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1  | INTRODUC TION

Earthquake forecasting is considered to be the “holy grail” in seis-
mology. Many forecasting methods have been suggested over de-
cades. Some of them are based on geophysical observations related 
to the preparatory process of an event, and others are less obviously 
associated with the physical properties of an earthquake. One of the 
most prominent examples of the latter is the forecast of large earth-
quakes based on anomalous animal behavior before the event (see 
Woith et al., 2018 and references therein). Many authors claim to 
have been successful in predicting single events. However, the rules 
defining a “successful prediction” are often ill defined.

Therefore, a proper evaluation of the predictive power of a 
proposed precursor should include at least the following pieces 
of information: (a) the number of successful predictions (earth-
quake with precursor), (b) the number of false alarms (precursor 

without earthquake), and (c) the number of failures-to-predict 
(earthquake without precursor). To determine these numbers, the 
alarm volume within time, space, and “strength” (e.g., magnitude 
range or ground motion range) has to be well defined by the pre-
diction scheme. A flexible and easy tool for this purpose is the 
Molchan (or error) diagram (Molchan, 1990). Here, we apply this 
technique in order to study whether or not the anticipatory pat-
terns between animal and seismic activity reported by Wikelski 
et al. (2020) (hereinafter referred to as WK2020) have significant 
forecasting skills. We restrict our analysis to a statistical evalua-
tion of the forecasting power and refrain from commenting on the 
plausibility of such patterns or on the modeling technique used to 
generate the proposed precursor. In other words, we consider the 
time series of the proposed precursory signal without question-
ing its origin. For this analysis, we use the data, which have been 
provided online by WK2020.
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Abstract
Based on an analysis of continuous monitoring of farm animal behavior in the region 
of the 2016 M6.6 Norcia earthquake in Italy, Wikelski et al., 2020 (Ethology, 126(9), 
2020, 931) conclude that animal activity can be anticipated with subsequent seismic 
activity and that this finding might help to design a “short-term earthquake forecast-
ing method.” We show that this result is based on an incomplete analysis and mislead-
ing interpretations. Applying state-of-the-art methods of statistics, we demonstrate 
that the proposed anticipatory patterns cannot be distinguished from random pat-
terns, and consequently, the observed anomalies in animal activity do not have any 
forecasting power.
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2  | ANTICIPATORY PAT TERNS BET WEEN 
ANIMAL AND SEISMIC AC TIVIT Y

Here, we briefly review the analysis steps in WK2020 that are 
relevant for our statistical analysis. More details can be found 
there.

Animal activity is detected in terms of “overall dynamic body 
acceleration” (ODBA) of tagged animals, which include three spe-
cies (cows, dogs, and sheeps). These values are corrected for a 
daily cycle related to the usual daily animal activities. The final 
signal is the residual of these corrected values and a reference sig-
nal that is provided by a vector autoregressive data-based model 
(see e.g., Stock & Watson, 2001) that is supposed to account for 
the normal interactions of groups of animals and their reactions to 
ground motion. The observation period includes three intervals: 
T1, October to November 2016, T2, January to March 2017, and 
T3, March to April 2017. In the first two periods, the animals were 
situated in a stable, while they were roaming on a pasture in the 
third period. The seismic activity is represented as a time series 
of estimated peak ground acceleration (PGA) at the farm, which is 
calculated from the hypocentral distance and magnitude of each 
earthquake in the catalog. “Unusual” activity for both, animals and 
PGA, is defined by the condition that the corresponding value ex-
ceeds two standard deviations from the respective mean value. 
If an unusual PGA event is found, WK2020 look for an unusual 
animal activity event in a time window of 20 hr prior to the PGA 
event. If such an event is found, the time difference (“anticipation 
time”) between both events is plotted versus the spatial distance 

between the location of the animal anomaly and the hypocenter 
of the associated earthquake (“hypocentral distance”). The antic-
ipation of seismic activity by the animals is concluded from the 
observation of a “negative relationship” of anticipation time and 
hypocentral distance (figure 5 in WK2020) for periods T1 and T2, 
when animals were in the stable. In period T3, no such relationship 
is observed. Based on this, WK2020 suggest that only animals in 
a building might be sensitive to upcoming earthquakes. The inter-
pretation of the distance–time relation is “that physical precursors 
of earthquakes diffuse slowly from the respective hypocenter” 
(caption to figure 5 in WK2020).

