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Abstract 

Deutsch. Muskuloskelettale Erkrankungen einschließlich Frakturen, Gelenkersatz oder -

rekonstruktionen nehmen aufgrund des demografischen Wandels, einer erhöhten physischen Aktivität 

der Patienten und einer verringerten regenerativen Kapazität durch das Altern zu. Diese Erkrankungen 

verursachen beträchtliche körperlichen Schmerzen und erfordern lange Rehabilitationsphasen, 

besonders wenn Heilungsverzögerungen oder Infektionen auftreten. In diesem PhD-Projekt wurde eine 

neuartige, lokale Strategie zur Stimulation der Knochenheilung entworfen, entwickelt und biologisch 

evaluiert, um dem klinischen Bedarf an präventiven oder symptomatischen Interventionen bei 

Heilungsverzögerungen zu begegnen. 

Dafür wurden die Einzelkomponenten eines hybriden Biomaterial-Komposits, welches sich aus 

mesoporigen Trägern (mesoporige bioaktive Gläser (MBG), Carbone) mit optionaler pH-sensitiver 

Beschichtung, eingebracht in ein thermosensitives Hydrogel, zusammensetzt, bezüglich 

Anwendbarkeit und Funktionalität in vitro und in vivo getestet. Der Grad lokaler Ansäuerung nach 

muskuloskelettaler Verletzung wurde gemessen, um einen Schwellenwert für die nötige pH-

Reaktivität zu ermitteln. Die pro-regenerativen Effekte auf die Knochenheilung des Komposits mit 

ausgewählten therapeutischen Ionen und Medikamente wurden getestet.    

Die Dosis- und Kompositionsabhängigkeit der zellulären Antwort auf Dissolutionsprodukte 

verschiedener bioaktiver Gläser konnte gezeigt werden. Die in vivo eingesetzten MBG zeigten eine für 

lokale Applikationen günstige, niedrige Distribution. Die in vivo pH-Reaktivität der 

Trägerbeschichtung konnte bestätigt werden. Ihr Einsatz für die Behandlung bakterieller Infektionen, 

die eine lokale Ansäuerung hervorrufen können - gezeigt an Proben humaner Synovialflüssigkeit - 

wird derzeit evaluiert. Die lokale Ansäuerung nach muskuloskelettaler Verletzung, gemessen im 

Rattenmodell, wurde als zu gering bewertet, um eine Reaktion des pH-sensitiven Materials und somit 

eine Wirkstofffreisetzung herbeizuführen. In der Knochenheilungsstudie zeigte das Komposit ohne 

pH-Reaktivität, beladen mit unterschiedlichen Ionen (Strontium, Kupfer) und Medikamenten (N-

Acetylcystein, BMP-2), Beladungs-spezifische, pro-regenerative Effekte. Die verlängerte Freisetzung 

kleiner Mengen von BMP-2 verbesserte die Knochenheilung signifikant und kann eine 

vielversprechende Alternative zu den klinisch genutzten Kollagenschwämmen darstellen.  

In diesem PhD-Projekt wurde ein neues Medikamentenfreisetzungs-System, welches funktionell durch 

die Beladung in Richtung Angiogenese, Osteogenese oder gegen Inflammation und Infektion 

angepasst werden kann, für die Verbesserung der Knochenheilung entwickelt. Biologisch evaluiert 

wurde dieses System in humanen Proben oder in relevanten prä-klinischen Modellen, um den Weg für 

eine künftige klinische Translation zu ebnen. Die positive Bewertung dieser Behandlungsstrategie und 

ihrer Komponenten durch klinische Orthopäden betont das große Translationspotenzial.  
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English. Musculoskeletal pathologies including fractures, joint replacements or reconstructions and 

their associated complications are on the rise. This increase is attributed to ongoing demographic 

changes, enhanced physical activity of patients, combined with a declining potential to regenerate upon 

aging. Such pathologies lead to considerable suffering and require long recovery times, especially 

when healing is impaired or infections occur. Within this PhD project, a novel local strategy to 

stimulate healing was conceptualized, developed, and biologically evaluated as a first step towards 

facing the so far unmet clinical need for effective and safe preventative or symptomatic interventions 

targeting compromised bone healing. 

For this, the individual components of a hybrid biomaterial-based composite consisting of mesoporous 

carriers (mesoporous bioactive glasses (MBG), carbons (C1Sph)), optionally coated with a pH-

sensitive, self-immolative polymer (SIP), and a thermosensitive hydrogel (SHP407) as embedding 

moiety were investigated with respect to practicability and functionality in vitro and in vivo. The degree 

of acidification after musculoskeletal injury was measured locally to unravel pH-sensitivity thresholds. 

The effect of the composite, biologically enhanced by selected therapeutic ions (Strontium, Copper) 

and drugs (N-Acetylcysteine, BMP-2), on bone healing was studied.  

The cellular response to bioactive glass dissolution products was found to be highly dosage- and 

composition-dependent, making testing of every formulation essential. The employed MBG exhibited 

a low dispersion behavior in vivo, which is a pre-requisite for local treatments. In vivo responsiveness 

of the pH-sensitive coating was confirmed, and is currently evaluated in the context of bacterial 

infections that can induce local acidification as detected during this project in septic human synovial 

fluids. The observed degree of local pH acidification after musculoskeletal injury in rats, however, was 

too subtle to induce self-immolation of the SIP. Pro-regenerative effects of therapeutic substances on 

the bone healing outcome were identified, using the composite locally without SIP, indicating a 

successful treatment concept. The prolonged, low-dose release kinetics of BMP-2 induced significant 

and superior bone healing, thus qualifying as a promising alternative to the clinically used collagen 

sponge.  

Within this PhD project, a new drug-delivery system to enhance bone healing, that can be functionally 

tailored by ion doping and drug loading towards angiogenesis, osteogenesis, or against inflammation 

and infection, was biologically evaluated and customized. The usage of primary human material and 

clinically relevant pre-clinical models enables further development towards clinical application. The 

approval of several clinicians concerning need and future use of the composite hybrid system or its 

individual components imply a great potential for future translation.
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1. Introduction 

Bone healing consists of well-orchestrated, consecutive and partially overlapping pro- and anti-

inflammatory, pro-angiogenic as well as pro-osteogenic signaling phases involving a multitude of cell 

types. In the adult mammalian organism, bone is a unique tissue – next to liver – for its inherent 

potential to fully regenerate without scar formation, thereby restoring its physiological function 

(restitutio ad integrum) [1, 2].  

Despite the regenerative potential of bone, around 10 % of fracture patients experience impaired 

healing, presenting either as delay in healing or as the development of pseudoarthrosis or non-unions 

(discussed in [1]). This imposes a high burden on the patient’s quality of life as these clinical conditions 

can require additional surgical interventions and prolong the time to recovery. Pathologies of the 

musculoskeletal system are among the five most costly diseases in Germany (Figure 1A, B). They are 

associated with productivity losses as well as with higher risks for co-morbidities that arise from 

restricted physical activity [3]. All the above issues significantly aggravate the negative social-

economic impact [4].  

With increasing age, the regenerative capacity of bone after fracture declines [5, 6], which can be 

attributed to more prevalent comorbidities such as diabetes and osteoporosis, but also to a chronic low-

grade pro-inflammatory systemic milieu due to the increase in immunological memory, a phenomenon 

referred to as inflamm-aging [7]. Globally, increasing life expectancy and low birth rates especially in 

developed countries are causing a major demographic change [8] (Figure 1C). As bone quality 

decreases upon aging, fracture incidence is augmented (Figure 1D) [9]. All of the above translates into 

a higher number of geriatric patients, thus, the prevalence of impaired healing cases is expected to rise.  

Both, the current and the prospective rise in prevalence indicate an urgent and so far not adequately 

addressed medical need for effective strategies to improve healing in compromised settings. One 

approach is the early identification of patients at risk with clinically considered patient-dependent risk 

factors such as age, sex, comorbidities, and life-style habits (including smoking and diet) as well as 

injury-dependent factors [10].  
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Figure 1. Cost of musculoskeletal diseases, focusing on long bone fractures in the context of the demographic 

change and age distribution in Germany. (A) Total costs and relative contribution of the top 4 most costly 

pathologies in % for the year 2015. (B) Number of cases, average costs per treatment in € and total cost per long bone 

fractures, non-unions (*: all stationary cases with non-union as primary diagnosis), and revisions surgeries for (total) 

hip arthroplasty (HA) and (total) knee arthroplasty (KA) in € per year. Shown numbers represent the means of the 

years 2010 – 2016. (C) Age structure in 2018 and prospective age structure in 2050, assuming version 1 (V1) of 

population development. (D) Number of cases for long bone fractures relative to age, sex and osteoporosis diagnosis 
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per year. Shown numbers represent the means of the years 2010 – 2016. (A, C) Federal Statistical Office, Wiesbaden, 

Germany, graphic modified. (B, D) Data collection by Cellogic, sources: Federal Statistical Office, Wiesbaden, 

Germany: ICD10 (fractures: S42.2*/S72.0*/ S82.1*, S82.2*, S82.3*, non-unions: M84.1*, M84.4*) and OPS sources 

(revision HA/ KA: 5-821.*, 5-823.*), osteoporotic numbers: courtesy of Cellogic, based on [9], independent 

visualization. 

Having identified such patients, novel treatment strategies are needed that specifically target the 

underlying cause for the reduction in healing capacity, while limiting side effects. Reasons for impaired 

aseptic healing are overshooting of the pro-inflammatory response, a diminished angiogenic/ 

osteogenic potential, malfixations, or critical gap size. Infections can additionally delay healing and 

lead to osteolysis [1]. Currently, there is no minimally-invasive treatment available that is 

biocompatible, safe and can be customized based on the patient-specific needs to induce a pro-

angiogenic or pro-osteogenic response. Moreover, most secondary interventions entail invasive 

surgery which poses an additional risk, especially to the elderly patient. In that light, an EU Horizon 

2020 project called ‘MOZART’- ‘MesopOrous matrices for localiZed pH-triggered releAse of 

theRapeuTic ions and drugs’ (No. 685872), to which this PhD project belongs, was conducted. Eleven 

European partners (will be referred to using their acronyms in the following, explanations can be found 

in the list of abbreviations), both from academia and industry, collaborated for four years in order to 

develop a novel treatment strategy combining biomaterials and biological knowledge. A series of 

inorganic spheres that could be exploited as smart carrier platforms for localized and targeted therapies 

were developed (Figure 2). As a carrier for therapeutic drugs, nano- to micron-sized (~ 200 nm – 5 

µm) mesoporous bioactive glass (MBG) spheres were synthesized, with the mesopores serving as a 

reservoir for the drug cargo. Moreover, biological effects of MBG can be directed through the 

introduction of therapeutic ions into the glass network, allowing for potential dual and synergistic 

actions by the ion-doped carrier and the loaded drug. To ensure local treatment and minimize systemic 

side effects, a place-keeper as embedding moiety for the MBG was required. For this, a thermosensitive 

polyurethane-based hydrogel (SHP407) that undergoes sol-gel transition at physiological body 

temperature of 37°C was developed. The combination of MBG spheres with this hydrogel enables 

injection into the target area and can therefore be defined as a minimally-invasive approach to stimulate 

bone healing. The volume, concentration of MBG, and hydrogel properties can be adjusted, broadening 

the range of possible applications. The last biomaterial component of this novel composite consisted 

of a pH-sensitive and self-immolative polymeric (SIP) coating to cover the mesopores of the MBG, 

thereby enclosing the loaded drugs. Injury-induced blood vessel rupture is reported to result in local 

hypoxia and acidification of the injury site [11, 12]. Under acidic conditions, the pH-sensitive moiety 

of the SIP is subjected to proton-assisted cleavage, resulting in sequential disassembling of the SIP 

into the polymeric building blocks, thereby opening the mesopores and enabling drug release in a 
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targeted and endogenously triggered manner. This additional safe-guard is expected to further limit 

off-target and side effects, as the local environment itself triggers the drug release and these trigger 

conditions should be absent in neighboring tissues. 

