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Summary 

The George Fisher deposit is located in the northern Australian Carpentaria 

province, which is host to several of the world’s largest Zn and Pb mineral deposits. The 

annual metal production from George Fisher is crucial in order to meet the global 

demand for Zn and Pb. The main ore minerals at George Fisher are sphalerite (ZnS) and 

galena (PbS), which occur in stratabound, and in discordant, massive sulphide ore 

bodies together with pyrite (FeS2) and pyrrhotite (FeS). These massive sulphide ore 

bodies are hosted within carbonaceous, pyritic, calcareous, dolomitic siltstones and 

mudstones of the Paleoproterozoic Urquhart Shale Formation (ca. 1654 Ma), which is 

also host to two other world class base metal deposits (Mount Isa and Hilton). All three 

deposits are highly deformed, the textural relationships are complex, and there is a lack 

of indicator minerals to constrain the metamorphic grade of the Urquhart Shale. As a 

result, there has been considerable debate over (1) the processes that led to the 

accumulation of such huge amounts of base metal sulphides in the deposits of the area, 

and (2) the alteration footprint these processes have produced beyond the massive 

sulphide zones. 

In this project, petrographic observations across several scales (drill core logging 

down to backscatter-electron microscopy) were combined with whole rock, and in situ, 

mineralogical, geochemical, and isotopic analyses of representative samples from (1) 

four drill holes that intersected the main ore bodies at George Fisher, and also from (2) 

a drill hole that intersected the barren Urquhart Shale Formation. These data were 

collected in order to constrain the background heterogeneity that is inherent to rocks of 

the Urquhart Shale Formation (e.g., from background diagenetic processes). Using this 

framework, the nature of some of the hydrothermal processes responsible for ore 

formation were constrained. Particular emphasis was put on constraining (1) the 

accumulation processes of reduced sulphur, (2) the ore forming processes, and (3) the 

mineralogical and geochemical alteration footprint of the George Fisher deposit. 

In brief, the data from this study suggest that the Urquhart Shale Formation in 

the location we studied has not undergone regional greenschist metamorphism. The 

mineralogy and the paleoredox proxies (S-isotope data, Mo concentrations, rare earth 
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elements in carbonate minerals) from the barren Urquhart Shale sequence can, 

therefore, be interpreted in a sedimentary and diagenetic context; and those data concur 

with deposition of the Urquhart Shale Formation in a ferruginous, marine environment, 

which is consistent with the current understanding for the Paleoproterozoic oceans. 

Using this background composition as base line the petrographic, mineralogical, 

geochemical, and isotopic data from George Fisher suggest that (1) ore formation 

occurred in multiple events during diagenesis and later deformation, that (2) reduced 

sulphur in the deposit was likely derived via thermochemical sulphate reduction and the 

recycling of sulphur from pre-ore diagenetic pyrite, and that (3) fluid-rock interaction 

of hot (>200-250 °C), saline (Cl-rich), metal-bearing hydrothermal fluids with the 

Urquhart Shale Formation led to the dolomitization and replacement of pre-ore 

carbonate and the precipitation of base metal sulphides. Besides ore formation at George 

Fisher, these hydrothermal processes have resulted in mineralogical and bulk 

geochemical changes that include (1) albite, chlorite, and calcite depletion, (2) dolomite, 

phyllosilicate, and sulphide formation, (3) Na and Sr depletion, and (4) Tl and Mn 

enrichment relative to the barren host rocks. Furthermore, the fluid-rock interaction 

has led to light rare earth element (LREE) depletion in hydrothermal and 

hydrothermally altered carbonate minerals relative to whole rock and pre-ore carbonate 

LREE compositions. 

Overall, this project has provided new constraints on background diagenetic and 

hydrothermal processes, and footprints, in the Urquhart Shale Formation at George 

Fisher. Moreover, the findings from this study can help to further refine exploration 

models for Zn-Pb deposits in one of the world’s most important base metal provinces. 
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Zusammenfassung 

Die Lagerstätte George Fisher befindet sich in der nordaustralischen Carpentaria-

Provinz, in der mehrere der weltweit größten Zn- und Pb-Lagerstätten liegen. Die 

jährliche Metallproduktion aus George Fisher trägt erheblich dazu bei die weltweite 

Nachfrage nach Zn und Pb zu decken. Die wichtigsten Erzminerale in George Fisher sind 

Sphalerit (ZnS) und Galenit (PbS), die in schichtgebundenen und in diskordanten, 

Massivsulfiderzkörpern zusammen mit Pyrit (FeS2) und Pyrrhotin (FeS) vorkommen. 

Diese Massivsulfiderzkörper befinden sich in kohlenstoffhaltigen, pyritischen, 

kalkhaltigen, dolomitischen Siltsteinen und Tonsteinen des paläoproterozoischen 

Urquhart Shales (ca. 1654 Ma). In dieser Formation liegen auch zwei weitere erstklassige 

Buntmetallvorkommen (Mount Isa und Hilton). Alle drei Lagerstätten sind stark 

deformiert, die strukturellen Beziehungen sind komplex, und es mangelt an 

metamorphen Indikatormineralien. Infolgedessen gab es Debatten über (1) die Prozesse, 

die zur Akkumulation solch riesiger Mengen an Buntmetallsulfiden in den Lagerstätten 

führten, und (2) den Alterationsfußabdruck, den diese Prozesse jenseits der 

Massivsulfiderzkörper erzeugt haben. 

In diesem Projekt wurden petrographische Beobachtungen über mehrere Skalen 

(Bohrkernaufnahmen bis zur Elektronenmikroskopie) mit Gesamtgesteins- und in situ, 

mineralogischen, geochemischen sowie Isotopendaten repräsentativer Proben aus (1) 

vier Bohrlöchern, die die Haupterzkörper in George Fisher durchteuften, und auch aus 

(2) einem Bohrloch, das den unmineralisierten Urquhart-Shale durchteufte, kombiniert. 

Diese Daten wurden erhoben, um die Hintergrundheterogenität der Gesteine des 

Urquhart Shale zu verstehen (z.B. durch diagenetische Prozesse). Basierend auf diesen 

Daten wurden dann die erzbildenden hydrothermalen Prozesse untersucht. Ein 

besonderer Fokus lag auf der Untersuchung (1) der Akkumulationsprozesse des 

reduzierten Schwefels, (2) der Erzbildungsprozesse und (3) des mineralogischen und 

geochemischen Alterationsfußabdrucks der Lagerstätte George Fisher. 

Zusammengefasst deuten die Daten dieser Studie darauf hin, dass der Urquhart 

Shale an dem von uns untersuchten Ort keine regionale grünschieferfazielle 

Metamorphose durchlaufen hat. Die Mineralogie und die Paläoredoxindikatoren 
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(S-Isotopendaten, Mo-Konzentrationen, Lanthanoide in Karbonaten) aus dem 

unmineralisierten Urquhart Shale können daher in einem sedimentären und 

diagenetischen Kontext interpretiert werden. Diese Daten sind konsistent mit der 

Sedimentation des Urquhart Shale in einer eisenhaltigen, marinen Umgebung. Ein 

solches Ablagerungsmilieu stimmt auch mit dem derzeitigen Wissensstand für die 

Ozeane des Paläoproterozoikums überein. Ausgehend von dieser Hintergrund-

Zusammensetzung deuten die petrographischen, mineralogischen, geochemischen und 

Isotopendaten von George Fisher darauf hin, dass (1) die Erzbildung durch mehrere 

Ereignisse während der Diagenese und der späteren Deformation stattfand, und dass (2) 

die Akkumulation von reduziertem Schwefel in der Lagerstätte wahrscheinlich durch 

thermochemische Sulfatreduktion und das Recycling von Schwefel aus diagenetischem 

Pyrit stattfand, und dass (3) die Fluid-Gestein-Wechselwirkung von heißen (>200-

250 °C), salzhaltigen (Cl-reichen), metallhaltigen hydrothermalen Fluiden mit dem 

Urquhart Shale zur Dolomitisierung und Verdrängung von diagenetischen Karbonaten 

und zur Ausfällung von Buntmetallsulfiden führte. Neben der Erzbildung in George 

Fisher haben diese hydrothermalen Prozesse zu mineralogischen und geochemischen 

Veränderungen geführt, die (1) Albit-, Chlorit- und Calcit-Verarmung, (2) Dolomit-, 

Phyllosilikat- und Sulfidbildung, (3) Na- und Sr-Verarmung und (4) Tl- und Mn-

Anreicherung im Verhältnis zum unmineralisierten Wirtsgestein umfassen. Darüber 

hinaus hat die Fluid-Gesteins-Wechselwirkung zu einer Verarmung an leichten 

Seltenerdelementen (LREE) in hydrothermalen und hydrothermal alterierten 

Karbonaten geführt. 

Insgesamt hat dieses Projekt neue Erkenntnisse für diagenetische und 

hydrothermale Hintergrundprozesse und Fußabdrücke im Urquhart Shale in und um 

George Fisher geliefert. Darüber hinaus können die Ergebnisse dieser Studie dazu 

beitragen, die Explorationsmodelle für Zn-Pb-Lagerstätten in einer der wichtigsten 

Buntmetallprovinzen der Welt weiter zu verfeinern.  
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Preface 

This thesis is comprised of five chapters, which all individually concern the 

George Fisher massive sulphide Zn-Pb-Ag deposit and the Urquhart Shale Formation. 

Chapters 2, 3, and 4 are prepared to serve as independent stand-alone publications, 

which is why introductory material may be reiterated in the individual chapters. This 

preface will provide a short summary for each chapter and a declaration of personal 

contribution by the author and by colleagues and co-authors, who contributed in the 

individual chapters. Funding for this PhD project was provided by a Helmholtz 

recruitment initiative grant to S.A. Gleeson. 

Chapter 1 provides the reader with an introduction of the importance of mining, 

mineral exploration, and mineral deposit research. Additionally, the reader is 

introduced to the Carpentaria province with a short summary of its geology and existing 

models of the Zn-Pb massive sulphide deposits that occur therein, together with the 

open research questions that are addressed in this thesis. 

Chapter 2 has been published in Economic Geology. This chapter deals with the 

sulphide paragenesis and the sources of reduced sulphur for the Urquhart Shale 

formation and for the George Fisher deposit. The discussion of sulphur sources is based 

on in situ sulphur isotope analysis in paragenetically distinct generations of pyrite. The 

author conducted drill core logging and sampling supervised by J.M. Magnall and S.A. 

Gleeson, and supported by R. Lilly and the geology teams at Mount Isa Mines George 

Fisher operation and Mount Isa Mines Resource Development. Petrographic 

observations and sample selection were carried out by the author supported by 

discussions with J.M. Magnall and S.A. Gleeson. Thin section and mount preparation 

were carried out by U. Dittmann and E. Lewerenz. Backscatter electron imaging was 

carried out either by the author, or by F. Wilke or I. Schöppan in the author’s presence, 

and was supported by F. Wilke, O. Appelt, S. Mayanna, and I. Schöppan. Sulphur isotope 

analysis was done using SIMS Cameca 1280 lab at GFZ Potsdam. F. Couffignal carried 

out instrument calibration. Analyses were done by the author with the support of F. 

Couffignal and A. Rocholl. Data processing and interpretation was carried out by the 

author in collaboration with J.M. Magnall, S.A. Gleeson, and A. Rocholl. C. Kusebauch 
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contributed the geochemical modelling and discussions on phase stabilities in the Fe-S-

O system. J.M. Magnall and S.A. Gleeson supported the author with scientific 

discussions and guidance, and editing of the manuscript. 

Chapter 3 has been submitted to Chemical Geology, and has been received with 

positive reviews by two expert reviewers. This chapter deals with the mineralogical and 

lithogeochemical footprint of the George Fisher Zn-Pb system in the Urquhart Shale 

formation. The author conducted drill core logging and sampling supervised by J.M. 

Magnall and S.A. Gleeson, and supported by R. Lilly and the geology teams at Mount Isa 

Mines George Fisher operation and Mount Isa Mines Resource Development. 

Petrographic observations and sample selection were carried out by the author 

supported by discussions with J.M. Magnall and S.A. Gleeson. Thin section preparation 

was carried out by U. Dittmann and E. Lewerenz. Whole rock sample preparation for X-

ray diffraction (XRD) and lithogeochemical analysis was carried out by H. Liep and the 

author. Backscatter electron imaging was carried out either by the author, or by F. Wilke 

in the author’s presence, and was supported by F. Wilke. X-ray diffraction mount 

preparation, analysis, data processing and interpretation was carried out by the author 

with the help of A.M. Schleicher and M. Bonitz. Lithogeochemical analysis was carried 

out at Bureau Veritas Minerals, Vancouver, Canada and data processing was carried out 

by the author. J.M. Magnall and S.A. Gleeson supported the author with scientific 

discussions and guidance, and editing of the manuscript. 

Chapter 4 is an earlier version of a manuscript that has been submitted to 

Mineralium Deposita. This chapter concerns the rare earth element and yttrium 

systematics of diagenetic and hydrothermal processes preserved by carbonate minerals 

from the George Fisher deposit and the Urquhart Shale formation. The author 

conducted drill core logging and sampling supervised by J.M. Magnall and S.A. Gleeson, 

and supported by R. Lilly and the geology teams at Mount Isa Mines George Fisher 

operation and Mount Isa Mines Resource Development. Petrographic observations and 

sample selection were carried out by the author supported by discussions with J.M. 

Magnall and S.A. Gleeson. Thin section preparation was carried out by U. Dittmann and 

E. Lewerenz. Electron microprobe analyses and data reduction were carried out by the 

author, and by F. Wilke in the presence of the author. In situ analyses of carbonate 
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minerals were carried out in the LA-ICP-MS lab at GFZ Potsdam by M. Oelze in the 

author’s physical, or virtual (due to Covid-19 restrictions), presence. Furthermore, M. 

Oelze supported the author with data processing, interpretation, and scientific 

discussions. J.M. Magnall and S.A. Gleeson supported the author with scientific 

discussions and guidance, and editing of the manuscript. 

Chapter 5 concludes this thesis with a summary of the findings reported in 

Chapters 2 to 4 and an attempt to integrate the individual datasets amongst each other 

and with previous work.  
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1.  Introduction 

1.1. Why mining, mineral exploration, and mineral deposit research? 

There is a rapidly growing demand for more sustainable raw materials to support 

the transformation to a carbon neutral, high-tech, society. While technological advances 

allow for a more effective use and recycling of raw materials (esp. metals), this can only 

partially supply the raw materials needed for a growing world population with increasing 

per capita wealth (Elshkaki et al. 2018). Therefore, in order to support the energy 

transition, mining plays a key role in the supply of the necessary raw materials. For 

example, Zn is used in a variety of different industrial sectors and is critical in modern 

infrastructure; the demand for Zn is, however, expected to exceed Zn resources (from 

mining and recycling) before 2040 (e.g., Elshkaki et al. 2018). So, new Zn resources will 

need to be discovered. Yet, few base metal discoveries are made at the surface, and, 

therefore, exploration for new mineral systems is increasingly challenging (Schodde 

2017). For this reason, it is necessary to further constrain genetic models, which can be 

used in exploration in order to improve the efficiency of finding new, deeply covered 

mineral systems. In this context, mineral deposit research can contribute by developing 

new, and refining existing, ore formation models. 



 Introduction 

2 
 

The majority of the global Zn resources are hosted in sediment-hosted mineral 

deposits and a large proportion of these resources are contained within a small number 

of supergiant clastic-dominated (CD-type) massive sulphide deposits (Fig. 1-1; Leach et 

al. 2005, 2010; Mudd et al. 2017). Several of the world’s largest CD-type massive sulphide 

deposits are located in the northern Australian Carpentaria province, where, over the 

last century, a new world-class deposit has been discovered every 15-20 years (Mount 

Isa, Hilton, McArthur River, Lady Loretta, George Fisher, Century; McGoldrick et al. 

2010). Consequently, this province is highly endowed and there is potential for future 

discoveries that will contribute significantly to the global Zn resources. 

 
Fig. 1-1 (A) A map of the Carpentaria province. Stars annotate major Zn-Pb massive sulphide deposits. 
(B) Compilation of global resources for Zn and Pb; diagonal lines represent total contained metal (data 
from Mudd et al. 2017). 

1.2. The Carpentaria CD-type massive sulphide deposits 

The Carpentaria province is located in northern central Australia within 

Queensland and the Northern Territory. It comprises two Paleo- to Mesoproterozoic 

sedimentary basins: The Mount Isa Inlier and the McArthur Basin. These basins have 

formed in an intra-cratonic rift or continental back-arc setting, in which lithosphere 

underwent significant thinning (e.g., Giles et al. 2002; Gibson et al. 2012). Episodic 

extension, sag phases, and basin inversion led to the development of three superbasins: 

the Leichhardt, Calvert, and Isa superbasins (e.g., Jackson et al. 2000; Southgate et al. 
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2000; Gibson et al. 2016). After basin closure, the sedimentary rocks of these 

superbasins have undergone variable degrees of metamorphism and tectonic overprint, 

the intensity of which generally decreases from south-east to north-west (Blake 1987; 

Jackson et al. 1987). Besides world-class Zn-Pb deposits, the Carpentaria province is also 

host to substantial Cu, Au, and U resources (e.g., Williams 1998). 

The Zn-Pb deposits of the district are generally classified as clastic-dominated 

(CD-type; Leach et al. 2010), shale-hosted (SHMS; Betts et al. 2003), or sedimentary-

exhalative (SEDEX; Large et al. 2005) massive sulphide deposits. In this thesis, the CD-

type classification is used, to prevent confusion with other sediment hosted massive 

sulphide deposits (cf. SHMS; e.g., Mississippi Valley Type; Leach et al. 2005), and to 

avoid using a name which implies a genetic process which may not occur in the deposits 

(cf. SEDEX; exhalation of hydrothermal fluids; Large et al. 1998). The Carpentaria CD-

type massive sulphide systems generally comprise significant structural, paragenetic, 

geochemical, and mineralogical complexity. This is why, despite a century of research, 

there is no consensus on ore formation models. Ore formation models span across the 

range from syn-sedimentary exhalative (e.g., Mathias and Clark 1975; Large et al. 1998; 

Ireland et al. 2004), to syn-diagenetic or syn-inversion replacement (e.g., Broadbent et 

al. 1998; Painter 2003; Chapman 2004; Magnall et al. 2020b), or to syn-orogenic 

replacement (e.g., Perkins 1997; Davis 2004; Cave et al. 2020). In the Mount Isa area, 

developing ore formation models is further complicated by syn-orogenic Cu-

mineralization (cf. Perkins 1997). For example, the Mount Isa deposit comprises both a 

world-class Zn-Pb and a world-class Cu deposit and, therefore, discussion has focussed 

on whether these have formed in a single-stage (Zn+Pb+Cu; e.g., Perkins 1997; Davis 

2004; Cave et al. 2020), or a multi-stage system (Zn+Pb with later Cu±Zn±Pb; e.g., 

Andrew et al. 1989; Heinrich et al. 1989; Waring et al. 1998). 

In general, the Carpentaria CD-type massive sulphide deposits are extremely 

large (ore >100 Mt at Zn+Pb >10 wt. %; Fig. 1-1) and the main sulphide minerals are 

sphalerite (ZnS), galena (PbS), pyrite (FeS2), and pyrrhotite (Fe1-xS). Therefore, these 

deposits represent anomalous concentrations of Zn (≥750 times average upper 

continental crust; Rudnick and Gao 2003), of Pb (≥3000), and also of reduced S (≥50). 
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The source of these metals and of the reduced sulphur is, however, only poorly 

constrained. Despite their large size, the alteration footprint of the CD-type systems is 

difficult to assess. This is, in part, due to the tectonic overprint of some systems, the fine-

grained nature of the host lithologies, and the differing ore formation models, but also 

due to a lack of understanding concerning the background heterogeneity that is 

characteristic of the unmineralized host lithologies. Furthermore, historically assays in 

this area were limited to major elements, and therefore, there are few multi-element 

lithogeochemical data-sets available to assess possible alteration halos around the 

deposits. 

Overall, the aim of this study was to identify the processes responsible for the 

accumulation of reduced sulphur in the George Fisher deposit and to constrain the 

mineralogical and geochemical footprint of the massive sulphide system. For this 

purpose, samples from drill-cores through the main ore bodies at the southern 

Carpentaria George Fisher deposit (165 Mt at 9.1 % Zn, 3.4 % Pb, and 55 g/t Ag; Glencore 

2019) were studied in comparison with samples from a drill-hole that intersected 

unmineralized, correlative host lithologies (Urquhart Shale Formation). Following this 

introduction, the thesis is divided into four chapters: 

In chapter 2, we focus on the accumulation processes of reduced sulphur. 

Previous sulphur isotope studies in the area have applied bulk analyses and analyses of 

mineral separates to constrain the accumulation of reduced sulphur. Pre-ore pyrite and 

ore-stage sulphides are, however, very fine grained and paragenetically complex. We 

have, therefore, used secondary ion mass spectrometry (SIMS) analyses of five 

generations of paragenetically constrained pyrite to assess the sulphur cycling through 

time in the Urquhart Shale Formation and at the George Fisher deposit. This chapter 

has been published in Economic Geology and further publication details are stated at 

the beginning of the chapter. 

In chapter 3, we present a combined mineralogical and lithogeochemical study of 

samples from the unmineralized Urquhart Shale Formation and from the George Fisher 

deposit. The aim of this study is to assess if there is an alteration footprint around the 

George Fisher deposit, insights from which may be used in future exploration 
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programmes. This chapter is an earlier version of a manuscript published in Chemical 

Geology and further publication details are stated at the beginning of the chapter. 

In chapter 4, we investigate the geochemistry of the carbonate minerals in the 

Urquhart Shale Formation and the George Fisher deposit. Previous studies have 

identified km-scale enrichments of major elements in carbonates around Carpentaria 

CD-type systems. It remains, however, untested if the carbonate-associated element 

anomalies are a result of diagenetic or hydrothermal processes. The aim of this study is 

to assess if (1) in situ trace element, particularly rare earth element and yttrium, 

geochemistry of carbonate mineral phases can be used to differentiate diagenetic and 

hydrothermal carbonates, and if (2) this can be used in future exploration programmes 

in carbonate-rich lithologies. This chapter is an earlier version of a manuscript that has 

been submitted to Mineralium Deposita. 

In chapter 5, we provide a summary of the findings and interpretations in this 

thesis and the implications they may have (1) for mineralization at George Fisher and in 

the Carpentaria province, (2) for future research projects, and (3) for future exploration 

programmes.
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2.1. Abstract 

The Carpentaria province (McArthur basin and Mount Isa inlier) in northern 

Australia is one of the most important districts for clastic-dominated (CD-type) massive 

sulphide deposits. The George Fisher Zn-Pb-Ag deposit, located in this province, is 

hosted by the carbonaceous Urquhart Shale Formation (ca. 1654 Ma) in a region that has 

an active history of metamorphism and tectonism. In this study, paragenetically 

constrained pyrite in samples from the George Fisher deposit and unmineralized 

Urquhart Shale have been analysed in situ using secondary ion mass spectrometry 

(SIMS) of sulphur isotopes (δ34S values). Samples were taken from four drill cores 

through the main orebodies at George Fisher and one drill core through correlative, 

unmineralized Urquhart Shale (Shovel Flats area). Five generations of pyrite were 

identified at George Fisher and record a protracted history of sulphate reduction under 

diagenetic and subsequent hydrothermal conditions: (1) fine-grained, subhedral-

spheroidal pyrite (Py-0), (2) coarse-grained, anhedral pyrite (Py-1) associated with ore 

stage 1 sphalerite and galena, (3) coarse-grained, euhedral pyrite (Py-2) associated with 

ore-stage 2 sphalerite, galena, and pyrrhotite, (4) massive subhedral to euhedral pyrite 

(Py-3) associated with ore-stage 3 chalcopyrite, pyrrhotite, galena, and sphalerite, and 

(5) coarse-grained euhedral pyrite (Py-euh), which occurs only in unmineralized rocks. 

In the unmineralized Shovel Flats drill core, only Py-0 and Py-euh are present. Whereas 

pre-ore pyrite (Py-0) preserves negative δ34S values (–8.1 to 11.8‰), the ore-stage pyrites 

(Py-1, Py-2, and Py-3) have higher δ34S values (7.8–33.3, 1.9–12.7, and 23.4–28.2‰, 

respectively). The highest δ34S values (7.2–33.9‰) are preserved in Py-euh. In 

combination with petrographic observations, the δ34S values of pyrite provide evidence 

of three different processes responsible for the reduction of sulphate at George Fisher. 

Reduced sulphur in fine-grained pyrite (Py-0) formed via microbial sulphate reduction 

(MSR) under open-system conditions prior to the first generation of hydrothermal pyrite 

(Py-1) in ore-stage 1, which most likely formed via thermochemical sulphate reduction 

(TSR). During deformation, previously formed sulphide phases were then recycled and 

replaced during a second hydrothermal event (ore-stage 2), resulting in intermediate 

sulphur isotope values. Another syn-deformational hydrothermal Cu event, involving a 
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sulphate-bearing fluid, formed ore-stage 3 via TSR. This study demonstrates that the 

fine-grained pyrite formed pre-ore under conditions open to sulphate and outlines the 

role of multiple stages of sulphide formation in producing high-grade Zn-Pb-Ag 

orebodies in the Mount Isa inlier. 

2.2. Introduction 

Clastic-dominated (CD-type) massive sulphide deposits, sometimes referred to 

as sedimentary exhalative (SEDEX) deposits, constitute the majority of global reserves 

and resources for Zn and Pb (Mudd et al. 2017). One of the most important districts for 

CD-type Zn-Pb mineralization is the Paleoproterozoic to Mesoproterozoic Carpentaria 

province (McArthur basin and Mount [Mt.] Isa inlier), which is host to several of the 

world’s largest deposits (George Fisher-Hilton, Mount Isa, McArthur River, Lady Loretta, 

and Century; Large et al. 2005). As a result of metamorphic and tectonic overprints, 

which increase from north to south in the Carpentaria province (Blake 1987), there has 

been much debate about the timing and genesis of the different CD-type deposits of this 

region. 

Many genetic models for CD-type Zn-Pb deposits are developed around the 

paragenesis and distribution of pyrite, as it is the primary gangue sulphide mineral and 

occurs within pre-, syn-, and post-ore assemblages. In the Carpentaria province, the 

description of the relationship between Zn mineralization (sphalerite) and fine-grained 

(<10 μm), spheroidal pyrite (fg-py) differs between studies and, therefore, leads to 

different genetic models. For example, some models for the northern Carpentaria Zn-

Pb-Ag deposits invoke SEDEX processes, which led to the coeval precipitation of 

sphalerite and fg-py within a sulphidic (euxinic) water column (e.g., Large et al. 1998), 

whereas others have argued that Zn mineralization occurred during diagenesis and, 

therefore, post-dated the formation of fg-py (Eldridge et al. 1993; Magnall et al. 2020b). 

In contrast, there is uncertainty concerning how much early formed sphalerite exists in 

some of the southern Carpentaria Zn-Pb-Ag deposits (e.g., Perkins and Bell 1998; 

Chapman 2004). For example, some models favour the introduction of base metals 

during later stages of sediment burial, whereupon fg-py forms as part of a hydrothermal 

halo around the deposit (e.g., Broadbent et al. 1998). There is also additional complexity 
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in the southern Carpentaria region, where some deposits such as Mount Isa preserve 

evidence of a separate, Cu-rich hydrothermal event that was superimposed during 

regional metamorphism and deformation on earlier Zn mineralization (e.g., Perkins 

1984; Heinrich et al. 1989). 

The timing of sulphide formation in CD-type deposits can provide valuable 

information on the nature of both the metal trap and the geodynamic setting. For 

example, in models involving mineralization via SEDEX or early diagenetic subseafloor 

replacement processes, the upflow of metal-bearing fluids to shallow levels of 

sedimentary basins is thought to be facilitated by high geothermal gradients in 

extensional, rift-related settings (e.g., Walsh et al. 2018); in terms of a metal trap, 

microbial sulphate reduction (MSR) is then considered to contribute a major proportion 

of reduced sulphur (e.g., Fallick et al. 2001). In contrast, it has been argued that CD-type 

mineralization can occur in compressional regimes, when faults intersect overpressured 

reservoirs, and mixing between hydrothermal and evolved basinal fluids results in 

thermochemical sulphate reduction (TSR; e.g. Broadbent et al. 1998). 

The disparity between the different models for CD-type deposits is undoubtedly 

linked to the challenges associated with developing a robust paragenesis in these 

systems. The host rocks are typically fine-grained, fairly nondescript, organic-rich 

mudstones, making stratigraphic correlation particularly difficult in deformed units 

(e.g., Red Dog; Kelley et al. 2004). The sulphide mineralization in CD-type deposits is 

also commonly fine grained, and differentiating paragenetic relationships between 

diagenetic and hydrothermal mineral phases requires a combination of petrographic 

techniques, e.g., binocular, reflected-light, and scanning electron microscopy (SEM). 

Recently, the application of in situ techniques has helped to distinguish between 

sulphides that formed via diagenetic and hydrothermal sulphate reduction (e.g., 

Magnall et al. 2016b, 2020b). So far in the Carpentaria region, however, in situ studies 

have focused only on undeformed hydrothermal systems (e.g., Eldridge et al. 1993). 

In this study, we report petrographic and pyrite sulphur isotope data (δ34S values) 

for samples from the main orebodies of the George Fisher deposit. Currently, measured 

and indicated resources are 168 million tonnes (Mt) at 8.9% Zn, 3.5% Pb, and 55 g/t Ag 



 Sources of reduced sulphur at the George Fisher deposit, Australia 

10 
 

(224 Mt combined George Fisher and former Hilton deposit; Glencore 2018). We also 

report data generated on mudstone samples from the unmineralized Urquhart Shale 

Formation, which represents the host rock to the George Fisher deposit. For both sample 

suites, we present the results of combined SEM with high-resolution (spot size <5 μm) 

in situ secondary ion mass spectrometry (SIMS) in order to resolve microscale 

paragenetic features and differentiate between fg-py and ore-stage sulphides. In 

combining the petrographic and isotopic data, we establish a robust paragenesis for 

pyrite formation and associated sulphur cycling through the evolution of the George 

Fisher deposit, including a comparison with background processes in the Urquhart Shale 

Formation. In doing so, we answer the following questions: 

1. Does fg-py represent a feature of the pre-ore environment, or can it be 

considered part of the mineralogical footprint of the hydrothermal system (e.g., 

Broadbent et al. 1998; Perkins 1998)? 

2. How comparable was the metal trap at the George Fisher deposit to those of 

other CD-type Zn-Pb-Ag deposits in the Carpentaria province? 

