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1. Abstract 
Hematopoiesis, the formation of blood cells, is probably the best understood system of 

cellular differentiation in mammalian biology. Traditionally, this process is thought to 

occur as a hierarchical progression of differentiation from hematopoietic stem cells 

(HSCs), where progressively lineage restricted oligo-, bi-, and unipotent progenitors are 

generated, eventually producing mature blood cells. However, this classical view is based 

on analyses performed in marker pre-defined bulk cell populations and has been 

challenged. Recent studies, enabled by single cell technologies, suggest that lineage 

commitment in hematopoiesis occurs much earlier than previously thought, at the 

hematopoietic stem and progenitor cell (HSPC) stage. It remains unclear what relevance 

these refined models of hematopoiesis have with regard to human diseases. Furthermore, 

while tremendous insight has been gained into this process on the transcriptional level, 

the contribution of post-transcriptional regulation in hematopoiesis remains to be largely 

explored.  Here, we use an experiment of nature, the rare congenital disorder Diamond-

Blackfan anemia (DBA), where the majority of mutations affect ribosomal proteins and 

the erythroid lineage is selectively perturbed, as a model to address these issues. 

We use human genetics to gain deeper insight into the ribosomal defects in DBA in vivo, 

biochemical and proteomic studies to examine ribosome levels and composition in 

human hematopoietic cells with DBA-associated molecular lesions, ribosome profiling in 

HSPCs undergoing erythroid lineage commitment to assess changes in translation 

globally, transcriptome analyses of hematopoietic master regulators from unperturbed 

human HSPCs, and intracellular flow cytometry analyses of primary DBA patient 

samples to elucidate the pathological mechanisms underlying DBA and how these relate 

to physiologic lineage commitment.   

We find that in DBA, the cellular levels of ribosomes are reduced, while the ribosome 

protein composition remains unaltered. This global reduction of ribosome levels impairs 

the translation of a select subset of transcripts including the key erythroid transcription 

factor GATA1. These transcripts have, among other properties, shorter and less 

structured 5’ UTRs than unaffected mRNAs, features that GATA1 exhibits relatively 

uniquely among hematopoietic master regulators, which may explain the erythroid 
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lineage selective defect in DBA. Finally, we show that GATA1 protein levels are reduced 

already at the HSPC stage in primary DBA patients’ bone marrow specimens, which fits 

to the refined models of hematopoiesis that suggest lineage commitment takes place in 

this primitive cell compartment.  

By studying the rare congenital disorder DBA, we gain insight into how cellular 

ribosome levels and translation play a key role in the process of human hematopoietic 

lineage commitment. 
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1.1 Abstract (German) 
Die Hämatopoese, die Bildung von Blutzellen, ist wahrscheinlich das am besten 

verstandene System der zellulären Differenzierung in der Biologie von Säugern. 

Traditionell nimmt man an, dass dieser Prozess als ein von hämatopoetischen 

Stammzellen (HSZ) ausgehendes, hierarchisches Fortschreiten der 

Zellliniendifferenzierung geschieht, wobei zunehmend Zelllinien-beschränkte oligo-, bi-, 

und unipotente Progenitorzellen generiert werden, die schließlich reife Blutzellen 

produzieren. Dieses klassische Konzept basiert jedoch auf Analysen, die in Marker prä-

definierten Mischzellpopulationen durchgeführt wurden und wird nun in Frage gestellt. 

Neuere Studien, ermöglicht durch Einzelzelltechnologien, suggerieren, dass die 

Zelllinienspezifizierung früher als bisher gedacht, nämlich in hämatopoetischen Stamm- 

und Progenitorzellen (HSPZ) stattfindet. Welche Relevanz diese weiterentwickelten 

Modelle der Hämatopoese mit Hinblick auf humane Erkrankungen haben, ist unklar. 

Außerdem, während enorme Einblicke in diesen Prozess auf dem Transkriptionslevel 

gewonnen werden konnten, ist die Rolle der post-transkriptionellen Regulation in der 

Hämatopoese größtenteils unerforscht. Hier nutzen wir ein „Experiment der Natur“, die 

seltene kongenitale Erkrankung Diamond-Blackfan Anämie (DBA), welche in der 

Mehrheit der Fälle durch Mutationen in ribosomalen Proteinen verursacht wird und 

wobei die erythroide Zelllinienentwicklung selektiv gestört ist, als ein Modell um diese 

Aspekte zu adressieren. 

Wir nutzen humangenetische Untersuchungen um tiefere Einblicke in die ribosomalen 

Defekte in DBA in vivo zu erlangen, biochemische und proteomische Studien um die 

Ribosomenlevel und Ribosomenproteinkomposition in humanen hämatopoetischen 

Zellen mit DBA-assoziierten Molekularläsionen zu ermitteln, Ribosome Profiling in sich 

erythroider Differenzierung unterziehenden HSPZ um globale Änderungen in der 

Translation zu evaluieren, Transkriptomanalysen von hämatopoetischen 

Schlüsselregulatoren in nicht-pathologischen HSPZ und intrazelluläre 

Durchflusszytometrieanalysen von primären DBA Patientenproben um die der DBA 

zugrunde liegenden Pathomechanismen zu ergründen und diese in Bezug zur 

physiologischen Zelldifferenzierung zu stellen.  
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Wir demonstrieren, dass die zellulären Ribosomenlevel in DBA reduziert sind, die 

Ribosomenproteinkomposition jedoch unverändert ist. Diese globale Reduktion der 

Ribosomenlevel beeinträchtigt die Translation einer bestimmten Untergruppe von 

Transkripten einschließlich des erythroiden Schlüssel-Transkriptionsfaktors GATA1. 

Diese Transkripte haben unter anderem kürzere und weniger strukturierte 5’ UTRs als 

unbeeinträchtigte mRNAs, Eigenschaften, die GATA1 vergleichsweise einzigartig unter 

hämatopoetischen Schlüsselregulatoren aufweist, was den die spezifisch erythroide 

Zellliniendifferenzierung betreffenden Defekt in DBA erklären könnte. Abschließend 

zeigen wir, dass die GATA1 Proteinlevel schon auf der Stufe der HSPZ in primären 

DBA-Patientenknochenmarksproben reduziert sind, was zu den weiterentwickelten 

Modellen der Hämatopoese passt, die suggerieren, dass die Zelllinienspezifizierung 

schon in diesem primitiven Zellkompartment stattfindet.    

Durch die Untersuchung der seltenen kongenitalen Erkrankung DBA erhalten wir 

Einblick darin, wie zelluläre Ribosomenlevel und Translation eine Schlüsselrolle in dem 

Prozess der humanen hämatopoetischen Zellliniendifferenzierung spielen.  
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2. Introduction 
This thesis is based on the original publication with the title “Ribosome Levels 

Selectively Regulate Translation and Lineage Commitment in Human Hematopiesis”1. 

Accordingly, formulations throughout the text may be partly or completely adopted from 

the original manuscript. 

 

2.1 Lineage Commitment in Hematopoiesis 
Blood cell production or hematopoiesis is one of the best-understood examples of cellular 

differentiation in mammalian physiology2. Most of our knowledge of this process stems 

from analyses done in marker pre-defined bulk cell populations. This previous work 

suggested a hierarchical progression of differentiation proceeding from hematopoietic 

stem cells (HSCs), where increasingly more lineage-restricted oligo-, bi-, and unipotent 

progenitors are produced, eventually forming mature circulating blood cells2,3. This 

traditional view of hematopoiesis has recently been challenged by studies enabled 

through single-cell technologies, which suggest that lineage commitment occurs much 

earlier, in hematopoietic stem and progenitor cells (HSPCs), which then undergo orderly 

differentiation into mature circulating blood cells4-6. These studies revealed that HSPCs 

are transcriptionally and epigenetically more heterogeneous than previously recognized 

and concurrently exhibit biases in cell fate decisions. The vast majority of our molecular 

knowledge of these differentiation processes relies on work performed on the 

transcriptional level4,5, while it is clear that post-transcriptional regulation is also critical 

for both stem cell maintenance and cell differentiation. The significance of such post-

transcriptional regulation is emphasized by the fact that cellular protein abundances are 

only partly explained by cellular mRNA levels for a given protein7. While considerable 

insight has been gained into the role of post-transcriptional regulation in the maintenance 

of hematopoietic stem cells (HSCs)8, and suggests significant changes in protein 

synthesis rates in early stages of lineage commitment, the post-transcriptional regulation 

of molecular regulators of these differentiation processes and functional consequences of 
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perturbations of these remain largely unexplored, also in processes beyond 

hematopoiesis.  

2.2 Ribosomopathies Including Diamond-Blackfan Anemia 
There is an increasing appreciation for the key roles of post-transcriptional regulation 

in cellular differentiation processes, such as hematopoiesis8. Strikingly, naturally-

occurring mutations affecting protein synthesis cause distinct and cell-type 

specific defects9. Mutations in ubiquitously expressed ribosomal proteins cause 

highly-penetrant human diseases, the so-called ribosomopathies, with exquisitely 

specific phenotypes: Diamond-Blackfan anemia (DBA)10, congenital asplenia11, and 

neurodevelopmental disorders12. It remains a mystery how such specific defects emerge 

from mutations in proteins that are required by every cell9. In the case of DBA, a rare 

congenital blood disorder, there is a selective impairment in the production of 

erythroid precursors and progenitors in the bone marrow of patients, while all other 

hematopoietic lineages appear unaffected in their development13,14. The majority of 

DBA cases are caused by heterozygous loss-of-function mutations in one of at least 

26 different ribosomal protein (RP) genes, resulting in RP haploinsufficiency15. Why 

mutations in proteins so ubiquitous as RPs selectively affect the erythroid lineage 

while sparing all other hematopoietic lineages, has remained incompletely understood. 

We recently identified the first non-RP mutations in rare DBA patients in the 

hematopoietic master transcription factor GATA116, which is critical for erythroid 

differentiation. Subsequently, we were able to link these two seemingly disparate 

pathologies together by discovering that RP haploinsufficiency results in 

selectively impaired translation of GATA1 mRNA, as compared to a number of 

other important erythroid factors10. How this selective impairment of translation arises 

from RP haploinsufficiency, remains to be explored.    

2.3 Ribosome Defect Models 
A number of models for how exactly RP haploinsufficiency causes a selective defect 

in translation and tissue-specific phenotypes have been proposed17 including the two 

most prominent, but not necessarily mutually exclusive, models: The “qualitative” 

ribosomal 
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defect model posits that under physiologic conditions, the ribosome pool is 

heterogeneous in terms of RP composition and the resulting “specialized” ribosomes that 

are qualitatively distinct preferentially translate specific mRNAs. Therefore, RP 

haploinsufficiency would promote the production of ribosomes lacking one or more 

specific RPs and would thereby alter protein translation. This concept is supported by 

recent studies in a non-DBA related Rpl38 haploinsufficient mouse model with homeotic 

transformation and skeletal patterning defects due to altered translation of a select subset 

of Hox mRNAs18. Conversely, the “quantitative” ribosomal defect model posits that 

reduced levels of ribosomes of equivalent protein composition would cause the mRNA 

pool to compete for the limited amount of ribosomes and thereby lead to decreased 

ribosome association for a subset of mRNAs19. 

 

2.4 Aims of the Project and Thesis 
We consider DBA as an experiment of nature, studying this disorder gives us the 

opportunity to understand how perturbations in the ribosome can result in a selective 

impairment of translation thereby selectively impairing erythroid lineage commitment, 

while allowing other hematopoietic lineages to be normally produced. Thus, studies of 

DBA do not only allow us to gain insight into the pathomechanism of this disease, but 

also provide us a better understanding of the role of post-transcriptional regulation in 

lineage commitment in human hematopoiesis more generally, potentially with 

implications also in other tissues. The major aims of this project were to 

1. Identify previously unknown mutations causing DBA to gain more insight into 

the pathologic mechanisms of the disease. 

2. Assess ribosome levels and ribosome protein composition in human cellular 

models of DBA in order to discriminate between the aforementioned qualitative 

and quantitative ribosome defect models that underlie the altered translation and 

lineage specific defect in this disorder.  

3. Identify the transcripts whose translation is down-regulated by ribosomal defects 

seen in DBA on a genome-wide scale.  
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4. Characterize these translationally affected transcripts including their 5’ 

untranslated regions (UTRs) in order to better understand why only a subset of 

mRNAs is impaired in its translation by the ribosome defects that cause DBA.  

5. Use bone marrow specimens from DBA patients in order to identify the stages 

within hematopoiesis at which the translational defects occur and thus being able 

to assess the relevance of the above mentioned refined models of hematopoiesis 

with regard to human disease.  
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3. Methods 
A comprehensive, detailed and complete description of the methods and materials as well 

as of the bioinformatics analyses can be found in the STAR METHODS and tables 

section of the original publication1. The key resources table in the original publication 

contains also all relevant catalogue numbers. Due to space constraints, here, I mostly 

focus on the description of the methodologies that could not be presented in detail in the 

original publication.     
 

Ribosome Profiling  

Harvesting of Samples 

Cells were incubated with 100 mg/ml of cycloheximide (Sigma Aldrich) for 5 minutes at 

37°C, washed twice with ice-cold PBS containing 100 mg/ml of cycloheximide and lysed 

in 10 mM Tris-HCl (pH 7.4), 5 mM MgCl2, 100 mM KCl, 1% Triton X-100, 3 mM 

DTT, 100 mg/ml cycloheximide, 500 U/ml RNasin (Promega) and 1 x Complete Protease 

Inhibitor, EDTA-free (Roche) as well as 1x Protease Inhibitor Set (without EDTA) (G-

Biosciences). Lysates were partitioned for either ribosome footprint profiling or mRNA 

sequencing.  

 

Total RNA Extraction 

Total RNA was extracted with the Direct-zol™ RNA MiniPrep Plus w/ TRI Reagent® 

Kit (Zymo Research). To this end, 3 volumes of TRI Reagent® were added to each lysate 

partitioned in the step described above for mRNA isolation in the further process and 

mixed thoroughly. For RNA purification, an equal volume of ethanol (95 – 100 %) was 

added to each sample lysed in TRI Reagent® and mixed thoroughly. The mixture was 

transferred into a Zymo-Spin™ IIICG column in a collection tube, respectively and 

centrifuged. Reloading of the spin column was required to process the complete volume. 

The spin column was transferred into a new collection tube and the flow-through was 

discarded, respectively. For DNaseI treatment, 400 µl of RNA Wash Buffer were added 

to each column and then centrifuged. For each column, 5 µl DNase I (6 U/µl) were added 

to 75 µl of DNA Digestion Buffer in a RNase-free tube and mixed. This mix was added 
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directly to the column matrix, respectively and incubated at room temperature for 15 

minutes. Subsequently, 400 µl Direct-zol™ RNA PreWash were added to each column 

and centrifuged. The flow-through was discarded, respectively and the step was repeated. 

Next, 700 µl RNA Wash Buffer were added to each column and centrifuged for 2 

minutes in order to completely remove the wash buffer. The columns were then 

transferred to a new RNase-free tube, respectively and total RNA was eluted by adding 

100 µl of nuclease-free water directly onto the column matrix and centrifugation. If not 

used immediately for further processing, total RNA was flash frozen and stored at -80°C.  

mRNA Isolation by Poly(A) Selection 

Total mRNA was poly-A selected using the NEBNext® Poly(A) mRNA Magnetic 

Isolation Module (New England Biolabs). Accordingly, 50 µl of the eluted total 

RNA/sample from the step described before were added to a nuclease-free 200 µl PCR 

tube. In a separate PCR tube, 20 µl of well resuspended NEBNext Magnetic Oligo 

d(T)25 Beads were added. The beads were washed by adding 100 µl of RNA Binding 

Buffer and mixed thoroughly by pipetting the entire volume up and down at least 6 times. 

The tubes with the beads were then placed on a magnetic rack at room temperature until 

the solution was clear, but at least for 2 minutes. The supernatant was then completely 

removed from the tubes and discarded without disturbing the beads. This washing step 

was repeated at least once. The beads were then resuspended in 50 µl of RNA Binding 

Buffer and the 50 µl of total RNA/sample were added to a tube with resuspended beads, 

respectively. The entire volume was thoroughly mixed by pipetting up and down. Next, 

the samples were heated on a thermal cycler at 65°C for 5 minutes and held at 4°C in 

order to denature the RNA and facilitate binding of the poly-A-RNA to the beads. The 

tubes were then removed from the thermal cycler and the beads thoroughly mixed by 

pipetting up and down for at least 6 times. The samples were then placed on the bench for 

5 minutes at room temperature in order to allow the RNA to bind to the beads. This step 

with thorough mixing of the beads followed by the 5 minutes of incubation at room 

temperature was repeated one time. The tubes were then placed on a magnetic rack for at 

least 2 minutes in order to separate the poly-A RNA bound to the beads from the 

solution. The supernatant was removed and discarded without disturbing the beads. The 



 11 

tubes were then removed from the magnetic rack and the beads were washed with 200 µl 

of Wash Buffer to remove unbound RNA, respectively. The beads were mixed 

thoroughly by pipetting up and down the entire volume at least 6 times and the tubes 

were placed on a magnetic rack again for at least 2 minutes. All supernatant was removed 

and discarded, respectively without disturbing the beads. This washing step was repeated 

one more time. Then, 50 µl of Tris Buffer were added to each tube and samples were 

mixed thoroughly by pipetting up and down at least 6 times. The tubes were then placed 

on a thermal cycler and heated at 80°C for 2 minutes and then held at 25°C to elute the 

poly-A RNA from the beads. The tubes were then removed from the thermal cycler and 

50 µl of RNA Binding Buffer were added to each tube to allow the RNA to bind to the 

same beads. The samples were mixed thoroughly by pipetting up and down at least 6 

times. The tubes were then incubated at room temperature for 5 minutes in order to allow 

the RNA to bind to the beads. This last step with thorough mixing and 5 minutes of 

incubation was repeated one more time. Next, the tubes were placed on the magnetic rack 

again for at least 2 minutes. Then, all supernatant was removed and discarded without 

disturbing the beads, respectively. The tubes were then removed from the magnetic rack 

again and 200 µl of Wash Buffer were added to each sample, which was then thoroughly 

mixed by pipetting up and down 6 times. The tubes were then once again placed on a 

magnetic rack for at least 2 minutes and the supernatant was removed and discarded, 

respectively without disturbing the beads. The tubes were then removed from the 

magnetic rack and mRNA was eluted from the beads by adding 20 µl of Tris Buffer, 

thorough mixing by pipetting up and down at least 6 times and incubation of the samples 

at 80°C for 2 minutes, then held at 25°C. The tubes were then immediately placed on a 

magnetic rack for at least 2 minutes and the supernatant containing the eluted mRNA was 

transferred to new nuclease-free tubes. If not used immediately for further processing, 

mRNA was flash frozen and stored at -80°C. mRNA seq libraries were generated as 

described previously20.  

 

Ribosome Footprinting 

Ribosome footprinting and subsequent library preparation of ribosome protected RNA 

fragments (RPFs) was performed with the Truseq Ribo Profile (Mammalian) Kit 
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(Illumina) with some modifications. Accordingly, in 200 µl of the partitioned lysate 

described above under “Harvesting of Samples”, RNase I (Ambion) digestion was done 

at a concentration of 2.5 U/µl lysate for 45 minutes at room temperature with gentle 

mixing. During this incubation, MicroSpin S-400 columns (GE Healthcare Life Sciences) 

were prepared for RPF purification. 3 ml of 1X Mammalian Polysome Buffer/sample 

were prepared by combining 600 μl of 5X Buffer with 2.4 ml of nuclease-free water. The 

MicroSpin S-400 columns were inverted several times to resuspend the resin. Each 

column was opened on both ends to allow the buffer to drip out under gravity. Next, a 

collection tube was attached to each column and centrifuged for 4 minutes at 600 × g in a 

fixed-angle, benchtop centrifuge at room temperature. The flow-through was discarded 

and each column was transferred to a 1.5 ml tube. The RNase I digestion reactions were 

stopped by adding 15 μl of SUPERase•In RNase Inhibitor and chilling the samples on 

ice, respectively. Before allowing the column to dry, 100 μl of nuclease-digested RPF 

sample were applied, respectively and centrifuged for 2 minutes at 600 × g. The flow-

through was collected and 10 μl of 10% SDS were added to each sample. For purification 

of RPF RNA, 220 μl of RNA Binding Buffer and 495 μl of 100 % ethanol were added to 

each sample and mixed thoroughly. The further procedure was performed according to 

the RNA Clean & Concentrator-25 Kit method (Zymo Research). Samples were eluted in 

25 μl of nuclease-free water, respectively.  