Figure 2. The MOZART idea. Nano- to micron-sized mesoporous bioactive glasses (MBG) with a versatile ionic 

make-up act as carriers that can be loaded with drugs, pores can be covered and closed by a pH-sensitive, self-

immolative polymer (SIP) coating. The loaded and coated MBG can be embedded in a thermosensitive hydrogel 

(SHP407) acting as place-keeper (top boxed figure). This composite can be utilized to direct and improve bone 

healing. Upon exposure to physiological fluid and in an acidic environment, the SIP degrades, and the drug can diffuse 

out of the pores. Moreover, the glass network dissolves, thereby therapeutic ions can be released (bottom boxed figure) 

to evoke a beneficial healing outcome in conjunction with the released drug.  

In my PhD project, emphasis was laid on defining promising bioactive components (drugs and 

therapeutic ions) in the context of bone healing and on biologically evaluating and customizing the 

combination of bioactive components and biomaterials. Based on this aim, my PhD consisted of 

several sub-projects. In brief, I investigated the different components of the biomaterials-approach with 

respect to cyto-and biocompatibility and biological effectiveness in vitro and in vivo. The quest to 

utilize the pH as an endogenous trigger for substance release was validated as part of my thesis by 

providing in vivo target values for stimulus sensitivity in the early fracture hematoma; the pH-

responsiveness of the developed SIP was confirmed in vivo. Other potential applications for the SIP 
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coating were identified in human patients with musculoskeletal infections and are currently under 

further investigation. Within my project, the final composite, varying in the loaded drugs (BMP-2, N-

Acetylcysteine and Tetracycline) and doped therapeutic ions (Strontium, Copper and Cerium) to enable 

versatility of possible applications and treatment personalization based on risk factor identification 

(Figure 3), was evaluated in a rodent osteotomy model of impaired bone healing. By gaining an 

understanding of the biology underlying impaired bone healing and its clinical representations as well 

as regulatory aspects of novel treatment approaches, this PhD project provided the opportunity to 

explore the combination of the clinically proven growth factor BMP-2 with MBG to tailor and improve 

release kinetics. In previous studies, the required BMP-2 dosage to achieve full bridging of the fracture 

gap could be reduced by 10-fold compared to the clinically applied supraphysiological dosage [13], 

yet, the unfavorable release kinetics with a high burst release remained, as the clinically utilized 

absorbable collagen sponge was employed as drug carrier. In this context, I identified MBG 

microspheres as suitable release platforms for prolonged, low-dose BMP-2 release. All material 

components, including the MBG, the C1Sph and the SHP407 were tested in vivo for the first time. In 

parallel, the concept was presented to orthopedic clinicians and adjusted based on their demands, 

questionnaires were designed and analyzed in order to identify the clinical potential that this concept 

harbors as well as to define possible application sites.  

Figure 3. Healthcare clinical assessment of number 

of fracture cases based on fracture location, 

comorbidities and other risk factors. Fracture 

treatment strategies depend on age, health, life-style 

and fracture types. In elderly patients, an anti-

inflammatory intervention is of highest priority, while 

osteoporotic patients need a strong osteogenic boost. 

Angiogenic responses are reduced among smokers, 

rendering a pro-angiogenic intervention beneficial. In 

diabetic patients, a combinatorial approach of pro-

angiogenic and anti-inflammatory treatments is 

advisable. The management of open fractures (fx) or 

prosthetic infections necessitate anti-microbial 

strategies. Non-unions*: all stationary cases with non-

union as primary diagnosis. Total #; >60 years and 

open fx: Shown numbers represent the means of the years 2010 – 2017; source: Federal Statistical Office, Wiesbaden, 

Germany based on ICD10 classifications. Number of smokers, diabetes and osteoporotic patients based on prevalence 

rates (Smokers: Special Eurobaromater 458 ‘Attitudes of Europeans towards tobacco and electronic cigarettes’, 

European Union, 2017; diabetes: International Diabetes Foundation, https://www.idf.org/our-network/regions 

https://www.idf.org/our-network/regions%20members/europe/members/136-germany.html
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members/europe/members/136-germany.html, accessed in November 2018; osteoporosis: [9]). Data courtesy of 

Cellogic. Independent visualization.  

The focus of PD Dr. Katharina Schmidt-Bleek’s working group is centered on understanding the 

effects of immune cell populations and their age-related changes on bone healing with the intention to 

apply gained knowledge for the development of novel treatment strategies. The present collaborative 

study aimed to combine biological expertise and biomaterial development to establish a platform for 

personalized local preventative or symptomatic treatments. My PhD project represented the link 

between basic and translational research. It focused on identifying therapeutic ions and drugs to be 

used in conjunction with the biomaterial carriers, biologically validating the individual biomaterial 

components in vitro and in vivo, including individual suitability testing for future application in the 

context of bone healing, and testing the composite bone healing devices (BHD) with different drugs 

and therapeutic ions in a pre-clinical femoral osteotomy model. In close collaboration with the Centrum 

für Muskuloskeletale Chirurgie, Charité – Universitätsmedizin Berlin (CMSC), I collected clinically 

relevant human patient data and enabled decision-making on product design. In light of the great 

clinical need for novel treatment strategies, the lessons learned within my PhD project allow fine-

tuning of the current BHD design for future clinical translation of this novel treatment concept or its 

individual parts. My work has resulted in four publications and three additional manuscripts (one 

submitted, two in draft).  

  

https://www.idf.org/our-network/regions%20members/europe/members/136-germany.html
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2. Materials and methods 

This section explains the methods used within my PhD project. Details on synthesis and 

characterization of the employed materials can be found in the respective publications [14-17]. 

Material development, doping and loading were carried out by MOZART partners, based on the 

physiological boundary conditions and required biological effects that were defined during my PhD 

project. Unless stated differently, the assays were performed according to the manufacturer´s 

instructions. Manufacturers’ headquarter locations are given at first mentioning.  

2.1. Material-centered in vitro studies  

2.1.1. Material preparation and customization (MBG/ C1Sph, SHP407, composite) 

For the preparation of MBG (consisting of binary SiO2-CaO) or SIP-coated C1Sph (C1Sph-SIP), 

materials were weighted and suspended in physiological fluid (Sterofundin (B. Braun Melsungen, 

Melsungen, Germany) / 0.9% NaCl/ PBS). All materials were used at a final concentration of 15 mg/ml 

in the in vivo studies, with subcutaneous (s.c.) injections of 200 µl (3 mg), and 0.75 mg MBG applied 

in the bone healing study. The materials were ultrasonicated twice for two min, with 80 hz, maximal 

power. The SHP407 was dissolved o/n at 4 °C with repeated vortexing. The composite (MBG in 

SHP407/ blood clot without SIP coating) was prepared by mixing ice-cold SHP407 with MBG at a 

final gel concentration of 150 mg/ml, 50 µl of the composite was administered in the bone osteotomy 

gap. For the autologous blood clot, a syringe was coated with sodium citrate to prevent coagulation, 

blood was drawn from the vena saphena of the right hind limb. 7 µl of Thrombin solution (500 i.E./ml, 

12 % CaCl2, Baxter, Deerfield, USA) was mixed with MBG suspension and 180 µl of blood. After 

clotting, the composite was inserted in the fracture gap. 

2.1.2. BMP-2 in vitro release kinetics 

rhBMP-2 (Peprotech, Hamburg, Germany) loading in MBG and confirmation of loading was carried 

out by collaboration partners (described in [14]), leading to a final dosage of 50 µg BMP-2 per animal. 

In vitro release experiments were performed at a concentration of 75 µg/ml in PBS or Tris-HCl (Trizma 

Base, Sigma-Aldrich, St. Louis, USA) set to pH 7.4 at 37 °C for 14 days. At each time point, 500 µl 

MBG-free supernatant was harvested and stored at -20 °C, the MBG suspension was re-supplemented 

with 500 µl fresh solution. Released BMP-2 was quantified using an α-BMP-2 enzyme-linked 

immunosorbent (ELISA) assay (Peprotech). Each sample was tested in duplicate using TMB as 

substrate and measured at 450 nm (reference measurement 620 nm).  
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2.2. Cell culture studies 

2.2.1. Primary cell cultures  

Primary human bone marrow mesenchymal stromal cells (hMSCs), isolated after approval by the 

institutional review board (IRB) of the Charité and patients’ consent, were donated from the Core 

Facility “Tissue Harvesting of the BIH Center for Regenerative Therapies”. Cell cultivation occurred 

in expansion medium (EM) containing Dulbecco's modified Eagle's medium (DMEM, low glucose, 

Sigma Aldrich) supplemented with 10 % fetal bovine serum (FBS Superior, Biochrom, Berlin, 

Germany), 1 % GlutaMAX (Thermo Fischer Scientific, Waltham, USA), and penicillin (100 U/ml) 

/streptomycin (0.1 mg/ml, Biochrom) at 37 °C in a humidified incubator with 5 % CO2 atmosphere. 

Primary rat MSCs (rMSCs) were isolated from rat femora, followed by outgrowth cultures. Rat MSCs 

were cultivated in EM under identical conditions as the hMSCs.  

For the cultivation of Human Umbilical Vein Endothelial Cells (HUVECs, single donor; Lonza, Basel, 

Switzerland), endothelial growth medium (EGM, Lonza) containing endothelial basal medium (EBM) 

and additional manufacturer-supplied growth factors were utilized. 25000 cells/cm² of cells in passage 

2-3 were seeded for tube formation assays. 

For all cell cultures and experiments, medium was exchanged twice per week. Ions and drugs were re-

supplemented during each medium change, while the biomaterials were added at experiment start to 

transwell inserts (0.4 µm pore size, Corning, Corning, USA). For the cytocompatibility tests and 

osteogenic differentiation, cells were seeded in 24-/ 48- tissue culture treated well plates in EM (final 

volume 500/ 250 µl/well), assays were started after overnight attachment. For subconfluent cultures, 

2400 (viability) – 6400 (osteogenesis) cells/cm², for confluent cultures 15000 cells/cm² hMSCs (rMSC: 

2500 cells/cm² (viability); 25000 cells/cm² (osteogenesis, confluent)) were seeded. 

2.2.2. Cytocompatibility tests (Metabolic activity, cell count, cytotoxicity) 

The metabolic activity of r/ hMSCs was quantified by Presto Blue (diluted 1:10 in EM, ex/em 560/590, 

Thermo Fisher Scientific). Cell number was determined by fixing the cells in 4 % formaldehyde 

(VWR, Darmstadt, Germany), DAPI-staining of nuclei (1 µg/ml, 15 min, wash with PBS; Sigma 

Aldrich), fluorescence imaging (BZ-X810, Keyence, Osaka, Japan), and automated counting of the 

nuclei using Fiji ImageJ [18]. The LDH assay (Roche, Basel, Switzerland) was performed to 

investigate cytotoxicity on 25 µl debris-free supernatant of the viability experiments.  

2.2.3. Functional assays (Angiogenesis, Osteogenesis) 

Tube formation assay – angiogenesis 

For the tube formation assay, 24-wells coated with 50 µL growth factor reduced Matrigel® Basement 

Membrane Matrix (BD Biosciences, Franklin Lakes, USA) were used. HUVECs were seeded in EBM, 
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supplemented with hMSC conditioned medium (CM) [16] or NAC and returned to the incubator. After 

16 hours, tube formation was evaluated by microscopy (DMI6000B, Leica, Wetzlar, Germany) and a 

custom-made macro using Fiji ImageJ [18].  

