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Abstract. We investigate the mean-square displacement (MSD) for random motion governed by the gen-
eralized Langevin equation for memory functions that contain two different time scales: In the first model,
the memory kernel consists of a delta peak and a single-exponential and in the second model of the sum of
two exponentials. In particular, we investigate the scenario where the long-time exponential kernel contri-
bution is negative. The competition between positive and negative friction memory contributions produces
an enhanced transient persistent regime in the MSD, which is relevant for biological motility and active

matter systems.

1 Introduction

If the dynamics of a diffusing particle is coupled to other
degrees of freedom, memory effects occur, and the particle
dynamics becomes non-Markovian [1,2]. Examples include
the diffusion of a tracer bead in viscoleastic [3—6] and het-
erogeneous [7,8] media, polymer dynamics [9-13] and dy-
namics in rough energy landscapes [14-16]. Furthermore,
many systems far from equilibrium, such as self-propelled
particles [17-19] or passive tracer particles in active me-
dia [20-22], exhibit non-Markovian dynamics.

The random motion of a diffusing particle is commonly
characterized by the mean-square displacement (MSD)

Cusp(t) = ((2(t) = 2(0))°). M

Diffusive properties may be classified in terms of the time-
dependent MSD exponent «(t):

at) = %ﬁ?(t). (2)

Normal diffusion (Brownian motion) yields an exponent
a = 1. Processes for which a # 1 are broadly referred
to as anomalous diffusion, or more specifically, subdiffu-
sion for @ < 1 and superdiffusion for o > 1. Much effort
has been directed towards modeling anomalous diffusion
especially for cases in which the exponent stays anoma-
lous in the long-time limit, for recent reviews see [23,24].
In many instances, however, the dynamics becomes ef-
fectively Markovian at long time scales, which leads to
normal diffusion, i.e. a = 1, for ¢ — oco. The MSD of
an underdamped particle (or a reaction coordinate with a
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non-vanishing effective mass) is ballistic, i.e. persistent, at
short times (« = 2). The crossover between the persistent
and the diffusive regimes generally depends on details of
the non-Markovian dynamics, which are relevant at short
and intermediate time scales [25].

The generalized Langevin equation (GLE) offers a con-
venient framework for the description of non-Markovian
dynamics by introducing a memory term in the equa-
tion of motion. It has been successfully applied to pas-
sive microrheology [4-6], the modeling of (bio-)molecular
systems [14, 26-30] and for the investigation of non-
Markovian effects on barrier-crossing dynamics [31, 32].
In one dimension, the GLEs for the underdamped (UD)
and overdamped (OD) cases read [33]:

(t) = — /OOO r#a(t —t)dt' + Fr(t) (UD), (3)
0=— /OO r#"a(t —t)dt' + Fr(t) (OD). (4)
0

In our notation, Fg(t) denotes the random force with zero
mean and I'(t) is the symmetric memory kernel obeying

/0 Trmat= . r@=r—on. )

For cases in which eq. (3) describes the dynamics of a
massive particle, the acceleration term, #(¢), normally has
the particle mass m as a prefactor. Here, the mass has
been absorbed into I'(t) and Fg(t). The integral of the
kernel must be positive and sets the characteristic time
scale T, which, for a massive particle moving in a vis-
coelastic medium, is the inertial time scale given by the
ratio of its mass and the total friction. We shall consider
equilibrium systems for which the fluctuation-dissipation
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theorem holds [33], which implies that the autocorrelation
of the random force Fr(t) is proportional to the memory
kernel

(Fr(t)Fr(0)) = BI'(t). (6)

In the underdamped case, B is the mean-squared ve-
locity of the particle, see appendix A. If the kernel
is short-ranged, the dynamics becomes Markovian at
large time scales and exhibits normal diffusion, while
long-ranged kernels may lead to anomalous diffusion on
arbitrarily long time scales [34]. Equation (6) together
with the Wiener-Khinchin theorem implies that the
power spectrum of the random force F'g is proportional
to the frequency-domain symmetric memory kernel.
Thus the frequency-domain kernel must be non-negative
(assuming B > 0), which is an important constraint on
its functional form. This is of particular importance in
the case of negative long-time memory tails, as will be
discussed in detail later on and in appendix B.