 

rRNA Depletion 

rRNA removal was performed by using the Ribo-Zero Gold rRNA Removal Kit 

(Illumina). For each Ribo zero reaction, 225 μl of magnetic beads were required at room 

temperature and thoroughly vortexed for homogeneity. The beads containing tube was 

then placed on a magnetic rack for at least 2 minutes for the batch washing procedure. 

The supernatant was removed and discarded without disturbing the beads. The tube was 

then removed from the magnetic rack and an equal amount of RNase-free water was 

added. The tube was then thoroughly vortexed. This bead washing step was repeated one 

more time. The tube was then placed on the magnetic rack again for at least 2 minutes 

and the supernatant was removed and discarded. The tube was removed from the 

magnetic rack and a volume of Magnetic Bead Resuspension equal to the number of 



13 

reactions x 60 μl was added to the tube, that was then thoroughly vortexed. 65 μl of the 

washed and resuspended magnetic beads per reaction were then aliquoted into 1.5 ml 

RNase-free microcentrifuge tubes. To each tube of resuspended beads, 1 μl of RiboGuard 

RNase Inhibitor was added, mixed briefly and vortexed. The washed beads were then 

stored at room temperature until needed in further steps. In a RNase-free tube, per sample 

16 μl of RNase-free water, 4 μl of Ribo-Zero rRNA Reaction Buffer, 10 μl of RNA 

sample and 10 μl of Ribo-Zero Removal Solution were mixed thoroughly by pipetting the 

entire volume 10-15 times. This mix was then incubated at 68°C for 10 minutes, removed 

from the heat and then centrifuged briefly to collect any condensation. The tubes were 

then incubated for 5 minutes at room temperature. 40 μl of the now probe-hybridized 

sample were added to the 65 μl of washed, room temperature magnetic beads and mixed 

immediately thoroughly by pipetting the entire volume up and down for 10-15 times. 

This mixture step was repeated one more time. The tubes were then capped and vortexed 

at high speed for at least 10 seconds, then incubated at room temperature for 5 minutes. 

Subsequently, the tubes were placed on a magnetic rack for at least 2 minutes and the 

supernatant containing the depleted rRNA sample was transferred to RNase-free 

microcentrifuge tube. The Ribo-Zero-treated RNA was then purified by using a modified 

RNA Clean & Concentrator-5 Kit (Zymo Research) method. Each sample was brought 

up to a volume of 100 μl. 200 μl of RNA Binding Buffer and 450 μl of 100 % ethanol 

were added to each sample and mixed thoroughly. The remaining procedure was then 

performed according to the manufacturer’s instructions, the purified RPF RNA was 

eluted in 11 μl of nuclease-free water.  

PAGE Purification of RPFs 

5 μl of TruSeq Ribo Profile RNA Control (28 nt = 5’ 

NNGUACACGGAGUCGACCCGCAACGCNN 3’; 30 nt = 5’ 

NNGUACACGGAGUCAAGACCCGCAACGCNN 3’) were added to a 0.5 ml 

microcentrifuge tube together with 5 μl of denaturing gel loading dye, respectively. For 

each RPF RNA sample, 10 μl of the RNA were mixed with 10 μl of denaturing gel 

loading dye. A mix of 4 μl of the 20/100 ladder, 1 μl of water and 5 μl of denaturing 

loading dye was prepared to prevent cross contamination for loading between RPF RNA 
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samples. The ladder and samples were denatured at 95°C for 5 minutes and then 

immediately placed on ice. 10 μl of ladder and each sample were loaded onto a 12% urea-

polyacrylamide gel and run at 180 V until the Bromophenol Blue band reached the 

bottom of the gel (about 210 V for 1 hour). The gel was then stained with SYBR Gold at 

4°C and RNA was visualized with a dark-field transilluminator. The gel slices 

corresponding to the 28 nt and 30 nt of the TruSeq Ribo Profile RNA Control were 

excised for each sample and transferred to a 0.5 ml microcentrifuge tube, that had a hole 

punched in the bottom with a sterile 20 gauge needle and was placed in a 1.5 ml 

centrifuge tube. The samples were then centrifuged for 2 minutes at 12,000 x g to shred 

the gel slices and the 0.5 ml tubes were discarded. To each sample, 400 μl of nuclease-

free water, 40 μl of 5 M Ammonium Acetate and 2 μl of 10 % SDS were added and the 

tubes then gently shook at room temperature for 2 hours to elute the RNA from the gel. 

Then, a 1 ml pipette with a trimmed tip was used to transfer the slurry to 1.5 ml filter 

tubes, which were then centrifuged for 3 minutes at 2,000 x g in order to separate the 

disrupted gel slices from the eluted RNA. Next, the aqueous solution was transferred into 

new 1.5 ml tubes, respectively and 2 μl of Glycogen and 700 μl of 100 % isopropanol 

were added to each tube, which were then stored at -20°C for at least 1 hour. 

Subsequently, the tubes were centrifuged at 4°C for 20 minutes at 12,000 x g in order to 

pellet the RPF RNA. The pellet was then washed with 80 % ethanol and air dried, 

respectively. Finally, each RPF RNA sample pellet was resuspended in 20 μl of nuclease-

free water. If not immediately used for further procedures, the RNA was flash frozen and 

kept at -20°C.    

 

End Repair 

In order to prepare the RPF RNA for 3’adapter ligation, samples were end-repaired. To 

this end, 7.5 μl of TruSeq Ribo Profile PNK Buffer were added to 20 μl of each sample 

kept on ice. Next, to each RPF RNA sample 44.5 μl of nuclease-free water and 3 μl of 

TruSeq Ribo Profile PNK were added, mixed well and incubated at 37°C for 1 hour. 

Each sample volume was then added up to 100 μl with 25 μl of nuclease-free water and 

purified with a modified RNA Clean & Concentrator-5 Kit (Zymo Research) method as 

described above. Finally, samples were eluted in 11 μl of nuclease-free water.  
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3’Adapter Ligation 

To each sample kept on ice, 1 μl of TruSeq Ribo Profile 3’ Adapter (5’ 

AGATCGGAAGAGCACACGTCT 3’) was added and samples were then heat-denatured 

in a thermal cycler for 2 minutes at 65°C, then held at 4°C. PAGE purified TruSeq Ribo 

Profile RNA Control was used as positive control. In the meantime, a ligation mastermix 

was prepared with 3.5 μl of TruSeq Ribo Profile Ligation Buffer, 1 μl of 100 mM DTT 

and 1.5 μl of TruSeq Rubo Profile Ligase per sample. 6 μl of this ligation mix were added 

to each denatured RNA sample, mixed thoroughly by pipetting the entire volume up and 

down multiple times, centrifuged briefly and incubated at room temperature for 2 hours. 

Then, 2 μl of TruSeq Ribo Profile AR Enzyme were added to each reaction, mixed 

thoroughly and incubated at 30°C for 2 hours.  

Reverse Transcription, cDNA PAGE Purification and cDNA Circularization 

A reverse transcription mastermix was prepared with 4.5 μl of TruSeq Ribo Profile RT 

Reaction Mix, 1.5 μl of 100 mM DTT, 6 μl of nuclease-free water and 1 μl of EpiScript 

RT for each reaction. 13 μl of this mix were added to each reaction, mixed well and 

incubated for 30 minutes at 50°C in a thermal cycler with a heated lid. Then, 1 μl of 

TruSeq Ribo Profile Exonuclease was added to each reaction, which were then incubated 

at 37°C for 30 minutes, then 80°C for 15 minutes and then held at 4°C. Subsequently, 1 

μl of TruSeq Ribo Profile RNase Mix was added to each reaction, mixed well, incubated 

at 55°C for 5 minutes and then held at 4°C. 18 μl of nuclease-free water were added to 

each reaction to adjust the volume to 50 μl, respectively. Samples were then purified by 

using a modified RNA Clean & Concentrator-5 Kit (Zymo Research) method and eluted 

in 11 μl of nuclease-free water. PAGE Purification of the cDNA was then performed 

analogous to the RPF PAGE purification described above with some slight modifications 

and the cDNA was eluted in 11 μl of nuclease-free water. For circularization of the 

cDNA, a mastermix for each sample was prepared consisting of 4 μl of TruSeq Ribo 

Profile CL Reaction Mix, 2 μl of ATP, 2 μl of MnCl2 and 2 μl of CircLigase. 10 μl of this 

mix were added to each reaction, which were then mixed gently and centrifuged briefly. 

Next, these reactions were incubated at 60°C for 2 hours, then held at 4°C.  
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PCR Amplification and PCR Product PAGE Purification 

A PCR mastermix for each sample was prepared with 16 μl of nuclease-free water, 2 μl 

of TruSeq Ribo Profile Forward PCR Primer (5’ 

AATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTCTACAGTCCGACG 

3’), 2 μl of TruSeq Ribo Profile Index PCR Primer and 25 μl of 2X Phusion Master Mix. 

45 μl of this mix were added to each 5 μl of undiluted cDNA sample, mixed well and run 

on a thermal cycler at 98°C for 30 seconds, 10 cycles at 94°C for 15 seconds, at 55°C for 

5 seconds, at 65°C for 10 seconds, then held at 4°C. The PCR products were then purified 

using 90 μl (1.8X) of Agencourt AMPure XP beads according to the manufacturer’s 

instructions. The libraries were eluted in 16 μl of nuclease-free water. The PCR products 

were loaded with native gel loading dye containing Bromophenol Blue onto 8% native 

polyacrylamide gels in 1X TBE for PAGE purification. Gel lanes containing samples 

were separated by lanes containing 5 μl of 20 bp ladder. The gel was run then at 200 V 

for ~30 minutes until the Bromophenol Blue reached the bottom of the gel, which was 

then stained with SYBR Gold. Libraries were visualized under a dark field 

transilluminator with an expected size of 140-160 bp, respectively. The further procedure 

was performed analogous to the RPF PAGE purification described above with some 

modifications. Libraries were resuspended in nuclease-free water and checked on a 

Bioanalyzer using the Agilent High Sensitivity DNA Assay. All libraries were sequenced 

on a HiSeq 2500 system (Illumina).    

p53 Western Blotting and Gene Set Enrichment Analysis  

The general western blotting procedure performed was analogous to those described in 

detail for detection of other proteins in the original publication1. In this process, 

membranes were blocked with p53 rabbit polyclonal antibody (FL-393, sc-6243, Santa 

Cruz Biotechnology) at a 1:1,000 dilution and incubated with donkey anti-rabbit 

peroxidase-coupled secondary antibody (711-035-152, Jackson ImmunoResearch) at a 

1:10,000 to 1:20,000 dilution.  

Gene set enrichment analysis (GSEA) was used with the “Preranked” option and 10,000 

permutations for ΔmRNA21. The p53 gene set was obtained from the “Hallmark” gene 

sets provided by MSigDB (http://software.broadinstitute.org/gsea/msigdb). 
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Heme Quantification 

A total of 200,000 cells per replicate from Luc, TSR2, RPS19 or RPL5 shRNA treated 

CD34+ cells differentiated towards the erythroid lineage were harvested on day 5 

following infection for heme quantification using the QuantiChrom Heme Assay Kit 

(BioAssay Systems; DIHM-250). The assay was performed in triplicates, following the 

manufacturer’s protocol. 

Statistical Analyses 

All pairwise comparisons were assessed using an unpaired two-tailed Student’s t-test, 

unless otherwise indicated in the main text or in the figure legends. Results were 

considered significant if the P value was <0.05. 

Accession Codes  

The raw mass spectrometry data have been deposited in the public proteomics repository 

MassIVE: MSV000080283. 

The RNA-seq and ribosome profiling data reported in this thesis and in the original 

manuscript are deposited in the Gene Expression Omnibus (GEO) data repository: 

GSE89183.
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4. Results 
References to figures in this result section correspond to the figures in the original 

publication1. Due to space limitations, I focused on the key results and did not refer to 

every single figure panel of the publication. 

 

4.1 DBA Mutations in TSR2 Highlight the Importance of Ribosome 

Production in Hematopoiesis 
We reasoned that the further identification of novel genetic causes of DBA would 

provide additional insight into pathologic mechanisms of this disorder. By performing 

whole exome sequencing, we and others22 identified a novel hemizygous missense 

mutation in the X-linked TSR2 gene in two male cousins with DBA, who lacked 

pathogenic mutations in all known DBA genes (Figures 1A and S1A). Similar to the 

known RP genes and GATA1, TSR2 showed very few nonsense or frameshift mutations in 

60,706 control individuals (Figure S1A). This was an important finding considering that 

TSR2 has been shown to act as chaperone for the yeast ortholog of RPS26 (eS26 in 

revised RP nomenclature) and to be crucial for the formation of the mature ribosome, 

while being completely localized in the nucleus23, indicating that it is unlikely to interact 

with the mature ribosome. We could verify that the identified mutation is indeed a loss-

of-function allele (Figure 1B) and also that TSR2 is completely localized to the nucleus 

in human hematopoietic cells (Figure S1B).  

Next, we wanted to assess the consequences of TSR2 perturbations in human 

erythropoiesis. TSR2 suppression by short hairpin RNAs (shRNAs) (Figure 1C) resulted 

in an impaired erythroid differentiation from primary human HSPCs (Figures 1D and 

S1C) and an increased apoptosis phenotype, impaired growth, and a less mature erythroid 

gene signature (Figures S1D-F) consistent with phenotypes we observed previously in 

our in vitro primary cell models of DBA due to RP haploinsufficiency10. Also consistent 

with our previous DBA studies due to RP haploinsufficiency, TSR2 suppression resulted 

in selectively reduced GATA1 protein levels, as compared to other erythroid-important 

factors, including EPOR, STAT5A, and JAK2, while GATA1 mRNA levels appeared to 
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be unaffected (Figures 1E, 1F and S1H-S1J). Importantly, increased GATA1 protein 

expression could rescue erythroid lineage commitment from HSPCs with TSR2 

suppression (Figures 1G, 1H, S1K and S1L).  

 

4.2 Molecular Lesions Underlying DBA Reduce Ribosome Levels in 

Hematopoietic Cells 
Since the yeast ortholog of TSR2 has been shown to function as a key ribosome 

biogenesis factor23, we interrogated whether human TSR2 has a similar function. 

Analogous to the yeast ortholog and also to the role of RPs in the maturation of 

ribosomes, suppression of human TSR2 results in impaired processing of rRNA (Figures 

2A, S2A and S2B), strongly suggesting that human TSR2 is indeed critical for the levels 

of mature ribosomes in the cytoplasm that are available for translation. Indeed, these 

defects are often observed in DBA patients, where they can aid in diagnosis24. Next, we 

sought to examine the levels of actively translating ribosomes in both primary 

hematopoietic cells and cell lines with DBA-associated molecular lesions including 

suppression of TSR2, RPS19 (eS19), RPL5 (uL18), RPS24 (eS24), and RPL11 (uL5). 

Using quantitative polysome profiling, we consistently observed a reduced abundance of 

assembled monosomes and actively translating polysomes (Figures 2D-2F and S2C-

S2G). Consistent with these findings, not only did we observe that the total protein 

abundance of the targeted RP was reduced, but a number of non-targeted RPs from both 

subunits, particularly among those found in the same subunit as the primary molecular 

lesion, were reduced in hematopoietic cells with DBA-associated lesions (Figures 2B, 

2C and S2H-S2Q). The decreased levels of cellular ribosomes in hematopoietic cells 

with DBA-associated lesions, together with the fact that pathogenic mutations in at least 

26 distinct RPs15 and TSR222 have been implicated in DBA, provides some initial support 

for the quantitative ribosome defect model underlying the altered translation in this 

disorder and for a selective role of ribosome levels in hematopoietic lineage commitment. 

However, these data cannot exclude a potential additional qualitative defect in the 

ribosome protein composition.  
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4.3 Verification of Constant Ribosome Composition in Human 

Hematopoietic Cells with DBA-Associated Molecular Lesions 
Recent work has suggested that lesions in RPs may result in altered translation due to 

altered ribosome protein composition in some contexts18. To directly interrogate the 

protein composition of actively translating ribosomes in hematopoietic cells with DBA-

associated lesions, we performed quantitative high-coverage tandem-mass-tag (TMT) 

mass spectrometry to measure the expression of all RPs. We fractionated cells by sucrose 

gradient sedimentation and collected monosomes (M, a single ribosome), light polysomes 

(LPs, 2-4 ribosomes), and heavy polysomes (HPs, ≥ 5 ribosomes) (Figure 3A). The RP 

composition within monosomes, light polysomes, and heavy polysomes was largely 

constant between controls and cells with DBA-associated lesions (Figures 3B-3D). The 

protein expression of the targeted RP did not deviate significantly from that of the non-

targeted RPs (based on studentized residuals, Figures S3G–S3I). These data strongly 

suggest that the translational defects and the perturbation in erythroid lineage 

commitment in DBA are consequences from reduced ribosome levels, rather than from 

ribosomes with an altered protein composition. We note that, because our assay measures 

total protein levels within a given cellular fraction, we cannot exclude the possibility that 

the pool of actively translating ribosomes is comprised of ribosomes with multiple 

compositions and the relative abundances of these variable ribosomes is altered in cells 

with DBA-associated molecular lesions. However, it seems unlikely that this possibility 

would result in the same total RP composition in normal and perturbed cells (please see 

also under 5.2 in the Discussion and Figure S9).   

 

4.4 Defining Transcripts Whose Translation Is Most Sensitive to DBA-

Associated Molecular Lesions 
Having concluded that the quantitative ribosome defect model best fit our data from 

complimentary human genetic and proteomic studies, we aimed to better understand the 

consequences of reduced ribosome abundances on translation on a global scale. To do so, 

we performed ribosome footprint profiling in the setting of RP haploinsuffciency in 

primary human HSPCs undergoing erythroid lineage commitment. This technique 
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involves measuring the translational efficiency (TE), by comparing the levels of 

ribosome-associated mRNA footprints to the total mRNA for each gene25. For biological 

replicates of RPL5 (uL18) and RPS19 (eS19) suppression, we obtained both ribosome-

protected footprints (RPFs) and matching mRNA-sequencing (mRNA-seq). Changes in 

transcription and translation appeared to be largely similar between RPS19 and RPL5 

haploinsufficiency (Figure 4C), which is consistent with the quantitative model, rather 

than a qualitative model in which ribosomes of distinct protein composition would 

regulate the translation of specific subsets of mRNAs. 

At a false discovery rate (FDR) of 10%, we identified 525 transcripts whose TE was 

particularly sensitive to (and down-regulated by) RP haploinsufficiency and confirmed 

our previous finding that translation of GATA1 mRNA is significantly decreased 

(Figures 4D and 4F). We determined that this set of RP haploinsufficiency-sensitive 

transcripts is shorter in overall length, encoded more abundantly expressed proteins in 

unperturbed primary human erythroid progenitors26, is translated more efficiently in 

physiologic conditions and is enriched for genes that are essential for erythroid cell 

growth and survival27 (Figures 4G and S4D). Moreover, a subset of these transcripts is 

substantially up-regulated during early erythropoiesis28, concurrent with the defective 

maturation stage in DBA, suggesting that the altered translation of multiple transcripts, 

including GATA1, plays a key role in the in vivo phenotypes observed in DBA. By 

comprehensively defining the actual 5’ UTRs present in hematopoietic cells using cap 

analysis gene expression (CAGE) sequencing data (Figure S5A), we found that the 5’ 

UTRs of RP haploinsufficiency-sensitive transcripts were 42 nucleotides shorter on 

average, were predicted to have less complex secondary structure, and contained fewer 

in-frame and out-of-frame upstream start codons (uAUGs) (Figures 5A and S5C) – 

features typically associated with efficient ribosome initiation in unperturbed cells29. 

 

4.5 Interrogation of 5’ UTRs from Hematopoietic Master Regulators 

Suggests Mechanisms of Lineage Selectivity in DBA  
While we could identify several mRNA- including 5’ UTR-features that are associated 

with reduced mRNA translation due to ribosome defects caused by DBA-associated 
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molecular lesions, these findings are insufficient to explain the erythroid lineage-specific 

defect observed in DBA. Our genome-wide analysis has shown that translationally 

reduced mRNAs including GATA1 have short and unstructured 5’ UTRs (Figure 5A) and 

hence have properties to be efficiently translated under physiologic conditions29. As 

mentioned before, mutations in GATA1 are sufficient to cause DBA in rare patients16. 

