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Abstract

Autonomous driving has become a priority in the research and de-
velopment division of the automotive industry. According to the re-
quired technical and safety demands of the automobile standardisa-
tion organizations, localisation plays a crucial role in achieving the
maximum level of automation in a vehicle. The use of deep learn-
ing and neural networks to develop modules of artificial intelligence
has become the preferred tool in disciplines such as computer vi-
sion. Moreover, the method excels at learning complicated represen-
tations by employing supervised learning or self-supervised learning
through techniques such as deep reinforcement learning. In particu-
lar, the estimation of complex parameters from images such as depth
or optical flow out-perform classical method baselines under con-
strained settings. The models extract rich information, which is used
for tasks such as semantic and instance segmentation, as well as to
compute temporal associations between video frames or stereo-pair
images. In general, applying these end-to-end deep learning models
and finding such associations is complex. This thesis explores the ap-
plicability of end-to-end deep learning architectures for vehicle local-
isation estimation, using either sensory data from dynamical vehicle
parameters or camera images. To achieve this, we observed that the
net does not need to learn everything from scratch, and we can use
associations that we already know about the physical world. We ad-
dress these ideas using concepts from physics, geometry, and leverag-
ing transfer learning from large-scale regression data using temporal
associations.

We also show that autonomous model cars can be used in the pro-
cess of data collection and that the learned associations can be trans-
ferred to other vehicles to improve accuracy.

Moreover, we show how the localisation estimation generalises to
other scenes, allowing us to regress the displacement of the vehicle
given a sequence of temporal data and compose the global estimated
position.
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Zusammenfassung

Autonomes Fahren hat in der Forschungs- und Entwick-
lungsabteilung der Automobilindustrie einen immer höheren
Stellenwert erreicht. Um den maximalen Automatisierungsgrad
gemäß den erforderlichen technischen und Sicherheitsanforderungen
der Automobilstandardisierungsorganisationen zu gewährleisten,
spielt die Lokalisierung des Fahrzeugs eine entscheidende Rolle.
Die Verwendung von Deep-Learning und neuronalen Netzen zur
Entwicklung von Modulen der künstlichen Intelligenz, ist das do-
minierende Werkzeug in Disziplinen wie Computer Vision geworden.
Darüber hinaus zeichnet sich das Deep-LearningVerfahren unter
Einsatz von Supervised-Learning sowie neuerdings Self-Supervised-
Learning durch Techniken wie z.B. Deep-Reinforcement-Learning
aus. Insbesondere übertrifft die Schätzung komplexer Parameter
aus Tiefenbildern bzw. optischem Fluss unter eingeschränkten Ein-
stellungen die klassischen Basislinien-Methoden. Die verwendeten
Modelle extrahieren umfangreichere Informationen als die reine
Bilderkennung und berechnen zeitliche Assoziationen zwischen
Videobildern oder Stereopaar-Bildern.

Im Allgemeinen ist die Anwendung dieser End-to-End-
DeepLearning-Modelle und das Finden solcher Verbindungen
komplex. Diese Arbeit untersucht die Anwendbarkeit von End-to-
End-Deep-Learning-Architekturen für die Schätzung der Fahrzeu-
glokalisierung durch Bereitstellung von Sensordaten aus dynamis-
chen Fahrzeugparametern oder Kamerabildern. Um das zu erreichen,
muss das Netzwerk die zugrundeliegenden Beziehungen nicht von
Grund auf lernen. Stattdessen werden bekannte Assoziationen der
physikalischen Welt miteinbezogen. Dies geschieht durch Konzepte
der Physik und Geometrie, sowie Transfer-Learning von Regres-
sionsdatensätzen durch zeitliche Assoziationen. Es wird gezeigt,
dass autonome Modellfahrzeuge zur Datengenerierung benutzt
werden können. Die zugrundeliegenden Beziehungen können dann
auf andere Fahrzeuge übertragen werden, um die Genauigkeit
der Standortberechnung zu erhöhen. Außerdem wird gezeigt, dass
die Fahrzeuglokalisierung generalisiert werden kann, welches die
Ermittlung der globalen Position anhand einer Sequenz zeitlich
zusammenhängender Daten erlaubt.
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If you really want to escape the things that harass you, what you’re needing
is not to be in a different place but to be a different person.

— Lucius Annaeus Seneca
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Chapter 1
Introduction

The future of mobility based on autonomous vehicles is an audacious
visionary goal with highly complex but achievable technical chal-
lenges. This work is part of the general solution to the problem of
providing pose estimation to driverless cars in urban environments.

The localisation concept is referenced in this work as it is used in
the robotics field, i.e. part of a navigation system.

Navigation is defined as a combination of three fundamental
competencies:

Navigation Self-localisation

Path planning

Map-building

Path integration

Relocalisation

Odometry

Robot navigation refers to the robot’s ability to determine its position
within its frame of reference and then plan a path towards some goal
location. Path planning requires determination of the robot’s current
position and the goal location, both poses must be within the same
frame of reference or coordinates. To navigate in its environment, the
vehicle requires representation, i.e. a map of the environment and the
ability to interpret that representation. Map building can be defined
with a metric map or any notation describing locations in the robot’s
frame of reference.

Robot localisation denotes the robot’s ability to establish its posi-
tion and orientation within the frame of reference. Moreover, odom-
etry is the use of data from motion sensors to estimate the change
in position over time in relation to a previous instantaneous frame,
while path integration or dead reckoning is referred as the total dis-
placement of the vehicle from a known starting point.

The objective of this work is to analyze whether Deep Neural
Networks (DNN) can improve current localisation methods through
odometry by employing available sensors on the car such as cam-
era, wheel speed sensors and inertial units, and test the robustness
against known problems in traditional odometry methods.

Localisation is a fundamental requirement for autonomous cars.
Vehicles must be able to avoid obstacles by planning safe paths to
reach the desired destination in order to operate autonomously. Plan-
ning an efficient and safe path typically requires a map.
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2 Introduction

Furthermore, following a path safely requires the robot to know
its precise location on the map at any point in time, i.e., it must be
localized. Hence, mapping new environments robustly while being
accurately localized is essential for mobile robots. For this reason,
odometry and more robust techniques such as Simultaneous Local-
ization And Mapping (SLAM) are highly relevant for uninterrupted
robot operation.

Traditional localisation approaches commonly use sensors such as
inertial measurement units, global positioning systems, SOund NAv-
igation Ranging (SONAR), RAdio Detection And Ranging (RADAR),
and Light Detection and Ranging (LIDAR). Unavailability of Global
Positioning System (GPS) signals in indoor and below-surface envi-
ronments, unacceptably high while drift using inertial sensors dur-
ing extended GPS outages, issues of possible confusion with nearby
vehicles for SONAR and RADAR, and the line of sight requirement for
laser-based systems are some of the limitations associated with these
systems. One promising solution lies in the science of visual odome-
try which estimates motion, taking advantage of helpful information
such as texture of scenes with the help of cameras mounted on the
vehicle.

The performance of localisation methods based purely on visual
information can be affected by photometric calibration, motion bias,
rolling shutter effect, or self-moving illusion. In order to reduce the
effects of these phenomena on performance, usually, the estimations
are jointly mixed with the estimation, of other sensors.

On the field of artificial vision, the impact of deep learning has
been transformational, and it is already making significant inroads
into traditional robotics, including SLAM.

With current advances with in end-to-end solutions in deep learn-
ing on topics such as segmentation, specifically for autonomous driv-
ing with nets like You-Only-Look-Once (YOLO)[63], Segnet[4], U-
Net[67] or Pyramid Scene Parsing Network (PSPNet)[94], depth es-
timation with DeMoN[7] or optical flow estimation like FlowNet[24],
and occlusion detection with nets like Netdef[35], deep learning ap-
proaches are leading perception research. This opens the way to
push forward the development of an end-to-end localisation solution
which complements or replaces traditional semantic and appearance-
based SLAM algorithms.

Currently, in the Dahlem Center for Machine Learning and
Robotics, topics such as localisation and path planning are of high
interest. To test the algorithms, the institute has three autonomous
vehicle projects: Made In Germany (MIG), e-Instein, and AutoMiny,
which are shown in Fig. 1.

Deploying Machine Learning (ML) algorithms in autonomous cars
which are allowed to drive on streets has regulatory obstacles. The
title of ”self-driving car” may seem self-evident, but there are six
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Figure 1: The Autonomous Vehicle Project at the Freie Universitaet Berlin.
a) MIG, b) e-Instein, c) AutoMiny.

Society of Automotive Engineers (SAE) Levels used to define au-
tonomous driving. The SAE J3016 standard (SAE Committee, 2014) in-
troduces a scale from zero to five for grading vehicle automation, and
techniques such as ML and DNN are leading the race to achieve level
five. These automation levels are defined as follows1:

• SAE Level 0 (No automation): the full-time performance by the
human driver of all aspects of the dynamic driving task, even
when enhanced by warning or intervention systems.

• SAE Level 1 (Driver assistance): the driving mode-specific execu-
tion by a driver assistance system of either steering or accelera-
tion/deceleration using information about the driving environ-
ment and with the expectation that the human driver perform
all remaining aspects of the dynamic driving task.

• SAE Level 2 (Partial Automation): the driving mode-specific ex-
ecution by one or more driver assistance systems of both steer-
ing and acceleration/deceleration using information about the
driving environment and with the expectation that the human
driver perform all remaining aspects of the dynamic driving
task.

• SAE Level 3 (Conditional automation): the driving mode-specific
performance by an automated driving system of all aspects of
the dynamic driving task with the expectation that the human
driver will respond appropriately to a request to intervene.

• SAE Level 4 (High automation): the driving mode-specific per-
formance by an automated driving system of all aspects of the
dynamic driving task, even if a human driver does not respond
appropriately to a request to intervene.

• SAE Level 5 (Full automation): the full-time performance by an
automated driving system of all aspects of the dynamic driving

1 The definitions were extracted from https://justauto.nridigital.com/just_

auto_magazine_apr19/sae_levels_of_driving_automation

https://justauto.nridigital.com/just_auto_magazine_apr19/sae_levels_of_driving_automation
https://justauto.nridigital.com/just_auto_magazine_apr19/sae_levels_of_driving_automation
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task under all roadway and environmental conditions that can
be managed by a human driver.

Table 1 shows on which tasks the autonomous system or the human
driver intervene according to the level of automation.

Steering and

Acceleration/

Deceleration

Monitoring

of Driving

Environment

Fallback

Performance

of Dynamic

Driving Task

System

Capability

(Driving Modes)

Human driver monitors the driving environment

0 Human Human Human n/a

1

Human &

System
Human Human

Some driving

modes

2 System Human Human
Some driving

modes

Automated driving system monitors the driving environment

3 System System Human
Some driving

modes

4 System System System
Some driving

modes

5 System System System
All driving

modes

Table 1: SAE J3016 Levels of Driving Automation

Regardless of the empirical definitions on the five automation
scales and possible interpretations of safety, the use of deep learning
components in safety-critical systems is still not clear. The ISO 26262

safety standard for road vehicles gives a list of requirements to ensure
safety. Nevertheless it does not address the unique characteristics of
deep learning-based software.

Salay et al. [69] addresses this uncertanty analyzing the areas where
machine learning can be implemented and how the standard would
be impacted. The autor provides recommendations on how to man-
age this impact. The recommendations are focused on identifying
hazards, and implementing tools and mechanisms for fault and fail-
ure situations. It is necessary to ensure the correct contruction of
training datasets and design multi-level architechtures. The standari-
sation of algorithms along the different stages on the software devel-
opment life-cycle is mandatory.

The standard ISO 26262 suggest the use of a Hazard Analysis and
Risk Assessment (HARA) method to identify hazardous events in the
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system, and specify safety goals that mitigate the hazards. The stan-
dard is composed of ten parts:

• Part 1: Vocabulary

• Part 2: Management of functional safety

• Part 3: Concept phase

• Part 4: Product development at the system level

• Part 5: Product development at the hardware level

• Part 6: Product development at the software level

• Part 7: Production and operation

• Part 8: Supporting processes

• Part 9: ASIL-oriented and safety-oriented analysis

• Part 10: Guideline on the safety standard

Automotive Safety Integrity Level (ASIL) refers to a risk classifica-
tion scheme defined in ISO 26262 for an item (e.g. subsystem) in an
automotive system. In this norm, a hazard is defined as a ”potential
source of harm caused by a malfunctioning behaviour, where harm
is a physical injury or damage to the health of a person” [72].

A deep learning module in the vehicle can potentially generate new
types of hazards. An example of a dangerous scenario happens when
the reliability of an automated driver assistance (often developed us-
ing learning techniques) is overrated by a human driver [60].

A deep learning module may have hunderds of thousands of pa-
rameters, and its due to its complexity, that can fail in unexpected
ways. For example, in deep reinforcement Learning systems, false
assignations of the reward function can conduct to a negative vehicle
behaviour [3]. In such a case, the automated vehicle deduce that it
can avoid getting penalized for driving too close to other vehicles by
performing a dangerous driving behaviour or by exploiting partic-
ular sensor vulnerabilities to bypass how close it is getting. Despite
hazards such as these may be unique to deep reinforcement learning
components, they can be monitored to faults, thus fitting within the
existing guidelines of ISO 26262.

An essential requirement for analyzing the safety of deep learn-
ing components is to examine whether the immediate human costs
of outcomes exceed the humanitary harm severity thresholds. Unde-
sired outcomes are harmful in a human sense, and their effect takes
place in real-time. These unexpected reposnses can be classified as
safety issues.

Self-driving vehicles must have fail-safe phisical mechanisms, usu-
ally named Safety Monitors. These must stop the autonomous control
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software once a failure is detected [44]. Specific fault types and fail-
ures have been catalogued for neural networks in [29, 34, 47]. Those
failures led to the development of specific and focused tools and tech-
niques to help find faults. [13] describes a technique for debugging
misclassifications due to inadequate training data and a troubleshoot-
ing fault that detects complex interactions between linked machine
learning components is proposed in [58].

In order to reduce the testing time and make all test comply with
the mentioned norms, while also reducing danger by a third and the
vehicle itself ML, we employ a developed scale autonomous car. This
work will show how to take advantage of this kind of platforms for
localisation matters.

1.1 Thesis Statement

It is possible to develop a deep neural network model to estimate
vehicle localisation in urban environments using either wheel veloc-
ity and Inertial Measurement Unit (IMU) data or monocular camera
images. Since it is difficult for safety and regulatory reasons to per-
form aggressive driving manoeuvres while driving on public streets,
training data from scaled car-like robots can be used as a data aug-
mentation method. The learned associations in the scaled vehicle can
be transferred to a full-scale car learned model to improve the results
in real-driving situations.

1.2 Thesis Contributions

The contributions of this work are in the fields of localisation and
deep neural networks for autonomous driving. They are summarized
as follows:

• Development of the scaled robotic architecture AutoMiny to
collect training data and test networks on an NVIDIA™arm-
architecture Graphics Processing Unit (GPU)

• Development of a neural network architecture called Ground
Autonomous Localization Net (GALNet) to estimate localisation
given kinematic and dynamic data from the vehicle

• Development of a Siamese deep neural network architecture
for visual localisation named Visual Autonomous Localisation
Net (VALNet) to estimate ego-motion given a monocular frame
sequence
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1.3 Thesis Structure

The outline of the thesis is as follows. Chapter 2 gives an overview of
the current classical methods and neural networks used to estimate
localisation for autonomous cars given dynamics and camera images.
The principal drawbacks of these classic methods are discussed, and
the advantages of neural networks are highlighted as well as the dif-
ficulties of implementing them on an autonomous car. In Chapters
3 and 4 we present a method to estimate motion for dynamics and
camera images respectively; each chapter presents how the datasets
were made, the architecture and designed loss functions, as well as
the experiments and a discussion of results. In Chapter 5 we make
overall conclusions, discuss the applicability of this technology, and
suggest directions for future research.





Chapter 2
Research Platforms and State of
the Art

In this chapter, we present the vehicles employed for this work, and
the localisation approaches currently being used in them.

A brief description of the traditional methods based on kinematic-
dynamic sensors and cameras used in autonomous cars is presented.
Its neural network approach follows each method. The chapter high-
lights the drawbacks of each method and how neural networks can
improve them as well as the opportunities on DNN schemes.

In the localisation methods based on kinematic-dynamic sensors,
approaches using wheel speed sensors and IMUs are highlighted with
an emphasis on Ackermann steering and slip angle compensation.
On the visual localisation methods, a general overview of the best
solutions and their inherent drawbacks which make the localisation
problem an open research subject are described.

The chapter clarifies why the development of a new platform is
necessary to improve the localisation methods available in an MIG

vehicle.

2.1 Autonomous Vehicles at the Freie Universitaet

In the following subsections, we present the hardware set-up of the
autonomous vehicles used for this work as well as their current lo-
calisation systems. In the University we have two autonomous cars
and one autonomous model car, each one wholly developed at the
robotics department of the Freie Universitaet. Chapters 3 and 4 ex-
plain how these platforms work together to get better results in the
Visual Odometry (VO) system developed in this work.

2.1.1 The Autonomous Car MadeInGermany

The autonomous vehicle project at the Intelligent Systems and
Robotics Group of the Freie Universitaet Berlin, Germany started
in the year 2006. Since then, the efforts have been focused on the
research and development of Advanced Driver Assistance Systems
(ADAS). Regarding this project, the AutoNOMOS Labs company was
formally founded in 2009, and the autonomous car platform MIG was
built. The MIG is based on a Volkswagen Passat Variant 3C. In 2011,

9
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also an electrically powered car was equipped for autonomous pur-
poses using a Mitsubishi i-MiEV, its name is e-Instein. In this sec-
tion, just the MIG will be taken to explain the configuration of the
system; in general, the sensorial hardware is similar on the e-Instein.
The MIG is equipped with drive-by-wire technology and several dif-
ferent sensors allowing the car to be controlled by the AutoNOMOS
Software framework which runs on computers connected to the car.
Due to extensive simulation and testing of driving scenarios at the
former airport Tempelhof, it was possible to obtain in 2011 a special
permit to drive the MIG autonomously on public roads in real traffic.
However, the safety concept requires monitoring by a human safety
driver and a safety observer. The MIG drove a thousand kilometres
autonomously since then, including a 2400 km long-distance drive
from the USA to Mexico City. Figure 2 illustrates the MIG and the
arrangement of some of its sensors. The sensors addressed mainly in
this thesis are the SatCam RGB colour cameras, the Applanix POS LV
and the Controller Area Network (CAN) bus data.