2.3. Geological Background 

2.3.1. Mount Isa inlier and McArthur basin 

The Paleoproterozoic to Mesoproterozoic Mount Isa inlier and McArthur basin 

(Fig. 2-1) preserve a protracted record (250 m.y.) of basin evolution in the eastern margin 

of the North Australian craton, following the assembly of the Columbia/Nuna 

supercontinent between 1880 and 1800 Ma (Betts et al. 2002, 2016). Basin evolution is 

split into three consecutive unconformity-bound superbasin cycles, in which 

sedimentation is interpreted to have occurred in a back-arc or intracontinental setting 

(Giles et al. 2002; references in Gibson et al. 2016). The superbasin cycles record 

multiple episodes of rifting, sag phases, and basin inversion, and comprise (1) the 

Leichhardt superbasin (1790–1740 Ma), consisting of continental tholeiites, felsic 

volcanic rocks, and fluviatile-lacustrine sedimentary rocks, (2) the Calvert superbasin 

(1730–1640 Ma), consisting of nonmarine red beds, fanglomerates, and basaltic lavas, 

followed by shallow marine conditions at the Lawn Hill platform and turbidites farther 
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to the east, and (3) the Isa superbasin (ca. 1640–1575 Ma), which consists of turbidites, 

carbonaceous mudstones, and dolomitic siltstones. In the Leichhardt River fault trough 

of the Mount Isa area, sections of two of these superbasins are preserved (Leichhardt 

superbasin and Calvert superbasin; Fig. 2-2). 

 
Fig. 2-1 A map of the Mount Isa inlier and McArthur basin (Gibson et al. 2017) showing tectono-
stratigraphic subdivisions (Jackson et al. 2000) and seven major Zn-Pb-Ag deposits (asterisks). The 
George Fisher Zn-Pb-Ag deposit is highlighted in yellow, and the red rectangle outlines the Mount Isa 
region shown in Figure 2-2. 

2.3.2. Mount Isa Group and Urquhart Shale Formation 

The stratigraphic record of each superbasin cycle is subdivided into 

supersequences. The Mount Isa Group, which hosts the George Fisher and Mount Isa 

deposits, comprises the Gun and Loretta supersequences (Fig. 2-2). Whether the Mount 

Isa Group belongs to the Calvert or Isa superbasin is uncertain; for example, Southgate 

et al. (2000) proposed a stratigraphic position at the base of the Isa superbasin, whereas 

it was argued more recently that the Mount Isa Group should be placed at the top of the 

Calvert superbasin (Gibson et al. 2016). 
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Fig. 2-2 (A) A map showing the bedrock geology of the Leichhardt River fault trough in the Mount Isa 
region (Gibson et al. 2017). The Mount Isa and George Fisher ore deposits are denoted by stars, along 
with a circle for the Shovel Flats background drill core. (B) A stratigraphic column showing the 
generalized superbasin stratigraphy for the Mount Isa inlier (after Southgate et al. 2000; Gibson et al. 
2016). Also shown are approximate stratigraphic locations of George Fisher (GF), Mount Isa (MI), Lady 
Loretta (LL), HYC/McArthur River (HYC), and Century (CE) Zn-Pb-Ag deposits (asterisks). In the 
Mount Isa area, the Gun and Loretta supersequences are represented by the Mount Isa Group, which 
consists of eight clastic sedimentary formations (approximate formation thicknesses adapted from 
Neudert 1983). 

The Mount Isa Group mainly consists of marine carbonates, siltstones, 

mudstones, and black, finely laminated carbonaceous siltstones, all of which were 

deposited between 1670 and 1650 Ma (Page et al. 2000; Neumann et al. 2006). The 

Urquhart Shale Formation (ca. 1654 ± 5 Ma; Page and Sweet 1998), the host rock to the 

George Fisher, Hilton (now mined in one operation together with George Fisher), and 

Mount Isa ore deposits, is part of the Mount Isa Group (Isa superbasin; e.g., Southgate 

et al. 2000; Calvert superbasin; Gibson et al. 2016, 2017; Fig. 2-2). There are two different 

interpretations concerning the depositional environment of the Urquhart Shale. Some 

authors have proposed deposition in a deep-water setting, based on the fine grain size 
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and high organic content of this formation (e.g., Mathias and Clark 1975). More 

specifically, Domagala et al. (2000) interpreted the Urquhart Shale to have been 

deposited via turbiditic flows in a relatively deep water, submarine fan setting. In 

contrast, other authors recognized evidence for a shallow water, hypersaline 

environment, such as pseudomorphs after sulphates, halite casts, and stromatolites (e.g., 

McClay and Carlile 1978; Neudert and Russell 1981). The dissolution of sulphate minerals 

has been linked to the formation of fine-grained pyrite in the Urquhart Shale Formation 

around the Mount Isa deposit; this pyrite is considered to have formed via TSR during 

burial diagenesis (Painter et al. 1999). 

2.3.3. Deformation and metamorphism 

The Mount Isa inlier has undergone a complex deformational history. Between 

ca. 1610 and 1510 Ma the rocks were folded and faulted during multiple events of north-

south and east-west compression (Page and Bell 1986; Bell and Hickey 1998). Peak 

metamorphism is suggested to have taken place during the first phase of east-west 

compression, leading to sub-greenschist to amphibolite facies metamorphism in rocks 

west of the Mount Isa fault (Page and Bell 1986; Connors and Page 1995). In the Mount 

Isa area and at George Fisher, this complex deformational history resulted in folding and 

faulting (Chapman 2004; Murphy 2004). The metamorphic grade of the Urquhart Shale 

Formation and George Fisher deposit is, however, not well constrained. The only 

existing temperature constraints are derived from the reflectance of bituminous material 

in the Urquhart Shale Formation, which yield an estimated maximum burial 

temperature of approximately 200°C (Chapman 1999). 

2.3.4. George Fisher deposit 

The George Fisher deposit is located approximately 20 km north of the town of 

Mount Isa (Fig. 2-2). A total of nine domains are described by the Mount Isa Mines 

George Fisher operation nomenclature (A-I), which are further subdivided into 

unmineralized domains, consisting of barren mudstones and siltstones, weakly 

mineralized domains, and the main Zn-Pb orebodies. The mudstones are fine to medium 

bedded and consist of quartz, calcite, and ferroan dolomite with accessory mica, K-

feldspar, and carbonaceous material; siltstones contain millimetre to sub-millimetre 
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laminae composed of quartz, ferroan dolomite, spheroidal pyrite, and carbonaceous 

material (Chapman 2004). The Urquhart Shale Formation at George Fisher has total 

organic carbon contents of 0.3 to 3.6 wt % (Chapman 1999). Chapman (1999, 2004) 

described multiple generations of sulphides in the George Fisher deposit: (1) spheroidal, 

fine-grained pyrite that formed prior to all other sulphides, (2) pre-deformation, vein-

hosted stratabound sphalerite, (3) breccia-hosted, stratabound sphalerite associated 

with early stages of deformation, (4) later deformation-stage, vein-hosted galena and 

breccia-hosted galena and mixed sulphides, and (5) layer-parallel disseminated 

sphalerite interpreted as infill and alteration in host rocks proximal to mineralized 

zones. Additionally, Chapman (1999) described a later hydrothermal Cu event 

associated with vein infill or massive pyrrhotite breccias, which occurred after the main 

stage of Zn-Pb ore formation at temperatures of ~250° to 300°C (estimated by 

phyllosilicate mineral stabilities). Based on Pb model ages for galena, paragenetic 

observations, and metal distributions, (Chapman 1999, 2004) suggested that the bulk of 

the Pb (and Zn) mineralization at George Fisher took place syn-diagenetically at ca. 1653 

Ma and, therefore, that most of the mineralization is pre-deformation in origin. 

Similarly, based on structural observations in the nearby Hilton deposit, Valenta (1994) 

concluded that stratiform Zn-Pb mineralization there predated deformation. In 

contrast, Murphy (2004) described four stages of ductile deformation (D1–4) and 

suggested that the main Zn-Pb-Ag hydrothermal event was syn-D4. A late-stage ore 

formation model is also favoured by Perkins (1998), who suggested fine-grained pyrite 

formed via post-diagenetic cleavage replacement in association with the ore-forming 

system at the Mount Isa deposit. 

2.4. Methods and Samples 

A total of five drill cores were sampled, including four from the George Fisher 

deposit that intersected domains A to E (Fig. 7-1), and one drill core (Shovel Flats) that 

intersected the unmineralized Urquhart Shale Formation (see Fig. 2-2 for location; Fig. 

7-2). The drill cores were relogged for sedimentology, lithology, and alteration 

mineralogy prior to sampling (316 representative samples in total). There were 

difficulties in producing an exact stratigraphic correlation between the Shovel Flats drill-
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hole and the George Fisher deposit, due to the complex structure of the area and the 

lack of suitable marker beds. As a result, the Shovel Flats drill core was sampled 

extensively (91 samples from 601.5 m with a sample resolution of ≤25 m) to cover any 

potential lithological and isotopic heterogeneity. The paragenetic relationships (Fig. 

2-3) of sulphides within the samples were then evaluated using binocular and reflected-

light microscopy, and multiple target areas (n = 49) with representative paragenetic 

stages of sulphides were drilled out using a diamond core drill bit (4 mm diameter). The 

micro-drilled cores were set in three epoxy mounts together with pyrite reference 

material (Balmat, Crowe and Vaughan 1996; S0302A, Magnall et al. 2016b) and coated 

in 30 nm of gold. Higher-resolution imaging was then produced using the SEM to 

evaluate possible compositional zonation (backscatter electron imaging [BSE]) and 

identify areas for isotopic analysis. 

The 34S/32S ratios of pyrite were analysed by SIMS using the Cameca 1280-HR 

instrument at the GFZ German Research Centre for Geosciences (Potsdam, Germany). 

The three sample mounts were analysed over the course of several sessions (10 days). 

The instrument was operated at a mass resolution of M/dM ≈ 5,000. A ~100 to 150 pA, 

133Cs+ primary ion beam with a Gaussian energy distribution and an impact energy of 20 

keV was focused to ≤5 μm on the polished sample surface. Low-energy, normal-

incidence electron flooding was used in order to suppress charge build-up on the sample 

surface. Obtained count rates on the 32S mass station typically ranged from 1 to 8 × 107 

ions/s. Each analysis point was pre-sputtered for 100 s on a 15-μm raster, and data 

collection was then carried out for 100 s. The Balmat and S0302A pyrites (δ34S = 15.1 and 

–0.2‰ respectively; Crowe and Vaughan 1996; Magnall et al. 2016b) were used as 

reference materials and for instrumental calibration, as drift monitors, and for data 

normalization. 

Each analysis point (n = 1,657) was then imaged by BSE to identify the analysed 

phase(s). Areas containing very fine-grained pyrite or complex intergrowths of sulphide 

phases were analysed by transects of analytical spots with fixed spacing across several 

hundred microns (e.g., Fig. 2-4). The samples were then reimaged with an SEM, and the 

analysed spots were mapped. A total of 1,014 analyses were rejected on the basis of being 
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mixed phases (i.e., other sulphides or host rock). Over the course of the different 

sessions, 230 analyses were collected on the two reference materials, yielding a 

repeatability of 0.3 to 0.7‰ for S0302A (2 sd, n = 64) and 0.2 to 0.5‰ for Balmat (2 sd, 

n = 166). 

The thermodynamic software package PHREEQC with the implemented llnl.dat 

database (Parkhurst and Appelo 2013) was used to calculate mineral stabilities in the Fe-

S-O system. Phase stability fields were calculated for temperatures of 150°, 200°, and 

250°C, 10 MPa, pH 6, sulphur activity ranging from 10–6 to 1 mol, and oxygen fugacities 

of –55 to –30 log fO2. 

2.5. Results 

2.5.1. Sulphide paragenesis 

Three general sulphide assemblages are preserved in the George Fisher deposit: 

(1) pre-ore pyrite, (2) three different stages of hydrothermal sulphides, and (3) a 

generation of coarse-grained euhedral pyrite that occurs only in unmineralized rocks. In 

the correlative unmineralized stratigraphy (Urquhart Shale) of the background drill 

core, only pre-ore pyrite (1) and coarse-grained euhedral pyrite (3) are preserved. In the 

following section, individual stages are described in terms of the relative timing of 

sulphide formation (paragenesis; Fig. 2-3). 

2.5.2. Pre-ore sulphides 

The first generation of pyrite (Py-0) is predominantly found in the laminated, 

carbonaceous siltstone of the Urquhart Shale (Fig. 2-4, Fig. 2-5), both at George Fisher 

and in the Shovel Flats drill core. To a lesser extent, low abundances of Py-0 are also 

disseminated within organic-poor mudstone and siltstone. The siltstones are typically 

laminated, and pyrite is locally abundant (up to ~20 vol %) and occurs either as single 

grains or aggregates of grains that are concentrated along irregular (crinkly) laminae 

(Fig. 2-4, Fig. 2-5). Pyrite is typically spheroidal to subhedral and very fine grained 

(<10 μm) and can be split into two subtypes: Py-0a forms spheroidal to subspheroidal 

cores and is overgrown by Py-0b, which forms a porous, subhedral to euhedral 

overgrowth. 
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Fig. 2-3 The paragenetic sequence observed at George Fisher and in samples from the barren Urquhart 
Shale. Ore-stages 1 to 3 only occur at George Fisher; representative pyrite generations for each stage are 
highlighted in different colours. Euhedral pyrite (Py-euh) is only found in the barren Urquhart Shale 
samples and has not been observed with ore-stage sulphides; therefore, the possible time span for Py-euh 
formation is indicated by question marks and dashed lines. Also shown is sulphide paragenesis for 
George Fisher deposit reported by Chapman (1999, 2004). Mineral abbreviations: Ccp = chalcopyrite, 
Gn = galena, Po = pyrrhotite, Py = pyrite, Sp = sphalerite. 
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Fig. 2-4 (A) A photograph of a hand specimen from the George Fisher deposit comprising pyritic, 
carbonaceous siltstone (1), dolomitic mudstone (2), and carbonaceous mudstone (3). The yellow 
rectangle outlines the area shown in B, and the white arrow indicates uphole direction. (B) A binocular 
photomicroscope image of pyritic, carbonaceous siltstone (1) and carbonaceous mudstone (3). The 
yellow rectangle outlines the area shown in C. (C) A reflected-light photomicrograph of pyritic, 
carbonaceous siltstone (1) and carbonaceous mudstone (3) in which pyrite-0 (Py-0) grains are indicated 
by yellow arrows. (D) A backscatter electron (BSE) image of pyritic, carbonaceous siltstone in which Py-
0 forms single grains or aggregates and sphalerite (Sp) forms around and interstitial to some Py-0 
grains. The yellow rectangle outlines the area shown in E. (E) A high-resolution BSE image of Py-0 grains 
and aggregates in which Py-0 consists of spheroidal core (Py-0a) and subhedral overgrowth (Py-0b). 
Red circles indicate SIMS analysis spots and respective δ34S values. Sample PRK751003, domain E George 
Fisher deposit, drill core 201012252 (A-D). 

2.5.3. Ore-stage sulphides 

Hydrothermal sulphides clearly replace and overgrow pre-ore pyrite (Fig. 2-6, Fig. 

2-7) and can be differentiated in terms of texture, grain-size, and phase abundance. 

There are three generations of ore sulphides (ore-stages 1, 2, and 3), which comprise 

different proportions of pyrite, sphalerite, galena, pyrrhotite, and chalcopyrite. 

Additionally, ore-stages 1 and 2 are locally associated with fine-grained, stratabound 

sphalerite (e.g., Fig. 2-6). 
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Fig. 2-5 A hand specimen photograph (A) and binocular photomicroscope image (B) showing 
laminations of pyritic, carbonaceous siltstone (1), dolomitic mudstone (2), and carbonaceous mudstone 
(3). The black arrow indicates uphole direction shown in A. (C) A reflected-light photomicrograph of 
pyritic, carbonaceous siltstone, with individual Py-0 grains indicated by the yellow arrow. (D) A 
backscatter electron image of pyrite-0 (Py-0) grains and aggregates where Py-0 consists of spheroidal 
core (Py-0a) and subhedral overgrowth (Py-0b), and red circles indicate SIMS analysis spots and 
respective δ34S values. Sample PR832SF040, Shovel Flats drill core (A-D). 

Ore-stage 1: This stage of sulphides is stratabound and occurs mostly in 

laminated, carbonaceous siltstone and postdates Py-0 (Fig. 2-6). It consists of anhedral 

to subhedral pyrite (Py-1; ≤ several hundred μm), anhedral sphalerite (Sp-1; grain size up 

to several hundred μm), and locally fine grained (≤ several tens of μm), anhedral galena 

(Gn-1). The sulphides occur together with coarse-grained (≥100 μm) ferroan dolomite 

and locally calcite. Of these sulphide phases, Py-1 is the earliest in ore-stage 1 and is 

typically observed in nodules or layers. Galena-1 is the latest sulphide phase in ore-stage 

1 and commonly forms small veinlets. Locally, Py-0 is replaced by Sp-1 or Gn-1, resulting 

in atoll textures (Fig. 2-6). 
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Fig. 2-6 (A) Hand specimen photograph and (B) binocular photomicrograph of ore-stage 1, pyrite-1 (Py-
1) occurring in nodules or layers, sphalerite-1 (Sp-1) as stratabound, anhedral grains together with 
anhedral ferroan dolomite (Fe-Dol), galena-1 (Gn-1) as small veinlets across strata; black arrow indicates 
uphole direction. (C) Reflected-light photomicrograph of ore-stage 1 showing disseminated aggregates 
of pyrite-0 (Py-0) that are partially overgrown by sphalerite (Sp-1) and ferroan dolomite (Fe-Dol) and a 
nodule of Py-1. (D) A backscatter electron image of a Py-1 nodule and anhedral Sp-1 overgrowing Py-0a 
and Py-0b grains in which Gn-1 occurs as fine-grained infill to Py-1 and Sp-1. Red circles indicate SIMS 
analysis spots and respective δ34S values. Mixed analyses (m.a.) of Py-0 and Sp-1 were rejected during 
data quality control. (E) A reflected light photomicrograph of ore-stage 1, showing atoll textures in which 
Sp-1 and Gn-1 have replaced Py-0. (F) Hand specimen photograph and (G) transmitted-light 
photomicrograph of ore-stage 1 showing stratabound sulphides, typical for ore-stage 1, and fine-grained 
sphalerite (fg-Sp), which replaces mudstone adjacent to more massive, stratabound sulphides (e.g., Sp-
1). The yellow rectangle in F represents area shown in G. Samples PRK798C014, domain A George Fisher 
deposit, drill core 201512102 (A-C, E); PRK7952009, domain D George Fisher deposit, drill core 
201601212 (D); PRK798C007, domain A George Fisher deposit, drill core 201512102 (F, G). 
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Ore-stage 2: This generation of sulphides (Fig. 2-7) occurs as veins and breccias 

that cut and replace the host rocks and previous sulphide phases. The breccias are 1 to 

>10 cm thick and contain a matrix of mostly galena (Gn-2), sphalerite (Sp- 2) with minor 

pyrite (Py-2), and pyrrhotite (Po-1). Within these breccias, there are host-rock fragments 

and quartz and carbonate as gangue minerals. Where host-rock clasts are preserved, 

Py-0 is selectively replaced by Sp-2 and Gn-2, resulting in atoll textures (Fig. 2-7). Py-2 

is typically euhedral and 50 to 500 μm in size. 

Ore-stage 3: This generation of sulphides forms either stratabound, massive units 

or veins and breccias that cut previous sulphide phases and bedding in the host rock 

(Fig. 2-8). Ore-stage 3 is associated with a buff-coloured phyllosilicate alteration 

assemblage of the host rock (Fig. 2-8). Pyrite (Py-3) and pyrrhotite (Po-2) are the main 

sulphides in ore-stage 3. Sphalerite (Sp-3), galena (Gn-3), and chalcopyrite (Ccp) form 

minor constituents during this stage. Sphalerite-3 occurs within the breccias, and Gn-3 

and Ccp form veinlets within buff-coloured, phyllosilicate-altered host rocks. Pyrite 

(Py-3) is typically subhedral to euhedral and several tens of microns in size. Pyrrhotite 

(Po-2) is subhedral to anhedral and occurs interstitial to Py-3. Within mudstones, Po-2 

forms porous, anhedral nodules several millimetres in size. Ore-stage 3 is chiefly present 

in the uppermost orebodies of the deposit. 

2.5.4. Coarse-grained, euhedral pyrite 

Euhedral pyrite (Py-euh; Fig. 2-9) forms overgrowths on Py-0a and Py-0b but 

lacks spatial or temporal relationship to the other generations of sulphides. Py-euh is 

coarse grained (up to several mm) and euhedral, occurs in carbonate beds or nodules 

(mostly calcite), and is present in both the Shovel Flats drill core and George Fisher 

deposit. Py-euh can be distinguished from euhedral pyrite in ore-stage 2 or 3 (Py-2 or 

Py-3) by a coarser grain size, mineral assemblage, and texture. Specifically, Py-2 and Py-3 

only occur together with other sulphide minerals (Sp-2, Gn-2, Po-1, Sp-3, Gn-3, Po-2, 

Ccp) in veins or breccias, whereas Py-euh is not associated with other sulphides and 

commonly is stratabound together with carbonate phases. 
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Fig. 2-7 (A) Hand specimen photograph and (B) binocular photomicrograph of ore-stage 2, showing 
galena-2 (Gn-2) and sphalerite-2 (Sp-2) breccias and veinlets, which cut and replace host-rock types; 
note quartz and carbonate as gangue minerals and host-rock fragments in breccias. (C-E) Reflected-
light photomicrographs of pyrite-0 (Py-0) cut by Gn-2 (C), overgrown by Gn-2 and Sp-2 (C-E), and 
replaced by Gn-2 and Sp-2 (D, E); pyrite-2 (Py-2) forms euhedral crystals together with Sp-2 and Gn-2 
(C, E). Note the atoll textures of Py-0 being replaced by Gn-2 and Sp-2 (D, E), which are in equilibrium 
with pyrrhotite-1 (Po-1; D). (F) A backscatter electron image of Py-0 aggregates and Py-2 in Gn-2 and 
Sp-2 breccia; red circles indicate SIMS analysis spots and respective δ34S values. Samples PRK751025, 
domain C George Fisher deposit, drill core 201012252 (A-C, E, F); PRK751024, domain C George Fisher 
deposit, drill core 201012252 (D). 
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Fig. 2-8 (A) A hand specimen photographs of ore-stage 3 showing massive stratabound pyrite-3 (Py-3) 
alteration and pyrrhotite-2 (Po-2) nodules (left) and Po-2, galena-3 (Gn-3), sphalerite-3 (Sp-3), and Py-3 
breccias replacing deformed host rock and chalcopyrite (Ccp) veinlets crosscutting and replacing 
deformed host rock (middle and right). Note the buff phyllosilicate alteration assemblage in the host 
rock associated with ore-stage 3. The black arrows indicate uphole direction. (B) Binocular 
photomicrographs of massive, stratabound Py-3 and buff altered host rock (left) and of a Po-2 nodule 
and Ccp and Po-2 veinlets. (C, D) Backscatter electron images of massive, stratabound Py-3 with Po-2 
and of a Po-2 nodule together with Py-3; red circles indicate SIMS analysis spots and respective δ34S 
values. Samples PRK751044, domain A George Fisher deposit, drill core 201012252 (A left, B left, C, D); 
PRK751049, domain A George Fisher deposit, drill core 201012252 (A middle); PRK751050, domain A 
George Fisher deposit, drill core 201012252 (A right, B right). 
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Fig. 2-9 (A) A hand specimen photograph of coarse-grained, euhedral pyrite (Py-euh), carbonaceous 
mudstone (3), and pyritic, carbonaceous siltstone (1) containing pyrite-0 (Py-0). The black arrow 
indicates uphole direction. (B, C) Reflected-light photomicrographs of Py-euh (B, C) and Py-0 (B). (D) 
Backscatter electron images of Py-euh. Note the Py-0 grains being overgrown by Py-euh; red circles 
indicate SIMS analysis spots and respective δ34S values. Sample PR832SF008, Shovel Flats drill core (A); 
PR832SF040, Shovel Flats drill core (B, D); PR832SF086, Shovel Flats drill core (C). 

2.5.5. Sulphur isotope composition (δ34S) of pyrite 

The δ34S values of 643 analyses of pyrite from the George Fisher deposit and the 

Shovel Flats drill core are summarized in Fig. 2-10 and Appendix Table A1. 

Pyrite from the George Fisher deposit has δ34S values between –8.1 and 33.9‰ 

(n = 446). Py-0a and Py-0b preserve δ34S values of –8.1 to 2.7‰ (n = 116; five samples) 

and –4.1 to 5.4‰ (n = 44; four samples), respectively. The different generations of ore-

stage pyrite have δ34S values from 7.8 to 33.3‰ (Py-1; n = 75; four samples), 1.9 to 12.7‰ 

(Py-2; n = 155; four samples), and 23.4 to 28.2‰ (Py-3; n = 38; two samples). The δ34S 

values of Py-euh are distributed between 7.2 and 33.9‰ (n = 18; two samples). 

The δ34S values of pyrite from the Shovel Flats drill core are 1.0 to 31.0‰ (n = 197). 

Compared to George Fisher, Py-0a and Py-0b have slightly higher δ34S values of 1.0 to 
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11.8‰ (n = 24; five samples) and 6.5 to 11.6‰ (n = 2; two samples), respectively. Py-euh 

preserves δ34S values of 10.3 to 31.0‰ (n = 171; eight samples). 

Fig. 2-10 Box and whisker plots 
showing the δ34S (‰; Vienna-
Canyon Diablo Troilite [V-CDT]) 
values of pyrite (Py-0a, Py-0b, Py-1, 
Py-2, Py-3, and Py-euh) from George 
Fisher (A), background Urquhart 
Shale (B), and from pyrite analyses 
of previous studies (C) in the 
Carpentaria province (George 
Fisher, Chapman 1999; Mount Isa, 
Andrew et al. 1989; Urquhart Shale 
and environment of Mount Isa, 
Painter et al. 1999; McArthur River, 
Eldridge et al. 1993). The pyrite 
nomenclature from these studies has 
been converted to that used in this 
study in order to simplify 
comparison. The δ34S value of barite 
has been used as an approximation 
for late Paleoproterozoic seawater 
(Strauss 1993). Symbols above 
individual box and whisper symbols 
indicate individual data points of the 
respective pyrite generation. 
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2.6. Discussion 

2.6.1. Pre-ore pyrite 

At George Fisher, Py-0a and Py-0b are overgrown (Fig. 2-6, Fig. 2-7, Fig. 2-9) or 

replaced (Fig. 2-6, Fig. 2-7) by the ore-stage sulphides. As Py-0 is preserved at both 

George Fisher and in the barren Urquhart Shale, it is very likely that Py-0 formed in a 

pre-ore environment. Similarly, comparable fine-grained, stratiform pyrite has been 

documented in a number of other unmineralized, carbonaceous, fine-grained 

siliciclastic sequences of Proterozoic age (e.g., Schieber 1989; Painter et al. 1999; Lyons 

et al. 2000). In some of these settings, the concentration of fine-grained pyrite along 

crinkly laminations has been linked to the formation of microbial mats and diagenetic 

sulphide formation unrelated to hydrothermal activity (Schieber 1990). In contrast, it 

has also been proposed that fine-grained pyrite can form at higher temperatures via TSR 

during burial diagenesis (e.g., Painter et al. 1999). At ambient temperatures there are 

two main pathways by which seawater sulphate is microbially reduced to sulphide in 

anoxic marine sediments: (1) MSR and (2) sulphate-driven via anaerobic oxidation of 

methane (SD-AOM). The hydrogen sulphide produced reacts with reactive Fe to 

precipitate diagenetic pyrite by a series of iron sulphide precursor phases (Sweeney and 

Kaplan 1973; Raiswell and Berner 1985). 

A large kinetic fractionation is associated with MSR (ε34S = δ34SSO4 – δ34SH2S), 

meaning that pyrite typically preserves δ34S values that are considerably offset (Δ34S = 

δ34Sseawater – δ34Spyrite) from those of coeval seawater sulphate (e.g., Kaplan et al. 1963; 

Kaplan and Rittenberg 1964). The δ34Spyrite value will depend, therefore, both on ε34S 

and the initial δ34SSO4 value; however, there are no precise constraints on δ34SSO4 for the 

late Paleoproterozoic during the deposition of the Urquhart Shale (ca. 1654 Ma). On a 

regional scale, a wide range of δ34SSO4 values (14.1–37.2‰) are reported for slightly 

younger sedimentary units derived from the analyses of carbonate-associated sulphate 

(CAS) in the Paradise Creek Formation (McNamara Group, Lawn Hill platform, ca. 1650 

Ma; Gellatly and Lyons 2005), which on a more global scale overlaps δ34SCAS values for 

samples of diagenetic carbonate in the Chuanlinggou Formation (Yanshan basin, North 
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China; ca. 1650 Ma; 27.3–40.2‰; Li et al. 2015). Nevertheless, δ34SCAS values can exceed 

that of coeval seawater (δ34SSO4) due to modification by MSR in diagenetic pore fluids 

(e.g., Present et al. 2015). A narrower range of δ34S values (18–25‰) is recorded in 

bedded barite from the McArthur Group (McArthur basin; Strauss 1993). These units are 

slightly younger but broadly time correlative to the Mount Isa Group and may, therefore, 

provide a more conservative estimate for the isotopic composition of seawater sulphate. 

In the following discussion of δ34Spyrite values, therefore, δ34Sseawater value of 18 to 25‰ 

will be used as a general reference. 

The δ34SPy-0 values represent a large offset from the estimated composition of 

coeval seawater sulphate (Δ34S = 6.2–33.1‰; Fig. 2-10), and the lowest δ34SPy-0 values 

overlap with the lowest reported δ34Spyrite values in samples from this time period (e.g., 

Canfield and Farquhar 2009; Fike et al. 2015). Development of more positive δ34S values, 

perhaps approaching coeval δ34SSO4, typically occurs under sulphate-limited conditions. 

Importantly, sulphate limitation can occur at different scales: for example, progressive 

consumption of sulphate via MSR and SD-AOM can produce large isotopic gradients 

within diagenetic pore fluids (e.g., Jørgensen et al. 2004), which has been linked to 

highly variable δ34Spyrite values at a hand sample scale (e.g., Borowski et al. 2013; Magnall 

et al. 2016b). In contrast, it is generally accepted that sulphate limitation may also occur 

when MSR consumes high proportions of seawater sulphate in the water column of 

euxinic basins, which has been used to explain the preservation of highly positive 

δ34Spyrite values at a broader basin scale (e.g., Lyons et al. 2000). 