Thus, the reduced translation of GATA1 mRNA could explain the perturbed erythroid 

lineage commitment in DBA. To understand why the production of other hematopoietic 

lineages is not affected in DBA, we examined CAGE data generated from unperturbed 

primary human HSPCs to compare the 5’ UTRs among a group of 36 well-characterized 

hematopoietic master regulators known to have key and well-defined roles in lineage 

commitment2,3 (Figure 5B). The majority of these other hematopoietic master regulators 

had significantly longer and more complex 5’ UTRs compared to GATA1 and compared 

with the other transcripts sensitive to reduced ribosome levels (Figures 5C-5F). In our 

ribosome profiling data, we were able to verify the lack of reduced translation in HSPCs 

undergoing erythroid lineage commitment with RP haploinsuffciency for master 

regulators that were sufficiently expressed in our cells: KLF1, TAL1, MYB, GATA2, 

LMO2, RUNX2, ETV6, KMT2A, NFE2, FLI1, STAT5A, STAT3, SPI1, NOTCH1, 

BCL11A, IKZF1, and XBP1 all showed no major decrease in TE (FDR >10%, log2 TE 

fold decrease of <0.45). Taken together, these data suggest that GATA1 exhibits relatively 

unique 5’ UTR features among hematopoietic master regulators, which may explain its 

sensitivity to reduced ribosome levels and the consequent erythroid lineage-specific 

defect observed in DBA.   

 

4.6 Impaired GATA1 Protein Production in Primary HSPCs from DBA 

Patients  
We were able to show that cellular differentiation in erythropoiesis is regulated to a 

substantial extent by ribosome levels. A reduced number of ribosomes selectively 

perturbs the translation of a subset of mRNAs, among those is the key erythroid 

transcription factor GATA1, which appears to have relatively unique 5’ UTR features 

among hematopoietic master regulators. This perturbation results in the erythroid 
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differentiation defects characteristic for DBA. We next aimed to identify the stages of 

hematopoiesis at which these impairments occur. By that we also aimed to assess what 

relevance the previously mentioned refined models of human hematopoiesis have with 

respect to human disease. These recent studies enabled by single cell technologies 

suggest that lineage commitment may occur already at early HSPC stages4-6, that may be 

transcriptionally and epigenetically primed with biases towards certain lineages. Indeed, 

in the scope of these studies it was shown that GATA1 mRNA is expressed already in 

primitive CD34+CD38- HSPCs4. We were previously able to show that there is no 

difference in GATA1 mRNA expression in early erythroid progenitors from DBA patients 

compared to healthy donors10. Here, we used an intracellular flow cytometry approach to 

assess GATA1 protein levels in CD34+CD38- and CD34+CD38+ HSPCs from uncultured 

bone marrow aspirates from both DBA patients and healthy donors. For patients with 

RPL35A, RPL5 or RPS19 mutations, we consistently observed reduced GATA1 protein 

levels in CD34+CD38- and CD34+CD38+ cell populations (Figures 7B and 7C). As noted 

above, perturbations in GATA1 are sufficient to cause the erythroid phenotype 

characteristic for DBA16. Altogether, these findings are consistent with refined models of 

hematopoiesis, that suggest that lineage commitment occurs already in early HSPCs. 

Reduced GATA1 protein levels in this primitive cell compartment resulting from an 

impaired translation due to reduced ribosome levels cause erythroid differentiation 

defects typical for DBA.    

 

4.7 Probing Alternative DBA Pathophysiological Models 
To what extent alternative pathways, such as activation of p53 or heme excess, also 

contribute to the pathogenesis of DBA, is unclear, although our data suggest a major role 

for the translational defects as discussed in more detail in the discussion section (please 

see under 5.3 and also Figures S8A-S8D (not shown in the original publication)).
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Figure S8 (not shown in the original publication). Limited evidence for alternative DBA 
pathophysiology models. (A) Log2 changes in TE upon RPS19 suppression are shown. RPL5 and RPL11 
are translationally co-regulated with other RPs. (B) Western blot for p53 protein levels upon TSR2 
suppression in primary erythroid cells shows no evidence for substantial up-regulation of p53. (C) Based 
upon GSEA, cells with TSR2 suppression have a higher p53 target gene signature (permutation FDR < 
0.0001). The enrichment score is plotted in green, and genes are plotted as black lines according to their 
rank. RNA-seq was performed in (n=2) biological replicates. (D) No evidence for significantly increased 
heme levels with ribosomal protein haploinsufficiency and TSR2 suppression models in primary erythroid 
cells. 
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5. Discussion 

5.1 A Role for Ribosome Levels in Cellular Differentiation in Human 

Hematopoiesis 
Recent studies have tremendously improved our understanding of hematopoiesis and 

suggest that lineage commitment occurs already at early HSPC stages4-6. The relevance 

of these refined models of hematopoiesis to human disease has remained unclear. 

Furthermore, the vast majority of these studies has focused on the regulation of these 

processes on the transcriptional level4,5, while the role of post-transcriptional regulation 

including of the molecular key regulators of lineage commitment has been largely 

unexplored. Here, we used the rare congenital blood disorder DBA to address these 

issues to some extent. The majority of DBA cases are caused by mutations in one of at 

least 26 different ribosome protein genes, resulting in ribosomal protein 

haploinsufficiency15. We find that in case of DBA, reduced ribosome levels, rather than 

qualitatively distinct ribosomes, result in the impaired translation of a subset of mRNAs. 

These transcripts tend to have shorter and less structured 5’ UTRs, features associated 

with efficient translation in unperturbed conditions29. Among those transcripts is the key 

erythroid transcription factor GATA1, which exhibits these features relatively uniquely 

among hematopoietic master regulators, which may explain the erythroid specific defect 

seen in DBA within the hematopoietic compartment. Finally, we are able to show that 

GATA1 protein levels are already reduced in HSPCs from bone marrow aspirates from 

DBA patients, consistent with revised models of hematopoiesis, where lineage 

commitment occurs in this primitive cell compartment4-6. Our work further complements 

studies by others showing substantial variation in protein synthesis rates in 

hematopoiesis, with the highest protein synthesis rates found in progenitors that undergo 

erythroid lineage commitment8, which fits to our data of how ribosome levels can 

selectively impair erythroid lineage commitment and GATA1 requires one of the highest 

translation rates among various master regulators of hematopoiesis. Given that GATA1 is 

a common downstream target of different DBA-associated molecular lesions, it presents a 

promising potential target for clinical therapy.  
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The role of post-transcriptional regulation in development, tissue homeostasis and 

cellular differentiation is increasingly appreciated30-32, but still largely unexplored. An 

emerging role in this regard is attributed to the ribosome. Indeed, the so called 

ribosomopathies represent a group of diseases with a wide range of phenotypes such as 

congenital asplenia, neurodevelopmental disorders12 and DBA including its non-

hematopoietic phenotypes such as cleft lip/ palate and thumb abnormalities, all of which 

are caused by diverse perturbations in the ribosome33. How such tissue-specific defects 

are mediated by lesions in components of a machinery so ubiquitous as the ribosome, is 

subject to current, and some recent investigations including this work. While in some 

contexts altered RP composition has been suggested to underlie altered translation of 

subsets of mRNAs and thereof resulting tissue-specific patterning defects18, in case of 

DBA, we find a constant RP composition, but reduced levels of ribosomes that 

selectively perturb the translation of a subset of transcripts, thereby impeding erythroid 

lineage commitment. Future studies will be required to delineate if such mechanisms also 

underlie other phenotypes that are caused by perturbations in the ribosome. Curiously, 

variation in ribosome levels also seems to underlie phenotypic changes within a single 

cell type, suggesting that such regulation of ribosome levels may also alter cell state in 

some contexts34. Here, we discovered an unprecedented role for ribosome levels in 

cellular differentiation in human hematopoiesis and translation regulation. 

 

5.2 Discriminating between Ribosome Defect Models 
In this study, we have investigated if the actively translating ribosomes in hematopoietic 

cells with ribosomal protein haploinsufficiency or with TSR2 suppression lack the 

targeted RP (RPL5 (uL18), RPS19 (eS19), or RPS26 (eS26)) – what we term the 

“qualitative” model. We first showed that RP intensities were highly correlated in LPs 

and HPs. Visually, the targeted RP seemed to fall close to the line determined from both 

total and targeted subunit specific linear regression. To make a more quantitative 

argument, we investigated exactly how well this line predicted the intensity of each RP 

by calculating studentized residuals for each fit. In general, studentized residuals were 

small (values greater than 3 or less than -3 are usually considered outliers). As the 
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targeted RP was not observed at the negative tail of the distribution of these residuals, we 

determined that it was highly unlikely that ribosomes in LPs or HPs were lacking a 

single, targeted RP. Thus, we concluded that our data best fit the “quantitative” model 

where DBA-associated molecular lesions result in reduced levels of ribosomes where 

each ribosome has identical RP composition and contains the targeted RP.  

It is not known, however, if each ribosome is identically composed. For example, it is 

possible that there are multiple types of ribosomes within a cell or given fraction. In this 

hypothetical case, each type of ribosome is composed of a unique set of RPs. This 

possibility is supported by recent evidence showing that RP stoichiometry can vary 

between monosome and polysome fractions35, although it remains unclear if there are 

indeed differently composed ribosomes within a single fraction. Hypothetically, as 

illustrated in a simplified manner in Figure S9, type A ribosomes could contain only RP1, 

RP2, RP3, RP4, and RP5, type B ribosomes could contain only RP1, RP2, RP4, RP6, and  

Figure S9 (not shown in the original publication). A simplified scheme of potential different types of 
ribosomes within a given fraction. Given that we are measuring the average RP intensity across all 
ribosomes within the M, LP, and HP fractions, we cannot exclude the possibility that there might be 
different types of ribosomes within a given fraction and cannot exclude the possibility of changes in the 
relative abundances of these types with ribosomal protein haploinsufficiency.  

RP7, and type C ribosomes could contain only RP2, RP3, RP5, RP6, and RP7. Given that 

we are measuring the average RP intensity across all ribosomes within the M, LP, and HP 

fractions, we cannot determine the composition of any individual ribosome and thus do 

not know (1) if there are differently composed ribosomes, (2) the number of ribosome 

types, or (3) the relative abundances of these types. In case that there is only one type, our 

data strongly support that ribosome composition is unaltered with the DBA-associated 

molecular lesions tested. In case that there are a number of ribosome types capable of 

mRNA translation, then our data again strongly support the situation where each 
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ribosome type is equivalently reduced with ribosomal protein haploinsufficiency or TSR2 

suppression, as (1) RP intensities are very highly correlated between DBA-associated 

molecular lesions and control conditions and (2) no RPs are identified as significant 

outliers (residual less than -3). However, we cannot definitively exclude the possibility 

that the relative weights of these potential different types of ribosomes are altered with 

DBA-associated molecular lesions. More formally, assuming m ribosome types, the 

observed intensity for the ith RP (𝑅𝑅𝑅𝑅𝑖𝑖 ) is proportional to ∑ 𝑊𝑊𝑗𝑗𝐼𝐼𝑗𝑗𝑖𝑖𝑗𝑗 € 𝑚𝑚  where 𝑊𝑊𝑗𝑗  is the 

percentage of ribosomes of type j and 𝐼𝐼𝑗𝑗𝑖𝑖  is an indicator variable for whether 𝑅𝑅𝑅𝑅𝑖𝑖  is 

present in type j. In this scenario, although the relative proportion of ribosome types 

changes (i.e. altered 𝑊𝑊𝑗𝑗), the observed intensity for each 𝑅𝑅𝑅𝑅𝑖𝑖 (i.e. unchanged ∑ 𝑊𝑊𝑗𝑗𝐼𝐼𝑗𝑗𝑖𝑖𝑗𝑗 € 𝑚𝑚 ) 

is unchanged – at least within the technical measurement error. As this would require 

very specific biological types of ribosomes and a very specific alteration in the proportion 

of these types, this seems unlikely but remains a possibility. Of note in this context, RPs 

implicated in DBA appear to be scattered all over the ribosomal surface based on 

structural studies of the ribosome15,36. Studies of individual (types of) ribosomes will help 

to further clarify this point. A comprehensive overview about the emerging field of 

ribosome heterogeneity can be found in a perspective by Emmott and colleagues17. 

 

5.3 Alternative DBA Pathophysiological Models 
One prevalent theory for the erythroid specific phenotype of DBA is that p53 is 

selectively activated in the erythroid lineage37-41. In the case of ribosomal protein 

haploinsufficiency due to RPS19 mutations, it has been proposed that excess free RPL5 

(uL18) and RPL11 (uL5) would bind to and inhibit mouse double minute 2 

(MDM2)37,39,41-43, a ubiquitin ligase that regulates the stability of p53 by targeting its 

degradation41,44. This in turn leads to the accumulation of p53 and consequently to cell 

cycle arrest and apoptosis40,41. In agreement with this theory, disruption of the RPL5- or 

RPL11-MDM2 interaction by a point mutation in Mdm2 was shown to reverse the p53 

response and lead to an amelioration of the anemia in a RPS19 deficient mouse model of 

DBA41,45,46. On the other hand, a number of recent studies have suggested that the 

erythroid defect occurs independent of p53 in both mouse and zebrafish models of DBA, 
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challenging the theory that the lineage specific defect is mediated by RP-mediated 

MDM2 inhibition and p53 activation47-51. 

To what extent such a mechanism contributes to the erythroid specific phenotype in 

DBA, remains controversial41. For instance, while RPL5 and RPL11 have been 

demonstrated to be crucial for MDM2-mediated p53 activation, both genes are frequently 

mutated in DBA, ultimately resulting in decreased (rather than increased) free RPL5 or 

RPL1115,43. Here, in our RPS19 haploinsufficent model of DBA in primary human 

erythroid cells, we observe that RPL5 and RPL11 are, similar to all other RPs, 

translationally co-down-regulated (Figure S8A), suggesting that there is a limited 

amount of free RPL5 or RPL11 capable of binding MDM2. Similar to what we 

previously observed with ribosomal protein haploinsufficiency10, p53 protein levels do 

not appear to be substantially increased in our models of TSR2 suppression (Figure 

S8B). When we previously interrogated erythroid cells isolated from DBA patients, we 

did not detect a global up-regulation of p53 target genes10. Furthermore, we recently 

reported that the inhibition of the eIF4E and eIF4G interaction by 4EGI-1 phenocopied 

the typical erythroid defect observed in DBA, but did not result in ribosomal defects or an 

imbalance of RPs10,41. Together, these data suggest that the erythroid defect occurs 

largely independent from RP-mediated p53 activation.  

Interestingly, GATA1 has been suggested to associate with p53 and potentially inhibit its 

pro-apoptotic activities40,41,52. In agreement with these studies, we previously 

demonstrated that suppression of GATA1 results in increased p53 levels in human 

primary erythroid cells10,41. However, GATA1 has been shown to repress pro-apoptotic 

and activate anti-apoptotic genes independent from its interaction with p5341,53,54. In our 

ribosomal protein haploinsufficiency and TSR2 suppression models, we do indeed 

observe a relative, but not global increase in p53 target genes, many of which are pro-

apoptotic10,41 (Figure S8C). Thus, the impaired translation of GATA1 – and potentially 

other selectively impaired transcripts – may result in apoptosis through multiple p53 

dependent and independent mechanisms41. Further work is required to delineate the exact 

contribution of p53 activation to the lineage specific defect in DBA, but current evidence 

suggests that RP-mediated (through MDM2 inhibition) activation of p53 is a relatively 

limited factor.    
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In addition to the model of RP-mediated p53 activation, a second DBA 

pathophysiological model hypothesized that the macrocytic anemia in DBA could be the 

consequence of a toxic heme excess that results from delayed globin synthesis55. In this 

DBA model, heme synthesis proceeds normally but globin production is delayed, 

resulting in an excess of free heme. Since this potential theory is just emerging and the 

data supporting it are still limited, we examined heme levels in our human primary 

erythroid cell models of DBA due to ribosomal protein haploinsufficiency or TSR2 

suppression, but did not observe significantly increased heme levels (Figure S8D). A 

subsequent study of the same group used Flvcr1-deleted mice, whereby this deletion 

leads to high intracellular heme levels as Flvcr1 is a cytoplasmic heme export protein, to 

further pursue this hypothesis56. The authors suggest a model of a heme-GATA1 

feedback loop, where GATA1 stimulates heme synthesis and heme would decrease 

GATA1 levels in the course of erythroid differentiation in physiologic conditions. This 

decrease of GATA1 not only included the protein, but also the GATA1 transcript. The 

authors further speculate, that a pathologic increase of heme levels could result in 

premature reduction of GATA1 thereby impeding erythroid differentiation and resulting 

in the phenotype typical for DBA56. However, we previously demonstrated that there is 

no difference in GATA1 mRNA expression in early erythroid progenitors from DBA 

patients compared to healthy donors10. Given these findings and that our human primary 

erythroid cell models of DBA phenocopy the erythroid specific defect of this disease and 

we don’t find significantly increased heme levels in these, suggests that the mouse model 

used by the authors might not ideally resemble the phenotype seen in DBA patients and 

that heme excess has a limited role in the pathogenesis of DBA, but more direct studies 

are needed to quantify the exact contribution of this potential mechanism to the clinical 

phenotype. 
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SUMMARY

Blood cell formation is classically thought to
occur through a hierarchical differentiation pro-
cess, although recent studies have shown that
lineage commitment may occur earlier in hemato-
poietic stem and progenitor cells (HSPCs). The
relevance to human blood diseases and the un-
derlying regulation of these refined models remain
poorly understood. By studying a genetic blood
disorder, Diamond-Blackfan anemia (DBA), where
the majority of mutations affect ribosomal proteins
and the erythroid lineage is selectively perturbed,
we are able to gain mechanistic insight into
how lineage commitment is programmed normally
and disrupted in disease. We show that in DBA,
the pool of available ribosomes is limited, while
ribosome composition remains constant. Sur-
prisingly, this global reduction in ribosome levels
more profoundly alters translation of a select
subset of transcripts. We show how the reduced
translation of select transcripts in HSPCs can
impair erythroid lineage commitment, illuminating
a regulatory role for ribosome levels in cellular
differentiation.