Figure 2: Overview of the Sensor Positioning on MIG autonomous vehicle.

The estimation of the vehicle’s position is obtained from an
Applanix™POS-LV 520; it calculates the position and orientation fus-
ing information from the integrated inertial technology, a Distance
Measuring Indicator (DMI) attached to the rear left wheel and a dif-
ferential GPS.

The CAN bus provides useful data related to the status of the car,
such as:

• Wheel speeds

• Car speed

• Steering wheel sensor

• Wheel Odometry

• Brake pedal

• Gas pedal

There are four TE SatCam RGB colour cameras integrated into the
chassis of the car, Figure 2 shows the camera set-up, they are lo-
cated in the front, in the back and one in each exterior rear mirror
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on the sides of the car. The cameras are connected to the car via
BroadR-Reach automotive Ethernet and communicate with the Au-
toNOMOS Software framework which is based on Robotic Operating
System (ROS) through the camera driver. Table 2 list the essential char-
acteristics of the camera system integrated into the MIG1.

camera feature characteristic

Imaging Sensor OV10635 Family

Horizontal Field Of View (hFOV) [deg] 190

Vertical Field Of View (vFOV) [deg] 118

Output Frame Rate [fps] 30

Spatial Output Resolution [px] 1280 x 800

Output File Format 8-bit RGB JPG

Shutter Rolling Shutter

Table 2: SatCam Camera features

More information about the autonomous car is available on the Au-
tonomous GmbH website2 or in the Intelligent Systems and Robotics
Research Group web page in the Department of Mathematics and
Computer Science at the Free University Berlin.

2.1.1.1 Implemented Localisation Methods.

The Applanix system, besides being expensive, it has inherent the
drawbacks of the base sensors on which is based and the uncertainties
of the filtering method used to fuse the information of them. Among
the most important drawbacks, are the ones related to the Dual GPS
(DGPS) signal, which in some places, like tunnels, the signal quality
decreases, or die. The Inertially Assisted Real Time Linematic (IARTK)
based on the IMU data, the odometry estimation based on the DMI

and the Real Time Kinematic (RTK) obtained from a Universal Mobile
Telecommunications System (UMTS) connection, define the Applanix
estimation error which is defined in Table 3 according to the specifi-
cations sheet.

Moreover, in practice, the measured precision of the Applanix in-
stalled in the MIG, was obtained in Robert Spangenberg Doctoral the-
sis [73], in his work it is mentioned that for a small trajectory the
average positional uncertainty, measured by the size of the ellipsoid
error, is (0.22m, 0.35m) for the small and big sides of the ellipse.

Accuracies below 0.1 m are usually only reached during vehicle
standstill. Good accuracies can only be reached if ten or more satel-

1 Based on specifications provided by the component suppliers https://www.ovt.

com/sensors/OV10635

2 autonomos-systems.de/en/

https://www.ovt.com/sensors/OV10635
https://www.ovt.com/sensors/OV10635
autonomos-systems.de/en/
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lites are available. In typical urban scenarios with limited satellite
visibility and multi-path effects, the uncertainty figures of the system
can be misleading.

In order to construct an idea of the Applanix system accuracy, its
drift was plotted in a repeatability test while driving the car in the
University campus (Fig. 3). The given localisation jumps in the range
of 0.2m from time to time and provokes sudden quality levels changes
(float and fixed RTK) which affect real-time kinematics. When the ve-
hicle is parked, jumps in the position information were also reported.

Figure 3: Applanix positional drift while driving on the University cam-
pus.[73]

Therefore, the convenience of the DGPS for accuracy estimates is
limited; the position information must carefully be analysed when
used as a positional reference and is not used as ground truth to
evaluate the VO algorithms.

position rtk iartk dgps

X,Y Position(m) 0.020 0.035 0.30

Z Position (m) 0.050 0.050 0.500

Roll and Pitch (deg) 0.005 0.005 0.005

True Heading (deg) 0.015 0.020 0.020

Table 3: Applanix Performance specifications 3
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In the Intelligent Systems and Robotics Research Group of the Freie
Universitaet (FU) Berlin in 2015, the first localisation method without
using Applanix was proposed in Robert Spangenberg Dissertation
thesis [73]. On this work a stereo vision-based localisation was used,
the features tracked for it were pole-like landmarks, the localisation
method is based on particle filters. The overview of the system is
shown in Fig. 4

Stereo 
Matching

Pole Detection & 
Tracking

Localization 
Prticle Filter

Normal 
GPS

Controller

Cameras Odometry

Output 
Kalman Filter

Pole Map

. . .

Sensors

Localization

Egostate

Framework

Images
Wheel Speeds, Yaw rate GPS Location

Location Poles nearby

Figure 4: Localization scheme of Robert Spangenberg based on stereo vision
and pole detection.[73]

On this approximation, the camera image is used for the disparity
computation while, the odometry information is used for pole track-
ing, the state of the particle filter and the Kalman filter output. The
simple GPS location fixes are only used for the initialisation of the
particle filter. Map information is queried by the particle filter, using
its current best estimate. The output Kalman filter achieves 100 Hz
frequency of the state and transmits its results to the autonomous car
framework to provide the Egostate.

In 2017 Xiuyan Guo [31] proposed a similar localisation scheme us-
ing the LIDAR as the main sensor. The method is a two-point feature-
based localisation using a filtering technique with extended Kalman
filter to fuse it with wheel odometry. The work is different from the
classical EKF localisation scheme in the way of handling the mea-
surement update stage. The system structure is shown in Fig. 5. The
localisation module consists of two Extended Kalman Filters. The lo-
calisation EKF is the main unit of estimation. The smoothing EKF is
employed to smooth the estimated trajectory in real-time. Then an
Egostate is created to provide the vehicle state information to other
modules.

There are some areas of improvement on the presented localisation
methods in order to obtain better accuracy:
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Figure 5: Localization scheme of Xiuyan Guo based on Two-point features
LIDAR-based.[31]

Landmarks: The methods are landmark-dependent; therefore, if the
map has a lack of trees or poles, the uncertainty grows, therefore
is necessary to develop other robust-feature detectors. These
methods also are affected by the drawbacks of feature detectors,
such as blur, occlusions, high brightness, and issues related to
camera calibration and quality of the camera.

SLAM: Since the accuracy of the methods relies entirely on the accu-
racy of the build map, modules such as loop closure or poste-
rior optimisation to evaluate the consistency of the map is also
necessary..

2.2 Kinematic-Dynamic Localisation Approaches

Wheel odometry in robotics as been widely used mainly to compute
the prior estimation of more complex odometry estimators or to give
the vehicle information by way of emergency when other methods
are not available.

There are several mechanical, physical, geometrical and mathe-
matical assumptions or generalisations which demotivate the use of
wheel Odometry on severe applications like the principal source of
estimation. Despite the drawbacks, it is popular among the roboti-
cist to calculate the position of a wheeled vehicle, the sensors used to
get this information are relatively cheap, and already mature in the
development and manufacturing process which makes them almost
failure-free; those sensors are also widely displayed in the cars since
1987.
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In the following sections, the perturbations which affect this
method will be explained together with the advantages and disad-
vantages of the most common methods; this will lead to the idea of
having a smart system that can approximate a function to handle the
dynamic and kinematic parameters involved on the estimation.

2.2.1 Classical Methods

In this category Odometry methods based on the kinematics of the
car are considered, approaches like differential Odometry or Acker-
mann steering are widely the most employed classical methods in the
literature, some examples are [6, 71, 80, 88]. The dynamic parameters
of the vehicle, specifically wheel parameters such as rotational ve-
locity or tyre force, usually are used to develop stabilisation control
systems and ADAS.

The reason to use this method as a secondary way to calculate
the robot position is in its mechanical nature; variable wheel size,
different tyre materials, spring effects due to the suspension sys-
tem, diverse steering and traction mechanisms. Furthermore, some
indirect external agents cause wheel odometry to be imprecise, for
instance, road conditions, driving habits, weather, variable vehicle
weight, components failure, and wear. Therefore, it is necessary to
improve the mathematical model or depend continuously on the data
from other sensors like cameras, IMU or GPS.

The Ackermann approach is derived from the geometrical assump-
tion that the vehicle has a four-bar steering mechanism and the car
moves in perfect circles which centre I is localised on the rear wheel
axis and in the intersection point of the perpendicular projections
from the pointing wheel direction (see Fig.6).
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Figure 6: Ackermann steering geometry on a global frame. I is the instanta-
neous center of rotation between the car frames Ok and Ok+1, ∆
is the traveled distance and ρ is the radius.

Moreover, in the models based on Ackermann, the mathematical
approach assumes that the arc on which the car moves between ori-
gins, can be approximated up to the second-order as ∆ = |OkOk+1|,
taking the following equations to calculate displacement with Acker-
mann kinematics derived from Fig.6:

xk+1 = xk +∆ cos(θk +ω/2)

yk+1 = yk +∆ sin(θk +ω/2)

θk+1 = θk +ω

(2.1)

Where x,y and θ are the 2D x, y and yaw coordinates of the car
in different k instants of time, ∆ is the travelled distance, and ω is
the angle between coordinate systems of the car on times k and k+ 1
related to the instantaneous centre of rotation.

In order to calculate ∆ and ω the lectures of the wheel encoder
should be used. There are diverse methods to calculate the variables
related to the kinematics of the car, in the most basic approach, the
differential odometry can be calculated as follows:

∆ =
δRR + δRL

2
(2.2)

ω =
δRR − δRL

2e
(2.3)

where δ is the linear displacement of the wheel in meters, the sub-
indexes RR and RL correspond to the Rear Right wheel and the Rear
Left wheel and e is the half-track of the car (see Fig. 7).
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Figure 7: Geometry of the car related to the mobile frame O. Ψ is the Ack-
ermann angle which is referenced on a middle virtual wheel, ρ is
the radius, e is the half track and L the wheel-base of the vehicle.

Differential odometry would be enough, but the first dynamic pa-
rameter, tyre slip, makes this approach not adequate for practical use.
Looking for extra kinematic constraints, the Ackermann angle ψ can
improve the results, in order to add the circle movement constraint,
is it possible to calculate the radius from Fig.6 as follows:

ρ =
δRL
ω

+ e

=
δRR
ω

− e

(2.4)

Ackermann angle is then included on the equation list with the
radius or the displacement:

tan(Ψ) =
L

ρ

= L
ω

∆

(2.5)

At this point it is theoretically possible to compute an Ackermann
odometry using the steering angle sensor of the car to calculate ω
with Eq. (2.5) and integrating the velocity measurements of each
wheel from the Anti-lock Braking System (ABS) sensors to calculate ∆
with Eq. (2.2).

Nonetheless, no information of the front wheels has been taken
into count. They can be included analyzing Fig.6 further. As the ori-
entation between the wheels with respect to the mobile frame is not
constant, the displacement from time k to k+ 1 of the virtual wheel
in Fig.7 is not ∆, it will be represented as ∆F, with D representing the
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distance to the instant point of rotation, the following relation can be
obtained:

∆F = Dω

and since
D =

L

sin(ψ)

using (2.4), it leads to:
D =

ρ

cos(ψ)

By multiplying each side by ω:

∆Fcos(ψ) = ∆

Repeating the procedure for each front wheel, is possible to get the
following equations:

∆FLcos(ψL) = ∆− eω

∆FRcos(ψR) = ∆+ eω

With the previous equations, a non-linear and redundant system to
compute ∆ and ω with the sensor lectures of the wheel ABS sensors
(∆FL, ∆FR, ∆RL, ∆RR) and steering sensor (ψ) variables can be written:

tan(ψ) = L
ω

∆

∆RL = ∆− eω

∆RR = ∆+ eω

∆FLcos(ψL) = ∆− eω

∆FRcos(ψR) = ∆+ eω

(2.6)

In order to solve this system, classical estimators or optimisers can
be used, in [6] an Extended Kalman Filter (EKF) is implemented,
although this approximation takes into count front-wheel measure-
ments, in a vehicle the effective half-track e and the wheel-base L are
not constant due to external disturbances like the suspension sys-
tem, the wheel contact area with the floor which modifies the tyre
force and wear of the materials. Additionally, in practice, the Acker-
mann steering geometry of the mechanism can be changed to affect
the dynamic settings of the car, therefore, each car may have different
relations between the Ackermann angles of the front wheels.

To physically measure the Ackermann angle in the car, the Steering
Wheel Angle Sensor (SAS) of the car must be mapped between the
wheel position and the wheel Ackermann angle. Giving an analyti-
cal solution to the Ackermann-linkage or steering mechanism of the
vehicle is not a convenient answer for generalisation, this means, the
mapping may not work for another vehicle since the mechanical pa-
rameters are hardly the same.
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In the case of AutoMiny, the problem of converting steering com-
mands to actual Ackermann angles is more evident since the toe an-
gle (the symmetric angle that each wheel makes with the longitudinal
axis of the vehicle), the caster angle (the angular displacement of the
steering axis from the vertical axis of a steered wheel) or the cam-
ber angle (from a top view, the angle between the vertical axis of the
wheels used for steering and the vertical axis of the vehicle) differ on
each car, not to mention the adjustable linkages and manufacturing
differences between them.

On full-scale cars, some wheel configurations as the anti-
Ackermann, where the inner wheel has less steering angle than the
outer wheel, may be used to get more grip on the inner wheel in the
curves. Fig.8 shows the Ackermann-linkage of the AutoMiny and the
steering mechanism used on the MIG are shown. The relationship be-
tween the steering sensor and the Ackermann angle can be described
by a function ΨL/R(θ).

Figure 8: Left: Ackermann-linkage on the chassis of Autominy, right: a com-
mon rack and pinion steering system. ΨL/R are the Ackermann
angles of the left and right wheel and Θ is the Steering Wheel An-
gle measured by the SAS.

It is possible to construct an approximation for ΨL/R(Θ) through a
lookup table taking samples of the Ackermann angles calculated with
Eq. 2.6 and the SAS. In the literature like in [23, 39], the approximation
function holds just for a known working acceleration and velocity
threshold, defined by the user. On Fig.9 a four-degree curve was fitted
using the data of the AutoMiny scaled vehicle, the SAS is normalized,
i.e. θ ∈ [−1, 1].
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Figure 9: Fitted curve for the mean Ackermann angle function Ψ(θ) of the
AutoMiny chassis

Notwithstanding that the mathematical structure of the Acker-
mann principle is simple, the tyre force is not taken into count, tyre
force tears down the concept of Fig.7 since the wheels do not move
on their heading direction.

A more precise concept of odometry must then take into count the
Vehicle Slip Angle (VSA). VSA, also known as the drifting angle is "the
angle between the vehicle longitudinal axis and the direction of travel,
taking the centre of gravity as a reference" [16]. The VSA is the ratio
between the actual direction of a wheel and its pointing direction, as
shown in Fig. 10.The VSA is calculated as follows:

β = − arctan
(
Vy

Vx

)
(2.7)

Figure 10: Slip angle of each wheel of the vehicle: δRL, δRR, δFL, δFR, the in-
stantaneous point of rotation I and the desired rotation point ICG
related to the center of gravity CG.
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The VSA is widely used for stability controllers such as Electronic
Stability Control (ESC) [92] or Vehicle Stability Control (VSC) [27],
Active Front Steering (AFS) [5], Model Predictive Control (MPC)[93],
among others. Typically for such applications, an accuracy of 0.1 de-
grees is needed. The stability controllers regulate the tracking force
of each wheel employing the brakes in the vehicle, in this way, is pos-
sible to have a point of rotation I as close to the perpendicular pro-
jection of the centre of gravity as shown on Fig.10. Therefore to the
means of localisation, having such controllers help to ensure that the
vehicle will have a common rotation centre among the four wheels of
the vehicle, with this valid assumption is possible to formulate a new
estimation of the trajectory.

Obtaining the VSA is a difficult task since by the time this thesis is
written, there is only one type of industrial onboard sensor available
that can measure it directly. The Laser Ground Sensor (LGS) 4 mea-
sures the ground speed with Laser Doppler Velocimeters (LDV), tyre
rotation and with Laser Displacement Sensors (LDS) the tyre radius is
measured in real-time. The calculation of the wheel slip angle can be
performed with Eq. 2.7. However, this kind of sensors is being used
only for research or tunning purposes due to the needed external
montage which needs to be supervised constantly, see Fig.11.

Figure 11: Laser ground sensor to directly measure wheel slip angle.5

Another method to obtain VSA is to estimate it through GPS-inertial
sensors. There are several methods to compute such estimation. In
[41] the slip angle is related to inertial measurements from the bicycle
model as follows:

4 https://aanddtech.com/lgs/#tab-id-1

5 Photo taken from: https://aanddtech.com/wp-content/uploads/2018/06/

LGS-datasheet-20170418.pdf

https://aanddtech.com/lgs/#tab-id-1
https://aanddtech.com/wp-content/uploads/2018/06/LGS-datasheet-20170418.pdf
https://aanddtech.com/wp-content/uploads/2018/06/LGS-datasheet-20170418.pdf
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β̇ =
1

mvg

(
fxFsin(Ψ−β) − fxRsin(β) + fyFcos(Ψ−β)

)
+

1

mvg
fyRcos(β) − ψ̇

or

β̇ =
ax

vg
− ψ̇

(2.8)

where m stands for the vehicle mass, vg =
√
v2x + v

2
y is the velocity

of the vehicle defined with the magnitude of the longitudinal and
lateral velocity of the car, Ψ is the steering angle, ψ̇ is the yaw rate,
Fij with i = x,y, j = F,R are the tyre ground forces applied into the
longitudinal (x) and lateral (y) directions at the front (F) and rear (R)
axle positions and ax is the lateral acceleration.