Osteogenic differentiation assays 

To induce osteogenic differentiation, cells were cultivated in osteogenic differentiation medium (OM) 

containing EM supplemented with 50 µM L-Ascorbic acid 2-phosphate sesquimagnesium salt hydrate, 

10 mM ß-Glycerophosphate disodium salt hydrate and 100 nM Dexamethasone (all: Sigma Aldrich). 

Cell/ debris-free supernatant was collected during media changes and stored at -80 °C. For the 

determination of inorganic phosphate in the supernatant, a colorimetric phosphate assay (Abcam, 

Cambridge, United Kingdom) was carried out, diluting all EM conditions 1:100 and all OM conditions 

1:800 in EM. At the final time points, cells were fixed, washed with distilled water, and the mineralized 

extracellular matrix (ECM) was stained with 0.5 % w/v Alizarin Red S (Sigma-Aldrich, 10 min, RT). 

Stain extraction with 10 % w/v Cetylpyridinium chloride (Sigma-Aldrich) allowed quantification by 

absorbance at 562 nm. The hydroxyapatite portion of the mineralized matrix was visualized using the 

OsteoImage Assay (Lonza) with an additional nuclei staining.  

2.3. In vivo/ ex vivo animal studies 

Female C57BL/6N mice were purchased from Charles River Laboratories and employed in the studies 

at an age of 3 months, female Sprague-Dawley rats (Janvier Labs) were aged 3 months for the analysis 

of pH changes or >7 months for the bone healing study. Animal import occurred with health certificate, 

animals were kept under FELASA obligatory hygiene standards under conventional housing with food 

and water available ad libitum and controlled temperature (20 ± 2°C) as well as 12 h light/dark cycle. 

All in vivo studies were approved by the local animal protection authorities (Landesamt für Gesundheit 

und Soziales: G0027/17, G0293/17, G0017/16, G0155/18, G0258/18) and conducted according to the 

German Animal Welfare Act, the National Institutes of Health Guide for Care and Use of Laboratory 

Animals and the ARRIVE guidelines. 

Animals were anesthetized with a mixture of isoflurane (Forene, Abott, Wiesbaden, Germany) and 

oxygen, moreover analgesia with bubrenorphine (Temgesic, RB Pharmaceuticals, Berkshire, United 

Kingdom), antibiotic treatment (Clindamycin, Ratiopharm, Ulm, Germany) were administered via 

subcutaneous injection and eye ointment was given, followed by study-specific interventions as 

outlined below. Animals were kept on a 37 °C heating plate during surgical interventions. After 

femoral osteotomy or muscle trauma, the animals received a potent analgesic (Tramadolhydrochloride, 

Grünenthal, Aachen, Germany) for three days post surgery via the drinking water. Sacrifice of animals 

occurred in deep anesthesia (intraperitoneal (i.p.) injection of medetomidine and ketamine) via cervical 

dislocation (mice) or intracardiac (i.c.) injection of KCl (rats).  
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2.3.1. Biodistribution study/ pH-triggered cargo release/ In situ validation of SHP407 

For the biodistribution of DY-677-labeled MBG (DY-677: Dyomics, Jena, Germany) and the pH-

triggered cargo release from C1Sph-SIP study, the dorsal region of anesthetized mice was clipped and 

200 µl containing 3 mg material were injected s.c. in the nuchal fold using a 18-20 G needle or dwelling 

canula. Imaging of the animal to detect the fluorescent DY-677-MBG or cargo (for C1Sph-SIP: 

tris(2,2-bipyridyl)-dichlororuthenium(II) hexahydrate (Ruthenium (Ru)), Sigma Aldrich) was 

conducted using IVIS® Lumina (Caliper LifeSciences, USA; ex/em: DY-677: 675 nm / Cy5.5; Ru: 

465 nm/ Cy5.5). To test pH-responsiveness, the animals received repeated injections of pH 7.4 or 4 

physiological solution over 30 min via the dwelling cannula. All imaging steps occurred under 

isoflurane anesthesia. 

A similar approach was followed for the in situ validation of SHP407 in freshly sacrificed mice. Here, 

body temperature was maintained through a heating plate set to 37°C and a red-light lamp. Injection 

of ice-cold, liquid SHP407 or composite (200 µl) s.c. in the nuchal fold was accomplished by a G18 

needle, smaller amounts were administered in a 0.7 mm osteotomy gap by creating a drop of gel. After 

5 min of gelation, the injection sites were opened; dispersion and gelation were studied visually and 

haptically.  

2.3.2. pH study after musculoskeletal injury 

To measure pH in musculoskeletal trauma, a 5 mm femoral osteotomy gap was created in rats. A size-

matched muscle trauma was established by caudally cutting the skin, blunt immobilization of the 

Musculus (M.) gastrocnemius, isolation of the M. soleus and two times 20 s crushing using a clamp. 

pH was measured inside the hematomas using a microinvasive needle-type optical pH microsensor 

(pH-1 micro, needle-type sensor, PreSens, Regensburg, Germany) based on the dual life time reference 

method. 

2.3.3. Femoral osteotomy/ Bone healing studies  

Femoral osteotomies were created in anesthetized mice and rats. The operation area was shaved and 

disinfected. The skin was incised longitudinally, the femur exposed by dissecting the fasciae and 

dislodging the muscles bluntly. The external fixators (MouseExFix/ MouseDis/ RatExFix, RISytem, 

Davos, Switzerland) were mounted on the femur, followed by sawing using a Gigli wire saw (mice, 

gap size: 0.7/ 1.4 mm) or an oscillating saw (W&H, Bürmoos, Austria) and a saw guide (rats, gap size: 

2/ 5 mm). After wound closure, animals were returned to their cages. 

2.3.4. Tissue harvest 

Blood was collected by i.c. puncture under deep anesthesia. After sacrifice, injection sites, organs, 

bones etc. were harvested and stored in ice-cold PBS or were fixed in 4 % PFA (Science Services, 

München, Germany) in PBS. 
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2.3.5. Flow cytometry 

Cells were isolated form murine femora by opening the bones on both sides and flushing the bone 

marrow out with a 24G needle and filtration through a 40μm strainer (Falcon, Corning). Cells were re-

suspended in RPMI 1640 (+10 % FCS) to a final concentration of 500,000 cells/ml. The CellRox Deep 

Red (Thermo Fisher, 3.2.2.) assay was performed at 37 °C using 0.5 mM NAC (1 h) and 200 µM tert-

butyl hydroperoxide (TBHP, 30 min), followed by CellRox ROS staining (750 nM) and CyTox nuclei 

staining. Flow cytometric measurement was performed using a BD LSR Fortessa SORP (BD 

Biosciences).  

2.3.6. Micro-computed tomography 

Micro-computed tomography (µCT) was conducted on fixed bones using a Skyscan 1172 (Bruker, 

Billerica, USA) at a nominal voxel resolution of 8 µm, 0.5 mm aluminum filter, 70 kV (mouse)/ 80 

kV (rats) source voltage and 124 µA (mouse)/ 142 µA (rats) source energy. Reconstruction of shadow 

images occurred using an adjusted Feldkamp algorithm with nRecon software. Custom-made scripts 

were employed for the analysis in CTan software, CTvox software (all: Bruker) was utilized for 

visualization. Via the Otsu algorithm, global thresholds were selected and applied to all bone samples 

per in vivo study, calibration occurred using reference phantoms (Bruker).  

2.3.7. Histology (H&E, MOVAT’s pentachrome) 

After fixation, the explanted injection sites or decalcified rat femora were de-hydrated, paraffin-

embedded and cut in 5 µm tissue sections. Sections were de-paraffinized in Xylol and re-hydrated by 

a descending alcohol series ending in distilled water. Hematoxylin and eosin (H&E) and MOVAT’s 

pentachrome staining [19] were performed, the former was embedded in Aquatex (Sigma Aldrich), 

while the latter was followed by dehydration and embedding in Vitroclud (Langenbrink, 

Emmendingen, Germany). Frozen samples embedded in SCEM (Section Lab, Hiroshima, Japan) or 

TissueTec (Sakura Finetek, Tokio, Japan)  (murine bones or the muscle/ osteotomy hematomas) were 

cut in 5 µm-thick sections with the Cryostat (CM3050 S, Leica; undecalcified bones were cut with 

Kawamoto Tape as described in [20]) and fixed for 10 min in 4 % PFA, followed by the respective 

staining. Images were taken using a brightfield microscope (Axioskop 40, Zeiss, Oberkochen, 

Germany). Histomorphometric and cell count analysis were carried out by color thresholding using 

custom-made macros in FiJi/ ImageJ [18], software. 

2.3.8. Immunohistochemistry on tissue sections (α-SMA, CD68) 

For α-SMA or CD68 staining on de-paraffinized, re-hydrated rat bone sections, sections were blocked 

with 5 % normal horse serum (Vector Laboratories, Burlingame, USA) in 1 % BSA/PBS (1 h) and 

stained with α-α-SMA (1:400, mouse monoclonal, clone 1 A4, DAKO Agilent Technologies, Santa 

Clara, USA) or α-CD68 (1:2000, mouse monoclonal, clone BM4000, OriGene Technologies, 
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Rockville, USA) overnight at 4 °C. As secondary antibody, an α-mouse, rat adsorbed biotinylated 

secondary antibody (Vector Laboratories, 1:50) in 2 % normal horse serum and 1 % BSA/PBS was 

incubated (30 min). Application of AB complex (Vector AK 5000, Vector Laboratories), section 

alkalization with chromogen buffer (pH 8.2) and staining visualization (Vector SK 5100, Vector 

Laboratories) followed. Mayer’s hematoxylin was used as counterstain, embedding occurred in 

Aquatex. The blood vessel (α-SMA) occupied area or the area of CD68+ cells residing on newly 

formed bone were normalized to the total callus area. 

2.3.9. Metabolomic analysis 

Samples stored at -80 °C were sent to metaSysX (Potsdam, Germany), prepared and analyzed as 

described in [21]. 

2.4. Ex vivo clinical studies  

For the ex vivo pH measurement of orthopedic patient samples directly after extraction, a just calibrated 

electrochemical pH microelectrode (8220BNWP Orion PerpHecT ROSS, Thermo Scientific, 

Germany) was utilized. The studies were performed after approval by the Institutional Review Board 

(IRB) of the Charité–Universitätsmedizin Berlin (IRB approval EA4/171/16 and EA4/040/14) and 

patient consent according to the International Conference on Harmonization Guidelines for Good 

Clinical Practice and the Declaration of Helsinki.  

2.5. Statistics 

Statistical analysis was conducted with GraphPad Prism (GraphPad Software, San Diego, USA), and 

p-values were considered statistically significant (*) when p ≤ 0.05. Further differentiation of 

significance (**, ***) as presented in the corresponding publications is not shown for reasons of clarity 

and consistency throughout all figures. For small samples sizes in the in vivo studies, two-tailed Mann-

Whitney U tests were performed. For the in vitro studies, unpaired, two-tailed Student’s t-tests or one-

way ANOVA with Dunnett’s/ Tukey’s multiple comparison tests were performed. 
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3. Main results 

As outlined in the introduction, the local treatment strategy developed within the MOZART project 

consists of multiple biomaterial components that act as carrier and place-keeper for drugs and 

therapeutic ions, altogether the composite should allow for localized pharmacological intervention to 

prevent or treat impaired bone healing. The proposed biomaterial components comprise mesoporous 

bioactive glasses (MBG) or mesoporous carbons (C1Sph) as drug and ion carriers, a pH-sensitive SIP-

coating to cover the carrier and close the mesopores, as well as a thermosensitive hydrogel (SHP407) 

acting as embedding moiety (Figure 4). None of the biomaterial components had been tested in vivo 

before, thus, I biologically validated every individual biomaterial before progressing to the final 

application to improve bone healing. For this, the biomaterial components were combined with the 

therapeutic ions and drugs selected and validated with this PhD project.  

 

Figure 4. Schematic representation of biomaterial components and application of different composites/ bone 

healing devices (BHD) in a rat model of compromised bone healing.  

