storage capacity of information in 

the network.

	 Experimental data supporting the notion that LTD and LTP are dynamically regulated was 

seen already as Huang and colleagues (Huang et al., 1992) reported that application of brief high 

frequency stimulation that resulted in short term potentiation did suppress later induction of LTP 

at the Schaffer collateral-CA1 synapse. Other studies showed that similar treatment resulted in an 

enhancement of LTD evoked by LFS in area CA1(Wexler and Stanton, 1993).

	 Our results, describing different polarity of overall apparent plasticity in the two different 

subicular cell types are in line with this model. Illustration 3 depicts the described plasticity in 

the subicular neurons in light of the sliding threshold model. In burst spiking neurons the higher 

activity causes a larger LTP activation threshold. Therefore, at the activity level dictated by LFS, 

the suprathreshold regular firing cell activity yields LTP, while the subthreshold activity of the burst 

firing cell yields LTD. The sliding threshold is implemented by the relative activation of mGLUR , 

NMDAR and  VGCCs (Artola and Singer, 1993;Stanton, 1996).

	 Taken at face value, the translation of the sliding threshold model to our results predicts 

that burst firing cells exhibit a higher expression of active NMDA receptors. Indeed, this notion 

is supported by the higher amplitude and longer duration of the transient EPSP facilitation during 

stimulation in burst firing cells. 

	 It has previously been shown that the threshold for LTD formation in CA1 region can be 

dynamic and dependent on behavior. Exposure to novel environments causes a leftward shift in 
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the threshold (Manahan-Vaughan and Braunewell, 1999), providing experimental support for the 

sliding threshold theory. 

Our results show dependence of LTD in both burst firing cells and regular firing cells on NMDA 

receptors .

	 Inhibition of NMDARs blocks LTD (Dudek and Bear, 1992; Mulkey and Malenka, 1992), 

and activation of NMDARs induces it (Cummings et al. 1996, Kamal et al. 1999), Kandler et al. 

1998, and Li et al. 2004). Moreover, it is reported that modulations in the expression, trafficking and 

gating of NMDA receptors are key mechanisms in the experience-dependent modification of neural 

circuitry in the developing brain, as well as in the mature brain (Stephens and Weidmann, 1989; 

Illustration 3 | Model for synaptic plasticity in pyramidal cells of the subiculum. Activity 
that is above the basal level and surpasses a modification threshold known as Θ- leads to 
expression of LTD. Postsynaptic activity that is higher than a modification threshold known 
as Θ+ leads to expression of LTP. In burst firing cells (dashed line), predominant activation of 
NMDAR and VGCCs shifts modification threshold Θ+ to the right leading to the expression 
of LTD. In regular firing cells (solid line), predominant activation of mGluR and VGCCs shifts 
modification threshold Θ+ to the left such that LFS at 1 Hz leads to expression of LTP. Thus, the 
sliding thresholds for induction of LTP and LTD will be driven by the relative activation state of 
NMDAR, mGluR (arrows) and VGCC. 

Discussion

49

the	threshold	(Manahan-Vaughan	and	Braunewell,	1999),	providing	experimental	support	for	the	

sliding	threshold	theory.	

Our	results	show	dependence	of	LTD	in	both	burst	firing	cells	and	regular	firing	cells	on	NMDA	

receptors	.

	 Inhibition	of	NMDARs	blocks	LTD	(Dudek	and	Bear,	1992;	Mulkey	and	Malenka,	1992),	

and	activation	of	NMDARs	induces	it	(Cummings	et	al.	1996,	Kamal	et	al.	1999),	Kandler	et	al.	