In this work, we investigate GLEs with memory kernels
comprised of either a single-exponential and a delta contri-
bution or two exponentials. These two models have previ-
ously been employed, in particular to model tracer particle
motion in viscoelastic media [5,6,35]. Here we take a more
general perspective and explore a new parameter regime in
which the kernel is positive for short times and has a neg-
ative tail, such that the kernel stays positive everywhere
in the frequency domain. For both the overdamped and
underdamped cases, we show that these competing con-
tributions to the memory kernel lead to a transient persis-
tent regime in the MSD. Transient persistent motion ap-
pears in various models for self-propelled particles [17-19],
transient dynamics of sheared systems [36,37] and single-
cell motility [38]. Interestingly, the connection to negative
memory contributions has been previously noted in the
last two examples. Here we systematically investigate how
an equilibrium description in terms of a GLE with neg-
ative memory contribution captures transient persistent
motion.

2 Free active particle models

As a first example, we consider the model of a run-and-
tumble particle (RTP) [18,39] in d = 2 spatial dimen-
sions. The particle moves at constant speed |@ (t)| = vg in
a given direction (“run”) and then instantaneously reori-
ents and chooses a random new direction (“tumble”) from
a uniform distribution over [0,27). Reorientations occur
at a rate 1/7, and thus (@ (t)7(0)) = vie /7. Addi-
tionally, the particle velocity is subject to thermal fluctu-
ations /D€ (), which are modeled as zero-mean, white

—

Gaussian noise, i.e. (£ (0)€ (t)) = 2dé(t). The total particle
velocity is then given as the sum of two contributions

—

Z(t) =@ (t) + V/Do€ (1), (7)
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which leads to the corresponding MSD [18,40]

Cusn(t) = 7 ((#(6) — #(0)?)
2
=2

2 2027
M & 7t/7'p7
<D0+ X )t+ y (e 1). 8)

From eq. (8) it can be seen that the motion is diffu-
sive at long times with an effective diffusion constant
D = Do+ v31,/d, while for short times, it is also diffusive
but characterized by the diffusion constant Dg, the
overall particle dynamics thus is overdamped. Figure 1(a)
shows simulated sample trajectories of a run-and-tumble
particle. The corresponding MSD, eq. (8), which exhibits
a transient persistent regime, is shown as a solid black
line in fig. 1(c).

As a second example, we consider the under-
damped version of the active Ornstein-Uhlenbeck parti-
cle (AOUP) [19,41-43]. Tts equations of motion read in d
dimensions

Tl (t) = —@ (1) + UO\/EEM(t),
T (t) = =2 (t) + @ (t) + /Do€ (1),

—

where £ (t) and &,(¢) are again zero-mean, white Gaussian
noise with (£ (£)E(#)) = (£, ()€ (') = 2d6(t — t') and
(£ ()&, (1)) = 0. Figure 1(b) shows sample trajectories of
an underdamped AOUP in d = 2 dimensions which were
generated with the method described in appendix C. @ ()
is an Ornstein-Uhlenbeck process and has the solution

(9)

v

VAT J oo
and thus has an exponential autocorrelation function, i.e.

(@ (t)@ (0)) = v3e 1!/ while the magnitude | (t)| is not
fixed. The MSD is then given by [38]

At'e= /g (1)

@(t) = (10)

2
CMSD(t) =2 (Do + UOTP) t

d
+2(Dymy — 18 Y (v 1)
d(Tg — sz)
21)(2)7;,1 ;
— 0P (et 1), 11
A - ) (¢ ) (1)

Except for the initial persistent regime at short times t <
Tp, the MSD is the same as for the RTP, see fig. 1(c),
where the MSD of the AOUP is shown as a red broken
line. Note that the difference of the MSD at short times
stems from the fact that the dynamics for the RTP is
assumed overdamped, while the AOUP that we consider
obeys underdamped dynamics.