The observed high Δ34S values (δ34SSO4,seawater – δ34SPy-0) are typical of MSR in 

relatively open system conditions when sulphate is not completely consumed (Gomes 

and Hurtgen 2015). Open-system conditions actually represent the vast majority of early 

pyrite formation in marine environments, normally within diagenetic pore waters below 

the sediment-water interface (e.g., Rudnicki et al. 2001). Open-system sulphate 

reduction may also develop locally within euxinic water columns with a high initial 

concentration of seawater sulphate (e.g., Lyons 1997), but without additional paleo-

redox indicators it is not possible to differentiate between the different modes of open-

system pyrite formation in the geologic record. The trend toward slightly more positive 
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δ34S values in Py-0b, which forms euhedral overgrowths on Py-0a, is evidence of pyrite 

formation under increasingly sulphate limited conditions. Compared to Py-0a, 

formation of Py-0b likely occurred within slightly more restricted diagenetic pore fluids, 

with a common source of reduced sulphur derived from MSR. Indeed, pyrite that forms 

in modern marine sediments deposited under non-euxinic conditions preserves similar 

morphologies of euhedral overgrowths of earlier, fine-grained pyrite (South China Sea; 

Lin et al. 2016). 

When comparing samples from the George Fisher deposit and the Shovel Flats 

drill hole, a small difference in δ34SPy-0 values (Fig. 2-10) may also provide evidence of 

slightly more sulphate-limited conditions in the unmineralized samples. Yet it is notable 

that no highly positive δ34SPy-0 values (>15‰) exist in any of the samples, unlike the 

diagenetic pyrite analysed in other Proterozoic sedimentary basins (e.g., Strauss and 

Schieber 1990; Lyons et al. 2000; Magnall et al. 2020b). The absence of such highly 

positive δ34SPy-0 values demonstrates that pyrite did not form in highly sulphate limited 

conditions in the Urquhart Shale, either in unmineralized or mineralized samples. 

Altogether, the pre-ore timing of Py-0, combined with overlapping δ34SPy-0 values 

between unmineralized and mineralized samples (Fig. 2-10), suggests that MSR in 

relatively open system conditions resulted in extensive diagenetic pyrite formation 

before the onset of hydrothermal activity. 

2.6.2. Sulphide paragenesis 

Due to morphological and textural similarities, pre-ore Py-0 in this study may be 

the equivalent of early diagenetic fine-grained Py-1 as described at the McArthur River 

deposit (e.g., Eldridge et al. 1993). For the Mount Isa deposit, Perkins (1998) and Perkins 

and Bell (1998) reported morphologically similar zoned fine-grained pyrite, which they 

interpreted to have formed via post-diagenetic cleavage replacement. Such a 

relationship to post-diagenetic cleavage replacement has not been observed in this 

study. 

The overall paragenesis of ore-stage sulphides at George Fisher described in this 

study (Fig. 2-3) is broadly consistent with the relative timing of sulphide minerals 

described by Chapman (1999, 2004). Stratabound sulphide mineralization is typical of 
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the ore at George Fisher and is described as ore-stage 1 (this study) and as pre-

deformation vein-hosted stratabound sphalerite by Chapman (2004). Furthermore, 

fine-grained stratabound sphalerite adjacent to high-grade ore zones is described in 

both studies (Chapman 2004; Fig. 2-6), and has been interpreted to form as an alteration 

feature in the host rock (Chapman 2004). The subdivision of breccia-hosted Zn-Pb-Ag 

mineralization into different generations of successive ore breccias (Fig. 2-7; breccia-

hosted stratabound sphalerite, vein- and breccia-hosted galena, and fine-grained mixed 

sulphide breccias; Chapman 2004) is here simplified into ore-stage 2, because (1) clear 

crosscutting relationships between different ore breccias could not be discerned, (2) 

pyrite morphologies are very similar throughout ore-stage 2, and (3) δ34SPy-2 values 

display a narrow range in all analysed ore-stage 2 samples (1.9–12.7‰; 155 analyses of 

four individual samples). 

2.6.3. Interpreting δ34S values in ore-stage pyrite 

Pyrite from ore-stage 1 (Py-1) preserves a broad distribution of δ34S values (7.8–

33.3‰) that is a typical result of in situ analyses of ore-stage sulphides in CD-type 

deposits (e.g., Eldridge et al. 1993; Kelley et al. 2004; Magnall et al. 2016b; Gadd et al. 

2017). The heterogeneity of δ34SPy-1 values is at the hand sample scale, which is common 

in systems that are transport limited, i.e., where variability exists in the rate of sulphate 

replenishment relative to reduction (e.g., Goldhaber and Kaplan 1975; Riciputi et al. 

1996). Importantly, pyrite from ore-stage 1 is isotopically distinct from pre-ore pyrite 

(Fig. 2-10), providing evidence that ore-stage sulphur may not have evolved from open- 

to closed-system conditions via progressive sulphate depletion during MSR. Rather, it is 

more likely that Py-1 formed from reduced sulphur derived by a separate process. 

Highly positive δ34S values are typical of more closed-system sulphate reduction 

and are a feature of all CD-type deposits (e.g., Eldridge et al. 1988; Magnall et al. 2016b; 

Gadd et al. 2017). Recently, it has been shown how positive δ34S values developed within 

pre-ore diagenetic environments via SD-AOM, prior to sulphide mineralization in 

CD-type Zn-Pb deposits from the Selwyn basin (Magnall et al. 2016b; Johnson et al. 

2018). The Shovel Flats drill hole, however, does not preserve stratiform pyrite that is 
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comparable to Py-1, in terms of either morphology or δ34S values. This result would imply 

that another sulphate reduction process was responsible for Py-1 formation. 

Under hydrothermal conditions (>100°C), sulphate reduction can proceed via an 

abiotic pathway given the availability of an appropriate reductant (e.g., organic matter), 

in a reaction described as TSR (Machel 2001): 

Hydrocarbons + SO4
2– → altered hydrocarbons + solid bitumen + H2S + CO2 + H2O  

The TSR reaction does, however, require a catalyst (e.g., H2S; Toland 1960; 

Goldhaber and Orr 1995), which at George Fisher could have been derived from reduced 

sulphur produced by MSR and/or SD-AOM. The other components required for TSR 

were readily available within the Mount Isa Group. For example, preservation of 

substantial amounts of organic carbon has also been reported for sedimentary rocks in 

the northern Mount Isa inlier (total organic carbon up to 6.9 wt %; McNamara Group; 

Glikson et al. 2000) and for the Urquhart Shale at George Fisher (total organic carbon 

up to 3.6 wt %; Chapman 1999). In terms of sulphate availability, this is typically sourced 

from seawater sulphate or the dissolution of sulphate-bearing mineral phases (Machel 

2001). In the Mount Isa Group there is evidence of local gypsum and anhydrite, which 

via dissolution could have provided a direct source of sulphate or alternatively might 

represent the end product of sulphate-rich evaporitic brines in the basin (e.g., McClay 

and Carlile 1978; Neudert and Russell 1981). 

Under open-system conditions, there is a temperature-dependent kinetic 

fractionation associated with TSR (Kiyosu and Krouse 1990): ε34S = 20‰ (at 100°C), 

15‰ (at 150°C), and 10‰ (at 200°C). As stated previously, however, the wide range of 

observed δ34SPy-1 values provides evidence of transport limitation and Rayleigh 

fractionation effects that resulted from a restricted supply of sulphate. This distribution 

of δ34S values in early ore-stage sulphides appears to be consistent with those of other 

CD-type deposits for which TSR has been proposed (e.g., Kelley et al. 2004; Magnall et 

al. 2016a; Gadd et al. 2017). It is also worthwhile drawing comparison to studies of TSR 

in natural gas reservoirs, where H2S is produced by the thermal alteration of 

hydrocarbons in combination with the dissolution of sulphate mineral phases (e.g., 

Riciputi et al. 1996; Cai et al. 2003; King et al. 2014). In fact, the offset from respective 
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seawater sulphate values (Δ34S) measured for H2S (Cai et al. 2003; Zhu et al. 2005) and 

for pyrite (Riciputi et al. 1996; Zhu et al. 2005; King et al. 2014) from these reservoirs is 

very similar to the offset determined herein for Py-1 from ore-stage 1 at George Fisher. 

Overall, the availability of organic matter and sulphate in the Urquhart Shale, together 

with Δ34S values similar to those of TSR-produced ore-stage sulphides in other CD-type 

deposits (e.g., Kelley et al. 2004; Magnall et al. 2016a; Gadd et al. 2017) and natural gas 

reservoirs (e.g., Riciputi et al. 1996; Zhu et al. 2005; King et al. 2014), is consistent with 

reduced sulphur being derived from TSR during ore-stage 1 at George Fisher. 

The δ34S values of pyrite from ore-stage 2 (Py-2; Fig. 2-10) are intermediate 

between and overlap those of pre-ore pyrite (Py‑0) and ore-stage 1 pyrite (Py-1). Slightly 

higher Δ34S values associated with ore-stage 2 pyrite (Fig. 2-10) may have resulted from 

TSR that occurred at lower temperatures or involved a different source of sulphate. 

Alternatively, the replacement of fine-grained pyrite by ore-stage sulphides could also 

have provided a source of reduced sulphur within the highly mineralized ore zones, as 

suggested by previous authors for Mount Isa (Blanchard and Hall 1937; Grondjis and 

Schouten 1937; Solomon 1965; Finlow-Bates et al. 1977), George Fisher (Chapman 1999), 

and McArthur River (Williams and Rye 1974). At the George Fisher deposit the 

pyrrhotite (Po-1) that is more abundant in ore-stage 2 (Fig. 2-7) could have derived from 

the transformation of pyrite and involved a corresponding release of sulphur (FeS2 = FeS 

+ ½ S2; Toulmin III and Barton Jr 1964). An important question remains, therefore, as to 

what physicochemical conditions were responsible for the transition between sphalerite 

+ galena + pyrite (ore-stage 1) to sphalerite + galena + pyrrhotite ± pyrite (ore-stage 2). 

A rigorous assessment of peak metamorphic conditions has not been conducted 

at the George Fisher deposit. The only existing temperature constraints are derived from 

the reflectance of bituminous material (~200°C) and a phyllosilicate assemblage that 

provides evidence that temperatures may have reached 300°C (Chapman 1999), which 

both correspond with sub-greenschist facies metamorphic conditions. This temperature 

regime is also broadly consistent with maximum temperatures (200°–350°C) derived 

from fluid inclusions in dolomite and quartz associated with syn-deformational Cu ore 

formation at the Mount Isa deposit (Heinrich et al. 1989; Kendrick et al. 2006). Using 



 Sources of reduced sulphur at the George Fisher deposit, Australia 

32 
 

these temperature constraints, thermodynamic modelling shows that small changes in 

temperature, sulphur activity, and oxygen fugacity could have affected the stability of 

pyrite and pyrrhotite (Fig. 2-11). An increase in temperature (arrow A in Fig. 2-11), 

decrease in sulphur activity (B), or decrease in oxygen fugacity (C) could have resulted 

in a shift toward the stability field of pyrrhotite at the expense of pyrite (e.g., Craig and 

Vokes 1993). In contrast, a decrease in temperature (A), increase in sulphur activity (B), 

or increase in oxygen fugacity (C) could have stabilized pyrite and destabilized 

pyrrhotite (e.g., Craig and Vokes 1993). One of these processes or the interplay of them 

may, indeed, explain why (1) earlier generations of pyrite at George Fisher are replaced 

by sphalerite and galena (Fig. 2-7) and (2) both pyrrhotite and pyrite occur in ore-stage 

2 (Po-1 and Py-2; Fig. 2-7). Using this model of sulphide replacement, the fact that δ34SPy-

2 values are intermediate between those of δ34SPy-0 and δ34SPy-1 (Fig. 2-10) may indicate 

that similar proportions of pre-existing pyrite were involved in the replacement process. 

Overall, the interpretation that reduced sulphur for ore-stage 2 was derived from 

previous generations of pyrite is consistent with pyrite replacement textures (Fig. 2-7), 

increasing pyrrhotite abundance (Fig. 2-7), and intermediate δ34SPy-2 values (Fig. 2-10) 

in ore-stage 2. 

Fig. 2-11 A phase diagram for 
system Fe-S-O at pH = 6 showing 
stability fields for magnetite 
(Mag), hematite (Hm), pyrrhotite 
(Po), and pyrite (Py) for three 
different temperatures (150°C 
dashed lines; 200°C solid lines; 
250°C dashed lines), and variable 
oxygen fugacity and sulphur 
activity. The asterisk and three 
arrows represent three scenarios 
under which Py is destabilized 
and Po becomes stable (A = 
increased temperature; B = 
decreasing sulphur activity; C = 
decreasing oxygen fugacity). The 
thermodynamic software 
package PHREEQC with the 
implemented llnl.dat database 
(Parkhurst and Appelo 2013) was 
used to calculate mineral 
stabilities in the Fe-S-O system. 
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The modelled temperatures are also below the threshold at which isotopic 

equilibration between other mineral phases is expected to be a factor. For example, 

previous work has shown that primary δ34S values are retained in pyrite at temperatures 

below 350°C (Cook and Hoefs 1997; Wagner and Boyce 2006; Cloutier et al. 2015), which 

is the uppermost temperature constraint for the George Fisher deposit. Such 

temperatures are below the brittle-ductile transition for pyrite, unlike the other sulphide 

mineral phases present at George Fisher (galena, sphalerite, pyrrhotite) that preserve 

signs of ductile deformation (Marshall and Gilligan 1987). Indeed, it has been suggested 

that galena and sphalerite accommodated most of the deformation at the George Fisher 

deposit (Chapman 2004). 

Pyrite in ore-stage 3 (Py-3) has a narrow distribution of δ34S values, similar to 

those of late Paleoproterozoic seawater (Fig. 2-10). Following previous arguments, ore-

stage 3 could potentially be the product of recycling of ore-stage 1; however, the broad 

distribution of δ34SPy-1 values makes a formation by recycling of sulphur from ore-stage 

1 unlikely, because a similar distribution is not preserved in the δ34SPy-3 values. Different 

conditions of pyrite formation are perhaps more likely, considering that chalcopyrite 

also occurs in the ore stage 3 assemblage at George Fisher (Fig. 2-8) and is associated 

with buff-coloured phyllosilicate-altered host rocks (Fig. 2-8). Temperature constraints 

for ore-stage 3 are also high (250°–300°C; Chapman 1999), which could have resulted in 

minimal fractionation during TSR. It therefore seems possible that ore-stage 3 developed 

as a separate hydrothermal event that overprinted previous ore stages (Fig. 2-3). Indeed, 

a similar model has been proposed for the Mount Isa deposit, involving a Cu-rich, syn-

metamorphic/syn-deformational, hydrothermal event being superimposed on pre-

existing Zn-Pb mineralization (e.g., Andrew et al. 1989; Heinrich et al. 1989). Notably, 

the δ34SPy-3 values overlap with δ34S values reported at Mount Isa (Fig. 2-10), albeit 

skewed toward slightly more positive values at George Fisher. 

2.6.4. Coarse-grained euhedral pyrite 

The δ34S values of Py-euh from the Shovel Flats drill hole form a broad 

distribution with a median close to those δ34S values constrained for late 

Paleoproterozoic seawater sulphate (Fig. 2-10). In contrast, the δ34SPy-euh values of two 
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samples from the George Fisher deposit show a bimodal distribution, which is similar to 

the highest and lowest δ34SPy-euh values from the Shovel Flats drill hole. Such values can 

be produced by MSR under sulphate-limited conditions (e.g., Strauss and Schieber 1990; 

Lyons et al. 2000), TSR (Machel et al. 1995), or SD-AOM (e.g., Borowski et al. 2013). The 

presence of Py-euh in samples from the unmineralized Shovel Flats drill core means a 

hydrothermal origin is unlikely, but whether this pyrite formed during a later stage of 

diagenesis than Py-0 or during regional metamorphism is unknown. 

The δ34SPy-euh values are significantly more positive than, and do not overlap with, 

the δ34SPy-0 values. This suggests that this generation of pyrite is unlikely to have formed 

along a single closed-system trend. The broad distribution and highly positive δ34SPy-euh 

values (7.2–33.9‰) may, however, reflect TSR under transport-limited conditions—i.e., 

where variability exists in the rate of sulphate replenishment relative to reduction (e.g., 

Goldhaber and Kaplan 1975; Riciputi et al. 1996). Alternatively, highly positive δ34S 

values are also commonly produced via SD-AOM at the sulphate-methane transition 

zone (e.g., Borowski et al. 2013). TSR and SD-AOM may, therefore, both be responsible 

for formation of the reduced sulphur in Py-euh. 

2.6.5. Comparisons between George Fisher and other CD-type deposits in the 

Carpentaria province 

There are notable similarities between the morphology and δ34S values of the 

earliest stage of pyrite from this study and the major CD-type deposits in the Carpentaria 

province, irrespective of the metamorphic grade and tectonic overprint. For example, 

fine-grained pyrite within the host units to the McArthur River (Py-1; Eldridge et al. 

1993), Teena (Py-1; Magnall et al. 2020b), Mount Isa (fine-grained pyrite; Painter et al. 

1999), and George Fisher (Py-0; this study) deposits are texturally and isotopically 

indistinguishable. Such similarities in diagenetic pyrite could be evidence of broadly 

comparable paleoenvironments during deposition of the respective host rocks, even 

though they occur at different stratigraphic positions within the Gun and River 

supersequences (Fig. 2-2). Unlike genetic models for other deposits where it is 

considered a syn-ore phase (Broadbent et al. 1998; Large et al. 1998), Py-0 is most likely 

part of the pre-ore assemblage at the George Fisher deposit. A pre-ore timing of 
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isotopically very similar fine-grained pyrite in the Urquhart Shale Formation has 

previously been reported by Painter et al. (1999), who, however, favoured a late 

diagenetic source of reduced sulphur for pyrite formation via TSR rather than early 

diagenetic formation via MSR. As a result, even though some fine-grained pyrite may 

have formed due to post-diagenetic cleavage replacement (Perkins 1998; Perkins and 

Bell 1998), Py-0 should not per se be linked to a hydrothermal pyrite halo around the 

deposit (cf. Broadbent et al. 1998; Perkins 1998). 

Overall, the δ34S values of hydrothermal pyrite at the George Fisher deposit 

encompass a range similar to those of other CD-type deposits in the Carpentaria 

province (e.g., McArthur River; Fig. 2-10). Nevertheless, there is no evidence of any fine-

grained, interstitial sphalerite cement at George Fisher, which in other deposits (e.g., 

McArthur River) has been interpreted to have formed during the earliest stages of 

sedimentation and diagenesis (Large et al. 1998). The key difference between the CD-

type deposits of the northern and southern Carpentaria province is the much higher 

degree of deformation in the south, which has been interpreted to be responsible for 

recycling of reduced sulphur and the formation of high-grade ore zones in deposits of 

the Mount Isa inlier (e.g., Grondjis and Schouten 1937; Solomon 1965; Chapman 1999). 

In the Mount Isa inlier deposits, it has been proposed that (1) ore-stage breccias 

formed during metamorphic modification of earlier sulphides (Chapman 2004) and that 

(2) increased abundance of pyrrhotite is due either to a higher metamorphic grade or to 

higher temperatures associated with later Cu ore formation (Large et al. 2005). At the 

George Fisher deposit, the bulk of the pyrite, sphalerite, and galena mineralization is 

restricted to stratabound veins (ore-stage 1) and breccias (ore stages 2 and 3). The 

pyrrhotite from both ore-stages 2 (Pb-Zn) and 3 (Cu) formed in response to changes in 

temperature, sulphur activity, and oxygen fugacity during hydrothermal activity (Fig. 

2-11). Replacement textures and intermediate δ34S values of pyrite (Py-2) in ore-stage 2 

at the George Fisher deposit also provide evidence for sulphur recycling during the 

formation of high-grade ore zones. 

The controls on fluid flow during ore formation are not well constrained at 

George Fisher; however, the proposed role of TSR is similar to the model proposed for 
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the Century deposit (see Broadbent et al. 1998; Broadbent 2002). At Century, TSR 

caused by reaction of hydrocarbons in the host rock with a hot, metal-bearing 

hydrothermal fluid coincident with the onset of basin inversion has been interpreted to 

be the responsible sulphate reduction process for stratabound ore formation (Broadbent 

et al. 1998). This interpretation may also be applied to George Fisher, where the 

mineralization both occurs in organic-rich rocks with altered hydrocarbons (Chapman 

1999) and shows a fractionation of sulphur isotopes in ore-stage 1 similar to the H2S 

produced via TSR in natural gas reservoirs (e.g., Cai et al. 2003; Zhu et al. 2005). 

Therefore, pre-existing pyrite, combined with sulphides formed via TSR, are most likely 

important parameters for ore formation at George Fisher, both by providing a source of 

reduced sulphur and by focusing deformation due to the rheological contrast with the 

host rock (Chapman 2004). 

2.7. Conclusions 

The formation of pre-ore, fine-grained pyrite, both in samples from the George 

Fisher deposit and an unmineralized sequence of the host rock from the Urquhart Shale 

Formation, preserves a record of open-system MSR during the late Paleoproterozoic. 

This fine-grained pyrite is morphologically and isotopically similar to pyrite that formed 

in Paleoproterozoic strata throughout the Carpentaria province and is a feature of the 

broader paleoenvironment in which the host rock was deposited. The formation of 

hydrothermal sulphide mineralization at George Fisher occurred during three distinct 

stages, which involved TSR and replacement of pre-existing sulphides under increasing 

temperatures and reduced oxygen fugacities. There is no evidence for any early formed 

syn-sedimentary sphalerite mineralization, which is more commonly described in 

deposits from the northern Carpentaria province. Instead, the George Fisher deposit 

may have formed during the onset of basin inversion, with stratiform ore formation (ore-

stage 1) postdating the formation of fine-grained early diagenetic pyrite (Py-0) yet 

predating the onset of deformation of the Urquhart Shale Formation. Indeed, existing 

models for Zn-Pb deposits in the southern Carpentaria province involve ore formation 

from hydrothermal fluids driven by basin inversion, which may have occurred due to 

east-west crustal shortening associated with supercontinent assembly. Despite the 
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contrast in the overall timing of mineralization for different genetic models, δ34S values 

preserved by the combined pre-ore and ore-stage sulphide assemblages are broadly 

comparable across the different Carpentaria Zn-Pb-Ag deposits, highlighting the 

importance of in situ microanalysis to provide additional context for rigorously 

interpreting sulphur isotope data. 
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3.1. Abstract 

The Proterozoic Carpentaria Province (McArthur basin and Mount Isa Inlier) in 

northern Australia comprises a number of world class clastic dominated (CD-type) Zn-

Pb massive sulphide deposits, formally known as SEDEX deposits. In order to identify 

the geochemical footprint of any mineralizing system it is necessary to characterize 

compositional variability of the host-rock to mineralization. In the southern 

Carpentaria, establishing the baseline composition of the host rock is complicated by 

varying degrees of tectonic overprint, a lack of metamorphic indicator minerals, and the 

overall size of the ore forming systems. In this study, samples from drill-holes 

intersecting the main ore bodies at the world class George Fisher CD-type massive 

sulphide deposit have been compared to samples from a drill-hole intersecting barren, 

correlative lithologies of the Urquhart Shale Formation (ca. 1654 Ma). Bulk rock 

lithogeochemical (X-ray fluorescence, inductively coupled plasma mass spectrometry 

and LECO) and mineralogical (X-ray diffraction) analyses have been combined with 

petrographic observations to (1) establish the baseline composition of the Urquhart 

Shale Formation and (2) determine the geochemical and mineralogical footprint of the 

CD-type system at George Fisher. The absence of metamorphic indicator minerals, 

combined with the preservation of illite in unmineralized Urquhart Shale, suggests that 

in this part of the Mount Isa area, the host rocks did not reach greenschist facies 

conditions (>300 °C). Chlorite in the unmineralized Urquhart Shale is very fine grained 

(≤ 10 µm) within interstitial pore spaces with other phyllosilicates (e.g., illite), and is 

interpreted to be diagenetic in origin. Relative to the unmineralized Urquhart Shale, the 

first stage of sulphide mineralization (Zn-dominated, stratabound) at George Fisher is 

associated with decreased abundances of albite, chlorite, and calcite, and higher 

abundances of dolomite and phyllosilicates (muscovite and phlogopite). These 

mineralogical transformations are associated with strong minor and trace element 

depletion (Sr and Na) and enrichment (Tl and Mn). An element index based on this suite 

of elements (GF index = 10((400Tl+Mn)/(10Sr+Na))) is highly effective in differentiating 

between the background Urquhart Shale Formation and the alteration footprint at 

George Fisher and may provide an additional tool for geochemical exploration 
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programmes in the Mount Isa area. This study affirms the benefit of combining 

lithogeochemical, mineralogical, and petrographic data in order to understand the host 

rock baseline composition and the alteration footprint of Carpentaria CD-type massive 

sulphide systems. 

3.2. Introduction 

The Proterozoic Urquhart Shale Formation is host to three world class base metal 

deposits (Mount Isa, Hilton, and George Fisher), which collectively have a pre-mining 

resource of >370 Mt (10 wt. % Zn, 5.6 wt. % Pb, and 120 g/t Ag; Large et al. 2005). These 

clastic dominant (CD-type) deposits, formerly known as sedimentary exhalative 

(SEDEX) deposits, have accounted for a significant proportion of global Zn and Pb 

production and have been crucial in satisfying demand of these base metals for the 

global economy (Leach et al. 2005, 2010). Future demand will only be met through the 

discovery of new CD-type Zn-Pb massive sulphide deposits, although exploration 

models are currently limited by an incomplete understanding of the geochemical and 

mineralogical footprints of the Carpentaria CD-type deposits.  

The Mount Isa, Hilton, and George Fisher deposits are located in close proximity 

(ca. 20 km) in the Mount Isa Inlier, which is broadly time correlative with the McArthur 

basin (both basins comprise the Carpentaria Zn Province; Fig. 3-1). The tectonic and 

metamorphic gradient increases towards the south of the Carpentaria Province, which 

has resulted in considerable debate over the genetic model for the Carpentaria CD-type 

deposits; specifically, debate has mostly focused on the relative contribution of 

sedimentary exhalative (SEDEX; e.g., Lambert and Scott 1973; Large et al. 1998), 

subseafloor diagenetic replacement processes (e.g., Eldridge et al. 1993; Painter et al. 

1999; Chapman 2004), or syn-deformational replacement (e.g., Perkins 1997; Perkins 

and Bell 1998; Cave et al. 2020). 

The host rock to the Carpentaria deposits can be broadly characterized as a fine-

grained, variably pyritic and dolomitic carbonaceous siltstone (Leach et al. 2005, 2010). 

Fine-grained siliciclastic rocks often appear to be relatively homogenous at the hand 

specimen scale, but they can preserve considerable compositional heterogeneity due to 
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the variability of detrital, biogenic and authigenic components (e.g., Vine and Tourtelot 

1970; Aplin and Macquaker 2011). 

 
Fig. 3-1 Tectono-stratigraphic map of the Mount Isa Inlier and the McArthur basin with major Zn-Pb-Ag 
deposits marked by asterisks (Jackson et al. 2000; Gibson et al. 2017). The black rectangle indicates the 
Mount Isa region shown in Figure 3-2. 

Published lithogeochemical alteration models for the Carpentaria deposits have 

so far mostly been informed by the SEDEX model. For example, the enrichment of 

several elements (Co, Fe, Tl, Zn, Pb, and Mn) in dolomite and pyrite in correlative 

stratigraphy to the McArthur River and Lady Loretta deposits has been linked with 

dispersion of trace elements into seawater following hydrothermal venting (Lambert 

and Scott 1973; Large and McGoldrick 1998; Large et al. 2000). As a result, a number of 

element ratios and threshold values have been proposed to vector laterally towards CD-

type massive sulphide systems in the Carpentaria province (Tab. 1). 
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Tab. 1 Alteration indices and element ratios for the Carpentaria Province. 

 

One of the major caveats of existing alteration indexes is a sensitivity to 

compositional variability that is inherent to the host rock (Large et al. 2000). The 

challenge, therefore, is to develop alteration models that are able to discriminate 

between compositional heterogeneity that is inherent to background processes (detrital, 

diagenetic, metamorphic) and those derived from hydrothermal input. In the deposits 

of the deformed Mount Isa Inlier, establishing a baseline protolith composition is 

complicated by (1) the varying degrees of tectonic overprint, (2) the lack of indicator 

minerals to constrain metamorphic grades, and (3) the enormous size of the 

mineralizing systems (e.g., Painter et al. 1999). These three aspects limit the availability 

of suitable correlative protolith lithologies, which are fundamental for developing 

geochemical and mineralogical exploration models.  

In this study, we report bulk rock lithogeochemical and mineralogical data from 

(1) drill core samples through the main ore bodies at the George Fisher deposit (165 Mt 

at 9.1 % Zn, 3.4 % Pb, and 55 g/t Ag; Glencore 2019) and (2) from a correlative, barren 

drill core through mudstones and siltstones of the Urquhart Shale Formation (Shovel 

Flats drill-hole), which is the host rock to the George Fisher, Hilton (now mined in one 

operation with George Fisher) and Mount Isa deposits. We present a suite of 

compositional and mineralogical data using X-ray fluorescence (XRF; major elements), 

Element abundance / 
alteration index 

Formula Threshold Reference 

Relative abundance of Co 
and Ni 

Co/Ni >1 Lambert and Scott (1973) 

Widely dispersed trace 
metal enrichment 

Tl, Pb and Zn 
Tl >4 ppm, 

Pb >100 ppm, 
Zn >1,000 ppm 

Large and McGoldrick (1998) 

SEDEX metal index 
(SEDEX MI) 

Zn + 100Pb + 100 Tl >10,000 Large and McGoldrick (1998) 

Manganese content of 
dolomite (MnOd) 

(MnO x 30.41)/CaO >1.0 wt% Large and McGoldrick (1998) 

SEDEX alteration index 
(SEDEX AI) 

100(𝐹𝑒𝑂 + 10 𝑀𝑛𝑂)

𝐹𝑒𝑂 + 10𝑀𝑛𝑂 + 𝑀𝑔𝑂
 >60 Large and McGoldrick (1998) 

SEDEX alteration index 3 
(AI mark 3) 

100(𝐹𝑒𝑂 + 10 𝑀𝑛𝑂)

𝐹𝑒𝑂 + 10𝑀𝑛𝑂 + 𝑀𝑔𝑂 + 𝐴𝑙2𝑂3

 >30 Large et al. (2000) 

SEDEX alteration index 4 
(AI mark 4) 

100(𝐹𝑒𝑂 + 10 𝑀𝑛𝑂)

𝐹𝑒𝑂 + 10𝑀𝑛𝑂 + 𝑀𝑔𝑂 + 0.1 ∗ 𝑆𝑖𝑂2

 - Large et al. (2000) 

Isa vector 
𝑇𝑙(𝐹𝑒𝑂𝑑𝑜𝑙 + 10 𝑀𝑛𝑂𝑑)

𝐺𝑒
 - Painter (2003) 
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inductively coupled plasma mass spectrometry (ICP-MS, minor and trace elements), 

LECO (total organic carbon and sulphur) and X-ray diffraction (XRD; mineralogy) 

analyses. In combination with petrographic observations, we have evaluated the 

baseline lithological and compositional variability within the Urquhart Shale Formation 

and investigated the mass transfer and mineralogical transformations that may have 

been associated with ore formation and contributed to the alteration footprint in this 

part of the George Fisher deposit. 