1998,	and	Li	et	al.	2004).	Moreover,	it	is	reported	that	modulations	in	the	expression,	trafficking	and	

gating	of	NMDA	receptors	are	key	mechanisms	in	the	experience-dependent	modification	of	neural	

circuitry	in	the	developing	brain,	as	well	as	in	the	mature	brain	(Stephens	and	Weidmann,	1989;	

Illustration 3 | Model for synaptic plasticity in pyramidal cells of the subiculum. Activity 
that is above the basal level and surpasses a modification threshold known as ?- leads to 
expression of LTD. Postsynaptic activity that is higher than a modification threshold known 
as ?+ leads to expression of LTP. In burst firing cells (dashed line), predominant activation of 
NMDAR and VGCCs shifts modification threshold ?+ to the right leading to the expression 
of LTD. In regular firing cells (solid line), predominant activation of mGluR and VGCCs shifts 
modification threshold ?+ to the left such that LFS at 1 Hz leads to expression of LTP. Thus, the 
sliding thresholds for induction of LTP and LTD will be driven by the relative activation state of 
NMDAR, mGluR (arrows) and VGCC. 

Our data support a novel mechanism for the sliding-threshold
(BCM, Bienenstock–Cooper–Munro) model of synaptic plasticity
(Bienenstock et al., 1982): the sliding threshold for induction of LTP
and LTD in subicular pyramidal cells seem to be driven by the relative
activation state of NMDAR and mGluR (Fig. 5) (Artola & Singer,
1993; Stanton, 1996). In keeping with this model (where theta-plus
••• •••• •• • •••• •• • •• •••• • •• •• • •• • • •••• • • • • • • •• • •• ••••• •• • ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
••• •••• •• • •• •••• • •• •• • • • • •• • • •••• • •• •• • • ••••• • • • • •••• •• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••
shift of theta-plus to the right, indicating that in this cell type the
predominant activation of NMDAR serves to favor the expression of
LTD. In RS cells, theta-plus is shifted to the left, suggesting that the
predominant activation of mGluR predisposes to LTP. There is
behavioral and electrophysiological evidence for the existence of such
a sliding threshold as novelty detection shifts theta-minus to the left so
that LFS leads to the expression of LTD in animals which would
normally respond to this stimulation with short-term depression
(Manahan-Vaughan & Braunewell, 1999). The function of the
NMDAR as a coincidence detector is widely accepted (Malenka &
• •••• • • • • •• • • •• • •• •• • • • • • •• • •••••• • • ••••• •• •• • •• • • •••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
••• •• • ••••• •• • ••• • ••• •••• •• •• •• •• • ••••• •••• •• •• • •• • • • • •• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
cation of neuronal circuitry in the developing and mature brain
(Stephens & Weidmann, 1989; Cull-Candy et al., 2001). Dudek &

Bear (1993) additionally showed that the relative degree of activation
of the NMDAR plays a decisive role in the directional tuning of
plasticity. Recent studies showed that the mGluR also contributes to
coincidence detection and regulation of synaptic plasticity (Nevian &
Sakmann, 2006; Lu et al., 2007). Thus, dynamic regulation of
NMDAR and mGluR function provides an intriguing way to induce
bidirectional synaptic plasticity at CA1-subiulum synapses.

The hypothesis of distinct NMDAR activation in BS and RS
subicular cells is supported by the higher amplitude and longer
duration of the transient EPSP facilitation observed in BS cells during
the course of stimulation. Different depolarization levels lead to
distinct calcium signaling in the postsynaptic cell and were shown to
•• • • •• •• •• • • ••••••• • • • •• • •• ••• • ••••••••• •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •et al., 2001;
Ismailov et al., 2004; Zhou et al., 2005; Harney et al., 2006). At
resting membrane potentials subicular EPSPs consist of sodium-driven
(AMPAR) as well as calcium-driven (NMDAR) components (Behr
et al., 1998). As both cell types require postsynaptic Ca2+ for LFS-
•• • • ••• • • • •• • • • •• •• • ••••••• •••• • • ••••••• •• •• •• • • ••••••• • • •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
synaptic plasticity may rely on different calcium concentration kinetics
in subicular BS and RS cells.