INTRODUCTION

Blood cell production or hematopoiesis serves as a paradigm for
cellular differentiation more generally in physiologic systems
(Orkin and Zon, 2008). Extensive work has revealed a hierarchi-
cal progression of differentiation, where increasingly more line-
age-restricted progenitors are produced, ultimately giving rise
to lineage committed progenitors and precursors that eventually
form mature circulating blood cells (Doulatov et al., 2012; Orkin
and Zon, 2008). These observations have served as a framework
for understanding themolecular regulation of hematopoiesis and
how this process can be perturbed in disease. However, the ma-
jority of studies characterizing hematopoiesis in humans and
mice have required analysis of bulk cell populations. Recent
work, enabled through single-cell analyses and refined pheno-
typic markers, has shown that hematopoietic differentiation
may progress in a distinct manner, where lineage commitment
occurs in early hematopoietic stem and progenitor cells (HSPCs)
that then undergo orderly differentiation to produce mature
circulating blood cells (Notta et al., 2016; Paul et al., 2015; Perié
et al., 2015; Velten et al., 2017).
While considerable insight into lineage commitment from

HSPCs has been gained at the transcriptional level (Notta
et al., 2016; Paul et al., 2015), the repertoire of molecular regula-
tors of this process remains to be fully defined and functionally
characterized. Groundbreaking studies have revealed the key
role of post-transcriptional regulation in the maintenance of
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hematopoietic stem cells (Signer et al., 2014; van Galen et al.,
2014). The importance of such regulation is emphasized by the
observation that only a fraction of the variation in cellular protein
levels can be explained through transcriptional changes (Jova-
novic et al., 2015; Schwanhäusser et al., 2011). Importantly,
studies of protein synthesis rates during hematopoiesis have
indicated that dramatic changes occur during the early stages
of lineage commitment (Signer et al., 2014). However, the func-
tional consequences of such changes in protein synthesis rates
for lineage commitment remain largely unexplored.
Diamond-Blackfan anemia (DBA) is a unique blood disorder

where erythroid precursors and progenitors are selectively
reduced in the bone marrow of patients, while all other lineages
are ostensibly produced normally (Iskander et al., 2015; Nathan
et al., 1978). Extensive studies have shown that the defect pre-
sent in DBA appears to occur in early progenitors that are quan-
titatively reduced, but the few cells that do persist undergo
normal terminal maturation (Nathan et al., 1978; Ohene-
Abuakwa et al., 2005). The majority of DBA cases are caused
by heterozygous loss-of-function mutations in one of 18 different
ribosomal protein (RP) genes, resulting in RP haploinsufficiency
(Mirabello et al., 2017). Despite extensive studies, the mecha-
nisms by which a defect in RPs could cause a selective absence
of erythroid cells within the hematopoietic compartment, while
allowing for normal differentiation of other lineages, has re-
mained a mystery (Sankaran and Weiss, 2015). Through studies
of rare individuals with a diagnosis of DBA, we identified muta-
tions in the key lineage-determining hematopoietic transcription
factor GATA1 that can cause DBA (Sankaran et al., 2012). Moti-
vated by these observations, we were able to show that RP hap-
loinsufficiency results in reduced translation of GATA1 mRNA
and the erythroid defects present in DBA patient cells could
largely be rescued by increasing GATA1 protein levels (Ludwig
et al., 2014). However, despite this insight into the role of
GATA1 in DBA pathogenesis, the mechanisms underlying such
translational changes and the stages of hematopoiesis at which
these alterations occur remain undefined.
DBA is a unique experiment of nature that presents an oppor-

tunity to better define the molecular mechanisms by which de-
fects in the ribosome can selectively impact commitment to
the erythroid, but not other hematopoietic lineages. Hence,
mechanistic studies of DBA not only allow us to gain insight
into the pathogenesis of this disease, but also provide us with
an opportunity to better understand how protein translation
may play a role in hematopoietic lineage commitment more
generally. Here, we use human genetics to better define the
role of ribosomal alterations in vivo, biochemical and proteomic
studies to interrogate ribosome levels and composition in human
hematopoietic cells, ribosome profiling in HSPCs undergoing
erythroid lineage commitment to examine changes in global
translation, deep transcriptome analysis of master regulators
from unperturbed human HSPCs, and single-cell phenotypic an-
alyses of primary DBApatient samples to define themechanisms
throughwhich DBA arises and to gain insight into how translation
plays a key role in the process of human hematopoietic lineage
commitment. Importantly, we find that the quantity of ribosomes,
but not the composition of such ribosomes, has a key role in
promoting erythroid lineage commitment from HSPCs. Our

work more generally reveals how ribosome levels can modulate
cellular differentiation.

RESULTS

DBA Mutations in TSR2 Highlight the Importance of
Ribosome Production in Hematopoiesis
We reasoned that the identification of previously undefined ge-
netic causes of DBA might provide additional insight into the un-
derlying pathogenic mechanisms. By performing whole exome
sequencing of DBA patients (Kim et al., 2017; Sankaran et al.,
2012), we identified a hemizygous missense mutation in the
X-linked and highly invariant TSR2 gene in two male cousins
with all the classical clinical features of DBA, as has been seen
by others previously (Gripp et al., 2014) (Figures 1A and S1A;
Tables S1 and S2). This finding piqued our interest, because
the yeast ortholog of the RPS26 (eS26 in revised RP nomencla-
ture) chaperone TSR2 has been shown to have an essential role
in allowing productive formation of the mature ribosome and yet
is biochemically distinct with complete nuclear localization
(Schütz et al., 2014). Consistent with this, TSR2 was entirely
localized to the nucleus in human hematopoietic cells (Fig-
ure S1B). Deletion of the yeast TSR2 ortholog results in a severe
growth phenotype, which could be substantially rescued by
introduction of human TSR2, but which had a reduced rescue
by the allele observed in the two DBA patients (Figure 1B). This
finding supports the contention that the TSR2mutation we iden-
tified results in a loss-of-function. Consistent with this, suppres-
sion of TSR2 through the use of short hairpin RNAs (shRNAs) was
sufficient to impair erythroid lineage commitment and differenti-
ation of human HSPCs (Figures 1C, 1D, and S1C). Furthermore,
we observed phenotypes commonly seen with suppression of
other genes implicated in DBA (Ludwig et al., 2014), including
increased apoptosis, impaired growth, and a less mature
erythroid gene expression profile, despite our use of cells with
comparable global gene expression profiles (Figures S1D–S1G).
In agreement with our previous findings in DBA due to more

typical RP gene mutations, TSR2 suppression resulted in selec-
tively reduced levels of GATA1 protein, but did not affect the
levels of GATA1 mRNA (Figures 1E, 1F, and S1H–S1J).
Increased expression of GATA1 protein in primary HSPCs with
TSR2 suppression could rescue erythroid lineage commitment
and differentiation (Figures 1G, 1H, S1K, and S1L). These data
demonstrate that TSR2, which is biochemically unlinked from
the mature ribosome and which has a key role in the production
of adequate ribosome levels, is necessary for in vivo erythroid
lineage commitment from human HSPCs. Considering these
findings from a rare experiment of nature in addition to the
more frequent RP mutations in DBA (Mirabello et al., 2017), we
hypothesized that ribosome levels may have a selective role in
human hematopoietic lineage commitment.

Molecular Lesions Underlying DBA Reduce Ribosome
Levels in Hematopoietic Cells
Given the observations in yeast that the TSR2 ortholog is neces-
sary for effective ribosome biogenesis and lesions in this gene
reduce overall ribosome levels (Schütz et al., 2014), we wanted
to interrogate the alterations in ribosome levels in HSPCs
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undergoing commitment to the erythroid lineage and in hemato-
poietic cell lines. Similar to the characterized role of RPs in the
biogenesis of mature ribosomes (Henras et al., 2015; Robledo
et al., 2008), we found that suppression of TSR2 in human he-
matopoietic cells resulted in reduced levels of the 18S rRNA,

with accumulation of its precursor, 18SE (Figures 2A, S2A, and
S2B). Such a defect would impair production of the mature ribo-
some and thus limit the overall levels of ribosomes in the cyto-
plasm available for translation. Importantly, these defects are
consistent with the lesions in ribosomematuration characterized
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Figure 1. DBA with TSR2 Loss of Function
(A) Identification of a missense mutation in TSR2 in a pedigree with two affected male cousins.

(B) The human TSR2 ortholog could substantially rescue growth of the Tsr2-depleted yeast strain, while the TSR2 ortholog with the DBA-associatedmutation had

reduced rescue.

(C) Western blot showing the identification of two short hairpin RNAs (shRNAs) that target TSR2 in primary human HSPCs undergoing erythroid lineage

commitment on day 5 after transduction.

(D) The ratio of erythroid (CD235a+) to non-erythroid (CD235a!) cells on day 5 in differentiating HSPCs after transductionwith shRNAs targeting Luciferase (shLuc)

or TSR2 (shTSR2). The data are shown as the mean ± SEM from three independent experiments. (**p % 0.01 using an unpaired two-tailed Student’s t test).

(E) Western blot detection of GATA1 protein from lysates of differentiating HSPCs on day 5 after transduction. Arrowheads indicate GATA1 full length (FL) and

GATA1 short (s), respectively, on top and bottom.

(F) GATA1 mRNA levels derived from mRNA-seq in differentiating HSPCs. Shown is the mean ± SD of two biological replicates.

(G) The ratio of erythroid (CD235a+) to non-erythroid (CD235a!) cells on day 5 after transduction with shTSR2 and either a control vector or with GATA1 rescue.

Shown is the mean ± the SD from three independent experiments. (****p % 0.0001 using an unpaired two-tailed Student’s t test).

(H) Quantitative RT-PCR gene expression (normalized to b-actin) in differentiating HSPCs upon TSR2 suppression with or without GATA1 rescue. Shown is the

mean ± the SD of three replicates. (**p % 0.01; ***p % 0.001; ****p % 0.0001 using an unpaired two-tailed Student’s t test).

See also Figure S1 and Tables S1, S2, and S6.
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in yeast with deletion of the TSR2 ortholog (Schütz et al., 2014).
However, as the stages of ribosome biogenesis do vary between
species (Preti et al., 2013), some difference in the precise nature
of the impairment during this process is notable (Schütz
et al., 2014).
We next investigated if there were alterations in the levels of

actively translating ribosomes by creating DBA-associated mo-
lecular lesions, including suppression of TSR2, RPS19 (eS19),
RPL5 (uL18), RPS24 (eS24), and RPL11 (uL5). We consistently
observed reduced content of ribosomes in the cells using quan-
titative polysome profiling from similar numbers of cells and
through quantification of a variety of RP levels in whole cell
lysates from both primary hematopoietic cells and cell lines (Fig-
ures 2B–2D and S2C–S2Q). We found an overall reduction of
1.3- to 4.1-fold in the level of monosomes and 1.6- to 2.2-fold
in the level of polysomes in primary hematopoietic cells (Figures
2E and 2F). This correlated well with the quantification of overall
RP levels in these cells (Figures 2C and S2M–S2Q). Importantly,
lesions in a single RPwould generally suppress the protein levels
of other RPs, particularly among those found in the same subunit
as the primary molecular lesion (Figures 2B, 2C, and S2H–S2Q).
These data collectively point toward an outcome of reduced
ribosome levels with a diverse group of DBA-associated molec-
ular lesions in differentiating HSPCs. To bolster these findings,
given that rRNAs play a key role in the formation of the ribosome,
we used a selective inhibitor of RNA polymerase I rRNA tran-
scription (CX-5461) (Bywater et al., 2012) to show that rRNA
inhibition more profoundly perturbed erythroid lineage commit-
ment, as compared to other myeloid lineages and severely
impaired GATA1 protein production (along with RPs) concomi-
tantly (Figures 2G and 2H).

Verification of Constant Ribosome Composition in
Human Hematopoietic Cells with DBA-Associated
Molecular Lesions
Our results have suggested that molecular lesions resulting in
DBA can reduce the level of actively translating ribosomes in hu-
man hematopoietic cells. These results in tandemwith the in vivo
findings from TSR2 mutant patients suggest, but do not formally
prove, that reduced ribosome levels may be sufficient to result
in impaired erythroid lineage commitment in HSPCs. Recent
studies have suggested that RP mutations may result in altered
ribosome composition in some contexts (Shi et al., 2017). We
therefore wanted to directly interrogate the protein composition
of actively translating ribosomes in the setting of DBA-associ-
ated lesions to understand whether such changes may occur
in human hematopoietic cells. We performed quantitative high-
coverage tandem-mass-tag (TMT) mass spectrometry in human
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Figure 2. DBA-Associated Molecular Lesions Result in Reduced
Ribosome Levels
(A) TSR2 suppression results in impaired pre-rRNA processing in human he-

matopoietic cells. Ethidium bromide-stained RNA gel (left) and Northern blot

analysis (right) are shown in setting of TSR2 suppression.

(B) Western blot detection of the indicated proteins from lysates of differenti-

ating HSPCs following TSR2 suppression.

(C) Relative quantification of RP intensities shown in (B) normalized to GAPDH.

(D) Polysome profiles of primary human HSPCs undergoing differentiation that

show the reduction of monosome and polysome levels with DBA-associated

molecular lesions. The traces are shown offset from one another on the

arbitrary y axis (derived from relative absorbance at 254 nm) for ease of

visualization.

(E and F) Relative quantification of monosome (E) and polysome (F) abun-

dances from primary human HSPCs undergoing erythroid differentiation.

Shown is the mean ± SD of two independent experiments. (*p % 0.05;

**p % 0.01; ***p % 0.001 using an unpaired two-tailed Student’s t test).

(G) Absolute numbers of erythroid cells as measured by surface marker

expression of CD235a and myeloid cells as measured by CD41a or CD11b at

72 hr after treatment with increasing concentrations of the RNA polymerase I

inhibitor CX-5461 in primary human HSPCs undergoing differentiation. Results

from a representative experiment are shown.

(H) Western blot detection of the indicated proteins from lysates of differenti-

ating HSPCs at 72 hr after treatment with increasing concentrations of

CX-5461.

See also Figure S2.
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hematopoietic cells to measure the expression of all RPs. We
fractionated cells by sucrose gradient sedimentation and
collected monosomes (a single ribosome), light polysomes
(2–4 ribosomes), and heavy polysomes (R5 ribosomes) from
control cells or those with DBA-associated perturbations,
including haploinsufficiency of RPS19 and RPL5 or suppression
of TSR2 (Figure 3A). Peptides for RPs were highly enriched in the
mass spectrometry data: 77 out of 80 RPs were detectable by
two or more unique peptides, and estimates of protein abun-
dance were robust across biological replicates (Figures S3A–
S3F). Strikingly, although we observed altered polysome profiles
and cellular RP abundance, the average composition of RPs
within monosomes, light polysomes, and heavy polysomes
was largely invariant between controls and DBA-associated
molecular lesions (Figures 3B–3D and S3G–S3I). The protein
expression of the targeted or associated RPs did not deviate

A

0 20 40 60 80

M LP HP

Distance (mm)

shTSR2 vs. shLuc shRPS19 vs. shLuc shRPL5 vs. shLuc

HP

LP

M

B

C

D

-4 -2 0 2

-4

-2

0

2

RPS26

-4 -2 0 2

-4

-2

0

2

RPS19

-4 -2 0 2

-4

-2

0

2

RPL5

-4 -2 0 2

-4

-2

0

2

RPS26

-4 -2 0 2

-4

-2

0

2

RPS19

-4 -2 0 2

-4

-2

0

2

RPL5

-4 -2 0 2

-4

-2

0

2

RPS26

-4 -2 0 2

-4

-2

0

2

RPS19

-4 -2 0 2

-4

-2

0

2
RPL5

Pearson RPS = 0.997
Pearson RPL = 0.998
Pearson all     = 0.997

Pearson RPS = 0.992
Pearson RPL = 0.992
Pearson all     = 0.991

Pearson RPS = 0.992
Pearson RPL = 0.995
Pearson all     = 0.982

Pearson RPS = 0.995
Pearson RPL = 0.997
Pearson all     = 0.995

Pearson RPS = 0.996
Pearson RPL = 0.997
Pearson all     = 0.993

Pearson RPS = 0.987
Pearson RPL = 0.987
Pearson all     = 0.965

Pearson RPS = 0.984
Pearson RPL = 0.976
Pearson all     = 0.968

Pearson RPS = 0.958
Pearson RPL = 0.975
Pearson all     = 0.876

Pearson RPS = 0.927
Pearson RPL = 0.915
Pearson all     = 0.915

sh
TS

R
2 

lo
g 2 R

P
 in

te
ns

ity
sh

TS
R

2 
lo

g 2 R
P

 in
te

ns
ity

sh
TS

R
2 

lo
g 2 R

P
 in

te
ns

ity

sh
R

P
S

19
 lo

g 2 R
P

 in
te

ns
ity

sh
R

P
S

19
 lo

g 2 R
P

 in
te

ns
ity

sh
R

P
S

19
 lo

g 2 R
P

 in
te

ns
ity

sh
R

P
L5

 lo
g 2 R

P
 in

te
ns

ity
sh

R
P

L5
 lo

g 2 R
P

 in
te

ns
ity

sh
R

P
L5

 lo
g 2 R

P
 in

te
ns

ity

shLuc log2 RP intensity shLuc log2 RP intensity shLuc log2 RP intensity

shLuc log2 RP intensity shLuc log2 RP intensity shLuc log2 RP intensity

shLuc log2 RP intensity shLuc log2 RP intensity shLuc log2 RP intensity

A
bs

or
ba

nc
e 

at
 2

54
 n

m

Figure 3. No Evidence for Variation in Ribo-
some Protein Composition in Cells with
DBA-Associated Molecular Lesions
(A) Human hematopoietic cells treatedwith control

vectors or with TSR2, RPS19, or RPL5 suppres-

sion were fractionated by sucrose gradient

sedimentation. Monosome fractions (M), light

polysomes (LP), and heavy polysomes (HP)

were analyzed by tandem mass tag (TMT) mass

spectrometry.

(B–D) Log2 transformed and median centered RP

intensities from two independent replicates in

various knockdown (KD) conditions versus shLuc

control in HP (B), LP (C), and M (D) fractions. RPs

of the large subunit are shown in blue, RPs of the

small subunit are shown in black, and the targeted

or related RP is highlighted in red. Linear re-

gressions for small subunit RPs (black), large

subunit RPs (blue) and all RPs together (gray) are

shown and Pearson correlations are reported.

See also Figure S3 and Table S7.

significantly from that of the other
RPs (based on Studentized residuals,
Figures S3G–S3I), strongly supporting
the concept that DBA results from
decreased ribosome abundance, rather
than from formation of ribosomes that
have a distinct protein composition.
The composition of ribosome-associated
proteins was also analyzed and we found
no consistent alteration of these proteins
in the presence of DBA-associated mo-
lecular lesions (Figures S3J and S3K).
We note that because our assay mea-
sures total protein levels within a given
cellular fraction, we cannot completely
exclude the possibility that the pool
of actively translating ribosomes is
comprised of ribosomes with variable
composition or that DBA-associated
lesions could result in conformational
changes in the ribosome that then alter

translation. However, these possibilities seem unlikely, given
the structural stability of the ribosome (Khatter et al., 2015) and
the normal, albeit reduced, ribosomal maturation we observe.
Therefore, our results from human genetic and biochemical
studies of DBA-associated lesions lead to a model whereby
the perturbation of hematopoietic differentiation observed arises
from a reduced number of ribosomes per cell.

Defining Transcripts Whose Translation Is Most
Sensitive to DBA-Associated Molecular Lesions
Having concluded that ribosome levels play a critical role in the
lineage commitment defect observed in DBA from complemen-
tary human genetic and biochemical/proteomic studies, we
aimed to better understand the consequences of decreased
ribosome levels on translation. To gain global insight into
changes in translation that occur with such perturbations in
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primary human HSPCs undergoing erythroid lineage commit-
ment, we performed ribosome profiling (Ingolia, 2016; Mills
et al., 2016). This technique involves measuring translational ef-
ficiency (TE), by comparing the levels of ribosome-associated
mRNA footprints to the total mRNA for each gene. For biological
replicates of RPL5 and RPS19 suppression, we obtained both
ribosome-protected footprints (RPFs) and matching mRNA-

sequencing (mRNA-seq); the RPFs were of high quality, as
assessed by expected RPF size, coding sequence (CDS) enrich-
ment, and triplet periodicity (Figures 4A, 4B, S4A, and S4B;
Table S3). Changes in transcription and translation appeared
to be largely similar between RPS19 and RPL5 haploinsuffi-
ciency (Figure 4C), consistent with the concept that DBA-associ-
ated lesions cause a common set of molecular changes in
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Figure 4. Identification of Transcripts Whose Translation Is Sensitive to RP Haploinsufficiency
(A) After adaptor trimming and rRNA removal, the distribution of ribosome profiling reads is shown. The reads all fall between 27–32 nucleotides.

(B) The ribosome profiling data exhibit triplet periodicity based upon meta-gene analysis of CDS regions. A representative example is shown.

(C) Differences between shLuc and shRPL5 or shRPS19 in primary differentiating human HSPCs are highly correlated at both the transcriptional and translational

levels, as displayed in a scatterplot where color indicates point density. Both local regression (with confidence intervals) and linear fits are shown in red. Pearson

correlations are indicated.

(D) Venn diagrams of differentially expressed (DmRNA, FDR <1% and log2 jfold changej >1) or differentially translated (D translation efficiency [TE], FDR <10%)

genes showing that changes in translation and in transcription resulting from RP haploinsufficiency compared to control occur largely independent of each other.

(E) Gene set enrichment analyses indicate that RP genes are co-regulated at the translational (permutation FDR <0.0001), but not transcriptional (permutation

FDR = 0.36) level with RP haploinsufficiency. The enrichment score is plotted in green, and genes are plotted as black lines according to their rank.

(F) The relative reduction in translation efficiency for selected RP haploinsufficiency-sensitive transcripts including GATA1 is shown in green, relative changes in

mRNA expression are shown in red.

(G) Boxplots for CDS length or cellular protein intensities in primary human erythroid progenitors are shown across FDR thresholds for differential translation. CDS

length was calculated for the most abundant transcript in shLuc and RP haploinsufficient differentiating HSPCs (*controlled for PolyA-selection based bias).

p values were determined by an F-test.