~ Given  the wvelocity —autocorrelation  function
(' (t)Z(0)), the memory kernel may be extracted
numerically, see [26,44-46] and appendix D. The method
finds the kernel for which eq. (6) holds and thus maps
a given MSD to its corresponding effective equilibrium
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Fig. 1. (a), (b): sample trajectories of length 507, for free active particles in d = 2 dimensions for vg = 104/ Do /7p. (a) Run-
and-tumble particle simulated with a time step A = 10737'17. (b) Underdamped active Ornstein-Uhlenbeck particle simulated
for 7, = 10737, with a time step A = 107*7,. (c) MSDs corresponding to the run-and-tumble particle (solid black line) and the
underdamped AOUP (dashed red line), see eqs. (8) and (11), respectively. (d) Kernels extracted from the MSDs shown in (c).
Both show the same structure of a positive delta peak at ¢ = 0 followed by a negative exponential tail.

GLE [38]. For the two examples shown in fig. 1, this
means that the equations of motion for the underdamped
AOUP, eq. (9), and the RTP, eq. (7) are mapped onto
the under- and overdamped GLEs, eq. (3) and eq. (4),
respectively. Such a mapping onto a substitute Gaussian
model reproduces all two-point correlation functions
but fails to capture the full non-linear dynamics of a
non-Gaussian process such as the RTP. However, for the
purpose of our work, this limitation is not important
since we are interested in how features in the MSD,
which is a two-point correlation function, are connected
to properties of the substitute kernel.

For both examples, the numerically extracted kernel
has the same structure, consisting of an initial positive
delta peak (not shown) followed by a negative exponen-
tial tail, see fig. 1(d). The observation that kernels with
negative tails lead to transient persistent regimes in the
MSD forms the motivation for the present work. The na-
ture of the different regimes in the MSD and the interplay
of over- and underdamped dynamics with memory effects
will be illustrated by phase diagrams of the MSD exponent
« as a function of relevant system parameters.

3 General considerations

In the frequency domain, the solution of both the over-
and underdamped GLE, eq. (4) and eq. (3), can be written

in terms of the position response function x(w), which is
defined via ~

I(w) = X(w)Fr(w). (12)
Introducing Iy (t) := O(t)I'(t), the response function
X(w) for the over- and underdamped case, respectively,
is given by

X(w) = M (UD), (13)
- B 1
%) =z (OD) (14)

We use the convention f (w) = [ >

> dte™ ™ f(t) for the
Fourier transform of a function f(t¢). Using eq. (6), the
position autocorrelation function C,,(t) = (z(t)z(0)) in

Fourier space reads

me(w) == BF(W)X(w)X(iw)
By noting that

U—w) = X(w) = iw ([ () + L4 (~w) ) Xw)X(—w)

(15)

= iwl (W)Y (W)X (—w), (16)
eq. (15) may be rewritten as
Crn(@) = 2 [¥(~w) — ()] (17)
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Fig. 2. Overdamped motion in the presence of delta-exponential memory, see eq. (20). The MSD has two diffusive regimes for
bTm # 0 and the crossover region between them is a plateau for 0 < b1, < 1 and a persistent regime for br,, < 0. The case
b = 0 corresponds to the Markovian case of simple Brownian motion with exponent a = 1.

The MSD is then given by

Cwmsp(t) = 205, (0

—B/ dw

Note that using the above formula, Cysp(0) = 0 is auto-
matically fulfilled [6,47]. The long-time diffusion constant
D is determined by the contribution from the simple pole
at w = 0 in the integrand of eq. (18)

Cwmsp (t)
2

()

—2C,
) -

T
iwt

w)].  (18)

X(=

D = lim

t—o0

= B, (19)

where we used that Iy (0) = 1/7,,, which follows from
eq. (5). In the overdamped case, B and 7,,, are not uniquely
defined and can be chosen freely as long as eq. (19) holds.
For a given diffusion constant D together with the rescaled
kernel 7,,,I"(t), the overdamped dynamics is then uniquely
determined.