Simultaneous LTD •LTP has been described for both neocortical and
hippocampal synapses (Solger et al., 2004; O’Connor et al., 2005;
Sjostrom et al., 2007). Our observation that the direction of synaptic
plasticity (LTD or LTP) correlates with the discharge properties of the
postsynaptic cell, however, reveals a novel and intriguing mechanism
• • •••• •• •• •••• ••••• • • •• • • •••• • •• • •••• • •• •• • ••••••• • •••••• • ••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
• • • • • • •• • • •• •• •• • ••••••• • •• • • •••• • •• •••• • •• • • • • •• ••••••• • •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•• • •• ••• • ••••••••• •• • • •• • • • ••••• • •• •• • •• •• •• • •• •••• •••• • ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
hippocampal output. The differential response upon LFS, a frequency
known to be of physiological relevance (Born et al., 2006), may serve in
•• • •• • •• • ••• • •• ••• •• • • • •• •• • •• •• •• •• •••• • • • ••••• •• •• • • •• • • ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
campal output onto either BS or RS cells. The spatial distribution of BS
•• • • • ••••• •• •• • • •• • •• • ••• •• ••••• •• • • ••• ••• ••• • ••• •••• •• •• • • •• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
subiculum (Greene & Totterdell, 1997; Staff et al., 2000; Harris et al.,
2001; Menendez et al., 2003) and the topography of subicular efferents
(Naber & Witter, 1998; Ishizuka, 2001) suggest that BS and RS cells
may target different brain structures. In particular, the subiculum is
connected bi-directionally to the entorhinal cortex and the presubicu-
lum (Köhler, 1986; Funahashi et al., 1999) and there is evidence that
subicular BS and RS cells may project differentially to each of these
•••• ••• ••• •• ••• •••• • • • • •• • • ••• • • • •• • • •• • • ••• •• •• •• • •• • ••• •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
utilizes cellular and synaptic mechanisms independently to provide
differential processing of sensory information from the hippocampus to
various cortical and subcortical brain regions. Hence, the distinct forms
• • •• • •• ••• • ••••••••• •• • • •• • • • ••••• • •• ••• ••• •• • • ••• • • • •• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
capacity for information storage by this cortical structure and suggest its
unique role in hippocampal–cortical information processing.
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N,N,N•,N•-tetraacetic acid; BS, burst spiking; D-APV, d-2-amino-5-phospho-
novaleric acid; EPSC, excitatory postsynaptic current; EPSP, excitatory
postsynaptic potential; LFS, low-frequency stimulation; LTD, long-term
depression; LTP, long-term potentiation; MCPG: (RS)-a-methyl-4-carboxyphe-
nylglycine; mGluR, metabotropic glutamate receptor; NMDAR, N-methyl-d-
aspartate receptor; RS, regular spiking.

Table 2. Peak amplitude, duration and time–amplitude integral of the
facilitation of EPSP amplitudes for each stimulation frequency and cell type

Stimulation
frequency (Hz)

Maximal • EPSP
(mV)

Total duration of
increase (min)

Integral of
• EPSP (mV.s)

BS (burst-spiking) cells
0.5 5.6 ± 0.4 2.3 ± 0.2 148.1 ± 16.8*
1.0 6.8 ± 0.4 2.9 ± 0.4* 209.9 ± 33.0*
3.0 6.1 ± 0.5* 2.0 ± 0.3* 120.1 ± 27.2*
5.0 5.8 ± 1.3 0.6 ± 0.2 19.8 ± 11.3

RS (regular-spiking) cells
0.5 6.7 ± 0.9 2.0 ± 0.1 101.4 ± 25.0
1.0 6.5 ± 0.9 2.2 ± 0.2 117.5 ± 17.9
3.0 4.4 ± 0.7 0.9 ± 0.1 21.1 ± 7.9
5.0 3.8 ± 0.4 0.7 ± 0.3 15.5 ± 9.6

Data are given as means ± SEM. *P < 0.05, comparing BS and RS cells.