See also Figure S4 and Tables S3 and S4.

Cell 173, 90–103, March 22, 2018 95



B

C D E F

-300 -200 -100 0

5’
 U

TR
 Δ

 G

p 
< 

10
-2

5

-0.6 -0.4 -0.2 0.0

5’
 U

TR
 Δ

 G
 / 

le
ng

th

p 
< 

10
-9

0 100 200 300 400 500

5’
 U

TR
 le

ng
th

p 
< 

10
-3

4

RP genes
2.5% FDR
10% FDR

unchanged
2.5% FDR
10% FDR

A

-250-200-150-100-500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cu
m

ul
at

iv
e 

de
ns

ity

Master Hematopoietic TFs

5’UTR ΔG

GATA1

10
%

 F
D

R
   

 m
ed

ia
n 

5’
 U

TR
 Δ

G

0 100 200 300 400 500 600

GATA1

10
%

 F
D

R
   

 m
ed

ia
n 

5’
 U

TR
 le

ng
th

5’UTR length

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cu
m

ul
at

iv
e 

de
ns

ity

-300

-200

-100

0

600

400

200

0

5’
 U

TR
 Δ

 G

5’
 U

TR
 le

ng
th

master 
  TFs

10% 
FDR

master 
  TFs

10% 
FDR

p<10-4 p<10-3

Master Hematopoietic TFs

H

0 103 104 105

Ter119

Empty vector 
GATA1-5’UTR-GATA1 
RUNX1-5’UTR-GATA1 
LMO2-5’UTR-GATA1 
ETV6-5’UTR-GATA1 

N
or

m
al

iz
ed

 t
o 

ce
ll 

co
un

t

44.6 ± 0.5 %

10.4 ± 0.2 %

26.6 ± 0.3 %

27.6 ± 0.8 %

0.5 ± 0.1 %

I J

GATA
1-

5'U
TR 

RUNX1-
5'U

TR

LM
O2-

5'U
TR

ETV6-
5'U

TR
0.0

0.5

1.0

N
or

m
al

iz
ed

 ra
tio

 %
 T

er
11

9+  
ce

lls
/ 

G
AT

A
1 

m
R

N
A 

le
ve

ls

****
**** ****

GATA
1-

5'U
TR 

RUNX1-
5'U

TR

LM
O2-

5'U
TR

ETV6-
5'U

TR
0.0

0.5

1.0

N
or

m
al

iz
ed

 ra
tio

 T
er

11
9 

M
FI

/ 
G

AT
A

1 
m

R
N

A 
le

ve
ls

**** **** ****

GATA
1 

RUNX1
LM

O2
ETV6

0.0

0.5

1.0

N
or

m
al

iz
ed

 b
as

el
in

e 
TE

G

Figure 5. Analysis of 50 UTR Features of Key Hematopoietic Transcription Factors
(A) Boxplots for different 50 UTR features are shown across FDR thresholds for differential translation in primary differentiating human HSPCs. The minimum free

energy (D G) was calculated using RNAfold for the entire 50 UTR. As this prediction is correlated with length, DG corrected for 50 UTR length was also analyzed.

p values were determined by an F-test.

(B) Master regulator transcription factors (TFs) are shown in their approximate positions of action in a model of hematopoiesis. HSC, hematopoietic stem cell;

RBCs, red blood cells; Mega, megakaryocyte; Gran, granulocyte; Mono, monocyte; B Lymph, B lymphocyte; T Lymph, T lymphocyte; NK, natural killer cell.

(C and D) The GATA1 50 UTR is shorter (C) and less structured (D) than those of most other hematopoietic master TFs. GATA1 is highlighted in red. Themedian line

for the 10% FDR RP haploinsufficiency-sensitive transcripts is indicated, respectively.

(E and F) Most hematopoietic master TFs have significantly longer (2.5 mean-fold difference) (E) and more structured 50 UTRs (2.8 mean-fold difference in DG)

(F) than transcripts that are translationally downregulated with RP haploinsufficiency.

(G) Normalized baseline translation efficiencies (TE) based on ribosome profiling in unperturbed HSPCs undergoing erythroid lineage commitment are shown for

GATA1, RUNX1, LMO2, and ETV6.

(H) Histogram plots for Ter119 in GFP+ populations derived from G1E cells that were transduced with GATA1-, RUNX1-, LMO2-, or ETV6-50UTR-GATA1 cDNA

constructs. The mean ± the SD for the percentages of Ter119+ cells of three replicates is shown.

(legend continued on next page)
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human HSPCs undergoing erythroid differentiation. Importantly,
changes in transcription and translation were largely indepen-
dent (Figures 4D and S4C), emphasizing the value of ribosome
profiling (Ingolia, 2016).
Notably, the RP genes globally showed the greatest decrease

in TE with RP haploinsufficiency (the top 10 of 557 KEGG,
REACTOME, and BIOCARTA pathways are primarily composed
of RP genes), despite relatively unchanged mRNA levels (Fig-
ure 4E). This observation suggests that RPs are co-regulated at
the translational level, which would allow cells to maintain
RP stoichiometry. While translational co-regulation of RPs has
been demonstrated downstream of mTOR signaling (Hsieh
et al., 2012; Thoreen et al., 2012), our findings show, similar to
observationsmade in yeast (Thompson et al., 2016), that co-regu-
lation of RP translation can also occur in the setting of RP haploin-
sufficiency in human hematopoietic cells. The extent to which the
ubiquitin-dependent degradation of RPs (Sung et al., 2016) plays
anadditional role inmaintaining homeostasis is unclear. However,
our data suggest that the reduction of ribosome levels observed in
the setting of RP haploinsufficiency (Figures 2 and S2) is largely
promoted through reduced translation of RP mRNAs.
At a false discovery rate (FDR) of 10%,we identified a selective

set of 525 transcripts whose TE was particularly sensitive to and
downregulated by RP haploinsufficiency (Figure 4D; Table S4).
We confirmed our previous finding that translation of GATA1
mRNA is significantly decreased by "2-fold in differentiating
HSPCs with RP haploinsufficiency (Ludwig et al., 2014) (Fig-
ure 4F; Table S4). A subset of the downregulated transcripts
are essential for growth in hematopoietic cells (Wang et al.,
2015) and are substantially upregulated during early erythro-
poiesis (between CD34+ and proerythroblast (ProE) stages of
normal human erythropoiesis) (Li et al., 2014), consistent with
the stages of perturbation observed in DBA patients (Figure S4D;
Table S4). This observation suggests that the reduced transla-
tion of multiple transcripts that are upregulated at the early
stages of erythroid lineage-specification from HSPCs, including
GATA1, plays a key role in the in vivo phenotypes observed in
DBA. Importantly, in this context, we note that mutations in
GATA1 are sufficient to cause DBA in rare patients (Sankaran
et al., 2012) and some genes that are downregulated at the trans-
lational level, such as the ribosome-associated protein RNH1,
have been shown to have additional key roles in the regulation
ofGATA1mRNA translation (Chennupati et al., 2018). In concert
with previous genetic and rescue experiments performed in DBA
patient samples (Ludwig et al., 2014), our results suggest that
a number of ribosome-associated factors are translationally
downregulated in the setting of RP haploinsufficiency and
many of these lesions potentially result in the coordinated impair-
ment of GATA1 mRNA translation as a common downstream
pathogenic mechanism.
We next sought to determine if these RP haploinsufficiency-

sensitive transcripts shared similar features to gain insight into

the mechanisms of lineage commitment during human hemato-
poiesis and how this process can be perturbed in diseases like
DBA. Interestingly, we found that the RP haploinsufficiency-sen-
sitive transcripts were on average shorter in overall length, more
efficiently translated under baseline conditions, and encoded
more abundantly expressed proteins in unperturbed primary
human erythroid progenitors (Gautier et al., 2016) (Figures 4G
and S4D). Of note, short mRNA length has been shown to be
associated with efficient translation in other contexts (Thompson
et al., 2016), although this feature alone may not be sufficient to
mediate translational control.
Much of the underlying regulation of protein translation is

mediated by the 50 untranslated region (50 UTR) of transcripts
(Hinnebusch et al., 2016; Shah et al., 2013). To fully interrogate
this variation,wecomprehensively defined 50 UTRspresent in he-
matopoietic cells using cap analysis gene expression (CAGE)
sequencing, which can often vary from annotated 50 UTRs (Fig-
ure S5A). Using such data, we found that the 50 UTRs of downre-
gulated transcriptswere 42 nucleotides shorter on average, were
predicted to have less complex secondary structure, and con-
tained fewer in-frame and out-of-frame upstream start codons
(uAUGs)—features associated with efficient ribosome initiation
and translation in unperturbed cells, including in our data from
control HSPCs undergoing erythroid lineage commitment (Hin-
nebusch et al., 2016; Shah et al., 2013) (Figures 5A, S5B, and
S5C). As the 50 terminal oligopyrimidine (50 TOP) motif was origi-
nally identified in RP mRNAs (Roepcke et al., 2006), we investi-
gated whether this motif or a similar motif was enriched in those
transcripts with reduced TE. We found a significant enrichment
for suchmotifs that was predominantly explained by the downre-
gulated group of RP mRNAs (Figure S5D), suggesting that
translational alterations in RP haploinsufficiency are partially
overlapping with, but are distinct from, alterations due to mTOR
inhibition where TOP or TOP-like motifs are present in a large
subset ofmTOR-sensitive transcripts (Hsieh et al., 2012; Thoreen
et al., 2012). Further analysis revealed that a number of motifs
were nominally enriched across the entire 50 UTR, as well as at
the 50 and 30 ends, but no single motif could explain the observed
differences in TE between RP haploinsufficiency-sensitive and
insensitive transcripts (FiguresS5EandS5F). Altogether, amodel
of the features investigated here explained 39% of the variation
of TE changes in a held-out set of genes, validating the key role
that these features have in translational regulation (Hinnebusch
et al., 2016; Shah et al., 2013).

Interrogation of 50 UTRs from Hematopoietic Master
Regulators SuggestsMechanisms of Lineage Selectivity
in DBA
While our ribosome profiling analysis elucidated transcripts
within differentiating HSPCs that selectively show increased
sensitivity to impaired translation in the setting of DBA-associ-
ated molecular lesions, these findings are insufficient to explain

(I) Bar graphs for normalized ratios of % Ter119+ populations in GFP+ cells/GATA1 mRNA levels from G1E cells that were transduced with GATA1-, RUNX1-,

LMO2-, or ETV6-50UTR-GATA1 constructs. The mean ± the SD of three replicates is shown (****p % 0.0001 using an unpaired two-tailed Student’s t test).

(J) Bar graphs for normalized ratios of the Ter119 mean fluorescence intensities (MFIs) of GFP+ cells/GATA1 mRNA levels from G1E cells that were transduced

with the constructs listed above. The mean ± the SD of three replicates is shown (****p % 0.0001 using an unpaired two-tailed Student’s t test).

See also Figure S5 and Table S5.
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the erythroid specificity of DBA. We had noted that most of the
transcripts sensitive to RP haploinsufficiency tended to have
short and unstructured 50 UTRs—features that are associated
with increased translation efficiency under baseline conditions
(Figures 5A and S5B). This included the 50 UTR of GATA1
mRNA. Master regulator transcription factors, such as GATA1,
are critical for determining cell identity and promoting lineage
specification in physiologic differentiation processes such as he-
matopoiesis (Doulatov et al., 2012; Orkin and Zon, 2008). Indeed,
such master regulator transcription factors are sufficient to allow
for dramatic changes in cell state (Srivastava and DeWitt, 2016;
Capellera-Garcia et al., 2016). We reasoned that perhaps the
observed lineage selectivity may occur because no other master
regulators of hematopoietic lineage commitment were perturbed
by reduced ribosome levels (Paul et al., 2015; Velten et al., 2017).
Our results from ribosome profiling suggest that this could be
due to 50 UTR-mediated mechanisms. To investigate whether
the observed patterns of sensitivity to reduced ribosome levels
may underlie the hematopoietic lineage selectivity, we examined
CAGE data generated from unperturbed primary human HSPCs
that are comprised of progenitors capable of commitment
to multiple lineages. Among a group of 36 well-characterized
hematopoietic master regulators known to have key and well-
defined roles in lineage commitment (where 29 of these tran-
scription factors were well expressed and had clearly defined
TSSs in CAGE data generated from unperturbed primary human
HSPCs) (Figure 5B), we found that the majority had significantly
longer and more complex 50 UTRs compared with those tran-
scripts sensitive to reduced ribosome levels, with GATA1
mRNA being a notable exception (Figures 5C and 5D). Impor-
tantly, the overall group of hematopoietic master regulators
has significantly longer 50 UTR lengths (2.5 mean-fold difference,
p < 10!4) and more complex 50 UTR structures (2.8 mean-fold
difference in DG, p < 10!3) than the group of transcripts showing
sensitivity to RP haploinsufficiency (Figures 5E and 5F). Alto-
gether, these data suggest that GATA1 exhibits unique 50 UTR
features among hematopoietic master regulators, which may
explain its translational sensitivity to reduced ribosome levels
and the consequent lineage-specific defect observed in DBA.
Importantly, we were able to validate this lack of translational
downregulation with RP haploinsufficiency for master regulators
that were expressed in the differentiating HSPCs: KLF1, TAL1,
MYB, GATA2, LMO2, RUNX2, ETV6, KMT2A, NFE2, FLI1,
STAT5A, STAT3, SPI1, NOTCH1, BCL11A, IKZF1, and XBP1
all showed no major decrease in TE (FDRY >10%, log2 TE fold
decrease of <0.45).

To directly interrogate whether such 50 UTR features may be
sufficient to confer baseline variation in translation, we comple-
mented the GATA1 null G1E hematopoietic cell line (Weiss
et al., 1997) with GATA1 cDNA harboring 50 UTRs from different
hematopoietic master regulators including GATA1 itself, LMO2,
RUNX1, and ETV6—the latter three being longer and having
more complex secondary structures than the endogenous
GATA1 50 UTR (Table S5). Consistent with the hypothesis that
other master regulator 50 UTRs should have lower translation
efficiency under baseline conditions (Figure 5G) and therefore
would be less susceptible to a reduction in ribosome levels, we
found that the GATA1-induced erythroid differentiation (that cor-

relates with GATA1 protein levels) was substantially impaired
by 50 UTRs from the other hematopoietic master regulators
compared with GATA1 (Figures 5H–5J). These data emphasize
the unique features of theGATA1 50 UTR, in comparison to other
hematopoietic master regulator mRNAs, which thereby confer
sensitivity to variation in ribosome levels.

Impaired GATA1 Protein Production in Primary HSPCs
from DBA Patients
We have shown that impaired translation of select transcripts,
including GATA1, occurs with RP haploinsufficiency and conse-
quently reduced ribosome levels and is accompanied by the
functional hematopoietic defects characteristic of DBA. Our
analysis suggests that a key common effector of these defects
in DBA is GATA1. We wanted to confirm the relevance of these
findings at the single cell level in hematopoietic progenitors
in vivo in DBA patients. As primary patient samples are often
limited and challenging to obtain, we developed a semiquantita-
tive immunohistochemistry staining method for GATA1 protein
expression (Lee et al., 2017). We could individually identify and
measure the staining intensity of GATA1 in the nuclei of erythroid
precursors and progenitors frombonemarrowbiopsies obtained
from healthy controls or from DBA patients (Carpenter et al.,
2006). We found that DBA patients had a significantly reduced
GATA1 staining intensity in such cells (Figures 6 and S6). While
some cells did have overlapping intensities, we noted that less
mature cells with larger nuclei frequently had reduced staining
intensities, suggesting that the defects in DBA arise at the early
stages of erythroid lineage commitment. However, immunohis-
tochemistry is limited in our ability to compare stage-matched
cells and this analysis could be confounded by variation in
erythroid cell composition between DBA patients and controls.
We therefore wanted to identify the stages at which such

impairments may arise during in vivo human hematopoiesis.
Recent work has shown that lineage commitment to the
erythroid and other lineages occurs predominantly at the early
HSPC stages, rather than occurring at later stages of differenti-
ation as classically inferred through analysis of heterogeneous
bulk cell populations (Notta et al., 2016; Paul et al., 2015; Perié
et al., 2015; Velten et al., 2017). Indeed, GATA1 mRNA shows
initial expression in human HSPCs within the most primitive
CD34+CD38! compartment (Notta et al., 2016). We had previ-
ously demonstrated that human HSPCs show no difference in
GATA1 mRNA expression when comparing healthy donors to
patients with DBA (Ludwig et al., 2014). To interrogate GATA1
protein expression at the single cell level, we developed an intra-
cellular flow cytometric detection approach. We utilized an
in vitro erythroid differentiation protocol from human HSPCs to
interrogate GATA1 expression during this differentiation process
(Giani et al., 2016; Kim et al., 2017). We found that GATA1 was
expressed at low levels in a subset of the HSPCs prior to initiation
of differentiation. As expansion and differentiation proceeded,
there was an initial upregulation of GATA1 in many cells
and a progressive increase in expression among the primitive
CD34+CD38! and more differentiated CD34+CD38+ HSPC pop-
ulations (Figure 7A). With differentiation, robust and high-level
GATA1 protein expression was seen in lineage committed
CD235a+CD71+ erythroid cells (Figures 7A and S7A). Our
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findings from this differentiation protocol demonstrate that
GATA1 is initially expressed in a subset of HSPCs at low levels
and this expression then progressively increases with higher-
level expression occurring in erythroid-committed progenitors
and precursors.
The observed early expression of GATA1 protein in HSPCs is

consistent with the recently described models of hematopoiesis
where lineage commitment occurs in such primitive populations
and builds upon these findings to delineate a key role for this
master transcription factor in this process (Notta et al., 2016;
Paul et al., 2015; Perié et al., 2015; Velten et al., 2017). Given the
observed expression, we interrogated GATA1 protein expression
in single cells fromHSPCpopulations of unperturbedDBApatient
or healthy control bonemarrow aspirate samples (Figures 7B and
7C). Interestingly, among patients with RPL35A, RPL5, or RPS19
mutations, therewas a consistent reduction in GATA1 expression
in both CD34+CD38! and CD34+CD38+ HSPC populations (Fig-
ure 7C). Despite overall upregulation of GATA1 protein levels dur-
ing the CD38! to CD38+ transition of hematopoietic progenitors,
the overall GATA1 levels in individual progenitors remained lower
in DBA patients. These observations demonstrate that in uncul-
tured bone marrow specimens from DBA patients with diverse
RP mutations, there is a reduction in GATA1 expression at the

early HSPC stages. This finding fits with the lineage commitment
impairment characteristic of DBA (Iskander et al., 2015; Nathan
et al., 1978) and also supports our mechanistic studies of altered
translation in differentiating HSPCs.

DISCUSSION

Recent studies have refined our understanding of hematopoiesis
and shown that hematopoietic lineage commitment occurs at
the early HSPC stages (Notta et al., 2016; Paul et al., 2015; Perié
et al., 2015; Velten et al., 2017). However, the key molecular reg-
ulators of lineage commitment and the relevance of these up-
dated models to human disease have not been explored. Here,
we have studied a rare genetic blood disorder—DBA—that is
characterized by a paucity of erythroid precursors and progeni-
tors, to provide insight into both of these issues. We show that
the lesions in DBA arise at the level of HSPCs, consistent with
the specification of lineage commitment and differentiation
within this primitive cell compartment. We also demonstrate
how ribosome levels can play a key role in allowing lineage
commitment to productively ensue. Our findings demonstrate
how by exploring a rare genetic disorder, we can not only gain
insight into the pathogenesis of the specific disease of interest,
but also more broadly provide insight into the molecular under-
pinnings of hematopoietic lineage commitment.
We demonstrate through complementary human genetic and

biochemical studies that ribosome levels serve a key role in
allowing effective hematopoietic differentiation. A select subset
of transcripts is affected by functionally relevant alterations in
ribosome levels. Specifically, we found that reduced ribosome
levels impaired the translation of transcripts that are normally
highly translated and have short/unstructured 50 UTRs over other
transcripts. These findings demonstrate the value that ribosome
profiling can have to interrogate translation on a global genomic
scale and have allowed us to identify the specific liabilities that
occur in the setting of reduced ribosome levels (Ingolia, 2016).
Our findings complement recent studies showing how protein
synthesis undergoes dramatic variation during hematopoiesis
(Signer et al., 2014). While the functional role of such tightly regu-
latedprotein synthesis rates in hematopoietic stemcells hasbeen
examined, the necessity of upregulation in protein synthesis rates
for hematopoietic differentiation has not been explored. While in
some contexts RP composition may vary (Shi et al., 2017), we
find that in the setting of RP haploinsufficiency in hematopoietic
cells, no apparent altered composition can be identified. Rather,
the impaired lineage commitment characteristic of DBA arises
from a reduced cellular level of ribosomes. It is notable that
studies inhematopoietic cells havedemonstrated that thehighest
rates of protein synthesis occur in progenitors undergoing
erythroid lineage commitment (Signer et al., 2014), which fits
with our findings of how ribosome levels can selectively impair
erythroid lineage commitment and GATA1 requires one of the
highest translation rates among various master regulators of
hematopoiesis. Future studies examining the sensitivity to and
liabilities arising from reduced ribosome levels in various hemato-
poietic lineages will provide further insight into this process.
Beyond hematopoiesis, the regulation of ribosome levels is

likely to have a key role more broadly in cellular differentiation

Figure 6. Reduced GATA1 Protein Levels in Bone Marrow Pro-
genitors from DBA Patients
Representative images of human bone marrow biopsies stained for GATA1

protein (brown) in DBA patients with diverse RP mutations and normal healthy

controls. Below, is a density plot comparing single cell saturation intensities

between DBA patients and normal individuals that shows significantly reduced

expression in DBA (n = 2,759 for DBA and 2,149 cells for controls; significance

calculated by the Mann-Whitney U test).