The results will guide you through the different steps in developing and evaluating the bone healing 

device (BHD) and are grouped into the categories material validation (3.1.), functional testing (3.2.) 

and clinical evaluation of the BHD (3.3.). MOZART collaboration partners synthesized, doped and 

loaded the biomaterials using the therapeutic candidates selected by me to induce pro-osteogenic, pro-
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angiogenic, anti-inflammatory or anti-infective effects (Figure 4). When not specifically stated 

otherwise, the results shown were obtained by me. 

3.1. Material validation and customization 

3.1.1. Bioactive glasses (BAG) – ionic composition matters 

Since the discovery of the famous 45S5 or Bioglass by Larry Hench in 1969 [22], a new class of 

bioactive ceramic materials was founded. This class yield a strong and stable chemical bond with bone 

tissue, but also form bone-like carbonated hydroxyapatite on their surface in an ion-exchange reaction 

upon contact with biological fluids, and can further stimulate regenerative processes [23]. Today, 

various BAG with different ionic compositions exist. In that context, 45S5 and 1393, two commercially 

available BAG that deviate in their ionic make-up (Figure 5A), were studied in vitro by colleagues and 

me for the regenerative responses that their ionic dissolution products can evoke on primary hMSCs 

[16]. For this, osteogenic differentiation was induced in hMSCs via cultivation in osteogenic medium 

(OM) under continuous ionic dissolution of the two types of BAG contained in transwell inserts (Figure 

5B). A 2D-tube formation assay using primary HUVECs and conditioned medium (CM) of hMSC 

under BAG exposure was conducted to unravel potential pro-angiogenic paracrine responses by 

hMSCs. Investigation of tube formation showed a pro-angiogenic response induced by 45S5 with 

lower 45S5 concentrations yielding the highest total tube length and branching (Figure 5C). 

Conversely, after 14 days of osteogenic induction in hMSCs, low-dose ionic dissolution products of 

1393 caused the highest degree of mineralized matrix (Figure 5D). In sum, this study demonstrated 

that ions dissolved from BAG can stimulate hMSC function and that the response by hMSCs to BAG 

is dosage- and composition-dependent. Therefore, the choice of ionic species contained in the glass 

network can decisively influence the pro-regenerative effect. Changing the ionic make-up of the BAG 

enables steering of cellular responses, at the same time, different compositions need to be tested in 

parallel to identify the most promising candidates.  
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Figure 5. Angiogenic and osteogenic response of hMSCs upon exposure to ionic dissolution products of 45S5 

and 1393 commercial bioactive glasses (BAG) at different concentrations. (A) Composition (wt. %) of 45S5 and 

1393 BAG, adapted from [24]; (B) Schematic representation of the experimental set-up; (C) Representative images 

(green= F-Actin, blue= nuclei) of 2D-tube formation assay using CM of hMSCs after exposure to 1393 and 45S5 ionic 

dissolution products on HUVECs. Endothelial Basal medium (EBM) served as negative control, addition of 

supplemental growth factors (endothelial growth medium (EGM)) as positive control, CM conditions were generated 

in EBM. Tube length and number of junctions were quantified; n= 9. (D) Representative images of OsteoImage-

stained hydroxyapatite (HA; green) and nuclei (blue) at 14 days post osteogenic induction (osteogenic medium, OM) 

with continuous exposure to 45S5 and 1393. Cells cultivated in expansion medium (EM) or OM served as negative 

or positive control, respectively. Quantification of matrix mineralization by Alizarin Red S staining and measurement 

of optical density of dissolved matrix. n=4. (C-D) Cell culture experiments were carried out by Dr. Taimoor H. Qazi 

and me, microscopy images were prepared and taken by Dr. Taimoor H. Qazi. Scale bar= 100 µm. One-way ANOVA 

with Tukey’s post-hoc test was performed.* p≤ 0.05. Adapted from [16]. 
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3.1.2. Biodistribution of fluorophore-labelled MBG – low dispersion is beneficial for local application 

Within the MOZART project, binary SiO2-CaO MBG developed by POLITO and FAU were employed 

as the base MBG carrier that can additionally be doped with therapeutic ions for the bone healing 

application. In contrast to several studies working in vivo with bioactive glasses as scaffolds or nail/ 

rod/ scaffold coatings, the MBG were applied as nano- to micron-sized spheres in the bone healing 

study. This small size could result in quick distribution within the organism, and in low material and 

cargo retention at the targeted treatment site. Hence, after in vitro biocompatibility assessment 

according to ISO norms by NBR, I conducted a biodistribution study by subcutaneously injecting MBG 

suspension in the nuchal fold (Figure 6 A). To track the potential dispersion, a far-red to near-infrared 

fluorophore (DY-677) was covalently bound to the MBG, allowing the detection of the MBG within 

the organism. I performed longitudinal imaging after injection and at 6, 24 or 72 hours post injection, 

followed by harvesting and imaging of the injection site, selected organs (selection based on [25]) and 

urine (Figure 6B). I observed no systemic dispersion of the MBG, since no fluorescence signal could 

be detected in the organs or the urine at all investigation time points (Figure 6C), while longitudinal 

signal intensity was continually strong at the injection site. Hence, the MBG remain local, rendering 

the MBG feasible for local application in a fracture scenario. Moreover, comparing the images taken 

immediately after injection and at the final time point, the fluorescent area in the nuchal fold reduced 

in size which could be explained by sedimentation and/ or aggregation of the MBG. Histological 

preparations of tissue from the injection site (Figure 6D) demonstrated immune cell infiltration into 

the area of MBG accumulation, that evokes a slight foreign-body response, as well as the specific 

fluorophore-signal of the tagged MBG. No major adverse events (severe loss in body weight, 

behavioral changes etc.) were recorded. The low dispersion rate is beneficial for local treatment 

approaches as it reduces the risk for off-target and systemic side effects, moreover, the MBG are 

tolerated by the organism upon local application. Therefore, the MBG were utilized in the subsequent 

studies.  
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Figure 6. In vivo biodistribution of subcutaneously (s.c.) injected DY-677-labeled MBG monitored by 

longitudinal IVIS imaging in mice. (A) Schematic/ photographic representation of the study set-up at Day 0 and (B) 

at the final time point 6, 24 and 72 hours post injection. (C) Representative overlay IVIS images right after injection 

(Day 0) and at the final time point. At the final time point, except for an occasional fluorescence signal in the gall 

bladder (likely a mixed effect of minor autofluorescence of gall bladder tissue and traces of free DY-677 that 

preferentially accumulate in the gall bladder [26]), no accumulation of fluorescence was detected in selected organs 

(middle panel) or urine (right panel, bottom row per time point); the fluorescence signal remained exclusive to the 

injection site (right panel, top row per time point). n= 6 animals per time point. (D) Representative histological H&E-

stained section of the injection site, boxed area is magnified in the middle image. Fluorescence signal of DY-677 (red) 

is distinct for the area of MBG accumulation as shown by fluorescence microscopy (blue= nuclei/ DAPI; LSM710, 

Zeiss). Scale bar: 1 mm, unpublished data.  

3.1.3. In vivo pH-triggered substance release  

The pH is tightly regulated in vivo, with the physiological pH of blood ranging between 7.35 and 7.45. 

Perturbations of homeostatic pH can be caused by diseases, for example in cancer where cancer cells 

preferentially utilize anaerobic respiration even in the presence of sufficient oxygen (Warburg effect) 



Main Results 26 

 

 

 

or in hypoxic situations, leading to the generation of lactate that can acidify the local environment 

(discussed in [21]). Bone fracture also results in blood vessel rupture and hypoxia [27], and the 

associated local acidification of the fracture site has been described in the literature [11, 12]. Therefore, 

a pH-triggered substance release approach is an attractive candidate for localized and targeted 

interventions in the context of bone healing, with local, injury-dependent pH alterations acting as an 

endogenous trigger for substance release.  

3.1.3.1. pH-triggered drug release system validation – SIP pH-responsiveness confirmed in vivo 

The pH-sensitive SIP coating was previously developed by UCM [28], for this study it was grafted on 

C1Sph (average size of spheres: 150 nm, Demokritos) as another biomaterial carrier selected for the 

MOZART project (publication 1, [15]). For the in vivo validation, I injected SIP-coated C1Sph 

(C1Sph-SIP) loaded with a fluorophore (Ruthenium, Ru) into the nuchal fold and imaged 

longitudinally before, after, as well as at 24, 48 and 96 hours post injection (Figure 7A1). As the black 

carbon spheres are opaque and the cargo is loaded into the mesopores, no fluorescence-signal is emitted 

as long as the SIP coating remains intact on the surface; only the release of the fluorescent cargo can 

be detected as fluorescence signal. To enable the detection of potential leakage of the SIP without 

exogenous pH stimulus and to investigate the response to the C1Sph-SIP, C1Sph-SIP were injected 

s.c. without application of an exogenous pH stimulus. Over the entire testing period of 96 hours, no 

biomaterial-dependent fluorescence signal in the nuchal fold could be observed (Figure 7A1), while 

H&E-staining of the injection site (Figure 7A2) revealed only a minor foreign body response with mild 

cell infiltration (Figure 7A2_I) when compared to the cell infiltration into the injury site (Figure 

7A2_II) caused by the needle during injection. Hence, C1Sph-SIP can be considered biocompatible 

and the SIP coating remained intact, keeping the mesopores closed under steady-state conditions. 

Subsequently, I investigated the pH responsiveness and the release kinetics of C1Sph-SIP upon 

exposure to an acidic pH solution (pH 4, Figure 7B) in vitro and in vivo.  Figure 7C shows the release 

of fluorescent cargo after short- or long-term triggering (30 min and 24 h) in acidic pH solution 

compared to physiological pH environment (pH 7.4). Both triggering intervals induced significant 

cargo release, moreover the C1Sph-SIP were re-immersed in physiological fluid (pH 7.4) after the 

triggering period. A continuous cargo release could be observed for both conditions even after 

removing the pH stimulus, indicating that short-term triggering could be sufficient to induce adequate 

pore opening and cargo release. In vivo, the C1Sph-SIP were injected s.c., followed by application of 

an acidic pH 4 or pH 7.4 control solution into the injection site. The cargo release was monitored via 

longitudinal IVIS imaging. In line with the in vitro experiment (Figure 7C), the majority of cargo 

release occurred during the low pH triggering period and was not detectable for the control condition. 

Continual release could be observed at 24 and 72 hours post low pH triggering (Figure 7D).  
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Figure 7. In vivo validation of SIP-coated mesoporous carbon spheres (C1Sph-SIP) containing fluorescent 

cargo after s.c. injection by longitudinal IVIS imaging in mice. (A1) Behavior of Ruthenium (Ru)-loaded C1Sph-

SIP in the absence of an exogenous pH trigger. Representative overlay IVIS images before and up to 96 hours post 

s.c. injection in nuchal fold. No fluorescence signal could be detected over the entire testing period, indicating that the 

SIP remained intact and the fluorescent cargo entrapped in the C1Sph mesopores; n= 3. (A2) Representative 

histological H&E-stained sections of the injection area (left) or control skin (right), black particles represent C1Sph-

SIP, 10x magnification. (I, II) immune cell infiltration in response to the biomaterial (I) or to the tissue damage 

induced by the injection (II), compared to control skin (III), 40x magnification. (B) Schematic representation of SIP 

degradation by acidic pH, resulting in pore opening and cargo release. (C) In vitro test on time-dependent SIP 
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degradation. 30 min or 24 hours pH triggering in acidic pH environment (pH 4) resulted in significant fluorescent 

cargo release (direct measurement of supernatant at the end of the trigger period) that continued even after returning 

the C1Sph-SIP into a pH 7.4 environment (24 h post trigger period). Fluorescence was detected in the material-free 

supernatant by IVIS imaging and quantified using a plate reader (Tecan Infinite Pro 200, ex/ em 450/ 620 nm); n= 3; 

for 24 h trigger n= 2; unpaired, two-tailed Student’s t-test, * p≤ 0.05.  (D) Similar set-up as in (A), but additional 

administration of acidic (top) or physiological (bottom) pH solution into the injection site, IVIS imaging during the 

triggering period and up to 72 hours post injection revealed fluorescent cargo release for the low pH triggered animals 

that was hardly detected for the control condition; n=3. (A-D) adapted from [15] (publication 1). 