Fig. 5. Model for synaptic plasticity in pyramidal cells of the subiculum.
• •••• ••• •• •• •• •• • • • •• • • •••• ••• •• •• • •• •• ••••• • • • • •• ••••• • •• •••• • •• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
known as h– leads to expression of LTD. Postsynaptic activity that is higher
•• •• • • • • •• ••••• • •• •••• • •• • • • • • ••••••••••••••••••••••••••••••••••h+ leads to expression of LTP. In BS
••••• •• ••• •• ••• ••• • ••• • • •• •• • ••••• •••• • • • • • • • • •• •••• • • • •• ••••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
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Cull-Candy et al., 2001). For example, experience-dependent changes in the subunit composition 

of NMDA receptors have been reported in the visual cortex (Snyder et al., 2001; Philpot et al., 

2001). The directionality of the plasticity as well as the tuning has been shown to rely on the 

relative activation of the NMDA-receptors (Bear and Kirkwood, 1993). The mechanism by which 

NMDARs gate LTD induction is through its permeability to Ca2+ into the postsynaptic neuron. 

Indeed, buffering a rise in Ca2+ prevents LTD (Mulkey and Malenka, 1992). Moreover, photolytic 

intracellular uncaging of Ca2+ induces LTD (Yang et al., 1999). Depolarization paired with LFS, 

produces plasticity, the polarity of which dependends on post-synaptic calcium concentration in 

the perirhinal cortex (Cho et al., 2000). Furthermore, the different plasticity outcomes are reliably 

predicted according to intracellular calcium transients in the dendrites. Finally, the calcium wave 

to the soma displays different characteristics according to the cell propensity to undergo LTD or 

LTP (Ismailov et al., 2004). Thus, the simple model emerged that Ca2+ entering the postsynaptic 

dendritic spine through the NMDAR is the trigger for LTD.

	 LTD and LTP are timing dependent processes. Spike-timing-dependent plasticity (STDP) is 

a general term for functional changes in neurons and at synapses that are sensitive to the timing of 

action potentials in connected neurons. The phrase 'STDP' typically refers to increases or decreases 

in the efficacy of synaptic transmission (Bi and Poo,  1998; Markram and Sackmann, 1997)

	 The phenomenon (STDP) is believed to arise from a nonlinear process that leads either to 

large calcium transients and thus to LTP (by pre-synaptic action potential that precedes the post-

synaptic action potential), or smaller calcium transients and thus LTD (due to post-synaptic action 

potential preceding the pre-synaptic action potential). STDP in the entorhinal cortex is known to 

be NMDA-receptor-dependent (REF). However, calcium concentration in the postsynaptic neurons 

is affected by other factors as well. First, depolarization causes the opening of voltage dependent 

calcium channels. Moreover, some AMPA receptors are permeable to calcium. Finally, intracellular 

calcium stores can be opened as a result of signaling cascades. Thus, it has been shown that calcium 

transients of large magnitude, elicited by broadening of action potentials, can enhance timing-

dependent synaptic depression in the entorhinal cortex (Zhou et al., 2005). Finally, NMDA receptor 

activation is dependent on depolarization. In the subiculum, EPSPs consist of AMPAR-mediated 

sodium currents, enabling the activation of NMDA receptors, and thus allowing calcium currents 
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through them (Behr et al., 1998). Thus, the dynamic interplay between the calcium concentration 

at the dendritic sites of the synapse and NMDA receptors is quite diverse and the kinetics of these 

processes may determine the direction of synaptic plasticity. 

	 In our studies, we showed that LTP in regular firing cells is MGluR dependent, since it was 

reversed in these cells upon application of the mGluR antagonist MCPG.

	 Early studies proposed a role for group I mGluR in the induction of LTP. Recent studies 

showed that mGluRs have a crucial role in coincidence detection as well as in regulation of synaptic 

plasticity (Nevian and Sakmann, 2006;Lu et al., 2007).  The mGluR agonist, ACPD, enhanced LTP 

induced by HFS in CA1 (McGuinness et al., 1991) while MCPG blocked LTP induced by HFS 

at the dentate gyrus and CA1 (Bashir et al., 1993;Breakwell et al., 1996). Application of group I 

mGluR agonist 1 S,3 R-APCD induced a long-lasting potentiation of EPSPs and EPSCs in CA1 

region of the hippocampus in vivo and in vitro (Bortolotto and Collingridge, 1993;Bortolotto and 