In order to calculate the tyre forces on equation 2.8 is necessary to
build a system of equations since the tyre force depends on the slip
angle as well. Among the variety of solutions to calculate the tyre
force, the most commonly used method is the Pacejka’s “magic tyre
formula”[59], which can model a tyre force by:

fijk = −
vijk

vg
µijfijz i = L,R; j = F,R; k = x,y, (2.9)

where fijz is the average load on the corresponding tyre, it can be
calculated from [83], µij is the total friction coefficient related to each
tyre given by the characteristic curve on [59], and vijk is the relative
velocity, not angle as is sometimes used, of each tyre with respect to
the road, along with the longitudinal and lateral directions:

vijx =
Vijx −ωijxRj
ωijxRj

vijy =
Vijy

ωijxRj
(2.10)

Equation 2.9 can be used on 2.8 and integrate to obtain the slip
angle of the vehicle. Some other approaches to estimate the VSA based
on observers are summarised in [2, 16, 38, 50, 91].

2.2.2 Methods with Neural Networks

Since direct measurement of the vehicle side-slip angle is inconve-
nient for the reasons explained the last section. Estimating VSA is the
most convenient approach. GPS and IMU equipment is easy to inte-
grate into the vehicle. Nevertheless, the estimations do not gather
information about different road conditions and inherit the problems
of the sensors such as bias (which drifts the estimation), stability (due
to temperature), misalignment, latency, among others.
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To deal with the drawbacks of the employed sensors, methods with
neural networks has been proposed. The main idea is that the system
can learn the extrinsic parameters of the estimation and correct it in
the prediction. First efforts to integrate a learning agent to the esti-
mations, fuse the two methods, the hybrid estimator use an observer
(typically an EKF) which estimates the dynamic of the car while the
neural network estimates the tyre data [1, 19].

Most of the authors use a general approach of three-layered neu-
ral network, the input layer, one hidden layer and the output layer,
first and second layer use log-sigmoid transfer function and a linear
activation on the last one [9, 49, 87](see Fig.12).

Figure 12: Neural network architecture to estimate vehicle slip angle (β), si
is the state input.

Melzi et al. [52] mention as relevant to the training, the following
characteristics:

• Maneuvers: the database should contain clockwise and counter-
clockwise manoeuvres, in fact, selecting the driving scenarios
are key to better generalisation.

• Friction: at least two friction conditions (high-low) have to be
considered in the training set.

• Velocity: manoeuvres have to be carried at different speeds to
count the effect of it on the vehicle while turning.

• Acceleration: there should be one manoeuvre with high longi-
tudinal acceleration in the training set.

Different state inputs to the net are evaluated, the neural network
which was able to estimate a better VSA takes into count the change
on dynamic parameters respect to time, the input state si of the net
is:
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si = [vx(ti), vx(ti − 4∆t), vx(ti − 8∆t),

ψ̇(ti), ψ̇(ti − 4∆t), ψ̇(ti − 8∆t),

ay, δ]

(2.11)

where vx is the longitudinal speed, ay is the lateral acceleration, ψ̇
is the yaw speed, δ is the steering angle, ti is the instantaneous time
and ∆t is the interval of time since the last measure.

Besides the VSA estimator with neural networks shows to be accu-
rate enough to be used in practical applications, the main issue up
to today remain in the inability of the net to adapt after the training
if the vehicle parameters change and the option to deal with a road
banking angle which has to be estimated with an external algorithm
and then filter out the lateral acceleration component due to gravity
as in [53, 70].

However, the use of VSA with neural networks has not been used to
perform odometry estimation in an end-to-end neural network, and
including other sensor data, as this work proposes.

2.3 Visual Localisation Approaches

2.3.1 Classical Methods

The SLAM research done over the past years has itself developed very
accurate visual-inertial odometry with small drift (<0.5% of the trajec-
tory length for some dataset like the KITTI odometry dataset [25]). VO

is considered a reduced version of a SLAM system. To clarify this, first
is necessary to classify the different existing approaches, up to today,
the methods can be generalised in two big groups: sparse feature-
based methods and dense/direct methods.

On Fig.13a, the principal components of sparse feature-based meth-
ods are shown. Sparse methods start by extracting features from the
frame of the video employing a descriptor such as Features from Ac-
celerated Segment Test (FAST), Speeded-Up Robust Features (SURF),
Oriented FAST and Rotated BRIEF (ORB), Scale-Invariant Feature
Transform (SIFT) among others less popular extractors in order to get
characteristics of the environment with information about the colour
of the pixel, position related to the image coordinate system or even
the texture of it. These systems use outlier rejection algorithms liketexture refers to the

spatial arrangement
of the colours or
intensities in an

image.

RANSAC in order to keep a good track of the features among the
frames of the sequence. The most challenging task about this ap-
proach is to correctly match the features and compute the scale es-
timation if only a monocular camera is being used.

In order to convert the VO approach to a VSLAM navigation sys-
tem, the modules are shown in Fig.13a must be added. The feature
map for drift correction is done along with the estimation. Davison
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et al. propose the firs Monocular real-time Visual Simultaneous Lo-
calization And Mapping (VSLAM) estimating both the map and ego-
motion in the framework of EKF [18], this framework which became
rapidly the most used on the scientific community with some variants
using Unscented Kalman filter (UKF)[51], Sparse Extended Informa-
tion Filter (SEIF)[77] or particle filter[78] is called filtering-based. The
most representative system in this classification of navigation systems
is ORB-SLAM[56] which shows excellent performance in various sce-
narios.

A different approach is the well known keyframe-based VSLAM;
this methodology separates the camera tracking and the feature map-
ping into different procedures; the most accurate method based on
this approach is Parallel Tracking and Mapping (PTAM)[43].

Either filtered-based or keyframe-based, are still feature-based
methods, and therefore, sensitive to outliers originated by image mo-
tion blur, high brightness, appearance similarity, occlusions, among
other factors. Further, this kind of methods does not use all of the in-
formation available in the image: this is the reason why dense/direct
methods have been proposed.

On Fig.13b the main modules of a dense/direct method are shown.
This approach resides on the assumption of photometric consistency.
This kind of methods overcome the featured-base methods in large-
scale environments, some examples are Dense Tracking and Mapping
(DTAM)[57] and LSD-SLAM [21], which uses keyframe-photometric
alignment and pose graph SLAM to estimate poses and build the point
cloud maps.

The main drawback of this method is that the accuracy of the
photometric alignment is severely affected when the baseline of two
matching images is long, due to an increased number of local minima
under log baseline[22].
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(a) Sparse feature methods.
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(b) Dense/direct methods.

Figure 13: Visual Odometry methods.

On Fig.14 the most important modules of a complete SLAM system
are shown. A SLAM system includes two main components: front-
end and back-end SLAM, the first extracts the sensor data into feasi-
ble models for the estimation, while the second performs inference
on the abstracted data of the front-end. Loop closure detection is an
important method to verify the coherence of the built map and as-
sociated positions. In case of system failure, relocalisation methods
which solve the so-called kidnapped robot problem to give a new
first estimate to the SLAM system.
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Figure 14: Full SLAM system based on sparse feature visual odometry
methods. Modules inside the orange dashed line are called back-
end SLAM and the remaining modules are called front-end
SLAM.

Nevertheless SLAM algorithms have been proven to be the most ac-
curate methods to estimate the position of a robot fusing information
of more than one sensor, there are in general crucial drawbacks that
must be addressed:

• Failsafe SLAM and Recovery: Despite the progress made on the
SLAM back end, current SLAM solvers are still vulnerable in the
presence of outliers; this is mainly since virtually all robust
SLAM techniques are based on iterative optimisation of noncon-
vex costs. This has two consequences: first, the outlier rejection
performance depends on the quality of the initial guess of the
optimisation; second, the system is not robust: the inclusion of
a single outlier diminishes the quality of the estimate, which in
turn decreases the capability of rejecting outliers later on.

• Robustness to HW Failure: While addressing hardware failures
might appear outside the scope of SLAM; these failures impact
the SLAM system and the latter can play a key role in detect-
ing and mitigating sensor and locomotion failures. If the accu-
racy of a sensor degrades due to malfunctioning, off-nominal
conditions or ageing, the quality of the sensor measurements
(e.g., noise, bias) does not match the noise model used in the
back end, leading to poor estimates. In the case of cameras,
brightness, occlusions, blur and hard weather conditions like
snow and rain are essential difficulties on the feature recogni-
tion modules.
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• Relocalization: While appearance-based, as opposed to feature-
based, methods are able to close loops between day and night
sequences or between different seasons, the resulting loop clo-
sure is topological. For metric relocalisation (i.e., estimating
the relative pose concerning the previously built map), feature-
based approaches are still the norm; however, current feature
descriptors lack sufficient invariance to work reliably under
such circumstances.

• Automatic Parameter Tuning: SLAM systems (in particular, the
data association modules) require extensive parameter tuning
to work correctly for a given scenario. These parameters in-
clude thresholds that control the quality of the feature match-
ing, some approaches utilise algorithms as Random Sample
Consensus (RANSAC) to decide when to add new factors to the
graph or when to trigger a loop closing algorithm to search for
matches, but they also work in controlled environments.

We refer to the reader of this work to Cesar Cadena et al. [11] to
have a more detailed overview of the SLAM research in the scientific
community over time.

SLAM is formulated as a maximum a posteriori estimation prob-
lem which can be also formulated in a formalism of factor graphs[46]
to reason about the interdependence among variables. In order
to estimate the set of poses X = (x0, x1, ..., xn) where xn =

(xn,yn, zn, θn,φn,ψn) is a vector in the SE(3) group, is necessary to
have a set of measurements Z = zk : k = 1, ...,m such that each mea-
surement can be expressed as a function of X i.e., zk = hk(Xk) + εk
where Xk ⊆ X is a subset of the variables, hk(·) is a know function
constructed with a model of the measurement or observation model
and εk is the measurement noise.

In map estimation, X is estimated calculating the assignment of
variables X∗ that reach the maximum of the posterior belief over X

given the measurements (p(X|Z)).

X∗
.
= arg max

X

p(X|Z) = arg max
X

p(Z|X)p(X) (2.12)

If the measurements Z are independent (the noises are uncorre-
lated) is possible to factorize the problem like follows:

X∗
.
= arg max

X

p(X)

m∏
k=1

p(zk|Xk) (2.13)

where the Gaussian measurement likelihood with mean measure-
ment noise zero and with the information matrix Ωk is:

p(zk|Xk) ∝ exp
(
−
1

2
||hk(Xk) − zk||

2
Ωk

)
(2.14)



2.3 Visual Localisation Approaches 29

This problem can be solved via successive linearisation, e.g., the
Gauss-Newton or the Levenberg-Marquardt methods. Nevertheless,
non-linear filters have shown better accuracy and efficiency than lin-
ear methods.

2.3.2 Methods with Neural Networks

In recent years, neural networks and more specifically, deep learning
applied on computer vision has gained significant attention due to
its performance in learning capability and other characteristics such
as robustness to camera parameters and challenging environments.
These data-driven methods have successfully learned new feature
representations from images that are used to improve the motion es-
timation further; some examples of them are [15, 35, 64].

Deep learning-based VO methods are recent, the first documented
attempt that shows it is possible to compute it from a learning agent
are [66] and [65], in those investigations, the researchers divide each
frame into cells and compute afterwards an average optical flow for
each block, a K-Nearest Neighbor (KNN) regressor is trained in [66]
and an Expectation Maximisation (EM) algorithm in [65]. In Con-
stante et. al. [17] the interframe pose between two consecutive im-
ages is regressed trough convolutional neural networks effectively
replacing the standard geometry of visual odometry, being the first
considered a deep neural network approach.

Likewise, it is possible to localise the 6DoF of a camera with re-
gression forest from a single image [81] and with deep convolutional
neural network like PoseNet in the work of Kendall et. al. in [40].

These approaches divide the current research on end-to-end deep
neural networks in two groups, the first, tries to estimate the ego-
motion using high-dimensional feature maps such as optical flow,
dense map estimation or segmentation, which can be pre-trained or
fully trained like in [85]. The second group relies on object detec-
tion/classification pre-trained nets; these last methods work as a sim-
ilar keyframe-based VO system. Thus the open question is whereas a
neural network must learn to calculate ego-motion relative to the dif-
ferences of the image sequences or to calculate the position of the
camera relative to the position of the objects on the image. Analogi-
cally to the traditional systems, the second mentioned method would
be considered more an appearance-based relocalisation method than
an odometric algorithm.

The used loss function on the previous methods is an L2 norm
euclidean distance.

L =
1

N

N∑
i=1

‖f(xi) − yi‖2 (2.15)
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where N is the number of samples, f(xi) is the estimation of the
net and yi is the ground truth from the database.

Fig. 15 resumes the two most popular end-to-end deep neural net-
work architectures for ego-motion estimation and PoseNet. In the
architecture of CNN-4b VO, Contante et. al. [17] proposed to di-
vide the image in four quadrants, each quadrant goes trough two
convolutional-pooling layers which are trained to penalise the total
variation of the flow field by minimising the energy function pro-
posed by Brox et. al. [10], the obtained four feature maps are then
feed to a full connected layer in order to obtain the incremental dis-
placement ∆X ∈ SE(3).

In Wang et. al. [85], the DeepVO net uses Long Short Term Memory
(LSTM) layers to take advantage of the information carried out by the
two consecutive frames from the input. This architecture estimates
the relative ego-motion and the parameters of the sparse covariance
matrix, which measures the error on the net predictions related to
each degree of freedom.

PoseNet generates training labels with structure from motion and
uses pre-trained deep neural networks dependent on massive la-
belled image datasets as an architectural base and refines the training
to predict the estimated camera pose ∆X ∈ SE(3). The PoseNet is
a relatively standard deep convolutional network and it has a less
complex architecture than FlowNet.
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Figure 15: From left to right: CNN-4b VO, DeepVO and PoseNet. Qx are
the quadrants of the image, AP is an average pooling layer, CL is
a convolutional layer, MP is a max pooling layer, LSTM is a long
short term memory layer and FCL is a full connected layer. (a)
and (b) predict the ego-motion, but (b) predicts the covariance Ω
as well, (c) predicts the camera pose estimation.

However, in the methods mentioned above, the ground truth of
camera poses and the frames associated must be known in advance.
In most recent approaches, Ruihao Li et. al. [48] propose an unsuper-
vised deep learning scheme which relays the calculation of the ego-
motion with a loss function defined on spatial and temporal dense
information. The net loss is designed combining the photo-metric,
and the pose consistency, the case of an image pair from a stereo
camera and two consecutive frames from a monocular camera are
considered. The photometric error is calculated as follows:

Lapho = λsL
SSIM(Ia, I′a) + (1− λs)L

l1(Ia, I′a)

Lbpho = λsL
SSIM(Ib, I′b) + (1− λs)L

l1(Ib, I′b)
(2.16)

where a = l,k, b = r,k+ 1 the left and right image for stereo cam-
era or the two consequent monocular frames, Ll1 is the L1 norm op-
eration, LSSIM is the Structural SIMilarity (SSIM) index as calculated
in [95] with weight λs.

The pose consistency loss is computed as follows:

Lpos = λpL
l1(x′a, x′b) + λ0Łl1(φ′a,φ′b) (2.17)
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where λp is the left-right/subsequent frame position consistency
weight, λ0 is the left-right/subsequent frame orientation consistency
weight and [x′a,φ′a] and [x′b,φ′b] are the predicted poses for each im-
age respectively.

Thus, this approach predicts the depth map, which is used to pre-
dict the ego-motion.

Another similar approach is Deep Virtual Stereo Odometry (DVSO)
[20] which integrate just the deep depth predictions into Dicrect
Sparse Odometry (DSO)[84] as direct virtual stereo measurements.
Whereas this method cannot be considered a full end-to-end VO net-
work, shows how deep neural networks can replace the geometrical
modules of actual dense/direct VO schemes. This approach makes
clear that the perception is already good enough to get a full end-to-
end deep neural net if the regression module is improved.

Deep neural network approaches for VO face several drawbacks
and not explored solutions which are listed below:

1. Regression: In deep learning is not yet clear if current schemes
can overcome the traditional methods for regression, specially
for time series forecasting problems. The main problem is
the vanishing gradient problem which is an inherent diffi-
culty founded on neural networks with gradient-based learn-
ing methods and backpropagation. Despite some special nets
like Recurrent Neural Networks (RNN), LSTM, have been de-
veloped in order to fight with this problem, it is not clear yet
what is the correct path to have the same performance as in
classification problems. Univariate forecasting cases are eas-
ily tackled with the actual set-up. However, sequence prob-
lems with multivariate forecasting as VO are still a challenge,
LSTM layers have to be enormous (with more than 1024 units)to
learn associations between the sequences and therefore train-
ing time for a net the size of DeepVO net can take up to
2 days in an NVIDIA RTX 2080Ti GPU. Recently has been
demonstrated that a Convolutional Neural Network (CNN) can
also learn sequential multivariate forecasting, in Vaswani et
al. [82] the attention-based recurrent networks were intro-
duced, this approach relies on a convolutional encoder-decoder
structure which can dramatically drop the units for training.
However, this approach has been tested for VO only in simula-
tion [62]

2. SLAM modules: Current research works on developing the most
important modules for an SLAM system with DNN such as loop
closure [14], re-localization [40] and graph optimization with
graph neural networks [68]. Is still an open topic to fit all those
efforts together with neural network-base VO in order to pro-
duce a full end-to-end SLAM navigation system.
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3. Online and life-long learning: A big and significant chal-
lenge is that of online learning and adaptation, that will be
essential to any future long-term SLAM system. SLAM systems
typically operate in an open-world with continuous observa-
tion, where new objects and scenes can be encountered.