4 Delta-exponential memory

Motivated by the result shown in fig. 1(d), we consider a
memory kernel which is given by the sum of a delta peak
and a single-exponential

I(t) = 2ad(t) + b, (20)

The two amplitudes a and b set the time scale 7,
1/(a + b). We will refer to the model eq. (20) simply as
delta-exponential kernel. We restrict our considerations to
the case of a positive contribution from the delta peak, i.e.
a > 0. Together with a + b > 0, this is a sufficient condi-
tion so that the kernel is positive in the frequency domain,
see appendix B, and furthermore that the corresponding
response function is causal, i.e. that it is single-sided in
the time domain, x(¢ < 0) = 0. The latter implies that
X(w) has no poles in the lower half complex plane. This

model may be regarded as a general ansatz for exponen-
tially decaying kernels for which only the slowest decaying
mode can be resolved in time. Other features of the kernel
that decay on shorter time scales are therefore absorbed
into the delta contribution.

First, we consider the overdamped case: We obtain the
following expressions for the response function and the
MSD, respectively [6]:

C(w)/ 1+ iwr
W)/ Tm =
X " —waty, T(w —i/aT,T) ]

Cwmsp(t)/2D =t — brp,T (e_t/‘”’” — 1) )

(21)
(22)

The expression in eq. (21) has a pole at i/a7,, 7 and thus
a must be positive for the response to be causal. Figure 2
shows the corresponding MSD which exhibits a crossover
region between the two characteristic time scales 7 and
aty,T: For positive tails b > 0, the crossover region is a
plateau, i.e. the particle is subject to a transient confine-
ment effect. For negative tails b < 0, the crossover region
is a persistent regime, which is the same behavior observed
for the active particle models in fig. 1(c).

More generally, the dynamics may be underdamped,
which leads to persistent motion at the shortest times ¢t —
0 and a non-trivial interplay between inertial and memory
effects [6]. The response function of the underdamped case
is given by

1+ iwT
iw(—Tw? +iw(l+ar)+a+0b)’

X(w) = (23)

Note that for a positive delta peak in the kernel, i.e. a > 0,
together with the condition 7,,1 = a+b > 0, the response
eq. (23) has no poles in the lower half-plane and is thus
causal. We obtain for the MSD [6]

CyMsb (t)/2D =
Lo olr=m) (et —1) + (7~ 7) (e 1),
Tp — Tb Tp — Tb

(24)



Eur. Phys. J. E (2020) 43: 67

(1 + iwr)(1 + iwT2)

Page 5 of 11

X(@)/Tm =

iw[—aoTmT1Tow? + iwTm (ao(T1 + 72) + a2 + b)) + aoTm + 1]

(32)

with the characteristic time scales

l+ar+£+/(1+ar)2—4r(a+b)
2(a +) ’

(25)

To,p =

where we choose the positive sign for 7,. We obtain the
following asymptotic behavior:

1/a, T — 00,

Ty = (26)
T4+ 0(7?), 7—0,
atm,T+ O(1), T — 00,

Tp = { W (27)
T, T — 0.

For large memory times 7, the motion is persistent at the
shortest times up to the time scale 7, = 1/a, which is given
by the delta contribution of the kernel. 7, approaches
atm,T for large 7, which recovers the characteristic time
scale in the MSD (22) of the overdamped solution.

If the kernel is positive everywhere, i.e. a,b > 0, oscil-
lations may occur in the MSD [6]. In fact, for 7_ < 7 < 74

with .
o= (VatbF V)

and a,b > 0, the time scales 7, pick up a non-vanishing
imaginary part. For the case a — 0, which corresponds
to the case of a memory kernel comprised of a single-
exponential only, 7, diverges and thus there is an oscilla-
tory regime in the MSD for all memory times 7 > 7_.