Collingridge, 1995;Chinestra et al., 1993).  This form of APCD-induced LTP was shown to have 

common maintenance mechanisms with tetanus induced LTP. It requires high afferent activity or 

depolarization of the postsynaptic site and is dependent on PKC and the release of calcium from 

the intracellular stores. The role of mGluR in NMDA-receptor-independent LTP induction was 

shown in the CA3 region by stimulation of the mossy fibers (Haruta et al., 1994;Ito and Sugiyama, 

1991a;Zalutsky and Nicoll, 1990). Moreover, mossy-fiber-CA3 LTP is inhibited by MCPG and 

the mGluR antagonist D,L-2-amino-3-phosphono-propionate(D,L-AP3) (Ito and Sugiyama, 

1991b;Bashir and Collingridge, 1994). LTP in the dorsolateral septal nucleus is induced by 

1S,3R ACPD and the application of the Ca2+ chelator BAPTA and non-hydrolysable GTP to the 

postsynaptic site blocked LTP confirming the requirement of G-protein coupled signalling pathways 

and increase in postsynaptic calcium concentration. The studies (Chinestra et al., 1993;Izumi and 

Zorumski, 1994) which failed to show dependence of LTP on mGluR activity may suggest that 

mGluR activation is only crucial for certain aspects of LTP induction, for example to lower the 

threshold for induction of LTP. 

	 The simultaneous plasticity at one cell type reported in our study correlates to other studies 

which revealed similar phenomena. Simultaneous LTP of non-NMDA and LTD of NMDA-receptor-
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mediated responses were reported previously in nucleus accumbens where both forms of plasticity 

were observed in the same cell and similar change in post-synaptic calcium concentration was seen 

to have opposite effects on the synaptic responses (Kombian and Malenka, 1994). Another study by 

Bernard and Wheal in an experimental model of epilepsy (kainic acid model) showed a simultaneous 

expression of an NMDAR-dependent LTD and an AMPAR-dependent LTP (Bernard and Wheal, 

1995). Further supporting evidence for the bidirectional plasticity we found in the subiculum may 

come from the somatosensory cortex. There, pyramidal neurons form synapses with two types 

of interneurons, fast spiking and low-threshold spiking. Both synapse types undergo long term 

plasticity. However, while mGluR were reported to be crucial in the induction of LTD in both types 

of interneurons, NMDA receptors are a crucial component for inducing LTP only in low threshold 

spiking interneurons. Simultaneous LTD and LTP was described also at CA3-CA1 synapses and the 

direction of the plasticity was reported to be mediated by kinases for LTP and phosphatases for LTD 

in the same cell (O'Connor et al., 2005). Studies in the neocortex layer 5 showed simultaneously 

occurring LTD and LTP induced by pairing high frequency pre- and postsynaptic firing. In this 

study, the LTP induction was mediated by both presynaptic and postsynaptic mechanisms. On the 

other hand, LTD is mediated by endocannabinoids released from the postsynaptic site, serving as a 

retrograde messanger, thereby inducing presynaptic changes (Sjostrom, 2007). 

	 In our studies, all forms of synaptic plasticity in both types of neuron are abolished upon 

application of the muscarinic acetylcholine receptor scopolamine. Pharmacological studies in 

humans demonstrated that blockage of muscarinic cholinergic receptors by drugs  like scopolamine 

impairs encoding of new memories, while the retrieval of stored memories stayed intact (Atri et 

al., 2004;Hasselmo and McGaughy, 2004). Infusions of scopolamine into the CA3 region of the 

rat hippocampus results in selective impairments of encoding but not retrieval in Hebb-Williams 

maze (Rogers and Kesner, 2003). Thus the involvement of cholinergic neurotransmission through 

muscarinic receptors in memory consolidation and cognition is widely recognized. Physiologically, 

the most prominent effects of ACh are slow depolarization and decrease in both voltage-dependent 

and voltage insensitive components of membrane conductance. All of these effects on membrane 

properties depend upon interaction with muscarinic receptors (Benardo and Prince, 1982). Two major 

types of muscarinic acetylcholine receptors are known. The M1 receptor subtype, the predominant 
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receptor type in the hippocampus (Volpicelli and Levey, 2004), activates the phospholipase C 

pathway resulting in  production of inositol trisphosphate and diacylglycerol.  M2/M4 receptor 

subtype, on the other hand, is negatively coupled to cAMP production (Caulfield et al., 1993). 