See also Figure S6.
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Figure 7. Reduced GATA1 Protein Expression in Primary HSPCs from DBA Patients
(A) Intracellular flow cytometric detection shows low levels of GATA1 expression in a subset of both the primitive CD34+CD38! and more differentiated

CD34+CD38+ HSPC populations (left). With differentiation, robust and high-level GATA1 protein expression can be seen in committed CD235a+CD71+ erythroid

cells (right).

(B) Reduced GATA1 protein expression in single cells from HSPC populations from a DBA patient bone marrow aspirate sample compared to a healthy control.

(C) GATA1MFIs show a consistent reduction in GATA1 expression in CD34+CD38! and CD34+CD38+ HSPC populations in DBA patients with RPL35A, RPL5, or

RPS19 mutations compared to healthy controls.

See also Figure S7.
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and tissue homeostasis (Buszczak et al., 2014). Indeed, the
broad array of ribosomal disorders, which display highly-specific
phenotypes, indicates the key roles that ribosome levels may
have in other contexts and cell types (McCann and Baserga,
2013). Even mutations in RPs themselves can present with a
broad range of highly specific phenotypes beyond the paucity
of erythroid cells characteristic of DBA. These phenotypes
include isolated congenital asplenia (Bolze et al., 2013) and neu-
rodevelopmental disorders (Brooks et al., 2014) in addition to the
non-hematopoietic phenotypes notable in DBA patients, such as
cleft lip/ palate, thumb abnormalities, and other congenital de-
fects (Gazda et al., 2008). It is likely that mechanisms involving
impaired translation of specific transcripts, similar to those we
identify within the hematopoietic compartment, may have a
role in mediating these other phenotypes.
While studies of cellular differentiation have largely focused on

transcriptional changes underlying these processes, it is clear
that post-transcriptional regulation serves key and largely
unappreciated roles in this process. While exploration of such
mechanisms is more limited, as compared to the relative ease
of interrogating the transcriptome (Tanay and Regev, 2017), ad-
vances in approaches such as ribosome profiling suggest
that important insight can more broadly be gained into this pro-
cess through in depth mechanistic studies (Ingolia, 2016). With
continued advances in the ability to carry out such approaches
in more limited populations of cells, as we have done here with
primary human hematopoietic cells, and the increased availabil-
ity of orthogonal genomic data, more sophisticated insight can
be gained into the regulation of this process. In addition, the
key advances occurring in the field of human genetics will enable
us to better understand how such process can be perturbed in
human disease (Casanova et al., 2014), as we have been able
to study here for DBA.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Goat polyclonal anti-GATA1 (M-20) Santa Cruz Biotechnology Cat#: sc-1234; RRID: AB_2263157

Rabbit polyclonal anti-TSR2 Abcam Cat#: ab155810; RRID: AB_2715561

Mouse monoclonal anti-RPS19 (WW-4) Santa Cruz Biotechnology Cat#: sc-100836; RRID: AB_1129199

Goat polyclonal anti-RPL5 (D-20) Santa Cruz Biotechnology Cat#: sc-103865; RRID: AB_2182039

Goat polyclonal anti-RPL11 (N-17) Santa Cruz Biotechnology Cat#: sc-25931; RRID: AB_2181298

Goat polyclonal anti-RPS20 (G-15) Santa Cruz Biotechnology Cat#: sc-55035; RRID: AB_2180344

Rabbit polyclonal anti-RPS24 Abcam Cat#: ab102986; RRID: AB_10711571

Rabbit polyclonal anti-RPS26 Abcam Cat#: ab104050; RRID: AB_10710999

Rabbit polyclonal anti-RPSA Abcam Cat#: ab137388; RRID: AB_2715562

Rabbit polyclonal anti-RPL28 (FL-137) Santa Cruz Biotechnology Cat#: sc-50362; RRID: AB_2181746

Rabbit polyclonal anti-EPOR (M-20) Santa Cruz Biotechnology Cat#: sc-697; RRID: AB_631468

Rabbit polyclonal anti-STAT5A (C-17) Santa Cruz Biotechnology Cat#: sc-835; RRID: AB_632446

Rabbit polyclonal anti-JAK2 (HR-758) Santa Cruz Biotechnology Cat#: sc-278; RRID: AB_631853

Mouse monoclonal anti-BYSTIN (A-10) Santa Cruz Biotechnology Cat#: sc-271722; RRID: AB_10707663

Goat polyclonal anti-LAMIN B (C-20) Santa Cruz Biotechnology Cat#: sc-6216; RRID: AB_648156

Mouse monoclonal anti-GAPDH (6C5) Santa Cruz Biotechnology Cat#: sc-32233; RRID: AB_627679

Mouse monoclonal anti-ACTB (AC-15) Sigma Aldrich Cat#: A1978; RRID: AB_476692

Donkey anti-mouse Jackson ImmunoResearch Cat#: 715-035-150; RRID: AB_2340770

Donkey anti-goat Jackson ImmunoResearch Cat#: 705-035-147; RRID: AB_2313587

Donkey anti-rabbit Jackson ImmunoResearch Cat#: 711-035-152; RRID: AB_10015282

APC anti-CD235a, clone HIR2 eBioscience Cat#: 17-9987-42; RRID: AB_2043823

Pacific Blue anti-CD41a, clone HIP8 BioLegend Cat#: 303714; RRID: AB_10696421

Pacific Blue anti-CD11b, clone ICRF44 BioLegend Cat#: 301315; RRID: AB_493015

FITC anti-CD41a, clone HIP8 eBioscience Cat#: 11-0419-42; RRID: AB_10718234

FITC anti-CD11b, clone ICRF44 BioLegend Cat#: 301330; RRID: AB_2561703

Propidium Iodide eBioscience Cat#: 00-6990-50

APC Annexin V BD PharMingen Cat#: 550474

Alexa Fluor 488 anti-CD34, clone 581 BioLegend Cat#: 343518; RRID: AB_1937203

Brilliant-Violet 421 anti-CD38, clone HB-7 BioLegend Cat#: 356618; RRID: AB_2566231

PE anti-CD71, clone OKT9 eBioscience Cat#: 12-0719-42; RRID: AB_10717077

FITC anti-CD235a, clone HIR2 BioLegend Cat#: 306610; RRID: AB_756046

APC anti-TER-119, clone TER-119 eBioscience Cat#: 17-5921-81; RRID: AB_469472

Rabbit monoclonal anti-GATA1, clone EP2819Y Abcam Cat#: ab76121; RRID: AB_1310256

Rabbit monoclonal IgG isotype, clone EPR25A Abcam Cat#: ab172730; RRID: AB_2687931

Alexa Fluor 647 Goat polyclonal anti-rabbit

IgG (H+L)

Jackson ImmunoResearch Cat#: 111-605-003; RRID: AB_2338072

Chemicals, Peptides, and Recombinant Proteins

Dulbecco’s Modified Eagle Medium-High

Glucose (DMEM)

GIBCO Cat#: 11965-118

Iscove’s Modified Dulbecco’s Medium (IMDM) GIBCO Cat#: 12440-061

(Continued on next page)
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Roswell Park Memorial Institute Medium

(RPMI) 1640

GIBCO Cat#: 11875-119

Fetal Bovine Serum (FBS) Atlanta Biologicals Cat#: S11150

Human Holo-Transferrin Sigma Aldrich Cat#: T0665-1G

Penicillin-Streptomycin GIBCO Cat#: 15140-122

Human Serum, Type AB Atlanta Biologicals Cat#: S40110

Human Plasma, Type AB Blood Bank at Boston

Children’s Hospital

N/A

Humulin R (Insulin) Lilly NDC 0002-8215-01

Heparin Hospira NDC 00409-2720-01

Epogen (recombinant erythropoietin) Amgen NDC 55513-267-10

Recombinant human stem cell factor (SCF) PeproTech Cat#: 300-07

Recombinant human interleukin-3 (IL3) PeproTech Cat#: 200-03

Opti-MEM GIBCO Cat#: 31985-062

StemSpan SFEM II medium STEMCELL Technologies Cat#: 09655

StemSpan CC100 STEMCELL Technologies Cat#: 02690

1-Thioglycerol Sigma Aldrich Cat#: M6145

4X Laemmli Sample Buffer Bio-Rad Cat#: 161-0747

FuGENE 6 Transfection Reagent Promega Cat#: E2691

Dimethyl-sulfoxide (DMSO) Sigma Aldrich Cat#: D2438

Cycloheximide Sigma Aldrich Cat#: C7698

Polybrene Infection/Transfection reagent Millipore Cat#: TR-1003-G

RNasin Plus RNase Inhibitor Promega Cat#: N2615

SUPERase IN RNase Inhibitor Ambion Cat#: AM2696

cOmplete, Mini, EDTA-free Protease

Inhibitor Cocktail

Sigma Aldrich Cat#: 11836170001

Protease Inhibitor Set G-Biosciences Cat#: 786-207

RNase I Ambion Cat#: AM2294

Trichloracetic acid Sigma Aldrich Cat#: T9159

Sodium deoxycholate Sigma Aldrich Cat#: 30970

RNA Polymerase I Inhibitor II, CX-5461 Millipore Cat#: 509265

Critical Commercial Assays

QuikChange site-directed mutagenesis Kit Agilent Technologies Cat#: 200518

RNeasy Plus Mini Kit QIAGEN Cat#: 74134

iScript cDNA Synthesis Kit Bio-Rad Cat#: 1708891

iQ SYBR Green Supermix Bio-Rad Cat#: 1708882

4-20% Mini-PROTEAN TGX Precast Protein

Gels, 12 well

Bio-Rad Cat#: 4561095

Clarity Western ECL Substrate Bio-Rad Cat#: 1705060

RIPA Lysis Buffer System Santa Cruz Biotechnology Cat#: sc-24948A

PARIS Kit Ambion Cat#: AM1921

Transcription Factor Buffer Set BD PharMingen Cat#: 562574

Direct-zol RNA MiniPrep Plus w/ TRI

Reagent Kit

Zymo Research Cat#: R2071

NEBNext Poly(A) mRNA Magnetic Isolation

Module

New England Biolabs Cat#: E7490

Truseq Ribo Profile (Mammalian) Kit Illumina Cat#: RPHMR12126

(Continued on next page)
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Ribo-Zero Gold rRNA Removal Kit Illumina Cat#: MRZG126

illustra MicroSpin S-400 HR Columns GE Healthcare Life Sciences Cat#: 27-5140-01

Zero Blunt TOPO PCR Cloning Kit invitrogen Cat#: 450031

Deposited Data

Whole-exome sequencing data https://www.ncbi.nlm.nih.gov/gap dbGAP accession: phs000474.v2.p1

Raw mass spectrometry data This study MassIVE: MSV000080283

RNA-seq and ribosome profiling data This study GEO: GSE89183

Experimental Models: Cell Lines

Human CD34+ hematopoietic stem and

progenitor cells, adult

Fred Hutchinson Cancer

Research Center

N/A

Human CD34+ hematopoietic stem and

progenitor cells, adult

Division of Hematology/

Oncology Flow Cytometry

Research Facility at Boston

Children’s Hospital

N/A

K562 cells ATCC Cat#: CCL-243

G1E cells Weiss et al., 1997 N/A

Experimental Models: Strains

Yeast: PGAL1-TSR2 Schütz et al., 2014 N/A

Sequence Based Reagents

shTSR2-1_TRCN0000172642: CCGGG

AGGTCACAGCTACGAATGATCTCGAG

ATCATTCGTAGCTGTGACCTCTTTTTTG

Sigma Aldrich N/A

shTSR2-2_TRCN0000344162: CCGGAG

GATTACTTCATGCGCAATGCTCGAGCA

TTGCGCATGAAGTAATCCTTTTTTG

Sigma Aldrich N/A

shRPS19-1_TRCN0000074913: CCGGC

TACGATGAGAACTGGTTCTACTCGAGT

AGAACCAGTTCTCATCGTAGTTTTTG

Sigma Aldrich N/A

shRPS19-2_TRCN0000074916: CCGGG

CTTGCTCCCTACGATGAGAACTCGAGT

TCTCATCGTAGGGAGCAAGCTTTTTG

Sigma Aldrich N/A

shRPL5-1_TRCN0000074994: CCGGG

TTCGTGTGACAAACAGAGATCTCGAG

ATCTCTGTTTGTCACACGAACTTTTTG

Sigma Aldrich N/A

shRPL5-2_TRCN0000074997: CCGGC

CCTCACAGTACCAAACGATTCTCGAG

AATCGTTTGGTACTGTGAGGGTTTTTG

Sigma Aldrich N/A

shRPS24-1_TRCN0000117550: CCGGC

GCAAGAACAGAATGAAGAAACTCGAG

TTTCTTCATTCTGTTCTTGCGTTTTTG

Sigma Aldrich N/A

shRPS24-2_TRCN0000117551: CCGGG

ATTTATGATTCCCTGGATTACTCGAGTA

ATCCAGGGAATCATAAATCTTTTTG

Sigma Aldrich N/A

shRPL11-1_TRCN0000117712: CCGGG

CGGGAGTATGAGTTAAGAAACTCGAGT

TTCTTAACTCATACTCCCGCTTTTTG

Sigma Aldrich N/A

shRPL11-2_TRCN0000117713: CCGGC

CGCAAACTCTGTCTCAACATCTCGAGA

TGTTGAGACAGAGTTTGCGGTTTTTG

Sigma Aldrich N/A

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Requests for further information or reagents may be directed to the Lead Contact, Vijay G. Sankaran (sankaran@broadinstitute.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Primary Cell Culture
CD34+ cells were obtained from magnetically sorted mononuclear samples of G-CSF–mobilized peripheral blood from donors and
were frozen after isolation. Cells were obtained from the Fred Hutchinson Cancer Research Center, Seattle, USA or the Division of
Hematology/Oncology Flow Cytometry Research Facility at Boston Children’s Hospital. Cells were thawed and washed into PBS
with 1% human AB serum (Atlanta Biologicals), pelleted and then seeded in differentiation medium containing IMDM with 2%
human AB plasma, 3% human AB serum, 1% P/S, 200 mg/mL holo-transferrin, 10 ng/mL SCF (PeproTech, Inc.), 1 ng/mL IL-3
(PeproTech, Inc.) and 3 U/mL erythropoietin (EPO) (Amgen). Where an expansion phase is indicated, CD34+ cells were cultured in
StemSpan SFEM II medium (STEMCELL Technologies) supplemented by 1X CC100 (containing FLT3 ligand, stem cell factor
(SCF), IL-3, and IL-6, STEMCELL Technologies) for 5 days prior to differentiation. Cells were maintained at a density between
0.1 3 106 and 0.5 3 106 cells per milliliter, with medium changes every other day as necessary. Cells were incubated at 37#C
with 5% CO2.

293T and K562 Cell Culture
293T cells (ATCC) were maintained in DMEM with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin (P/S). K562 human
erythroid cells (ATCC) were maintained at a density between 0.13 106 and 13 106 cells per milliliter in RPMI 1640 medium supple-
mented with 10% FBS and 1% P/S. Cells were incubated at 37#C with 5% CO2.

G1E Cell Culture
G1E cells (Weiss et al., 1997) were cultured in IMDM with 15% FCS, 1% P/S., 4.5 3 10!5 M Monothioglycerol (MTG), 50ng/ml SCF
and 2 U/ml EPO at a density between 0.13 106 and 13 106 cells per ml, with medium changes every day as necessary. Cells were
incubated at 37#C with 5% CO2.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

See Table S6 for all primers used for

RT-qPCRs.

This study N/A

See Table S5 for cloned 50UTR and GATA1

coding sequences.

This study N/A

Recombinant DNA

pRS425-hTSR2 Schütz et al., 2014 N/A

pRS425-hTsr2E64G This study N/A

HMD-GATA1 Ludwig et al., 2014 N/A

Software and Algorithms

Image Lab Version 5.2.1 Bio-Rad http://www.bio-rad.com/en-cn/product/

image-lab-software?ID=KRE6P5E8Z

FlowJo 10.0.7 FlowJo https://www.flowjo.com/solutions/flowjo

GraphPad Prism 7 Graphpad Software Inc https://www.graphpad.com/scientific-

software/prism/

R version 3.2 The R Foundation https://www.r-project.org

ExAC Lek et al., 2016 http://exac.broadinstitute.org

Picard tools Broad Institute https://broadinstitute.github.io/picard/

Spectrum Mill MS Proteomics Workbench

v6.0 pre-release software package

Agilent Technologies http://proteomics.broadinstitute.org

FastQC Babraham Bioinformatics http://www.bioinformatics.babraham.ac.uk/

projects/fastqc

CellProfiler Carpenter et al., 2006 http://cellprofiler.org
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METHOD DETAILS

Lentiviral Vectors and Infection
The shRNA constructs targeting human TSR2 (shTSR2-1 and shTSR2-2, RefSeqID NM_058163), human RPS19 (shRPS19-1 and
shRPS19-2, RefSeqID NM_001022), human RPS24 (shRPS24-1 and RPS24-2, RefSeq ID NM_001026), human RPL5 (shRPL5-1
and RPL5-2 RefSeq ID NM_000969) and human RPL11 (shRPL11-1 and RPL11-2 RefSeq ID NM_000975) were obtained from the
Mission shRNA collection (Sigma-Aldrich). The sequences of the shRNAs used in this study are listed in the Key Resources Table.

The lentiviral vectors pLKO-GFP and pLKO.1 targeting Luciferase (shLuc) (Genetic Pertubation Platform of the Broad Institute of
MIT and Harvard) were used as controls. Rescue experiments were performed as described previously (Ludwig et al., 2014) by co-
transduction of human erythroid cells with shRNAs targeting TSR2 and either the HMD control or HMD-GATA1, which contain the
respective cDNAs. Double-transduced cells were identified by puromycin selection and GFP expression driven by an IRES-GFP
in the HMD vector.

For lentivirus production, 293T cells were transfected with pVSV-G and pDelta8.9 using FuGene 6 reagent (Promega) according to
the manufacturer’s protocol. The medium was changed the day after transfection to the appropriate culture medium. After 30 h, viral
supernatant was collected and filtered using a 0.45 mm filter immediately before infection of primary hematopoietic or K562 cells in a
6-well plate at a density of 200,000–500,000 cells per well in the presence of 8 mg/ml polybrene (Millipore). The cells were spun at
2,000 rpm for 90min at 22#C and left in viral supernatant overnight. The mediumwas replaced the morning after infection. Puromycin
selection of infected cells was started 36 h after infection with 1 mg/ml for primary hematopoietic cells or 2 mg/ml for K562 cells. Infec-
tion efficiency was between 50%–80% for primary hematopoietic cells and > 95% for K562 cells as assessed by flow cytometry of
pLKO-GFP infected cells.