3.3. Geological background 

3.3.1. Mount Isa Inlier, McArthur basin and superbasin cycles 

The Mount Isa Inlier and McArthur Basin formed in an intracontinental setting 

during the Paleo- to Mesoproterozoic (Fig. 3-1; Betts et al. 2002, 2016; Giles et al. 2002). 

Basin formation was initiated during the late Paleoproterozoic (ca. 1790 Ma) and was 

followed by several episodes of rifting, sag phases and inversion, which are recorded by 

sedimentary rocks that can be separated into 3 unconformity bound superbasin 

sequences (Leichhardt Superbasin, Calvert Superbasin and Isa Superbasin; Southgate et 

al. 2000; Giles et al. 2002; Gibson et al. 2016). Basin closure then corresponded with the 

onset of the Isan orogeny (ca. 1600 Ma; Page et al. 2000).  

Based on lithostratigraphic and chronostratigraphic correlations, these 

superbasins sequences are further subdivided into 12 correlated supersequences (e.g., 

Jackson et al. 2000; Page et al. 2000; Southgate et al. 2013). The Calvert and Isa 

Superbasins, which host the Mount Isa, George Fisher – Hilton, Lady Loretta, McArthur 

River and Century deposits, consist of the Big and Prize Supersequences (Calvert 

Superbasin; Southgate et al. 2000) and the Gun, Loretta, River, Term, Lawn, Wide and 

Doom Supersequences (Isa Superbasin; Southgate et al. 2000). In the Mount Isa area, 

there has been debate over whether the host rocks to the Mount Isa and George Fisher 

– Hilton deposits (Fig. 3-2; Gun Supersequence) belong to the Isa Superbasin (Southgate 

et al. 2000) or to the Calvert Superbasin (Gibson et al. 2016). 
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Fig. 3-2 (A) Geological map of the Leichhardt River Fault Trough in the Mount Isa area (after Gibson et 
al. 2016, 2017). The Mount Isa, Hilton, and George Fisher deposits and Shovel Flats drill-hole are marked 
by asterisks and a circle respectively. (B) A stratigraphic chart for the Mount Isa Inlier showing 
superbasins and supersequences (after Southgate et al. 2000; Gibson et al. 2016). The approximate 
stratigraphic locations of the Mount Isa (MI), Hilton (HI) George Fisher (GF), Lady Loretta (LL), and 
Century (CE) Zn-Pb-Ag deposits are denoted by asterisks. In the Mount Isa area, the Gun and Loretta 
supersequences are represented by the Mount Isa Group, which is subdivided into the upper and lower 
Mount Isa Group with approximate formation thickness adapted from Neudert (1983). 

3.3.2. Mount Isa Group 

The Mount Isa Group comprises a series of fine-grained, clastic sedimentary rock 

formations that belong to both the Gun and Loretta Supersequences (Fig. 3-2B). 

Sedimentation was interpreted to have occurred during transgressive and highstand 

conditions on a gently inclined shelf in the Leichhardt River Fault Trough, which 

resulted in deposition of siliciclastic and carbonate facies (Southgate et al. 2013). The 

formations of the Mount Isa Group can be further separated into the Lower and Upper 

Mount Isa Group by an unconformity between the Breakaway Shale and the Native Bee 

Siltstone (Fig. 3-2; van den Heuvel 1969; Mathias and Clark 1975). There is an overall 
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decrease in grain size through the Lower Mount Isa Group, with near-shore deposition 

of conglomerates and sandstones of the Warrina Park Quartzite transitioning to finer-

grained deeper water siltstones and mudstones of the Moondarra Siltstone and 

Breakaway Shale (Derrick 1974; Mathias and Clark 1975; Domagala et al. 2000). The 

Upper Mount Isa Group (Fig. 3-2B) is composed mainly of siltstones and mudstones, 

which are mostly thinly bedded and comprise dolomite, quartz, K-feldspar, albite, 

muscovite, phlogopite and chlorite with minor calcite, pyrite, siderite, tourmaline, 

zircon, rutile and carbonaceous matter (Neudert 1983). 

3.3.3. Urquhart Shale Formation 

The Urquhart Shale Formation mostly comprises laminated to bedded siltstones 

and mudstones and has a gradational contact with the underlying Native Bee Siltstone 

Formation and the overlying Spear Siltstone Formation (Bennett 1965; Neudert 1983). 

The Urquhart Shale is siliceous to dolomitic, variably pyritic and carbonaceous and can 

generally be distinguished from the Native Bee Siltstone and Spear Siltstones by a much 

higher abundance of pyrite (Neudert 1983). The depositional ages of the Urquhart Shale 

Formation at the Mount Isa and George Fisher-Hilton deposits have been determined 

via U-Pb dating of zircons from interbedded tuff beds (1652 ± 7 Ma and 1654 ± 5 Ma 

respectively; Page and Sweet 1998; Page et al. 2000).  

Several sedimentary facies have been identified in the Urquhart Shale Formation, 

which have generally been linked to sabkha or playa environments and emergent to 

semi-emergent conditions in the lower Urquhart Shale and a more distal, carbonate 

slope to basin environment in the upper Urquhart Shale (Neudert 1983). Further facies 

analysis refined this model and identified three dominant sedimentary facies in the 

Urquhart Shale Formation (Painter et al. 1999; Painter 2003): (1) a rhythmite facies, 

comprising fining-upwards sequences of interlaminated mudstones and siltstones, with 

abundant nodular carbonates as pseudomorphs after sulphate evaporites in the 

siltstones; notably, this facies comprises the bulk of the Zn-Pb mineralization at the 

Mount Isa deposit; (2) a carbonate cemented siltstone facies, which consists mostly of 

barren, massive calcareous and dolomitic siltstones with minor mudstones; and (3) 

cross-laminite facies, comprising cross-laminated siltstones and fine sandstones with 
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minor mudstones. Based on these sedimentary facies, the overall depositional 

environment of the Urquhart Shale was interpreted to resemble sedimentation on a 

carbonate slope proximal to a saline mudflat or sabkha environment (Painter 2003). 

Alternatively, sedimentary features, which were previously interpreted to represent 

evaporitic processes (e.g., nodular carbonates), were interpreted as diagenetic 

precipitates and overall the Urquhart Shale was considered to have been deposited as 

rhythmites in a deeper water environment (Domagala et al. 2000). 

Previous lithogeochemical studies on the Urquhart Shale Formation have focused 

on drill core samples from between the Mount Isa deposit and the Transmitter Fault 

(Painter 2003; Fig. 3-2). Painter (2003) suggests that the Urquhart Shale is generally 

depleted in silicate-associated elements (Si, Al, Ti, Na, ± K) and enriched in carbonate-

associated elements (Ca, Mg, Mn, ± Fe) relative to Post-Archean-Australian-Shale 

(PAAS; Nance and Taylor 1976). Furthermore, this author suggests that late diagenetic 

Zn-Pb mineralization has resulted in the enrichment (Mn, Fe, Pb, Zn, Ag, Tl, Ge, S, Cd, 

As, and Sb), depletion (Ca, Mg, Na, and Sr), and dilution (Si, Ti, Al, K, Zr, and Y) of 

several elements from un-/weakly-mineralized Urquhart Shale to the Mount Isa deposit. 

Based on these element changes, an alteration vector was formulated, which results in 

increasing values towards the Mount Isa deposit (Isa vector; Tab. 1; Painter 2003). The 

mineralogical changes towards the Mount Isa deposit were reported to be preserved by 

higher abundances of sulphide (pyrite, sphalerite, galena, and pyrrhotite) and 

ferromanganese carbonate minerals (dolomite and ankerite) relative to un-/weakly-

mineralized Urquhart Shale (Painter 2003). 

3.3.4. Deformation and Metamorphism of the western Mount Isa Inlier 

The Mount Isa Inlier has been affected by multiple stages of deformation and 

varying degrees of metamorphism (Blake 1987). During the Isan orogeny (ca. 1610 to 1510 

Ma), polystage deformation resulted in folding and faulting, and peak metamorphic 

conditions (sub-greenschist to amphibolite facies) have been constrained to the first 

phase of E-W compression (Page and Bell 1986; Connors and Page 1995; Bell and Hickey 

1998). In the Mount Isa and George Fisher area, the highest metamorphic grades 

(greenschist to amphibolite facies) are located west of the Mount Isa – Paroo Fault Zone 
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and east of the Sybella batholith (ca. 1670 Ma; Page and Bell 1986; Wyborn et al. 1988; 

Connors and Page 1995). In the uppermost section of the Eastern Creek Volcanics, which 

are located in the footwall of the Paroo Fault at the Mount Isa deposit, temperatures of 

325 °C ± 50 °C were reached during regional metamorphism (Hannan et al. 1993). There 

is a sharp contrast in metamorphic grade (amphibolite to sub-greenschist conditions) 

from uplifted rocks west of the Mount Isa – Paroo Fault zone to the sedimentary rocks 

of the Mount Isa Group in the east of the fault zone, where a lack of metamorphic 

indicator minerals complicate the determination of metamorphic grades (Valenta 1994). 

The only proposed metamorphic indicator minerals in the Mount Isa Group are chlorite 

(Wilson 1972; Rubenach 1992) and stilpnomelane (Heinrich et al. 1989), which would 

indicate lower greenschist metamorphic conditions. Hydrothermal chlorite is also part 

of the alteration assemblage associated with high temperature Cu-mineralization at 

George Fisher, Hilton, and Mount Isa (Fig. 3-3; Valenta 1988; Waring 1990; Chapman 

1999; Cave et al. 2020). There are fewer temperature constraints for the unmineralized 

Urquhart Shale Formation, but bitumen reflectance and illite crystallinity indicate 

maximum burial temperatures of ca. 200 °C (McClay 1979; Chapman 1999), which are 

significantly lower than greenschist metamorphic conditions (≥300 °C; Fig. 3-3). 

3.3.5. George Fisher Deposit 

The George Fisher deposit is located approximately 20 km north of Mount Isa 

(Fig. 3-2). The ore bodies are hosted by mudstones and siltstones of the Urquhart Shale 

Formation. There are 9 ore domains (A to I, Fig. 7-3), which are further subdivided into 

unmineralized domains of barren mudstones and siltstones, weakly mineralized 

domains, and the main Zn-Pb ore bodies. Multiple generations of sulphides have been 

described at the George Fisher deposit (Chapman 1999, 2004; Murphy 2004; Rieger et 

al. 2020), which are broadly sub-divided into (0) fine-grained pyrite, (1) stratabound 

sphalerite + pyrite ± galena, (2) breccia-hosted galena + sphalerite + pyrite + pyrrhotite 

and (3) vein and breccia-hosted pyrite + pyrrhotite + chalcopyrite ± galena and 

sphalerite.  
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Fig. 3-3 Temperature constraints for (A) the Urquhart Shale Formation, (B) the George Fisher and Hilton 
deposits, and (C) the Mount Isa deposit. The green bars indicate temperatures of diagenetic chlorite 
formation and of greenschist facies metamorphic conditions. Individual temperature constraints are 
derived from: (1) bitumen reflectance (Chapman 1999), (2) illite crystallinity (McClay 1979), (3) 
maximum burial temperature derived from clay fraction analysis (this study), (4-6) calcite twinning, 
fractal analysis of quartz and from pyrrhotite twinning (Murphy 2004), (7) alteration associated with 
Cu-mineralization derived from chlorite stability (Chapman 2004), (8) alteration associated with Cu-
mineralization derived from chlorite stability (Valenta 1988), (9) regional metamorphism in the Eastern 
Creek Volcanics derived from chlorite-quartz isotopic equilibrium (Hannan et al. 1993), (10) crystal 
structure of pyrrhotite (van den Heuvel 1969), (11-12) temperature of Zn-Pb and Cu mineralization 
derived from sphalerite-galena and sphalerite-pyrrhotite S-isotope equilibrium respectively (Painter et 
al. 1999), (13) fluid inclusion homogenization temperatures in Cu mineralization (Heinrich et al. 1989), 
(14) chlorite alteration associated with Cu-mineralization (Waring 1990), (15) clumped isotopes in 
carbonates associated with Cu-mineralization (Mering et al. 2018), and (16) sphalerite thermometry 
(Cave et al. 2020). Temperature constraints are grouped by their relationship to regional metamorphism 
(Eastern Creek Volcanics), diagenesis (Urquhart Shale), Zn-Pb mineralization, deformation, or 
Cu-mineralization. 

There are different genetic models for the mineralization at George Fisher. For 

example, Murphy (2004) interpreted structural and paragenetic data to suggest a late 

stage, syn-tectonic (D4) origin for the mineralization at temperatures of 200-300 °C 

(Fig. 3-3). In contrast, a combination of paragenetic data, Pb-model ages, and metal 

distributions have been interpreted to support a model in which the bulk of the Zn-Pb 

mineralization at George Fisher and Hilton formed syn-diagenetically and pre-

deformation, with Cu (± Zn-Pb) mineralization linked to a later hydrothermal event 

(e.g., Valenta 1994; Chapman 1999, 2004). The latter model is supported by more recent 

work that reported in situ sulphur isotope analyses of pyrite (Rieger et al. 2020), which 

interpreted: 1) formation of fine-grained pyrite by microbial sulphate reduction during 
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early diagenesis (pre-ore); 2) stratabound Zn mineralization (ore stage 1) during burial 

diagenesis with S derived from thermochemical sulphate reduction (TSR), and; 3) later 

Zn-Pb (ore stage 2) and Cu (ore stage 3) mineralization, with reduced sulphur derived 

from recycling of earlier sulphides and TSR. Precise constraints for the timing of 

individual ore forming events are, however, lacking and structural observations can be 

interpreted in support of a variety of relative timings (cf. contrasting interpretations by 

Chapman 1999, 2004, and Murphy 2004). Nonetheless, there is general agreement that 

Cu-mineralization at the George Fisher deposit is paragenetically late and was associated 

with the highest temperature hydrothermal event (see references in Fig. 3-3). 

Multiple phases have been linked to alteration at the George Fisher deposit, 

including ferroan dolomite, quartz, K-feldspar, pyrite, hydrophlogopite, and Ba(-K)-

feldspar (Chapman 1999, 2004). Zones of intense Ba(-K)-feldspar alteration were 

reported in the deeper parts of the deposit and Ba was interpreted to be derived from 

the hydrothermal fluid (Chapman 1999). In contrast, Painter (2003) suggested that Ba-

feldspar formed due to diagenetic replacement and pseudomorphism of carbonate and 

feldspar after barite in the unmineralized Urquhart Shale near Mount Isa. Later syn-

tectonic Cu-mineralization at George Fisher was associated with siderite, ferroan 

ankerite, biotite, chlorite, muscovite and magnetite alteration (Chapman 1999, 2004). 

Unlike other deposits of the Carpentaria Province (e.g., Lady Loretta, Large and 

McGoldrick 1998; McArthur River, Large et al. 2000; Mount Isa, Painter 2003; Century, 

Whitbread 2004) there has been no previously published investigation of the bulk rock 

lithogeochemistry at George Fisher. 

3.4. Methods and Samples 

3.4.1. Sampling and petrography 

A total of 91 representative samples were selected from the Shovel Flats drill core, 

which intersects ca. 900 m of the unmineralized Urquhart Shale Formation (Fig. 3-2, 

Fig. 7-4). A total of 225 samples were taken from 4 drill-holes that intersected the main 

ore bodies at the George Fisher deposit (8C K751, n = 61; 10C K795, n = 77; 10C K798, n 

= 57; 12C I797, n = 30). Samples from the George Fisher deposit comprise representative 

examples from the main ore bodies, from weakly mineralized sections, and from barren 
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siltstones and mudstones between the ore bodies, and the hanging wall stratigraphy. 

Particular emphasis was given to sampling from drill-hole 10C K795, as it preserves 300 

m of stratigraphy through the domains A-E and 100 m through unmineralized hanging 

wall Urquhart Shale (Fig. 3-4). 

Petrographic examination of the samples was conducted using a desktop 

binocular microscope and key samples (n = 90) were selected for transmitted light and 

reflected light microscopy. A subset of 41 representative samples from the background 

drill-hole and 70 representative samples from the George Fisher deposit were then 

selected for X-ray diffraction and lithogeochemical analyses. 

3.4.2. Bulk rock lithogeochemistry and mineralogy 

The samples were crushed and powdered to a grain size of < 62 µm and whole 

rock geochemical analysis was carried out by Bureau Veritas Minerals (BVM) in 

Vancouver, Canada. Major, minor and trace element concentrations were analysed by 

ICP-MS of lithium borate fused rock powders. Trace metal concentrations (Mo, Cu, Pb, 

Zn, Ni, As, Cd, Sb, Bi, Ag, Au, Hg, Tl, and Se) were determined by ICP-ES/MS of aqua 

regia digested rock powders (upper detection limit for Zn and Pb = 10,000 ppm). 

Lithium borate fused samples with over limit Zn and Pb concentrations were analysed 

by X-ray fluorescence. Concentrations of total S, total C, TOC (total organic carbon), 

Cgra (graphitic carbon), and CO2 were determined by a LECO analyser. Low total 

concentrations in some samples are due to incomplete combustion of sulphide minerals. 

In addition to internal measures (duplicates, blanks, and reference materials) for 

assessing accuracy and precision of the analyses at BVM, blanks (quartz sand) and blind 

reference materials were routinely run for data quality control. Analyses of the SBC-1 (n 

= 7) reference material (USGS) had median uncertainties of 1.2 % for element oxides and 

of 2.4 % for trace elements for certified values; median uncertainties for recommended 

values for ShBOQ-1 (USGS; n = 12) were 1.3 % and 4.2 % for element oxides and trace 

elements respectively. Median uncertainties for certified values were 1.0 % and 2.3 % for 

the massive sulphide standards (ORE Research & Exploration Pty Ltd) OREAS 131a (n = 

3) and OREAS 134a (n = 3) respectively. 
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Fig. 3-4 Lithological logs of drill cores 8C K751, 10C K795 and 10C K798 from the George Fisher deposit. 
The drill-holes intersected mine nomenclature domains A-F (grey labels; George Fisher operations, 
Mount Isa Mines). The samples analysed in this study are hanging wall Urquhart Shale (purple), inter-
mineralisation Urquhart Shale (orange) and massive sulphides (red). 

Quantification of the bulk rock mineralogical composition was determined using 

a PANalytical Empyrean X-ray diffractometer (GFZ Potsdam). Splits of the 

lithogeochemistry samples were further homogenized to < 10 µm with a micronizing 
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mill. The measurements were performed at 40 mA and 40 kV with CuKα radiation and 

a step size of 0.013 °2Θ with 60sec/step from 4.6 to 75 °2Θ. The mineralogy was 

determined with the EVA software (version 11.0.0.3) by Bruker. Rietveld refinement for 

quantitative mineralogy was performed using the program BGMN and the graphical user 

interface Profex (Doebelin and Kleeberg 2015) calibrated for the used diffractometer. 

The uncertainty of the quantitative analyses is ≤ 3 wt.% for individual phases. High Pb 

and Zn concentrations in 7 samples resulted in overlapping signals between sphalerite 

and galena with carbonate mineral phases (calcite and dolomite) during Rietveld 

refinement resulting in an overestimation of carbonate concentrations (the 

mineralogical composition of these samples is not reported). To determine the pyrite 

abundance of these samples, Pyrite abundance was calculated on the basis of molar 

fractions of S, Pb, and Zn from the lithogeochemistry dataset. Therefore, sphalerite- and 

galena-bound S was subtracted from total S; these S values were then used to calculate 

the total S and Fe contained in pyrite. The clay-size (< 2 µm) fraction of Shovel Flats (n 

= 10) and George Fisher samples (n = 7) was prepared from separate rock chips that were 

mechanically crushed and separated following the analytical methods described by 

(Moore and Reynolds 1997). Air-dried and ethylene-glycol solvated oriented mounts 

were scanned from 2 ° to 35 ° at 0.01 °2Θ intervals. 

3.4.3. Statistical analysis 

The Gresens’ method was used to quantify mass change between unaltered and 

altered samples. This analysis is based on the calculation of the isocon, which is defined 

by the ratio of immobile elements in the altered rock relative to its unaltered equivalent 

(Grant 1986). As summarised by Grant (2005), this ratio of immobile elements can be 

determined by using (1) the clustering of element ratios (concentration altered / 

concentration unaltered), (2) a best fit line (isocon line) through the origin and 

immobile elements in an isocon diagram (Grant 1986), (3) the pre-selection of immobile 

elements, or (4) the assumption of constant mass or constant volume during alteration 

processes.  

For the graphical presentation of this method, major, minor and trace element 

concentrations have to be arbitrarily scaled in order to plot on one graph. As a result of 
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arbitrary scaling the apparent distance of an element to the isocon is strongly dependent 

on the scaling factor (Humphris et al. 1998). To eliminate this scaling effect, a modified 

isocon diagram can be formulated by consistently scaling all the data to plot on a circle 

with distance of 1 to the origin (sums of squares of each element = 1; Humphris et al. 

1998). In this modified isocon diagram, groups of elements that behave similarly (e.g., 

immobile elements) will group together on one segment of the circle. This may simplify 

the selection of immobile elements in order to define the isocon (zero mass change). 

After determination of the immobile elements, the bulk mass loss or gain (ΔM, 

in percent) of the altered rock relative to the unaltered rock can be calculated using (e.g., 

Wilkinson et al. 2011): 

ΔM = 100 ∗ [
ci_altered  −  ci_un−altered

ci_altered
] 

where ci_altered and ci_unaltered are the concentrations of one or multiple immobile 

elements in the altered and unaltered rock respectively. Furthermore, the addition or 

loss of an element (ΔE, in percent) in the altered sample relative to the unaltered sample 

is given by: 

ΔE = 100 ∗ [
caltered 

(
𝑐𝑖_𝑎𝑙𝑡𝑒𝑟𝑒𝑑

𝑐𝑖_𝑢𝑛−𝑎𝑙𝑡𝑒𝑟𝑒𝑑
) ∗ cun−altered

− 1] 

where caltered and cunaltered are the concentrations of an element in the altered and 

unaltered sample respectively. 

In this study the immobile elements were determined by combining the modified 

graphical approach developed by Humphris et al. (1998) and the clustering of element 

ratios (Grant 2005). Only elements that group together using both methods for both 

precursor sub-groups were considered immobile, which was further evaluated using the 

chemical index of alteration (Nesbitt and Young 1982). Immobile element ratios were 

then used to calculate median values, mean values and standard deviations for the 

isocon. To account for any compositional heterogeneity inherent to the unmineralized 

Urquhart Shale samples, only elements with a slope greater or smaller than two standard 

deviations of the isocon were considered to be either enriched or depleted at the George 
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Fisher deposit. To avoid overestimation of median values by removing below detection 

limit data, these data were imputed as 0.5 * detection limit values (e.g., Na2O, detection 

limit = 0.01 wt.%, value imputed for data below detection limit = 0.005 wt.%). 

3.5. Results 

3.5.1. Lithological logs 

The Shovel Flats drill core preserves a long section of unmineralized Urquhart 

Shale Formation (ca. 900 m). The upper 300 m of the drill-hole intersected a deep 

regolith profile and only 300 to 900 m are shown in Fig. 7-4. The Urquhart Shale 

Formation primarily comprises interbedded mud- and siltstone (Fig. 3-5) with intervals 

of massive siltstone, and thinner intervals of more homogenous mudstone, siltstone, or 

nodular carbonate. Nodular carbonate beds, which are typically ≤ 10 cm thick, are not 

resolved at the scale of logging (Fig. 7-4), and are typically interbedded with pyritic 

carbonaceous siltstones (Fig. 3-6). The carbonate nodules are up to several cm in the 

lateral dimension and ≤ 2 cm thick. The samples preserve no well-developed foliation or 

deformation fabric at the hand specimen or thin section scale, although there has been 

some localized deformation associated with discrete fractures or small shear zones. 

The drill-holes from the George Fisher deposit intersected the same lithologies as 

at Shovel Flats (Fig. 3-4). The Urquhart Shale Formation between the intervals of 

massive sulphide mainly comprises interbedded mud- and siltstones and intervals with 

more homogeneous mudstones, siltstones, or nodular carbonates. In all 4 drill cores, the 

ore stage 1 mineralization is stratabound in mostly laminated, carbonaceous siltstones 

and in nodular carbonates. Subsequent ore stage 2 and 3 mineralization is more 

independent of lithology and commonly crosscuts several individual lithologies in 

massive ore breccias or ore veins. There is a minor fault followed by 100 m of hanging-

wall stratigraphy to ore domain A preserved in drill core 10C K795, which consists mostly 

of homogeneous mudstone. 
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Fig. 3-5 (A-D) Interbedded mudstone and siltstone (sample PR832SF012) from Shovel Flats drill core. (A) 
Hand specimen photograph with mudstone (dark) and siltstone (grey); the orange rectangle indicates 
location of B. (B) Thin section photograph with mudstone and siltstone; the yellow arrows indicate the 
location of C. (C) Backscatter electron (BSE) image of siltstone; the arrows indicate individual mineral 
phases, see D for colour code. (D) Bulk-rock mineralogical composition (qtz = quartz, cal = calcite, dol 
= dolomite, phyll = phyllosilicate, chl = chlorite, ab = albite, K-fsp = K-feldspar, py = pyrite). (E-H) 
Interbedded mudstone and siltstone (sample PRK7952001) from drill core 10C K795. (E) Hand specimen 
photograph with mudstone (dark) and siltstone (grey) with pyrite and pyrrhotite; the orange rectangle 
indicates location of F. (F) Thin section photograph with carbonaceous mudstone and dolomitic 
siltstone; the yellow arrows indicate the location of G. (G) BSE image of dolomitic siltstone; the arrows 
indicate individual mineral phases, see H for colour code. (H) Bulk-rock mineralogical composition (qtz 
= quartz, dol = dolomite, phyll = phyllosilicate, K-fsp = K-feldspar, ab = albite). 
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Fig. 3-6 Nodular carbonate and pyritic siltstone samples (Shovel Flats A-D, sample PR832SF080; George 
Fisher E-H, sample PRK751017). (A) Hand specimen photograph; the orange rectangles indicates 
location of B. (B) Thin section photograph of nodular carbonate and pyritic siltstone; the yellow arrows 
indicate the locations of C. (C) Transmitted light photomicrograph of nodular carbonate and pyritic 
siltstone; the arrows indicate individual mineral phases, see D. for colour code. (D) Bulk-rock 
mineralogical composition (qtz = quartz, cal = calcite, dol = dolomite, sid = siderite, phyll = phyllosilicate, 
chl = chlorite, ab = albite, K-fsp = K-feldspar, py = pyrite, sp = sphalerite). (E) Hand specimen photograph; 
the orange rectangles indicates location of F. (F) Thin section photograph of nodular carbonate and 
pyritic siltstone; note sphalerite in nodular carbonates; the yellow arrows indicate the locations of G. (G) 
Backscatter electron image of sphalerite replacing nodular carbonate; the arrows indicate individual 
mineral phases, see H. for colour code. (H) Bulk-rock mineralogical composition (qtz = quartz, cal = 
calcite, dol = dolomite, phyll = phyllosilicate, ab = albite, K-fsp = K-feldspar, py = pyrite, sp = sphalerite). 
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3.5.2. Mineralogy 

Shovel Flats samples 

The main mineral phases (median ≥ 1 wt. %) in Urquhart Shale samples from the 

Shovel Flats drill core are quartz, calcite, dolomite, phyllosilicates (muscovite, 

phlogopite, illite), chlorite, albite, K-feldspar, and pyrite (Fig. 3-7). The samples can be 

grouped according to mineralogical endmembers of (1) carbonates, (2) quartz and 

feldspars, and (3) phyllosilicates, which then corresponds with a rock type classification 

of calcareous/dolomitic mudstones and siltstones, siliceous marlstones and siliceous 

mudstones and siltstones (Fig. 3-8).  

Chlorite typically occurs as clay-sized particles together with fine-grained illite in 

interstitial pore spaces in silicate and carbonate minerals (Fig. 3-5). Most Shovel Flats 

samples contain relatively low abundances of pyrite (< 5 wt. %), although high 

concentrations (< 37 wt. %) are preserved in some samples of nodular carbonate 

interbedded with laminated carbonaceous siltstones. 

George Fisher samples 

The unmineralized samples from between the ore bodies at the George Fisher 

deposit contain similar proportions of the main mineral groups to the samples from 

Shovel Flats (Fig. 3-7, Fig. 3-8). In contrast, the samples from the hanging wall 

stratigraphy in 10C K795 generally preserve higher and lower abundances of silicate and 

carbonate minerals respectively. The abundances of quartz, K-feldspar and pyrite are 

relatively consistent between the Shovel Flats samples and those from the George Fisher 

deposit. Compared to the Shovel Flats samples, dolomite and phyllosilicate phases are 

more abundant in the George Fisher samples, whereas calcite, chlorite and albite are less 

abundant to absent (Fig. 3-7, Fig. 3-8).  

Ore samples from George Fisher preserve higher abundances of all sulphide 

minerals and generally lower abundances of all other minerals, the only exception being 

higher median calcite contents compared to George Fisher Urquhart Shale samples (Fig. 

3-7). 
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Fig. 3-7 Mineralogical composition of samples from the Shovel Flats drill core and the George Fisher 
deposit. (A) Bar plot of individual samples split by lithology. (B) Box and whisker plots for individual 
mineral phases split by location and details of the statistical method of box and whisker plots used in 
this study. 
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Fig. 3-8 Ternary diagram of three main mineral groups (carbonate, phyllosilicate and quartz + feldspar) 
plotting individual samples from the Shovel Flats drill core and from the George Fisher deposit and 
literature data for the Urquhart Shale Formation (Neudert 1983) and the Barney Creek Formation 
(Baruch et al. 2015; Revie and Normington 2020). 

Clay-fraction mineralogy of the Urquhart Shale Formation (Shovel Flats and George 

Fisher) 

All samples from Shovel Flats and George Fisher preserve illite and muscovite in 

the clay fraction (Fig. 7-5). The main difference between the two groups of samples is 

the absence of chlorite from most of the George Fisher samples. The same results are 

produced when the samples are treated with ethylene glycol, which indicates there is 

little smectite in the samples. The first basal reflection for illite in samples from George 

Fisher is generally narrower and has a higher intensity than in Shovel Flats samples, 

which is indicative of the illite to muscovite transition (Fig. 7-5). 