It is true that currently there are many companies who work
on building HD maps for autonomous driving like Tomtom™,
CYIENT™or HERE™, and those HD maps store high valuable
features which can be used for localisation such as poles, trees
and traffic lights. Nevertheless, the problem of life-long maps
also adds a monumental work for the companies to keep their
maps updated in real-time in order to prevent an accident. This
problem can be tackled with a full SLAM system with the ability
to assimilate new changes in their environment.

Even with the upcoming unsupervised learning methods, the
net should be able to add new training data if the error in-
creases, for which is mandatory to measure the covariance of
the estimation and the given information as the traditional
methods do. Therefore it is necessary to explore other neural
network concepts as Bayesian Neural Networks (BNN).

It remains to be seen if similar unsupervised methods can be
developed for tasks such as semantic scene labelling.

4. Practical deployment: Successes in deep learning have mostly
revolved around lengthy training times on supercomputers and
inference on special-purpose GPU hardware for a one-off re-
sult. A challenge for SLAM researchers is how to provide suffi-
cient computing power in an embedded system. Nowadays is
possible to deploy small nets like YOLO or SEGmentation NET
(SEGNET) on NVIDIA ARM-GPUs like the Jetson Xavier™but
other problems such as transfer learning are still downgrading Transfer

learning refers to
the situation where
what has been
learned in one
setting is exploited
to improve
generalisation in
another setting.

the quality of the inference in real applications.

2.4 Metrics for Localisation

Establishing standard metrics for evaluating the quality of estimated
trajectories against ground truth poses is an important task to com-
pare performance of the diverse offer of estimators in the literature.

In this work the Absolute Trajectory Error (ATE) or also known
as Absolute Pose Error (APE) and Relative Pose Error (RPE) met-
rics proposed in [75] are used. The metrics assume a given esti-
mated trajectory P1, ...,Pn ∈ SE(3) and a ground truth trajectory
Q1, ...,Qn ∈ SE(3), the trajectory must be time-synchronized and in
principle, equally sampled. Since in the practice is difficult to equally
sample the estimated trajectories, and arbitrary coordinate frames be-
tween them can be specified, they must be aligned. The most com-



34 Research Platforms and State of the Art

mon method for this task is the Umeyama alignment algorithm [79]
which computes the scaling, rotation, and translation that define the
transform S that minimizes the sum of squared errors between the
compared trajectory transformations.

ATE is well-suited for measuring the performance of odometry sys-
tems since it associates the estimated poses with ground-truth poses.

Given the align, estimate and ground truth transformations, the
ATE is define as follows:
Fi := Q

−1
i SPi

The error is evaluated from the Root Mean Square Error (RMSE) for
all time indices of the translational components, i.e,

RMSE(F1:n) :=

(
1

n

n∑
i=1

||trans(Fi)||
2

)1/2
(2.18)

Rotational errors typically also manifest themselves in wrong trans-
lations and are thus indirectly also captured by the ATE.

The RPE is well-suited for measuring the drift of an odometry sys-
tem. It computes the error in the relative motion between pairs of
fixed timestamps ∆. The error corresponds to the local drift of the
trajectory, and it is computed to obtain the relative transformation
between the neighboring point of the ground truth and the estimated
trajectory. The relative error of each point in the trajectory is given by:

Ei =
(
Q−1
i Qi+∆

)−1 (
P−1i Pi+∆

)
(2.19)

In the same way as ATE the final error is given by the RMSE of the
translational components of the relative pose Ei

RMSE(E1:n,∆) :=

(
1

m

m∑
i=1

||trans(Ei)||
2

)1/2
(2.20)

where m = n−∆

In order to visualise the estimated trajectories and to obtain quati-
tive evaluation given the mentioned metrics, we used evo a python
package for evaluation of odometry and SLAM [30], the tool is avail-
able at: https://github.com/MichaelGrupp/evo.

https://github.com/MichaelGrupp/evo


Chapter 3
Developed Scale Autonomous Car
AutoMiny

The Center of Machine Learning and Robotics from the Freie Uni-
versität Berlin has had a particular interest in developing robots on
which it is possible to test new ideas and ML algorithms. Since 2016

autonomous model cars have been the main activity for education
and research purposes, leaving behind the FuManoid Soccer Team
project1.

The aim of building the cars, encouraged by the Autonomos2

Project, is to have a car-like robot on which Master’s and Ph.D.
students could learn the underlying architecture and software that
drives the autonomous cars MIG and e-Intstein. In order to accom-
plish this goal, it was mandatory to scale essential systems and sen-
sors, use the same operating system in order to emulate the behavior
of a full-scale car as much as possible.

The main advantages of having such a system are:

• Educational: students and Scientists wanting to work on full-
scale cars can familiarize themselves with the systems, faster
through focused robotic and ML courses.

• Research: in the current literature, there are perception and con-
trol problems related to autonomy which can be tested in a con-
trolled and low-risk environment such as a lab with a setup of
several car-like robots.

– System Identification: a critical feature of this system is the
possibility to run the cars at high velocity, driving them
into drifting or colliding conditions. Such extreme situ-
ations can highlight some of the main problems related
to system identification, such as wheel odometry, visual
odometry, modeling, or design through the collection of
vast amounts of driving data in a faster way than with a
full-scale car. New control algorithms like Deep Reinforce-
ment Learning (DRL), which learn based on experiences
over several iterations before finding an optimal solution,
could also benefit from these platforms.

1 http://www.fumanoids.de/

2 http://autonomos.inf.fu-berlin.de/

35

http://www.fumanoids.de/
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– ADAS: in the Robotics lab, the University has been possi-
ble to test some driver assistance systems with the aim
to test them on full-size cars in the future, for example,
Adaptive Cruise Control (ACC), Lane Departure Warning
System (LDWS), and Collision Avoidance System (CAS).
These implementations allow students to notice problem-
atic situations and physical issues while developing the al-
gorithm.

– Multibody Systems Control: nowadays, analyzing the behav-
ior of more than one autonomous car on the streets is a
hard task due to several obstacles such as budget or state
driving permission, not to mention the risk of collisions.
The most common solution is to use a simulator on which
dynamic features related to the vehicle, and the road must
be taken into count. A lab setup with several cars can safely
be useful to test algorithms, such as optimal path planning.

This new project was called "AutoMiny". For this work, two ver-
sions of the robot were developed, one with educational purposes
and another for deep odometry.

AutoMiny is an autonomous model vehicle based on a scaled 1:10

RC car chassis, with a complete onboard system supplied with per-
ception sensors, high computing CPU, and GPU power, as well as
LEDs to emulate car lights. The robot is designed as a self-sufficient
system that requires no external sensing or computing. It can be con-
trolled remotely (e.g., with a smartphone, RC, or Xbox controller) or
can be programmed to drive in fully autonomous mode. The cars run
under Ubuntu 18.04 and ROS melodic [74].

There have been other similar platforms developed in other uni-
versities. Table 4 the main projects with their main components are
shown and Fig. 16 shows a picture of each car.
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auto scale hardware

MIT
Race car

1/10

-Tegra TX1

-LIDAR
-Stereo Camera
-Infrared depth camera
-IMU

GeorgiaTech
AutoRally car

1/5

-GTX 750ti / Intel i7
-GPS
-4x Hall-effect wheel encoder
-2x Monocular camera
-IMU

Berkeley
Autonomous Race Car

(BARC)
1/10

-Odroid XU4

-LIDAR
-GPS
-4x Hall-effect wheel encoder
-ELP USB Camera
-IMU

Amazon
DeepRacer Evo

1/18

-Intel Atom™Processor
-2 X 4 MP camera
-IMU

Table 4: Characteristics of the model autonomous cars for educational and
research proposes on the field.

The Massachusetts Institute of Technology (MIT) race car is used
mainly for indoor teaching and research activities. The main pur-
pose is to deploy neural networks and machine learning algorithms
to drive the car with the included GPU. The code based on ROS,
as well as the instructions to build one can be found in https:

//mit-racecar.github.io/.
The AutoRally car is used to develop outdoor applications related

to controlling the behaviour of the car during extreme manoeuvres
and different soil conditions. The included GPU is used to paral-
lelised computation of the implemented Model Predictive Path In-
tegral Controller (MPPI) [89]. Previous research from this group has
shown that it is possible to teach an agent to learn the policies of
the MPPI through reinforcement learning to control aggressive ma-
noeuvres [90]. Videos and complete tutorials about building and
programming a car are accessible through their github web page at
https://github.com/AutoRally.

The Berkeley Autonomous Race Car (BARC) is used for outdoor
and indoor applications such as MPC, corner drifting [37], lane keep-
ing, obstacle avoidance, or traction control. The car works under ROS

framework and is used as an instructional platform in courses for ve-

https://mit-racecar.github.io/
https://mit-racecar.github.io/
https://github.com/AutoRally
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hicle dynamics and control. More information about the car can be
found on the website: http://www.barc-project.com/.

The Amazon DeepRacer was released on March 6, 2019, with a
price of $399. With only one camera and an Intel Atom processor,
the idea of the company was to have a platform to deploy neural
networks trained through reinforcement learning techniques. It is a
car with simple hardware, the main business of the company is the
use of the Amazon Web Services (AWS) platform and courses offered
on machine learning and DRL. In 2020, the Amazon car in Fig. 16

will be released; this model has two cameras in order to get depth
maps through stereo matching and a LIDAR. The use of this platform
is merely educational.

Figure 16: Model Car Projects. a) MIT Race car, b) Georgia Tech Autorally
car, c) Berkeley Autonomous Race Car, d) Amazon DeepRacer.

There are fundamental differences between the robots from other
Universities and AutoMiny, but in order to understand these, the ar-
chitecture of the two AutoMiny versions must be explained sepa-
rately.

3.1 Educational AutoMiny

The base hardware of the car, processes all the algorithms on an Intel
NUC CPU and provides the necessary configuration to run the car au-
tonomously. The design was thought to be easy maintenance. In our

http://www.barc-project.com/
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experience in the classroom with students, the car is not exempt from
colliding with other cars or the walls at high speeds. Although, the
car can be easily repaired by changing each of the separated modules
and spending more time on programming, and testing than repairing
hardware. The camera holder is 20cm above the ground to allow the
car to see the track ahead and process the images in order to execute
tasks such as localization, lane detection, or obstacle detection.

The base platform of the AutoMiny is shown in Fig.17 and the
related components are described in Table 5.

Figure 17: AutoMiny core

AutoMiny is mainly based on two separate processing modules:
one controller board with a microprocessor (Arduino nano), and an
Intel NUC computer. The controller board is a four-layer PCB where
the Arduino controller and an additional IMU is installed; the board
is mainly responsible for the following tasks:

• Battery Voltage Checker: the primary source of power the Au-
toMiny uses is a 14.8V Lipo battery with 4000 mAh. Due to
the nature of the battery type, it cannot discharge below 13v,
or the battery cells can be damaged. Based on our experience
in the lab with dozens of students, we know that being aware
of such delicate parameters is not always guaranteed; therefore,
the controller board checks the voltage of the battery at the start
and during the activities. This task is developed by a voltage di-
vider, the Arduino and a relay. In order to turn on the car, it is
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no. item description

1 Chassis Xcite RC car chassis (1:10)

2 Steering Adafruit Servo Motor with Analog feedback

3 Engine Faulhaber motor with encoder

4 LIDAR RPLIDAR A2M8 360° one beam Laserscan-
ner

5 Infrared
Stereo Camera

Intel Real Sense D435

6 IMU BOSCH BNO055 USB Stick

7 Control Board Developed at FU Berlin

8 Voltage Regu-
lator

Converts battery voltage to 5v

9 LEDs LED strips, 11 LEDs at the back, 10 LEDs at
the front

10 Engine Faulhaber motor with encoder

Table 5: AutoMiny Components

necessary to press the push-button for 5 seconds, during which
the Arduino calculates the average of the measurements and di-
agnoses the battery. If the voltage is enough, the middle, frontal,
and back LED, changes from red to green and the software of
the car starts. During the activities, the car automatically turns
off if the voltage is under 13v.

• Chassis Sensor Data Acquisition: the Arduino reads the infor-
mation given by both motors: Engine and Steering.

• Engine: the DC motor has an incremental encoder which allows
us to know the velocity and direction of the shaft; the pulses are
detected by hardware interruptions on the Arduino.

• Steering: the servo motor has an analogical voltage output
which is read by an analogue input and transformed to nor-
malized values between -1 and 1 with a previously calculated
calibration. The information is sent through serial communica-
tion to the NUC computer using a binary protocol in order to
publish topics in the ROS environment on the NUC.

• Voltage Distribution: in the AutoMiny, two primary voltages are
used: battery voltage (above 12v), and 5v. The board distributes



3.1 Educational AutoMiny 41

the battery voltage to the regulator, which converts it to 5v; bat-
tery voltage also sources the Engine power and the NUC com-
puter. Optionally, the Jetson Xavier receives voltage from the
board as well. The board receives the 5v from the regulator and
distributes it to the Arduino, Steering, and Engine electronics.
Optionally in the AutoMiny Nano, it also feeds the Jetson Nano
from NVIDIA.

• Control of the Chassis: the Arduino communicates with the
NUC through a binary protocol. An ongoing interchange of
data is happening all the time with the Arduino in order to
execute the desired commands published on the topics which
control the Engine, Steering, and LEDs.

The second module is the NUC Intel computer which is the main
processor of the AutoMiny; it handles the data coming from the con-
troller board, LIDAR, a Bosch USB IMU, and the Stereo Camera to
drive autonomously. A diagram with the underlying architecture of
AutoMiny can be observed in Fig. 18.

Figure 18: AutoMiny architecture

Regarding the AutoMiny architecture, the behaviour of each om-
ponent in the control board is like follows:

• IMU: We included two IMU on behalf of the locally available bud-
get, one slot for a typical MPU6050, which communicates with
the Arduino through I2C protocol. However, such IMU, although
cheap, manufacturing issues as well as factors such as operat-
ing temperature, showed us through time that lectures may be
inaccurate and imprecise among different cars. This issue is a
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big obstacle for generating shared packages of software. There-
fore we added a second more robust option, a Bosch USB IMU,
which connects directly to the Intel NUC computer; it is possi-
ble to publish the messages through ROS with the manufacturer
C++ library.

• Servo Motor: Is the steering motor, control is made through
Pulse Width Modulation (PWM) by the Arduino, and the ana-
log feedback allows us to know the position of the servo motor
reading the analog voltage in the ADC0 pin.

• RPLidar: the device output is transformed using a serial to USB
converter directly to the Intel NUC PC, the RPLidar ROS pack-
age automatically publish the information in the system.

• Control board - NUC communication: we use a serial to USB
converter from the Tx-Rx pins of the Arduino to a USB port
in the NUC PC. The available mini USB port in the Arduino is
preferably not used due to the voltage pin, which causes trou-
bles with the 5v source from the battery.

• The Brushless motor: is the engine of the car, the velocity is
controlled through the PWM-D11 pin in the Arduino and the
Timer2 which gives the encoding of the PWM, digital pin D4

gives the direction of the rotation. The internal electronics are
sourced at 5v, but the engine power is sourced with 16v.

• Intel camera: the camera is powered and communicated
through USB-C to the Intel NUC. ROS framework is commer-
cially available.

• Check voltage circuit: prevents the battery from running below
14v reading in the analog input voltage pin A6 a voltage divider.
In the Arduino, a condition is triggered to activate or deactivate
a relay, which can break the main supply if the voltage is low. It
also displays a warning to the user using a ROS message.

• GPUs: The model can work with a Jason Nano or Xavier arch
GPU, they are powered with 5v and 16v respectively and com-
municate to the NUC with Ethernet protocol.

• Lights: the front and back stripes of LEDs work to indicate the
basic car lightening functionality, i.e., blinking while turning,
stopping, and turning on. The middle back LED turns green-
orange-red depending on the voltage status of the battery. The
stripes are completely programmable, and basic behavior can
be controlled through ROS.

With the technology being developed nowadays, based on Artificial
Neural Networks, and to exploit their advantages of processing per-
ception data from cameras, AutoMiny can be upgraded to work with
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Jetson Nano3 and Jetson Xavier4 from NVIDIA. The Intel Stereo cam-
era is accessed by the GPU through the NUC, since the ROS MASTER
in the GPU is pointed to the NUC ROS MASTER is possible to access
all the published topics. We have tested the image rate in the GPU to
be virtually the same as in the Intel CPU. The results obtained from
the Nvidia boards are sent to the NUC via Ethernet to control the car
with the desired criteria. Additionally, the camera holder has the op-
tion to install another Intel Camera, the idea behind this alternative,
is to provide the car, the field of view also when is driving backward
or obstacle recognition.

The educational AutoMiny cars with and without the updated fea-
ture can be observed together in Fig.19

Figure 19: AutoMiny Team

Even more, the developed platforms are the primary educational
tool used on the Robotic lectures and practice of the Freie Universitaet
Berlin, and students around the world in countries including Mexico,
Spain and Italy. Since the project is open source, the research collabo-
ration has been rich and has debugged the error of the car to this last
version. Full information about the project can be found in the official
AutoMiny web site: https://autominy.github.io/AutoMiny/.

3.2 AutoMiny TX1

In addition to the presented versions of AutoMiny, a new version
only for neural network-based odometry purposes (i.e., this work),
was designed. Figure 20 shows the AutonoMiny TX1 version

This version is equipped with the hardware described in table
6, there are several differences with the educational version of Au-
toMiny, since AutoMiny TX1 was developed to drive in a more ag-
gressive way, the brushless motor is driven with an ESC, while drifting
we measured currents up to 15 Ampers, and angular velocities up to
600rpm while educational AutoMiny we recorded a maximum mean
angular velocity of 380rpm. Another difference is the power supply

3 https://developer.nvidia.com/embedded/jetson-nano-developer-kit

4 https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit

https://autominy.github.io/AutoMiny/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
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(a) (b)

Figure 20: Developed AutoMiny TX1 version with odometry research pur-
poses. a) AutoMiny TX1 on a track made with black rubber used
to achieve aggressive driving maneuvers, The ARUCO marker in
b) is used to localize the car on the track.

to the car, we use two 7.4v NiMh batteries in parallel, and one sep-
arated 14.8v LiPo battery for the GPU in order to avoid a preventive
shutdown due to voltage spikes on the engine controller. In order to
collect a high amount of images and data, the operating system is
loaded from a 500G Solid State Drive (SSD).