This in vivo study revealed excellent biocompatibility of the C1Sph-SIP, as well as demonstrated a 

similar in vitro and in vivo response to pH-triggering. Thus, follow-up studies on pathology-dependent 

local acidifications as seen in e.g. florid infections with Staphylococcus aureus (S. aureus, see Figure 

9) are feasible and are currently performed.  

3.1.3.2. Identification of local target pH values after musculoskeletal injury 

In parallel to the in vivo validation of biocompatibility and pH-triggered responsiveness of the C1Sph-

SIP, the extent of local acidification after bone fracture was determined to understand the suitability of 

the pH-triggered drug release strategy, employing the SIP coating, in bone healing. A literature search 

uncovered conflicting local pH values, mostly neglecting the early time points after fracture [12]. These 

early time points are highly relevant for the present novel treatment strategy with the intention to 

counteract healing disturbances that can occur at initial stages of the healing process. Hence, an in vivo 

study in rats was conducted (publication 2, [21]). Two size-matched musculoskeletal hematomas 

formed after osteotomy and muscle trauma were created within the same animal, allowing intra-

individual comparison and identification of tissue-dependent effects, and the local pH was measured 

at 4, 10, 24 and 48 hours post injury. Local pH in both hematomas acidified significantly to mean pH 

values of 6.69 ± 0.26 (bone) and 6.89 ± 0.34 (muscle) compared to the pH of peripheral blood (pH of 

7.35 – 7.45) (Figure 8A1, 2). Regression analysis on the local pH in osteotomy versus muscle 

hematoma showed no correlation of the pH values of both tissues with an R² of 0.057 (Figure 8A3). 

Physiologically, blood vessel rupture evokes local hypoxia and the oxygen shortage drives the cellular 

switch from aerobic to anaerobic respiration, thus, lactate is produced during lactate fermentation. 

Lactate can be transported out of the cell; thereby external lactate accumulation leads to local 

acidification of the ischemic environment (discussed in [21]). Accordingly, the large inter-individual 

variability in local pH across all time points (Figure 8A1, 2) was hypothesized to be dependent either 

on the cellular density within the hematoma, with more cells producing more lactate, or on respiratory 

metabolic activity. While local pH was not found to be correlated to cellular density (Figure 8B), the 

metabolomic analysis of osteotomy hematomas harvested 10 and 24 hours post osteotomy unraveled 

a link between tricarboxylic acid cycle (TCA cycle) activity and local pH (Figure 8C).  
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Figure 8. Identification of target pH values after osteotomy or muscle trauma and quantification of cellular 

density and relative TCA metabolite abundance. (A) pH measurement at 4 (green), 10 (orange), 24 (blue) and 48 
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(red) hours post osteotomy (A1) and muscle trauma (A2). Shown are scatter plots with line at mean, each dot 

represents the pH value of one animal, n= 4-6, two-tailed Mann-Whitney U test was performed using the control group 

(blood) as comparator, * p≤ 0.05. (A3) Linear regression analysis of pH in osteotomy versus muscle hematoma per 

animal, both parameters passed the D’Agostino-Pearson normality test, enabling Pearson correlation coefficient 

calculation (R²= 0.057). (B) Quantification of cellular density (each bar represents one analyzed hematoma) revealing 

no correlation with local pH, n= 3 per time point (Linear regression analysis as in A3). (C) Heat-map of relative 

metabolite abundance and local pH, showing higher TCA activity in hematomas with higher pH, n= 2/ 3 for 10/ 24 

hours timepoint, respectively. Simplified scheme of glucose metabolism to pyruvate and following an-/aerobic 

respiratory pathway. (A-C) Adapted from [21] (publication 2). 

The higher the TCA cycle activity, the higher the local pH, indicating that the individual metabolomic 

activity could be causative for the variability in local pH. The identified in vivo target values for pH-

sensitivity of the biomaterial did not match the sensitivity of the previously validated SIP coating, as 

SIP degradation occurs at pH values ≤ 5. Therefore, the SIP coating was discontinued in the context 

of bone healing. Nevertheless, pH-responsive coatings sensitive to more subtle changes as detected 

upon musculoskeletal injury could be added onto the technology platform in the future to enable 

stimuli-responsiveness in the bone healing context. 

3.1.3.3. Local acidification upon infection – application opportunity for pH-sensitive drug release 

systems 

Despite the discontinuation of the SIP coating for bone healing application, I identified orthopedic 

infections as another cause for local acidifications, since bacterial metabolic activity can alter the 

external environment by secretion of acidic products. In this context, different tissues that would 

usually be discarded during endoprosthesis surgeries (Figure 9A) were pH measured directly after 

removal, grouped into tissue categories and sorted based on their infection status. Overall, comparing 

aseptic and septic tissue groups with each other, a trend towards decreases of mean pH was observed 

for the septic groups, for which the variability in measured pH was considerably larger, as exemplified 

by focusing on the fluid group with a mean pH of 7.31 ± 0.12 in the aseptic cases versus a pH of 7.21 

± 0.29 in septic patients (Figure 9A). In order to obtain more standardized human samples, another 

study focused on synovial punctuates of patients with suspected infection and subsequent pH 

measurements, which revealed a significant acidification of synovial fluids infected with S. aureus 

(Figure 9B). These findings form the basis for a manuscript currently under preparation. For this, I and 

MOZART partners are investigating SIP degradation of C1Sph-SIP loaded with different antibiotics 

due to S.aureus-induced acidification (Figure 9C). A successful infection-dependent release of 

antibiotics would demonstrate a possible application route of the pH-triggered drug release system for 

the on-demand treatment of infections.   
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Figure 9. Bacterial infections can acidify the local environment in vitro and in vivo. (A) Representative images of 

tissues sampled from endoprosthetic surgeries and pH measurement in different tissue categories (fluid, fibrous tissue 

and adjacent bone marrow) combined with microbial burden analysis, n= 17 patients, shown are mean ± SD, each 

symbol represents tissue samples of one patient. (B) Radiographic image of human joint puncture and photographic 

image of harvested synovial fluid, followed by pH measurement and microbial burden evaluation; n= 15 patients. (C) 

Courtesy of USFD: Acidification of Hams F12 medium (buffered and unbuffered) after S. aureus inoculation and 

overnight cultivation. n= 3. (A-B) Mean ± SD are shown, Mann-Whitney U test, (C) student’s t-test was performed; 

* p≤ 0.05. Manuscript in preparation.  

3.1.4. Handling and application of biomaterial composite – Hydrogel qualifies as embedding material 

applied via injection 

Before progressing to the final bone healing application involving the composite biomaterial, I 

validated the SHP407 thermosensitive hydrogel in terms of injectability into an organism (cadaver 
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study) with physiological body temperature and subsequent gelation (publication 3, [17]). Injection 

(Figure 10A) resulted in low dispersion and proper solidification of the gel, both after s.c. injection in 

the nuchal fold (Figure 10B) and administration in an osteotomy gap (Figure 10C). Moreover, both 

parameters were evaluated and compared among three groups: mesoporous carrier with fluorescent 

cargo (Ru) dispersed in physiological fluid (Figure 10D-E, Animal 1), SHP407 alone (Animal 2) and 

the composite of SHP407 and carrier (Animal 3, 4). A similar behavior of the hydrogel and the 

composite was observed with low dispersion, proper gelation and signal transmission of the fluorescent 

cargo (Figure 10E), allowing progression to the bone healing study.  

                                  

Figure 10. Ex vivo/ in situ injection and solidification of SHP407 thermosensitive hydrogel alone or in composite 

with mesoporous carrier and fluorescent cargo in murine cadavers with physiological temperature. (A) SHP407 

s.c. injection via G18 needle in nuchal fold (B), hydrogel solidity test 5 minutes post injection by lifting-up the 

hydrogel (C) and solidification in confined osteotomy gap area. n= 2 murine cadavers. (D-E) Comparative injection 

and gelation of carrier and cargo in physiological fluid (1), SHP407 (2), composite (3, 4), photographic images (D), 

as well as IVIS images to detect the fluorescent cargo Ru and transmission of fluorescence through hydrogel (E), n= 

4 murine cadavers. (A-E) Adapted from [17] (publication 3). 
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3.2. Functional validation of technology platform: Selection of therapeutic ions and drugs and 

local application via hybrid biomaterial in bone healing 

In order to improve bone healing using this technology platform, several therapeutic ions and drugs 

with pro-osteogenic, pro-angiogenic, anti-inflammatory and anti-microbial properties were selected 

based on extensive literature search performed within my PhD project, after which I analyzed their 

cytocompatibility and pro-regenerative response on primary MSCs. After I identified suitable ion 

candidates, these were doped into the MBG network and investigated by NBR in terms of 

biocompatibility, osteogenic and inflammatory responses in cell lines according to ISO norms. In the 

following, my investigations on one attractive candidate for each, therapeutic ions and drugs, will be 

described in more detail. 

3.2.1. Therapeutic ion candidate Strontium as a pro-osteogenic therapeutic ion 

It is known that Strontium (Sr) has a strong effect on osteoanabolism and -catabolism, as it stimulates 

osteoblast function and osteoprotegerin (OPG) expression [29]. High OPG expression leads to an 

inhibition of osteoclast formation due to antagonistic binding to receptor activator of nuclear factor-

κB ligand (RANKL). Since RANKL-RANK receptor interaction on osteoclast precursor cells are 

essential for osteoclast differentiation, Sr inhibits osteoclastogenesis and acts pro-osteogenically [29].  

Strontium renelate is used clinically to treat severe cases of osteoporosis in elderly patients. Moreover, 

strontium has been assigned anti-inflammatory properties by antagonizing nuclear factor-κB (NF/κB) 

signaling [30], both features render Sr a first-choice candidate for implementation in the bone healing 

study.  

Within my PhD project, the pro-osteogenic effects of Sr were confirmed at concentrations that did not 

affect cell metabolic activity of primary bone marrow MSCs (Figure 11A, B). Hence, this therapeutic 

ion was included in the bone healing study. 
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Figure 11. In vitro response of rMSC to Strontium chloride (SrCl2). (A) Relative metabolic activity analyzed by 

Presto Blue conversion and fluorescence measurement. Normalization to positive control (cells cultivated in EM); n= 

4 biological replicates (EM, 5mM Sr), n= 1 (0.2- 3 mM Sr), n= 3 (15 mM Sr). (B) Quantification of matrix 

mineralization via Alizarin Red S staining and absorption measurement at 14 days post osteogenic induction (OM). 

Representative images of stained wells are shown in the top panel. Comparison to positive control (cells cultivated in 

OM); n= 2 biological replicates. (A, B) ≥3 technical replicates per biological replicate; one-way ANOVA with 

Dunett’s multiple comparison test, * p≤ 0.05. Unpublished data. 

3.2.2. Drug candidate N-Acetylcysteine as a pro-osteogenic, pro-angiogenic and ROS-scavenging drug 

N-Acetylcysteine (NAC), a known reactive oxygen species (ROS) scavenger (and inhibitor of NF/κB 

activation), has a broad clinical use ranging from induction of mucolysis to treating acetaminophen 

overdoses and utilization in cardiovascular diseases [31]. It is approved by the U.S. Food and Drug 

Administration (FDA) and European Medicines Agency (EMA) with a proven clinical track record 

and is cost-effective. In the context of bone healing, a previous study revealed increased bone 

formation and improved microarchitecture of newly formed bone in a rat osteotomy model in the 

presence of NAC [32]. Within this previous study, NAC was supplemented continuously over the 

healing time via the drinking water, hence, no direct information on the required local dose could be 

obtained.   