3.5.3. Bulk rock geochemistry 

The bulk rock compositional data of all samples is presented in the electronic 

appendix and the chemostratigraphic logs for some of the key analytes are presented in 

Fig. 3-9.
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Fig. 3-9 Chemostratigraphic 
logs for the Shovel Flats drill 
core (A) and for drill core 10C 
K795 from the George Fisher 
deposit (B) with the 
downhole variation of Zn, Pb, 
Na, Sr, Mn, Tl, SEDEX 
alteration index values and 
the George Fisher Index 
(10[400Tl+Mn]/[10Sr+Na]). 

Zinc and Pb plots include 
mine assay data (red line = 
Zn; grey line = Pb). The blue 
lines show the median values 
of individual element of 
Urquhart Shale samples 
from Shovel Flats. The 
samples in B are grouped by 
colour: red = massive 
sulphide; orange = inter-
mineralisation Urquhart 
Shale; purple = hanging wall 
Urquhart Shale.
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Major element and base metal composition 

Most samples from George Fisher contain very little Na and plot between Al and 

K in a ternary diagram of these 3 components, whereas samples from Shovel Flats 

preserve a similar range of K/Al ratios but plot towards higher Na concentrations (Fig. 

3-10A). The samples from George Fisher that are located in the hanging wall sequence 

to massive sulphide mineralization are intermediate between the two groups (Fig. 

3-10A). In terms of Ca, Mg and Fe concentrations, samples mostly plot between the 

calcite, dolomite, and pyrite end-members (Fig. 3-10C). In comparison to Shovel Flats, 

the George Fisher samples contain elevated Mn and the sub-group from the ore lenses 

plot towards the Fe end-member (Fig. 3-10C). 

 
Fig. 3-10 (A) Na2O, K2O and Al2O3 ternary diagram for samples from the Shovel Flats drill core and the 
George Fisher deposit. End-member compositions of selected mineral phases are shown in grey. The grey 
field represents Urquhart Shale samples distal (white) to proximal (dark grey) to the Mount Isa deposit 
(data from Painter 2003). (B) Bulk-rock mineralogical composition of sample PR832SF035 from the 
Shovel Flats drill core (qtz = quartz, cal = calcite, dol = dolomite, phyll = phyllosilicate, chl = chlorite, ab 
= albite, K-fsp = K-feldspar, py = pyrite). This sample preserves the highest albite content in the XRD 
data set. (C) CaO, MgO and Fe2O3 ternary diagram for samples from the Shovel Flats drill core and the 
George Fisher deposit. End member compositions of selected mineral phases are shown in grey. The grey 
field represents Urquhart Shale samples distal (white) to proximal (dark grey) to the Mount Isa deposit 
(data from Painter 2003). 



 Lithogeochemical and mineralogical footprint of the George Fisher deposit, Australia 

62 
 

Base metal concentrations and total S can vary between the ore stages (Fig. 3-11A-

D). Samples from ore stage 2 contain the highest Zn and Pb concentrations; ore stages 1 

and 3 contain relatively lower Zn and Pb but are still highly enriched relative to 

unmineralized samples from George Fisher and Shovel Flats (Fig. 3-11A-D). 

 
Fig. 3-11 (A-D) Sulphur and base metal concentrations for samples from the Shovel Flats drill core and 
the George Fisher deposit. (A) Sulphur vs. combined Zn-Pb-Fe. (B) Box and whisker plot for Zn 
concentrations. (C) Box and whisker plot for Pb concentrations. (D) Box and whisker plot for Fe 
concentrations. For details of the statistical method for box and whisker plots see Fig. 3-7B. (E-I) 
Literature alteration indexes vs. pyrite abundance for samples from the Shovel Flats drill core and the 
George Fisher deposit. (E) SEDEX alteration index. (F) SEDEX alteration index mark 3. (G) SEDEX 
alteration index mark 4. (H) SEDEX metal index. (I) Cobalt/Ni ratio. 
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In contrast, samples from Shovel Flats and the unmineralized samples from 

George Fisher have broadly overlapping total S and base metal concentrations. In the 

10C K795 drill core at George Fisher, the Zn and Pb concentrations of the Urquhart Shale 

samples from the hanging wall and from in between the ore bodies are scattered around 

the median concentrations from the Shovel Flats drill core. In terms of alteration 

indexes, the values for the SEDEX AI, SEDEX AI 3, SEDEX AI 4, the SEDEX metal index 

and the Co/Ni ratio are highest in the ore samples (Fig. 3-11E-I). A total of 21 of the 41 

Shovel Flats samples are below the suggested threshold values for CD-type massive 

sulphide deposits in the Carpentaria province (Table 1). Ten samples are above threshold 

values for less than four of these indices and another 10 samples are above threshold 

values for four or more indexes. All samples with pyrite contents of more than 10 wt. % 

fall into this category (Fig. 3-11). Molybdenum concentrations are generally low (Fig. 

3-12; 62 samples < 2 ppm; 39 samples 2 to 10 ppm; 4 samples 10 to 25 ppm). 

Fig. 3-12 Molybdenum concentrations for 
samples from the Shovel Flats drill core and 
the George Fisher deposit (bin width = 0.6 
ppm). 

 

 

 

 

 

Comparing Shovel Flats and George Fisher samples 

The Shovel Flats samples (n = 21) that have below threshold values for the SEDEX 

alteration indexes were used as a reference for the unaltered protolith composition of 

the Urquhart Shale. The samples were further subdivided into two groups according to 

lithology: (1) siltstones (n = 9) and (2) mudstone and interbedded mudstone-siltstones 

(n = 12). 

To evaluate relative mass changes, and element losses and gains median values 

for major, minor, and trace elements of each sub-group were compared (Fig. 3-13). 
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Fig. 3-13 Isocon diagrams for samples from the Shovel Flats drill core and the George Fisher deposit 
separated by lithology: (A) Background (below alteration indexes) siltstone vs. George Fisher siltstone. 
(B) Background (below alteration indexes) combined mudstone and mudstone-siltstone vs. George 
Fisher combined mudstone and mudstone-siltstone samples. (C) Combined Background Urquhart Shale 
samples vs. George Fisher massive sulphide samples. (D) Modified isocon diagram of C. with data scaled 
to a distance of 1 from the origin. Data in (A-C) are arbitrarily scaled to plot major and trace elements 
in a single diagram. (A-C) include the mean and median values and ±2 standard deviation (2std) values 
for the isocon line defining a field of immobile behaviour. All elements are grouped according to their 
geochemical behaviour. (E) Element mass gain and loss calculated for Shovel Flats vs. George Fisher 
samples shown in (A-D) for siltstone, combined mudstone and mudstone-siltstone, and for massive 
sulphide respectively. 
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The ratios of the immobile elements (Si, Al, Ti, Sc, Nb, Th, Y, and REE) in both 

lithological subgroups preserve evidence of a small bulk mass loss (ΔM) of 2 % 

(siltstones) and 4 % (combined mudstones and siltstones) in the George Fisher samples 

(relative to unaltered Shovel Flats samples). The largest element gains (> 50 %) are Tl, 

Ag, Mn, S, Pb; Fe and Cu for the siltstones, and Zn and Co for combined mudstones and 

siltstones. Cobalt, Zr, Mo, and Hf are moderately enriched (50 % to 2 standard 

deviations of isocon line) in the siltstones, and Fe and K are moderately enriched in 

combined mudstone and siltstone samples respectively.  

There is a large depletion (>50 %) in Na, Sr and Cgra for both lithological sub-

groups, and for Zn and Cs in siltstones. Barium, Mg and Ni are moderately depleted (50 

% to 2 standard deviations of isocon line) in both sub-groups; Cs, Sb, and Cu in the 

combined mudstones and siltstones, and; U, CO2, TOC, P, Ca, As and Ctot in the 

siltstones. 

Overall, the bulk mass loss and the enrichment or depletion factors of the most 

enriched or depleted elements (e.g., Tl, Mn, Ag, Na, Sr) and the immobile elements (Si, 

Al, Ti, Sc, Nb, Th, Y, and REE) are similar for both lithology sub-groups (Fig. 3-13A, B, 

E). For comparison with the ore samples from the George Fisher deposit, both lithologies 

for unaltered samples (n = 21) from the Shovel Flats drill core were, therefore, combined 

to identify the most enriched and most depleted elements (Fig. 3-13C, D). 

The bulk mass change (ΔM = 100 ∗ [
ci_GF − ci_SF

ci_GF
]) of the ore samples relative to the 

unaltered Urquhart Shale samples indicates a large mass gain of 283 %. Chalcophile (Cd, 

Zn, Pb, Ag, Hg, Tl, S, Sb, Se, As, Cu) and siderophile elements (Co, Fe, Mo) are strongly 

enriched (>1000 %). Furthermore, Mn and Ni are enriched (> 500 – 1000 %) and TOC 

and Eu are slightly enriched (500 % to 2 standard deviations of isocon line) in the ore 

samples relative to the background Urquhart Shale samples. Element depletion (>2 

standard deviations of isocon line) is indicated for Na, Cgra, Sr, Ta, V, and P. Overall, 

the elements, which show the greatest variability between the Shovel Flats drill-hole and 

the George Fisher deposit are Zn, Pb, Na, Mn, Sr, and Tl (Fig. 3-9). 
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George Fisher Index 

The elements for which there is the greatest difference between Shovel Flats and 

George Fisher (Zn, Pb, Na, Mn, Sr and Tl) are all relatively uniform in total concentration 

in the Shovel Flats samples (Fig. 3-9). The one exception is in the uppermost 200 m, 

where concentrations of Mn and Tl are slightly elevated and Na and Sr are present at 

slightly lower concentrations. This variability also corresponds with scatter in the 

SEDEX AI values.  

The non-base metal elements within this sub-group (Na, Mn, Sr and Tl) have 

been used to formulate an alteration index for the George Fisher deposit (GF Index). 

Element factors have been applied to obtain 1:1 proportion between Tl and Mn, and 

between Sr and Na for the Urquhart Shale samples, 𝑖. 𝑒. 10 (
400𝑇𝑙+𝑀𝑛

10𝑆𝑟+𝑁𝑎
). The Shovel Flats 

samples preserve the lowest index values (median = 1.9), although they are slightly 

elevated in the upper 100 m of the drill core. The GF Index is highest in the mineralized 

samples from George Fisher, whereas the unmineralized samples have intermediate 

values (Fig. 3-14). Overall, the GF Index provides improved sensitivity for differentiating 

between the sample subgroups (Fig. 3-14) when compared to the existing SEDEX AI’s 

(Fig. 3-11). 

There is a negative correlation between Sr and Mn, whereby the highest Sr/Ca 

ratios and lowest Mn/Ca ratios are preserved in Shovel Flats samples and lowest Sr/Ca 

ratios and highest Mn/Ca ratios in George Fisher samples (Fig. 3-15). Thallium 

concentrations covary strongly with pyrite abundance and Tl/pyrite ratios (ppm/wt.%) 

are generally high in Urquhart Shale and ore stage 1 and 2 samples at George Fisher and 

low in Shovel Flats samples and samples from ore stage 3 (Fig. 3-16). Similarly, Ag 

concentrations covary with pyrite abundance and preserve elevated Ag/pyrite ratios for 

all George Fisher samples relative to Shovel Flats. Notably, the highest Ag/pyrite values 

are preserved by ore stage 2 samples, which also preserve the highest concentrations of 

Zn and Pb (Fig. 3-11B, C). 
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Fig. 3-14 George Fisher Index for samples from the Shovel Flats drill core and the George Fisher deposit. 
(A) 400Tl+Mn vs. 10Sr+Na plot. The grey field represents Urquhart Shale samples distal (white) to 
proximal (dark grey) to the Mount Isa deposit (data from Painter 2003). (B) George Fisher index (10 
(400Tl+Mn)/(10Sr+Na)) box and whisker plot. For details of the statistical method for box and whisker 
plots see Fig. 3-7B. 

Fig. 3-15 Scatter plot of 100Mn/Ca vs. 
1000Sr/Ca for samples from the Shovel 
Flats drill core and the George Fisher 
deposit. The grey field represents Urquhart 
Shale samples distal (white) to proximal 
(dark grey) to the Mount Isa deposit (data 
from Painter 2003). 
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Fig. 3-16 (A) Scatter plot of pyrite (wt. %) vs. Tl (ppm) for samples from the Shovel Flats drill core and 
the George Fisher deposit. (B) Box and whisker plot of the Tl/pyrite ratio. (C) Scatter plot of pyrite (wt. 
%) vs. Ag (ppm) for samples from the Shovel Flats drill core and the George Fisher deposit. (D) Box and 
whisker plot of the Ag/pyrite ratio. For details of the statistical method for box and whisker plots see Fig. 
3-7B. 

3.6. Discussion 

3.6.1. Unaltered composition of the Urquhart Shale Formation 

It is essential to define the mineralogical composition of the unaltered protolith 

when developing accurate hydrothermal alteration models. For the George Fisher 

system, the unaltered protolith is represented by samples from the Shovel Flats drill-

hole, which is located approximately 5 km away from the deposit (Fig. 3-2). The deposits 

in the northern Carpentaria Province are typically hosted within subbasins that 

represent localized fault-bound depocenters (e.g., Large et al. 2005), which preserve 

considerable lateral variability in the thickness and sedimentary facies of syn-tectonic 

depositional sequences (e.g., McGoldrick et al. 2010). In the Mount Isa Group there is 

similar evidence of syn-tectonic deposition in the form of variable formation thicknesses 

(e.g., Smith 1969; Derrick 1982). This sedimentological complexity makes precise 

stratigraphic correlations challenging, which in the southern Carpentaria has been 

further compounded by tectonic overprint (Valenta 1994). Nevertheless, the Urquhart 

Shale samples from Shovel Flats, George Fisher (this study) and from the wider Mount 

Isa area (Neudert 1983; Painter 2003) do preserve overlapping detrital components (e.g., 

quartz and feldspars), authigenic components (e.g., diagenetic pyrite and carbonate), 

and phyllosilicate phases (e.g., muscovite, illite, and phlogopite) that justify this 
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comparison (Fig. 3-5, Fig. 3-6, Fig. 3-7, Fig. 3-8). These mineralogical similarities are 

further supported by overlapping major and trace element compositions (e.g., Fig. 3-10, 

Fig. 3-11, Fig. 3-12, Fig. 3-15). 

Detrital constituents of sedimentary rocks represent the cumulative effect of a 

range of weathering, transport and depositional processes (Rimstidt et al. 2017) and 

provide the framework for all subsequent diagenetic reactions (Bjørlykke 2014). During 

the Proterozoic it is generally accepted that low pO2 limited terrestrial weathering to 

mostly physical processes, resulting in relatively immature siliciclastic input to 

sedimentary basins (Rafiei and Kennedy 2019). The high abundance of feldspar in the 

Urquhart Shale is broadly similar to that described for the Barney Creek Formation in 

the McArthur Basin (Baruch et al. 2015), which is typical of chemically immature 

Precambrian sedimentary rocks (Kennedy et al. 2006). That said, the higher 

quartz/feldspar ratios in this study may imply a slightly different sediment source or 

deposition under deeper water conditions, which is consistent with the interpretation 

of deeper water rhythmite sedimentation for the Urquhart Shale Formation (Domagala 

et al. 2000). 

Biogenic and authigenic constituents in marine sediments are primarily 

associated with biological productivity in the water column and subsequent organic 

matter degradation during early diagenesis (Rimstidt et al. 2017). The consumption of 

oxygen during oxygenic photosynthesis and subsequent organic matter degradation 

typically results in reducing depositional redox conditions. Paleoredox proxies such as 

sulphur isotope values or Mo concentrations in sedimentary rocks can then be used to 

investigate the depositional and early diagenetic conditions that occurred in 

sedimentary basins. In unrestricted basins, for example, euxinic conditions (H2S > Fe2+) 

typically results in Mo concentrations (Mo >100 ppm; Scott and Lyons 2012) that are 

enriched above crustal values (1-2 ppm; Taylor and McLennan 1995). In Shovel Flats and 

George Fisher samples, low Mo concentrations (Fig. 3-12) indicate either a strong degree 

of water mass restriction or that euxinic conditions were not a widespread feature. 

Notably, the δ34S values of fine-grained diagenetic pyrite (pre-ore) are consistent with 

open system conditions during microbial sulphate reduction (Rieger et al. 2020), 
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meaning that low levels of Mo enrichment are consistent with predominantly 

ferruginous conditions (i.e. H2S < Fe2+) during deposition of the Urquhart Shale 

Formation. 

There is moderate enrichment of total organic carbon (TOC) in samples from the 

Urquhart Shale (1-2 wt. %), which is similar to other Proterozoic fine-grained 

carbonaceous sedimentary rock units throughout the Carpentaria province (e.g., Baruch 

et al. 2015; Revie and Normington 2020). With sufficient availability of organic matter 

and oxidants (e.g., sulphate, Fe-hydroxides, or Mn-oxides) microbial reactions during 

early diagenesis produce a number of reduced species (e.g., HS-, Fe2+ and Mn2+) and 

bicarbonate ions (HCO3
-) and result in the formation of pyrite and carbonate. The 

formation of nodular carbonates in the Urquhart Shale is generally interpreted due to 

diagenetic processes (Painter et al. 1999; Domagala et al. 2000) and this is consistent 

with their pre-ore paragenetic timing at George Fisher (Fig. 3-6). As such, the pyrite and 

carbonate associated elements (Fe and S, and Ca, Mg, Sr, Mn and Fe respectively) in the 

unmineralized Urquhart Shale are considered to largely represent biogenic and 

authigenic processes. 

Phyllosilicate phases generally form in response to increasing pressures and 

temperatures during burial diagenesis (e.g., Bjørlykke 2014; Rimstidt et al. 2017). These 

reactions involve the transformation of early diagenetic and detrital clay minerals (e.g., 

kaolinite, smectite) through intermediate clay mineral phases, such as mixed-layered 

clay minerals (e.g., illite-smectite) and illite, to more crystalline phyllosilicate minerals 

such as muscovite or chlorite (for reviews see e.g., Héroux et al. 1979; Lynch et al. 1997; 

Beaufort et al. 2015). The preservation of illite in the Urquhart Shale is consistent with 

sub-greenschist facies conditions (< 300 °C; Merriman and Frey 1999). Moreover, 

asymmetric illite reflections may indicate the presence of very small amounts of illite-

smectite interlayers (Fig. 7-5; see asymmetric illite-smectite reflections in (Lanson and 

Champion 1991; Lanson and Besson 1992). Illite-smectite interlayers are not preserved 

above burial temperatures of 220 °C (Day-Stirrat et al. 2010), which is consistent with 

previous bitumen reflectance and illite crystallinity data from the Urquhart Shale (ca. 

200 °C; (McClay 1979; Chapman 1999).  
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Chlorite has previously been used as an indicator mineral for greenschist facies 

metamorphic conditions (> 300 °C) in the Urquhart Shale Formation and deposits of 

the Mount Isa area (Wilson 1972; Rubenach 1992; Large et al. 2005). In the 

unmineralized Shovel Flats drill-hole, however, the preservation of illite (and illite-

smectite; Fig. 7-5) and the absence of a well-developed metamorphic fabric are 

inconsistent with conditions of metamorphic chlorite formation. Rather, the fine-

grained (<10 µm; Fig. 3-5, Fig. 7-5) interstitial nature of chlorite in the Urquhart Shale 

Formation is consistent with diagenetic formation (e.g., Beaufort et al. 2015). It should 

be noted that the diagenetic chlorite is distinct from the coarser grained chlorite that is 

more closely associated with Cu mineralization in a number of the deposits in the Mount 

Isa area and is presumably hydrothermal in origin (Valenta 1988; Waring 1990; 

Chapman 1999; Cave et al. 2020).  

The main pathways of diagenetic chlorite formation involve the transformation 

of precursor phases such as trioctahedral smectite or serpentine (e.g., berthierine; 

reaction I; Beaufort et al. 2015). 

I) 2 (FeII,Mg,Al)3(Si,Al)2O5(OH)4 → (FeII,FeIII,Mg,Al)6(Si,Al)4O10(OH)8 (background diagenesis) 

 berthierine  chlorite  

In modern estuarine and shelf environments berthierine formation has been 

linked to a suite of precursor phases (e.g., glauconite and odinite) formed from Fe-rich 

pore fluids during transgressive and highstand system tracts (e.g., Odin and Matter 1981; 

Morad et al. 2010; Virolle et al. 2019). It has also been suggested that under the 

ferruginous conditions that were characteristic of the Precambrian oceans, berthierine 

formation may have been widespread (e.g., Tang et al. 2017; Johnson et al. 2020). The 

diagenetic transformation of berthierine to chamosite (Fe-rich chlorite) is normally 

complete by 70 ℃ (e.g., Hornibrook and Longstaffe 1996), meaning the chlorite in the 

Urquhart Shale Formation could have formed during burial diagenesis rather than 

metamorphism. Chlorite is also present in un-metamorphosed sedimentary rocks 

throughout the Tawallah, McArthur, Nathan, and Roper Groups of the McArthur Basin 

(Revie and Normington 2020), which further supports such a diagenetic model for 

chlorite formation in the Proterozoic Carpentaria province. 
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3.6.2. Defining hydrothermal anomalism in the Urquhart Shale Formation 

None of the published geochemical element ratios and alteration indices are 

particularly effective in differentiating between the Urquhart Shale Formation at the 

George Fisher deposit and the background Urquhart Shale Formation from the Shovel 

Flats drill core (Fig. 3-11). Covariation between pyrite abundance in the Shovel Flats 

samples and the SEDEX AI, SEDEX AI 3 and SEDEX AI 4 values indicates this alteration 

index is strongly dependent on pyrite abundance (Fig. 3-11). As there is considerable 

variability in background levels of pyrite (Rieger et al. 2020), however, the SEDEX 

alteration indexes are susceptible to false positive values.  

The SEDEX metal index values appear to be much more independent of pyrite 

abundance, although there is no clear differentiation between the background Urquhart 

Shale samples from the Shovel Flats drill core and the Urquhart Shale samples from the 

George Fisher deposit (Fig. 3-11). It is unlikely, therefore, that the ore forming metals are 

widely dispersed within the Urquhart Shale Formation at George Fisher. This lack of 

metal dispersion is consistent with the model of Zn ore formation in the sub-surface 

during diagenesis (Chapman 1999, 2004; Rieger et al. 2020) rather than the exhalation 

of the hydrothermal fluids on the seafloor. 

In contrast, the GF Index discriminates between Urquhart Shale samples from 

the background drill core, hanging wall samples from the George Fisher deposit, inter-

mineralization Urquhart Shale samples and massive sulphide samples (Fig. 3-14). The 

elements in the GF Index are associated with the 3 major mineralogical constituents 

(silicates, carbonates, sulphides) of the Urquhart Shale Formation, meaning it is 

necessary to consider the alteration reactions involving these phases. 

3.6.3. Hydrothermal alteration at George Fisher 

The Cu-mineralization at the George Fisher deposit is a minor component and 

more spatially restricted than at the Mount Isa and Hilton deposits (Chapman 1999). As 

such, the host rocks at the George Fisher deposit should preserve the geochemical 

footprint of the stratabound Zn-Pb mineralization (ore stage 1) more effectively than the 

Mount Isa or Hilton deposits, where this earlier mineralisation may be more minor or 

absent. 
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The greater abundances of dolomite and phyllosilicates at George Fisher relative 

to unmineralized Shovel Flats samples (Fig. 3-7) are broadly comparable to previous 

alteration models (cf. Chapman 1999, 2004). The main difference from earlier work is 

the absence of barium-(K-)feldspar, which was not detectable in any of the bulk rock 

mineralogical analysis. Furthermore, Ba is slightly depleted in mudstones and siltstones 

in George Fisher samples relative to Shovel Flats samples (Fig. 3-13). This may either 

indicate that (1) Ba-feldspar was dissolved or replaced during mineralization at George 

Fisher, or that (2) Ba-feldspar alteration was spatially restricted on a deposit scale. We 

consider (2) as being more likely, considering the observation that Ba-feldspar alteration 

is found mostly in the deeper parts of the deposit (Chapman 1999). 

The depletion of chlorite and albite in George Fisher samples relative to 

unmineralized Shovel Flats samples (Fig. 3-7) has not previously been described. As 

discussed earlier, the unmineralized host rocks to the George Fisher deposit likely 

contained diagenetic chlorite which is distinct from the hydrothermal chlorite that is 

more spatially restricted in association with the later Cu event (Fig. 3-7; Chapman 1999). 

There are two options for the lack of chlorite in the George Fisher samples: (1) chlorite 

was never formed in the host rocks at George Fisher; or (2) hydrothermal processes have 

removed chlorite precursor phases (e.g., berthierine) or chlorite from the host rocks at 

the George Fisher deposit. There is no supporting evidence that protolith composition 

was substantially different in order to account for a contrasting diagenetic assemblage 

in the George Fisher samples (i.e. option 1). Instead, it is worth considering how 

alteration reactions involving the prograde diagenetic reaction sequence might control 

the mineralogy assemblage developed with ore stage 1. For example, the alteration of 

berthierine/chlorite, albite, and calcite during TSR (reaction II) would result in the 

formation of muscovite/phlogopite (reaction III), dolomite (reaction IV) and pyrite 

(reaction V). 

This alteration reaction is consistent with the depletion of albite, chlorite, and 

calcite, and the greater abundances of muscovite/phlogopite and dolomite in samples 

from George Fisher (Fig. 3-7). The preservation of K-feldspar also suggests a high K+/H+ 

ratio in the fluid (relatively high pH), near the muscovite/K-feldspar stability boundary. 
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The magnesium released during berthierine/chlorite alteration (reaction III), 

combined with bicarbonate from TSR (II), could have resulted in hydrothermal dolomite 

formation (IV), which is consistent with the higher dolomite abundance at George 

Fisher relative to Shovel Flats Urquhart Shale samples (Fig. 3-7). Dolomitization of 

calcite typically results in changes in the trace element composition; for example, neo-

formed dolomite is commonly enriched in Mn and/or Fe and depleted in Sr relative to 

precursor calcite (Brand and Veizer 1980; Kah 2000). These trace element changes are 

due to the incompatibility of the larger Sr2+-ion compared to the smaller Mn2+- or Fe2+-

ions in the dolomite structure (e.g., Kretz 1982). The inverse relationship of Mn and Sr 

in Shovel Flats and George Fisher samples (Fig. 3-15) is consistent with hydrothermal 

dolomitization at the George Fisher deposit. Nodular carbonates at George Fisher also 

preserve evidence of replacement by sphalerite (Fig. 3-6; (Chapman 2004). 

The changes in whole rock carbonate mineralogy (calcite vs. dolomite) and 

replacement textures of dolomite by sphalerite likely indicate that mineralization has 

resulted in complex carbonate replacement and dissolution-precipitation reactions at 

George Fisher, although further studies on the carbonate chemistry are needed to test 

this hypothesis. 

Reactive Fe from berthierine/chlorite (reaction III) and the hydrothermal fluid 

would have combined with reduced S (TSR; reaction II) to form hydrothermal pyrite 

(reaction V). Whole-rock Tl concentrations have previously been identified to be an 

important pathfinder for CD-type systems in the Carpentaria province (e.g., Lambert 

and Scott 1973; Large and McGoldrick 1998; Whitbread 2004) and in other sedimentary 

basins (e.g., Slack et al. 2004; Gadd et al. 2016). Pyrite at George Fisher contains higher 

concentrations of Tl and Ag than pyrite from unmineralized samples (Fig. 3-16). 

Recently, high-resolution element mapping of pyrite aggregates has shown that Tl-

enriched pyrite formed after fine-grained pyrite in the McArthur River deposit (Spinks 

et al. 2019). At George Fisher, samples that are dominated by ore stage 1 preserve the 

highest whole rock Tl concentrations and have similar morphologies to McArthur River 

Tl-rich pyrites (Eldridge et al. 1993; Spinks et al. 2019; Rieger et al. 2020).  



 

 

7
5 

II) 

SO4
2- + CH4 → HS- + HCO3

- + H2O 

(TSR) 

sulphate  methane  hydrogen sulphide  bicarbonate  water 

 

III) 

(FeII,Mg,Al)3(Si,Al)2O5(OH)4 / (FeII,FeIII,Mg,Al)6(Si,Al)4O10(OH)8 + NaAlSi3O8 + 8H+ + K+ → 

berthierine  chlorite  albite  hydrogen  potassium  

KAl(AlSi3O10)(OH)2 / KMg3(AlSi3O10)(OH)2 + Al(OH)3 + Si(OH)4 + Na+ + Fe2+ + Mg2+ (muscovite / 

phlogopite 

alteration) 
muscovite  phlogopite  aluminium hydroxide  silicic acid  sodium  iron  magnesium 

 

IV) 

Mg2+ + CaCO3 + HCO3
- → CaMg(CO3)2 + H+ 

(dolomite formation) 

magnesium  calcite  bicarbonate  dolomite  hydrogen 

 

V) 

Fe2+ + Zn2+ + Pb2+ + 4 HS- → FeS2 + ZnS + PbS + 4H+ 

(sulphide formation) 

iron  zinc  lead  hydrogen sulphide  pyrite  sphalerite  galena  hydrogen 
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In contrast, the Tl/pyrite ratios of ore stage 3 (Cu-mineralization) are lower and 

are similar to background Urquhart Shale ratios (Fig. 3-16). Overall, the reaction 

sequence described by reactions (II)-(V) is consistent with lower chlorite albite, and 

calcite contents, higher phyllosilicate and dolomite abundances, and formation of 

hydrothermal pyrite at George Fisher and the element changes described by the GF 

index. 

3.6.4. Implications 

Considering the petrographic and mineralogical evidence that parts of the 

Urquhart Shale Formation did not reach greenschist facies (this study; McClay 1979; 

Chapman 1999) we would argue that the chlorite formed during diagenesis. It is possible, 

therefore, that compositional and isotopic data generated on samples from the Urquhart 

Shale Formation near the George Fisher deposit could be used to investigate the 

Paleoproterozoic depositional and diagenetic environment in this part of the 

Carpentaria province.  