The monocular camera showed 20 is an IDS UI-3241LE5 and was
used for indoor porpuses only. For outdoor purposes, the GPU takes
the most relevance since we use a ZED™Stereo camera since the nec-
essary computations are not carried on board. The GPU is used for
image acquisition, stereo matching, among other processes. Figure 21

shows a detailed view of the components of AutoMiny TX1.

5 https://en.ids-imaging.com/store/products/cameras/ui-3241le.html

https://en.ids-imaging.com/store/products/cameras/ui-3241le.html
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Figure 21: Detailed hardware view of AutoMiny TX1

The AutoMiny TX1 framework is based on ROS; the available pack-
ages allow the user to control the velocity of the electronic speed
controller and the steering wheel as well as read the IMU, the wheel
velocities, the position of the steering wheel and the camera images.
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no. item description

1 GPU NVIDIA™Tegra TX1

2 Chassis Xcite RC car chassis (1:10)

3 Steering Adafruit Servo Motor with PWM feedback

4 Engine Bruschless DC Motor

5 Camera ZED™Stereo Camera

6 IMU BOSCH BNO055 USB Stick

7 Control Board Developed at FU Berlin

10 Encoders 4x AMS™wheel hall-effect encoders

Table 6: AutoMiny TX1 Hardware Components

We installed a set of three cameras on the lab ceiling to obtain
ground-truth localisation. With this information, we can develop
and evaluate a wide variety of localisation estimators. The cameras
provide global localisation of the model car employing an ARUCO
marker on the top of the car; the mentioned setup is shown in Fig. 23

and 22. The size of the map is 4.3m x 6m.

Figure 22: Laboratory setup for global localization. The top figure shows the
three cameras on the ceiling (in orange) and the ARUCO codes
on the floor and on top of the model cars in order to localize the
field and the autos related to coordinate x,y = (0,0) of the map
which is located on the top right corner as shown in the bottom
picture with the coordinate system.
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Figure 23: Laboratory test track map. The full car transformation chain and
the map origin is shown. The linkage includes camera frame, IMU

frame, one frame per wheel, mass center, and base link. The map
also shows the defined paths to drive in purple and the lane bor-
ders in cyan color.

The wheel encoders estimate the angular velocity by taking into
account the parameters that affect a conventional ABS sensor which
include the presence of mechanical imperfections such as non-
concentric montage or non-parallel mounting of the sensor relative to
the magnetic ring, as well as variations on the electromagnetic field
due to the spinning of the wheel, mechanical adjustments, or intrin-
sic hysteresis of the sensor. These parameters are difficult to measure
since they are inherent in the manufacturing process.

In order to solve this problem, we applied a timestamping algo-
rithm, which consists of capturing via a high-resolution clock the time
instants and positions of several encoder events. We sample the pulse
transitions of the encoder’s output signal at frequency fs and per-
forming an n-order polynomial fit at the controller’s sampling rate
fc << fs to approximate the position of the wheel. The regression
problem can be formulated for the last n events as AP = B, P must
be calculated from this equation, and the resulting parameters fit the
polynomial with respect to time for displacement, velocity, and ac-
celeration [54]. A chain through serial communication with the infor-
mation of the timestamps of each wheel is sent to the CPU in order
to calculate the velocity. Fig. 24a shows a graphic with the plotted
wheel velocities while the car is driving in circles and with the sensor
installed on the wheels.

The technical characteristics of the sensors can be founded on the
official AMS™website: https://ams.com/as5311. Each wheel has 16

pulses per revolution. The sensor is shown in Fig. 24b

https://ams.com/as5311
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(a) (b)

Figure 24: a) Wheel Angular Velocities of AutoMiny Tx1. Front and rear left
wheels have a bigger angular velocity since the car is driving
on circles counterclockwise; when the car stops, velocities drop
to zero. b) The Hall sensor mounted on the car chassis and the
magnetic ring installed on the wheels.

In this work, both the MIG platform and the AutoMiny were used
to test the developed algorithms. The AutoMiny Tx1 is particularly
essential since the wheel odometry network was improved using the
data generated with extreme maneuvers, and driving manually be-
tween the limits of the localisation set up in the lab. In the following
chapters, it will be shown how the scaled platforms were used to
increase the data size for training and validation.



Chapter 4
Deep Learning for Ground
Dynamic Localisation

In this chapter, we propose the use of deep neural networks to es-
timate localisation given data obtained from the vehicle inertial and
mechanical sensors.

As described in 2.2.1, finding a better mathematical model to es-
timate the displacement between two consecutive samples of vehi-
cle kinematic-dynamic information is key to compensating the drift
while using sensors such as encoders and IMUs. All the inherited in-
accuracies impact the estimation of:

• Continuous wheel velocity from discrete hall sensors and re-
lated wheel physical disturbances.

• Vehicle angular and longitudinal velocities as well as accelera-
tions affected by bias, numeric integration, precision oscillation
due to temperature, among other disturbances.

Inaccuracies could, in principle, be estimated in a regression prob-
lem with an n-dimensional equation. This chapter explains the strate-
gies to find an approximation to this function.

Moreover, we will explain how the vehicle AutoMiny was finally
used to expand the training data used to train the final net for the
proposed localisation scheme.

4.1 Dataset Construction

Careful generation of the dataset for training, validation and testing
is the foundation of every supervised machine learning application.
Accuracy is directly affected by the way the data is collected, fed
and extracted from the learning agent. Data science is itself a big
problem, and in order to minimise the risk of a malformed generation
of a database, statistical analysis of the data is needed. This sections
presents the followed strategy to extract, and shape the dataset in
three subsections, first we explain the nature of the included variables
in the dataset, next we show the available architecture in the cars that
allows to obtain the data and finally the combination of the MIG and
AutoMiny datasets.

49
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4.1.1 Dataset Parameters

To be able to train a neural network though supervised learning, we
build the dataset saving an input array of size nx9 every ∆ of time,
being n the number of timestamps in the dataset. Each row in the
matrix has the following features:

I = [δ, vref,ax,ay, Ψ̇V ,ωrl,ωrr,ωfl,ωfr] (4.1)

where: δ is the steering angle, vref is the speed over ground, ax is
the longitudinal acceleration, ay is the cross acceleration, Ψ̇V is the
yaw rate and ωxx is the speed of the front and rear wheels.

The idea behind including just the variables in 4.1 and not other pa-
rameters such as constant vehicle mass, size of the wheel-base, wheel
diameter or others, is that we are looking for a more complex repre-
sentation of those parameters that allow the neural network to pre-
dict odometry for different size of vehicles. Even that some parame-
ters may be intuitive to add if we are planning to train the network to
find dynamic associations such as VSA rate, those can be derived from
the input vector. Neural networks are capable of finding constants (in
the form of biases) if necessary for the calculus of the desired out-
put. Furthermore, as explained in 2.2.1 one of the drawbacks of the
current odometry approaches is not to include physical events that
could take place in a real scenario, such as vehicle weight variabil-
ity that could be measured by a change in the wheel forces, which in
turn, can be approximated with the wheel velocity and a constant tire
profile according to the contact surface. Deep Learning has shown ef-
fective in finding high dimensional associations in other areas, and
we are looking to find for this application a network architecture able
to estimate them. In this sense, we consider the input vector to be
sufficient for the task.

Since an element of the dataset describes the instantaneous dy-
namic state of the car, in order to be able to estimate a displacement
between two timestamps we build the inputs of the net as a concate-
nated pair of vector 4.1 for instance:

Xk = [Ii, Ii+1] (4.2)

For the net output, we compose an array of size nx4, which in-
cludes the poses of the car. Instead of recording the global pose, we
stored local relative poses. Local poses allow us to predict local dis-
placements with the net; in order to construct a global trajectory, the
corresponding geometric transformations have to be made.

The positional data of AutoMiny was obtained from the global po-
sition estimator employing the ceiling camera setup and the ARUCO
markers. In the case of the MIG, the ground truth is obtained from
the Applanix. To ease the net training, we reduced the problem to
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a two-dimensional trajectory. Although for two-dimensional estima-
tion, only the Yaw angle to define orientation is needed, we stored
the quaternion values; during training, the quaternion representation
showed to help the net to converge faster. In a Euler rotation of the
format ZYX, the non zero quaternion values are qz and qw. The gen-
erated vector is then as follows:

yk = [x,y,qz,qw]

Next, we present the employed ROS framework architecture on the
AutoMiny and on the MIG that allows us to collect the data.

4.1.2 Employed Software Architecture for Data Extraction

The software framework of all the platforms is based on ROS melodic
and Ubuntu 18.04. The information gathered from the chassis of the
vehicles is sent through CAN bus and serial communication from the
MIG and AutoMiny respectively, and the local computer creates vir-
tual sensors based on estimators and chassis information, the local
computer also provides node to access the chassis in order to control
the engine, brakes, and steering. The simplified architectures of the
ROS packages used in the MIG and the AutoMiny focused on obtaining
ground localization are shown in Figures 25 and 26 correspondingly.

Chassis

IMU

Encoders

Steering 

/ax
/ay
/yaw

Sensors

Camera based GPS

/encoder_time
_stamps

/steer_angle

/yaw_rate

Virtual Sensors

/vehicle_velocity
/wheel_velocities

Serial 
Communication

/Odometry

Ethernet

Chassis

ABS 

Steering 

Sensors

Applanix

/steer_angle

/yaw_rate

Virtual Sensors

/vehicle_velocity
/wheel_velocities

CAN

Ethernet

/Odometry

IMU
/ax
/ay
/yaw

a)                                                                    b)

Hardware block
Sensor
ROS node
ROS topic

ROS net
Physical net

Hardware block
Sensor
ROS node
ROS topic
ROS net
Physical net

Figure 25: AutoMiny ROS architecture.

In the Table 7 the corresponding topics of the AutoMiny and MIG

from which the parameters of the vector 4.1 were obtained are shown.
Since the architecture of the ROS packages in the AutoMiny and MIG

are similar, having the same message types allowed us to generate
the database in the same process.
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Figure 26: MIG ROS architecture.

One crucial aspect of the data set generation is the frequency at
which the data is sampled. The sensors in the chassis, besides their
inherent working rate, have a time delay due to communications and
prepossessing in the local computer. Virtual sensors, depending on
the employed estimator, may have a frequency rate below 30 Hz,
which is the minimum to be considered a real-time application.

Third column on Table 7 shows the rate of the topics obtained with
rostopic hz. The sampling rate is commanded by the slower topic,
which is the localisation of the AutoMiny. The low rate of the local-
isation is due to the frame rate of the ceiling cameras and the post-
processing algorithm, which stitch the images, detect the ARUCO
markers, and calculate the position of the car. Therefore, the sam-
pling rate of the AutoMiny dataset is 30Hz, while the sampling rate
for the MIG dataset can be configured up to 100Hz.

AutoMiny MIG

par . topic hz topic hz

δ /feedback_steering 100 /carstate/steering_angle 100

Vref /wheel_velocity 100 /carstate/speed 100

ax /acceleration 100 /sensors/applanix/imu_data 200

Ψ’v /YawPitchRoll 100 /sensors/yaw_rate 200

ω /wheel_velocity 100 /sensors/can/wheel_speeds 100

X /localization 30 /localization/odometry/filtered_map 200

Table 7: Used topics for ground localization in Autominy and MIG
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We To create a database without redundant data, the reading rate
in the MIG was also configured to 30Hz; in this way, we averaged a
traveled distance of 0.5 m per time-step. We carried out a sanity check
before storing the data. The sanity check verifies that the candidate
vector is not similar to any of the already stored vectors through
cosine similarity, which is a dimensionless measure for vectors, which
are typically sparse.

sim(x,y) =
x · y
‖x‖‖y‖

(4.3)

The similarity equation 4.3 computes the cosine between two mul-
tidimensional vectors so that a value of zero means the vectors have
ninety degrees between each other, the closer the cosine value to one,
the smaller the angle and the higher the match between vectors. In
our experiments, this value was set to 0.9.

The sanity check has to cope with another big issue, the periodic
GPS corrections of the Applanix. Those corrections produce discrete
spatial jumps up to 0.5m. Since those jumps in a position generate a
non-continuous trajectory, the dataset is sectioned every time a jump
is detected. In this way, we store small continuous trajectories with
local transformations instead of a long trajectory with global trans-
formations.

4.1.3 Dataset Assembling

The datasets were obtained reading the recorded rosbags showed in
Tables 8 and 9. AutoMiny was driven manually in two different trajec-
tories, under variable dynamic behaviors; Fig. 27 shows a trajectory
of the AutoMiny periodically increasing its velocity without chang-
ing the steering angle, the vehicle develops high VSA which explains
the change of the radius in the semi-circle trajectory. The second tra-
jectory was obtained driving on the lab track showed in Fig. 23 coun-
terclockwise and clockwise at different velocities and skidding on the
turns.



54 Deep Learning for Ground Dynamic Localisation

Figure 27: AutoMiny circle trajectory carried out with the same steering an-
gle while increasing velocity, which developed high VSA and VSA

rates.

AutoMiny data was recorded using two different surfaces, Cut Pile
green carpet, and PVC black rubber. Driving on different surfaces al-
lowed us to generate diverse, dynamic performances. While on the
rubber surface, the car was able to drift easily, on carpet it was more
stable on the curves. Analysing how the dynamics of the car changes
on such different surfaces is key to develop more accurate controllers
and estimators. In this sense, another advantage of using scaled mod-
els is the ease of studying such properties by changing the surface
conditions on the lab floor. On full-scale cars may be difficult to find
the conditions to generate a dataset with all the driving conditions
that a driver can find in a variety of terrains and, at the same time,
having an accurate estimation of pose to measure the results of the
developed controller or the estimator.

The dataset of the MIG was recorded in the city of Berlin on eleven
different expeditions. The conditions of weather and season of the
year are similar; there are no recorded datasets while driving on snow
or rain. Therefore, it is of our interest to expand the dynamic scope
of the MIG trained network by means of including the founded asso-
ciations founded under the AutoMiny dataset.

To examine the dynamic range of the datasets, it is possible to
visualise the slip angle rate derived from Eq. 2.7. For AutoMiny,
the Probability Distribution Function (PDF) of each friction surface
is shown in Fig. 28 together to the MIG slip angle rate, considering
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that the available trajectories of the MIG are only recorded on asphalt,
in an average velocity of 20 m/s, therefore only one PDF of slip angle
rate is shown.
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Figure 28: Range of VSA rates (β̇) in the datasets. AutoMiny developed
higher β̇ over black rubber, while as expected, the MIG performed
the smallest values.

As shown in Fig.28, we drove the AutoMiny on a higher dynamical
range than the MIG. The differences between the experiments, im-
prove the accuracy of the MIG net by increasing the gamut of the data
on which the net is trained. The overlapping between both ranges,
allow the net to build a standard feature map between the AutoMiny
and MIG dynamics.

While it is true that among different vehicles, associated parameters
such as vehicle mass or the kinematic structure are clearly different,
the objective of experimenting with deep neural networks is to find
relationships between the dynamic parameters of the input to calcu-
late displacement independently of constant parameters. In principle,
the mathematical approaches which calculate useful dynamic param-
eters such as tire forces can be derived from a relationship between
wheel angular velocity and constant parameters. Computing the tire
forces is possible to know the vehicle weight. Therefore, the goal is
to develop a model that finds high dimensional functions to relate
different car models with their displacement.

In Table 8, the amount of train and validation timestamps are
shown. Since on each dataset, the trajectories are constantly repeated,
the test section can be safely taken from the same file and use it to
evaluate the results of the net. In the counterpart, the MIG rosbags
are unique trajectories, and we are interested in leaving trajectories
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#Timestamps Driven

Nr. Scenario Train Val. Test length(m)

1. br normal driving 2451 817 817 285.7

2. br drifting 2375 791 791 216.6

3. gc normal driving 4716 1578 1578 537.9

4. gc drifting 3892 1291 1291 349.2

Total 13434 4477 4477 1389.4

Table 8: Recorded rosbags in Autominy over black rubber (br) and green
carpet (gc). Different scenarios where used to increase the range of
the dynamic parameters in the vehicle.

entirely for testing, owing to the fact that we like to analyse how the
net generalise for unseen trajectories.

We acknowledge that the partition of the datasets into training and
validation could avert some interesting dynamic information to the
net if the data is indiscriminately divided; therefore, K-fold cross val-
idation was used to evaluate the performance of training on unseen
data. That is, to use dedicated data samples in order to evaluate how
the model performs in general when used to make predictions on
new data not used during the training of the model. It generally re-
sults in a less biased or less optimistic estimate of the model skill
than other methods. The dataset was divided in four groups (K = 4).
Unlike the common K-fold validation, the dataset is not randomly
shuffled across the members, since it is important to maintain the
complete trajectories as much as possible; instead, the entire trajecto-
ries were shuffled.

To train the final model, from the total timestamps in the AutoMiny
dataset, 60% were taken for training, 20% for validation and 20% for
testing. In the MIG dataset, the sequences were divided between 80%
training and 20% validation.

The databases are stored using the Pandas1 data frame, each col-
umn of the resulting matrix contains the mean and standard devia-
tion of the column obtained from standardizing the data as follows:

1 mean = train_data.mean(axis=0)

train_data -= mean

std = train_data.std(axis=0)

train_data /= std

This way of representing the data is more convenient for the train-
ing of the net. The total database is composed of 22388 samples from
the AutoMiny and 27338 samples from the MIG.