Yeast Strains and Plasmids
Preparation of media, yeast transformations and genetic manipulations were performed according to established procedures
(Schütz et al., 2014). Plasmids used in this study are listed in Table S6. Details of plasmid construction will be provided upon request.
All recombinant DNA techniques were performed according to established procedures using E. coli XL1 blue cells for cloning and
plasmid propagation. Point mutations in human TSR2 were generated using the QuikChange site-directed mutagenesis kit (Agilent
Technologies). All cloned DNA fragments and mutagenized plasmids were verified by sequencing. The PGAL1-TSR2 strain trans-
formed with indicated plasmids in Figure 1 was spotted in 10-fold dilutions on selective glucose containing plates and grown at indi-
cated temperatures for 3-7 days.

Quantitative RT-PCR
Isolation of RNA was performed using the RNeasy Plus Mini Kit (QIAGEN). An on-column DNase (QIAGEN) digestion was performed
according to the manufacturer’s instructions. RNA was quantified by a NanoDrop spectrophotometer (Thermo Scientific). Reverse
transcription was carried out using the iScript cDNA synthesis kit (Bio-Rad). Real-time PCR was performed using the CFX96 Real-
time PCR detection system (Bio-Rad) and iQ SYBR! Green Supermix (Bio-Rad). Quantification was performed using the compar-
ative CT method. Normalization was performed using b-actin mRNA as a standard. The primers used for quantitative RT-PCR are
listed in Table S6.

Western Blotting
Cells were harvested 5 days post-infection or at 72 h of treatment with the polymerase I inhibitor CX-5461 (Millipore), washed twice in
PBS, resuspended in RIPA lysis buffer (50mMTris-HCl at pH 7.4, 150mMNaCl, 0.1%SDS, 1%NP-40, 0.25%sodiumdeoxycholate,
1mMDTT) supplemented with 13Complete Protease Inhibitor Cocktail (Roche) and incubated for 30min on ice. After centrifugation
at 15,000 rpm for 10min at 4#C to remove cellular debris, the supernatant was transferred to a new tube, supplemented with Laemmli
sample buffer (Bio-Rad) and incubated for 10 min at 90#C. Equal amounts of proteins were separated by SDS gel electrophoresis
using the Mini-PROTEAN! TGX gel system (Bio-Rad) and Tris/glycine/SDS running buffer. Subsequently, proteins were transferred
onto a PVDF membrane (Millipore) using Tris/glycine transfer buffer. Membranes were blocked with 3% BSA-PBST for 1 h and
probed with GATA1 goat polyclonal antibody (M-20, sc-1234, Santa Cruz Biotechnology) at a 1:500 dilution, TSR2 rabbit polyclonal
antibody (ab155810, Abcam) at a 1:1,000 dilution, RPS19 mouse monoclonal antibody (WW-4, sc-100836, Santa Cruz Biotech-
nology) at a 1:500 dilution, RPL5 goat polyclonal (D-20, sc-103865, Santa Cruz Biotechnology) at a 1:500 dilution, RPL11 goat
polyclonal (N-17, sc-25931, Santa Cruz Biotechnology) at a 1:500 dilution, RPS20 goat polyclonal (G-15, sc-55035, Santa Cruz
Biotechnology) at a 1:500 dilution, RPS24 rabbit polyclonal (ab102986, Abcam) at a 1:1,000 dilution, RPS26 rabbit polyclonal
(ab104050, Abcam) at a 1:1,000 dilution, RPSA rabbit polyclonal (ab137388, Abcam) at a 1:1,000 dilution, RPL28 rabbit polyclonal
(FL-137, sc-50362, Santa Cruz Biotechnology) at a 1:1,000 dilution, EPOR rabbit polyclonal (M-20, sc-697, Santa Cruz Biotech-
nology) at a 1:500 dilution, STAT5A rabbit polyclonal (C-17, sc-835, Santa Cruz Biotechnology) at a 1:500 dilution, JAK2 rabbit
polyclonal (HR-758, sc-278, Santa Cruz Biotechnology) at a 1:500 dilution, Bystin mouse monoclonal (A-10, sc-271722,
Santa Cruz Biotechnology) at a 1:1,000 dilution, Lamin B goat polyclonal (C-20, sc-6216, Santa Cruz Biotechnology) at a 1:500
dilution, ACTB mouse monoclonal (AC-15, A1978, Sigma Aldrich) at a 1:10,000 dilution or GAPDH mouse monoclonal antibody
(6C5, sc-32233, Santa Cruz Biotechnology) at a 1:1,000 dilution in 3% BSA-PBST over-night at 4#C. Membranes were washed
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four times with PBST, incubated with donkey anti-mouse, anti-goat or anti-rabbit peroxidase-coupled secondary antibodies (715-
035-150, 705-035-147 or 711-035-152, respectively; Jackson ImmunoResearch) at a 1:10,000 to 1:20,000 dilution in 3% BSA-
PBST for 1 h at room temperature, washed three times with PBST and incubated for 5 minutes with Clarity western ECL substrate
(Bio-Rad). Proteins were visualized by using the ChemiDoc Touch Imaging System (Bio-Rad) or by exposure to scientific imaging film
(GE Healthcare Life Sciences). Band intensities were determined with Image Lab (Bio-Rad). Where indicated, separation of nuclear
and cytoplasmic fractions was performed with the PARISTM Kit (Ambion).

Flow Cytometry Analysis and Apoptosis Detection
For flow cytometry analysis, in vitro cultured hematopoietic cells were washed in PBS and stained with propidium iodide (PI), 1:20
APC-conjugated CD235a (glycophorin A, clone HIR2, eBioscience), 1:20 Pacific Blue-conjugated CD41a (HIP8, BioLegend), 1:20
Pacific Blue-conjugated CD11b (ICRF44, BioLegend) or 1:25 APC-conjugated TER-119 (TER-119, eBioscience). For apoptosis anal-
ysis, the Annexin V-APC staining kit was used according to themanufacturer’s instructions (550474, BD PharMingen). FACS analysis
was conducted on a BD Bioscience Canto II flow cytometer. Data were analyzed using FlowJo 10.0.7 (TreeStar).

Intracellular GATA1 Staining
Uncultured, frozen cells from healthy individuals’ and DBA patients’ bone marrow specimens were recovered and stained for com-
parison of GATA1 protein expression in HSPC populations. Primary human adult HSPCs (from mobilized peripheral blood derived
from G-CSF treated donors) were collected and stained at different time points of an in vitro culture system with expansion and dif-
ferentiation phases to assess GATA1 expression at different stages of erythroid differentiation from unperturbed HSPCs. For each
experiment, K562 and 293T cells were used as internal positive and negative controls, respectively. Cells were rinsed with 0.5%
BSA in 1X PBS and stained for surface markers with CD34 Alexa488 (clone 581, BioLegend) and CD38 BV421 (clone HB7,
BioLegend), or for CD71 PE (clone OKT9, eBioscience) and CD235a FITC (clone HIR2, BioLegend). Cells were then fixed, permea-
bilized and stained for GATA1 according to the BD PharmingenTM Transcription Factor Buffer Set protocol (BD PharMingen).
1:100 GATA1 rabbit monoclonal antibody EP2819Y (Abcam) or 1:200 rabbit monoclonal IgG isotype control were used as primary
antibodies and polyclonal goat anti-rabbit IgG (H+L) Alexa647 conjugate (Jackson) was used as secondary antibody. Cells were
run on BD Accuri C6 or BD Fortessa flow cytometers. Data were analyzed using FlowJo 10.2 (TreeStar).

rRNA Processing Examination
Northern blot analysis was done as described previously (Farrar et al., 2014). Bioanalyzer traces were obtained on an Agilent 2100
system with RNA Pico 6000 chips, sample processing was done according to the manufacturer’s instructions.

Polysome Profiling
Cells were incubated with 100 mg/ml of cycloheximide (Sigma Aldrich) for 5 min at 37#C, washed twice with ice-cold PBS containing
100 mg/ml of cycloheximide and lysed in 10 mM Tris-HCl (pH 7.4), 5 mMMgCl2, 100 mMKCl, 1% Triton X-100, 3 mMDTT, 100 mg/ml
cycloheximide, 500 U/ml RNasin (Promega) and 13Complete Protease Inhibitor, EDTA-free (Roche) as well as 1x Protease Inhibitor
Set (without EDTA) (G-Biosciences). Polysomes were separated on a 10%–50% (or 10%–45%) linear sucrose gradient containing
20mMTris-HCl (pH 7.4), 5 mMMgCl2, 100mMKCl, 3 mMDTT, 100 mg/ml cycloheximide and 20 U/ml SUPERase, In RNase Inhibitor
(Ambion) and centrifuged at 36,000 rpm for 2 h in a SW41 rotor in an L8-80M ultracentrifuge (Beckman Coulter). For mass spectrom-
etry samples, gradients were fractionated using a Biocomp Gradient Station fractionator. Absorbance at 254 nm was used to visu-
alize the gradients using an Econo UV monitor (Bio-Rad). Further processing for mass spectrometry analyses is described below.

Mass Spectrometry
Collected fractions for monosomes (a single ribosome), light polysomes (2-4 ribosomes) and heavy polysomes (R5 ribosomes) from
K562 cells with indicated knockdownwere pooled, respectively. Proteins from respective fractions were precipitated with deoxycho-
late-trichloracetic acid as described previously (Reschke et al., 2013), protein pellets were resuspended in 50 mM Tris HCl buffer
containing 8 M Urea at pH8. Protein concentrations of the samples were estimated by BCA protein assay (ThermoFisher Scientific).
Samples were reduced with 20mMdithiothreitol at 37#C for 30min, and alkylated with 50mM iodoacetamide at room temperature in
the dark for 30 min. Urea concentration was diluted to 2 M with 50 mM Tris HCl pH8 prior to Lys-C digestion (Wako) at 1:50 (w:w)
enzyme to substrate ratio at 30#C for 2 h with mixing on the shaker at 850 rpm. Urea was further diluted to less than 1M prior to over-
night digestion with trypsin (Promega) with 1:50 (w:w) enzyme to substrate ratio at 37#Cwith shaking at 850 rpm. Digestion was termi-
nated with formic acid to a final concentration of 1%. The digests were desalted on vacuum manifold using Oasis HLB 1cc (30 mg)
reversed phase cartridges (Waters) with 0.1% formic acid/water and 0.1% formic acid/80% acetonitrile as buffers A and B, respec-
tively. Briefly, cartridgeswere conditionedwith 33 500 mL buffer B followed by equilibration with 43 500 mL buffer A. After loading the
digests at a reduced flow rate, they were washed with 33 750 mL buffer A and eluted with 33 500 mL buffer B. Eluates were frozen
and dried by vacuum centrifugation. Digests were reconstituted in 100 mL of 0.1% formic acid /3% acetonitrile and post-digestion
concentrations were determined by NanoDrop 2000 (ThermoFisher Scientific). Based on the post-digestion concentration, 30 mg
aliquots were prepared, dried to dryness by vacuum centrifugation and stored at !80#C. A pooled reference sample was created
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by mixing equal amounts of the monosome, light and heavy polysome samples from both replicates of the shLuc control cell line and
aliquoted at 30 mg, dried to dryness by vacuum centrifugation and stored at !80#C.

TMT ten-plex reagent (ThermoFisher Scientific) was used for isobaric labeling of samples. Sample labeling was designed so that
duplicate samples from all four cell lines representing a given sucrose gradient fraction (monosomes, light polysomes, heavy poly-
somes) were contained within the same TMT ten-plex experiment with the reference sample included as the 9th channel in all three
TMT ten-plex experiments. The 10th channel was omitted from the experiment. Table S7 summarizes TMT reagent channel line-up for
all the samples.

Thirty microgram dried aliquot of each sample was labeled with TMT ten-plex reagent following manufacturer’s instructions
(ThermoFisher Scentific). Samples were reconstituted in 30 mL 50 mMHEPES buffer. 800 mg of each TMT reagent was reconstituted
in 41 mL acetonitrile and 12.3 mL of the resulting solution was added to each sample, mixed and incubated at room temperature for 1 h
with shaking at 850 rpm. Three microliters of each sample was used to check label incorporation by LC-MS/MS prior to quenching
the reaction. Once satisfied with labeling efficiency (> 95% label incorporation) the reactions were quenched by adding 2.4 mL of 5%
hydroxylamine to a 0.08 mg/mL concentration and incubated at room temperature for 15 min with shaking. Labeled samples repre-
senting each fraction type along with the pooled reference control were mixed together, dried down and desalted using Oasis HLB
1cc (30 mg) reversed phase cartridges as described above. Eluates were frozen, dried to dryness, and stored at !80#C.

Sampleswere reconstituted in 0.1% formic acid/3%Acetonitrile at 1 mg/mL concentration and 1 mL of it was analyzed onQExactive
Plus mass spectrometer (Thermo Fisher Scientific) coupled to an EASY-nLC 1000 UHPLC system (Proxeon, Thermo Fisher Scien-
tific). Chromatography was performed on a 75 mm ID picofrit column (New Objective) packed in house with Reprosil-Pur C18 AQ
1.9 mm beads (Dr. Maisch, GmbH) to a length of 20 cm. Columns were heated to 50 #C using column heater sleeves (Phoenix-ST).
Mobile phases consisted of 0.1% formic acid/3% acetonitrile as solvent A, and 0.1% formic acid/90% acetonitrile as solvent B. Pep-
tides were eluted at 200 nL/min with a gradient of 6 to 35%B in 150min, 35 to 60%B in 8min, 60 to 90%B in 3min, hold at 90%B for
10 min, 90%B to 50%B in 1min, followed by isocratic hold at 50%B for 10 min. A single OrbitrapMS scan from 300 to 1800m/z at a
resolution of 70,000 with AGC set at 3e6 was followed by up to 12ms/ms scans at a resolution of 35,000 with AGC set at 5e4. MS/MS
spectra were collected with normalized collision energy of 29 and isolation width of 1.6 amu with isolation offset set to 0.3 amu. Dy-
namic exclusion was set to 20 s, and peptide match was set to preferred. Data analysis is described below.

RNA Polymerase I Inhibition
Human CD34+ cells were cultured in erythroid differentiation medium as described above. Treatment with the RNA polymerase I in-
hibitor CX-5461 (Millipore) was started on day 3 of differentiation. Flow cytometry analysis was performed at 72 hours of CX-5461
treatment, with propidium iodide (eBioscience), 1:40 APC-conjugated CD235a (glycophorin A, clone HIR2, eBioscience), 1:40
FITC-conjugated CD41a (clone HIP8, eBioscience) and 1:40 FITC-conjugated CD11b (clone ICRF44, BioLegend). Samples were
run on a BD LSRFortessa. Protein lysates for western blot analyses were collected at 72 hours of CX-5461 treatment. The western
blot procedure is described above.

Ribosome Profiling
Lysates were prepared as described under polysome profiling and partitioned for either ribosome footprint profiling or mRNA
sequencing. Total RNA was extracted with the Direct-zol RNA MiniPrep Plus w/ TRI Reagent! Kit (Zymo Research) according to
the manufacturer’s instructions. Total mRNA was poly-A selected using the NEBNext! Poly(A) mRNA Magnetic Isolation Module
(New England Biolabs) according to the manufacturer’s instructions. mRNA seq libraries were generated as described previously
(Engreitz et al., 2013). Ribosome footprinting and subsequent library preparation of ribosome protected RNA fragments (RPFs)
was performed with the Truseq Ribo Profile (Mammalian) Kit (Illumina) according to the manufacturer’s protocol. rRNA removal
was performed by using the Ribo-Zero Gold rRNA Removal Kit (Illumina). RNase I (Ambion) digestion was done at a concentration
of 2.5 U/ml lysate. RPFs were purified with MicroSpin S-400 columns (GE Healthcare Life Sciences). All libraries were sequenced on a
HiSeq 2500 system (Illumina).

50UTR-GATA1 Construct Cloning
50 UTRs were defined from CD34+ HSPC CAGE data. For cloning, the RUNX1 and GATA1 50UTR-GATA1 constructs were synthe-
sized by Integrated DNA Technologies (IDT). Alternatively, the GATA1 coding region was synthesized by IDT, and joined to PCR
amplified ETV6 and LMO2-50UTR fragments by overlap PCR and TOPO cloned (Zero Blunt TOPO PCR Cloning Kit, Invitrogen).
Finally, all fragments were cloned into the U6_optisgRNA_modEF1s_p2A_GFP vector using BamHI and XhoI restriction sites. All con-
structs were verified by Sanger sequencing. Relevant construct sequences are shown in Table S5.

QUANTIFICATION AND STATISTICAL ANALYSIS

Whole Exome Sequencing
The cousins described in this manuscript underwent whole exome sequencing at the Broad Institute (dbGAP accession
phs000474.v2.p1). In this study, whole exome sequencing and variant calling was performed as previously reported (Sankaran
et al., 2012). Coverage across protein coding regions was calculated using Picard tools (Table S2). Variant Effect Predictor v83
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(https://www.ensembl.org/info/docs/tools/vep/index.html) and the dbNSFP database v3.1 (https://sites.google.com/site/jpopgen/
dbNSFP) were used to annotate the variant call file (VCF). We did not identify any rare (defined as 0.01% allele frequency in
ExAC v0.3) (Lek et al., 2016) damaging (missense or loss of function) mutations in any of the known DBA genes (RPS19 (revised
nomenclature (http://www.bangroup.ethz.ch/research/nomenclature-of-ribosomal-proteins.html): eS19), RPL5 (uL18), RPL11
(uL5), RPL35A (eL33), RPL35 (uL29), RPS26 (eS26), RPS24 (eS24), RPS17 (eS17), RPS7 (eS7), RPS10 (eS10), RPL26 (uL24),
RPS29 (uS14), RPS28 (eS28), RPS27 (eS27), RPL27 (eL27), RPL15 (eL15), RPL31 (eL31), RPL18 (eL18), GATA1) or in any other
ribosome protein coding genes that fit the predicted dominant or X-linked inheritance pattern. We thus investigated all genes for
rare and predicted damaging mutations that fit either of these inheritance patterns (Table S1). Subsequently, we identified
chrX:54469851:A > G in TSR2 as the most likely candidate and verified this mutation by Sanger sequencing.

ExAC Gene Constraint Analyses
The ExAC v0.3 database, containing allele frequencies from whole exome sequencing for 60,706 unrelated individuals lacking Men-
delian pediatric disease, has been used to estimate the probability that any single gene is intolerant to LoF mutations (known as pLI)
(Lek et al., 2016). We compared the distribution of probabilities for a random sample of all genes (for ease of plotting) to RP genes and
known DBA genes. Mann-Whitney-U tests were used to determine if there were significant differences in pLI between groups.

Analysis of Mass Spectrometry Data
Data extraction and searching was done using SpectrumMill MS ProteomicsWorkbench v6.0 pre-release software package (Agilent
Technologies). All extracted spectra were searched against a UniProt database containing human reference proteome sequences.
Search was done using parent and fragment mass tolerance of 20ppm, and enzyme specificity set to trypsin allow P with 4 missed
cleavages. Cysteine carbamidomethylation and TMT labeling at lysine and N-termini were set as fixed modifications. Allowed var-
iable modifications were acetylation of protein N-termini, oxidized methionine, deamidation of asparagine, pyro-glutamic acid at
peptide N-terminal glutamine, and pyro-carbamidomethylation at peptide N-terminal cysteine. Autovalidation was performed at pep-
tide level with set FDR of less than 0.8 for charges 2 to 4, and less than 0.4 for charge 5 followed by protein level with set protein FDR
of 0. Subgroup specific grouping of proteins was used for generating final protein table for each of the TMT experiments, which en-
sures that only peptides specific to a particular isoform are used for quantitation. Reporter ion intensities were corrected for isotopic
impurities in the Spectrum Mill protein/peptide summary module using the static correction method and correction factors obtained
from the reagent manufacturer’s certificate of analysis (https://www.thermofisher.com/order/catalog/product/90406) for lot number
QE214905A.
Only ribosomal proteins with 2 or more distinct peptides were used for further analysis of the data. For each TMT experiment rep-

resenting one of the ribosomal fractions the normalized expression for protein i in TMT channel j is calculated using the following
equation:

IiP
K V RPIK

x
Tj

P9
t = 1Tt

x
#O

#A

Where I = protein precursor intensity, i = protein, RP = ribosomal proteins, T = TMT channel abundance for a given protein, j = TMT
channel, #O = number of observed peptides for a protein, #A = number of theoretical peptides for a protein. The first term represents
fractional precursor intensity over all observed ribosomal proteins; the second term is the fractional TMT reporter intensity and the
final term adjusts for protein length.
All normalized values were then log2 transformed and median centered for each TMT channel. These values were used for all sub-

sequent statistical analyses. Standard linear regression was performed between groups (shLuc, shRPL5, shRPS19, shTSR2) for
different fractions (M, LP, HP) and for different subunits (80S, 60S, 40S). Linear fits and Pearson correlation coefficients are reported.
Studentized, or jack-knifed, residuals were calculated in R using the studres() function in the MASS R package.
The ribosome-associated proteins were analyzed by identifying proteins that were similarly abundant as RPs in fractions of actively

translating polysomes (LP and HP) in controls or cells with ribosomal perturbations. To do so, we have plotted intensity/density pro-
files for the HP/LP samples, in which we noted that the density (a smoothed histogram) was bimodal. We then used a mixture model,
which essentially clustered the proteins into two groups - one RP-like and the other containing the remaining proteins. If a protein was
in this RP-like cluster for any HP/LP sample, it was included in the analysis. In total, we identified 227 proteins (excluding the RPs) that
fell into this cluster.