For negative exponential tails of the kernel, i.e. b < 0,
there are no oscillations in the MSD. For very pronounced
negative tails and long memory times, i.e. br,, < —1 and
T > T, we obtain the following scaling regimes in the
MSD [38]:

(28)

2, t< 1/a,
t, lla<kt<r,

Cnsp(t) ~
t°, Tt an,T,

(29)

t, ar,T <Lt

The columns in fig. 3 show results for three exemplary
cases of negative, zero and positive exponential tails of the
kernel. For a fixed memory time 7 = 10°7,,, figs. 3(a)—(c)
and (d)—(f) show simulated trajectories and the corre-
sponding analytical MSDs, respectively. The case b = 0
corresponds to the Markovian case of a standard persis-
tent random walk. For positive (negative) exponential tails
of the kernel, i.e. b > 0 (b < 0), the dynamics exhibit
transient confinement (persistent motion) in between the
initial persistent motion at short times and diffusion at
long times. Figures 3(g)—(i) show the MSD exponent « as
a function of time ¢t and memory time 7. The characteris-
tic time scales 7, and 7, are shown as dotted and dashed
lines, respectively. In particular, the duration 7, of the

initial persistent motion increases (decreases) for positive
(negative) tails. The oscillatory regime for positive kernels
with memory times 7 < 7 < 74 can be seen in fig. 3(g).

5 Bi-exponential memory

In a more general scenario, both contributions to the mem-
ory kernel are given by exponentials

r) = Lettim 4 b omttifm
T1 T2

(30)

This model describes the situation in which the shortest
time scale can be resolved in time and/or when the two
time scales 71 and 7 are not necessarily separated. The
kernel is positive in the frequency domain, if the shorter
mode of the kernel is positive, i.e. 75 > 71 for a > 0 and
vice versa, see appendix B.

The treatment of the overdamped case for kernels
solely comprised of exponentials with finite memory times
requires special care, since the overdamped limit is singu-
lar [5,6]. As discussed in detail in [6], the problem can be
regularized via the addition of a positive delta contribu-
tion to the kernel. For the treatment of the overdamped
case, we shall therefore consider the extended kernel

b
T(t) = 2a06(t) + —e1t/m 4 LIt/ (31
1

T2
The corresponding response function is then given by
see eq. (32) above

For the constraints on the kernel parameters mentioned
earlier and ag > 0, the response function eq. (32) is causal.
Doing the back transform, eq. (18), and then taking the
limit ag — 0 for ¢ > 0, we obtain the MSD [6]

Cmsp(t > 0)/2D =

o o ,
0 (o) - ) (e =1),  (33)
T T
where we have introduced the time scale
b
P R PP W P (34)

a+b

For the case in which the memory times are separated,
e.qg. T2 > 71, we have 7/ = art,,, T2, which recovers the char-
acteristic time scale of the overdamped delta-exponential
case. The MSD is constant at short times ¢ < 7172/7’
for all cases. This transient effective confinement may be
explained by the force created by the more short-ranged
kernel contribution and is the main difference to the un-
derdamped case of the delta-exponential kernel for which
the MSD is ballistic at short times. Note that the cor-
rect initial condition, Cyvgp(0) = 0 is still fulfilled and the
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Fig. 3. Underdamped motion for three exemplary cases of negative, zero and positive exponential tail of the delta-exponential
kernel eq. (20). Panels (a)—(c) show sample trajectories in 2D: the x1(t) and z2(¢) components are solutions of eq. (3) where the
random force has Gaussian statistics. The sample trajectories were generated with a timestep of A = 107,,, (see appendix C),
and are of length of the memory time 7, which is set to 7 = 10°7,,. (d)—(f) Analytical MSDs according to eq. (24) corresponding
to the trajectories shown in (a)—(c). (g)—(i) Phase diagrams of the MSD exponent « as a function of time ¢ and memory time 7.
For a positive tail of the kernel, see (g), the time scales 7, , may pick up an imaginary part for 7— < 7 < 74+ and their absolute
values are shown in this case. Cuts through the diagrams for 7 = 10°7,,, i.e. the cases corresponding to the examples (a)—(f)

are denoted by horizontal black lines.