Finally, WK2020 propose that a monitoring system with groups 
of instrumented animals at different places will allow forecasts of 
location and time of future earthquakes by using triangulation.

2.1 | Statistical analysis

The data for our analysis are shown in the top row of Figure 1 and in-
clude the time series of “anomalous” animal activity (observed activ-
ity corrected by daily cycles and reference activity) and the seismic 
activity in terms of PGA, both taken directly from the supplemen-
tary material (dataset and code) of WK2020. Here, we only consider 
the temporal alarm volume, as the space alarm volume is simply the 
location of the farm, and the “strength” alarm volume is defined by 
WK2020 as predicted PGA values exceeding the threshold, deter-
mined as described above (different for each of the three periods 
considered).

F I G U R E  1   Time series of normalized animal anomalies and target PGA events (top) and Molchan diagrams (bottom) for the three 
different time periods (see titles). In the top panels, the black dashed horizontal line refers to the threshold of two standard deviations which 
is used to define times of anomalous animal behavior (red vertical lines) and PGA target values (blue vertical lines). In the bottom row, the 
red lines refer to the result for the observed animal anomalies using different alarm times T, where the results for specific values of T = 5, 
10, and 20 hr are highlighted by colored points. For comparison, gray dots represent results for randomized occurrences of the animal 
anomalies, where the blue-shaded region defines their 90% confidence interval. The black line shows the result of forecasting based on the 
PGA anomalies alone (see text) [Colour figure can be viewed at wileyonlinelibrary.com]
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It is important to note that WK2020 propose a short-term 
earthquake forecasting based on the anticipation of seismic activity 
by the animals. However, they only consider the case that unusual 
seismic activity is preceded by unusual animal activity in the pre-
ceding 20 hr. The cases of animal activity without ensuing seismic 
activity in this time window and of seismic activity without preced-
ing animal activity are ignored. Even if the relationship between an-
ticipation time and hypocentral distance for two associated events 
shows robustly some specific behavior, a forecasting scheme will 
only be reasonable, if also false alarms and failures-to-predict in 
terms of anticipation are studied in addition to successful predic-
tions. More precisely, the distance–time relation is only beneficial 
in terms of a forecast, if the animal anomaly is indeed followed by 
a seismic event. For this reason, the key question will be whether 
or not there is a significant temporal association of animal anoma-
lies and PGA anomalies. This association must be characterized by 
a high number of successful predictions and low numbers of false 
alarms and failures-to-predict.

The question raised above can be addressed by using Molchan 
(or error) diagrams (Han et  al.,  2017; Molchan,  1990; Molchan 
& Kagan,  1992): This is a two-dimensional plot with fraction of 
total alarm volume (here: fraction of cumulative anticipation 
time) on the horizontal axis and fraction of earthquakes without 
precursor (failure-to-predict) on the vertical axis. A rule for de-
claring an “alarm” with fixed length (e.g., 20  hr as in WK2020) 
results in a single point in the Molchan diagram. The variation 
of the alarm duration leads to a line connecting two end-mem-
ber cases: first, the point (0,1) corresponding to the optimist's 
strategy (alarm time zero, all events are missed), and second, the 
pessimist's strategy at point (1,0) (permanent alarm, all events 
are “forecasted”). The diagonal line represents alarms based on 
random guesses. A scheme with high forecasting skill should be 
close to the origin: low fraction of alarm time and low number of 
missed events. The bottom row of Figure 1 shows the Molchan 
diagrams for the three periods T1, T2, and T3. The filled circles 
denote the anticipation times 5, 10, and 20 hr. For comparison, 
we repeated the same procedure for random perturbations of the 
time series of animal anomalies. The gray dots show the results 
for 100 randomizations evaluated for 100 different anticipation 
times. The results indicate for all periods that the association of 
animal and seismic activity is close to the diagonal line and many 
random signals perform better than the true signal of animal ac-
tivity. Put differently, a complete analysis considering not only 
successes, but also false alarms and failures-to-predict demon-
strates that the anticipation patterns reported in WK2020 can be 
explained as random patterns. The animal signal has thus no fore-
casting power. Specifically, we note that the 20-hr alarm window 
suggested by WK2020 is close to the right edge of the diagrams, 
implying the alarm of impending anomalous ground motion is 
nearly always on. Whereas this unsurprisingly “predicts” nearly 
all incidences of anomalous PGA events, such a nearly always-on 
alarm state would be useless in practice.