1 https://pandas.pydata.org/

https://pandas.pydata.org/
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#Timestamps Driven

Nr. Scenario Train Val. Test length(m)

1. 20190603-FU_to_OBI 1260 314 0 2356.4

2. 20190307-safari_online 7326 1831 0 12461.4

3. 20190621-thielallee 0 0 3058 4795.3

4. 20191113-eng 0 0 583 944.8

5. 20191122-react4 1560 389 0 2853.9

6. 20191128-reinickendorf 419 104 0 1659.5

7. 20191128-aut7 2784 695 0 5907.6

8. 20191128-auto8 0 0 1061 1487.9

9. 20191210-2tegel 3084 771 0 9968.6

10. 20191210-back2fu 1680 419 0 8326.9

Total 18113 4523 4702 50762.3

Table 9: Recorded rosbags in the MIG and the number of timestamps in the
dataset. Sequences 3, 4 and 8 are used only for training, meanwhile
the rest of the sequences are divided between validation and train-
ing. The trajectories are shown from Fig. 35 to Fig. 44 in dashed line.

Since the problem is treated as time-series, the dataset is not shuf-
fled randomly; instead, it is divided into several sequences of differ-
ent sizes with different starts and endings, this helps to expand the
learning dataset, in an analogy to dataset augmentation for image-
learning tasks. The initial member of each sequence is taken as the
initial position of the series, and the transformations are recalculated.
Nevertheless, we trained the net to learn the local transformations be-
tween timestamps, therefore, to test the net it is necessary to estimate
the global position of the vehicle by calculating the SE(3) transforma-
tion to the origin frame. It was found that feeding different sequence
sizes, and shuffling such sequences each epoch, improved the perfor-
mance of the net significantly. Validation and test datasets are not di-
vided into smaller sequences; instead, the full sequence is estimated.

A standard ADAM optimiser was used with a learning rate of
0.001. The best results were led from a combination of dropout and
L1 regularisation.

4.2 Model for Ground Dynamic Localisation

4.2.1 Architecture Description

In this work, the same network architecture is applied to create a
dynamic ground localisation for the AutoMiny and the MIG. First,
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the neural network is trained with the AutoMiny database; then, the
feature map is used to train the net for the MIG. The net has been
named GALNet.
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Figure 29: Architecture of GALNet. The net is represented on times k and
k + 1 to show how the states of the LSTM and SO3 layers are
forward propagated to the next training step. The first two full
connected layers computes the first relationship between the dy-
namic variables, we use this block in a way of an encoder for the
derived two outputs. In one side another dense block computes
the VSA rate. The second output is made of a LSTM layer which
finds the time series relationships, followed of a fully connected
couple of layers that reduce the dimensionality to fit the pose out-
put vector. The net estimates local transformation between two
timestamps, therefore, a fixed custom layer projects the displace-
ment to a global frame.

This work utilises LSTM with a projection layer and two regression
heads to estimate the slip-slip angle and localisation. The LSTM ex-
ploits correlations among the time-correlated data samples, in long
trajectories by introducing memory gates and units [33] in order to
decrease the vanishing gradient problem [32]. As shown in figure 29

the LSTM is able to explicitly determine the previous hidden states to
be discarded or retained for updating the current state, is expected
to learn motion and dynamics during pose estimation. In detail, the
LSTM net is shown in Fig. 30, the control gates control how informa-
tion is obtained from previous states and passed to the future. The
LSTM does have the ability to remove or add information to the cell
state, carefully regulated by structures called gates.
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Figure 30: Configuration of a LSTM layer.

Gates are bypasses which let information pass through the next
step. They are composed out of a sigmoid neural net layer and a
point-wise multiplication operation. The sigmoid layer is defined be-
tween zero and one, indicating how much of each component pass
forward. A value of zero means that the parameter is not let trhough
while a value of one allows the parameter to pass completly through.
An LSTM has three of these gates, to protect and control the cell state.
Given a convolutional feature Ik at time k, the hidden state hk−1 and
the memory cell ck−1 of the previous LSTM updates at time step k
according to:

ik = σ(WIiIk + Whihk−1 + bi)

fk = σ(WIfIk + Whfhk−1 + bf)

gk = tanh(WIgIk + Whghk−1 + bg)

ck = fk � ck−1 + ik � gk
ok = σ(WIoIk + Whohk−1 + bo)

hk = ok � tanh(ck)

(4.4)

where � is the element-wise product of two vectors, σ is the sig-
moid non-linearity, tanh is the hyperbolic tangent non-linearity, W
terms denote corresponding weight matrices, b terms denote bias vec-
tors, ik, fk, gk, ck and ok are: input gate, forget gate, input modulation
gate, memory cell and output gate at time k, respectively.

Despite the ability of the LSTM to handle long-term dependencies,
learning them is not trivial, for which in this work a series of linear
convolutional layers are used in order to extract the model dynamics.

4.2.2 Loss Functions

The model uses the slip angle as an auxiliary input to the pose regres-
sion, therefore there are two losses in the model, one to predict the
correct slip angle and other to regress the position. The loss regarding
slip angle is as follows:
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LVSA =
1

N

∑
N

‖xn − x̂n‖1 (4.5)

where N is the size of the batch.
As for pose estimation, the proposed method can be considered

to compute the conditional probability of the poses Yk = (y1, ..., yk)
given a sequence of vector 4.1 in time t

p(Yt|Xt) = p(y1, ..., yk|x1, ..., xk)

In order to maximize the previous equation, the parameters of the
net can be found based on Mean Square Error (MSE), the Euclidean
distance between the ground truth pose yk = (pTk ,ΦTk) and its esti-

mate ŷk = (p̂Tk , Φ̂
T

k) at time k can be minimized by

LPOS =
1

|N|

∑
N

‖x̂k − xk‖2 + κ
∥∥∥q̂k −

qk
‖qk‖

∥∥∥
2

(4.6)

The factor κ scales the loss between euclidean distance and orien-
tation error to be approximately equal, q is in quaternion representa-
tion in order to avoid problems of Euler singularities in the global co-
ordinate frame; therefore the set of rotations lives on the unit sphere.
During training, the values of q̂ and q become close enough to be
negligibly compared to the euclidean distance, consequently the con-
stant κ play an essential role on the accuracy of the net.

Training individual networks to regress position and orientation
separately have inferior performance compared to the proposed full-
pose, the network was not able to determine a function to predict
the vehicle position sequentially. This problem can be addressed as
a Multitasking learning approach [12] where inductive knowledge
transfer improves generalisation by sharing the domain information
between complementary tasks. As a preliminary setting, we use the
approach of [40] where a constant κ was tuned using grid search.

Nevertheless, we observed that the error in orientation and position
was related not only to κ but also with VSA. Selecting a constant κ
value with low orientation error in small VSA rates (β̇), increased the
orientation error on high VSA rates. When a new value was tested for
high β̇, the orientation error increased for low VSA rates. Fig.31 shows
an iteration of κ values related to the associated VSA rate. Best value
for almost zero β̇ was found in κ = 350 while the best value for the
higher rates (400 deg/s) was found to be around κ = 1500.
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Figure 31: Orientation error for different values of κ related to the VSA rate
(β̇). Best values of κ for low and high β̇ are showed in purple.

This results lead to the idea of a self-tuned κ depending on β̇which
is as shown on Fig. 29 also predicted by the net. In order to adapt the
scale value, a Gaussian function is proposed as follows:

κ(β̇) = b− ae−(β̇−µ)
2
/2σ2 (4.7)

where κ is the loss scale value, β̇ is the VSA rate, b shift vertically
the function in order to get the minimum value of κ when β̇ is close
to zero, a is the amplitude of the function, σ is the standard devia-
tion and µ the mean of the normal distribution. σ and µ are tuned
looking for the smaller orientation error with respect to β̇. For the ex-
periments, best values where found around a = 2300, b = 2000, µ = 0

and σ = 320.
The final position regressor layer is randomly initialised so that the

norm of the weights corresponding to each position dimension was
proportional to that dimension’s spatial extent.

Since the MIG database is more extent in the number of samples,
the first net was trained using only this database. In order to train
the AutoMiny net, the same architecture was used. To achieve better
accuracy, the feature map of the previously trained GALNet for MIG

was used, the layer group which determines the dynamic parame-
ters is removed, as well as the last layer which composes the relative
movement.

Finally, the feature map obtained from the second training is used
to fine-tune the MIG net model; this exploits the associations made by
the agent under the training in the AutoMiny dataset.
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4.3 Experimental Results

In this section, we briefly summarise the results of the proposed ar-
chitecture for dynamic ground localisation. We employ the ATE and
RPE metrics from which we spoke briefly in 2.4.

4.3.1 Evaluation Algorithms

In order to evaluate the proposed model, we compared the results
with two traditional methods.

The first algorithm is an Ackermann model odometry which is
based on the wheel velocities, and an estimated Yaw rate obtained
from the MIG’s ABS subsystem. This method was developed for the
autonomous car, since, historically, only the differential velocities of
the back wheels were used to determine the direction and displace-
ment of the car. The major drawback is that the wheel ticks have
a systematic error that depends, among other things, on the wheel
pressure. This physical event provokes the estimated trajectory to
drift. Hence, the yaw rate information from MIG’s ABS subsystem
(MIGYawAndBrakePressure) was involved. The ABS subsystems al-
ready compensate for the deviation, and the estimation is, therefore,
more accurate. In the following analysis, this algorithm is identified
as Wheel Odometry (WO).

The second algorithm is a self-implemented UKF estimator which
integrates the WO and IMU measurements from the car inertial unit.
The filter is obtained employing the ROS robot-localization package
[55].

As described in the previous section, the net was first trained on the
MIG dataset, and the feature map was then used to train the net with
the AutoMiny dataset, we differentiate the networks in the evaluation
as GALNet and iGALNet correspondingly.

4.3.2 Quantitative Evaluation of Trajectories

In order to size the errors, on the final trained neural network, Table
10 shows the performance of the net with the ATE metric and Table
11 shows the RPE for the MIG trajectories.

Table 10 shows that in some trajectories GALNet and iGALNet im-
prove the baseline methods. It is interesting to notice that not in all
cases iGALNet performs better than GALNet, which means some asso-
ciations are lost in the over-training process.

Table 11 shows that for the MIG, local displacements are still bet-
ter estimated by basic wheel odometry. This result is explained since
most of the short trajectories that are sampled at 30Hz and have a
mean displacement of 0.5m are almost straight lines. Therefore, inte-
gration of the angular wheel velocity is still a better approximation
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method wo ukf galnet igalnet

FU_to_OBI 86.87 42.51 88.48 43.43

safari_online 428.31 4.60 483.21 50.00

thielallee 55.97 13.84 199.5 11.87

englerallee 132.07 167.5 9.20 46.61

react4 24.33 19.10 67.65 10.39

reinickendorf 6.47 3.65 2.84 2.46

auto7 211.96 17.97 89.86 12.36

auto8 17.35 3.73 46.73 4.62

tegel 269.55 4.48 219.55 23.72

back2fu 506.92 7.15 126.48 18.33

Table 10: ATE translational error in meters of the MIG dataset before and
after including the AutoMiny dataset in the training. The meth-
ods used to compare are: MIG Wheel Odometry (WO), Unscented
Kalman Filter (UKF), GALNet trained only with the MIG dataset,
and the improved version (IGALNet) trained with the AutoMiny
dataset.

method wo ukf galnet igalnet

FU_to_OBI 0.43 0.49 0.71 0.59

safari_online 0.27 0.28 1.26 0.45

thielallee 0.41 0.51 0.79 0.60

englerallee 0.44 0.58 0.77 0.74

react4 0.43 0.49 0.70 0.55

reinickendorf 0.51 0.63 0.70 0.65

auto7 0.39 0.48 0.89 0.60

auto8 0.31 0.28 0.42 0.27

tegel 0.95 1.09 1.49 1.34

back2fu 2.77 3.09 4.04 3.13

Table 11: RPE translational error in meters of the MIG dataset before and
after including the AutoMiny dataset in the training. The meth-
ods used to compare are: Mig wheel Odometry (WO), Unscented
Kalman Filter (UKF), GALNet trained only with the MIG dataset
and the improved version (iGALNet) trained with the AutoMiny
dataset.
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for straight driving. Wheel odometry has its major disadvantage on
estimating orientation, in a global trajectory, orientation errors are
collaterally translated to translational errors; for that reason, wheel
odometry performs worse with a ATE metric. For some datasets, the
precision of the UKF is achieved with the proposed methods.

Obtaining ground truth is a difficult task; the most reliable sensor
on the MIG, which provides position estimation, is the Applanix sys-
tem, as reported in Fig. 3 and Tab. 3. The error is provoked among
other factors, for the number of satellites available at the moment of
driving. Therefore, only the trajectories with available DGPS are used
as ground-truth for the evaluation. For this same reason, odometry
may be corrected by the GPS from time to time, causing the local-
isation to jump drastically, making the trajectory not differentiable.
Therefore, such windows of time were discarded from the dataset,
and the net was trained to estimate displacement between two con-
secutive relative positions. In this sense, it is interesting to examine
the RPE metric deeper and observe how the error develops since the
GPS adjustments are represented as outliers. For this analysis, we se-
lected the Safari trajectory. Figures 32 and 33 show the RPE violin his-
tograms of the translational and rotational components of the relative
transformations.

Fig. 32 corroborates the values in Tab. 10, where the WO estimates
more effectively the translational displacement, while its biggest error
is around 3m the iGALNet goes up to 9m, the errors accumulate closer
to zero than the other algorithms. It also shows the improvement
of iGALNet against GALNet. Even that the purpose of training on the
AutoMiny dataset was to reduce rotational error focusing on VSA,
translational error improved as well. However, this result suggests
that a pure translational displacement dataset, generated with the
AutoMiny would help the estimation.

In Fig. 33 the reduction of outliers from GALNet to iGALNet is more
patent. The proposed deep neural network has a better rotational
performance than the evaluation algorithms, which was the purpose
of this work. The iGALNet network has the smallest outlier and its
error distribution closer to zero than the rest of the algorithms.

The resemblance between the violin distributions of the different
algorithms shows that the proposed neural network was able to find
the correct associations to estimate composed displacement.

Nevertheless, the appearance of the iGALNet estimated trajectory in
Fig. 37 is still less accurate than UKF due to the translational error.

4.3.3 Qualitative Evaluation of Trajectories

Although, the net was able to improve for small β̇ and therefore con-
tribute to the precision in the MIG dataset, the high rates in the Au-
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Figure 32: RPE violin histogram of the translational errors in meters in the
Safari trajectory.

toMiny dataset showed limited precision. Fig. 34 shows two trajecto-
ries with β̇ values up to 1.2rad/s.

Figure 35 shows the trajectories of the MIG wheel odometry, UKF

and GALNet before and after (iGALNet) being trained with the Au-
toMiny dataset in Thielallee, the official test area of the MIG in Berlin.
Figures [36 - 44] show the rest of the resulting trajectories in the MIG

dataset.
Finally, we show the resulted trajectories of each of the methods

explored, which give a more visual evaluation of them.
The proposed method shows that, with enough information, a ro-

bust net can be trained. The major drawback is that the performance
of the net is information-dependent, therefore, if the characteristics
of the dynamic system changes, such as tire air pressure, wear, or
vehicle weight (due to trunkload or number of passengers), the esti-
mated position could be improved with more data collection. There-
fore the system could be refined online on a test vehicle and update
the weights of the net to avoid wide drifting errors.
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Figure 33: RPE violin histogram of the rotational errors in degrees in the
Safari trajectory.

In general convolutional nets require a large amount of training
data, and unlike the convolutional nets for computer vision, to our
knowledge, there are not open source or available pre-trained nets
for VSA, for pose estimation. Therefore, our net applies to our vehicle
and must be finely tuned to be used on a different one. Creating a
definitive neural network for every vehicle would need more data,
and the weights must be fine-tuned for every vehicle since these dy-
namic parameters would be unique to each car.

Whereas the error between timestamps is small, the accumulated
drifting error cannot be corrected only with information from the
vehicle. Outside references are critical to correct the drift along the
path. Therefore a visual localisation approach based on neural net-
works was developed to generate a net capable of giving positional
information with cheap on-board sensors.
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(a) (b)

Figure 34: a) Seq. 00 of the AutoMiny dataset, translational errors are:
ATE=1.37 RPE=0.03. b) Seq. 02 of the AutoMiny dataset, transla-
tional errors are: ATE=2.16 RPE=0.01. On green the ground truth
obtained with the ceiling cameras in the lab, in blue, the esti-
mated trajectory of GALNet.

4.3.4 Reported Runtime

The network is implemented based on the TensorFlow framework
and trained using an NVIDIA Geforce RTX 2080 ti. Adam optimiser
is employed to train the network with starting learning rate 0.001

and parameters α1 = 0.9 and α2 = 0.999 both values recommended
on the analysis in [42]. The training was set for 200 epochs but using
callback Tensorflow implementations such as early stopping if the
loss function does not decrease 0.001 for more than five epochs to
reduce the training time.

Training time on all the trajectories takes approximately 10k to 50k
iterations, or 2 hours to 6 hours. Prediction time for an input vector
pair takes on average 25 ms, i.e., 40Hz.
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(a) (b)

(c) (d)

Figure 35: Resulting trajectories of the proposed methods in Thielallee. a)
MIG wheel odometry, b) UKF wheel-inertial odometry, c) GALNet,
d) iGALNet.
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Figure 36: Resulting trajectories in FU_to_OBI dataset. a) Complete trajec-
tory, b) Close up of trajectory.
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Figure 37: Resulting trajectories in safari_online dataset. a) Complete trajec-
tory, b) Close up of trajectory.
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Figure 38: Resulting trajectories in Englerallee dataset. a) Complete trajec-
tory, b) Close up of trajectory.
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Figure 39: Resulting trajectories in react4 dataset. a) Complete trajectory, b)
Close up of trajectory.
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Figure 40: Resulting trajectories in Reinickendorf dataset. a) Complete tra-
jectory, b) Close up of trajectory.
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Figure 41: Resulting trajectories in auto7 dataset. a) Complete trajectory, b)
Close up of trajectory.
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Figure 42: Resulting trajectories in auto8 dataset. a) Complete trajectory, b)
Close up of trajectory.
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Figure 43: Resulting trajectories in Tegel dataset. a) Complete trajectory, b)
Close up of trajectory.
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Figure 44: Resulting trajectories in back2fu7 dataset. a) Complete trajectory,
b) Close up of trajectory.