MSD has a jump at t = 0. Figure 4 shows phase diagrams
of the MSD exponent «a. For negative kernels, i.e. b < 0,
the phase diagram is only shown for the region in which
To > 71, which must hold in order to satisfy causality.
For the underdamped case, we consider the unregular-
ized bi-exponential kernel eq. (30) and the back-transform
in eq. (18) is done numerically. If the memory times are
separated and one of them is very large, say 7o > 7| & T,
the expression for the response function simplifies for the
long- and short-time limits [6]: For long times, where ¢

is comparable to 73, we have w ~ 1/75 and the response
function can be approximated by

aTQ(]. + i(,dTQ)

Y(w) =~ . 35
X(w) —wlw — i/aT, 2] (35)
From the poles we obtain the characteristic time scale
aTm, T, similar to the delta-exponential case.

We study the initial persistent regime by considering
times ¢ comparable to 71 & 7, and thus w > 1/79. In this
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Fig. 4. Overdamped motion in the presence of bi-exponential memory eq. (31) and in the limit ap — 0. The introduction of
an additional time scale 71 leads to transient effective confinement, i.e. a constant MSD, at short times in contrast to the case
of delta-exponential memory, cf. fig. 2. The phase diagram (f) for the negative tail (b7, = —100) is only shown for 72 > 71, so
that the shorter exponential kernel contribution is always positive.

case the response function can be approximated by

- ]. + inl
' R 36
X(w) iOJ[_OJ2Tl +Zw _|_ a] ) ( )
with poles
1 1 a
= — -+ —. 37
W 27 4712 + 1 ( )

The initial persistent regime ends at 7/ := 1/|w |. For a >
1/47 the expression in eq. (37) picks up a non-vanishing
real part and thus oscillations occur in the MSD which
decay with a characteristic time 27. Since a+b = 1/7,,, >
0 must hold, it follows that a > 1/7,, for very pronounced
negative tails. We thus obtain in the asymptotic case 75 >
T1 & T, the following scaling of the MSD for negative b:

12, t < \/11/a,

oscillating, m <Lt K27,
Cwusp(t) ~ < t, 21 <t <K 7o, (38)

t2, Ty K t K ATy, T2,

t, at, T K .

Figure 5 shows phase diagrams of the MSD exponent « for
T1 = Tm, i.e. for the case in which the inertial time scale
is equal to one of the memory times. The behavior is simi-
lar to the underdamped case of delta-exponential memory,

see eq. (29). The positive (negative) tail of the kernel leads
to transient confinement (transient persistent motion) at
intermediate time scales at,, 72 <t < T2 (72 <t < aT,T2).
The case of b = 0 corresponds to a single-exponential ker-
nel, which is analogous to a massive particle diffusing in
a single-mode Maxwell fluid [47]. For our choice of pa-
rameters, oscillations occur in the MSD exponent, which
are however barely discernible, see fig. 5(e). As mentioned
earlier, for the integral over the kernel to stay positive, a
negative tail needs to be compensated for by a larger am-
plitude of the positive shorter mode, which then acts as a
strong confining force at shorter time scales. Together with
the initial persistence (inertial effects, in case of a massive
particle), and in the absence of any damping force, this
then gives rise to pronounced oscillations at short times,
see fig. 5(c) and (f).

6 Conclusion

We have investigated the MSD for random motion of a
particle governed by the GLE for two different memory
scenarios, namely for a memory kernel comprised of a delta
peak and a single-exponential mode and for a memory
kernel comprised of a bi-exponential kernel. For both the
over- and underdamped cases, we have explored the pa-
rameter regime where the kernel has a negative tail. We
find that such kernels give rise to a transient persistent
regime in the MSD, which is a prominent feature of many
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Fig. 5. Underdamped motion in the presence of bi-exponential memory, eq. (30), for 71 = 7,,,. The notable difference to the
underdamped delta-exponential model (see fig. 3) is the occurrence of oscillations for a negative tail of the kernel (b < 0). For
large lag times t, the crossover is described by the characteristic time scales 72 and at, 72 ~ 7'

random walk models for self-propelled particles, see fig. 1.
We only treat the linear GLE with Gaussian random noise,
which gives rise to purely Gaussian behavior, and there-
fore cannot describe possible non-Gaussian properties of
active or passive particle models.