We further note that earthquakes are not uniformly distributed 
in time, that is, as a homogeneous Poisson process, but have a ten-
dency to cluster due to the fact that some earthquakes trigger other 
earthquakes; commonly these triggered earthquakes are described 
as aftershocks. Whereas models of various sophistication have been 
developed to describe the statistical properties of this clustering 
(Cattania et al., 2018; Ogata, 1988), we consider here a naive fore-
casting scheme that simply raises an alarm when the PGA threshold 
is exceeded, that is, the PGA time series is used to predict its own 
future. The alarm is kept active for a set anticipation time. Again, a 
Molchan diagram can be constructed by adjusting the anticipation 
time. The results of this naive forecasting experiment are shown as a 
black line in Figure 1. The PGA-based forecast outperforms the an-
imal-based forecast for (nearly) all configurations and time periods. 
For the T2 period, the naive forecast is actually significantly bet-
ter than random. However, this is not because the algorithm shows 
any particular skill but is simply an artifact of the time clustering of 
earthquakes. Any proposed precursory phenomena must signifi-
cantly outperform forecasts based on earthquake clustering, other-
wise they are likely simply proxies for current seismic activity, even 
if they show some forecasting ability. The very different behavior of 
the naive forecast for the three time periods also demonstrates the 
variability of seismicity, highlighting the fact that much longer time 
series are needed for serious tests of forecasting schemes.

Finally, we consider the main argument of WK2020, that is, the 
apparent relation between anticipation time and hypocentral dis-
tance for cases where a seismic anomaly was preceded by an ani-
mal anomaly. The observation of a negative trend of the anticipation 
time with distance to the future earthquake has been interpreted as 
an indication of a diffusion process. However, the potential effect 
of the space–time clustering of earthquakes has been neglected in 
the calculation of significance level of the observed trends. Here, 
we reproduce the analysis by selecting all animal anomalies which 
preceded an anomalous PGA value within 20 hr and for all such pairs 
calculated the anticipation time and the hypocentral distance to the 
corresponding earthquake. Following the procedure in WK2020, we 
then fit a line to the data points. We finally repeat this calculation for 
1,000 randomizations, where the same number of animal anomalies 
is randomly distributed in time, but the original PGA time series is 
used. For all three time periods, the observed values for slope and 
intercept lie within the cloud of slope–intercept pairs obtained from 
the randomized time series (Figure 2). For T1 and T3, the expectation 
value of the randomized relationship is near a zero slope (i.e., ab-
sence of a distance–anticipation time correlation), but the negative 
slopes in the observed dataset are not significant, as already noted 
by WK2020 themselves. At T2, the negative slope for the observed 
data has passed the significance test for non-zero slope applied by 
WK2020 but the expectation value of the randomized realizations is 
also negative due to the particular space–time distribution of earth-
quakes in this period. Thus, the observed trend seems to be solely 
related to the space–time clustering properties of the earthquakes 
and not related to the animal behavior.
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3  | DISCUSSION AND CONCLUSION

The conclusion of WK2020 that anomalous behavior of farm animals 
can be used for “potential short-term earthquake forecasting” is not 
justified by the results of their analysis. Their main argument lies in 
a relation between anticipation time and hypocentral distance for 
cases where a seismic anomaly was preceded by an animal anomaly. 
The other cases— animal anomaly without seismic anomaly and vice 
versa— had not been analyzed. In this comment, we perform a more 
complete analysis by constructing Molchan diagrams, which are well-
established for the evaluation of earthquake forecasting schemes. The 
results clearly indicate that the anticipatory patterns are governed by 
purely random behavior. An earthquake forecasting scheme in terms 
of a yes/no statement on earthquake occurrence in a given time win-
dow based on animal anomalies will be as good as forecasts based on 
random guesses.

One might argue that the negative relation between anticipation 
time and hypocentral distance could have a certain value in terms 
of physical processes preceding an earthquake. However, the plots 
shown in figure 5 in WK2020 are hardly convincing to argue for the 
reality of such a relationship. Due to the apparent strong clustering 
of the earthquakes, the analysis is effectively based only on a small 
number of independent data, that is, the number of clusters. Again, 
a comparison with randomized sequences shows that the animal 
signal and random signals cannot be distinguished.

Summarizing, WK2020 presents an excellent data record for 
testing the ability of farm animals to predict earthquakes. However, 
their positive conclusion is based on a misleading analysis of this re-
cord. Using standard methods for evaluating earthquake prediction 

schemes shows that there is zero evidence that animals can predict 
earthquakes.
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