In my PhD project, the pro-osteogenic effects of NAC were studied on primary hMSCs (Figure 12A-

C), while the pro-angiogenic effects were investigated using HUVECs (Figure 12D).  
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Figure 12. In vitro response of hMSCs and HUVECs to N-Acetylcysteine (NAC). (A) Relative metabolic activity 

analyzed by Presto Blue assay and normalization to EM. (B) Relative matrix mineralization as quantified by Alizarin 

Red S staining and normalization to positive control (OM) at 11, 14 and 18 days of osteogenic induction (OM was 

used for NAC conditions). Each graph shows the response of hMSCs for one donor individually. (C) Quantification 

of free inorganic phosphate in the supernatant over 14 days of osteogenic induction, supernatant of cultures used for 

(B) was utilized. Each graph shows the response of hMSCs for one donor individually. For (A-C) n= 3 different hMSC 
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donors. (D) Representative images of 2D-tube formation assay using HUVECs and quantification of relative tube 

length (Scale bar: 250 µm) stained using DAPI (blue) and F-Actin (green), normalization and comparison to negative 

control (EBM, NAC supplemented in EBM), EGM: positive control. n=4 (controls, 2.5 mM NAC), n= 3 (1.25, 5 mM 

NAC), n= 2 (10 mM NAC) independent experimental repetitions. Shown are mean ± SD. (A-D) ≥3 technical replicates 

per biological replicate/ experimental repetition; one-way ANOVA with Dunett’s multiple comparison test was 

performed, * p≤ 0.05. Unpublished data. 

Metabolic activity remained largely unaffected by NAC administration at concentrations of up to 5 

mM over 7 days (Figure 12A). Despite large donor-specific variations, accelerated matrix 

mineralization was observed upon continuous supplementation of NAC to OM with the strongest 

mineralization detected at concentrations of 2.5 and 5 mM (Figure 12B). In all cases, the difference 

between OM control and NAC-treated groups was maximal at early time points and reduced over time, 

thus, induction of mineralization occurs earlier due to NAC supplementation in OM. Inorganic 

phosphate levels in the supernatant, a pre-requisite for matrix mineralization, were found to be highest 

in the 5 mM NAC group, which strengthens the finding of accelerated matrix mineralization (Figure 

12C). The administration of NAC to HUVECs in a 2D-tube formation assay (Figure 12D) in EBM 

indicated a pro-angiogenic effect of NAC since the relative tube length increased significantly 

compared to the negative control (EBM).  

To investigate the ROS scavenging function of NAC, murine bone marrow cells (mBMCs) were 

isolated from femora and ROS levels were quantified. Pre-treatment with NAC prior to ROS-induction 

decreased ROS levels significantly in mBMCs from control femora, as well as from contralateral and 

osteotomized femora 3 days post osteotomy (Figure 13A), indicating that NAC has protective activity 

against oxidative stress. The observed pro-osteogenic, pro-angiogenic and ROS-scavenging features 

prompted the design of a proof-of-concept in vivo study in mice, focusing on local application and 

dosing of NAC (Figure 13B-D). The findings revealed a positive effect of the local, one-time NAC 

administration on bone formation with higher concentrations (25 µg total amount) being more 

beneficial as observed radiologically in reconstructed µCT images (Figure 13C) and histologically by 

MOVAT’s pentachrome staining of the fractured femora (Figure 13D). Using these results, target 

concentrations for the MOZART bone healing study were defined.  
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Figure 13. Ex/ in vivo response to NAC treatment. (A) Ex vivo measurement of ROS levels from murine bone 

marrow cells (mBMCs) isolated from femora: endogenous (black); after tert-butyl hydroperoxide (TBHP) stimulation 

to induce ROS (red); after pre-treatment with NAC, followed by ROS induction (green). Shown are ROS levels from 

mBMCs of control animals (D0) and osteotomized animals (contralateral: CL and fractured: FX) 3 days post 

osteotomy. Tukey box plot distributions are shown with line at median, n= 6-7 animals per group, two-tailed Mann-

Whitney U test was performed using the 0.5 mM NAC group as comparator, * p≤ 0.05. (B) Images of external fixator 

with distractor to create standardized critical-sized femoral 1.4 mm defect and of murine animal model with mounted 

distractor. (C) Representative reconstructed µCT-images and (D) histological MOVAT’s pentachrome staining 21 

days post osteotomy and local application of an absorbable collagen sponge without or with two different 

concentrations of NAC (low: 1 µg/µl/ high: 10 µg/µl; 2.5 µl total volume) in the osteotomy gap. Scale bar: 1 mm, 

unpublished data.  

3.2.3. Bone healing study: BHD with Strontium/ Copper and NAC – individual effects of ions and 

drugs detectable 

Having identified promising ion and drug candidates, these candidates were doped and loaded in the 

MBG platforms/ BHDs and tested upon local application in a femoral osteotomy of a biologically 
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delayed rat healing model [33] (Figure 4). Drug release from MBG was confirmed by using the 

fluorescent drug Tetracycline (TCH) that binds to Calcium of newly deposited bone (Figure 14).  

 

Figure 14. Second harmonic imaging of rat femora treated with MBG loaded with Tetracycline hydrochloride 

(TCH) or control bone. Top panel: image of the pin threads most proximal to the osteotomy gap, bottom panel: 

woven bone area within the osteotomy gap. Shown are images of fluorescence (ex/em: 488/ 493-537 nm) alone and 

as overlay with second harmonic imaging, depicting fibrillar collagen type I (ex/em: 910/ 450-460 nm). Both images 

were generated using Leica SP5 II microscope equipped with a Spectra Physics Ti:Sapphire laser (Mai Tai HP). The 

negative control revealed background fluorescence that is not specific for newly deposited bone. Conversely, for MBG 

+ TCH the highest signal intensities were detected at the bone formation fronts. MBG were loaded with TCH to the 

maximum MBG loading capacity, carried out by FAU. Imaging was supported by Dr. Aaron X. Herrera Martin, 

Charité – Universitätsmedizin Berlin.  

MBG loaded with NAC (~14 wt % loading) were doped either with Sr to intensify the pro-osteogenic 

and anti-inflammatory effect of NAC or with Copper (Cu) to enhance the pro-angiogenic potential [34] 

of the composite (Figure 15, for both ions: 2 molar % doping into MBG formulation). Ex vivo µCT 

analysis at 4 weeks post osteotomy revealed that the mean bone volume (BV) over total volume (TV; 

BV/TV) as well as the bone mineral density (BMD) was highest for the NAC treated groups (Figure 

15A, B), although without statistical significance. Comparing pure MBG with both NAC groups, a 

subtle trend towards an increase in trabecular number (Tb.N.) and decrease in trabecular separation 

(Tb.Sp.) was detected for the NAC groups, which is in line with previous studies [32]. Moreover, the 

effects of both therapeutic ions could be identified via immunohistochemistry. Vessel-staining using 

the marker α-SMA yielded a trend towards an increase in relative vessel area for the pro-angiogenic 

group treated with NAC and Cu compared to NAC and Sr, while both groups presented with more 

vessels compared to the pure MBG group (Figure 15C), which can be attributed to the pro-angiogenic 
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activity of NAC. Quantification of bone residing, CD68+ osteoclastic cells resulted in the lowest mean 

value for the Sr-treated group (Figure 15D), reflecting the inhibitory effect of Sr on osteoclast 

formation [29].  

Figure 15. In vivo bone healing evaluation 4 weeks post osteotomy for dual Strontium (Sr)/ Copper (Cu)-doped 

and NAC-loaded BHD in rat femoral osteotomy model of compromised healing. (A) Representative, 

reconstructed ex vivo µCT images for control groups (no local treatment (empty), SHP407 (gel) and gel + pure MBG) 

and treatment groups (gel + Sr/ Cu-doped MBG + NAC load). (B) Ex vivo µCT analyses revealing a trend towards 

increases in bone volume over total volume (BV/TV), bone mineral density (BMD) as well as subtle 

microarchitectural (trabecular thickness (Tb.Th.), trabecular number (Tb.N.) and trabecular separation (Tb.Sp.)) 

changes in NAC-treated groups. n= 4-6 per group, Tukey box plot distributions are shown with line at median. (C) 

Immunohistological staining of α-SMA to detect vessel formation and (D) bone-residing osteoclastic CD68 cells 

indicating an increase in vessel area for the group treated with pro-angiogenic Cu and a decrease in osteoclastic cell 

abundance for the osteoclast-inhibiting Sr-treated group. (C, D) n= 3- 4 per group, scatter dot plots with mean ± SD 

are shown. scale bar: 500 µm. Legend applies for (B – D). Unpublished data.  
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Although requiring fine-tuning of NAC and Sr/ Cu concentrations to yield stronger effects on the bone 

healing outcome, the observed trends can be considered a crucial and promising first step towards the 

development of a potent pro-osteogenic and pro-angiogenic composite. 

3.2.4. Prolonged, low-dose BMP-2 release from MBG lead to superior healing 

I selected BMP-2 as a positive control to demonstrate successful drug release from MBG since the 

release of BMP-2 was expected to result in an improved bone healing outcome. Pure MBG dissolution 

products showed excellent cytocompatibility on primary hMSCs (Figure 16A, B) and increased matrix 

mineralization (Figure 16C) [14].  

Figure 16. hMSC response to pure MBG ionic dissolution products, BMP-2 release and MBG characterization. 

(A) Cell vitality index (metabolic activity over cell count), indicating the viability per cell, compared to EM. (B) LDH 

secretion into supernatant to test for cytotoxicity of the MBG treatment. Cells cultured in EM were lysed at each 

testing time point and were used as positive control to estimate the maximal amount of LDH. (C) Increased matrix 

mineralization by MBG treatment at higher concentrations (c2) as demonstrated by Alizarin Red S staining and 

normalization to cell count. (A-C) c1= 1.5 mg/ml, c2= 5 mg/ml MBG; n= 3 hMSC from different donors, ≥ 3 technical 

replicates per donor, one-way ANOVA with Dunnett’s multiple comparison test. (D) Cumulative release of BMP-2 
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from MBG in phosphate-free Tris-HCl and phosphate-containing PBS, adjusted to the in vivo dosage. n= 3, ELISA 

performed in duplicate, shown are mean ± SD, two-tailed student’s t-test was performed per time point. (E) Courtesy 

of POLITO: MBG morphology (pre-soaking) and bioactivity testing (day 1) by soaking in simulated body fluid (SFB) 

and performing field emission scanning electron microscopy (FE-SEM, scale bar= 1 µm). A similar bioactivity for 

un-/ loaded MBGs was evidenced by hydroxyapatite-like layer formation on the MBG surface with the typical 

cauliflower structure. * p<0.05; submitted manuscript, preprint available [14]. 

By performing an α-BMP-2 ELISA I found prolonged, low-dose BMP-2 release from MBG which 

was dependent on the presence of phosphate in the elution medium (Figure 16D). Phosphate is 

contained in simulated body fluid (SBF) and is required for the formation of a hydroxyapatite-like 

layer on the MBG surface which represents a measure for the bioactivity of bioactive glasses immersed 

in biological fluids [23]. Bioactivity remained unaltered by BMP-2 loading, as demonstrated by field 

emission scanning electron microscopy (FE-SEM) analysis, carried out by POLITO (Figure 16E).  