Chapter 5
Deep Learning for Visual
Localisation

In this chapter, the problem of estimating the relative displacement
in position and orientation between two consecutive frames is ad-
dressed, this is also colloquially known as visual odometry and is
an essential part of the localisation systems in mobile robotics, au-
tonomous vehicles, navigation and augmented reality.

As described in Chapter 2.3, designing a system for reliable large
scale localisation is a challenging problem. Moreover, current visual
localisation schemes perform accurately within controlled environ-
ments [76] but fail in the presence of highly dynamic objects in a scene
or under difficult camera visual exposures, like extreme weather and
changing lighting conditions. It is in this area where deep neural net-
works have overcome traditional methods.

Intending to explore the advisability of deep neural networks in
visual localisation, this chapter proposes a framework that aims to
calculate the geometric vehicle displacement between sequences of
frames. The localisation system takes consecutive single RGB im-
ages and regresses the camera’s relative 6-DoF pose. The net, named
VALNet, uses an optical flow pre-trained feature map. It is shown that
given a couple of optical flow feature maps, the network is able to
estimate camera displacements.

We introduce a siamese architecture and a new loss function to
train the regressor. We finally tested the algorithm in a recorded
dataset while driving the MIG in Thielallee, the official testing track
of the FU Berlin AutoNOMOS project. The remainder of the chapter
evaluates the results obtained with the model.

5.1 Dataset Construction

In this section, the employed dataset to test the localisation algorithm
is described. Training deep neural networks for computer vision ap-
plications often requires a very large amount of labelled images. An-
notating ground truth labels on these datasets is often expensive or
very labour intensive. Therefore, in addition to the own generated
database, we decided to employ an open-source, public alternative.

75



76 Deep Learning for Visual Localisation

The dataset construction consists of two stages. First, we define the
employed databases, and afterwards, we show how the data is treated
before being employed to train the neural network.

5.1.1 Employed Datasets

The experiments in this project will use two primary datasets: the
KITTI [28] odometry dataset and a generated dataset employing the
MIG autonomous car and a Stereo Labs®, ZED camera1.

Obtaining ground truth is a difficult task; the most reliable sensor
on the MIG, which provides position estimation is the Applanix sys-
tem, as reported in Fig. 3 and Tab. 3, the error is provoked among
other factors, for the number of satellites available at the moment of
driving. Therefore, only the trajectories with available DGPS are used
as ground-truth for the evaluation.

5.1.1.1 KITTI Dataset

KITTI is a collection of datasets collected with a focus on applications
that are relevant to autonomous driving technologies, such as depth
estimation, odometry, object tracking, semantic segmentation, optical
flow, among others.

There are different datasets within KITTI for each of these applica-
tions; in this project, we will focus on the odometry dataset.

The odometry dataset is a collection of 22 sequences collected from
an autonomous driving recording platform with advanced sensors to
collect data streams such as RGB video, depth and LIDAR. The par-
ticular sensor used for ego-motion is a state-of-the-art OXTS RT 3003

localization system2. This system combines GPS, Global Navigation
Satellite System (GLONASS), an IMU and RTK correction signals. The
OXTS RT 3003 enables centimetre-level accuracy (open sky localisa-
tion errors < 5 cm) and provides the ground truth of the dataset.
These sensors, as well as the MIG Applanix, are prohibitively expen-
sive for widespread consumer applications (costing on the same or-
der of magnitude as a car itself) and this provides one of the principal
reason why visual odometry is still an active area of research despite
the impressive accuracy of this sensor.

The images used in the KITTI dataset are collected from 4 Point-
Grey Flea2 video cameras (2 colour cameras + 2 grayscale cameras),
which have a resolution of 1392x512 pixels, and 90° × 35° field of
view.

The camera array composes the stereo vision system (one RG-
B/Grayscale camera on each side) with 54 cm of distance between
left/right camera, and 6 cm between the RGB/Grayscale cameras on

1 https://www.stereolabs.com/zed/

2 https://www.oxts.com/products/rt3000/

https://www.stereolabs.com/zed/
https://www.oxts.com/products/rt3000/
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the same side. The ground-truth produced by the localisation system
is projected into the coordinate system of the left camera. Figure 45

shows the arrangement of the sensors on the vehicle.

(a) Vehicle

(b) Camera set

Figure 45: Sensor arrangement in the Vehicle used to collect the KITTI
dataset [26].

The odometry dataset is comprised of 22 sequences of a car driv-
ing outdoors in a variety of scenarios, including middle-size cities,
roads, and highways. There are around 41,000 images collected in to-
tal, measured over a distance travelled of around 39.2 km. There are
only available ground-truth labels for 11 of the 22 sequences, as the
rest are used as testing data for a benchmark leaderboard on this task.

We do the train/test split of sequences [00, 01, 02, 03, 04, 08, 09]
for training and sequences [05, 06, 07, 10] for testing. Fig 46 shows
random images taken from the dataset.

The camera frames are obtained at a 10 Hz rate. It is essential to
take into count that it is not possible to drive the vehicle at a constant
velocity, which could affect the training directly when the net is tested
on sequences that were obtained at a different velocity or in a velocity
that is not well represented in the database. Table 12 shows the mean
and max velocities of the KITTI vehicle for the different sequences.

5.1.1.2 AutoMiny-MIG Dataset

Additionally, a dataset was obtained driving the MIG along Thielallee.



78 Deep Learning for Visual Localisation

(a) Sequence 00 (b) Sequence 01 (c) Sequence 02

(d) Sequence 03 (e) Sequence 04 (f) Sequence 05

(g) Sequence 06 (h) Sequence 07 (i) Sequence 08

Figure 46: Kitti odometry dataset - over 41, 000 images from 22 sequences.

seq . σ µ seq . σ µ seq . σ µ

00 9.74 29.53 01 18.75 80.28 02 8.39 39.14

03 8.20 25.23 04 3.72 52.48 05 10.50 28.76

06 10.45 40.34 07 11.53 22.73 08 10.20 28.50

09 9.41 38.60 10 12.04 27.58 Th. 3.88 52.32

Table 12: Velocity of the KITTI dataset and Thielallee sequences in Km/h. σ
is the standard deviation and µ is the mean velocity.

Although the car has four TE SatCam RGB colour monocular cam-
eras integrated into the chassis, the fisheye lens of the cameras make
them not suitable for the pre-trained FlowNet2 neural network since
the distortion model of the images would decrease the performance
of the estimation. Therefore, in order to capture appropriate images,
we used a ZED camera which was installed on the windshield of the
MIG as shown in Fig. 47.

The main characteristics of the camera are listed in Table 13.

Resolution
Image

Resolution[px]
Focal

Length[px]
Pixel Size

Field of View
(V-FOV, H-FOV)

HD2K 2208 x 1242 1400 0.002mm 47°,76°

HD1080 1920 x 1080 1400 0.002mm 42°,69°

HD720 1280 x 720 700 0.004mm 54°,85°

WVGA 672 x 376 350 0.008mm 56°,87°

Table 13: ZED Camera features.

The ZED camera is Universal Video Class (UVC) compliant and is
possible to capture the left and right video streams without the ZED
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Figure 47: ZED camera mounted on the MIG windshield.

SDK. However, building applications and using the ZED SDK require
CUDA to compute the depth map in real-time on the GPU. Video
streaming and recording utilities are part of the ZED SDK, and there-
fore, we employed the NVIDIA TX1 arm GPU of the AutoMiny TX1.
Fig. 48 shows the AutoMiny inside of the MIG, the camera is con-
nected through USB 3.0 to the AutoMiny TX1.

The ZED camera has two running modes in order to save the se-
quential images.

The first tested mode runs the camera as a ROS node. The Au-
toMiny TX1 works under a ROS framework (see section 3.2), which
makes possible to configure the scaled car as part of the ROS network
of the MIG by simply connecting the Ethernet port of the AutoMiny
with the MIG router. In this way, the ZED ros-package is executed
in the TX1, and the topics are broadcasted to the network making
possible to record a ros-bag including the localisation data published
under the topic: /localization/odometry/filtered_map. Fig. 49 shows the
ros-rviz graphic interface with the available data while driving along
Thielallee.

Video streaming can be recorded at different frame-rates depend-
ing on the configured resolution. Nevertheless, the frame-rate re-
ported on the system while running other nodes for the MIG were
slightly different from the factory registers. Even more, while record-
ing the ros-bag, the frame-rates dropped dramatically, resulting in a
deficient quality of the dataset. Table 14 shows the available schemes
and the reported frame-rates.

In order to test the results of the neural network on Thielallee, it
was necessary to have the images and frame-rate at least at the KITTI
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Figure 48: AutoMiny Tx1 mounted in the MIG to record the dataset, the car
is connected through Ethernet to the MIG.

video factory output running fps while

mode fps resolution fps recording

2.2K 15 4416x1242 13.9 8.4

1080p 30 3840x1080 28.2 16.1

720p 60 2560x720 59.3 35.3

WVGA 100 1344x376 98.6 66.5

Table 14: Frame rates reported while running and recording a rosbag with
the ZED camera as a ROS node in the MIG network.

dataset scheme, i.e. 10 Hz and resolution of 1392x512 pixel, therefore
720p was the target resolution on the ZED camera. Although one lap
was driven with each resolution setting for experimental purposes.

The second tested mode to save the video stream is a particular
proprietary datatype of Stereo Labs®, the "svo" files. These type of
files can save the frames at a factory frame-rate, virtually without
recording delay. Unfortunately, the frames are saved ruled only with
a Linux timestamp, there is no direct relationship with the ROS clock,
and in order to synchronise the data with ros-packages a post match-
ing effort must be made.

To record the ground-truth positional data from the MIG together
with svo video streams it was necessary to synchronise the Linux
system clock between platforms. A script uses the ZED SDK to start
and stop the video and ros-bag recording. The svo file is saved locally
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Figure 49: MIG rviz view on Thielallee. On the top, from left to right, the
depth, left, right images and the confidence map obtained from
the ZED camera. On the bottom, the car robot model and the
point cloud from the LIDAR.

in the AutoMiny SSD, in this way, is not necessary to broadcast the
information through the network. The pose information in the ros-
bag is recorded in the main laptop which runs the ros-packages of
the MIG.

The dataset is stored with the Pandas3 data frame.

5.1.2 Visual Odometry Dataset Augmentation Tool

Along with the widely spread applications of computer vision for
classification tasks, data augmentation has proven to increase the ac-
curacy and precision of the networks. Is usual to find in deep learning
frameworks like Keras, tools which generate synthetic images from
a sample image through performing operations such as: perspec-
tive and homogeneous transformations, zoom-in, zoom-out, noise-
additive and adjusting brightness, among others. This technique gen-
erates potentially thousands of images from a single one.

For time series problems, data augmentation is still a research sub-
ject. Being visual odometry with end-to-end deep neural networks a
not so well know problem, is difficult to make a consensus about the
operations that improve estimation accuracy.

We propose a data augmentation tool for visual odometry. Our data
augmentation tool can potentially generate thousands of sequences

3 https://pandas.pydata.org/pandas-docs/stable/index.html

https://pandas.pydata.org/pandas-docs/stable/index.html
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from a single video. Fig. 50 shows how the segmentation was carried
out.

b) c)a)

e)

d)

Figure 50: Dataset augmentation. a) Complete video frames, b) Sub-
sequences of equal or different size, taken from a), sub-sequences
can overlap between each other, c) Obtained sub-sequences can
be shuffled every epoch to avoid bias in the training, d) The
sub-sequence can be reversed, e) Some frames inside the sub-
sequence can be skipped with a constant or variable step. The
generated sequences must be correlated to the correspondent
pose and orientation information, and modified with the proper
SE(3) transformation parameterizations. Every sub-sequence re-
lated trajectory is modified to represent a global trajectory within
the boundaries of the frame recorded positions.The data aug-
mentation tool is available in: https://github.com/richrdcm/

visual-odometry-data-augmentation-tool.git.

The net trained on the generated sequences with the data augmen-
tation tool showed to perform better.

5.2 Model for Visual Localisation

5.2.1 Architecture Description

The design of the architecture is partly based on the original
FlowNet2 [24], tuned to take as inputs simultaneously the paired im-
ages in sequence (It, It+1), to regress the parametrisation position
and quaternion labels (∆X,∆Q). This parametrisation is simple to
deal with but comes with a disadvantage that the quaternion requires
normalisation to reduce an extra degree of freedom. The normalisa-
tion can cause optimisation issues on regression. Nevertheless, the
representation avoids the singularities of other parametrisations.

 https://github.com/richrdcm/visual-odometry-data-augmentation-tool.git
 https://github.com/richrdcm/visual-odometry-data-augmentation-tool.git
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In our approximation, we looked for a solution that could predict
the ego-motion of the vehicle given a continuous analysis of two con-
secutive images, exploiting all the information available in the im-
age. The image featurisation of the dataset presents several difficult
challenges, among which are: data sparsity, dynamic objects, difficult
lighting and object distortion due to vehicle velocity. Regarding the
featurisation, in the current state of the art (see Chapter 2.3) there
are two main approaches, object recognition or motion estimation.
Since object recognition depends on nets trained with objects which
may be or not part of the driving scenario, this approach would de-
pend highly on the scene object diversity and on detecting those ob-
jects correctly among the first and second frame. Not to mention that
problems like data association should be solved with the net.

We decided to focus our approach to motion estimation and de-
velop a CNN block able to extract dependencies from two consecu-
tive frames. This approach is advantageous since it does not relates
the foreknowledge of the scene structure and could generalise better
for driving scenarios.

The FlowNet architecture [24] was one of the first to explore learn-
ing optical flow using a deep convolutional network. The network
was trained with several real and synthetic datasets. FlowNet consists
of a convolution phase and a deconvolution phase. The main struc-
ture of the FlowNet used to extract the high-dimensional is shown in
Fig.51.

Figure 51: FlowNet architecture. Basic structure of the FlowNet, the refine-
ment block on green, is a deconvolutional phase which trans-
forms the feature map into an image representation of the optical
flow [24].

.

The feature map from FlowNet can be obtained from the output
of the last layer in the convolution phase. The net was trained under
different datasets in order to reduce the error in the different partic-
ular applications, one of which is the KITTI dataset. Therefore, we
decided to use such weights for our neural net.

FlowNet was extended in FlowNet 2.0 [36], where the basic struc-
ture of the architecture of FlowNet was trained under different cir-
cumstances, which improved the performance in small displace-
ments. It was achieved by focusing on the training data and changing
the strategy on the way of presenting data during training, the new
architecture is a stacked architecture that includes warping of the
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second image with the intermediate optical flow as shown in Fig.52,
finally a sub FlowNet specialised on small motions was added.

Fm_1 Fm_2 Fm_3

Fm_4

Figure 52: FlowNet 2.0 architecture. Structure of the FlowNet 2.0, a com-
bination of multiple FlowNets. Braces indicate concatenation of
inputs. Brightness Error is the difference between the first image
and the second image warped with the previously estimated flow.
To optimally deal with small displacements. A small fusion net-
work provide the final estimate. Fm_1,2,3,4 represents the output
of the last layer of the convolution phase of each FlowNet[36].

The feature map to train our net was obtained from the con-
catenation of the highest level flow features from the last layers of
the convolutional phase of each FlowNet Fm_1,2,3,4. This produced
a 6x20x1024 feature map for each subnetwork, after channel-wise
concatenation, the total size of the feature map produced the final
6x20x4096 image pair flow features. This feature map, process the
dependencies between two consecutive frames, in an analogy refer-
ring to a direct Odometry method showed in Fig. 13, the feature map
delivers the necessary information to compute the motion estimation
and optimisation modules. Subsequently, the feature map is flattened
and used to create a sequence model, necessary to elaborate the input
of the recurrent neural network layers of the proposed architecture.

The proposed visual odometry architecture is a Siamese network,
each side of the network is composed by a convolutional block, fol-
lowed by a LSTM block. The recurrent neural block used in the archi-
tecture is a twofold LSTM; every single layer has 1024 hidden units
which processes inputs in a past-to-future direction. These initial
layers extract useful characteristics for odometry from the optical
flow feature maps and find the corresponding associations between
timesteps. Both sides of the network share its convolutional-temporal
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outputs with the opposite side. This convolutional-temporal block ex-
tract associations between optical flow frames which allows the fol-
lowing fully-connected block to calculate the local displacement.

Each side of the network computes a different direction of the tra-
jectory. This means the second branch of the net estimates the inverse
ego-motion, given the reversed frame sequence.

Additionally, the estimated local poses of each branch are pro-
cessed by a custom layer which computes the geometric transforma-
tions to obtain a global pose.

Since the transformations are complementary, we added an extra
layer which computes the geometric transformations between the for-
ward and backward sequences. The result of the net after the trans-
formation should always be the starting point of the displacement,
providing a closed trajectory on every batch, thus X = [0, 0, 0, 0, 0, 0].
This attribute helps the net to learn back and forth features on ev-
ery batch. We also run experiments with this additional property to
evaluate the precision of the net. Figure 53 shows the proposed archi-
tecture.
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Figure 53: Siamese Architecture for Visual Odometry. In the first input, the
sequence in a positive displacement is fed while in the second,
the same sequence is reversed and fed. The network has two sym-
metric convolutional modules. The output is shared on the con-
secutive full connected layer modules. The final output is trained
to be zero since it is the starting point of every sequence.
Note: the showed input optical flow images are merely illustra-
tive, each feature map obtained from FlowNet2 have a size of 6 x
20 x 1024.

The aim of using a Siamese network is to create a self-controlled
net, which balances the error among the three outputs. We prove that
with a single sequence we are able to use the additional geometric
attributes to balance the learning between the net branches, which
guides the network to find similar estimations in each branch and the
zero output will adjust the precision of the branch estimation. The
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convolutional block computes a transitional invariant feature map
among the four high-level feature maps of the FlowNet2, meaning
that the learned patterns could be recognised anywhere in the image.
Since this block is trained to recognise back and forth displacements,
after training.