In terms of the sulphide mineralization at the George Fisher deposit, there is 

robust petrographic evidence that ore stage 1 (Zn-dominated, stratabound) post-dated 

the formation of diagenetic pyrite formed during the earliest stages of diagenesis (Rieger 

et al. 2020). If so, it may have occurred either before, or after, diagenetic chlorite 

formation (i.e. < 70 ℃, transformation of berthierine to chlorite). If the mineralization 

pre-dated diagenetic chlorite formation, this must have occurred within the upper 2-3 

km of the basin (assuming a normal geothermal gradient). This is consistent with recent 

paragenetic models for mineralization at other deposits in the Carpentaria Province 

(e.g., Teena, Magnall et al. 2020b). Alternatively, if ore stage 1 mineralization post-dated 

diagenetic chlorite formation, this may have occurred during late diagenesis (e.g., >3 km 

burial depth; cf. George Fisher, Chapman 2004; Mount Isa, Painter 2003). This would 

be consistent with ore formation models for the Century deposit, which likely formed 

during the onset of basin inversion (Broadbent et al. 1998; Broadbent 2002). Notably, 

the depletion of albite and chlorite during hydrothermal activity has also been reported 

for the Century deposit (Whitbread 2004). 
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Considering these mineralogical similarities, it is worth exploring the broader 

application of the GF index in the Carpentaria district. When applied to the Mount Isa 

and Century deposits the GF index can discriminate between the background protolith 

and the altered host rocks within approximately 2 km and 800 m of the respective 

deposits (Fig. 17). Irrespective of the different paragenetic models that exist for the 

Carpentaria CD-type deposits, therefore, it is clear that alteration models should 

incorporate aspects of the sulphide, carbonate, and (phyllo)silicate assemblages; this will 

be most effectively achieved by combining petrographic, mineralogical, and bulk 

geochemical techniques. 

 
Fig. 3-17 George Fisher index values for the Urquhart Shale Formation north of the Mount Isa deposit (A; 
data compiled from Painter 2003) and for the Century deposit (B; data compiled from Whitbread 2004). 
George Fisher index values for the Shovel Flats samples (this study) are shown for reference. 

3.7. Conclusions 

The Urquhart Shale Formation is host to the world class George Fisher Zn deposit 

(165 Mt at 9.1 % Zn, 3.4 % Pb, and 55 g/t Ag; Glencore 2019) and consists of 

carbonaceous, variably dolomitic or calcareous siltstones and mudstones; 

unmineralized mudstones and siltstones contain a variety of detrital and authigenic 

mineral phases (quartz, feldspars, phyllosilicates, calcite, dolomite, and pyrite). The 

occurrence of fine-grained chlorite in pores spaces with illite, the lack of well-developed 

metamorphic fabric, and low temperatures indicated by illite crystallinity are consistent 

with a sub-greenschist facies metamorphic grade. This implies that unmineralized 

Urquhart Shale samples preserve a combination of detrital, authigenic and diagenetic 

components (including chlorite).  
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Hydrothermal alteration processes during ore stage 1 (Zn-dominated, 

stratabound) at the George Fisher deposit resulted in lower chlorite, albite, and calcite 

abundances, higher concentrations of dolomite and phyllosilicate minerals (e.g., 

muscovite or phlogopite), and the formation of sulphide minerals (pyrite, sphalerite, 

and galena). These mineralogical changes are consistent with a hydrothermal event 

either before, or after, the formation of diagenetic chlorite from berthierine. This may 

have occurred in the upper 2-3 km of the basin or during later diagenesis (e.g., at the 

onset of basin inversion). During this hydrothermal event, the dissolution of albite, the 

replacement of calcite by dolomite, and the formation of hydrothermal pyrite has 

resulted in minor and trace element depletion (Sr and Na) and enrichment (Tl and Mn), 

which were used to formulate an alteration index for the George Fisher deposit (GF 

index, 10((400Tl+Mn)/(10Sr+Na))). This alteration index is highly effective in 

differentiating between the unmineralized background Urquhart Shale Formation and 

the mineralized Urquhart Shale Formation at George Fisher. It may, therefore, be useful 

in future geochemical exploration programmes in the Mount Isa area. Moreover, similar 

mineralogical and element changes in other CD-type massive sulphide deposits may 

indicate that hydrothermal alteration reactions were broadly comparable throughout 

the Carpentaria province. Overall, the combination of petrographic, lithogeochemical, 

and mineralogical techniques has proved to be effective in determining the background 

composition of the Urquhart Shale Formation and the alteration footprint of the ore-

forming system at George Fisher. 
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4.1. Abstract 

Carbonate mineral phases are ubiquitous in most sediment-hosted mineral 

deposits. These deposits can comprise a variety of carbonate types (detrital, primary, 

diagenetic, hydrothermal, and/or metamorphic), which typically have complex 

paragenetic relationships. Recent developments in laser ablation-inductively coupled 

plasma-mass spectroscopy (LA-ICP-MS) analysis allow for the generation of high-

resolution in situ rare earth element and yttrium (REE+Y) data from carbonate minerals. 

When normalized to chondritic values (CN), REE+YCN can be used to constrain fluid 

chemistry and fluid-rock interaction processes in both low, and high, temperature 

settings. Unlike other phases (e.g., pyrite), however, the application of in situ LA-ICP-

MS data to differentiate between pre-ore and hydrothermal carbonates remains relative 

untested. To assess the potential applicability of carbonate in situ REE+Y data, we 

combined transmitted light and cathodoluminescence (CL) petrography with LA-ICP-

MS analysis of carbonate mineral phases from (1) the Proterozoic George Fisher clastic 

dominated (CD-type) massive sulphide deposit and from (2) correlative, barren host 

rock lithologies (Urquhart Shale Formation). Pre-ore calcite preserves homogenous CL 

signals and light rare earth element (LREE) enriched REE+YCN profiles. Together with 

variable super-chondritic Y/Ho ratios and variable Ce/Ce* values (~ 1), the REE+YCN 

compositions provide evidence that pre-ore carbonates formed during diagenesis from 

diagenetic pore fluids derived from anoxic seawater, which is consistent with the 

ferruginous conditions that likely dominated the Proterozoic oceans. Hydrothermal and 

hydrothermally altered dolomite and calcite from the George Fisher deposit can be 

differentiated from pre-ore calcite both petrographically (by dull CL signals) and by their 

REE+Y compositions. Relative to shale reference values, whole rock REE concentrations, 

and to pre-ore calcite, the George Fisher calcites and dolomites are generally LREE 

depleted. We suggest this is the result of hydrothermal alteration by saline Cl-rich 

mineralizing fluids. The difference between the carbonate in situ and whole rock 

REE+YCN signatures suggests that the carbonate REE+Y composition is more sensitive to 

hydrothermal alteration relative to the whole rock REE+Y composition. Furthermore, 

the presence of both positive and negative Eu/Eu* values in calcite and dolomite 
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indicates that the mineralizing fluids were relatively hot (>250 °C) and cooled below 

200-250 °C during ore formation. This study confirms the hypothesis that in situ REE+Y 

data can be used to both differentiate between pre-ore and hydrothermal carbonate 

mineral phases and provide important constraints on the physicochemical conditions of 

ore formation. 

4.2. Introduction 

In many mineral systems, carbonate minerals constitute a significant proportion 

of the host rock and gangue mineralogy. Sediment hosted ore deposits can comprise a 

variety of carbonate types (Cline et al. 2005; Hitzman et al. 2005; Leach et al. 2005): 

detrital carbonates, primary carbonates, diagenetic carbonates, hydrothermal 

carbonates, and tectonic or metamorphic carbonates. Such carbonate-rich ore systems 

also typically lack an extensive alteration footprint due to the effective buffering of acidic 

hydrothermal fluids by carbonate-rich lithologies. The complex carbonate paragenesis 

and the limited alteration footprint are major challenges when investigating, and 

exploring for, ore systems in carbonate-rich rocks; therefore, there is a need for new 

tools to differentiate alteration halos from background lithologies.  

Recent analytical developments are providing exploration geoscientists with new 

techniques for confronting these challenges. For example, new techniques that enable 

the generation of large C and O isotope datasets have shown how alteration halos in 

carbonate-hosted mineral systems may extend beyond bulk rock lithogeochemical 

anomalies (e.g., off-axis integrated cavity output spectroscopy; Barker et al. 2013). As a 

result of being generated using bulk rock techniques, such isotopic datasets may need 

to be supplemented by in situ techniques in order to constrain hydrothermal and 

background processes in samples with a complex paragenetic history. In low 

temperature (e.g., marine or diagenetic) environments, in situ trace element analysis of 

carbonate minerals (e.g., laser ablation ICP-MS) has attracted increasing usage (e.g., 

Webb et al. 2009; Himmler et al. 2010). For example, the partitioning of rare earth 

elements and yttrium (REE+Y) between fluids and carbonate minerals is well 

constrained (e.g., Morgan and Wandless 1980; Tanaka and Kawabe 2006; Voigt et al. 

2017) and REE+Y fractionate systematically in aqueous solutions in response to 
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physicochemical conditions (pH, temperature, ligand type, or fluid-rock interaction) as 

a function of ionic radius and charge (e.g., Bau 1991; Bau and Möller 1992). Altogether, 

there is potential for the REE+Y systematics of diagenetic and hydrothermal carbonates 

in constraining key aspects of fluid chemistry (Debruyne et al. 2016; Smrzka et al. 2019). 

Until relatively recently, however, the potential to use in situ REE+Y analysis of 

carbonate minerals has remained relatively untested for hydrothermal mineral systems, 

and few studies have used in situ REE+Y data to interpret the conditions of hydrothermal 

carbonate formation (e.g., Magnall et al. 2016a; Vaughan et al. 2016). 

The need to differentiate between pre-ore and hydrothermal carbonate 

signatures is particularly relevant in the Carpentaria province (Fig. 4-1), where several of 

the world’s largest clastic-dominated (CD-type) Zn-Pb massive sulphide deposits are 

hosted in sedimentary rocks with multiple types of carbonate (e.g., Perkins and Bell 

1998; Large et al. 2005; McGoldrick et al. 2010). Previous bulk rock lithogeochemical 

studies have found large-scale (several km) halos of carbonate-associated elements (Mn 

and Fe) related to these hydrothermal systems (Large and McGoldrick 1998; Large et al. 

2000). However, both Fe and Mn can also be enriched in carbonate minerals by 

background processes in marine or diagenetic environments (e.g., Brand and Veizer 

1980; Kah 2000; Wittkop et al. 2020). As a result, bulk rock and in situ major element 

analyses alone may not be sufficient to differentiate between hydrothermal and 

background carbonate signatures. 

In this study, we test the hypothesis that in situ REE+Y data can be used to 

differentiate diagenetic and hydrothermal carbonate mineral phases. We combine 

transmitted light and cathodoluminescence (CL) petrography with LA-ICP-MS trace 

element analyses of carbonates from drill core samples through the main ore bodies at 

the southern Carpentaria George Fisher deposit (165 Mt at 9.1 % Zn, 3.4 % Pb, and 55 g/t 

Ag; Glencore 2019) and from a drill-hole that intersected correlative, unmineralized host 

rock lithologies (Urquhart Shale Formation). The resultant in situ data are then 

compared to REE+Y compositions from whole rock data from the same samples. 
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Fig. 4-1 (A) A map showing the Carpentaria province. Major Zn-Pb deposits in the Mount Isa Inlier and 
in the McArthur basin are denoted by stars. (B) Simplified superbasin stratigraphy for the Mount Isa 
Inlier (after Southgate et al. 2000). Stars denote approximate locations of the George Fisher (GF), Hilton 
(HI), Mount Isa (MI), Lady Loretta (LL), McArthur River (HYC), and Century (CE) clastic-dominated 
Zn-Pb massive sulphide deposits. (C) A map of the Mount Isa area showing simplified bedrock geology 
(after Gibson et al. 2017). The locations of the George Fisher, Hilton, and Mount Isa deposits and the 
unmineralized drill-hole (Shovel Flats) are denoted by stars and a circle respectively. (D) The 
stratigraphy of the Mount Isa Group (approximate formation thicknesses adapted from Neudert 1983). 

4.3. Rare earth elements and yttrium (REE+Y) 

The REE+Y are hard cations (high charge/radius ratio) and all have broadly 

similar chemical behaviour, although subtle differences in solubility occur due to 

decreasing ionic radii from the light to the heavy REE+Y (e.g., Bau 1991; Migdisov et al. 

2009; Williams-Jones et al. 2012). As a consequence of the Oddo-Harkins effect, 

elements with even atomic numbers are more abundant than those with uneven atomic 

numbers; therefore, the REE+Y are typically normalized to reference values (e.g., post-

Archean Australian shale - PAAS, McLennan 1989; chondrite, McDonough and Sun 

1995), which allows for better evaluation of the relative fractionation from different 

reservoirs and among individual REE+Y subgroups (light, middle, and heavy rare earth 

elements; LREE, MREE, and HREE). This fractionation can then be used to trace 

biogeochemical processes and to constrain fluid chemistry in low and high temperature 

settings (for reviews see Debruyne et al. 2016 and Smrzka et al. 2019). 

The REE+Y are mostly trivalent (3+), apart from Ce (3+, 4+), Eu (2+, 3+), and Yb (2+, 

3+), which are redox sensitive. The redox sensitivity of Yb is only important at high 

temperatures (> 420 °C), whereas Ce and Eu can undergo valence changes at ambient 

and lower hydrothermal temperatures under geochemically reasonable fO2 conditions 
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(Fig. 4-2B). The fractionation of Ce and Eu relative to their neighbouring REE can, 

therefore, be used to constrain fluid redox conditions (e.g., De Baar et al. 1983; 

Sverjensky 1984; Bau and Möller 1992). This contrasting behaviour is expressed as 

empirical anomalies relative to reference values, which can either be determined linearly 

or geometrically (e.g., Lawrence et al. 2006). The Ce anomalies (Ce/Ce*
N) are typically 

shale-normalized (e.g., to PAAS; Ce/Ce*
SN) in order to evaluate seawater or pore water 

redox, whereas Eu anomalies are commonly chondrite-normalized (Eu/Eu*
CN) to avoid 

overestimation of Eu/Eu* values due to the negative Eu anomaly of PAAS (Fig. 4-2A). 

 
Fig. 4-2 (A) The chondrite normalized (McDonough and Sun 1995) rare earth element and Y patterns 
for: the post-Archean Australian shale reference material (black; PAAS, McLennan 1989), the Mount Isa 
Group (grey; Breakaway Shale, Native Bee Siltstone, Spear/Kennedy Siltstone, Magazine Shale; Nance 
and Taylor 1976), hydrothermal fluid literature data (red; Michard and Albarède 1986; Michard 1989; 
James et al. 1995; James and Elderfield 1996; Bau and Dulski 1999), modern oxygenated seawater data 
(light blue; James et al. 1995; Alibo and Nozaki 1999; Haley et al. 2004; Deng et al. 2017), modern anoxic 
seawater data (dark blue; Schijf et al. 1995; Bau et al. 1997), and modern sediment pore water data (light 
purple; Haley et al. 2004; Soyol-Erdene and Huh 2013; Deng et al. 2017). (B) Redox equilibria for 
Eu3+/Eu2+, Yb3+/Yb2+, Fe3+/Fe2+, and SO4

2-/H2S as a function of temperature and oxygen fugacity (after 
Bau and Möller 1992). 

Yttrium and Ho exhibit similar geochemical behaviour, although Ho is 

preferentially complexed and removed from fluids by Fe-oxides and organic particles; 

consequentially, seawater, and seawater-derived fluids, preserve super-chondritic (>28) 

Y/Ho values, whereas crustal fluids have chondritic Y/Ho (Zhang et al. 1994; Nozaki et 

al. 1997; Bau and Dulski 1999). Similarly, there are subtle differences in the adsorption 

of LREE, MREE, HREE, and Ce onto organic particles, oxide phases, or mineral phases 

(e.g., German and Elderfield 1989; Sholkovitz et al. 1994; Alibo and Nozaki 1999). These 
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differences affect the absolute and relative abundances of REE+Y in seawater as a 

function of redox state and water depth; further modification can then occur due to 

mineral formation or redox reactions in early diagenetic pore waters (e.g., Haley et al. 

2004; Abbott et al. 2019; for REE+Y reference profiles see Fig. 4-2A and for a recent 

review on REE+Y fractionation see Smrzka et al. 2019). 

The REE+Y partition strongly into carbonate minerals (e.g., Tanaka and Kawabe 

2006; Voigt et al. 2017), are enriched in crustal rocks (>chondrite) and occur only as 

trace components in fluids (<chondrite; Fig. 4-2A). As a consequence, high fluid-rock 

ratios are necessary to alter whole rock REE+Y budgets, whereas fluid REE+Y 

compositions can be strongly affected even at low fluid rock ratios (Michard and 

Albarède 1986; Bau 1991). Therefore, REE+Y signatures of marine and diagenetic 

carbonate mineral phases are good archives of fluid chemistry and generally unaffected 

by later diagenesis (e.g., Webb et al. 2009; Liu et al. 2019). 

Ligand concentration, pH, and temperature can have strong effects on REE+Y 

solubility in aqueous solutions (e.g., Michard 1989; Craddock et al. 2010; Williams-Jones 

et al. 2012) and the REE+Y composition of hydrothermal fluids can be extremely variable 

(Fig. 4-2A). Fluid-mineral interactions under hydrothermal conditions can also modify 

the REE+Y signatures of carbonate mineral phases (Vaughan et al. 2016). Commonly, 

hydrothermal fluids have positive Eu/Eu* and REE+YCN profiles that are LREE enriched, 

which has been interpreted to directly result from dissolution of plagioclase during fluid-

rock interaction (e.g., Klinkhammer et al. 1994; Douville et al. 1999). Alternatively, 

empirical and experimental studies suggest that both the LREE and Eu2+ are more 

soluble in high temperature Cl-rich fluids (Migdisov et al. 2009; Craddock et al. 2010; 

Williams-Jones et al. 2012). Because of the higher solubility of Eu2+ relative to Eu3+, the 

temperature-dependent redox sensitivity of Eu has a strong effect on Eu/Eu*; for 

example, under geochemically reasonable fO2 the more soluble Eu2+ is only dominant 

over Eu3+ at temperatures above 200-250 °C (Fig. 4-2B; Sverjensky 1984; Bau 1991; Bilal 

1991). As a consequence, positive Eu/Eu* can only develop in hot (>200-250 °C) 

hydrothermal fluids. Divalent Eu is, however, not readily incorporated into the 

carbonate crystal lattice, which is why positive Eu/Eu* can only develop in carbonate 
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mineral phases that formed from hot fluids that cooled below 200-250 °C in order to 

stabilize Eu3+ (Bau and Möller 1992). Many hydrothermal carbonates also preserve LREE 

depletion relative to PAAS (e.g., Roberts et al. 2009; Debruyne et al. 2013; Magnall et al. 

2016a). Such LREE depleted REE+Y signatures in hydrothermal precipitates have been 

interpreted to result from co-precipitation with LREE-enriched phases (Roberts et al. 

2009), LREE scavenging by fluid-mineral interaction along the fluid pathway (e.g., by 

monazite; Debruyne et al. 2016), inherited REE+Y signatures from fluid-rock interaction 

(Lüders et al. 1993; Hecht et al. 1999), or LREE retention in the fluid by Cl-complexes 

(Craddock et al. 2010; Magnall et al. 2016a). 

4.4. Geological Background 

The Carpentaria Province comprises the Mount Isa Inlier and the McArthur 

Basin, which formed in an intracontinental setting during the Paleo- to Mesoproterozoic 

(Betts et al. 2002, 2016; Giles et al. 2002). During this time, three unconformity bound 

superbasins formed due to episodic rifting, sag phase, and basin inversion; those 

superbasins can be further subdivided into twelve supersequences (Fig. 4-1; e.g., Jackson 

et al. 2000; Southgate et al. 2000, 2013). The George Fisher, Hilton, and Mount Isa 

massive sulphide deposits are hosted by the Urquhart Shale Formation, which is part of 

the Mount Isa Group of the Isa Superbasin (Southgate et al. 2000, 2013). Closure of the 

superbasins was initiated by the onset of the Isan orogeny (ca. 1600 Ma), in which the 

rocks of the Mount Isa Inlier have undergone multiple phases of deformation in at least 

four separate north-south or east-west directed deformation events (Page and Bell 1986; 

Connors and Page 1995; Bell and Hickey 1998). 

The Urquhart Shale Formation was deposited at ca. 1652 ± 7 Ma and comprises 

mainly laminated to bedded mudstones and siltstones, which are variably calcareous, 

dolomitic, carbonaceous, and pyritic (Page and Sweet 1998; Painter et al. 1999; Page et 

al. 2000). The depositional environment of the Urquhart Shale Formation was 

interpreted as either a carbonate slope (Neudert 1983; Painter 2003) or deeper water 

environment (Domagala et al. 2000). Moderate concentrations of organic carbon (< 2 

wt. %) and Mo (< 30 ppm) are consistent with anoxic and ferruginous seawater, which 
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is further supported by sulphur isotope values of diagenetic pyrite that do not preserve 

evidence of extreme sulphate limitation under euxinic conditions (Rieger et al. 2020). 

Carbonates are major rock forming mineral phases in the Urquhart Shale. There 

are several types of detrital, diagenetic, and hydrothermal calcite and dolomite. Zoned, 

porous, silt-sized detrital calcite and dolomite were deposited together with other clastic 

mineral grains (Painter et al. 1999) and potentially entirely replaced by diagenetic 

carbonate (Chapman 1999). Diagenetic carbonates comprise calcareous and dolomitic 

cements, which was interpreted as supratidal crusts (e.g., Neudert 1983; Painter et al. 

1999), as seafloor cementation (Domagala et al. 2000), or as carbonate alteration 

(Chapman 1999). Furthermore, nodular carbonates have been interpreted as diagenetic 

precipitates (e.g., Chapman 1999, 2004; Domagala et al. 2000; Painter 2003), as 

diagenetic pseudomorphs after sulphate minerals (e.g., van den Heuvel 1969; McClay 

and Carlile 1978; Painter et al. 1999), or as hydrothermal replacement textures (Perkins 

1997; Perkins and Bell 1998). In and around the George Fisher, Hilton, and Mount Isa 

deposits there are several types of calcite, dolomite, and siderite veins, infill, and breccias 

associated with the Zn-Pb and Cu ore systems (e.g., Waring 1990; Valenta 1994; 

Chapman 1999). Generally, carbonate mineral phases are more dolomitic, and Fe- and 

Mn-bearing at the Mount Isa and George Fisher deposits relative to the unmineralized 

Urquhart Shale (Painter 2003; Chapter 3). Furthermore, the ore forming systems have 

likely produced 18O-depleted carbonate haloes around the mineral deposits in the 

Urquhart Shale Formation beyond visible alteration (Waring 1990; Chapman 1999). 

Besides differences in carbonate mineralogy and isotopic composition, the footprints of 

these CD-type massive sulphide deposits are evident from element enrichment (e.g., Tl, 

Mn, Ag) and depletion (e.g., Na, Sr) in whole rock data (Painter 2003; Chapter 3). The 

main sulphide minerals at George Fisher are pyrite, sphalerite, galena, and pyrrhotite, 

and chalcopyrite occurs only in minor quantities; these sulphides occur in multiple 

generations (Chapman 1999, 2004; Murphy 2004; Rieger et al. 2020). Recently, Rieger 

et al. (2020) described pre-ore diagenetic fine-grained pyrite followed by three ore 

stages: (1) stratabound sphalerite + pyrite ± galena, (2) breccia-hosted galena + sphalerite 

+ pyrite + pyrrhotite, and (3) vein and breccia-hosted pyrite + pyrrhotite + chalcopyrite 

± galena and sphalerite. 
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A whole rock lithogeochemistry study on Urquhart Shale samples from an 

unmineralized drill-core and from the George Fisher deposit has shown that REE+Y, Si, 

Al, Ti, Sc, Nb, and Th were immobile during hydrothermal alteration, and that 

mineralization at George Fisher resulted in dilution of these immobile elements 

(Chapter 3). The nature of any REE+Y fractionation was not discussed in chapter 3 and 

so the data are presented here in Fig. 4-3 and in the electronic appendix, and fully 

discussed below. The REE+YCN profiles for Urquhart Shale and massive sulphide samples 

are LREE enriched, and have relatively flat MREE and HREE profiles, as well as negative 

Eu/Eu* and chondritic Y/Ho (Fig. 4-3). These REE+YCN profiles are generally very similar 

to PAAS and to other formations from the Mount Isa Group, yet, are offset to lower 

concentrations (Fig. 4-3; Nance and Taylor 1976; McLennan 1989). 

 
Fig. 4-3 The chondrite normalized (McDonough and Sun 1995) rare earth element and Y reference 
patterns for: PAAS (black; McLennan 1989), the Mount Isa Group (green; Breakaway Shale, Native Bee 
Siltstone, Spear/Kennedy Siltstone, Magazine Shale; Nance and Taylor 1976), whole rock data from 
unmineralized Urquhart Shale (blue; Shovel Flats; Chapter 3), whole rock data from mineralized 
Urquhart Shale (orange; George Fisher; Chapter 3), and whole rock data from massive sulphides (dark 
red; George Fisher; Chapter 3). 
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4.5. Methods 

4.5.1. Sampling and petrography 

Representative samples were selected from a drill-core that intersected 

unmineralized Urquhart Shale (Shovel Flats drill-hole; n = 91) and from 4 drill-holes that 

intersected mineralized Urquhart Shale at the George Fisher deposit (drill-hole 8C K751, 

n = 61; 10C K795, n = 77; 10C K798, n = 57; 12C I797, n = 30). At George Fisher, 

representative samples were taken from the main ore bodies, weakly mineralized 

sections, barren siltstones or mudstones, and from sections of stratigraphically 

continuous hanging wall stratigraphy. 

Drill-core samples were examined using a binocular microscope and key samples 

were selected for polished thin section preparation (n= 95). Thin sections were further 

examined using transmitted and reflected light microscopy and representative 

carbonate samples were selected for cathodoluminescence (CL) petrography (n = 30). 

The hot-cathode optical CL system was operated at 14 keV and 0.15-0.20 mA. To capture 

zonation and differences in luminescence, exposure times were varied and quartz grains 

were used as reference for luminescence intensity, because quartz is characterized by 

very low CL relative to carbonates or feldspars (Marshall 1988). 

4.5.2. Electron probe micro-analyser (EPMA) 

Quantitative wavelength dispersive spectrometry (WDS) was performed on a 

JEOL Superprobe JXA 8230, Hyperprobe JXA 8500F and Hyperprobe JXA-8530Fplus. 

The samples were coated with a 20 nm thick carbon film and quantified for Mg, Ca, Fe, 

Mn, Sr, and partly Ba and Zn in carbonates using an acceleration voltage of 15 kV, a beam 

current of 10 nA, a probe size of 5-40 µm depending on the grain size and relative short 

measurement times between 10 to 50 sec (for background and peak). Those analytical 

parameters are reported as optimal for precise electron probe micro analyses of 

carbonates (Zhang et al. 2019). The φ(ρZ) matrix correction scheme (CITZAF; 

Armstrong 1995) was applied and natural standards were analysed during the course of 

the analytical sessions to ensure the quality of measured data. Standards were Calcite 

(Ca), Dolomite (Ca, Mg), Siderite (Fe), Strontianite (Sr), Rhodonite (Mn), BaSi2O5 for 
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Ba and ZnS for Zn. Under these conditions, analytical errors (2𝜎) and detection limits 

were 1.5 % and 300 ppm for Ca, 0.4 % and 300 ppm for Mg, Mn, and Fe, 0.1 % and 200 

ppm for Zn and Sr, and 0.1 % and 350 ppm for Ba. 

4.5.3. Mass spectroscopy (LA-ICP-MS) 

Laser ablation ICP-MS of 19 polished thin sections was carried out using the 

Analyte Excite 193 nm ArF* excimer-based laser ablation (LA) system (Teledyne Photon 

Machines, Bozeman, MT, USA), coupled to the quadrupole-ICP-MS iCAP from Thermo 

Scientific. The LA-system is equipped with a HelEx II 2-volume ablation cell. Helium 

was used as a carrier gas for aerosol transport from the sample surface to the ICP and 

was mixed downstream with Ar as a make-up gas before entering the plasma. 

Operational parameters of the ICP-MS instrument and LA-unit were tuned for 

maximum sensitivity, low oxide formation based on the 232Th16O/ 232Th ratio and low 

laser-induced elemental fractionation based on the 232U/ 232Th ratio using NIST SRM 

610. We used 43Ca as internal standard and the certified reference material NIST610 for 

calibration for all elements. Samples were ablated with a spot size of 50 µm, for 30 s with 

a repetition rate of 10Hz and an energy density of 2-3 J/cm2. Time intervals for data 

reduction were selected by visual inspection of each spectrum using Iolite™ (Paton et al. 

2011) and the data reduction scheme X_trace_elemets_IS (Woodhead et al. 2007). 

Uncertainty estimates for the elements measured are based on repeated measurement 

of the reference material MACS-3 and ECRM-752 and are in general below 10 %. Data 

were then screened for contamination by other mineral phases than carbonates (e.g., 

silicates, phosphates, sulphides) by using the elements Al, K, P, S, Si, and Ti. Data with 

high concentrations of these elements (Al + K + P + S + Si + Ti > 1000 ppm) were then 

rejected. 

The Ce/Ce* and Eu/Eu* values were calculated geometrically (cf. Lawrence et al. 

2006): 

Eu/Eu*
CN= (

𝐸𝑢

(𝑆𝑚2∗𝑇𝑏)
1
3

)
𝐶𝑁

 and Ce/Ce*
SN= (

𝐶𝑒

𝑃𝑟∗(
𝑃𝑟

𝑁𝑑
)
)

𝑆𝑁

 

Lanthanum was not used to calculate Ce* in order to avoid the influence of La 

anomalies on Ce/Ce* values (cf. Bau and Dulski 1996). 
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4.6. Results 

4.6.1. Carbonate in the Urquhart Shale Formation 

Detrital carbonate grains are most abundant in siltstone lithologies and preserve 

similar grain size (≤ 20 µm) and morphology (sub-rounded to angular) to detrital 

feldspar and quartz grains. Micritic calcite and dolomite is common throughout all 

lithologies and is very fine-grained (< 5 µm). These detrital and micritic carbonates were 

too fine grained for LA-ICP-MS analyses and will not be discussed further. Carbonate 

nodules are interbedded with laminated, pyritic, carbonaceous siltstones. Nodules are, 

typically, several cm long and wide in the lateral and vertical direction (Fig. 4-4A, B). 

Calcite is the dominant carbonate phase in the carbonate nodules and calcite grains are 

anhedral to subhedral and >10 µm. Coarse-grained (>100 µm) calcite veins cross-cut all 

lithologies and often contain euhedral pyrite. Where the veins cross-cut carbonate 

nodules, euhedral pyrite can occur in the nodules. 

4.6.2. Carbonate at the George Fisher deposit 

Both calcite and dolomite have been observed in the paragenesis at the George 

Fisher deposit. When calcite and dolomite occur together, calcite can be differentiated 

by a brighter luminescence, whereas dolomite commonly has a red, low intensity 

luminescence signal (Fig. 4-4I). Nodular carbonates at George Fisher have similar 

morphologies to those from Shovel Flats samples, but comprise mostly anhedral to 

subhedral finer grained dolomite and minor amounts of coarser grained calcite. The 

edges of carbonate nodules are also commonly replaced by sphalerite (Fig. 4-4H). 