The bone healing study conducted within my PhD thesis demonstrated successful in vivo BMP-2 

release from MBG [14], embedded in a previously tested autologous blood clot [35]. BMP-2 activity 

was detected upon µCT-analysis (Figure 17A), showing higher BV and TV (examples of reconstructed 

µCT-images: Figure 17B) and an increased mineral content within the callus (bone mineral content 

(BMC)). Histomorphometry on MOVAT’s pentachrome stained sections of the osteotomized femora 

(Figure 17C, D) confirmed the increased relative area of mineralization and revealed decreased 

connective tissue abundance for the BMP-2 group. Taking the results together, low-dose prolonged 

BMP-2 release results in a superior healing outcome. The beneficial release kinetics without burst 

compared to the clinically utilized absorbable collagen sponge with up to 50% burst release within the 

first day [36] make MBG a promising alternative carrier for BMP-2 that reduces the risk of side effects 

due to low amounts of dissolved BMP-2 released over time. 
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Figure 17. In vivo bone healing upon low-dose, prolonged BMP-2 release from MBG. (A) Ex vivo µCT analysis 

4 weeks post osteotomy (empty: no local treatment) and local treatment with autologous blood clot (BC) without/ with 

MBG and BMP-2 load showing significantly enhanced BV and TV and bone mineral content (BMC) for the BMP-2 

treated group. n= 4-6 per group, Tukey box plot distributions with line at median are shown, two-tailed Mann-Whitney 

U test was performed using BMP-2 as comparator. (B) Representative, reconstructed ex vivo µCT images; (C) 
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Histomorphometry to quantify relative cartilage, mineralized and connective tissue area based on the MOVAT’s 

pentachrome staining, n=4 per group, two-tailed Mann-Whitney U test was performed using BMP-2 as comparator. 

(D) Representative images of MOVAT’s pentachrome stained osteotomy areas (yellow/orange: mineralized tissue, 

green/blue: cartilaginous tissue, orange/ red: muscle tissue), scale bar= 500 µm. * p<0.05. Submitted manuscript, 

preprint available [14]. 

3.3. Clinical evaluation of technology platform confirming translation potential  

Within my PhD project, I presented the BHD along with the standard operating protocol (SOP) on its 

preparation to nine expert orthopedic clinicians of the CMSC in the packaged version that could be 

used for commercialization. Both the SOP as well as the packaging were developed by MOZART 

collaboration partners. The clinicians were asked to prepare the BHD according to the SOP and to 

evaluate the BHD in respect to preparation, handling, overall need and possible applications by 

answering a customized questionnaire that I developed. Analysis of the questionnaire revealed that 

participants found the BHD easy to prepare and to apply, however, the time-to-usage (~30 min) was 

considered too long (Figure 18A). BHD preparation can be performed within the operating room (OR), 

if a cooling and shaking device is provided, however this is not standard OR equipment. All clinicians 

expressed a clinical need for the BHD and would use it if commercially available (Figure 18B). The 

possible applications are broad (Figure 18C), at the same time they call for the ability to fine tune the 

BHD as the required gelation time, gel stiffness and volumes vary according to the underlying 

pathology. Additionally, the concept of providing different BHDs with pro-angiogenic, pro-

osteogenic, anti-inflammatory or anti-microbial features was well received. This clinical evaluation 

confirmed the need for novel treatment strategies and verified a possible translation of the MOZART 

approach.  
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Figure 18. Clinical evaluation of the BHD. (A, B) Nine expert orthopedic clinicians of the CMSC, Charité – 

Universitätsmedizin Berlin assessed (A) preparation, time-to-usage, and application (on a scale of 1 (poorest) – 10 

(best), shown are mean ± SD) (B)  overall feasibility of BHD usage in the operating room (OR) as well as the clinical 

need and potential future use (relative amount of “Yes” answers in %), mean ± SD are shown. (C) Presenting the 

versatility of this technology platform to clinical colleagues enabled the identification of multiple applications for the 

BHD as indicated by representative x-ray images (courtesy of Dr. Gabriele Rußow, Charité – Universitätsmedizin 

Berlin) and fracture specification. Fx: fracture; unpublished data.  
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4. Discussion 

Bone healing and pharmacological interventions 

Bone healing is initiated by pro-inflammatory signaling that is followed by anti-inflammatory and pro-

angiogenic signaling; subsequently, pro-osteogenic processes can occur [1]. As regenerative 

impairments can occur at any stage of the bone healing process, different pharmacological 

interventions based on the individual needs are advisable (Figure 3.). When the BHD is administered 

as an add-on treatment for patients at risk during the first surgical intervention, this strategy could 

prevent the various disturbances of the healing process and could reduce the number of impaired 

healing cases. Functional treatment versatility requires proper patient stratification as can be achieved 

by measuring the patient-specific abundance of terminally differentiated effector T cells that are known 

to affect the healing outcome [37] (ongoing BioBone study, BMBF, headed by Charité) and considers 

various other patient- and injury-dependent factors. Aside from clinical studies at the Charité focusing 

on local immunomodulatory pharmacologic interventions (Prostacyclin, DFG, applied for) or pro-

angiogenic autologous cell transplantation (CD31+ cells, BMBF, approved) in stratified patients, 

personalized treatment approaches are currently not available in the clinics. Moreover, to enable 

exchangeability or the combination of different functions, a carrier platform is needed. Effective 

interventions such as the usage of iliac crest autologous bone graft or administration of the osteogenic 

inducer BMP-2 necessitate an additional surgery or can entail considerable side effects and are, 

therefore, limited to selected fracture cases. The MOZART intervention strategy allows for 

multifunctionality or for the synergistic enhancement of effects in one target area (e.g. osteogenesis) 

by the combination of drug-loading and ion-doping of the MBG within the technology platform/ BHD. 

The injectability of the BHD makes it a minimally-invasive treatment, while the local application and 

consecutive dissolution of the glass network as well as diffusion of drugs out of the mesopores can 

result in prolonged release kinetics of ions and drugs that can be further delayed by penetration through 

the hydrogel [38]. At present, there is no commercial biomedical device that employs customized nano- 

to micron-sized mesoporous carriers that are embedded in a biodegradable polymer for local 

synergistic ion and drug release. Many scientific endeavors remain at lab-stage and -scale, i.e. they 

have not been designed for simple up-scaling and commercialization and lack proper validation in a 

clinically relevant setting. Industrial up-scaling has already been achieved by industrial partners for 

the here described technology platform, thereby facilitating future commercialization. 
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Development of technology platform - Validation and customization of biomaterial components 

and encountered challenges 

Within my PhD project, the individual MOZART biomaterial components (carrier, SIP coating, 

thermosensitive hydrogel SHP407) have been biologically evaluated with respect to their suitability to 

be employed in the context of bone healing and for their cyto-/ and biocompatibility. Additionally, I 

selected ion and drug candidates and their combinations for functional customization of a modular 

BHD to address pro-angiogenic, pro-osteogenic, anti-inflammatory and anti-microbial therapeutic 

approaches. For this, I conducted numerous sub-projects in order to conclude the composition of the 

hybrid biomaterial to enhance bone healing. I had to coordinate these projects with the respective 

biomaterial partner, developed SOPs on biomaterial handling, and realized a subsequent pre-clinical 

in vivo application. I tested all the biomaterial components for the first time in vivo (individually or as 

composite) which is a key requirement for potential translation. The effect on bone regeneration of the 

final composites/ BHDs (Figure 19A) was investigated in a clinically relevant model of compromised 

bone healing in rats.  

The initially proposed SIP-coating of MBG to confer pH-responsiveness, while discontinued for the 

bone healing application, was developed towards an endogenous pH-triggered release system to 

prevent and combat infection related to bone healing. The pH-sensitivity of the SIP to pH ≤ 5 was out 

of range for bone healing applications in which a local mean pH of ~6.69 ± 0.26 within the first 48 

hours post osteotomy was measured. Additionally, the SIP grafting on the MBG surface was not 

successful as the mesopores were too large (average diameter ~5– 7 nm) to be effectively closed by 

the SIP polymer. C1Sph emerged as an alternative MOZART carrier for which SIP-coating was 

successful. This enabled me to perform the in vivo validation of C1Sph-SIP behavior and 

responsiveness as well as further studies on pH-sensitive antimicrobial particles. The responsiveness 

of C1Sph-SIP loaded with antimicrobial agents to S. aureus-induced acidification is currently being 

investigated by collaboration partners and me. 

Several combinations of ions and drugs were tested as part of different BHDs in the compromised bone 

healing study; however, the optimal concentrations are yet to be determined in future studies. Loading 

efficiencies are drug- and carrier-dependent, which can limit the uptake for e.g. large drug molecules. 

Additionally, the therapeutic ions and drugs were tested in combination, but not individually, for that 

reason, it is challenging to differentiate between individual and synergistic effects. Given the early pre-

clinical stage without prior knowledge on the overall feasibility of this novel treatment approach, it 

was not considered reasonable to drastically increase animal numbers by performing individual and 

combinatorial testing. Nevertheless, I was able to successfully demonstrate the potential of the 
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treatment concept through confirming the reported pro-regenerative effects of the selected ions and 

drugs [29, 32, 34, 38] alone or upon release from the BHD. Ion and drug release from, as well as other 

effects evoked by MBG are highly dependent on the carrier composition, morphology, size, 

presentation mode and concentration [16, 24]. Keeping the MBG characteristics constant, the optimal 

concentrations and volumes of the individual components within the technology platform should be 

identified in further studies. As the industrial production routes were developed separately for the 

individual device components, and loading and doping remained customizable, the results of such 

studies could be implemented straightforwardly.    

Pre-clinical testing: the choice of animal models 

For early pre-clinical studies, rodent models are preferred due to the broad range of available 

downstream analysis. In line with the 3R principles, I employed animals that had to be sacrificed for 

reasons beyond the current research if possible (e.g. cadaver studies). The rat animal model of 

biologically impaired healing was developed and evaluated in house [33]. The aged rat resembles the 

average fracture case much closer than e.g. critical-sized defects in young animals, since the intrinsic 

healing capacity is reduced in the elderly patient as well as in the aged rat. The selected study end point 

at 4 weeks post osteotomy allows detection of beneficial effects on the bone healing outcome by 

different treatments, since bone healing has progressed to the mineralization phase, but is not 

completed in the untreated control. Moreover, application of the composite in the osteotomy gap 

required a large-enough void that could be created in the rat model.  

Translatable aspects of the individual and combined components of the technology platform 

pH and bone healing – local acidification could be harnessed for pH-responsive drug release  

For the purpose of bone healing, I defined target values for pH sensitivity of biomaterials around pH 

6.7 while detecting inter-individual differences that could be assigned to differences in metabolic 

activity in the TCA cycle [21]. Whether the different degrees of initial acidification cause variations 

in the bone healing outcome was beyond the scope of this study; answering this question will be 

essential to unravel the biological role of this local acidification. In an earlier pre-clinical study by 

Newmann et al., it was found that the group with delayed bone healing also presented with a prolonged 

acidification phase [39], indicating a link between local pH alterations/ kinetics and bone healing 

outcome. Since local pH acidifies as a result of decreased oxygen availability and metabolite 

accumulation after blood vessel rupture upon injury [11, 12, 39], blood vessel formation seems to be a 

pre-requisite for pH recovery to physiological or alkaline levels. In the elderly, the angiogenic potential 

is reduced, thus, it is likely that the acidic phase is prolonged in these patients, thereby preventing 
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proper mineral deposition which occurs in the subsequent alkaline phase [11]. Further studies could 

test whether dampening/ shortening of the acidification phase could accelerate bone healing. 

As mentioned above, the SIP coating is sensitive to more pronounced pH changes than found in the 

fracture setting. However, biomaterials that react to more subtle changes have been developed [40]. 

Adding such pH-sensitivity to the BHD would allow an even more targeted treatment approach and 

drug release with a lag time as acidification does not occur immediately after fracture (Figure 19B). 