Memory kernels with negative tails may arise in purely
equilibrium systems. For instance, the contribution from
hydrodynamic back-flow to the dynamics of a spherical
colloid immersed in a solvent gives rise to a negative
power-law tail in the corresponding memory kernel [29,
48, 49]. The negative-tailed delta-exponential kernel dis-
cussed in this work also describes the dynamics of a par-
ticle whose velocity is coupled to a hidden degree of free-
dom, while the overall system remains in equilibrium [50].

On the level of two-point correlation functions, such
as the MSD, an (effective) equilibrium description may
be obtained for a single degree of freedom by finding
the corresponding kernel I'(t) [26,44,46]. This has been
of relevance for the interpretation of single particle
tracking data of systems in and out of equilibrium where
often only single, non-coupled degrees of freedom can be
tracked [35, 38, 51].

The models for self-propelled particles discussed in the
introduction are out of equilibrium, as are many experi-
mentally relevant systems such as motile cells and tracer
particles in active media. Given the trajectory for a sin-
gle Gaussian degree of freedom, unambiguous extraction
of the underlying non-equilibrium dynamics is not possi-
ble, while the observed dynamics may be fully described

by an effective equilibrium-like substitute model. Inter-
estingly, these effective descriptions have led to memory
kernels with negative tails [38], which might suggest the
interpretation that energy is injected into the system at in-
termediate time scales. We anticipate that our results will
be of further relevance for the analysis of single-particle
tracking data of active systems.
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Appendix A. Velocity autocorrelation
function

The GLE, eq. (3), for an underdamped particle can be
written in terms of the velocity v(t) = & (¢):

The corresponding velocity response defined via o(w) =

dt'T(t — " )v(t') + Fr(t). (A.1)

Xo(w)Fr(w) reads in the frequency domain:

_ - 1
Xo(w) = @) (8.2)

By noting that f(w)f(v(w)f(v(—aJ) = Xo(w) + 5(1;(—“@

the velocity autocorrelation function (VACF), C,.,(t)
(v(t)v(0)) can be written in the frequency domain as

C’Uv(w) = B)z’l)(w) + B)Z’U(_w)'

From this, we obtain an expression for the diffusion con-
stant D, via the Green-Kubo relation

(A.3)

D= / atCy, (t) = & ( ) _ B, (A.4)
in agreement with eq. (19).
The mean-squared velocity is given by
> dw ~
0 = Cual0) = [ 5ECufw)
™
B
= */ dev = _*/ dwf(v(w)
ip
= B [Ta R
T R—oo Jg ZRG“/’ + I, (Re™)
B —Tr
- _f/ dy = B, (A.5)
T Jo

where we closed the contour in the lower half plane in
which X, (w) has no poles due to its single-sidedness, and
we assumed that | (z)| < oo for all z € C. Note that in
the underdamped case, i.e. Y(w) = 1/I"y (w), the integral
diverges, since the instantaneous velocity is not defined.

Trajectory data obtained via single-particle tracking or
simulation is necessarily discrete with a finite time resolu-
tion A. Accordingly, discrete velocity time series v; may
be obtained by differencing the position time series:

vy = (@(JA + AJ2) — 2(jA - A/2))/A

We shall refer to the autocorrelation function C,; =
(vjvg) as the discrete VACF. We will show that the
disctrete VACF can be straightforwadly obtained from
the continuous MSD by taking the second central differ-
ence [38]. First note that from eq. (A.6), it follows that

(A.6)

z(JA+ A)2) =x(A/2) + Aivj.
k=1

(A7)
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Thus the MSD at time t = jA can be written as
Cusp,; = ((2(jA + A/2) — 2(4/2))?)

= < (:c(A/2) +AY oy - :c(A/Q)) >
k=1

(A.8)

Taking the second central difference, we obtain

Cwmsp,j+1 — 2Cusp,j + Omsp,j—1
2A2

j-1 j—2

= (vj_kvo) = > _(vi_k—1v0)
k=0

= Cuu -

k=0
(A.9)

Uj2> = va,O7

= (vjv0)

Note that the discrete mean-squared velocity (
is given by
Cwmsp,1

Az
where we have used that the MSD is symmetric and zero
at t =0.