Within the sulphide paragenesis described by Rieger et al. (2020; i.e. ore stages 

1, 2, and 3), there are multiple phases of hydrothermal carbonate. The most abundant 

type of this carbonate is anhedral, coarse-grained (>100 µm), and Fe-rich dolomite; it is 

generally observed with anhedral quartz, and is in textural disequilibrium with 

sphalerite and galena, which is indicated by irregular grain boundaries and partial 

replacement of the sulphides after dolomite (e.g., Fig. 4-5H, I). The dolomites, therefore, 

likely formed before sulphide precipitation of the individual ore stages. 
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Fig. 4-4 (A-E) An unmineralized nodular carbonate sample from the background drill-core. (A) A hand 
sample photograph. (B) A thin section photograph. (C) A transmitted light microphotograph; the arrows 
indicate respective mineral phases (blue = calcite; white = quartz; yellow = pyrite). (D) A 
cathodoluminescence microphotograph of the area shown in C, white circles indicate LA-ICP-MS 
analysis spots in calcite and the blue arrow indicates a K-feldspar grain with blue luminescence. (E) The 
chondrite-normalized REE+Y patterns of calcite from this sample (PR832SF080). (F-I) A mineralized 
nodular carbonate sample from George Fisher. (F) A hand sample photograph. (G) A thin section 
photograph. (H) A transmitted light microphotograph; the arrows indicate respective mineral phases 
(purple = dolomite and calcite; white = quartz; yellow = pyrite; light orange = sphalerite). (I) A 
cathodoluminescence microphotograph of area shown in H; the white circle indicates a LA-ICP-MS 
analysis spot. Note the strong difference in the luminescence signal between bright, yellow calcite and 
dull, red dolomite. (J) The chondrite-normalized REE+Y pattern of calcite and dolomite from this sample 
(PRK751017). 
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Fig. 4-5 (A-E) Carbonate in a stratabound massive sulphide sample from ore stage 1. (A) A hand sample 
photograph. (B) A thin section photograph. (C) A transmitted light microphotograph, the arrows 
indicate respective mineral phases (orange = dolomite; white = quartz; yellow = pyrite; light orange = 
sphalerite). (D) A cathodoluminescence microphotograph of the area shown in C; the white circles 
indicate LA-ICP-MS analysis spots in dolomite. (E) The chondrite-normalized REE+Y patterns of 
dolomite from this sample (PRK798C014). (F-I) Carbonate in a massive sulphide breccia sample from 
ore stage 2. (F) A hand sample photograph. (G) A thin section photograph. (H) A transmitted light 
microphotograph; the arrows indicate respective mineral phases (orange = dolomite; white = quartz; 
light orange = sphalerite). (I) A cathodoluminescence microphotograph of the area shown in H; the white 
circles indicate LA-ICP-MS analysis spots in dolomite. (J) The chondrite-normalized REE+Y patterns of 
dolomite from this sample (PRK751024). 
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In ore stage 1, this Fe-rich dolomite occurs in stratabound veins together with 

massive sulphide (e.g., Fig. 4-5C, D). In the later ore stages 2 and 3, this dolomite occurs 

as irregular clasts in massive sulphide breccias (e.g., Fig. 4-5H, I). The other, less 

abundant, types of carbonate that are associated with massive sulphides are calcites and 

dolomites that have planar crystal faces at 120° with quartz and sphalerite; they were, 

therefore, formed in textural equilibrium with quartz and sphalerite directly from the 

hydrothermal fluid (Fig. 4-6D, E). In the samples studied here, these calcites and 

dolomites have only been found associated with ore stage 2. They are coarse-grained (> 

100 µm) and occur in cross-cutting, mineralized carbonate-quartz veins or in carbonate-

quartz infill adjacent to massive sulphide (Fig. 4-6). For the purpose of further 

discussion, these carbonates that are associated with the massive sulphides will be 

grouped into two types: hydrothermal dolomite type A, which comprises the dolomites 

that are in textural disequilibrium with sulphide minerals; and hydrothermal calcite and 

dolomite type B, which comprises the carbonates that are in textural equilibrium with 

sulphide minerals. 

There are also barren veins with coarse-grained calcite (> 100 µm) at George 

Fisher that cross-cut massive sphalerite of ore stage 1. In the samples studied here, the 

paragenetic relationship of these barren calcite veins with ore stage 2 and 3 could not be 

observed. 

4.6.3. Major element data – electron probe micro-analyser (EPMA) 

Major element data for carbonates plot between the endmember compositions of 

calcite, dolomite and ankerite (Fig. 4-7). Calcite grains plot near the modal composition 

of calcite with MgCO3, FeCO3, and MnCO3 concentrations generally below 1.6 wt.%, 1.5 

wt.%, and 1.1 wt.% respectively. Dolomite and ankerite grains plot between the 

endmember modal compositions of the two minerals and preserve a range of MgCO3, 

FeCO3, and MnCO3 concentrations between 9-46 wt.%, 2-37 wt.%, and 0.2-9 wt.% 

respectively. Overall, the carbonate major element data from this study are consistent 

with data for the George Fisher and Hilton deposits from other studies (Fig. 4-7; Valenta 

1988; Chapman 1999; Murphy 2004). 
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Fig. 4-6 (A-I) Carbonate veins and infill in a massive sulphide breccia sample from ore stage 2 (sample 
PRK7952037). (A) A hand sample photograph. (B) A thin section photograph. (C) A thin section 
photograph. (D) A transmitted light microphotograph of the area indicated in B; the arrows indicate 
respective mineral phases (dark red = dolomite; pink = calcite; white = quartz; light orange = sphalerite). 
A textural equilibrium of carbonate and quartz phases with ore-stage sphalerite is indicated by planar 
crystal faces orientated at 120°. (E) A cathodoluminescence microphotograph of the area shown in D; 
the white circles indicate LA-ICP-MS analysis spots in dolomite and calcite. (F) The REE+Y data of 
dolomite from this sample. (G) A transmitted light microphotograph of the area indicated in C; the 
arrows indicate respective mineral phases (dark red = dolomite; white = quartz; light orange = 
sphalerite). (H) A cathodoluminescence microphotograph of the area shown in G; the white circles 
indicate LA-ICP-MS analysis spots in dolomite. (I) The REE+Y data of calcite from this sample. 
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Fig. 4-7 A CaCO3-MgCO3-(Fe,Mn)CO3 
ternary diagram of carbonates from the 
George Fisher deposit and the Shovel Flats 
drill core. The coloured fields denote EPMA 
carbonate data from Murphy (2004), 
Chapman (1999), and Valenta (1988). 
Endmember compositions of calcite, 
dolomite, ankerite, and siderite are shown 
in grey. 

 

 

 

 

 

 

 

 

4.6.4. Rare earth elements and Yttrium (REE+Y) – laser-ablation ICP-MS (LA-ICP-MS) 

Total rare earth element concentrations (ƩREE) of carbonates are generally 

within one order of magnitude of the post-Archean Australian shale (PAAS; Fig. 4-8, Fig. 

4-9C), and several times higher than REE concentrations in modern seawater, diagenetic 

pore fluids, and hydrothermal fluids (cf. Fig. 4-2).  

Generally, the nodular calcites from Shovel Flats samples have REE+YCN profiles 

similar to PAAS (Fig. 4-8A), whereas nodular calcites and dolomites at George Fisher 

have more variable REE+YCN profiles (Fig. 4-8C). Hydrothermal dolomites type A from 

ore stages 1, 2, and 3 have REE+YCN profiles that are LREE depleted and preserve negative 

Eu/Eu* (Fig. 4-8D). Hydrothermal calcite and dolomite type B also have REE+YCN 

profiles that are depleted in LREE, but preserve positive Eu/Eu* (Fig. 4-8E, F). The 

highest Eu/Eu* values are preserved in hydrothermal carbonate type B (calcite and 

dolomite; Fig. 4-8E, F, Fig. 4-9E) and in calcite veins from the Shovel Flats drill hole (Fig. 

4-8B, Fig. 4-9E). The Ce/Ce* values are distributed around unity and are slightly skewed 

to negative anomalies (Fig. 4-9B). The Y/Ho values are variable, but are generally 
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distributed between 15 and 50, Pr/YbSN values are typically below 1 in George Fisher 

dolomite and calcite, and the greatest variability in both Y/Ho and Pr/YbSN is preserved 

in nodular dolomite and calcite from George Fisher samples (Fig. 4-9D, E). 

The in situ composition of nodular calcite from Shovel Flats samples preserves 

overall higher REE+Y concentrations than whole rock samples, whereas carbonates at 

George Fisher are generally LREE depleted (Fig. 4-10A). When the data are normalized 

to the respective whole rock REE+Y value, the in situ carbonate data from George Fisher 

is LREE depleted, whereas Shovel Flats nodular calcite REE+Y profiles are relatively flat 

(Fig. 4-10B). 
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Fig. 4-8 (A-G) 
The chondrite 

normalized 
(McDonough 

and Sun 1995) 
REE+Y data 
for different 

carbonate 
sub-groups 

from the 
George Fisher 
deposit and 
the Shovel 
Flats drill-
core. (A) 

Nodular 
carbonate 

(calcite) from 
the Shovel 
Flats drill 
core. (B) Late 
calcite veins 
from the 
Shovel Flats 
drill-core. (C) 

Nodular 
carbonate 

(calcite and 
dolomite) 

from George 
Fisher. (D) 
Hydrothermal 
type A 
dolomite from 
George Fisher. 

(E) 
Hydrothermal 
type B calcite 
from George 
Fisher. (F) 
Hydrothermal 
type B 
dolomite from 
George Fisher. 
(G) Late 
calcite veins 
from George 
Fisher. The 
coloured fields 
in A-G denote 

the 25-75 percentile for the respective sub-groups, thin black lines are the REE+Y patterns of individual 
analyses, thick black lines are PAAS (McLennan 1989), and grey lines are median values of REE+Y whole 
rock data of the respective samples that in situ data was generated from (whole rock data from 
chapter 3). 
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Fig. 4-9 (A) The Mn and Fe concentrations of calcite and dolomite from the Shovel Flats drill core and 
the George Fisher deposit. Dashed lines denote expected cathodoluminescence signal of carbonate 
phases as a function of Fe and Mn concentration (fields after Pierson 1981; Machel and Burton 1991). (B) 
Box and whisker plot of Ce/CeSN for individual carbonate sub-groups. Boxes are 50 % of the data (Q1 to 
Q3), black lines and balls indicate median and mean values respectively, whiskers denote extreme values, 
and circles and triangles are outliers with >1.5*Q3-Q1 and >3*Q3-Q1 respectively. (C) Box and whisker 
plot of REE+Y concentrations for individual carbonate sub-groups. (D) The ratios of Y/Ho and Pr/YbSN 
for calcite and dolomite from the Shovel Flats drill core and the George Fisher deposit. (E) The ratio of 
Y/Ho and Eu/Eu*CN values of calcite and dolomite from the Shovel Flats drill core and the George Fisher 
deposit. Figures (B-E) also show reference values of chondrite (1; McDonough and Sun 1995), PAAS (2; 
McLennan 1989), oxygenated seawater (3; Alibo and Nozaki 1999), anoxic seawater (4; Bau et al. 1997), 
the median value of the Mount Isa Group (5; Nance and Taylor 1976), and the whole rock median values 
of Urquhart Shale from the unmineralized Shovel Flats drill-core (6), from the George Fisher deposit (7), 
and from massive sulphide samples from George Fisher (8; chapter 3). Note that values of #3, and #3 and 
#4 are lower than the plotted x-axis for (B) and (C). 
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Fig. 4-10 (A) The chondrite normalized REY data for samples from the Shovel Flats drill-core and the 
George Fisher deposit. The lines denote median values for in situ carbonate data from the Shovel Flats 
drill core (dark blue) and from the George Fisher deposit (red), and for whole rock REE+Y data from the 
Shovel Flats drill core (light blue; n = 41) and from the George Fisher deposit (orange; Urquhart Shale 
and massive sulphide; n = 69); the light purple (Shovel Flats) and light red (George Fisher) fields denote 
the 25-75 percentiles of the in situ carbonate REE+Y data. For more detailed whole rock data see Fig. 3. 
(B) The REE+Y data (medians and 25-75 percentiles) for individual carbonate sub-groups from the Shovel 
Flats drill-core and the George Fisher deposit normalized to respective whole rock REE+Y data of the 
respective sample that in situ data was generated from. 

4.7. Discussion 

4.7.1. Pre-ore carbonate 

The unmineralized Paleoproterozoic Urquhart Shale Formation consists of 

carbonate-rich siltstones and mudstones that comprise detrital, micritic, and nodular 

carbonates (e.g., Neudert 1983; Chapman 1999; Painter et al. 1999). The detrital and 

micritic carbonate is fine grained (≤ 20 µm) and not amenable to laser ablation studies, 

but the nodular carbonates are coarser grained and occur both in the barren Urquhart 

Shale at Shovel Flats and in the George Fisher deposit. In the mineralized units the 

nodular carbonates pre-date the first phase of mineralization (Fig. 4-4; Chapman 2004; 

Chapter 3), and therefore, provide constraints on carbonate formation under pre-ore 

conditions.  

The nodular carbonates in the Urquhart Shale have been interpreted as 

pseudomorphs after sulphate evaporites (e.g., Painter et al. 1999) or as diagenetic 

precipitates (cf. Domagala et al. 2000; Chapman 2004). Indicators for shallow-water, 

evaporitic conditions, such as halite casts and stromatolites, are preserved in other 
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formations of the Mount Isa Group (McClay and Carlile 1978; Neudert and Russell 1981; 

Neudert 1983). However, sulphur isotope values of early diagenetic pyrite (cf. Painter et 

al. 1999; Rieger et al. 2020) indicate that open-system conditions with respect to 

sulphate availability were dominant during deposition and early diagenesis of the 

Urquhart Shale. Such conditions are inconsistent with the closed system conditions 

typical of evaporite formation and more typical of diagenetic carbonate precipitation (cf. 

Domagala et al. 2000; Chapman 2004). The composition of the nodular carbonates 

from the Urquhart Shale Formation is, therefore, considered representative of diagenetic 

pore fluids, which predated the hydrothermal system at George Fisher. 

The REE+Y systematics in seawater and diagenetic pore fluids are typically 

controlled by redox processes (for a review see Smrzka et al. 2019). Unlike the modern 

oxygenated oceans, Mid- and Paleoproterozoic oceans were mostly ferruginous (anoxic, 

non-sulphidic), with euxinic conditions spatially and temporally restricted to highly 

productive margins and oxygenated conditions only developed in surface waters (e.g., 

Canfield 1998; Planavsky et al. 2011; Lyons et al. 2014). Indeed, the REE+Y compositions 

of Proterozoic carbonates are consistent with REE+Y systematics observed in modern 

anoxic basins (cf., Bau et al. 1997; Tang et al. 2016; Bellefroid et al. 2019). Such REE+Y 

systematics are characterized by variable Ce/Ce*
SN and Eu/Eu*

CN values around unity, 

variable chondritic to super-chondritic Y/Ho, REE+YCN profiles that are similar to PAAS 

(e.g., Planavsky et al. 2010; Tang et al. 2016; Bellefroid et al. 2019). Compared to 

oxygenated seawater (Fig. 4-2A), these contrasting REE+Y signatures are likely the result 

(1) of the dissolution of LREE-, Ce-, and Ho-enriched phases, such as Mn-oxides, at the 

chemocline between oxidizing and reducing seawater, and (2) enhanced solubility of 

Eu2+ under reducing conditions (Planavsky et al. 2010). In this context, the distribution 

of Ce/Ce*
SN and Eu/Eu*

CN values slightly above or below unity together with Y/Ho 

between chondritic and super-chondritic values (Fig. 4-9B, E), and REE+YCN profiles 

similar to PAAS (Fig. 4-4E, Fig. 4-8A) in nodular calcites are consistent with pore waters 

derived from anoxic bottom waters during the deposition of the Urquhart Shale 

Formation. The existence of ferruginous conditions is supported by the sulphur isotope 

values of early diagenetic pyrite and Mo concentrations from the Urquhart Shale (Rieger 

et al. 2020; Chapter 3) and concurs with growing evidence for wide-spread ferruginous 
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conditions in Proterozoic oceans (e.g., Poulton et al. 2010; Planavsky et al. 2011; Song et 

al. 2017). As such, the nodular carbonate chemistry from the unmineralized Urquhart 

Shale Formation preserves normal background marine and early-diagenetic signatures 

for the Proterozoic. 

4.7.2. Carbonate at George Fisher 

The George Fisher deposit was formed from a multi-stage mineralizing system 

(Chapman 2004; Rieger et al. 2020), and it is possible that multiple processes 

contributed to the trace element composition of George Fisher carbonates. The deposit 

comprises a number of different carbonate generations (this study; Chapman 1999) and, 

generally, hydrothermal alteration has resulted in dolomitization of pre-ore calcite 

(chapter 3). For example, nodular carbonates from unmineralized (Fig. 4-4A-E; Shovel 

Flats) and mineralized (Fig. 4-4F-J; George Fisher) Urquhart Shale samples are 

considerably different in that the George Fisher nodular carbonate samples can be 

partially replaced by sphalerite and have higher dolomite/calcite ratios (Fig. 4-4G, H; 

chapter 3). Furthermore, nodular carbonates from the unmineralized rocks have 

homogenous CL signals (Fig. 4-4D), whereas those at George Fisher have irregular 

signals with relatively bright CL of calcite compared to dull and quenched CL of 

dolomite (Fig. 4-4I). Such dull and quenched luminescence is characteristic of carbonate 

minerals with high Mn and Fe concentrations (Pierson 1981; Machel and Burton 1991; 

Baele et al. 2019), which is also consistent with the major element chemistry of George 

Fisher and Shovel Flats carbonates (Fig. 4-7, Fig. 4-9A). These irregular CL signals (Fig. 

4-4I) and variable Fe and Mn concentrations (Fig. 4-9A), together with higher whole 

rock dolomite/calcite ratios (chapter 3), are consistent with dolomitization of pre-ore 

calcite that was associated with the mineralization at George Fisher. Similar to calcite 

and dolomite in nodular carbonate samples at George Fisher, type A dolomite has dull 

to quenched luminescence (Fig. 4-5C, H). It is, therefore, likely that dolomitization was 

associated with all stages of mineralization at George Fisher.  

The sulphide replacement textures and irregular grain boundaries with sphalerite 

(Fig. 4-4G-I, Fig. 4-5C, D, H, I) are indicative of a pre-sphalerite timing for some 

dolomitization at the onset of mineralization. Notably, such a timing for dolomitization 
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is consistent with carbonate formation at the onset of mineralization suggested by 

Chapman (1999). If dolomitization took place at the onset of mineralization, the REE+Y 

data of these pre-sphalerite dolomites can provide constraints on the hydrothermal 

fluids that caused the alteration of pre-ore calcites before the precipitation of base metal 

sulphides. The dolomite and calcite from type B formed in textural equilibrium with 

sphalerite (Fig. 4-6D, E). The composition of this type B calcite and dolomite may, 

therefore, provide constraints on the hydrothermal fluids during sphalerite formation. 

In order to constrain the syn-sphalerite end-member of the hydrothermal fluid the 

REE+Y composition of this type B carbonate is discussed first.  

Type B calcite and dolomite is characterized by (1) LREE depletion relative to 

PAAS, respective whole rock, and pre-ore calcite, (2) chondritic and sub-chondritic 

Y/Ho, and (3) Eu/Eu* values >1 (Fig. 4-6F, I, Fig. 4-8E, F Fig. 4-9D, E). Light rare earth 

element fractionation is a common feature of hydrothermal fluids and there are a 

number of processes that could have produced the REE+YCN profiles in the type B 

carbonates (Fig. 4-6F, I, Fig. 4-8E, F). A mineralogical control on this LREE fractionation 

is unlikely because both calcites and dolomites are, overall, LREE depleted relative to 

pre-ore calcite (Fig. 4-8A, E, F). This observation is consistent with other studies on 

hydrothermal gangue carbonates that indicate no significant REE+Y fractionation 

between calcite and dolomite (e.g., Hecht et al. 1999; Roberts et al. 2009). Light rare 

earth element-depleted REE+YCN profiles in carbonate mineral phases can also be 

inherited from complexation-controlled REE+Y-leaching from crustal source rocks (e.g., 

Lüders et al. 1993) or from LREE-scavenging by mineral phases with high REE-partition 

coefficients (e.g., monazite) along the fluid pathways (e.g., Debruyne et al. 2013, 2016). 

The source rocks for the mineralization are unknown at George Fisher. Equally, whether 

the footwall units could contain significant amounts of phosphatic minerals is also 

unknown. However, if the REE+Y signatures were inherited from the metal source or 

fluid-rock interaction along the flow pathway, they would likely be more homogeneous 

than the variability preserved in the REE+Y profiles of hydrothermal calcite and 

dolomite at George Fisher (Fig. 4-6F, I, Fig. 4-8E, F). Notably, the rocks of the Mount Isa 

Group and of the unconformably underlying Eastern Creek Volcanics have LREE 

enriched REE+YCN profiles (Fig. 4-3; Nance and Taylor 1976; Hannan et al. 1993); as a 
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consequence, a hydrothermal fluid buffered by these rocks would most likely not be 

LREE depleted. Instead, the observed variability may result from closed system Rayleigh 

fractionation during carbonate precipitation, which is consistent with variable LREE 

concentrations in type B calcites (e.g., Fig. 4-6I). 

Fluid composition and temperature also provide a major control on REE+Y 

fractionation (e.g., Michard 1989; Craddock et al. 2010; Williams-Jones et al. 2012). 

Unfortunately, there are no direct constraints on the composition of the mineralizing 

fluids at George Fisher (e.g., fluid inclusions). Based on the basin fill in the stratigraphy 

below the Carpentaria CD-type deposits, Cooke et al. (2000) suggested that the 

mineralizing fluids were likely oxygenated, neutral to mildly acidic, and saline brines 

(ca. 25 wt. % NaClequiv), which would have been highly effective in transporting Zn and 

Pb at moderate temperatures (150 °C). Fluid inclusion data from the relatively 

undeformed Century deposit do indicate relatively low temperature (<125 °C) and high 

salinity fluids (ca. 23 wt. % NaClequiv; Polito et al. 2006). Notably, salinity can have a 

strong effect on REE+Y solubility and fractionation. For example, experimental studies 

and numerical modelling of REE+Y partitioning and solubility in hydrothermal fluids 

suggest that chlorides are the dominant ligands for REE+Y-complexation at 

hydrothermal temperatures and that Cl-ligands form the strongest complexes with the 

REE+Y with the lowest charge/radius ratios (Eu2+ and LREE; e.g., Migdisov et al. 2009; 

Williams-Jones et al. 2012; Perry and Gysi 2018). If the mineralizing fluids for the George 

Fisher deposit were saline (cf. Cooke et al. 2000; Polito et al. 2006), Cl-complexes were 

likely the dominant ligands for REE+Y-complexation. Under such conditions, LREE are 

more soluble, which could have resulted in stronger LREE-retention in the fluid during 

carbonate precipitation. Consequently, REE+YCN profiles of syn-ore carbonates should 

be LREE depleted. 

A second common signature of type B carbonates at George Fisher are chondritic 

and sub-chondritic Y/Ho ratios (Fig. 4-9D, E). Chondritic Y/Ho ratios are typical of 

hydrothermal fluids (Bau and Dulski 1999; Douville et al. 1999), whereas sub-chondritic 

Y/Ho may indicate further fractionation of Y relative to Ho. Experiments at ambient 

temperatures suggest that Ho partitions more strongly into calcite than Y (e.g., Tanaka 
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and Kawabe 2006). Such differential partitioning is consistent with sub-chondritic Y/Ho 

ratios in type B carbonates at George Fisher. There is, however, no experimental data 

available for Y/Ho fractionation during carbonate precipitation at hydrothermal 

temperatures. If future experiments show differential fractionation of Y and Ho into 

carbonate minerals at hydrothermal temperatures, sub-chondritic Y/Ho values may be 

a distinguishing criterium for hydrothermal carbonates. 

A third dominant feature of type B carbonates at George Fisher are Eu/Eu* values 

>1 (Fig. 4-6F, I, Fig. 4-8E, F, Fig. 4-9B). The major control on Eu/Eu* is temperature (Fig. 

4-2; Sverjensky 1984; Bau 1991; Bilal 1991). In oxidized hydrothermal fluids, such as those 

suggested for the Carpentaria CD-type deposits (SO4
2- > H2S; Cooke et al. 2000), Eu/Eu* 

values >1 can only develop at high temperatures, because the more soluble Eu2+ is only 

stable at temperatures >200-250 °C (Fig. 4-2B; Sverjensky 1984; Bau 1991; Bilal 1991). It 

is, therefore, unlikely that the George Fisher deposit formed from fluids that were 

initially cooler than 200 °C, which is in contrast to fluid temperatures suggested by 

Cooke et al. (2000). Divalent Eu is, however, not readily incorporated into the crystal 

lattice of carbonate minerals (Bau and Möller 1992); and therefore, such hot, Eu2+-

dominated hydrothermal fluids (>200-250 °C) must have cooled significantly in order 

to stabilize sufficient Eu3+ to produce Eu/Eu* values >1 in the type B calcites and 

dolomites at George Fisher. Such cooling of initially hot fluids is consistent with 

thermodynamic models for sulphide formation (Rieger et al. 2020), calcite twinning 

temperatures (Murphy 2004) at George Fisher, and also with overall temperature 

constraints for the Urquhart Shale Formation (see summary for temperature constraints 

in chapter 3). Furthermore, this is consistent with Eu/Eu* values <1 preserved by type A 

dolomites from ore stage 2 (Fig. 4-5J). These Eu/Eu* values <1 in type A dolomites concur 

with the hypothesis that the hydrothermal fluids were hot at the onset of mineralization, 

and then cooled below 200-250 °C before type B calcite and dolomite formation. 

Dolomites that formed from dolomitization of pre-ore calcite at the onset of 

mineralization are preserved both in samples of mineralized nodular carbonate and in 

massive sulphide samples at George Fisher (Fig. 4-4F-I, Fig. 4-5A-I). Partially 

mineralized nodular carbonates preserve the highest textural variability, together with 
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the highest variability in the REE+Y composition (Fig. 4-4E, J, 8C, 9B-D). Therefore, they 

likely comprise mixed REE+Y compositions from pre-ore diagenetic and hydrothermal 

end members, which is consistent with the large ranges of LREE depletion relative to 

pre-ore calcite and the large variability of Y/Ho values (Fig. 4-8C, Fig. 4-9D). The REE+Y 

data of type A dolomites at George Fisher are slightly more homogenous than those of 

mineralized nodular carbonates (Fig. 4-8D, Fig. 4-9D), and this may indicate that the 

REE+Y data are more dominated by hydrothermal signatures as a result of more 

dolomitization. The REE+YCN profiles of type A dolomites are LREE depleted relative to 

PAAS, pre-ore calcite, and to whole rock REE+Y profiles (Fig. 4-4J, Fig. 4-5E, J, Fig. 4-8D, 

Fig. 4-10B). This LREE depletion is similar to REE+YCN profiles of type B calcite and 

dolomite and consistent with Cl-complexation and LREE-retention in the fluid (see 

discussion above).  

Chemical alteration and dissolution-reprecipitation of carbonates are not limited 

to the high grade domains of ore deposits, and chemical and isotopic changes in 

carbonates can be traced beyond zones of visible alteration (e.g., Barker et al. 2013; 

Vaughan et al. 2016). In fact, isotopic studies indicate that large scale 18O-depletion in 

carbonates is associated with the Mount Isa Cu-system (Waring 1990; Waring et al. 

1998a), and similarly, 18O-depletion has also been reported for carbonates from the 

George Fisher Zn-Pb system (Chapman 1999). There is, therefore, the potential that the 

mineralizing fluids at George Fisher have also produced alteration of the REE+Y 

signatures beyond the highly mineralized zones. For example, sulphide formation 

resulted in a fluid that was metal depleted and that had a higher availability of chloride 

(e.g., ZnCl2 + HS- → ZnS + H+ + 2Cl-). Such a fluid would have caused even higher 

solubilities of LREE as Cl-complexes, which could have resulted in LREE depletion along 

the fluid migration pathway beyond visible alteration. 

Post-dating the Zn mineralization there are late calcite veins that cross-cut 

stratabound mineralization at George Fisher, and late calcite veins that cross-cut all 

lithologies, and are coeval with euhedral pyrite, in the unmineralized Shovel Flats drill-

core. Cross-cutting calcite veins have also been described before at Mount Isa and 

George Fisher (e.g., Waring et al. 1998b; Murphy 2004). The calcite veins at George 
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Fisher preserve REE+Y signatures similar to the pre-ore calcites and to PAAS (Fig. 4-8G, 

Fig. 4-9), which may indicate that they are rock buffered. The late calcite veins from 

Shovel Flats preserve REE+Y signatures that are more similar to type B calcites (Fig. 

4-8B, Fig. 4-9). Therefore, they may represent distal expressions of a hydrothermal 

system. The differential REE+Y data clearly suggest that there are, at least, two 

generations of late calcite veins. These veins were, however, not the focus of this study 

and future work is needed to understand their significance and relationship to 

mineralization. 

Overall, the Y/Ho ratios, Eu/Eu* values, and LREE depleted REE+YCN profiles that 

are characteristic of George Fisher calcite and dolomite are consistent with interaction 

of a hot, saline (Cl-rich) hydrothermal fluid that subsequently cooled to temperatures 

below 200-250 °C during fluid-rock interaction. Notably, such conditions correspond 

well with other CD-type systems, for which the thermal evolution of the hydrothermal 

fluids is well constrained (e.g., MacMillan Pass; Magnall et al. 2016a). 

4.7.3. Implications for the application of in situ REE+Y carbonate data 

In this study, we present very detailed in situ REE+Y data on a small number of 

samples from the mineralized and unmineralized Urquhart Shale Formation. The 

sample coverage is not sufficient to evaluate the 3D REE+Y footprint of the mineralizing 

system at George Fisher. However, the in situ REE+Y carbonate data documented here 

do have important implications for ore formation and for future exploration programs. 

The George Fisher deposit formed from a multi-stage system and all 

mineralization post-dates the deposition of the host rock (Chapman 2004; Rieger et al. 