	 One of the effects of mAChR activation in the hippocampus is potentiation of NMDA 

receptor currents. Studies indicated that M1 receptor subtype co-localizes with the NMDA receptors 

on CA1 pyramidal cell bodies and dendrites. Indeed, treatment with mAChR agonist carbachol 

causes an increase in NMDA induced current, while pretreatment of hippocampal slices with the 

antagonist for M1, M1 receptor subtype-toxin, blocks the carbachol-induced potentiation of NMDA 

currents (Marino et al., 1998). 

	 The two stage model of memory formation requires very different dynamics during each 

stage. Activity in the hippocampal network is highly dependent on the activity state of the animal. 

Thus, during active waking, activity in area CA1 is  predominantly determined by inputs from the 

entorhinal cortex . In contrast, during quiet wakefulness and slow wave sleep, the opposite pattern 

may be seen, where outputs from CA3 affect the CA1 and the entorhinal cortex. This difference has 

been attributed to differential acetylcholine modulation between these two states). It has been shown 

that during  active waking states there is a high release of acetylcholine, which might contribute 

to theta rhythm, as acetylcholine correlates with the amplitude of theta oscillation (Marrosu et 

al., 1995;Monmaur et al., 1997) and cholinergic blockage reduces theta oscillation amplitude. 

Experiments with brain slices demonstrate that acetylcholine suppresses transmission at excitatory 

recurrent collaterals in the CA3 region of the hippocampus and suppresses transmission at the 

Schaffer collaterals connecting CA3 and CA1 and at the CA1 to subiculum synapse (Hounsgaard, 

1978;Valentino and Dingledine, 1981;Hasselmo et al., 1995;Dutar and Nicoll, 1988;Sheridan and 

Sutor, 1990). In quiet waking state, measurements of acetylcholine levels in the hippocampus show 

a decrease relative to the active waking state (Marrosu et al., 1995), which would lead to a release 

of the glutamatergic synapses from cholinergic suppression. This notion is consistent with the much 

larger synaptic potentials in the CA1 region and entorhinal cortex during quiet waking (Winson and 

Abzug, 1978) and sharp wave generation in the area CA3 (Buzsaki, 1986e). Lower acetylcholine 

levels indicate stronger feedback between CA3 and CA1 and from CA1 to the entorhinal cortex 

(Buzsaki, 1986d). A striking decrease in acetylcholine concentrations in the hippocampus was 
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observed during slow wave sleep which would further release glutamatergic synapses from 

suppression, resulting in stronger excitatory feedback from CA3 to CA1 and entorhinal cortex 

(Buzsaki, 1986b).  

	 The various modulations of the hippocampal circuitry can be regulated by effects of 

mAChR on cytoplasmic calcium signals, and interactions with ionotropic and metabotropic 

glutamate receptors (Bashir, 2003). As reported by Nash et al. in 2004 (Nash et al., 2004), mAChR-

stimulated inositol 1,4,5-trisphosphate production, which, in turn, facilitates calcium release from 

the internal stores in hippocampal neurons. mAChR  stimulation reduces NMDA responses in CA3 

hippocampal pyramidal cells via Ca2+-dependent activation of tyrosine phosphatase (Grishin et 

al., 2005). Taken together with our current study, these reports support the notion that mAChR are 

fundamental to plasticity in the hippocampus and, as our study shows, are critically involved in 

the bidirectional cell specific synaptic plasticity in the subiculum. Recall that we showed calcium 

dependence of plasticity in both the burst firing cells and regular firing cells in the subicilum, 

although the induction mechanisms are qualitatively different: LFS causes LTD in the burst firing 

cells in an NMDA receptor dependent manner, and LTP induction in in regular firing cells is mGluR-

dependent,. It might be that mAChR modulates the calcium levels upon activation and thus calcium 

levels may directly influence the mGluR and NMDA receptors. Alternatively, mAChR might induce 

calcium release from internal stores, thereby mediating and modulating the direction of the synaptic 

plasticity, in a concentration and cell type dependent manner. 