CUU,O =

(A.10)

Appendix B. Frequency domain memory
kernel

Here we discuss the frequency domain representation of
the delta-exponential and bi-exponential kernels as well as
the constraints on their parameter values that ensure that
they remain positive, as mentioned in the main text. The
delta exponential kernel eq. (20) reads in the frequency
domain

- 2b
By requiring that I" (w) > 0 we obtain
2w +a+b>0. (B.2)

Together with the requirement of a positve integral over
the kernel, a + b = 7,,1 > 0, see eq. (5) in the main
text, this leads to a > 0, i.e. a positive delta contribution.
For the bi-exponential kernel eq. (30), we obtain in the

frequency domain

~ 2a 2b
I =
@) 1+ w?r? 1T w2ts’

(B.3)

which together with the requirement I'(w) > 0 leads to

(ar3 + brd)w? +a+b> 0. (B.4)

It is sufficient for the inequality to hold if together with
a+b=r7,1 >0, the shorter contribution of the kernel is
positive, i.e. 79 > 71 for a > 0 and vice versa.
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Appendix C. Generation of sample
trajectories

In the following, we describe our method to generate sam-
ple trajectories of a Gaussian random walk for a given
MSD. The discrete VACF, i.e. the autocorrelation of the
discrete velocity time series Cl, ,, = (Vnv0), can be ob-
tained via eq. (A.9). Taking the discrete Fourier transform
(DFT)

N—1

~ —27mikn/N
va,k = E Om},ne / )
n=0

(C.1)

a time series of discrete velocities may be generated in the
frequency domain via

U = gk\/ évv,k.

Here, ék is the DFT of a realization of zero-mean, white
Gaussian noise and thus (ékgﬁ = N6y k1. The discrete
time domain velocity may then be obtained via the back-
transform, v, = N—! Zfﬁv:_ol e2mikn/Ng,  which recovers
the discrete VACF

(C.2)

1 N—-1
<UnUO> - ﬁ e27rzkn/N 51{:5[) \/ v, kcv'ul
k,1=0
1 N—-1

2mwikn/N A
= xr § e~ n/ Cv'u,k: = C’uv,n-
=0

(C.3)

2

In the last step, we used the symmetry of the VACF,
Cyu e = Cyov,—k. The position time series z(nA + A/2)
may then be obtained via summation of v, see eq. (A.7).

Appendix D. Extraction of the memory
kernel from correlation functions

It can be shown [44,46], that the time domain VACF and
the memory kernel I'(t) are related via

t
—/ dt'G(t -t
0

where G(t fo dr'r(t’).

leen a dlscrete VACF of a freely diffusing particle, the
corresponding memory kernel can be extracted iteratively.
We discretize eq. (D.1) using the trapezoidal rule for the
convolution integral:

C(t) - C0) = ), (D.1)

Cm;,n -

A n—1
Cm;,O = 75

Z Gn—i—1/2(01)11,i+1 +va,i)- (DQ)
=0

Here, the sample points of the integrated kernel G, 1,2
are located in between the sample points of the discrete
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VACF Cyy . Equation (D.2) can then be solved itera-
tively:

2CU'U,n+1 - CU'U,O
va,l + CUU,O

C’Uv,iJrl + va,i

> AG i1y
=1 CvU,O + C’UU,I

AGn+1/2 = -
(D.3)

From this, the discrete memory kernel I; can then be ob-
tained:

Git12 — Gic1po
[ = 22T sz
A
2G1 )2

The expression for I follows using the anti-symmetry of
Giy1/2-

In the case of overdamped dynamics, the instantaneous
velocity diverges, i.e. Cyy,(0) = oo. In the discrete case
however, Cyy o is always finite, see eq. (A.10). This sets
an effective inertial time scale

eff D

= D.5
= G (D-5)

which allows for the extraction of the kernel even for over-
damped dynamics: While B and 7,,, are not uniquely de-
fined in the overdamped case, the rescaled kernel 7, I'(t)
can be obtained via 7¢I

Open Access This is an open access article distributed
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