Analysis of RNA and Ribosome Profiling Libraries
Raw reads were trimmed using cutadapt with the options ‘‘-q 5 -m 20–discard-untrimmed -a AGATCGGAAGAGCACACGTCTG’’
(https://cutadapt.readthedocs.io/en/stable/). Bowtie2was then used to align trimmed reads to rRNA, tRNA, and abundant noncoding
RNAs (http://bowtie-bio.sourceforge.net/bowtie2/index.shtml). FASTQC (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc) was used to determine that adapters and other sequences had been removed and to calculate the fragment length distribution
of RPFs. The remaining reads were then aligned to the human hg19 genome build allowing for junctions based upon ENSEMBL tran-
scripts using Tophatwith theoptions ‘‘–no-novel-juncs–library-type fr-unstranded’’ (http://ccb.jhu.edu/software/tophat/index.shtml).
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Non-uniquely mapping reads were excluded using Samtools (http://samtools.sourceforge.net). RSeQC was used to determine the
percentage of reads mapping to 50 UTRs, CDS, and 30 UTRs (http://rseqc.sourceforge.net). Triplet periodicity was assessed using
RibORF (https://personal.broadinstitute.org/zheji/software/RibORF.html). For RNA-seq, genes were quantified either using Cuff-
quant and Cuffnorm with the option ‘‘-max-bundle-frags 20000000’’ or using HTSeq-count in intersection-strict mode. Fragments
per kilobase per million (FPKM) were subsequently transformed to transcripts per million (TPM). For RPFs, reads between 26 and
34 nucleotides in length were quantified in the CDSs of protein coding genes using HTSeq-count. Reads mapping to less than 45 nu-
cleotides from the start codon or 15 nucleotides from the stop codon were not included in order to reduce read biases in the 50 and 30

ends of CDSs. To determine differentially expressed genes between control and RPH or TSR2 suppression conditions, we used a
negative binomial model (mean and variance of distribution estimated in DESeq2) (http://bioconductor.org/packages/devel/bioc/
vignettes/DESeq2/inst/doc/DESeq2.html). To determine differentially translated (e.g., changes in TE) genes, we used Xtail (https://
github.com/xryanglab/xtail), which first uses the negative binomial distribution to estimate either (1) the log2 fold changes separately
for mRNAs andRPFs between conditions (i.e.,DmRNA andDRPF) or (2) the log2 fold changes formRNA to RPFwithin conditions (i.e.,
TEcontrol andTERPH), and thenestimates adiscrete joint probability distribution of either (1)DmRNAandDRPFor (2) TEcontrol andTERPH.
Testing of differential translation (i.e.,DTE in both cases) was then performed, the least significant result of the twomethodswas kept.
TheBenjamini–Hochberg FDRwasused to control formultiple testing.Only geneswith > 150mRNAcounts and>90RPFcountswere
analyzed in order to obtainmore stable estimates ofDTE. Gene set enrichment analysis (GSEA)was usedwith the ‘‘Preranked’’ option
and 10,000 permutations forDTE orDmRNA. An erythroid gene set was derived by taking all genes that were > 4 log2 fold upregulated
between CD34+ and pro-erythroblast stages of normal human erythropoiesis. In addition, BIOCARTA, KEGG, and REACTOME
canonical pathways were investigated.

Re-Annotation of 50 UTRs
Because the TSS of a gene can vary between cell types and is often misannotated, we used cap analysis of gene expression
(CAGE) data from K562 cells to define empirical TSS locations at 10-bp resolution using a heuristic algorithm. Four replicates
of CAGE data (aligned BAM files CNhs12334.10824-111C5, CNhs12335.10825-111C6, CNhs12336.10826-111C7, and
CNhs11250.10454-106G4) were downloaded from the FANTOM project (Arner et al., 2015) and merged using samtools. Each
Ensembl gene (+/! 1 kb around the annotated ends of the gene) was scanned at 20-bp resolution to find the 100-bp window
with the most number of CAGE reads, considering strand. Additional windows were chosen until either the windows either contained
80% of the total reads overlapping the gene or until these windows, upon merging of overlapping regions, contained 500bp of
sequence. The top region was further scanned to find the 10-bp window with the most number of reads. This 10-bp window was
defined as the empirical TSS. Next, empirical 50 UTRs were determined by overlapping empirical TSSs with annotated ENSEMBL
50 UTR positions for each transcript. When the empirical TSS fell within the annotated 50 UTR, the 50 UTR was shortened to start
at the empirical TSS. When the empirical TSS was upstream of the annotated 50 UTR, the 50 UTR was extended to the empirical
TSS. In all cases, the shortest 50 UTR for a gene across all transcripts was taken, genes without empirical TSSs were excluded,
and only genes with empirical 50 UTRs < 500 nucleotides were included. Manual investigation of genes with 50 UTRs > 500 nucleo-
tides revealed that the majority of these were false positives that often had weak CAGE signal and/ or poor initial annotations. Addi-
tionally, CD34+ HSPC CAGE data was downloaded from the ENCODE project (ENCFF000TTH.bam). For the 36 hematopoietic TFs
investigated in CD34+ CAGE, single nucleotide TSSs were identified based upon the strongest CAGE signal at any single nucleotide.

Analysis of Features for Association with DTE
A number of features were investigated for differences between RPH-sensitive and unchanged genes. The complexity of the empir-
ical 50 UTR secondary structure was determined using RNAfold (http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi). Gene
expression during erythropoiesis was performed by An et al. (2014) and Li et al. (2014) and processed as previously described (Ulirsch
et al., 2016). Protein abundances for erythroid progenitors (‘‘prog2’’) were obtained from Gautier et al. (2016). ORF lengths were
calculated for the most abundant transcript (determined by highest TPM from Cuffnorm) for each gene using the GenomicRanges
R package. Gene essentiality scores for the erythroid K562 cell line were obtained from the CRISPR screen performed by Wang
et al. (2015). As the key erythroid transcription factor GATA1was themost K562-specific essential gene (compared to 3 other chronic
myelogenous leukemia cell lines), we determined that the essentiality scores in K562 cells were likely relevant to our primary human
erythroid cells. A random forest model was used to determine the percentage of variation in gene expression using DmRNA, shLuc
mRNA expression, shLuc TE, CDS length, 50 UTR length, 50 UTR complexity (DG), uAUGpresence, and TOP-likemotif presence. The
random forest was trained on 3,000 genes with measurements for all characteristics and results are reported from the held out set of
618 genes. The R package randomForest was used with the parameters ‘‘mtry=3, mtree=200, ntree=501.’’

Motif Analyses
First, we investigated whether TOP or TOP-likemotifs were present within the first 20 nucleotides of the empirical 50 UTR bymatching
the strings C(CjU){6} (Thoreen et al., 2012) or (CjU){3}U(CjU){3} (Hsieh et al., 2012). Although we saw an enrichment for TOP-like mo-
tifs in RPH-sensitive transcripts, this motif was not present in themajority of transcripts, so we performed a global de novomotif anal-
ysis of 50 UTRs (restricted to 30 nucleotides at the 50 end, 30 nucleotides at the 30 end, and across the entire 50 UTR) using Homer with
standard options except for ‘‘-rna’’ (http://homer.ucsd.edu/homer/). Next, we took an alternative approach and trained a gapped
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k-mer support vector machine (SVM) to try to separate RPH-sensitive transcripts from unchanged transcripts based upon the
presence of kmers of length 6, 8, or 10 in the corresponding 50 UTRs using 5-fold cross validation.

Bone Marrow Biopsy Section Immunohistochemical Staining and Analysis
For each of seven different DBA patients and three normal healthy controls, bone marrow biopsy sections were immunohistochemi-
cally stained for GATA1, as previously described (Lee et al., 2017). All sections were stained and imaged together to ensure
consistency between samples. Several independent images from each stained sample were segmented and quantified in CellProfiler
(Carpenter et al., 2006). In brief, nuclei were segmented by blue intensity and filtered for Hue to retain only brown staining GATA1
positive cells, which we manually confirmed were entirely composed of erythroid cells. We excluded large megakaryocytes by
the segmentation procedure. Measurements of intensity and morphological properties were quantified for every cell. Python was
used to analyze cellular features, and the Mann-Whitney U non-parametric test was used to estimate the significance of differences
observed between DBA and normal cells.

Statistical Analyses
All pairwise comparisons were assessed using an unpaired two-tailed Student’s t test, unless otherwise indicated in the main text or
in the figure legends. Results were considered significant if the P value was < 0.05.

DATA AND SOFTWARE AVAILABILITY

Accession Codes
The accession number for the raw mass spectrometry data reported in this paper is MassIVE: MSV000080283. The accession
number for the RNA-seq and ribosome profiling data reported in this paper is GEO: GSE89183.
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Figure S1. Loss of TSR2 Function Results in a DBA Typical Erythroid Differentiation Defect that Can Be Rescued by GATA1, Related to
Figure 1
(A) Similarly to other known DBA genes, TSR2 is significantly de-enriched for loss-of-function (LoF) mutations in 60,706 controls derived from the Exome Ag-

gregation Consortium (ExAC). Note from themean that the tails of the distribution (intolerant and not intolerant to LoFs) are severely truncated and actually extend

much further than can be plotted in comparison to other groups. P values are derived from Mann-Whitney-U tests.

(B) Western blots of nuclear and cytoplasmic human erythroid cell protein lysates for the indicated proteins showing that TSR2 is entirely located in the nucleus.

(C) Representative FACS plots on day 5 after transduction with shTSR2 showing impaired erythroid differentiation of primary human HSPCs in vitro and skewing

toward non-erythroid lineages. Erythroid cells are marked by CD235a, non-erythroid cells are marked by the expression of CD41a, CD11b, or expression of no

markers. Percentages of each subpopulation are shown as the mean ± SD of three independent experiments of cells from three different donors.

(D) Growth curves for primary human HSPCs undergoing erythroid differentiation transduced with shLuc or shTSR2measured in absolute cell numbers. Shown is

the mean ± the SD of three replicates.

(legend continued on next page)



(E) Increased Annexin V staining with TSR2 suppression. Results are shown as the percentage of Annexin V positive cells on day 5 after transduction of primary

human HSPCs undergoing erythroid differentiation with shTSR2 or shLuc. Shown is the mean ± the SD of three independent experiments. (**p % 0.01 using an

unpaired two-tailed Student’s t test).

(F) Based upon GSEA, cells with TSR2 suppression exhibit a more immature erythroid expression profile (permutation FDR < 0.0001). The enrichment score is

plotted in green, and genes are plotted as black lines according to their rank.

(G) Scatterplot of mean gene expression values in shTSR2 and shLuc treated primary human HSPCs undergoing erythroid differentiation on day 5 after

transduction.

(H) Western blot detection of GATA1 protein from lysates of human erythroid cells on day 5 after transduction with shTSR2 or shLuc. Arrowheads indicate GATA1

full length and GATA1 short proteins, respectively.

(I) GATA1 mRNA levels by quantitative RT-PCR (normalized to b-actin) in human erythroid cells on day 5 after transduction with shTSR2 or shLuc. Shown is the

mean ± SD of three independent experiments.

(J) Western blot detection of the indicated proteins in human erythroid cell protein lysates on day 5 after transduction with shTSR2 or shLuc showing that the

protein levels of other erythroid factors are largely unaffected.

(K) Representative FACS plots of primary human HSPCs undergoing erythroid differentiation on day 5 after transduction with shTSR2 and either with HMD

(empty) control or HMD-GATA1 lentiviruses showing that expression of GATA1 rescues the erythroid differentiation defect. Percentages of each subpopulation

are shown as the mean ± the SD of three independent replicates.

(L) Representative FACS forward scatter histogram plots (measuring cell size) of cultured primary human HSPCs differentiated toward the erythroid lineage and

transduced with shTSR2 and either empty HMD or HMD-GATA1. The forward scatter intensity is shown as mean ± the SD of three independent replicates.
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Figure S2. DBA-Associated Molecular Lesions Result in Reduced Ribosome Abundance, Related to Figure 2
(A-B) Bioanalyzer traces of total RNA from human erythroid cells treated with shLuc, shTSR2, shRPS19 (eS19) or shRPL5 (uL18) on day 5 after transduction

showing 18S or 28S rRNA processing defects in the respective KDs. Panel A shows one representative of three independent experiments. Panel B shows the

mean ± the SD of three independent experiments. (**p % 0.01; ***p % 0.001; ****p % 0.0001 using an unpaired two-tailed Student’s t test)

(C-G) Polysome profiles of human erythroid cells on day 5 after transduction showing a reduction of monosomes, polysomes and free amount of the targeted

subunit (40S or 60S) with a relative increase of free amount of the non-targeted subunit with indicated DBA-associated molecular lesions. The traces are shown

offset from one another on the arbitrary y axis (derived from relative absorbance at 254 nm) for ease of visualizing the data with the x axis showing distance along

the sucrose gradient.

(H-L) Western blot detection of the indicated proteins from lysates of human erythroid cells 5 days after transduction with pLKO.GFP, shLuc, shTSR2, shRPS19,

shRPS24, shRPL5 or shRPL11 showing the reduction of diverse ribosomal proteins with DBA-associated molecular lesions. Ribosomal proteins of the same

subunit as the perturbed protein appear to be more severely affected.

(M-Q) Relative quantification of ribosomal protein band intensities shown in (H-L) using Image Lab.
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Figure S3. Mass Spectrometry Data Analysis, Related to Figure 3
(A-C) Number of unique peptides quantified per RP inmonosomes (M), light polysomes (LP) and heavy polysomes (HP). Themedian of unique peptides quantified

per RP for each fraction is indicated.

(D-F) By sucrose gradient sedimentation, we highly enriched for RPs in HP, LP and M fractions as shown here exemplary for the control samples by probability

density, which are representative of all samples.

(G-I) Ordered studentized residual plots are shown for suppression of RPS19, TSR2, or RPL5. Residuals were calculated from the linear fits for the targeted

subunit-restricted model (i.e., 40S for shRPS19 and shTSR2 and 60S for shRPL5) shown in Figure 3. The affected RP is highlighted in red for each condition and

exhibits no strong deviation in the negative direction from the fit (outliers called at > !3).

(legend continued on next page)



(J-K) The ribosome-associated proteins were analyzed by identifying proteins with similar abundance as RPs in fractions of actively translating polysomes

(HP and LP). Log2 transformed protein intensities from two independent replicates in respective KD condition versus shLuc control in HP and LP fractions

showing comparable composition of the ribosome-associated proteins between KD conditions and control. Linear regressions are shown in gray and Pearson

correlations are reported. Note that the cluster of proteins that appears to be enriched in the shRPL5 samples consists entirely of eukaryotic translation initiation

factors.
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Figure S4. Features of RPH-Sensitive Transcripts, Related to Figure 4
(A) Ribosome protected fragment (RPF) reads are predominately in the CDS and not in the 30 UTR, whereas mRNAs have a much higher relative percentage of

30 UTR reads.

(B) Pearson correlations between replicates for log2 RPF reads (CDS region excluding the first 45 and last 15 nucleotides) and log2 mRNA reads (entire transcript)

are indicated.

(C) Changes in translation efficiency (TE) and mRNA between RPH and shLuc show only limited correlation and are displayed in a scatterplot where color

indicates point density. Both local regression (with confidence intervals) and linear fits are shown in red. The Pearson correlation is indicated.

(D) Boxplots for specific features are shown across FDR levels of differential translation. Typical mRNA transcripts per million (TPM) and translational efficiency

(TE) are derived from control shLuc cells. Essentiality scores (guide RNA drop out) for K562 erythroid cells were obtained from Wang et al. (2015).



A
5’ UTR  L k mm ROCc PRc

all  6 4 1 0.59 0.19

all  8 6 2 0.58 0.17

all  10 8 3 0.56 0.17

first 30nts 6 4 1 0.51 0.14

first 30nts 8 6 2 0.54 0.15

first 30nts 10 8 3 0.52 0.16

last 30 nts 6 4 1 0.51 0.14

last 30 nts 8 6 2 0.52 0.15

last 30 nts 10 8 3 0.50 0.14

E

last 30nts of 5’ UTR

first 30nts of 5’ UTR

entire 5’ UTR

0.00

0.25

0.50

0.75

 w/ RP genes: p < 10-6

 w/o RP genes: p = 0.27

%
 5

’ 
U

T
R

s
 c

o
n

ta
in

in
g

  
  

 

T
O

P
-l
ik

e
 m

o
ti
f 

F

p < 10-8

#
 o

f 
u

A
U

G
s

0.75

0.50

0.25

0.00

%
 u

A
U

G
 (

in
 f

ra
m

e
)

0.20

0.15

0.10

0.05

0.00

out of frame p < 10-10

in frame p < 10-4

 r=0.47

=0.52E
N

S
E

M
B

L
 5

’ 
U

T
R

 l
e
n
g
th

K562 CAGE 5’ UTR

C

D

0 -100 -200 -300

5
’ 
U

T
R

 Δ
 G

p
 <

 1
0

-7
3

5
’ 
U

T
R

 l
e

n
g

th

0 100 200 300 400 500

p
 <

 1
0

-6
6

0-10%

10-25%

25-50%

50-75%

75-90%

90-100%

Baseline TE

B

RP genes

2.5% FDR

10% FDR

unchanged

2.5% FDR

10% FDR

Figure S5. 50 UTR Features that Are Associated with Altered Translation Arising from Reduced Ribosome Levels, Related to Figure 5
(A) Annotated 50 UTR lengths are only moderately correlating with 50 UTR lengths experimentally determined in erythroid cells by capped analysis of gene

expression (CAGE). Both Pearson and Spearman correlations are indicated.

(B) Boxplots for different 50UTR features are shown across relative baseline TEs in unperturbed primary human HSPCs undergoing erythroid differentiation.

P values were determined by an F-test.

(C) Plots for different 50UTR features are shown across FDR thresholds for differential translation. In-frame and out-of-frame upstream AUGs were determined by

string matching in the erythroid 50 UTR sequences. P values were determined by an F-test.

(D) The percentages of 50 UTRs containing 50 terminal oligopyrimidine (TOP)-like motifs within the 20 most 50 nucleotides are shown across FDR thresholds for

differential translation.

(E) Results from the gapped kmer SVM across different regions of the 50 UTR comparing RPH-sensitive transcripts to all other transcripts. L is theword length, K is

the number of informative columns, andmm is the maximum number of mismatches. Area under the receiver operating characteristic curve (ROCc) or area under

the precision recall curve (PRc) for each model is shown.

(F) Motifs enriched in the 50 UTRs of RPH-sensitive transcripts are shown.



Figure S6. Profiles of GATA1 Immunohistochemical Staining in Bone Marrow Biopsy Sections from DBA Patients and Healthy Individuals,
Related to Figure 6
Density plots of saturation intensity at the single cell level for GATA1 across 7 DBA patients and 3 normal individuals. A representative sample image of cells for

each patient is provided to the right of each plot.
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Figure S7. Robust and High-Level GATA1 Protein Expression in Committed Erythroid Cells, Related to Figure 7
Shown is the flow cytometric gating strategy for committed CD235a+CD71+ erythroid cells obtained from HSPCs on day 5 of differentiation post-expansion.

The cells express high levels of GATA1 protein.
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