	 In hippocampal pyramidal cells, voltage and calcium gated ion channels located in the 

dendritic spines open as a consequence of glutamate receptor activation and act within a complex 

loop that feeds back to regulate synaptic signals(Bloodgood and Sabatini, 2008). The role of Cav1.2 

voltage gated calcium channels in induction of long term synaptic plasticity in the hippocampus 

was also demonstrated to be NMDA receptors independent in hippocampal synaptic plasticity 

(Moosmang et al., 2005). In this study the function of Cav1.2 calcium channels was evaluated in 

spatial learning, synaptic plasticity and triggering of learning-associated biochemical processes. 

The study used a mouse model with inactive Cav1.2 calcium channel gene in the hippocampus and 

neocortex. Using this model, they showed a loss of a late-phase LTP, which is protein synthesis 

dependent and NMDA-R-independent, at the Schaffer collateral\CA1, in addition to severe 
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impairment in hippoocampal dependent spatial memory. Another study showed that VGCCs express 

a different form of LTP in CA1 than the NMDA receptor form of LTP(Morgan and Teyler, 1999). 

Further, upon altering a β3 subunit of the calcium channel, an NMDA receptor dependent LTP was 

reported (Jeon et al., 2008). VGCCs show differential effects on synaptic plasticity depending upon 

the structure and pattern of their activation. In CA1 and entorhinal cortex, the VGCC mediated 

calcium transients are required for NMDA receptor dependent LTD (Zhou et al., 2005;Christie 

et al., 1997). Inhibition of the VGCCs enhances the LFS-induced LTD and blocks LTP in CA1 

((Raymond and Redman, 2006;Udagawa et al., 2006). According to our study in subiculum, the 

NMDA-receptor dependent LTD in burst firing cells and the mGluR-dependent LTP in the regular 

firing cells require co-activation of VGCCs (Shor et al 2008). The distinct nature of the synaptic 

plasticity in the two types of cells in subiculum is therefore modulated by VGCCs. Given that the 

amplitude of calcium transients and synaptic potentials in dendrites depend on activation of VGCCs 

and mAChR, the polarity of synaptic plasticity might be fine-tuned by these factors to control the 

output of the hippocampus to other cortical and sub-cortical regions . 

	 The spatial distribution of burst firing cells and regular firing cells in the proximo-distal and 

deep-superficial axes of the subiculum (Greene and Totterdell, 1997; Staff et al., 2000; Harris and 

Stewart, 2001; Harris and Stewart, 2001) and the topography of subicular efferent fibres (Naber 

and Witter, 1998; Ishizuka, 2001) suggest that burst firing cells and regular firing cells may target 

different brain structures. These findings may be relevant in supporting the hypothesis of O’Mara 

(O'Mara, 2006b), where a segregation of function within the subiculum was proposed. In this 

model, which is primarly based on lesion studies, the dorsal part of the subiculum is principally 

concerned with processing information about space, movement and memory, while the ventral part 

of the subiculum is an interface between the hippocampus and the HPA axis, functioning mainly in 

the inhibition of the HPA axis. 

	 Stress is defined as high excitability or arousal, a perception of aversiveness and lack of 

control over outcomes (Kim and Diamond, 2002). Stress response is controlled by the HPA axis, 

which, in turn, is controlled and regulated by the hippocampus. Behavioral and systemic stress 

results in the release of corticotropin-releasing hormone (CRH) from the hypothalamus into the 

portal circulation of the anterior pituitary, which then releases adrenocorticotropin-releasing 
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hormone (ACTH) into the blood stream. This pathway results in corticosterone release from adrenal 

cortex. Behaviorally, ACTH initiates the so called ”fight or flight” response, mobilizes energy stores, 

decreases reflex threshold, increases respiratory rate, muscle tension and gastric motility, and are 

behaviorally adaptive. Simulating such stress responses inhibits LTP, causes hippocampal atrophy, 

and impairs hippocampus dependent learning. The subiculum in general, regulates the HPA-axis 

stress response and the CA1-subiculum synapses are affected by behavioral and systemic stress 

(Commins, 2000). Behavioral stress accompanied with LTD induction protocols produces LTD. 