To derive the global poses of the vehicle, the relative estimated
positions obtained with the net, are composed through a custom layer
which performs the transformation T in Rn that can be represented
as an element in the special Euclidean group SE(n) as:

T =

[
R t

0 1

]
where R ∈ SO(n), t ∈ Rn is the translation vector. The transforma-

tion lies in the orthogonal group. The concatenation of two poses can
be conducted by matrix multiplication in the context of SE3 previous
conversion of the quaternion representation into rotation matrix.

5.2.2 Loss Functions

In order to control de balance and precision of the net, the loss is
computed on different steps.

Since the net minimize the loss through backpropagation, the total
loss of the net is then computed using equation 5.1:

L =
1

N

∑
N

(β1LPOSa +β2LPOSb +β3LZERO) (5.1)

were β1,β2,β3 are the weighting factors for each output and N is
the size of the batch.

The weights are defined as follows:

β1 =
(LPOSa +LPOSb)

LPOSb

β2 =
(LPOSa +LPOSb)

LPOSa

β3 = {x ∈ R
∣∣0 6 x 6 1}

(5.2)

All weights in the network’s convolutional layers have a gaussian
initialisation, whereas the fully connected layers were initialised us-
ing the Xavier algorithm [45].

The position estimation loss was designed to compute a L2 (Eu-
clidean) loss between the ground truth pose yk = (pTk ,ΦTk) and its

estimate ŷk = (p̂Tk , Φ̂
T

k). At time k can be minimized by

LPOS =
1

|N|

∑
N

‖x̂k − xk‖2 + κ
∥∥∥q̂k −

qk
‖qk‖

∥∥∥
2

(5.3)
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were N is the size of the batch. LSTM layers were configured as
stateful; therefore, the states of each sequence are propagated as the
initial state in the following batch. The size of the batch is configured
to be the length of the sequence.

The factor κ scales the loss between euclidean distance and orienta-
tion error to be approximately equal, q is a quaternion representation
of the orientation in order to avoid problems of Euler singularities in
the global coordinate frame. Therefore the set of rotations lives on the
unit sphere. The scaling factor was selected as a constant; selecting the
correct factor κ is crucial to prevent the net biasing the learning be-
tween position and orientation precision. The factor depends highly
on the nature of the dataset characteristics, for instance, the step size,
overlapping or sequence size. In order to select an acceptable initial
κ value, we obtained the mean value of the distribution of the larger
euclidean distance on each sequence. In order to find the most suit-
able factor, four additional trainings were conducted, the best κ was
selected from Fig. 54.

Figure 54: K scaling value for ESP-VO.

5.3 Experimental Results

In this section, we evaluate the proposed visual odometry network
VALNet. We employ the ATE/APE and RPE metrics from which we
spoke briefly in Chapter 2.4 for quantitative evaluation, and finally,
some qualitative aspects of the results are discussed.

5.3.1 Evaluation Algorithms

We compare the results with a self-implemented version of the ESP-
VO [86] neural network with no covariance output, for more reference
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about the architecture of the network, we refer the lector to Section
2.3.2.

The well-known sparse feature Stereo ORB-SLAM2 algorithm is
also used for evaluation. It is relevant to mention that we were no able
to give an equal comparison of the results employing just the monoc-
ular visual odometry version of ORBSLAM since it was not able to es-
timate trajectories on the entire KITTI dataset or the Thielallee dataset
without failing at a certain point in the trajectory. The localisation ver-
sion of ORBSLAM has the loop closure and relocalisation modules off
for which was difficult to reinitialise the estimator in a previously vis-
ited point or to optimize the trajectory. Also, monocular ORBSLAM
drifts in scale severally. Therefore the stereo and full-SLAM version
of ORBSLAM2 was employed. On the Thielallee dataset, we were not
able to adjust the parameters of the feature detector, losing tracking.
This may be due to the low contrast we have in the images due to the
bad weather on the day we recorded the dataset.

Although we tried to provide evaluation results comparing our
method with direct methods (Chapter 2.3) such as LSD-SLAM, it con-
sistently losses tracking for KITTI dataset, one of the reasons is that
the frames are captured at 10Hz, and the driving speed is in aver-
age 90 km/h. Aligning images by minimising photometric errors in
a large baseline is still challenging for such methods. Therefore no
parametric errors are provided.

5.3.2 Neural Network Training

The Siamese net was trained setting different values for β3 in Eq.
5.1, Fig. 55 shows the training and validation losses. From the results,
it was clear that training simultaneously the three outputs with β3
different of zero, produced a less precise output. Therefore, to train
the network, there are necessary two stages. First, β3 = 0 and the to-
tal loss relay on the balanced error between LPOSa and LPOSb, this
assures that the net is not going to be biased into one trajectory di-
rection, and the convolutional feature map is balanced. In the second
stage, the weights of the convolutional block are frozen, and β3 is set
to a higher value.
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(a) Training loss (b) Validation loss

Figure 55: Siamese architecture training and Validation loss while setting
different values for β3.

Figure 56 shows the improvement of the net between the first and
second training step. Three different values for β are shown. We con-
cluded that higher values of β3 would unbalance the Siamese be-
haviour and affect the accuracy of the results.

(a) Validation loss (b) Close up

Figure 56: Hyperparameter tuning of β3. β3 changes values from best
Siamese trained model β3 = 0 to β3 = 0.5, 1, 2. Fine-tuning
shows that freezing the convolutional blocks while fine-tuning
the LSTM and dense layers by forcing the outputs to be comple-
mentary improve the accuracy. We have selected the net trained
with β3 = 1.0 since with β3 = 2.0 the validation loss showed to
start over-fitting.

5.3.3 Quantitative Evaluation of Trajectories

Tables 15 and 16 shows the comparison between performances of
the ESP-VO, VALNet and Stereo ORB-SLAM2. It is clear that this last
method is quantitatively better than the monocular neural network
approaches. Nevertheless, the proposed architecture of this work
overtakes the existing deep neural network approaches.
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model 03 04 05 06 07 10 Thielallee

ESP-VO 6.39 3.37 38.5 50.3 12.6 15.6 25.3

VALNet 5.8 2.7 34.2 48.4 13.2 14.6 21.3

Stereo ORB-SLAM2 5.7 0.2 0.8 0.8 0.5 1.0 4.2

Table 15: ATE translational error in meters of the tested methods on training
sequences 03, 04 and KITTI testing sequences 05, 06, 07, 10, and
Thielallee.

model 03 04 05 06

ESP-VO 3.47e-2 1.03e-1 1.15e-1 1.07e-1

VALNet 1.5e-2 9.0e-2 1.4e-1 1.3e-1

Stereo ORB-SLAM2 1.4e-2 0.99e-2 1.3e-2 1.1e-2

model 07 10 Thielallee

ESP-VO 1.63e-1 2.08e-1 3.37e-1

VALNet 1.1e-1 2.1e-1 3.32e-1

Stereo ORB-SLAM2 1.02e-2 1.3e-2 1.3e-2

Table 16: RPE translational error in meters of the tested methods on training
sequences 03, 04 and KITTI testing sequences 05, 06, 07, 10, and
Thielallee.

The KITTI dataset has 21 sequences. However, only ten have
ground-truth data; therefore, there are only four KITTI testing tra-
jectories, sequences 03 and 04 perform better since the trajectories are
included in the training and therefore perform better on the ATE and
RPE values.

In order to analyze the performance of the proposed neural net-
work against the architecture of ESPVO, the ATE violin histograms
are shown for the fifth Kitti trajectory and thielallee.

Fig. 57 shows the translational and rotational error components of
the transformations in Thielallee. In both error components VALNet

improves the performance, which explains the drift of ESPVO in
Thielallee in Fig. 60f.
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Figure 57: APE violin histogram of the translational[m] and rotational[deg]
errors in the Thielallee trajectory.

The results in Thielallee differ from the rest of the KITTI dataset,
the main difference is the weather conditions, KITTI dataset was
recorded mainly in day-bright light, and since Thielallee is a test
sequence with low contrast and different lightening conditions, the
error is more significant. We noticed that the neural network still has
difficulties in rotational estimations. Moreover, the most significant
rotational error was reported while another vehicle drove in the field
of view of the MIG camera, which suggests that dynamic objects in
the environment are still affecting the estimation.

Fig. 58 test the net in the KITTI sequence No. 5; translational and
rotational errors are smaller in magnitude than the compared ESPVO
neural network.
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Figure 58: APE violin histogram of the translational[m] and rotational[deg]
errors in the Kitti sequence No. 5.

5.3.4 Qualitative Evaluation of Trajectories

Fig. 60 and 59 show the trajectories computed with the selected meth-
ods. It is observable that VALNet produces relatively accurate and con-
sistent trajectories closer to the ground truth, the scale is estimated
with high precision since no additional scale estimation neither post
alignment to ground truth is performed to obtain the trajectories. The
scale is learned on the end-to-end training. This exposes a major bene-
fit of neural networks against traditional methods like the monocular
version of ORB-SLAM which scale drifting contributes to error.

In supervised learning, it is clear that the amount of provided
data to the net, improve its accuracy. Therefore we made experiments
training the net with sequences from 00 to 10 and running qualitative
analysis on the sequences from 11 to 21. Figure 61 shows the results
using the three methods.
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Figure 59: Resulted trajectories of Stereo ORBSLAM2 (complete SLAM), ESP-
VO and VALNet on Kitti sequences 00-06. The dashed line shows
the ground truth trajectory.
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Figure 60: Resulted trajectories of Stereo ORBSLAM2 (complete SLAM), ESP-
VO and VALNet on KITTI sequences 06-10 an Thielallee. The
dashed line shows the ground truth trajectory.
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Figure 61: Resulted trajectories on KITTI testing sequences 11, 13, 15, 17, 19,
21 and Thielallee. Model is trained on KITTI sequences 00-10. On
the testing sequences there is no ground truth provided.
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The velocity of the car while recording data has a major impact on
the accuracy, it is important to remark that the standard deviation
and mean of the first training dataset (00, 01, 02, 03, 06, 08, 09) is:
σ = 16.10, µ = 36.21 and for the complete dataset with ground truth
is: σ = 15.67 µ = 34.43. Therefore, in sequences where velocities
are high, the estimation could be more challenging, sequence 01, for
instance, span velocities up to 98 km/h. At a camera rate of 10Hz, 90

km/h represents a straight displacement of 2.7m, Fig. 62 shows the
difference between two frames obtained at 98 km/h in sequence 01.

Fig. 62 also shows that by skipping frames, as explained in Fig. 50

is possible to generate a dataset with different vehicle velocities vir-
tually. Nonetheless, FlowNet2 can better perceive displacement when
the vehicle drives at velocities up to 100 km/h, Figs. 62b and 62c,
shows that FlowNet2 can effectively distinguish features such as the
cars and the right pole. By contrast, in Fig. 62i no features can be
distinguished, and it is possible to see some artefacts. Nevertheless,
the net can give some information about the environment in a whole,
which explains why the odometry still works in cases where tradi-
tional methods cannot track any correct feature due to the separation
between frames as shown in Fig. 62j and in difficult scene situations
like the pole in Fig. 62h which is hard to track âs a consequence of
the merging with the building and the low contrast level.

5.3.5 Reported Runtime

The network is implemented based on the TensorFlow framework
and trained using an NVIDIA Geforce RTX 2080 ti. Adam optimiser
is employed to train the network with starting learning rate 0.001

and parameters α1 = 0.9 and α2 = 0.999 both values recommended
on the analysis in [42]. The training was set for 200 epochs but using
callback Tensorflow implementations such as early stopping if the
loss function does not decrease 0.001 for more than five epochs to
reduce the training time.

Training time on all the trajectories takes approximately 100k - 200k
iterations, or 1 to 3 days. Prediction time per frame pair takes on
average 100 ms for FlowNet2 and 75ms for VALNet for a total of 175ms
or 5.71Hz.

Whereas the system does not run on real-time (>30hz) it shows that
is possible to generate an artificial intelligence capable of obtaining
similar trajectories as conventional methods in the state of the art
datasets such as KITTI. It is very scalable as it does not require an
extensive database of landmarks.
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(a) Seq. 00, frame 470

(b) Seq. 00, frame 471 (c) Seq. 00, frame 473

(d) Op. flow 470-471 (e) Op. flow 470-473

(f) ORB Tracking 470-471 (g) ORB Tracking 470-473

(h) Seq. 00, frame 475

(i) Op. flow 470-475

(j) ORB Tracking 470-475

Figure 62: Frames from sequence 01 of the KITTI Dataset with velocity of
31.41 km/h, 94,3 km/h and 156.9 km/h, skipping 0, 2 and 4

frames. In the Flow field color coding, direction is coded by hue
and length is coded by saturation.





Chapter 6
Conclusions

In previous chapters, the application of deep neural networks for lo-
calisation in autonomous cars was analyzed. From the observed re-
sults, this chapter presents some general conclusions and exciting in-
sights for applications and research directions for future work.

6.1 Findings and Limitations

We will concisely summarise the findings and limitations.
Chapter 3 presented AutoMiny, the developed scale autonomous

cars from which the version TX1 was a useful tool in the localisation
schemes proposed in this thesis. Properly used, the scale platforms
are able to accelerate experimentation, data gathering, and algorithm
debugging.

Although we intended to approximate as much as possible the Au-
toMiny working setup to the MIG autonomous car, scaling sensors
such as LIDAR and RADAR or outdoor localisation systems are still
pending. Having such sensors would provide rich information about
the dynamic outdoor environment.

Chapter 4 presented GALNet, a deep learning architecture for pose
estimation employing inertial, kinematic, and wheel velocity data
from the car. We employed VSA rate as the main characteristic to esti-
mate vehicle displacements.

We showed that it is possible to use the experiments performed
by different vehicles to improve the results of the deep neural net-
work model. The results of the estimation were compared with a
Classical Unscented Kalman Filter predictor and a basic wheel odom-
etry scheme. Transferring learning between two different experimen-
tal platforms brings advantages to the accuracy of the net. However,
the model is highly dependent on the sensor, which provides ground
truth, and the intrinsic drifting of the device is also transferred to the
model.

Chapter 5 introduces VALNet, a Siamese convolutional-recurrent
neural network for local camera ego-motion regression. We show that
feeding the dataset in the training process in small closed-loop se-
quences, increment the founded associations by the neural net. The
Siamese architecture has the significant advantage of being able to
equalize the training error between the network individual sides
while looking for specific characteristics. In this work, we utilize it
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to find associations between optical flow pairs feeding the forward
and backward direction of the sequences at the same time.

Finally, we demonstrated that this method is able to build trajecto-
ries from images in an end-to-end logic. Nonetheless, improving the
accuracy of these methods is still a work on progress.

Although the performance was not ideal for replacing other ex-
pensive sensors such as the Applanix due to accuracy and security
concerns, we believe that this method will eventually overtake the
actual current setup of autonomous vehicles.

Along with the applications of deep end-to-end learning in com-
puter vision for parameter estimation like depth or optical flow, we
showed that visual localisation has a big potential to outperform
hand-engineered approaches. It reduces engineering effort and per-
forms very well by optimising the model with respect to the end goal.

The proposed method does not require feature engineering or ob-
ject tracking to estimate ego-motion, which suggests that neural net-
works can build the necessary associations to calculate displacement.

6.2 Directions for Future Work

To conclude this thesis, we have devised some aspects which will
guide future work, and we describe them in this section. As is nat-
ural in any research, this thesis submits many questions for future
research.

We discussed individual improvements to the algorithms presented
along with the work of this thesis. Nonetheless, we would like to
highlight the following high-level themes for future research, which
are particularly promising.

6.2.1 Continual Lifelong Learning

Nonetheless, we showed that it is possible to increase the accuracy
of the models by complementing the dataset with information from
other platforms. We also demonstrated that this information should
be carefully selected. Otherwise, the net performance will decrease
in areas where it was attempting to improve. The ability to contin-
ually learn over time by accommodating new knowledge while re-
taining previously learned experiences is referred to as continual or
lifelong learning. The principle of continuous lifelong learning has
several considerations which, when not complied with, diminishing
the learning or the inference performance [61]. Therefore, the imple-
mentation of a model capable of integrating additional information
just in the identified sections of improvement, while driving, is cru-
cial.
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6.2.2 Model Fusion Through Learned Uncertainties

The standard methodology in machine learning is to learn one task
at a time. Significant problems are broken into small, reasonably
independent sub-problems that are learned separately and then re-
combined.

Multitask learning aims to improve learning efficiency and predic-
tion accuracy by learning multiple objectives from a shared repre-
sentation. Because the outputs share a standard hidden layer, it is
possible for internal representations that arise in the hidden layer for
one task to be used by other tasks. Sharing what is learned by dif-
ferent tasks while tasks are trained in parallel is the central idea in
multitask learning.

The manually tuned parameters in the localisation loss functions
can be transformed on statistical variables, which vary according to
the uncertainties of estimation. In the case of equations 4.7 and 4.5
the factor κ would change during training according with the trans-
lational and rotational uncertainty estimation.

Moreover, fusing inertial-dynamic and camera data through Multi-
task Bayesian modeling would take advantage of aleatoric and epis-
temic uncertainty, which capture noise inherent in the observations
and the model. This could strengthen the model against sensor noise
or motion noise, give information about the model parameters, uncer-
tainty, and aid the decision-making as well as positively the security
standards of autonomous cars.

6.2.3 Instance Segmentation with 6D Dense Optical Flow

We have confirmed that deep neural networks can learn scale from
monocular images in order to estimate ego-motion. Even though the
optical flow estimated by FlowNet2 is a 3D motion vector per pixel.

It is already known that high dynamical objects in classical filtering
methods are the most challenging due to the data association. There-
fore, subtracting the static elements or background of the scene is an
extensive research area of computer vision. Most of the methods use
previously-trained neural nets based on instance segmentation [8].

That said, it is in our interest to explore the benefit of developing
a deep neural net capable of estimating a dense optical flow of 6D
motion vector that, fused with a pre-trained instance model such as
YOLO, could predict a more advantageous localisation system.
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