2020). Therefore, the mineralizing fluids must have replaced the host rock, or at least 

parts of it, in order to create sufficient porosity for fluid flow and base metal sulphide 

precipitation. The fractionation between whole rock REE+Y data and carbonate in situ 

REE+Y data (Fig. 4-10A, B) indicates that (1) carbonate mineral phases were more 

sensitive to REE+Y alteration relative to the whole rock, and that (2) fluid-rock ratios 

were not high enough to alter whole rock REE+Y compositions (cf. Michard and 

Albarède 1986; Bau and Möller 1992). This suggests that the hydrothermal fluids at 

George Fisher were highly selective in replacing and altering pre-ore carbonate mineral 
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phases. It is, therefore, possible that fluid-rock interaction of the Urquhart Shale 

Formation at George Fisher with hot, acidic, saline, and base metal-bearing 

hydrothermal fluids has resulted in the replacement and dolomitization of pre-ore 

calcite, which led to the development of secondary porosity, fluid cooling, and pH 

increase. This would have resulted in lower solubilities of base metals and subsequent 

sulphide precipitation. Such a diagenetic carbonate replacement model is consistent 

with (1) carbonate replacement textures (e.g., Fig. 4-4; Chapman 2004; chapter 3), with 

(2) fluid cooling indicated by Eu/Eu* <1 in type A dolomites opposed to Eu/Eu* >1 in type 

B dolomites and calcites (Fig. 4-8D-F, Fig. 4-9E), and with (3) Cl-rich hydrothermal 

fluids indicated by LREE depleted REE+YCN profiles in George Fisher carbonates (Fig. 

4-4J, Fig. 4-5E, J, Fig. 4-6F, I, Fig. 4-8C-F, Fig. 4-10). Notably, carbonate replacement was 

reported for a number of other CD-type massive sulphide systems in the Carpentaria 

province (Eldridge et al. 1993; Perkins and Bell 1998; Chapman 2004; Spinks et al. 2019; 

Magnall et al. 2020b), which highlights the importance of the reactive carbonate-rich 

host rocks throughout the province. 

It is generally accepted that base metal deposits in sedimentary basins form from 

saline hydrothermal brines (Bodnar et al. 2014; Heinrich and Candela 2014); and indeed, 

previous studies on Zn-Pb- and Cu-systems in the Carpentaria province suggest that 

saline fluids were responsible for base metal transport (Heinrich et al. 1989; Cooke et al. 

2000; Polito et al. 2006). At George Fisher, the LREE depleted REE+YCN profiles in 

calcite and dolomite (Fig. 4-4J, Fig. 4-5E, J, Fig. 4-6F, I, Fig. 4-8C-F, Fig. 4-10A, B) are 

consistent with LREE-retention in such Cl-rich saline hydrothermal fluids (see 

discussion above). In fact, there is evidence that LREE depletion is a common feature of 

carbonate mineral phases from a number of mineral deposits that formed from saline 

fluids (Roberts et al. 2009; Debruyne et al. 2013; Genna et al. 2014; Magnall et al. 2016a), 

whereas LREE depletion is not evident from carbonates that precipitated from low-

salinity fluids that were dominated by S- or CO3-complexes (Maskenskaya et al. 2015; 

Vaughan et al. 2016). As a consequence, LREE depletion in calcites or dolomites relative 

to background REE+Y profiles may be an effective tracer for fluid-rock interaction 

involving saline hydrothermal fluids. So, if this hypothesis is supported by future studies, 

the analysis of REE+Y in carbonate mineral phases could be useful for future exploration 
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programs in sedimentary basins in order to identify hydrothermally altered carbonate-

rich lithologies. 

In summary we show that LA-ICP-MS analyses of REE+Y in carbonate minerals 

can distinguish hydrothermal carbonate from pre-existing diagenetic carbonate, and 

this may be a useful exploration tool in combination with whole rock and isotope 

geochemistry in sediment hosted mineral deposits. Future studies should test this 

hypothesis by systematically sampling the 3D grid around an (undeformed) deposit to 

assess the nature of the distal footprint on carbonate REE+Y systematics. 

4.8. Conclusions 

Like many sediment-hosted massive sulphide deposits, the George Fisher deposit 

(165 Mt at 9.1 % Zn, 3.4 % Pb, and 55 g/t Ag; Glencore 2019) comprises several types of 

carbonate mineral phases. Pre-ore nodular calcite likely formed via diagenetic processes 

from ferruginous (anoxic, non-sulphidic) Proterozoic seawater. Interaction of a hot 

(>200-250 °C) hydrothermal fluid with the host rocks at George Fisher caused selective 

dolomitization and replacement of pre-ore calcite, fluid cooling and base metal sulphide 

precipitation. Evidence for these processes is preserved by dull CL signals, fractionated 

REE+YCN profiles (LREE-depletion), and by both positive and negative Eu/Eu* values in 

calcite and dolomite. The difference in REE+Y signatures between in situ data from 

calcite and dolomite at George Fisher and respective whole rock data also indicates that 

carbonate mineral phases are more sensitive to hydrothermal REE+Y alteration. 

Furthermore, the LREE depleted REE+YCN profiles preserved in carbonates at George 

Fisher may be a common feature of hydrothermal carbonates in base metal deposits that 

formed from saline Cl-rich fluids. Overall, this study shows that in situ REE+Y analysis 

of carbonate mineral phases combined with petrographic techniques can be used to 

differentiate between pre-ore and hydrothermally altered carbonate-rich lithologies. 
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5. Conclusions 

This thesis had two main aims. Firstly, to identify the accumulation processes of 

reduced sulphur at the George Fisher deposit, and secondly, to constrain the 

mineralogical and geochemical footprint of the mineralizing system at George Fisher. In 

order to understand the processes responsible for mineralization at George Fisher, and 

the mineralogical and geochemical anomalies they produced, it was essential to 

understand the mineralogical, and whole rock and isotope geochemical background 

composition of the unmineralized Urquhart Shale Formation. 

This chapter highlights the new findings presented in chapters 2-4 and the 

implications they have for (1) the depositional environment and the background 

composition of the Urquhart Shale Formation, for (2) the mineralizing system at George 

Fisher, and for (3) the identification of CD-type massive sulphide footprints for future 

exploration programmes in the Carpentaria province. Furthermore, I give some 

suggestions on future research that could improve the understanding of the 

mineralizing system at George Fisher, and that could help to refine exploration models 

in the Carpentaria province. 
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5.1. The unmineralized Urquhart Shale Formation 

As outlined in chapter 3, the Urquhart Shale consists of relatively immature 

siliciclastic components (e.g., a high abundance of feldspar), which is characteristic for 

Precambrian sedimentary rocks, because of limited chemical weathering due to low 

atmospheric pO2 at that time (Rafiei and Kennedy 2019); and notably, the mineralogical 

composition of the Urquhart Shale Formation is very similar to other late 

Paleoproterozoic and early Mesoproterozoic fine-grained sedimentary rocks of the 

Carpentaria province (e.g., Barney Creek Formation; Baruch et al. 2015; Revie and 

Normington 2020). Moderate enrichment of total organic carbon (1 to 2 wt.%) in the 

siltstones and mudstones from the Urquhart Shale Formation provided sufficient 

reductants for the early diagenetic redox reactions (e.g., microbial sulphate reduction, 

MSR) that resulted in the formation of reduced sulphur and bicarbonate (chapter 2). 

Together with reactive Fe and Ca, this reduced sulphur and bicarbonate reacted to 

diagenetic pyrite and nodular calcite (chapter 2, 3, and 4). The pre-ore timing of these 

diagenetic mineral phases suggests that their trace element and isotope geochemistry 

can be used to constrain paleoredox conditions during sedimentation and early 

diagenesis of the Urquhart Shale. The δ34S values of this early diagenetic pyrite are 

significantly offset to more negative δ34S values relative to Paleoproterozoic seawater 

sulphate (Δ34S = 6.2–33.1 ‰; chapter 2). This offset implies that open-system MSR was 

responsible for sulphate reduction, which means that the deposition and diagenesis of 

the Urquhart Shale Formation was dominated by open-system conditions with respect 

to sulphate availability. Such conditions are inconsistent with a euxinic water column 

(H2S > SO4
2-, and H2S > Fe2+), which concurs with non-euxinic conditions indicated by 

low Mo concentrations in the mudstone and siltstone samples from the Urquhart Shale 

Formation (chapter 3). Further paleoredox constraints from the REE+Y composition of 

nodular calcite suggest that these carbonates formed from diagenetic fluids derived from 

anoxic seawater (chapter 4). The anoxic, non-euxinic conditions inferred from these 

redox proxies are, furthermore, consistent with the presence of fine-grained chlorite in 

pore spaces of the unmineralized Urquhart Shale Formation; as this chlorite likely 

formed diagenetically from Fe-silicate precursor phases, which are characteristic of 
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ferruginous pore waters during early diagenesis (chapter 3). Notably, the diagenetic 

formation of fine-grained chlorite concurs with temperature indicators, which imply 

that the Urquhart Shale Formation at this location, has not undergone greenschist facies 

metamorphism (chapter 3). 

The new paleoredox proxies for the Urquhart Shale Formation from this study 

are consistent with the current understanding of the Proterozoic ocean redox 

conditions. For example, the data presented here overlaps with sulphur isotope values 

in Proterozoic diagenetic pyrite (Eldridge et al. 1993; Canfield and Farquhar 2009; Fike 

et al. 2015; Magnall et al. 2020b), with REE+Y data of Proterozoic carbonate (Tang et al. 

2016; Bellefroid et al. 2019), and concurs with growing evidence for widespread 

ferruginous conditions for the Paleoproterozoic oceans (Poulton et al. 2010; Poulton and 

Canfield 2011; Tang et al. 2017). 

In summary, the new mineralogical data together with the new whole rock, in 

situ trace element, and in situ isotope geochemical data presented in chapters 2-4 are 

(1) compositionally similar to other fine-grained sedimentary rocks from the Carpentaria 

province, (2) indicate that the Urquhart Shale has not undergone regional greenschist 

metamorphism in this part of the Mount Isa area, and (3) are consistent with the current 

understanding of the global ocean redox conditions during the Proterozoic. 

5.2.  The mineralizing system(s) at George Fisher and in the Carpentaria 

province 

5.2.1. The mineralizing system at George Fisher 

There is relatively minor Cu mineralization at the George Fisher deposit, and 

based on structural, petrographic, and geochemical data, models for ore formation have 

mainly focussed on whether the majority of Zn-Pb mineralization occurred during 

diagenesis (Chapman 1999, 2004) or during orogenesis (Murphy 2004). The George 

Fisher deposit is highly deformed and structural observations have been interpreted to 

suggest a relatively early, or late, timing of mineralization; there is, however, general 

agreement that mineralization took place over a prolonged period of time and likely 

during multiple events (syn-diagenetic + multiple syn-deformation events, Chapman 
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1999, 2004; minor to no syn-diagenetic + multiple syn-deformation events, Murphy 

2004). 

The sulphide paragenesis and replacement textures of diagenetic carbonate by 

sphalerite observed in this study suggest that the first stage of mineralization at George 

Fisher post-dated the formation of both early diagenetic fine-grained pyrite (chapter 2) 

and diagenetic nodular calcite (chapter 3 and 4). It is, therefore, unlikely that 

mineralization occurred due to hydrothermal fluid exhalation during sedimentation 

(SEDEX; cf. Large et al. 1998). This interpretation is consistent with the lack of widely 

dispersed trace metals in the Urquhart Shale at George Fisher (chapter 3). In this study 

we did not produce any absolute timing constraints for the Zn-Pb mineralization. 

However, the sulphide paragenesis and in situ δ34S values of paragenetically constrained 

pyrite (δ34Spyrite values) in chapter 2 indicate that multiple processes were involved in 

the accumulation of reduced sulphur for base metal sulphide precipitation. During 

stratabound mineralization in ore stage 1, reduced sulphur was likely derived via 

thermochemical sulphate reduction (TSR); and during later vein- and breccia-hosted 

mineralization in ore stage 2 reduced sulphur from pre-ore and ore stage 1 pyrite was 

recycled at different redox and/or temperature conditions, which is consistent with 

replacement textures of pyrite by sphalerite and galena and also with the occurrence of 

pyrrhotite in ore stage 2. The δ34Spyrite values in later ore stage 3 pyrite suggest that 

another stage of TSR was responsible for sulphate reduction at higher temperatures. 

Overall, these δ34Spyrite values, together with the sulphide paragenesis presented in 

chapter 2, strongly suggest a multi-stage mineralizing system at George Fisher. 

Further constraints for the first phase of mineralization may be derived from Pb-

model ages (ca. 1653 Ma; Chapman 1999), which are slightly younger than the 

depositional age of the Urquhart Shale Formation (1654 ±5 Ma; Page and Sweet 1998). 

Assuming sedimentation rates similar to modern marine sedimentary basins (ca. 1 

cm/yr; median value of data compiled by Egger et al. 2018) and considering that 

mineralization post-dated early diagenetic pyrite and carbonate (see above), 

mineralization at George Fisher at 1653 Ma would have taken place within the upper 

6 km of the sedimentary basin. Such burial depths would concur with temperatures 
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≤180°C of the Urquhart Shale at George Fisher (assuming a normal geothermal 

gradient). These temperatures are (1) consistent with reduced sulphur derived from TSR 

similar to natural gas reservoirs (chapter 2), are (2) within the maximum temperature 

constraints for the Urquhart Shale Formation (chapter 3), and are also (3) consistent 

with the earliest phase of mineralization either before, or after, the formation of 

diagenetic chlorite from precursor phases (chapter 3). 

All mineralization at George Fisher post-dates the deposition of the Urquhart 

Shale Formation, and, therefore, all mineralization (syn-diagenetic and syn-orogenic) is 

epigenetic. It is generally accepted that porosity decreases strongly as a function of burial 

depth within sedimentary basins (Baldwin and Butler 1985), which is why during 

epigenetic mineralization (parts of) the host rock at George Fisher must have been 

replaced in order to produce secondary porosity (and permeability) for fluid flow and 

sulphide precipitation. The petrographic, whole rock mineralogical and geochemical, 

and in situ REE+Y carbonate data in chapters 3 and 4 suggest that dolomitization and 

replacement of pre-ore carbonate resulted from fluid-rock interaction of the Urquhart 

Shale Formation with hot (>200-250 °C), saline, potentially acidic hydrothermal fluids 

during mineralization. This fluid-rock interaction would have created sufficient 

secondary porosity, and would have also led to changing fluid chemistry and metal 

solubility (e.g., pH increase and fluid cooling; chapter 4). At such conditions and given 

the availability of sufficient reduced sulphur (from, e.g., TSR or sulphur recycling; 

chapter 2), base metal sulphides would have been able to precipitate. So, pre-ore 

diagenetic carbonate together with sufficient availability of reduced sulphur, or of 

reactants for sulphate reduction, were likely important components of the reactive host 

rock at George Fisher. Notably, reactive carbonate and a source of reduced sulphur in 

the Urquhart Shale Formation was likely available over a protracted period of time (early 

diagenesis to orogenesis), and, therefore, fluid-rock interaction coupled with carbonate 

replacement and TSR or recycling of reduced sulphur could have occurred at George 

Fisher at different times. In fact, carbonate replacement has been reported for a number 

of CD-type deposits throughout the Carpentaria province and irrespective of the timing 

proposed in respective studies (e.g., Eldridge et al. 1993; Perkins and Bell 1998; Chapman 

2004; Magnall et al. 2020b). 
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5.2.2. Multi-stage vs. single-stage mineralization 

It is relatively well accepted that mineralization at George Fisher formed over a 

prolonged time period by multiple events (this study; Chapman 1999, 2004; Murphy 

2004), whereas there is considerable debate over whether the Zn-Pb- and the Cu-

systems at the Mount Isa and Hilton deposits have formed from a single-stage or multi-

stage system. In summary, for these deposits, proposed ore formation models range from 

(1) single-stage SEDEX ± syn-diagenetic Zn+Pb+Cu formation (e.g., Mathias and Clark 

1975; McGoldrick and Keays 1990), over (2) single-stage syn-orogenic Zn+Pb+Cu 

formation (e.g., Perkins 1997; Davis 2004; Cave et al. 2020), to (3) multi-stage SEDEX 

or syn-diagenetic Zn+Pb and later syn-orogenic Cu±Zn±Pb (e.g., Heinrich et al. 1989; 

Valenta 1994; Waring et al. 1998b; Chapman 1999; Painter 2003). Considering this range 

of ore formation models, the possible timing of mineralization is constrained by (1) the 

deposition of the Urquhart Shale Formation (ca. 1654±5 Ma; zircon U-Pb-dating; Page 

and Sweet 1998), and by (2) the late-orogenic timing of Cu-mineralization (ca. 1523 Ma; 

Ar-Ar-dating of biotite alteration associated with Cu-mineralization; Perkins et al. 1999). 

Overall, this encloses a period of ca. 130 Myr during which mineralizing events can have 

occurred in the Mount Isa area. 

In general, the formation of sediment-hosted base metal deposits requires a 

number of key components (e.g., Leach et al. 2005; Hitzman et al. 2010; Heinrich and 

Candela 2014): (1) metal source rocks (e.g., basement rocks or reactive basal sedimentary 

rocks); (2) saline Cl-rich fluids capable of base metal transport; (3) temperature 

gradients to produce fluid buoyancy; (4) fault-systems providing fluid conduits; (5) 

reactive host rocks to trap metals; and (6) a source of reduced sulphur. All these 

geological requirements are met in the Carpentaria province, and specifically in the 

Mount Isa area. Firstly, the basins are located at the edge of a thick, stable craton, which 

allowed for the development of prolonged temperature gradients in order to leach and 

transfer metals from deeper parts into shallower parts of the basins (Hoggard et al. 

2020). Secondly, fluid conduits were provided by deep crustal-scale fault systems, such 

as the Mount Isa-Paroo Fault system (Murphy et al. 2011). Thirdly, fluids were likely 

saline (Heinrich et al. 1989; Cooke et al. 2000; Polito et al. 2006), and Cl-rich fluids were 
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likely available over a prolonged time period; for example, even throughout higher grade 

metamorphism in the Eastern Mount Isa Inlier (Morrissey and Tomkins 2020). Finally, 

reactive, calcareous, carbonaceous, and sulphur-bearing rock units, such as the 

Urquhart Shale Formation were available throughout the province (Hutton et al. 2012). 

In summary, all the key components that are necessary to form base metal 

sulphide deposits existed in the Mount Isa area and Carpentaria province. Therefore, it 

is necessary to consider the processes that led to the fluid movement that formed the 

deposits. In sediment-hosted mineral systems, faults are the key fluid pathways to 

connect the metal source with the depositional site; this can occur either actively, during 

fault activity, or passively along inactive fault systems (Walsh et al. 2018). Within the 

geological time frame for mineralization in the Mount Isa area (ca. 1650-1520 Ma; 

deposition of Urquhart Shale to Cu-mineralization, see above), there were ca. 50 Myr of 

basin tectonics (extension, sag-phases, basin inversion; e.g., Southgate et al. 2013; 

Gibson et al. 2017), followed by ca. 80 Myr of compressional tectonics after the onset of 

the Isan orogeny at ca. 1600 Ma (e.g., Connors and Page 1995; Bell and Hickey 1998; Page 

et al. 2000). This means that there was a time span of 130 Myr to connect metal source 

and depositional site via tectonic processes (cf. Walsh et al. 2018). The longevity and 

earthquake frequency of the fault systems that were the main fluid conduits for Zn-Pb 

mineralization (e.g., Mount Isa-Paroo Fault system) are unknown. In modern analogues, 

the earthquake frequency is ca. 0.0001-0.00007 yr-1 in extensional settings (e.g., Basin 

and Range Province; Pérouse and Wernicke 2017), and ca. 0.003 yr-1 in both 

compressional settings (e.g., Himalayan frontal thrust; Kumar et al. 2001) and 

transformational plate boundary settings (e.g., Alpine Fault, New Zealand; Berryman et 

al. 2012). Assuming modern earthquake frequencies and using a conservative time span 

for the fault activity of 1 % (1.3 Myr) for the Mount Isa-Paroo Fault zone, the fault system 

could have been active >2500 times. There were, therefore, >2500 tectonic events that 

could have potentially provided both the fluid pathway and the fluid driver for 

mineralization in the Mount Isa area. Given (1) these theoretical constraints for fluid 

event frequency, (2) the availability of all other key components necessary for ore 

formation, and (3) the presence of three world-class, structurally and paragenetically 

complex base metal deposits within a distance of ca. 20 km (Fig. 5-1), it is entirely 



 Conclusions 

118 
 

possible that the ore deposits in the Mount Isa area did not form in a single giant 

Cu-Zn-Pb mineralizing event but multiple overprinting events. We would suggest that 

the preservation of these events differs from deposit to deposit e.g., George Fisher 

preserves more of the early diagenetic mineralization whereas at Mount Isa the later 

syn-deformation Cu-Pb-Zn system dominates. In fact, multiple major fluid flow events 

were very common in Proterozoic sedimentary basins (Kyser et al. 2000); and there is a 

growing body of evidence that many of the world’s most metal endowed sedimentary 

basins have experienced multiple economic phases of mineralization (e.g., Athabasca 

basin, Alexandre et al. 2009; Zechstein basin, Alderton et al. 2016; Katangan basin, Selley 

et al. 2005; Muchez et al. 2015). 

Finally, it has to be noted that these conclusions do not eliminate the possibility 

of a giant single-stage ore forming event. However, a single-stage ore formation model 

would need to explain, why only one event was able to transport and precipitate Cu, Zn, 

and Pb, when all other key components for ore formation (reactive host rock, sulphur 

source, fault system, saline fluids, geodynamic setting, source of metals) were available 

for a prolonged period of time. 

5.3. The footprint of the mineralizing system at George Fisher and its 

implications for exploration 

In this study, new mineralogical, geochemical, and isotopic data were produced 

using a variety of whole rock and in situ techniques. These data were combined with 

petrographic observation across from the hand specimen to the µm-scale. The resulting 

insights did not only provide new insights into the background composition of the 

Urquhart Shale Formation (chapter 5.1) and into the ore forming processes at the George 

Fisher deposit (chapter 5.2), the data also allowed for a refined understanding of the 

mineralogical and geochemical footprint of the George Fisher deposit. Fig. 5-1 highlights 

the most important geochemical and mineralogical differences between the 

unmineralized Urquhart Shale Formation (Shovel Flats drill core) and the George Fisher 

deposit presented in chapters 2, 3, and 4.
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Fig. 5-1 (A) Geological map of 
the Mount Isa area; (B) 
lithological logs of drill cores 
from the George Fisher 
deposit; (C) schematic δ34S 
values of paragenetically 
constrained pyrite, coloured 
boxes show data from George 
Fisher and respective 
accumulation processes for 
reduced sulphur; (D) whole 
rock lithogeochemical data 
of the most enriched and 
most depleted elements at 
George Fisher and George 
Fisher index values; (E) 
quantitative XRD data for 
the main mineral phases at 
George Fisher; (F) schematic 
REE+YCN profiles of whole 
rock and in situ carbonate 
data from George Fisher 
samples; (G) lithological log 
of the Shovel Flats drill core; 
(H) schematic δ34S values of 
paragenetically constrained 
pyrite, coloured boxes show 
data from the Shovel Flats 
drill core and respective 
accumulation processes for 
reduced sulphur; (I) whole 
rock lithogeochemical data 
of the most enriched and 
most depleted elements at 

George Fisher and George Fisher index values from the Shovel Flats drill core; (J) quantitative XRD data for the main mineral phases from the Shovel Flats 
samples; (F) schematic REE+YCN profiles of whole rock and in situ carbonate data from Shovel Flats samples. 
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The presence of multiple generations of pyrite with distinct δ34S values (chapter 

2; Fig. 5-1C, H) is a reliable proxy that several processes were involved in the 

accumulation of reduced sulphur; and this may be characteristic for prospective 

lithologies. On the whole rock scale, mineralization at George Fisher has resulted in a 

number of geochemical and mineralogical changes compared to unmineralized 

Urquhart Shale (Fig. 5-1D, E, I, J). For example, there is significant enrichment of Tl and 

Mn, and depletion of Na and Sr, in whole rock data from George Fisher; and when 

combined, a ratio of these elements (George Fisher index = 10(
400𝑇𝑙+𝑀𝑛

10𝑆𝑟+𝑁𝑎
)) is highly 

effective in differentiating mineralized from unmineralized Urquhart Shale (chapter 3). 

These geochemical changes also correspond well with lower albite, calcite, and chlorite 

abundances and higher abundances of dolomite, muscovite and phlogopite, and 

hydrothermal pyrite at George Fisher (chapter 3). The geochemical footprint of the 

George Fisher deposit can be further defined by in situ REE+Y data of dolomite and 

calcite (chapter 4). Carbonate in situ REE+YCN profiles from George Fisher are LREE 

depleted relative to whole rock and pre-ore carbonate REE+YCN profiles (Fig. 5-1; chapter 

4); and this LREE depletion in carbonate minerals may be an indicative feature of the 

interaction of saline (Cl-rich) hydrothermal fluids with carbonate-rich lithologies 

(chapter 4). 

In summary, the findings from this study provide further geochemical and 

mineralogical constraints on the footprints of CD-type massive sulphide systems that 

can be tested in future exploration programmes in the Carpentaria Province. 

5.4. Future work 

This study has provided new petrographic, mineralogical, geochemical, and 

isotopic data that help to understand (1) the background composition of the Urquhart 

Shale Formation, (2) the mineralizing system at George Fisher, and (3) the footprint of 

this mineralizing system. Nevertheless, there are many opportunities for future research 

projects to gain further insights from the rocks of both the Urquhart Shale Formation 

and the George Fisher deposit. 
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Firstly, this study has shown that not all of the Urquhart Shale Formation has 

been affected by regional greenschist metamorphism, and that unmineralized Urquhart 

Shale preserves geochemical signatures that are characteristic of Proterozoic 

sedimentary basins (chapters 2, 3, 4, and 5.1). Future studies should, therefore, focus on 

investigating the unmineralized Urquhart Shale in greater detail in order to refine and 

add to the knowledge of the Proterozoic oceans and atmosphere. For example, such 

work could apply a variety of redox proxies (e.g., Mo, Cr, I, U concentrations, Fe 

speciation, Fe, I, Mo isotopes; e.g., Lyons et al. 2009; Hardisty et al. 2017) and could also 

investigate organic matter and biogeochemically reactive elements (e.g., N, P; e.g., Cox 

et al. 2019; Johnson et al. 2020). 

Secondly, future investigations on the unmetamorphosed and unmineralized 

Urquhart Shale, and potentially other Mount Isa Group lithologies, should refine the 

diagenetic history and paragenesis. For example, such work could apply high-resolution 

petrographic techniques (e.g., backscatter electron or transmission electron 

microscopy) in combination with whole rock quantitative mineralogy in order to 

understand and quantify the diagenetic formation or dissolution of mineral phases such 

as feldspar, carbonate, quartz, berthierine, chlorite, illite, or pyrite. Such studies could 

help to understand the evolution of the reactive metal trap; and furthermore, better 

understanding of the diagenetic evolution could help to constrain the destruction 

and/or preservation of porosity and permeability that enhanced or reduced fluid flow 

during the mineralizing events in the area (cf. Storvoll et al. 2002; Golding et al. 2006; 

Stricker and Jones 2018). 

Thirdly, this study has shown that in situ isotopic and geochemical data can help 

to understand a paragenetically complex mineral system (chapters 2 and 4). Future 

studies should apply in situ trace element analysis of base metal sulphides in order to 

further constrain fluid evolution and sulphide precipitation at George Fisher. For 

example, the analysis of trace elements in sphalerite can help to constrain fluid 

temperatures and fluid compositions (e.g., Frenzel et al. 2016, 2020). These data could 

then be combined with carbonate REE+Y data and with fluid inclusion studies of 

suitable, paragenetically constrained mineral phases, such as quartz, carbonate, 
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sphalerite, or pyrite (cf. Magnall et al. 2016a; Korges et al. 2019). Future in situ trace 

element studies of pyrite could also help to understand Tl enrichment at George Fisher 

(cf. Spinks et al. 2019), and such trace element data could then be combined with 

δ34Spyrite data (chapter 2) or with microstructural data (e.g., EBSD analysis; e.g., Yang et 

al. 2019) in order to constrain processes responsible for element distribution. There is 

also indication of hydrocarbon mobility at George Fisher (Chapman 1999) and future 

studies could investigate the involvement of hydrocarbons for metal solubility and 

precipitation (e.g., Sanz-Robinson and Williams-Jones 2019). 

Fourthly, there are mineral phases that were previously described at George 

Fisher, which could not be identified in this study (e.g., hyalophane, celsian; Chapman 

2004). Such Ba-feldspar minerals have been linked with pseudomorphs after sulphate 

minerals in unmineralized Urquhart Shale (Painter 2003), and barite has been reported 

from the Mount Isa and Hilton deposits (Perkins and Bell 1998). Future studies could, 

therefore, investigate the potential origin and relationship of these mineral phases. For 

example, barite can form during diagenetic processes and can be part of the reactive 

host rock in CD-type systems (e.g., Macmillan Pass; Magnall et al. 2016b, 2020a). 

Fifthly, future studies should focus on collecting geochronological data on 

paragenetically constrained sulphide minerals, gangue minerals, and/or alteration 

minerals in order to constrain the timing of the mineralizing events at George Fisher 

(e.g., U-Pb in hydrothermal zircon, Ar-Ar in phyllosilicates, Re-Os in sulphide minerals; 

e.g., Schaltegger 2007; Cloutier et al. 2011; Muchez et al. 2015). 

Finally, this study has provided new data and interpretations for the footprint of 

CD-type deposits in the Carpentaria province (chapters 3 and 4). Future studies should 

test these hypotheses in un-deformed CD-type systems, which can allow for better 

constraints on the 3D distribution of the alteration system around Carpentaria deposits. 
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7. Appendix 

The electronic appendix comprises: (a) the in situ sulphur isotope data from 

pyrite presented in chapter 2; (b) the whole rock mineralogical and lithogeochemical 

data presented in chapter 3; and (c) the in situ trace element data from carbonate 

minerals presented in chapter 4. 
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Fig. 7-1 Lithological logs of four drill cores from the George Fisher deposit; the blue arrows annotate 
samples that were used for isotopic analysis in this study; grey characters indicate in-mine ore body 
domains (A to F; HWL = hanging wall). 
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Fig. 7-2 Lithological log of the Shovel Flats drill core; the blue arrows annotate samples that were used 
for isotopic analysis in this study. 
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Fig. 7-3 The mine geology of the George Fisher deposit. The red, dark grey and light grey units represent 
the respective ore domains, mudstone units and siltstone units. Black and yellow arrows indicate 
locations and dips of drill cores 8C K751, 10C K795, 10C K798 and 12C I797. (A) Top view of the deposit. 
The green line indicates the location of the cross section shown in B. (B) Cross section X-Y of George 
Fisher deposit. 
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Fig. 7-4 A lithological log of the Shovel Flats drill core (see Fig. 3-2 for location) and individual samples 
analysed in this study (blue arrows). 
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Fig. 7-5 X-ray diffraction patterns of two representative clay-fraction separates from both the Shovel 
Flats drill core and the George Fisher deposit; notice the asymmetric 001 reflection of illite in the inset. 