This is especially relevant for immunomodulatory interventions, since initial pro-inflammatory 

signaling is required for proper bone healing.  

pH and infection – infections qualify for pH-triggered drug release 

External pH can be modified by bacterial metabolism, both in vitro as well as in vivo in the human 

patient as I demonstrated by measuring the pH in synovial fluids. Here, I found that S. aureus infections 

significantly reduce the local pH to a mean pH of 6.35 ± 0.63. Employing MOZART local treatment 

strategies with additional adequate pH responsiveness could allow for an anti-microbial therapy on 

endogenous demand with the infection causing the response of the drug release system (Figure 19C). 

In collaboration with MOZART partners, I am currently developing and testing this treatment strategy 

in vitro. Such an approach could reduce the risk for development of bacterial resistance, as the drug is 

only released if a threshold pH is reached, that can be created by the infection. The combination of 

anti-microbial ions like silver, copper and cerium with an antibiotic could exert synergistic effects and 

further counteract resistances as the bacteria could be killed more effectively. This question is currently 

being pursued by me and MOZART collaboration partners in another ongoing study.  

Broad applications of the bone healing device 

Within this PhD project, I tested the effect of different combinations of ions and drugs and identified 

N-Acetylcysteine as a pro-angiogenic and pro-osteogenic drug that can be administered locally and 

combined with therapeutic ions like Strontium and Copper. Pre-clinically, both ions were found to 

exert their expected osteoclast-inhibiting [29] and pro-angiogenic effects [34, 38], respectively, 

confirming the successful drug and ion release. MBG emerged as a suitable carrier for BMP-2 

(submitted manuscript), exhibiting superior release kinetics with a prolonged, low-dose BMP-2 release 

(Figure 19D) when compared to the high burst release of the clinically used collagen sponge [13, 36]. 

This collagen sponge was recently described as a material that drastically impairs bone healing [20], 

whereas I could show that MBG did not affect healing when embedded in a blood clot. This strategy 

is easily translatable, since the MBG production route is cost-effective and upscaling has already been 

accomplished. Furthermore, the blood clot as an embedding moiety for the MBG can be created within 

the operating room. Both, the complete BHD, as well as BMP-2 loaded MBG open up numerous 

potential applications which I together with orthopedic experts have identified (Figure 19E).  
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Figure 19. Translatable aspects of this PhD project. (A) The combination of different biomaterial components 

(excluding the pH-responsive SIP coating), therapeutic ions, and drugs make up the MOZART BHD that was tested 

in the context of bone healing in a pre-clinical animal model. (B) Biomaterials responsive to subtle pH changes (pH 
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~6.7) can be used for triggered, highly localized drug release with a lag time in fracture settings. (C) Metabolic activity 

of bacteria such as S. aureus can acidify their environment. pH-sensitive drug release systems can respond to this pH 

change by the release of antimicrobial agents. (D) MBG as carrier for BMP-2 yield a low-dose, prolonged release, 

greatly discriminating this carrier from the clinically used collagen sponge with high burst. (E) Identification of 

numerous orthopedic applications of the BHD.  

A particular strength of the MOZART approach is the versatility and adjustability and, therefore its 

multi-functionality with respect to elicited responses and clinical specifications. Each component can 

be exchanged for another. Different therapeutic ions and drug combinations can be selected, 

embedding materials can be altered in terms of sol-gel properties and stiffness of the thermosensitive 

hydrogel, and stimuli-sensitivity can be added to the product. This modularity is desirable to achieve 

broad usage and applications. It further allows treatment personalization that is of utmost relevance to 

achieve the optimal clinical outcome. The medical need for such versatile interventions was assessed 

by Cellogic (Figure 3) and all orthopedic clinicians consulted about the BHD confirmed their desire to 

use such a product in the future (Figure 18).  

Conclusion/ Outlook 

Within my PhD project, I biologically evaluated the MOZART BHD components individually and in 

combination in vitro and in pre-clinical in vivo settings as the first step towards clinical translation. I 

engaged in a constant exchange with our biomaterial partners and defined therapeutic ion and drug 

candidates in order to exploit the full potential of the biomaterial components in a biologically 

appropriate manner. This approach included multiple iterations and adjustments based on 

physiological and application-specific boundary conditions that were uncovered during my PhD work. 

The developed technology platform can be employed as bone healing device, but can furthermore be 

utilized to combat infections. For the BHD, I identified therapeutic ions and drugs candidates, both 

based on extensive literature search and in vitro studies, as well as identified the target concentration 

of NAC by an in vivo proof-of-concept study. I confirmed successful drug release from the carrier 

platform by detecting the fluorophore and calcium-binding Tetracycline intercalated in newly 

deposited bone. Although not statistically significant, the combination of NAC with Sr or Cu indicate 

the desired individual effects on bone microarchitecture, osteoclast-inhibition and angiogenesis, 

respectively. While numerous potential applications for the BHD have been identified by me in close 

collaboration with clinicians, individual components and findings can likewise prove suitable for future 

translation. Prolonged low-dose BMP-2 release from MBG could reduce the risk of side effects as only 

a low dose of BMP-2 at any one time is dissolved and biologically active. Local pH changes after 

fracture could be exploited for pH-triggered drug release by combining MOZART carriers with highly 

sensitive pH-responsive materials. As pH acidification does not occur immediately after fracture [21], 

such a drug release system could release its cargo with a lag time which is relevant for 
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immunomodulatory interventions. Future studies should investigate whether the initial acidification 

exerts an essential function or if bone healing in general could be accelerated by dampening/ shortening 

the acidification phase. Lastly, selective antimicrobial treatments triggered by metabolic activity and 

proliferation of bacteria could be used as future add-on treatments in open fracture cases or prosthetic 

surgeries and could help to prevent osteomyelitis or replacement surgeries due to sepsis. Novel 

treatment approaches that are validated in a clinically relevant setting and can be commercially up-

scaled based on developed and realized industrial production routes such as the ones presented in this 

thesis are urgently needed to counteract impaired healing and orthopedic infections.  
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Anteilserklärung an den erfolgten Publikationen 

Frau Julia Catherine Berkmann hatte folgenden Anteil an den folgenden Publikationen:   
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Bleek,Georgia Charalambopoulou,and María Vallet-Regí. Engineered pH-Responsive Mesoporous 

Carbon Nanoparticles for Drug Delivery. ACS Applied materials and interfaces, 2020  

                * Equally contributing co-first authors 

Beitrag im Einzelnen: Ko-Erstautorin 

Aufbauend auf die Materialcharakterisierung und in vial/ in vitro Untersuchungen zu der pH-

Reaktivität der mesoporigen Carbone mit pH-sensitiver SIP-Beschichtung habe ich eine Erweiterung 

des Manuskripts um eine in vivo Validierung der pH-Reaktivität des hybriden Biomaterials 

vorgenommen. Diese prä-klinische in vivo Validierung ebnet den Weg für eine künftige Translation 

und ermöglicht weitere klinisch-orientierte Erforschung von Anwendungsmöglichkeiten des hybriden 

Biomaterials.  

Entsprechend habe ich das Studienkonzept und -protokoll des in vivo Versuchs entwickelt. Dies 

bedeutet im Einzelnen, dass ich ein SOP für die Materialpräparation für die in vivo Applikation erstellt 

habe, Vortestungen zur pH-Reaktivität nach 30-minütigem oder 24-stündigem pH-Stimulus zur 

Analyse der Anwendbarkeit des entwickelten hybriden, pH-sensitiven Biomaterials durchgeführt, an 

der Konzeption und Revision des Ethikantrags für den dazugehörigen Tierversuch mitgewirkt und den 

in vivo Versuch unter Aufsicht von Veterinärmedizinern durchgeführt habe. Hierzu zählen auch das 

longitudinale in vivo imaging, die Gewebeentnahme und -prozessierung, sowie die H&E-Färbung. 

Mir oblag die hauptverantwortliche Datengewinnung und -analyse zu den Abbildungen 6, 7 und 8 der 

Veröffentlichung. Den Erstentwurf des Textanteils der in vivo Validierung und dazugehörigen 

Vortestungen (Abbildung 6, 7, 8) habe ich in allen Kapiteln der Veröffentlichung selbst erstellt. Die 

Veröffentlichung wurde von mir entsprechend meines Beitrags anhand von Reviewer-Kommentaren 

überarbeitet und kritisch interpretiert.  

 

Publikation 2: Julia C. Berkmann, Aaron X. Herrera Martin, Agnes Ellinghaus, Claudia 

Schlundt,Hanna Schell, Evi Lippens, Georg N. Duda, Serafeim Tsitsilonis and Katharina Schmidt-

Bleek. Early pH Changes in Musculoskeletal Tissues upon Injury—Aerobic Catabolic Pathway 

Activity Linked to Inter-Individual Differences in Local pH. International Journal of Molecular 

Sciences, 2020 

Beitrag im Einzelnen: Erstautorin 

Für diese Veröffentlichung oblag mir die Konzeption, Definition und Entwicklung der downstream 

Analysen im Anschluss an die Extraktion der Hämatome der Ratte. Bezüglich der Methodik habe ich 

pH-Messungen in Proben der Ratte vorgenommen, histologische Analysen übernommen, die 

Zelldichte in Schnitten des Hämatoms bestimmt und die metabolomische Analyse geplant, diskutiert 

und organisiert. Ich bin hauptverantwortlich für die Datengewinnung und -analyse für die Abbildungen 

3, 4, 5 und Tabellen 1 und 2 sowie für die Visualisierung aller gezeigten Abbildungen und Tabellen. 

Ebenfalls habe ich das Manuskript konzipiert, den Erstentwurf geschrieben, das Manuskript entlang 

von Anmerkungen der Ko-Autoren überarbeitet und kritisch interpretiert. Ich habe das Manuskript 

selbstständig eingereicht und Anpassungen gemäß den Empfehlungen der Reviewer vorgenommen 

sowie eine ausführliche point-by-point Antwort auf die Einzelkommentare geschrieben.  
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Publikation 3: Monica Boffito, Alessandro Torchio, Chiara Tonda-Turo, Rossella Laurano, 

Miguel Gisbert-Garzarán, Julia C. Berkmann, Claudio Cassino, Miguel Manzano, Georg N. Duda, 

María Vallet-Regí, Katharina Schmidt-Bleek and Gianluca Ciardelli. Hybrid Injectable Sol-Gel 

Systems Based on Thermo-Sensitive Polyurethane Hydrogels Carrying pH-Sensitive Mesoporous 

Silica Nanoparticles for the Controlled and Triggered Release of Therapeutic Agents. Frontiers in 

Bioengineering and Biotechnology, 2020 

Beitrag im Einzelnen: Ko-Autorin 

Meine Arbeiten haben die Veröffentlichung um eine in situ Analyse der Applikation und 

Anwendbarkeit des thermosensitiven Hydrogels als „Platzhalter“ und des Biomaterialien-Komposits 

im murinen Kadaver mit physiologischer Körpertemperatur als Basis für spätere in vivo Applikationen 

ergänzt. Dafür habe ich das Studienkonzept/ -protokoll des in situ Versuches entwickelt, was die 

Erstellung eines SOP für die Präparation und Applikation mittels Injektion, die Aufrechterhaltung der 

physiologischen Körpertemperatur und die Definition der Analysemethoden (visuell und haptisch von 

gefärbtem und ungefärbtem Hydrogel, in vivo imaging für die Fragestellung der Transmission des 

Fluoreszenzsignals durch das Hydrogel und zur Analyse der Materialdistribution nach Injektion) 

beinhaltete. Ich habe unter Aufsicht von Veterinärmedizinern den in situ Versuch durchgeführt 

(Applikation des Materials, longitudinales in vivo imaging, Materialextraktion) und bin 

hauptverantwortlich für die Datengewinnung und -analyse zu den Abbildungen 4 und 7 der 

Veröffentlichung. Bzgl. des in situ Versuches (Abbildung 4 und 7) habe ich einen Erstentwurf in allen 

Kapiteln der Veröffentlichung erstellt und im Folgenden die Veröffentlichung überarbeitet und kritisch 

interpretiert.  
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