Consistent with Lowry (Lowry, 2002b; Herman, 1995; Herman, 1998; Mueller, 2004), the ventral 

subiculum plays a dynamic and inhibitory role in the HPA axis and therefore regulates the stress 

response. A study (Maren, 1999) that used lesions of the ventral subiculum showed, in accordance 

with the proposed role of the ventral subiculum, the attenuation of the HPA response to systemic 

and behavioral stressors.

	 Experiments on freely moving animals tested during exploration of objects or in mazes and 

in open field environments show that subicular cells, unlike the CA1 cells, tend to fire throughout 

the environment and show several peaks of activity. These data imply that subicular place-fields 

have a lower resolution and comprise of much larger areas of comparable environments than those 

of area CA1 (O'Mara et al., 2000; Sharp and Green, 1994; Barnes et al., 1990). The perirhinal 

cortex, responsive to novelty or familiarity of objects, projects to the subiculum. These findings 

can be explained by the convergence of multiple CA1 place cells onto a single subicular cell, 

thus resulting in the convergence of movement information in the subiculum. The multiple activity 

peaks probably reflect separate place cell inputs. Movement information is derived through the 

CA1 projections to the subiculum and other cortical areas converging onto the entorhinal cortex. 

Overall, the dorsal part of the subiculum, according to the above hypothesis, is an area of integration 

between spatial information of the hippocampus and general whole-body movement information 

which is mainly cortical in origin. Moreover, there is evidence  for the combination of spatial 

and working memory information (Deadwyler and Hampson, 2004) and combination of spatial 

and object information(Anderson and O'Mara, 2003;Anderson and O'Mara, 2004).  Sharp (Sharp, 

1997) has shown that the subicular place fields are extremely stable in two distinctively different 

environments, namely, cylindrical and square open fields. Moreover, subicular place cells anticipate 

future location faster than the CA1 place cells (Sharp, 1999a). In spatial delayed nonmatch-to-sample 
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tasks, these differences are sustained (Deadwyler and Hampson, 2004). Task relevant information is 

encoded by the subiculum for a short period of time while the CA1 cells are progressively engaged 

in retrieval processes. Upon entering a new environment, the place fields evolve through entorhinal 

cortex to the CA1 and the subiculum (Brun et al., 2002). Moreover, upon exposure to this new 

environment, place cells of the subiculum emerge immediately, while the CA1 cells need to be 

exposed to the environment two or three times in order for them to develop their place fields (Wills 

et al., 2005).                                    

	 The spatial distribution and topography of the subicular efferents (Greene and Totterdell, 

1997;Ishizuka, 2001) suggest that the two types of subicular pyramidal cells may target different 

subcortical structures. Regular firing cells seem to project to the entorhinal cortex, while the burst 

firing cells seem to project to the presubiculum (Stewart, 1997). The inputs to these two types of 

cells originate mainly from the CA1, entorhinal cortex and the thalamic reuniens nucleus (Witter et 

al., 1989a;Witter et al., 1989b). These findings are not in contradiction with the differential outputs 

of the cells for the reason that although distinct inputs seem to be distributed in a topographic 

manner across the subiculum, they may have a different synaptic integration in the different cell 

types as our results clearly show.

	  These findings and hypotheses relate directly to different but related concepts of memory. 

Firstly, by linking the environmental cues to the significance of the subiculum in encoding and 

processing them, the subiculum should be related to the working memory and memory consolidation 

concepts. 

	 We have shown in our study that the subiculum utilizes cellular and synaptic mechanisms 

independently to provide differential processing of sensory information from the hippocampus to 

other cortical and sub cortical brain regions. Hence the distinct forms of synaptic plasticity in burst 

firing cells and regular firing cells may reflect the vast dynamic capacity for information storage 

by the subiculum and underpin its unique role in information processing in the hippocampal-

cortical axis. 
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